modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
mrm8488/xlm-multi-finetuned-xquadv1
5bd796ffd38b4fabb39ee949e2d1516e3268d551
2020-12-11T21:56:48.000Z
[ "pytorch", "xlm", "question-answering", "multilingual", "arxiv:1901.07291", "arxiv:1910.11856", "transformers", "autotrain_compatible" ]
question-answering
false
mrm8488
null
mrm8488/xlm-multi-finetuned-xquadv1
3
null
transformers
21,600
--- language: multilingual thumbnail: --- # [XLM](https://github.com/facebookresearch/XLM/) (multilingual version) fine-tuned for multilingual Q&A Released from `Facebook` together with the paper [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) by Guillaume Lample and Alexis Conneau and fine-tuned on [XQuAD](https://github.com/deepmind/xquad) for multilingual (`11 different languages`) **Q&A** downstream task. ## Details of the language model('xlm-mlm-100-1280') [Language model](https://github.com/facebookresearch/XLM/#ii-cross-lingual-language-model-pretraining-xlm) | Languages | --------- | | 100 | It includes the following languages: <details> en-es-fr-de-zh-ru-pt-it-ar-ja-id-tr-nl-pl-simple-fa-vi-sv-ko-he-ro-no-hi-uk-cs-fi-hu-th-da-ca-el-bg-sr-ms-bn-hr-sl-zh_yue-az-sk-eo-ta-sh-lt-et-ml-la-bs-sq-arz-af-ka-mr-eu-tl-ang-gl-nn-ur-kk-be-hy-te-lv-mk-zh_classical-als-is-wuu-my-sco-mn-ceb-ast-cy-kn-br-an-gu-bar-uz-lb-ne-si-war-jv-ga-zh_min_nan-oc-ku-sw-nds-ckb-ia-yi-fy-scn-gan-tt-am </details> ## Details of the downstream task (multilingual Q&A) - Dataset Deepmind [XQuAD](https://github.com/deepmind/xquad) Languages covered: - Arabic: `ar` - German: `de` - Greek: `el` - English: `en` - Spanish: `es` - Hindi: `hi` - Russian: `ru` - Thai: `th` - Turkish: `tr` - Vietnamese: `vi` - Chinese: `zh` As the dataset is based on SQuAD v1.1, there are no unanswerable questions in the data. We chose this setting so that models can focus on cross-lingual transfer. We show the average number of tokens per paragraph, question, and answer for each language in the table below. The statistics were obtained using [Jieba](https://github.com/fxsjy/jieba) for Chinese and the [Moses tokenizer](https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl) for the other languages. | | en | es | de | el | ru | tr | ar | vi | th | zh | hi | | --------- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | Paragraph | 142.4 | 160.7 | 139.5 | 149.6 | 133.9 | 126.5 | 128.2 | 191.2 | 158.7 | 147.6 | 232.4 | | Question | 11.5 | 13.4 | 11.0 | 11.7 | 10.0 | 9.8 | 10.7 | 14.8 | 11.5 | 10.5 | 18.7 | | Answer | 3.1 | 3.6 | 3.0 | 3.3 | 3.1 | 3.1 | 3.1 | 4.5 | 4.1 | 3.5 | 5.6 | Citation: <details> ```bibtex @article{Artetxe:etal:2019, author = {Mikel Artetxe and Sebastian Ruder and Dani Yogatama}, title = {On the cross-lingual transferability of monolingual representations}, journal = {CoRR}, volume = {abs/1910.11856}, year = {2019}, archivePrefix = {arXiv}, eprint = {1910.11856} } ``` </details> As XQuAD is just an evaluation dataset, I used Data augmentation techniques (scraping, neural machine translation, etc) to obtain more samples and split the dataset in order to have a train and test set. The test set was created in a way that contains the same number of samples for each language. Finally, I got: | Dataset | # samples | | ----------- | --------- | | XQUAD train | 50 K | | XQUAD test | 8 K | ## Model training The model was trained on a Tesla P100 GPU and 25GB of RAM. The script for fine tuning can be found [here](https://github.com/huggingface/transformers/blob/master/examples/distillation/run_squad_w_distillation.py) ## Model in action Fast usage with **pipelines**: ```python from transformers import pipeline qa_pipeline = pipeline( "question-answering", model="mrm8488/xlm-multi-finetuned-xquadv1", tokenizer="mrm8488/xlm-multi-finetuned-xquadv1" ) # English qa_pipeline({ 'context': "Manuel Romero has been working hardly in the repository hugginface/transformers lately", 'question': "Who has been working hard for hugginface/transformers lately?" }) #Output: {'answer': 'Manuel', 'end': 6, 'score': 8.531880747878265e-05, 'start': 0} # Russian qa_pipeline({ 'context': "Мануэль Ромеро в последнее время почти не работал в репозитории hugginface / transformers", 'question': "Кто в последнее время усердно работал над обнимашками / трансформерами?" }) #Output: {'answer': 'работал в репозитории hugginface /','end': 76, 'score': 0.00012340750456964894, 'start': 42} ``` Try it on a Colab (*Do not forget to change the model and tokenizer path in the Colab if necessary*): <a href="https://colab.research.google.com/github/mrm8488/shared_colab_notebooks/blob/master/Try_mrm8488_xquad_finetuned_uncased_model.ipynb" target="_parent"><img src="https://camo.githubusercontent.com/52feade06f2fecbf006889a904d221e6a730c194/68747470733a2f2f636f6c61622e72657365617263682e676f6f676c652e636f6d2f6173736574732f636f6c61622d62616467652e737667" alt="Open In Colab" data-canonical-src="https://colab.research.google.com/assets/colab-badge.svg"></a> > Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488) > Made with <span style="color: #e25555;">&hearts;</span> in Spain
mtr0930/i-manual_tokenizer_updated
2e8eb39d31ad4f0860dcd1477ec39df6fa625c0a
2021-09-14T04:30:22.000Z
[ "pytorch", "electra", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
mtr0930
null
mtr0930/i-manual_tokenizer_updated
3
null
transformers
21,601
Entry not found
mudes/multilingual-large
1ba1e0c9c6f4dfd605e098adae798f3de283a544
2021-04-15T22:36:53.000Z
[ "pytorch", "xlm-roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
mudes
null
mudes/multilingual-large
3
null
transformers
21,602
# MUDES - {Mu}ltilingual {De}tection of Offensive {S}pans We provide state-of-the-art models to detect toxic spans in text. We have evaluated our models on Toxic Spans task at SemEval 2021 (Task 5). ## Usage You can use this model when you have [MUDES](https://github.com/TharinduDR/MUDES) installed: ```bash pip install mudes ``` Then you can use the model like this: ```python from mudes.app.mudes_app import MUDESApp app = MUDESApp("multilingual-large", use_cuda=False) print(app.predict_toxic_spans("You motherfucking cunt", spans=True)) ``` ## System Demonstration An experimental demonstration interface called MUDES-UI has been released on [GitHub](https://github.com/TharinduDR/MUDES-UI) and can be checked out in [here](http://rgcl.wlv.ac.uk/mudes/). ## Citing & Authors If you find this model helpful, feel free to cite our publication ```bash @inproceedings{ranasinghemudes, title={{MUDES: Multilingual Detection of Offensive Spans}}, author={Tharindu Ranasinghe and Marcos Zampieri}, booktitle={Proceedings of NAACL}, year={2021} } ``` ```bash @inproceedings{ranasinghe2021semeval, title={{WLV-RIT at SemEval-2021 Task 5: A Neural Transformer Framework for Detecting Toxic Spans}}, author = {Ranasinghe, Tharindu and Sarkar, Diptanu and Zampieri, Marcos and Ororbia, Alex}, booktitle={Proceedings of SemEval}, year={2021} } ```
muhtasham/autonlp-Doctor_DE-24595546
265fa87972bc182858a0cd41aa7e0fc90ae3c527
2021-10-22T12:23:10.000Z
[ "pytorch", "bert", "text-classification", "de", "dataset:muhtasham/autonlp-data-Doctor_DE", "transformers", "autonlp", "co2_eq_emissions" ]
text-classification
false
muhtasham
null
muhtasham/autonlp-Doctor_DE-24595546
3
null
transformers
21,603
--- tags: autonlp language: de widget: - text: "I love AutoNLP 🤗" datasets: - muhtasham/autonlp-data-Doctor_DE co2_eq_emissions: 210.5957437893554 --- # Model Trained Using AutoNLP - Problem type: Single Column Regression - Model ID: 24595546 - CO2 Emissions (in grams): 210.5957437893554 ## Validation Metrics - Loss: 0.3092539310455322 - MSE: 0.30925390124320984 - MAE: 0.25015318393707275 - R2: 0.841926941198094 - RMSE: 0.5561060309410095 - Explained Variance: 0.8427215218544006 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/muhtasham/autonlp-Doctor_DE-24595546 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("muhtasham/autonlp-Doctor_DE-24595546", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("muhtasham/autonlp-Doctor_DE-24595546", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
muhtasham/autonlp-Doctor_DE-24595548
7fc1502296e62552e4e56b6afdeb349f1eacda19
2021-10-22T11:58:36.000Z
[ "pytorch", "roberta", "text-classification", "de", "dataset:muhtasham/autonlp-data-Doctor_DE", "transformers", "autonlp", "co2_eq_emissions" ]
text-classification
false
muhtasham
null
muhtasham/autonlp-Doctor_DE-24595548
3
null
transformers
21,604
--- tags: autonlp language: de widget: - text: "I love AutoNLP 🤗" datasets: - muhtasham/autonlp-data-Doctor_DE co2_eq_emissions: 183.88911013564527 --- # Model Trained Using AutoNLP - Problem type: Single Column Regression - Model ID: 24595548 - CO2 Emissions (in grams): 183.88911013564527 ## Validation Metrics - Loss: 0.3050823509693146 - MSE: 0.3050823509693146 - MAE: 0.2664000689983368 - R2: 0.844059188176304 - RMSE: 0.5523425936698914 - Explained Variance: 0.8472161293029785 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/muhtasham/autonlp-Doctor_DE-24595548 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("muhtasham/autonlp-Doctor_DE-24595548", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("muhtasham/autonlp-Doctor_DE-24595548", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
mujeensung/bert-base-cased_mnli_bc
f1e00c39c417cf04fd28e1609f2f249ad34d2403
2022-02-13T05:08:30.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
mujeensung
null
mujeensung/bert-base-cased_mnli_bc
3
null
transformers
21,605
Entry not found
mwesner/bart-mlm
1c2c68aebcef8ec85c18a909355a04153a4f5830
2021-09-05T13:13:27.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "generated_from_trainer", "autotrain_compatible" ]
text2text-generation
false
mwesner
null
mwesner/bart-mlm
3
null
transformers
21,606
--- tags: - generated_from_trainer datasets: - null model_index: - name: bart-mlm results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-mlm This model is a fine-tuned version of [mwesner/bart-mlm](https://huggingface.co/mwesner/bart-mlm) on the CNN/Dailymail dataset. It achieves the following results on the evaluation set: - Loss: 7.5338 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 500 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 7.5202 | 1.0 | 15237 | 7.5964 | | 7.5151 | 2.0 | 30474 | 7.5400 | | 7.5157 | 3.0 | 45711 | 7.5351 | | 7.5172 | 4.0 | 60948 | 7.5317 | | 7.5108 | 5.0 | 76185 | 7.5338 | ### Framework versions - Transformers 4.8.1 - Pytorch 1.9.0 - Datasets 1.11.0 - Tokenizers 0.10.3
narabzad/saved
857ec00a183a039578682ef8bbd589c1af66ac88
2021-05-20T01:15:05.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
narabzad
null
narabzad/saved
3
null
transformers
21,607
Entry not found
nateraw/timm-resnet18-beans-test-2
e207e8e77091146b481b7e6eeb151576391a76c4
2021-09-04T01:13:21.000Z
[ "pytorch", "tensorboard", "dataset:beans", "timm", "image-classification", "generated_from_trainer" ]
image-classification
false
nateraw
null
nateraw/timm-resnet18-beans-test-2
3
null
timm
21,608
--- tags: - image-classification - timm - generated_from_trainer datasets: - beans metrics: - accuracy model_index: - name: timm-resnet18-beans-test-2 results: - task: name: Image Classification type: image-classification dataset: name: beans type: beans args: default metric: name: Accuracy type: accuracy value: 0.5789473684210527 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # timm-resnet18-beans-test-2 This model is a fine-tuned version of [resnet18](https://huggingface.co/resnet18) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 1.3225 - Accuracy: 0.5789 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2601 | 0.02 | 5 | 2.8349 | 0.5113 | | 1.8184 | 0.04 | 10 | 1.3225 | 0.5789 | ### Framework versions - Transformers 4.9.1 - Pytorch 1.9.0 - Datasets 1.11.1.dev0 - Tokenizers 0.10.3
nateraw/timm-resnet18-imagenette-160px-5-epochs
0ac3af8c59a37990192449b8b683eea167dc0276
2021-09-27T01:16:41.000Z
[ "pytorch", "timm", "image-classification" ]
image-classification
false
nateraw
null
nateraw/timm-resnet18-imagenette-160px-5-epochs
3
null
timm
21,609
--- tags: - image-classification - timm library_tag: timm --- # Model card for timm-resnet18-imagenette-160px-5-epochs
nateraw/timm-resnet50-beans-copy
54304a3286aed5cd892ea2b482f702ca74e6aedf
2021-10-08T03:16:00.000Z
[ "pytorch", "timm", "image-classification" ]
image-classification
false
nateraw
null
nateraw/timm-resnet50-beans-copy
3
null
timm
21,610
--- tags: - timm - image-classification library_name: timm ---
nates-test-org/cait_xxs24_384
794b8fb12c1088ad5406505dc5c336dfad0ae2fa
2021-10-29T04:33:48.000Z
[ "pytorch", "timm", "image-classification" ]
image-classification
false
nates-test-org
null
nates-test-org/cait_xxs24_384
3
null
timm
21,611
--- tags: - image-classification - timm library_tag: timm --- # Model card for cait_xxs24_384
nates-test-org/coat_lite_small
866d04ad7b799ecaf5a98852f905d9c02d201e8e
2021-10-29T04:37:38.000Z
[ "pytorch", "timm", "image-classification" ]
image-classification
false
nates-test-org
null
nates-test-org/coat_lite_small
3
null
timm
21,612
--- tags: - image-classification - timm library_tag: timm --- # Model card for coat_lite_small
nates-test-org/coat_mini
338e8cff574b10d49bbc1d66222689fd3b7fef88
2021-10-29T04:39:18.000Z
[ "pytorch", "timm", "image-classification" ]
image-classification
false
nates-test-org
null
nates-test-org/coat_mini
3
null
timm
21,613
--- tags: - image-classification - timm library_tag: timm --- # Model card for coat_mini
navteca/ms-marco-electra-base
c3ca93e7e3e4634e0931cc1a64e5477f2e70e3a7
2021-03-10T14:28:14.000Z
[ "pytorch", "electra", "text-classification", "transformers" ]
text-classification
false
navteca
null
navteca/ms-marco-electra-base
3
null
transformers
21,614
# Cross-Encoder for MS Marco This model was trained using [SentenceTransformers](https://sbert.net) [Cross-Encoder](https://www.sbert.net/examples/applications/cross-encoder/README.html) class. This model uses [electra-base](https://huggingface.co/google/electra-base-discriminator). ## Training Data This model was trained on the [MS Marco Passage Ranking](https://github.com/microsoft/MSMARCO-Passage-Ranking) dataset. The model will predict a score between 0 and 1: Given a question and paragraph, can the question be answered by the paragraph?. ## Usage and Performance Pre-trained models can be used like this: ```python from sentence_transformers import CrossEncoder model = CrossEncoder('model_name') scores = model.predict([('Query', 'Paragraph1'), ('Query', 'Paragraph2')]) print(scores) ```
navteca/multi-qa-mpnet-base-cos-v1
abae445a601aa8fb2a3f8dc0a7c7fcddc70d9617
2022-02-09T14:55:14.000Z
[ "pytorch", "mpnet", "fill-mask", "en", "sentence-transformers", "feature-extraction", "sentence-similarity", "license:mit" ]
sentence-similarity
false
navteca
null
navteca/multi-qa-mpnet-base-cos-v1
3
null
sentence-transformers
21,615
--- language: en license: mit pipeline_tag: sentence-similarity tags: - feature-extraction - sentence-similarity - sentence-transformers --- # Multi QA MPNet base model for Semantic Search This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and was designed for **semantic search**. It has been trained on 215M (question, answer) pairs from diverse sources. This model uses [`mpnet-base`](https://huggingface.co/microsoft/mpnet-base). ## Training Data We use the concatenation from multiple datasets to fine-tune this model. In total we have about 215M (question, answer) pairs. The model was trained with [MultipleNegativesRankingLoss](https://www.sbert.net/docs/package_reference/losses.html#multiplenegativesrankingloss) using Mean-pooling, cosine-similarity as similarity function, and a scale of 20. | Dataset | Number of training tuples | |--------------------------------------------------------|:--------------------------:| | [WikiAnswers](https://github.com/afader/oqa#wikianswers-corpus) Duplicate question pairs from WikiAnswers | 77,427,422 | | [PAQ](https://github.com/facebookresearch/PAQ) Automatically generated (Question, Paragraph) pairs for each paragraph in Wikipedia | 64,371,441 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title, Body) pairs from all StackExchanges | 25,316,456 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title, Answer) pairs from all StackExchanges | 21,396,559 | | [MS MARCO](https://microsoft.github.io/msmarco/) Triplets (query, answer, hard_negative) for 500k queries from Bing search engine | 17,579,773 | | [GOOAQ: Open Question Answering with Diverse Answer Types](https://github.com/allenai/gooaq) (query, answer) pairs for 3M Google queries and Google featured snippet | 3,012,496 | | [Amazon-QA](http://jmcauley.ucsd.edu/data/amazon/qa/) (Question, Answer) pairs from Amazon product pages | 2,448,839 | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Title, Answer) pairs from Yahoo Answers | 1,198,260 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Question, Answer) pairs from Yahoo Answers | 681,164 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Title, Question) pairs from Yahoo Answers | 659,896 | | [SearchQA](https://huggingface.co/datasets/search_qa) (Question, Answer) pairs for 140k questions, each with Top5 Google snippets on that question | 582,261 | | [ELI5](https://huggingface.co/datasets/eli5) (Question, Answer) pairs from Reddit ELI5 (explainlikeimfive) | 325,475 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions pairs (titles) | 304,525 | | [Quora Question Triplets](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) (Question, Duplicate_Question, Hard_Negative) triplets for Quora Questions Pairs dataset | 103,663 | | [Natural Questions (NQ)](https://ai.google.com/research/NaturalQuestions) (Question, Paragraph) pairs for 100k real Google queries with relevant Wikipedia paragraph | 100,231 | | [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/) (Question, Paragraph) pairs from SQuAD2.0 dataset | 87,599 | | [TriviaQA](https://huggingface.co/datasets/trivia_qa) (Question, Evidence) pairs | 73,346 | | **Total** | **214,988,242** | ## Technical Details In the following some technical details how this model must be used: | Setting | Value | | --- | :---: | | Dimensions | 768 | | Produces normalized embeddings | Yes | | Pooling-Method | Mean pooling | | Suitable score functions | dot-product, cosine-similarity, or euclidean distance | Note: This model produces normalized embeddings with length 1. In that case, dot-product and cosine-similarity are equivalent. dot-product is preferred as it is faster. Euclidean distance is proportional to dot-product and can also be used. ## Usage and Performance The trained model can be used like this: ```python from sentence_transformers import SentenceTransformer, util question = "That is a happy person" contexts = [ "That is a happy dog", "That is a very happy person", "Today is a sunny day" ] # Load the model model = SentenceTransformer('navteca//multi-qa-mpnet-base-cos-v1') # Encode question and contexts question_emb = model.encode(question) contexts_emb = model.encode(contexts) # Compute dot score between question and all contexts embeddings result = util.dot_score(question_emb, contexts_emb)[0].cpu().tolist() print(result) #[ # 0.60806852579116820, # 0.94949364662170410, # 0.29836517572402954 #]
ncduy/MiniLM-L12-H384-uncased-finetuned-squad
49b621f5b5f6606b8e48ce5b98d2d3b343574b82
2021-12-09T14:45:03.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
ncduy
null
ncduy/MiniLM-L12-H384-uncased-finetuned-squad
3
null
transformers
21,616
Entry not found
ncduy/xlm-roberta-base-squad2-distilled-finetuned-chaii-small
302a6781857866fdca6edac907d21e5fc076b2c0
2021-12-09T14:02:23.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "question-answering", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
question-answering
false
ncduy
null
ncduy/xlm-roberta-base-squad2-distilled-finetuned-chaii-small
3
null
transformers
21,617
--- license: mit tags: - generated_from_trainer model-index: - name: xlm-roberta-base-squad2-distilled-finetuned-chaii-small results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-squad2-distilled-finetuned-chaii-small This model is a fine-tuned version of [deepset/xlm-roberta-base-squad2-distilled](https://huggingface.co/deepset/xlm-roberta-base-squad2-distilled) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
neibyr/MiniRoberta_oscar_hindi_tamil
3da77384379804bed886baa6ef02eccb3c6d7992
2021-10-26T17:53:29.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
neibyr
null
neibyr/MiniRoberta_oscar_hindi_tamil
3
null
transformers
21,618
Entry not found
neuralspace-reverie/indic-transformers-hi-xlmroberta
75fcf55840bd7aa35c0e0d8ee9a57fa8641971af
2020-12-11T21:57:29.000Z
[ "pytorch", "tf", "xlm-roberta", "fill-mask", "hi", "transformers", "MaskedLM", "Hindi", "XLMRoBERTa", "Question-Answering", "Token Classification", "Text Classification", "autotrain_compatible" ]
fill-mask
false
neuralspace-reverie
null
neuralspace-reverie/indic-transformers-hi-xlmroberta
3
1
transformers
21,619
--- language: - hi tags: - MaskedLM - Hindi - XLMRoBERTa - Question-Answering - Token Classification - Text Classification --- # Indic-Transformers Hindi XLMRoBERTa ## Model description This is a XLMRoBERTa language model pre-trained on ~3 GB of monolingual training corpus. The pre-training data was majorly taken from [OSCAR](https://oscar-corpus.com/). This model can be fine-tuned on various downstream tasks like text-classification, POS-tagging, question-answering, etc. Embeddings from this model can also be used for feature-based training. ## Intended uses & limitations #### How to use ``` from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained('neuralspace-reverie/indic-transformers-hi-xlmroberta') model = AutoModel.from_pretrained('neuralspace-reverie/indic-transformers-hi-xlmroberta') text = "आपका स्वागत हैं" input_ids = tokenizer(text, return_tensors='pt')['input_ids'] out = model(input_ids)[0] print(out.shape) # out = [1, 5, 768] ``` #### Limitations and bias The original language model has been trained using `PyTorch` and hence the use of `pytorch_model.bin` weights file is recommended. The h5 file for `Tensorflow` has been generated manually by commands suggested [here](https://huggingface.co/transformers/model_sharing.html).
nguyenthanhasia/BERTLaw
6b4e0cf9eba5c6298fa63e89f345b35a420c3013
2021-05-20T01:48:06.000Z
[ "pytorch", "tf", "jax", "bert", "pretraining", "transformers" ]
null
false
nguyenthanhasia
null
nguyenthanhasia/BERTLaw
3
null
transformers
21,620
Entry not found
nielsr/tapex-large-finetuned-wikisql
f0b3100d1a9260b13658af1c441d2d363bece913
2022-01-13T14:40:16.000Z
[ "pytorch", "bart", "text2text-generation", "en", "dataset:wikisql", "arxiv:2107.07653", "transformers", "tapex", "table-question-answering", "license:apache-2.0", "autotrain_compatible" ]
table-question-answering
false
nielsr
null
nielsr/tapex-large-finetuned-wikisql
3
null
transformers
21,621
--- language: en tags: - tapex - table-question-answering license: apache-2.0 datasets: - wikisql inference: false --- TAPEX-large model fine-tuned on WikiSQL. This model was proposed in [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) by Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou. Original repo can be found [here](https://github.com/microsoft/Table-Pretraining). To load it and run inference, you can do the following: ``` from transformers import BartTokenizer, BartForConditionalGeneration import pandas as pd tokenizer = BartTokenizer.from_pretrained("nielsr/tapex-large-finetuned-wikisql") model = BartForConditionalGeneration.from_pretrained("nielsr/tapex-large-finetuned-wikisql") # create table data = {'Actors': ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"], 'Number of movies': ["87", "53", "69"]} table = pd.DataFrame.from_dict(data) # turn into dict table_dict = {"header": list(table.columns), "rows": [list(row.values) for i,row in table.iterrows()]} # turn into format TAPEX expects # define the linearizer based on this code: https://github.com/microsoft/Table-Pretraining/blob/main/tapex/processor/table_linearize.py linearizer = IndexedRowTableLinearize() linear_table = linearizer.process_table(table_dict) # add question question = "how many movies does George Clooney have?" joint_input = question + " " + linear_table # encode encoding = tokenizer(joint_input, return_tensors="pt") # forward pass outputs = model.generate(**encoding) # decode tokenizer.batch_decode(outputs, skip_special_tokens=True) ```
niepan/bert_funting_test_ai10
18f75c7fcb9aab517a1d374d98c28db784bc14ea
2021-09-03T13:49:11.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
niepan
null
niepan/bert_funting_test_ai10
3
null
transformers
21,622
Entry not found
nikhil6041/wav2vec2-large-xlsr-hindi-commonvoice
7582a4d0858c18dcf2fb5e1ba46e7ae8ac4b40a7
2021-11-07T09:54:09.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
nikhil6041
null
nikhil6041/wav2vec2-large-xlsr-hindi-commonvoice
3
null
transformers
21,623
Entry not found
nikhil6041/wav2vec2-large-xlsr-hindi_commonvoice
8e680bb31fc9b69cc3e8c8ea628efe5f95921f96
2021-11-07T06:23:22.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
nikhil6041
null
nikhil6041/wav2vec2-large-xlsr-hindi_commonvoice
3
null
transformers
21,624
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xlsr-hindi_commonvoice results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-hindi_commonvoice This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 3.5947 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 24.0069 | 4.0 | 20 | 40.3956 | 1.0 | | 18.1097 | 8.0 | 40 | 15.3603 | 1.0 | | 7.1344 | 12.0 | 60 | 5.2695 | 1.0 | | 4.0032 | 16.0 | 80 | 3.7403 | 1.0 | | 3.4894 | 20.0 | 100 | 3.5724 | 1.0 | | 3.458 | 24.0 | 120 | 3.6164 | 1.0 | | 3.4412 | 28.0 | 140 | 3.5947 | 1.0 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu102 - Datasets 1.13.3 - Tokenizers 0.10.3
nlpunibo/albert
c447d6b562487449cf9f3436255c8ed028347702
2021-02-19T14:13:04.000Z
[ "pytorch", "albert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
nlpunibo
null
nlpunibo/albert
3
null
transformers
21,625
Entry not found
noah-ai/mt5-base-question-generation-vi
c71d95f87f123f99867b59778f55594be1f80c10
2021-07-31T01:23:40.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
noah-ai
null
noah-ai/mt5-base-question-generation-vi
3
1
transformers
21,626
## Model description This model is a sequence-to-sequence question generator that takes an answer and context as an input and generates a question as an output. It is based on a pre-trained mt5-base by [Google](https://github.com/google-research/multilingual-t5) model. ## Training data The model was fine-tuned on [XQuAD](https://github.com/deepmind/xquad) ## Example usage ```python from transformers import MT5ForConditionalGeneration, AutoTokenizer import torch model = MT5ForConditionalGeneration.from_pretrained("noah-ai/mt5-base-question-generation-vi") tokenizer = AutoTokenizer.from_pretrained("noah-ai/mt5-base-question-generation-vi") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = model.to(device) # Content used to create a set of questions context = '''Thành phố Hồ Chí Minh (còn gọi là Sài Gòn) tên gọi cũ trước 1975 là Sài Gòn hay Sài Gòn-Gia Định là thành phố lớn nhất ở Việt Nam về dân số và quy mô đô thị hóa. Đây còn là trung tâm kinh tế, chính trị, văn hóa và giáo dục tại Việt Nam. Thành phố Hồ Chí Minh là thành phố trực thuộc trung ương thuộc loại đô thị đặc biệt của Việt Nam cùng với thủ đô Hà Nội.Nằm trong vùng chuyển tiếp giữa Đông Nam Bộ và Tây Nam Bộ, thành phố này hiện có 16 quận, 1 thành phố và 5 huyện, tổng diện tích 2.061 km². Theo kết quả điều tra dân số chính thức vào thời điểm ngày một tháng 4 năm 2009 thì dân số thành phố là 7.162.864 người (chiếm 8,34% dân số Việt Nam), mật độ dân số trung bình 3.419 người/km². Đến năm 2019, dân số thành phố tăng lên 8.993.082 người và cũng là nơi có mật độ dân số cao nhất Việt Nam. Tuy nhiên, nếu tính những người cư trú không đăng ký hộ khẩu thì dân số thực tế của thành phố này năm 2018 là gần 14 triệu người.''' encoding = tokenizer.encode_plus(context, return_tensors="pt") input_ids, attention_masks = encoding["input_ids"].to(device), encoding["attention_mask"].to(device) output = model.generate(input_ids=input_ids, attention_mask=attention_masks, max_length=256) question = tokenizer.decode(output[0], skip_special_tokens=True,clean_up_tokenization_spaces=True) question #question: Thành phố hồ chí minh có bao nhiêu quận? ``` > Created by [Duong Thanh Nguyen](https://www.facebook.com/thanhnguyen.dev)
nonamenlp/thai_new_gen_from_kw
9c50174da3114b9ce92583463edbf6d4ec99c0c3
2021-06-26T16:46:09.000Z
[ "pytorch", "jax", "mt5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
nonamenlp
null
nonamenlp/thai_new_gen_from_kw
3
null
transformers
21,627
# Generate News in Thai language by keywords. MODEL_NAME = 'nonamenlp/news_gen' TOKENIZER_NAME = "nonamenlp/news_gen" trained_model = MT5ForConditionalGeneration.from_pretrained(MODEL_NAME, return_dict=True) tokenizer = T5Tokenizer.from_pretrained(TOKENIZER_NAME)
notentered/roberta-large-finetuned-cola
96293078a8ef2fd8fe94ef6e67e06a0305de2f7a
2022-02-18T10:23:36.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
notentered
null
notentered/roberta-large-finetuned-cola
3
null
transformers
21,628
Entry not found
nurkayevaa/autonlp-bert-covid-407910458
9fa87133a5a4130a71f57198d614d089bba58efd
2021-12-11T05:29:05.000Z
[ "pytorch", "distilbert", "text-classification", "en", "dataset:nurkayevaa/autonlp-data-bert-covid", "transformers", "autonlp", "co2_eq_emissions" ]
text-classification
false
nurkayevaa
null
nurkayevaa/autonlp-bert-covid-407910458
3
null
transformers
21,629
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - nurkayevaa/autonlp-data-bert-covid co2_eq_emissions: 9.72797586719897 --- # Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 407910458 - CO2 Emissions (in grams): 9.72797586719897 ## Validation Metrics - Loss: 0.20907048881053925 - Accuracy: 0.9119825708061002 - Precision: 0.8912721893491125 - Recall: 0.9563492063492064 - AUC: 0.9698454873092555 - F1: 0.9226646248085759 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/nurkayevaa/autonlp-bert-covid-407910458 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("nurkayevaa/autonlp-bert-covid-407910458", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("nurkayevaa/autonlp-bert-covid-407910458", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
nyu-mll/roberta-base-100M-3
e847da26de4c9e0db63247d7e50c0aac6bd910ed
2021-05-20T18:56:02.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
nyu-mll
null
nyu-mll/roberta-base-100M-3
3
null
transformers
21,630
# RoBERTa Pretrained on Smaller Datasets We pretrain RoBERTa on smaller datasets (1M, 10M, 100M, 1B tokens). We release 3 models with lowest perplexities for each pretraining data size out of 25 runs (or 10 in the case of 1B tokens). The pretraining data reproduces that of BERT: We combine English Wikipedia and a reproduction of BookCorpus using texts from smashwords in a ratio of approximately 3:1. ### Hyperparameters and Validation Perplexity The hyperparameters and validation perplexities corresponding to each model are as follows: | Model Name | Training Size | Model Size | Max Steps | Batch Size | Validation Perplexity | |--------------------------|---------------|------------|-----------|------------|-----------------------| | [roberta-base-1B-1][link-roberta-base-1B-1] | 1B | BASE | 100K | 512 | 3.93 | | [roberta-base-1B-2][link-roberta-base-1B-2] | 1B | BASE | 31K | 1024 | 4.25 | | [roberta-base-1B-3][link-roberta-base-1B-3] | 1B | BASE | 31K | 4096 | 3.84 | | [roberta-base-100M-1][link-roberta-base-100M-1] | 100M | BASE | 100K | 512 | 4.99 | | [roberta-base-100M-2][link-roberta-base-100M-2] | 100M | BASE | 31K | 1024 | 4.61 | | [roberta-base-100M-3][link-roberta-base-100M-3] | 100M | BASE | 31K | 512 | 5.02 | | [roberta-base-10M-1][link-roberta-base-10M-1] | 10M | BASE | 10K | 1024 | 11.31 | | [roberta-base-10M-2][link-roberta-base-10M-2] | 10M | BASE | 10K | 512 | 10.78 | | [roberta-base-10M-3][link-roberta-base-10M-3] | 10M | BASE | 31K | 512 | 11.58 | | [roberta-med-small-1M-1][link-roberta-med-small-1M-1] | 1M | MED-SMALL | 100K | 512 | 153.38 | | [roberta-med-small-1M-2][link-roberta-med-small-1M-2] | 1M | MED-SMALL | 10K | 512 | 134.18 | | [roberta-med-small-1M-3][link-roberta-med-small-1M-3] | 1M | MED-SMALL | 31K | 512 | 139.39 | The hyperparameters corresponding to model sizes mentioned above are as follows: | Model Size | L | AH | HS | FFN | P | |------------|----|----|-----|------|------| | BASE | 12 | 12 | 768 | 3072 | 125M | | MED-SMALL | 6 | 8 | 512 | 2048 | 45M | (AH = number of attention heads; HS = hidden size; FFN = feedforward network dimension; P = number of parameters.) For other hyperparameters, we select: - Peak Learning rate: 5e-4 - Warmup Steps: 6% of max steps - Dropout: 0.1 [link-roberta-med-small-1M-1]: https://huggingface.co/nyu-mll/roberta-med-small-1M-1 [link-roberta-med-small-1M-2]: https://huggingface.co/nyu-mll/roberta-med-small-1M-2 [link-roberta-med-small-1M-3]: https://huggingface.co/nyu-mll/roberta-med-small-1M-3 [link-roberta-base-10M-1]: https://huggingface.co/nyu-mll/roberta-base-10M-1 [link-roberta-base-10M-2]: https://huggingface.co/nyu-mll/roberta-base-10M-2 [link-roberta-base-10M-3]: https://huggingface.co/nyu-mll/roberta-base-10M-3 [link-roberta-base-100M-1]: https://huggingface.co/nyu-mll/roberta-base-100M-1 [link-roberta-base-100M-2]: https://huggingface.co/nyu-mll/roberta-base-100M-2 [link-roberta-base-100M-3]: https://huggingface.co/nyu-mll/roberta-base-100M-3 [link-roberta-base-1B-1]: https://huggingface.co/nyu-mll/roberta-base-1B-1 [link-roberta-base-1B-2]: https://huggingface.co/nyu-mll/roberta-base-1B-2 [link-roberta-base-1B-3]: https://huggingface.co/nyu-mll/roberta-base-1B-3
obss/mt5-small-3task-both-tquad2
d3e3c8704c995a58a0a6de1cb5f536e16c9c8aa4
2021-12-04T00:10:42.000Z
[ "pytorch", "mt5", "text2text-generation", "tr", "dataset:tquad1", "dataset:tquad2", "dataset:xquad", "arxiv:2111.06476", "transformers", "question-generation", "answer-extraction", "question-answering", "text-generation", "license:cc-by-4.0", "autotrain_compatible" ]
text2text-generation
false
obss
null
obss/mt5-small-3task-both-tquad2
3
null
transformers
21,631
--- language: tr datasets: - tquad1 - tquad2 - xquad tags: - text2text-generation - question-generation - answer-extraction - question-answering - text-generation pipeline_tag: text2text-generation widget: - text: "answer: film ve TV haklarını context: Legendary Entertainment, 2016 yılında bilimkurgu romanı Dune'un <hl> film ve TV haklarını <hl> satın aldı. Geliştirme kısa bir süre sonra başladı. Villeneuve projeye olan ilgisini dile getirdi ve resmi olarak yönetmen olarak imza attı. Roth ve Spaihts ile birlikte çalışarak senaryoyu iki bölüme ayırdı ve 1965 romanının 21. yüzyıla güncellenmiş bir uyarlamasını ekledi." example_title: "Question Generation (Movie)" - text: "answer: bir antlaşma yaparak context: Fatih Sultan Mehmet, Cenevizlilerin önemli üslerinden Amasra’yı aldı. 1479’da <hl> bir antlaşma yaparak <hl> Venedik'le 16 yıllık savaşa son verdi." example_title: "Question Generation (History)" - text: "answer: Venedik'le context: Cenevizlilerin önemli üslerinden Amasra’yı aldı. 1479’da bir antlaşma yaparak <hl> Venedik'le <hl> 16 yıllık savaşa sona verdi." example_title: "Question Generation (History 2)" - text: "extract answers: Cenevizlilerin önemli üslerinden Amasra’yı aldı. <hl> 1479’da bir antlaşma yaparak Venedik'le 16 yıllık savaşa sona verdi. <hl>" example_title: "Answer Extraction (History)" - text: "question: Bu model ne ise yarar? context: Çalışmada sunulan yöntemle, Türkçe metinlerden otomatik olarak soru ve cevap üretilebilir. Bu proje ile paylaşılan kaynak kodu ile Türkçe Soru Üretme / Soru Cevaplama konularında yeni akademik çalışmalar yapılabilir. Projenin detaylarına paylaşılan Github ve Arxiv linklerinden ulaşılabilir." example_title: "Answer Extraction (Open Domain)" license: cc-by-4.0 --- # mt5-small for Turkish Question Generation Automated question generation and question answering using text-to-text transformers by OBSS AI. ```python from core.api import GenerationAPI generation_api = GenerationAPI('mt5-small-3task-both-tquad2', qg_format='both') ``` ## Citation 📜 ``` @article{akyon2021automated, title={Automated question generation and question answering from Turkish texts using text-to-text transformers}, author={Akyon, Fatih Cagatay and Cavusoglu, Devrim and Cengiz, Cemil and Altinuc, Sinan Onur and Temizel, Alptekin}, journal={arXiv preprint arXiv:2111.06476}, year={2021} } ``` ## Overview ✔️ **Language model:** mt5-small **Language:** Turkish **Downstream-task:** Extractive QA/QG, Answer Extraction **Training data:** TQuADv2-train **Code:** https://github.com/obss/turkish-question-generation **Paper:** https://arxiv.org/abs/2111.06476 ## Hyperparameters ``` batch_size = 256 n_epochs = 15 base_LM_model = "mt5-small" max_source_length = 512 max_target_length = 64 learning_rate = 1.0e-3 task_lisst = ["qa", "qg", "ans_ext"] qg_format = "both" ``` ## Performance Refer to [paper](https://arxiv.org/abs/2111.06476). ## Usage 🔥 ```python from core.api import GenerationAPI generation_api = GenerationAPI('mt5-small-3task-both-tquad2', qg_format='both') context = """ Bu modelin eğitiminde, Türkçe soru cevap verileri kullanılmıştır. Çalışmada sunulan yöntemle, Türkçe metinlerden otomatik olarak soru ve cevap üretilebilir. Bu proje ile paylaşılan kaynak kodu ile Türkçe Soru Üretme / Soru Cevaplama konularında yeni akademik çalışmalar yapılabilir. Projenin detaylarına paylaşılan Github ve Arxiv linklerinden ulaşılabilir. """ # a) Fully Automated Question Generation generation_api(task='question-generation', context=context) # b) Question Answering question = "Bu model ne işe yarar?" generation_api(task='question-answering', context=context, question=question) # b) Answer Extraction generation_api(task='answer-extraction', context=context) ```
ontocord/wav2vec2-large-xlsr-vietnamese
e32a063462d12803e438ce9961707ade0dc9d368
2021-03-28T23:57:07.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "vi", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
ontocord
null
ontocord/wav2vec2-large-xlsr-vietnamese
3
null
transformers
21,632
--- language: vi datasets: - common_voice - FOSD: https://data.mendeley.com/datasets/k9sxg2twv4/4 metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Vietnamese by Ontocord results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice vi type: common_voice args: vi metrics: - name: Test WER type: wer value: 42.403315 --- # Ontocord/Wav2Vec2-Large-XLSR-53-Vietnamese Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Vietnamese using the [Common Voice](https://huggingface.co/datasets/common_voice), [FOSD](https://data.mendeley.com/datasets/k9sxg2twv4/4). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ``` import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "vi", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("ontocord/wav2vec2-large-xlsr-53-vietnamese") model = Wav2Vec2ForCTC.from_pretrained("ontocord/wav2vec2-large-xlsr-53-vietnamese") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Vietnamese test data of Common Voice. ``` import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "vi", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("ontocord/wav2vec2-large-xlsr-vietnamese") model = Wav2Vec2ForCTC.from_pretrained("ontocord/wav2vec2-large-xlsr-vietnamese") model.to("cuda") chars_to_ignore_regex = '[\\\+\@\ǀ\,\?\.\!\-\;\:\"\“\%\‘\”\�]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # you may also want to use the decode_string from https://huggingface.co/Nhut/wav2vec2-large-xlsr-vietnamese def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 42.403315 ## Training The Common Voice train, validation, and FPT datasets were used for training. The script used for training can be found here # TODO
orendar/longformer-prize
c4a52bbe0729b137c51c870d882675b56dde6bad
2021-12-19T20:11:10.000Z
[ "pytorch", "longformer", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
orendar
null
orendar/longformer-prize
3
null
transformers
21,633
Entry not found
osanseviero/test_adapters
d6b2f9b4eada7d07955ac1f00044dac4e84dfc21
2021-06-16T20:03:55.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
osanseviero
null
osanseviero/test_adapters
3
null
transformers
21,634
Entry not found
oseibrefo/distilbert-base-uncased-finetuned-cola
24e6cae9f034fc220c94d809480eb9b7ab6abf41
2021-12-19T19:40:54.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
oseibrefo
null
oseibrefo/distilbert-base-uncased-finetuned-cola
3
null
transformers
21,635
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5497693861041112 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.7595 - Matthews Correlation: 0.5498 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5275 | 1.0 | 535 | 0.5411 | 0.4254 | | 0.3498 | 2.0 | 1070 | 0.4973 | 0.5183 | | 0.2377 | 3.0 | 1605 | 0.6180 | 0.5079 | | 0.175 | 4.0 | 2140 | 0.7595 | 0.5498 | | 0.1322 | 5.0 | 2675 | 0.8412 | 0.5370 | ### Framework versions - Transformers 4.14.1 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
pablouribe/bertstem-copus
6bb804171e01b415f8b14ed0fad0d50cd61b0390
2022-01-20T21:01:53.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
pablouribe
null
pablouribe/bertstem-copus
3
null
transformers
21,636
Entry not found
pablouribe/beto-copus
6da16e23e51063e5f7824aca06e30ca2205dbf25
2022-01-21T17:16:20.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
pablouribe
null
pablouribe/beto-copus
3
null
transformers
21,637
Entry not found
pakupoko/bizlin-distil-model
4c2b022349eb3ecc4f65303113172f41f6d8efb4
2020-11-29T07:58:15.000Z
[ "pytorch", "distilbert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
pakupoko
null
pakupoko/bizlin-distil-model
3
null
transformers
21,638
Entry not found
panashe/autonlp-eo-590516680
44e48ed99f782e91db482e2f0955573361cc9527
2022-02-23T11:29:10.000Z
[ "pytorch", "bert", "text-classification", "en", "dataset:panashe/autonlp-data-eo", "transformers", "autonlp", "co2_eq_emissions" ]
text-classification
false
panashe
null
panashe/autonlp-eo-590516680
3
null
transformers
21,639
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - panashe/autonlp-data-eo co2_eq_emissions: 2.3709499644854883 --- # Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 590516680 - CO2 Emissions (in grams): 2.3709499644854883 ## Validation Metrics - Loss: 0.6466107964515686 - Accuracy: 0.6608695652173913 - Precision: 0.6515151515151515 - Recall: 0.7288135593220338 - AUC: 0.6334745762711864 - F1: 0.688 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/panashe/autonlp-eo-590516680 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("panashe/autonlp-eo-590516680", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("panashe/autonlp-eo-590516680", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
patrickvonplaten/bigbird-roberta-large
a6fe5266ed1cbb52fb55703bcf647b63eb717352
2021-03-22T12:56:14.000Z
[ "pytorch", "big_bird", "pretraining", "transformers" ]
null
false
patrickvonplaten
null
patrickvonplaten/bigbird-roberta-large
3
null
transformers
21,640
Entry not found
patrickvonplaten/hubert-librispeech-clean-100h-demo-dist
004baa9ccdbe25720f47ce52f7a0fc52219300a6
2021-12-20T12:53:35.000Z
[ "pytorch", "tensorboard", "hubert", "automatic-speech-recognition", "transformers", "speech-recognition", "librispeech_asr", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
patrickvonplaten
null
patrickvonplaten/hubert-librispeech-clean-100h-demo-dist
3
1
transformers
21,641
--- license: apache-2.0 tags: - speech-recognition - librispeech_asr - generated_from_trainer model-index: - name: hubert-librispeech-clean-100h-demo-dist results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hubert-librispeech-clean-100h-demo-dist This model is a fine-tuned version of [facebook/hubert-large-ll60k](https://huggingface.co/facebook/hubert-large-ll60k) on the LIBRISPEECH_ASR - CLEAN dataset. It achieves the following results on the evaluation set: - Loss: 0.0984 - Wer: 0.0883 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 32 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.9031 | 0.11 | 100 | 2.9220 | 1.0 | | 2.6437 | 0.22 | 200 | 2.6268 | 1.0 | | 0.3934 | 0.34 | 300 | 0.4860 | 0.4182 | | 0.3531 | 0.45 | 400 | 0.3088 | 0.2894 | | 0.2255 | 0.56 | 500 | 0.2568 | 0.2426 | | 0.3379 | 0.67 | 600 | 0.2073 | 0.2011 | | 0.2419 | 0.78 | 700 | 0.1849 | 0.1838 | | 0.2128 | 0.9 | 800 | 0.1662 | 0.1690 | | 0.1341 | 1.01 | 900 | 0.1600 | 0.1541 | | 0.0946 | 1.12 | 1000 | 0.1431 | 0.1404 | | 0.1643 | 1.23 | 1100 | 0.1373 | 0.1304 | | 0.0663 | 1.35 | 1200 | 0.1293 | 0.1307 | | 0.162 | 1.46 | 1300 | 0.1247 | 0.1266 | | 0.1433 | 1.57 | 1400 | 0.1246 | 0.1262 | | 0.1581 | 1.68 | 1500 | 0.1219 | 0.1154 | | 0.1036 | 1.79 | 1600 | 0.1127 | 0.1081 | | 0.1352 | 1.91 | 1700 | 0.1087 | 0.1040 | | 0.0471 | 2.02 | 1800 | 0.1085 | 0.1005 | | 0.0945 | 2.13 | 1900 | 0.1066 | 0.0973 | | 0.0843 | 2.24 | 2000 | 0.1102 | 0.0964 | | 0.0774 | 2.35 | 2100 | 0.1079 | 0.0940 | | 0.0952 | 2.47 | 2200 | 0.1056 | 0.0927 | | 0.0635 | 2.58 | 2300 | 0.1026 | 0.0920 | | 0.0665 | 2.69 | 2400 | 0.1012 | 0.0905 | | 0.034 | 2.8 | 2500 | 0.1009 | 0.0900 | | 0.0251 | 2.91 | 2600 | 0.0993 | 0.0883 | ### Framework versions - Transformers 4.11.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 1.12.1 - Tokenizers 0.10.3
patrickvonplaten/prophetnet-large-uncased_old
48043c600ad68bb47add183d448537a2dd174556
2020-10-16T12:37:59.000Z
[ "pytorch", "prophetnet", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
patrickvonplaten
null
patrickvonplaten/prophetnet-large-uncased_old
3
null
transformers
21,642
Entry not found
patrickvonplaten/rag-tiny-random
c7879b142047d145218337f323d826c53c11ef9a
2020-09-18T08:34:42.000Z
[ "pytorch", "rag", "transformers" ]
null
false
patrickvonplaten
null
patrickvonplaten/rag-tiny-random
3
null
transformers
21,643
Entry not found
patrickvonplaten/realm-open-qa
b2b7d8d2e1c0ab86a1db6cc1cc2544a55d2bf9e2
2022-01-03T12:12:47.000Z
[ "pytorch", "realm", "transformers" ]
null
false
patrickvonplaten
null
patrickvonplaten/realm-open-qa
3
null
transformers
21,644
Entry not found
patrickvonplaten/sew-d-tiny-100k-demo-colab
166296d6da76c357a0eed8822944a2530e63d53e
2021-10-20T12:15:23.000Z
[ "pytorch", "tensorboard", "sew-d", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
patrickvonplaten
null
patrickvonplaten/sew-d-tiny-100k-demo-colab
3
null
transformers
21,645
Entry not found
patrickvonplaten/wav2vec2-librispeech-clean-100h-demo-dist
14589df69be2e6daa385dc12e46513b23d269e9b
2021-12-20T12:53:43.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "speech-recognition", "librispeech_asr", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
patrickvonplaten
null
patrickvonplaten/wav2vec2-librispeech-clean-100h-demo-dist
3
null
transformers
21,646
--- license: apache-2.0 tags: - speech-recognition - librispeech_asr - generated_from_trainer model-index: - name: wav2vec2-librispeech-clean-100h-demo-dist results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-librispeech-clean-100h-demo-dist This model is a fine-tuned version of [facebook/wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60) on the LIBRISPEECH_ASR - CLEAN dataset. It achieves the following results on the evaluation set: - Loss: 0.0572 - Wer: 0.0417 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 32 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.399 | 0.11 | 100 | 3.6153 | 1.0 | | 2.8892 | 0.22 | 200 | 2.8963 | 1.0 | | 2.8284 | 0.34 | 300 | 2.8574 | 1.0 | | 0.7347 | 0.45 | 400 | 0.6158 | 0.4850 | | 0.1138 | 0.56 | 500 | 0.2038 | 0.1560 | | 0.248 | 0.67 | 600 | 0.1274 | 0.1024 | | 0.2586 | 0.78 | 700 | 0.1108 | 0.0876 | | 0.0733 | 0.9 | 800 | 0.0936 | 0.0762 | | 0.044 | 1.01 | 900 | 0.0834 | 0.0662 | | 0.0393 | 1.12 | 1000 | 0.0792 | 0.0622 | | 0.0941 | 1.23 | 1100 | 0.0769 | 0.0627 | | 0.036 | 1.35 | 1200 | 0.0731 | 0.0603 | | 0.0768 | 1.46 | 1300 | 0.0713 | 0.0559 | | 0.0518 | 1.57 | 1400 | 0.0686 | 0.0537 | | 0.0815 | 1.68 | 1500 | 0.0639 | 0.0515 | | 0.0603 | 1.79 | 1600 | 0.0636 | 0.0500 | | 0.056 | 1.91 | 1700 | 0.0609 | 0.0480 | | 0.0265 | 2.02 | 1800 | 0.0621 | 0.0465 | | 0.0496 | 2.13 | 1900 | 0.0607 | 0.0449 | | 0.0436 | 2.24 | 2000 | 0.0591 | 0.0446 | | 0.0421 | 2.35 | 2100 | 0.0590 | 0.0428 | | 0.0641 | 2.47 | 2200 | 0.0603 | 0.0443 | | 0.0466 | 2.58 | 2300 | 0.0580 | 0.0429 | | 0.0132 | 2.69 | 2400 | 0.0574 | 0.0423 | | 0.0073 | 2.8 | 2500 | 0.0586 | 0.0417 | | 0.0021 | 2.91 | 2600 | 0.0574 | 0.0412 | ### Framework versions - Transformers 4.11.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 1.12.1 - Tokenizers 0.10.3
patrickvonplaten/xls-r-300m-it-phoneme
4033f9914ee133308ed931069d2daea013507ef7
2021-12-21T11:15:39.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "mozilla-foundation/common_voice_3_0", "generated_from_trainer", "model-index" ]
automatic-speech-recognition
false
patrickvonplaten
null
patrickvonplaten/xls-r-300m-it-phoneme
3
null
transformers
21,647
--- tags: - automatic-speech-recognition - mozilla-foundation/common_voice_3_0 - generated_from_trainer model-index: - name: xls-r-300m-it-phoneme results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xls-r-300m-it-phoneme This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the mozilla-foundation/common_voice_3_0 - IT dataset. It achieves the following results on the evaluation set: - Loss: 0.3899 - Wer: 0.0770 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000075 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 32 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 150 - mixed_precision_training: Native AMP ### Training results See Training Metrics Tab. ### Framework versions - Transformers 4.15.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 1.16.2.dev0 - Tokenizers 0.10.3
patrickvonplaten/xprophetnet-large-wiki100-cased-xglue-qg_old
489a1dc41197a7386d89990dc47e749ad5113684
2020-10-16T13:18:43.000Z
[ "pytorch", "xlm-prophetnet", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
patrickvonplaten
null
patrickvonplaten/xprophetnet-large-wiki100-cased-xglue-qg_old
3
null
transformers
21,648
Entry not found
pcuenq/wav2vec2-large-xlsr-53-es
9d57df54d6ec7d0cdde69eb9abc089cb7433438b
2021-03-28T19:06:18.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "es", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
pcuenq
null
pcuenq/wav2vec2-large-xlsr-53-es
3
null
transformers
21,649
--- language: es datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Large 53 Spanish by pcuenq results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice es type: common_voice args: es metrics: - name: Test WER type: wer value: 10.50 --- # Wav2Vec2-Large-XLSR-53-Spanish Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Spanish using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset{s}. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "es", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("pcuenq/wav2vec2-large-xlsr-53-es") model = Wav2Vec2ForCTC.from_pretrained("pcuenq/wav2vec2-large-xlsr-53-es") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Spanish test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "es", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("pcuenq/wav2vec2-large-xlsr-53-es") model = Wav2Vec2ForCTC.from_pretrained("pcuenq/wav2vec2-large-xlsr-53-es") model.to("cuda") ## Text pre-processing chars_to_ignore_regex = '[\,\¿\?\.\¡\!\-\;\:\"\“\%\‘\”\\…\’\ː\'\‹\›\`\´\®\—\→]' chars_to_ignore_pattern = re.compile(chars_to_ignore_regex) def remove_special_characters(batch): batch["sentence"] = chars_to_ignore_pattern.sub('', batch["sentence"]).lower() + " " return batch def replace_diacritics(batch): sentence = batch["sentence"] sentence = re.sub('ì', 'í', sentence) sentence = re.sub('ù', 'ú', sentence) sentence = re.sub('ò', 'ó', sentence) sentence = re.sub('à', 'á', sentence) batch["sentence"] = sentence return batch def replace_additional(batch): sentence = batch["sentence"] sentence = re.sub('ã', 'a', sentence) # Portuguese, as in São Paulo sentence = re.sub('ō', 'o', sentence) # Japanese sentence = re.sub('ê', 'e', sentence) # Português batch["sentence"] = sentence return batch ## Audio pre-processing # I tried to perform the resampling using a `torchaudio` `Resampler` transform, # but found that the process deadlocked when using multiple processes. # Perhaps my torchaudio is using the wrong sox library under the hood, I'm not sure. # Fortunately, `librosa` seems to work fine, so that's what I'll use for now. import librosa def speech_file_to_array_fn(batch): speech_array, sample_rate = torchaudio.load(batch["path"]) batch["speech"] = librosa.resample(speech_array.squeeze().numpy(), sample_rate, 16_000) return batch # One-pass mapping function # Text transformation and audio resampling def cv_prepare(batch): batch = remove_special_characters(batch) batch = replace_diacritics(batch) batch = replace_additional(batch) batch = speech_file_to_array_fn(batch) return batch # Number of CPUs or None num_proc = 16 test_dataset = test_dataset.map(cv_prepare, remove_columns=['path'], num_proc=num_proc) def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) # WER Metric computation # `wer.compute` crashes in my computer with more than ~10000 samples. # Until I confirm in a different one, I created a "chunked" version of the computation. # It gives the same results as `wer.compute` for smaller datasets. import jiwer def chunked_wer(targets, predictions, chunk_size=None): if chunk_size is None: return jiwer.wer(targets, predictions) start = 0 end = chunk_size H, S, D, I = 0, 0, 0, 0 while start < len(targets): chunk_metrics = jiwer.compute_measures(targets[start:end], predictions[start:end]) H = H + chunk_metrics["hits"] S = S + chunk_metrics["substitutions"] D = D + chunk_metrics["deletions"] I = I + chunk_metrics["insertions"] start += chunk_size end += chunk_size return float(S + D + I) / float(H + S + D) print("WER: {:2f}".format(100 * chunked_wer(result["sentence"], result["pred_strings"], chunk_size=4000))) #print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 10.50 % ## Text processing The Common Voice `es` dataset has a lot of characters that don't belong to the Spanish language, even after discarding separators and punctuators. I made some translations and discarded most of the extraneous characters. I decided to keep all the Spanish language diacritics. This is a difficult decision. Some times the diacritics are added just because of ortography rules, but they don't alter the meaning of the word. In other cases, however, the diacritics carry meaning, as they disambiguate among different senses. A better WER score would surely have been achieved using just the non-accented characters, and the resulting text would be understood by Spanish speakers. Nevertheless, I think keeping them is "more correct". All the rules I applied are shown in the evaluation script. ## Training The Common Voice `train` and `validation` datasets were used for training. For dataset handling reasons, I initially split `train`+`validation` in 10% splits so I could see progress earlier and react if needed. * I trained for 30 epochs on the first split only, using similar values as the ones proposed by Patrick in his demo notebook. I used a batch_size of 24 with 2 gradient accumulation steps. This gave a WER of about 16.3%on the full test set. * I then trained the resulting model on the 9 remaining splits, for 3 epochs each, but with a faster warmup of 75 steps. * Next, I trained 3 epochs on each of the 10 splits using a smaller learning rate of `1e-4`. A warmup of 75 steps was used in this case too. The final model had a WER of about 11.7%. * By this time we had already figured out the reason for the initial delay in training time, and I decided to use the full dataset for training. However, in my tests I had seen that varying the learning rate seemed to work well, so I wanted to replicate that. I selected a cosine schedule with hard restarts, a reference learning rate of `3e-5` and 10 epochs. I configured the cosine schedule to have 10 cycles too, and used no warmup. This produced a WER of ~10.5%. ## Other things I tried * Starting from the same fine-tuned model, I compared a constant lr of 1e-4 against a linear schedule with warmup. The linear schedule worked better (11.85 vs 12.72 WER%). * I tried to use a Spanish model to improve a Basque one. I transformed the text to make ortography more similar to the target language, but the Basque model did not improve. * Label smoothing did not work. ## Issues and other technical challenges I had previously used the `transformers` library as an end user, just to try Bert on some tasks, but this is the first time I have needed to look into the code. * The `Datasets` abstraction is great because, being based on memory-mapped files, it allows arbitrarily-sized datasets to be processed. However, it is important to understand its limitations and trade-offs. I found caching convenient, but disk usage explodes fast. I keep the datasets for my current projects in a 1 TB, fast SSD disk, and a couple of times I ran out of space. I had to understand how cache files are stored and learn when it's best to disable caching and manually save when you need to. I found that data exploration is better suited for smaller datasets or sampled ones, but actual processing is most efficient when you have identified the transformations you need and apply them in a single `map` operation. * There was a noticeable delay before training started. Fortunately, we found the reason why, discussed it in Slack and the forums and created a workaround. * The WER metric crashed on large datasets. I evaluated on a small sample (also, it's faster) and wrote an accumulative version of wer that runs on fixed memory. I'd like to verify whether this change makes sense to be used inside the training loop. * `torchaudio` deadlocks when using multiple processes. `librosa` works fine. To be investigated. * When using `num_proc` inside a notebook, I could not see progress bars. This is surely some permissions issue in my computer. I still need to find it out.
pediberto/autonlp-testing-504313966
5229617f98e2cdf2547a799c2dae2165c476ce5f
2022-01-15T15:02:13.000Z
[ "pytorch", "roberta", "text-classification", "unk", "dataset:pediberto/autonlp-data-testing", "transformers", "autonlp", "co2_eq_emissions" ]
text-classification
false
pediberto
null
pediberto/autonlp-testing-504313966
3
null
transformers
21,650
--- tags: autonlp language: unk widget: - text: "I love AutoNLP 🤗" datasets: - pediberto/autonlp-data-testing co2_eq_emissions: 12.994518654810642 --- # Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 504313966 - CO2 Emissions (in grams): 12.994518654810642 ## Validation Metrics - Loss: 0.19673296809196472 - Accuracy: 0.9398032027783138 - Precision: 0.9133115705476967 - Recall: 0.9718255499807025 - AUC: 0.985316873222122 - F1: 0.9416604338070308 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/pediberto/autonlp-testing-504313966 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("pediberto/autonlp-testing-504313966", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("pediberto/autonlp-testing-504313966", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
pedropei/live-demo-question-intimacy
3626e45b657e4642c1fb5624df721f5e130510e2
2021-05-20T19:23:45.000Z
[ "pytorch", "jax", "roberta", "text-classification", "transformers" ]
text-classification
false
pedropei
null
pedropei/live-demo-question-intimacy
3
1
transformers
21,651
Entry not found
pere/xls-test
ae9e562d93b635b54b66f981cc84679f3fdf9ea4
2022-01-22T18:40:50.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "ab", "dataset:common_voice", "transformers", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "model-index" ]
automatic-speech-recognition
false
pere
null
pere/xls-test
3
null
transformers
21,652
--- language: - ab tags: - automatic-speech-recognition - mozilla-foundation/common_voice_7_0 - generated_from_trainer datasets: - common_voice model-index: - name: '' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [hf-test/xls-r-dummy](https://huggingface.co/hf-test/xls-r-dummy) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - AB dataset. It achieves the following results on the evaluation set: - Loss: 156.8789 - Wer: 1.3456 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 10 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
persiannlp/mt5-small-parsinlu-arc-comqa-obqa-multiple-choice
2e826cafd1b94956590889ca46708a6877c6b0f0
2021-09-23T16:20:31.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "fa", "multilingual", "dataset:parsinlu", "dataset:commonsenseqa", "dataset:arc", "dataset:openbookqa", "transformers", "multiple-choice", "mt5", "persian", "farsi", "license:cc-by-nc-sa-4.0", "autotrain_compatible" ]
text2text-generation
false
persiannlp
null
persiannlp/mt5-small-parsinlu-arc-comqa-obqa-multiple-choice
3
null
transformers
21,653
--- language: - fa - multilingual thumbnail: https://upload.wikimedia.org/wikipedia/commons/a/a2/Farsi.svg tags: - multiple-choice - mt5 - persian - farsi license: cc-by-nc-sa-4.0 datasets: - parsinlu - commonsenseqa - arc - openbookqa metrics: - accuracy --- # Multiple-Choice Question Answering (مدل برای پاسخ به سوالات چهار جوابی) This is a mT5-based model for multiple-choice question answering. Here is an example of how you can run this model: ```python from transformers import MT5ForConditionalGeneration, MT5Tokenizer model_size = "small" model_name = f"persiannlp/mt5-{model_size}-parsinlu-arc-comqa-obqa-multiple-choice" tokenizer = MT5Tokenizer.from_pretrained(model_name) model = MT5ForConditionalGeneration.from_pretrained(model_name) def run_model(input_string, **generator_args): input_ids = tokenizer.encode(input_string, return_tensors="pt") res = model.generate(input_ids, **generator_args) output = tokenizer.batch_decode(res, skip_special_tokens=True) print(output) return output run_model("وسیع ترین کشور جهان کدام است؟ <sep> آمریکا <sep> کانادا <sep> روسیه <sep> چین") run_model("طامع یعنی ؟ <sep> آزمند <sep> خوش شانس <sep> محتاج <sep> مطمئن") run_model( "زمینی به ۳۱ قطعه متساوی مفروض شده است و هر روز مساحت آماده شده برای احداث، دو برابر مساحت روز قبل است.اگر پس از (۵ روز) تمام زمین آماده شده باشد، در چه روزی یک قطعه زمین آماده شده <sep> روز اول <sep> روز دوم <sep> روز سوم <sep> هیچکدام") ``` For more details, visit this page: https://github.com/persiannlp/parsinlu/
petabyte/unang_mang_bert
7c17f5123b05ceea24611857bd7004f0ce99353f
2021-09-22T09:33:40.000Z
[ "pytorch", "roberta", "feature-extraction", "Tagalog", "dataset:OSCAR tl", "transformers", "Mang Bert", "license:apache-2.0" ]
feature-extraction
false
petabyte
null
petabyte/unang_mang_bert
3
null
transformers
21,654
--- language: - Tagalog thumbnail: tags: - Tagalog - Mang Bert license: apache-2.0 datasets: - OSCAR tl --- # Mang Bert ## Model description Fine-Tuned Roberta Model using RobertaForMaskedLM Tagalog Dataset from OSCAR tl ## Training data 458206 text dataset from OSCAR
phailyoor/distilbert-base-uncased-finetuned-yahd-twval-hptune
d8025c17e9f302ffab1ff02f6e7d22399cd857c6
2021-11-15T02:50:34.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
phailyoor
null
phailyoor/distilbert-base-uncased-finetuned-yahd-twval-hptune
3
null
transformers
21,655
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-yahd-twval-hptune results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-yahd-twval-hptune This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 6.3727 - Accuracy: 0.2039 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 2.1638 | 1.0 | 10106 | 2.1944 | 0.3646 | | 1.7982 | 2.0 | 20212 | 2.6390 | 0.3333 | | 1.3279 | 3.0 | 30318 | 3.1526 | 0.3095 | | 0.8637 | 4.0 | 40424 | 4.8368 | 0.2470 | | 0.5727 | 5.0 | 50530 | 6.3727 | 0.2039 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.0+cu102 - Datasets 1.15.1 - Tokenizers 0.10.3
phantomcoder1996/wav2vec2-large-xls-r-300m-arabic-colab
dd730bc65aa3893965f7bb4718c8bb69348dc5b4
2022-03-23T18:30:02.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "ar", "dataset:mozilla-foundation/common_voice_7_0", "transformers", "hf-asr-leaderboard", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
phantomcoder1996
null
phantomcoder1996/wav2vec2-large-xls-r-300m-arabic-colab
3
null
transformers
21,656
--- language: - ar thumbnail: wav2vec2-large-xls-r fine tuned on common voice data for Modern Standard Arabic tags: - automatic-speech-recognition - hf-asr-leaderboard - robust-speech-event license: apache-2.0 datasets: - mozilla-foundation/common_voice_7_0 metrics: - WER model-index: - name: wav2vec2-large-xls-r-300m-arabic-colab results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7.0 type: mozilla-foundation/common_voice_7_0 args: ar metrics: - name: Test WER type: wer value: 64.38 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: ar metrics: - name: Test WER type: wer value: 96.15 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: ar metrics: - name: Test WER type: wer value: 94.96 ---
philschmid/bert-mini-sst2-distilled
d1e81c8d1d7c053acdc47e58e40a504063df4b3a
2022-01-31T23:34:03.000Z
[ "pytorch", "bert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
philschmid
null
philschmid/bert-mini-sst2-distilled
3
null
transformers
21,657
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: bert-mini-sst2-distilled results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: sst2 metrics: - name: Accuracy type: accuracy value: 0.856651376146789 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-mini-sst2-distilled This model is a fine-tuned version of [google/bert_uncased_L-4_H-256_A-4](https://huggingface.co/google/bert_uncased_L-4_H-256_A-4) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 1.1792 - Accuracy: 0.8567 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00021185586235152412 - train_batch_size: 1024 - eval_batch_size: 1024 - seed: 33 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.1552 | 1.0 | 66 | 1.4847 | 0.8349 | | 0.8451 | 2.0 | 132 | 1.3495 | 0.8624 | | 0.5864 | 3.0 | 198 | 1.2257 | 0.8532 | | 0.4553 | 4.0 | 264 | 1.2571 | 0.8544 | | 0.3708 | 5.0 | 330 | 1.2132 | 0.8658 | | 0.3086 | 6.0 | 396 | 1.2370 | 0.8589 | | 0.2701 | 7.0 | 462 | 1.1900 | 0.8635 | | 0.246 | 8.0 | 528 | 1.1792 | 0.8567 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.1 - Datasets 1.15.1 - Tokenizers 0.10.3
phongdtd/wavLM-VLSP-vi-large
723c8e2187ed9d780a559b729ce36d75c31d2b0c
2022-02-22T04:34:39.000Z
[ "pytorch", "tensorboard", "wavlm", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
phongdtd
null
phongdtd/wavLM-VLSP-vi-large
3
null
transformers
21,658
Entry not found
pietrotrope/hate_trained
8c315a247448d609504de2db079203bd46c90eec
2021-12-11T01:00:50.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:tweet_eval", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
pietrotrope
null
pietrotrope/hate_trained
3
null
transformers
21,659
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tweet_eval metrics: - f1 model-index: - name: hate_trained results: - task: name: Text Classification type: text-classification dataset: name: tweet_eval type: tweet_eval args: hate metrics: - name: F1 type: f1 value: 0.7730369969869401 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hate_trained This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 0.9661 - F1: 0.7730 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 9.303025140957233e-06 - train_batch_size: 4 - eval_batch_size: 4 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.4767 | 1.0 | 2250 | 0.5334 | 0.7717 | | 0.4342 | 2.0 | 4500 | 0.7633 | 0.7627 | | 0.3813 | 3.0 | 6750 | 0.9452 | 0.7614 | | 0.3118 | 4.0 | 9000 | 0.9661 | 0.7730 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
pinecone/bert-reader-squad2
cec3d9f6cca1a41b9c04f4789b47338e6096525a
2022-01-17T15:59:37.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
pinecone
null
pinecone/bert-reader-squad2
3
null
transformers
21,660
Entry not found
piotr-rybak/poleval2021-task4-herbert-large-encoder
0339799f1ea39db2e7249c891a32ba3c6180da97
2021-09-23T17:34:47.000Z
[ "pytorch", "bert", "feature-extraction", "sentence-transformers", "sentence-similarity" ]
sentence-similarity
false
piotr-rybak
null
piotr-rybak/poleval2021-task4-herbert-large-encoder
3
null
sentence-transformers
21,661
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 512 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 6098 with parameters: ``` {'batch_size': 4, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.ContrastiveLoss.ContrastiveLoss` with parameters: ``` {'distance_metric': 'SiameseDistanceMetric.COSINE_DISTANCE', 'margin': 0.5, 'size_average': True} ``` Parameters of the fit()-Method: ``` { "callback": null, "epochs": 5, "evaluation_steps": 0, "evaluator": "sentence_transformers.evaluation.BinaryClassificationEvaluator.BinaryClassificationEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 1e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 3049, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Dense({'in_features': 1024, 'out_features': 512, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
pparasurama/racBERT-race-pretrained
cc908f1bf37079726bf3072394b37c3b824c17ff
2021-11-09T20:32:03.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
pparasurama
null
pparasurama/racBERT-race-pretrained
3
null
transformers
21,662
Entry not found
prajjwal1/bert_small
48ff64f8ec69a4ea05847ee8aa173b1546db660b
2021-10-05T18:00:33.000Z
[ "pytorch", "arxiv:2110.01518", "transformers" ]
null
false
prajjwal1
null
prajjwal1/bert_small
3
null
transformers
21,663
If you use the model, please consider citing the paper ``` @misc{bhargava2021generalization, title={Generalization in NLI: Ways (Not) To Go Beyond Simple Heuristics}, author={Prajjwal Bhargava and Aleksandr Drozd and Anna Rogers}, year={2021}, eprint={2110.01518}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` Original Implementation and more info can be found in [this Github repository](https://github.com/prajjwal1/generalize_lm_nli).
prajjwal1/ctrl_discovery_11
9de249f827da86598664eb8677b6a4531b59eb7f
2021-05-16T17:09:21.000Z
[ "pytorch", "ctrl", "text-generation", "transformers" ]
text-generation
false
prajjwal1
null
prajjwal1/ctrl_discovery_11
3
null
transformers
21,664
Entry not found
prajjwal1/ctrl_discovery_2
293ff2f17e3df9404f1a8045b1d7d276e2b7b510
2021-03-05T16:07:16.000Z
[ "pytorch", "ctrl", "text-generation", "transformers" ]
text-generation
false
prajjwal1
null
prajjwal1/ctrl_discovery_2
3
null
transformers
21,665
Entry not found
prajjwal1/roberta_hellaswag
fc420a61ff9972ac4e077d0bc0b3bf14ef9402a4
2021-05-28T22:28:13.000Z
[ "pytorch", "roberta", "multiple-choice", "dataset:hellaswag", "transformers", "commonsense-reasoning", "sentence-completion" ]
multiple-choice
false
prajjwal1
null
prajjwal1/roberta_hellaswag
3
null
transformers
21,666
--- tags: - pytorch - commonsense-reasoning - sentence-completion datasets: - hellaswag --- `RoBERTa` trained on HellaSwag dataset (`MultipleChoiceModel`). HellaSwag has a multiple choice questions format. It gets around 74.99% accuracy. [@prajjwal_1](https://twitter.com/prajjwal_1/)
pranav1015/distilbert-base-uncased-finetuned-cola
1342bc169f5b9eb82c636663c0797e14f6d57af1
2021-07-30T05:27:22.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0" ]
text-classification
false
pranav1015
null
pranav1015/distilbert-base-uncased-finetuned-cola
3
null
transformers
21,667
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model_index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metric: name: Matthews Correlation type: matthews_correlation value: 0.520875943143754 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8486 - Matthews Correlation: 0.5209 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5265 | 1.0 | 535 | 0.5479 | 0.4049 | | 0.3571 | 2.0 | 1070 | 0.5002 | 0.5164 | | 0.2432 | 3.0 | 1605 | 0.6242 | 0.5091 | | 0.173 | 4.0 | 2140 | 0.7559 | 0.5120 | | 0.1352 | 5.0 | 2675 | 0.8486 | 0.5209 | ### Framework versions - Transformers 4.9.1 - Pytorch 1.9.0+cu102 - Datasets 1.10.2 - Tokenizers 0.10.3
prao/bert-base-cased-tweet-sentiment
b68b5b70a0bc4b232ddb24f2e11a09e18d550297
2021-12-23T01:31:57.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
prao
null
prao/bert-base-cased-tweet-sentiment
3
null
transformers
21,668
Entry not found
princeton-nlp/datamux-mnli-2
1987f1c772f731a6e71f3de42682d01ac57edf48
2022-02-16T16:52:11.000Z
[ "pytorch", "roberta", "transformers" ]
null
false
princeton-nlp
null
princeton-nlp/datamux-mnli-2
3
null
transformers
21,669
Entry not found
princeton-nlp/datamux-mnli-5
63c1abbe976c9f62e50c328e4fbac89258ad39b1
2022-02-16T16:53:13.000Z
[ "pytorch", "roberta", "transformers" ]
null
false
princeton-nlp
null
princeton-nlp/datamux-mnli-5
3
null
transformers
21,670
Entry not found
princeton-nlp/datamux-retrieval-2
e46e1f118262660d7a866b308f18a3cdf7770fc1
2022-02-18T03:50:01.000Z
[ "pytorch", "roberta", "transformers" ]
null
false
princeton-nlp
null
princeton-nlp/datamux-retrieval-2
3
null
transformers
21,671
Entry not found
princeton-nlp/datamux-retrieval-20
994fa2b028dd509bcc5cf95cfe7b8c1c5c145777
2022-02-18T03:54:46.000Z
[ "pytorch", "roberta", "transformers" ]
null
false
princeton-nlp
null
princeton-nlp/datamux-retrieval-20
3
null
transformers
21,672
Entry not found
princeton-nlp/densephrases-multi-query-tqa
7041d91e17b3afbc1a490b06e26e65a5b9297782
2021-09-20T21:42:29.000Z
[ "pytorch", "bert", "transformers" ]
null
false
princeton-nlp
null
princeton-nlp/densephrases-multi-query-tqa
3
null
transformers
21,673
Entry not found
pritamdeka/PubMedBert-abstract-cord19
6aff6f5d1f93d8b3b742cc416897fb3755841805
2022-02-03T23:18:37.000Z
[ "pytorch", "bert", "fill-mask", "dataset:pritamdeka/cord-19-abstract", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
fill-mask
false
pritamdeka
null
pritamdeka/PubMedBert-abstract-cord19
3
null
transformers
21,674
--- license: mit tags: - generated_from_trainer datasets: - pritamdeka/cord-19-abstract model-index: - name: PubMedBert-abstract-cord19 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pubmedbert-abstract-cord19 This model is a fine-tuned version of [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) on the [pritamdeka/cord-19-abstract](https://huggingface.co/datasets/pritamdeka/cord-19-abstract) dataset. It achieves the following results on the evaluation set: - Loss: 1.3005 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10000 - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:------:|:---------------:| | 1.3774 | 0.15 | 5000 | 1.3212 | | 1.3937 | 0.29 | 10000 | 1.4059 | | 1.6812 | 0.44 | 15000 | 1.6174 | | 1.4712 | 0.59 | 20000 | 1.4383 | | 1.4293 | 0.73 | 25000 | 1.4356 | | 1.4155 | 0.88 | 30000 | 1.4283 | | 1.3963 | 1.03 | 35000 | 1.4135 | | 1.3718 | 1.18 | 40000 | 1.3948 | | 1.369 | 1.32 | 45000 | 1.3961 | | 1.354 | 1.47 | 50000 | 1.3788 | | 1.3399 | 1.62 | 55000 | 1.3866 | | 1.3289 | 1.76 | 60000 | 1.3630 | | 1.3155 | 1.91 | 65000 | 1.3609 | | 1.2976 | 2.06 | 70000 | 1.3489 | | 1.2783 | 2.2 | 75000 | 1.3333 | | 1.2696 | 2.35 | 80000 | 1.3260 | | 1.2607 | 2.5 | 85000 | 1.3232 | | 1.2547 | 2.64 | 90000 | 1.3034 | | 1.2495 | 2.79 | 95000 | 1.3035 | | 1.2404 | 2.94 | 100000 | 1.3029 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
pritoms/gpt-neo-125M-finetuned-pgt
a56ca653cb0e4562ed28aa8e65d882db02010d09
2021-09-07T08:20:52.000Z
[ "pytorch", "tensorboard", "gpt_neo", "text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-generation
false
pritoms
null
pritoms/gpt-neo-125M-finetuned-pgt
3
null
transformers
21,675
--- license: apache-2.0 tags: - generated_from_trainer datasets: - null model-index: - name: gpt-neo-125M-finetuned-pgt results: - task: name: Causal Language Modeling type: text-generation --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt-neo-125M-finetuned-pgt This model is a fine-tuned version of [pritoms/gpt-neo-125M-finetuned-pgt](https://huggingface.co/pritoms/gpt-neo-125M-finetuned-pgt) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6026 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 26 | 1.5947 | | No log | 2.0 | 52 | 1.5963 | | No log | 3.0 | 78 | 1.6026 | ### Framework versions - Transformers 4.10.0 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
ptro/model1_test
e97b6d53ea83d738a93c2b59d529eef417f65def
2021-11-30T15:25:05.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "license:cc-by-sa-4.0", "model-index" ]
text-classification
false
ptro
null
ptro/model1_test
3
1
transformers
21,676
--- license: cc-by-sa-4.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: model1_test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # model1_test This model is a fine-tuned version of [DaNLP/da-bert-hatespeech-detection](https://huggingface.co/DaNLP/da-bert-hatespeech-detection) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1816 - Accuracy: 0.9667 - F1: 0.3548 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 150 | 0.1128 | 0.9667 | 0.2 | | No log | 2.0 | 300 | 0.1666 | 0.9684 | 0.2963 | | No log | 3.0 | 450 | 0.1816 | 0.9667 | 0.3548 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
puri/puri-thai-albert-cased-v1
2adc97b14a2f4a5dd93ab41dfaa68ca18369f7f3
2020-11-15T06:43:20.000Z
[ "pytorch", "tf", "albert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
puri
null
puri/puri-thai-albert-cased-v1
3
null
transformers
21,677
Entry not found
pzelasko/longformer-swda-nolower
dd4c38e58ab07291979f8f0b279e57da9d372f78
2022-02-13T01:42:35.000Z
[ "pytorch", "longformer", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
pzelasko
null
pzelasko/longformer-swda-nolower
3
null
transformers
21,678
Entry not found
qarib/bert-base-qarib_far
b81ea4c27361557e9b798e23e5ec3a12b2d3bf50
2021-04-04T07:59:36.000Z
[ "pytorch", "ar", "dataset:arabic_billion_words", "dataset:open_subtitles", "dataset:twitter", "dataset:Farasa", "arxiv:2102.10684", "transformers", "tf", "QARiB", "qarib" ]
null
false
qarib
null
qarib/bert-base-qarib_far
3
null
transformers
21,679
--- language: ar tags: - pytorch - tf - QARiB - qarib datasets: - arabic_billion_words - open_subtitles - twitter - Farasa metrics: - f1 widget: - text: "و+قام ال+مدير [MASK]" --- # QARiB: QCRI Arabic and Dialectal BERT ## About QARiB Farasa QCRI Arabic and Dialectal BERT (QARiB) model, was trained on a collection of ~ 420 Million tweets and ~ 180 Million sentences of text. For the tweets, the data was collected using twitter API and using language filter. `lang:ar`. For the text data, it was a combination from [Arabic GigaWord](url), [Abulkhair Arabic Corpus]() and [OPUS](http://opus.nlpl.eu/). QARiB: Is the Arabic name for "Boat". ## Model and Parameters: - Data size: 14B tokens - Vocabulary: 64k - Iterations: 10M - Number of Layers: 12 ## Training QARiB See details in [Training QARiB](https://github.com/qcri/QARIB/Training_QARiB.md) ## Using QARiB You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the model hub to look for fine-tuned versions on a task that interests you. For more details, see [Using QARiB](https://github.com/qcri/QARIB/Using_QARiB.md) This model expects the data to be segmented. You may use [Farasa Segmenter](https://farasa-api.qcri.org/segmentation/) API. ### How to use You can use this model directly with a pipeline for masked language modeling: ```python >>>from transformers import pipeline >>>fill_mask = pipeline("fill-mask", model="./models/bert-base-qarib_far") >>> fill_mask("و+قام ال+مدير [MASK]") >>> fill_mask("و+قام+ت ال+مدير+ة [MASK]") >>> fill_mask("قللي وشفيييك يرحم [MASK]") ``` ## Evaluations: ## Model Weights and Vocab Download From Huggingface site: https://huggingface.co/qarib/bert-base-qarib_far ## Contacts Ahmed Abdelali, Sabit Hassan, Hamdy Mubarak, Kareem Darwish and Younes Samih ## Reference ``` @article{abdelali2021pretraining, title={Pre-Training BERT on Arabic Tweets: Practical Considerations}, author={Ahmed Abdelali and Sabit Hassan and Hamdy Mubarak and Kareem Darwish and Younes Samih}, year={2021}, eprint={2102.10684}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
quangtran199hust/layoutlmv2_roige
7d4b05529c11bef740546cc4c965e11e8b10a88f
2021-10-28T07:32:00.000Z
[ "pytorch", "tensorboard", "layoutlmv2", "token-classification", "transformers", "generated_from_trainer", "license:cc-by-sa-4.0", "model-index", "autotrain_compatible" ]
token-classification
false
quangtran199hust
null
quangtran199hust/layoutlmv2_roige
3
null
transformers
21,680
--- license: cc-by-sa-4.0 tags: - generated_from_trainer model-index: - name: layoutlmv2_roige results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # layoutlmv2_roige This model is a fine-tuned version of [microsoft/layoutlmv2-base-uncased](https://huggingface.co/microsoft/layoutlmv2-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.8.0+cu101 - Datasets 1.14.0 - Tokenizers 0.10.3
racai/distilbert-base-romanian-uncased
687c97b3f415326343cf90008020f8a4abc1ed62
2021-12-24T17:36:39.000Z
[ "pytorch", "tf", "jax", "distilbert", "ro", "dataset:oscar", "dataset:wikipedia", "arxiv:2112.12650", "transformers", "license:mit" ]
null
false
racai
null
racai/distilbert-base-romanian-uncased
3
null
transformers
21,681
--- language: ro license: mit datasets: - oscar - wikipedia --- # Romanian DistilBERT This repository contains the uncased Romanian DistilBERT (named Distil-RoBERT-base in the paper). The teacher model used for distillation is: [readerbench/RoBERT-base](https://huggingface.co/readerbench/RoBERT-base). The model was introduced in [this paper](https://arxiv.org/abs/2112.12650). The adjacent code can be found [here](https://github.com/racai-ai/Romanian-DistilBERT). ## Usage ```python from transformers import AutoTokenizer, AutoModel # load the tokenizer and the model tokenizer = AutoTokenizer.from_pretrained("racai/distilbert-base-romanian-uncased") model = AutoModel.from_pretrained("racai/distilbert-base-romanian-uncased") # tokenize a test sentence input_ids = tokenizer.encode("aceasta este o propoziție de test.", add_special_tokens=True, return_tensors="pt") # run the tokens trough the model outputs = model(input_ids) print(outputs) ``` ## Model Size It is 35% smaller than its teacher `RoBERT-base`. | Model | Size (MB) | Params (Millions) | |--------------------------------|:---------:|:----------------:| | RoBERT-base | 441 | 114 | | distilbert-base-romanian-cased | 282 | 72 | ## Evaluation We evaluated the model in comparison with the RoBERT-base on 5 Romanian tasks: - **UPOS**: Universal Part of Speech (F1-macro) - **XPOS**: Extended Part of Speech (F1-macro) - **NER**: Named Entity Recognition (F1-macro) - **SAPN**: Sentiment Anlaysis - Positive vs Negative (Accuracy) - **SAR**: Sentiment Analysis - Rating (F1-macro) - **DI**: Dialect identification (F1-macro) - **STS**: Semantic Textual Similarity (Pearson) | Model | UPOS | XPOS | NER | SAPN | SAR | DI | STS | |--------------------------------|:----:|:----:|:---:|:----:|:---:|:--:|:---:| | RoBERT-base | 98.02 | 97.15 | 85.14 | 98.30 | 79.40 | 96.07 | 81.18 | | distilbert-base-romanian-uncased | 97.12 | 95.79 | 83.11 | 98.01 | 79.58 | 96.11 | 79.80 | ### BibTeX entry and citation info ```bibtex @article{avram2021distilling, title={Distilling the Knowledge of Romanian BERTs Using Multiple Teachers}, author={Andrei-Marius Avram and Darius Catrina and Dumitru-Clementin Cercel and Mihai Dascălu and Traian Rebedea and Vasile Păiş and Dan Tufiş}, journal={ArXiv}, year={2021}, volume={abs/2112.12650} } ```
ramonzaca/roberto
e531d40361b0b99ae2419e9bb61656fcc1440210
2021-05-20T19:51:19.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
ramonzaca
null
ramonzaca/roberto
3
null
transformers
21,682
Entry not found
ran/c10
012966eeef9e2432fdad94dd4e914ed9dc73eea6
2021-05-20T03:54:23.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
ran
null
ran/c10
3
null
transformers
21,683
Entry not found
ran/y7
f2745160cf9083fb512ed3f01cec88a9ba3e74d2
2021-05-20T03:58:46.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
ran
null
ran/y7
3
null
transformers
21,684
Entry not found
rbawden/diacritic_restoration_fr
a8e9fd2902f840b149763860f00aa60ba6cd436a
2022-04-15T14:56:21.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
rbawden
null
rbawden/diacritic_restoration_fr
3
null
transformers
21,685
Entry not found
redadmiral/headline-test
168569e060eb0b293972111f2b81f6f490a78074
2021-12-29T01:43:08.000Z
[ "pytorch", "mt5", "text2text-generation", "de", "dataset:redadmiral/autonlp-data-Headline-Generator", "transformers", "autonlp", "co2_eq_emissions", "autotrain_compatible" ]
text2text-generation
false
redadmiral
null
redadmiral/headline-test
3
null
transformers
21,686
--- tags: autonlp language: de widget: - text: "I love AutoNLP 🤗" datasets: - redadmiral/autonlp-data-Headline-Generator co2_eq_emissions: 651.3545590912366 --- # Model Trained Using AutoNLP - Problem type: Summarization - Model ID: 453611714 - CO2 Emissions (in grams): 651.3545590912366 ## Validation Metrics - Loss: nan - Rouge1: 2.8187 - Rouge2: 0.5508 - RougeL: 2.7396 - RougeLsum: 2.7446 - Gen Len: 9.7507 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/redadmiral/autonlp-Headline-Generator-453611714 ```
redwoodresearch/classifier-18aug-train
00ae35aa99ac3a56cb5a5f94cab4b7720a1614eb
2021-09-21T17:03:24.000Z
[ "pytorch", "deberta", "text-classification", "transformers" ]
text-classification
false
redwoodresearch
null
redwoodresearch/classifier-18aug-train
3
null
transformers
21,687
Entry not found
reichenbach/wav2vec2-large-xls-r-300m-as
9ac11d0b1de7a3fc2267b03e1ce400ca5ec272a3
2022-03-24T11:58:33.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "as", "dataset:common_voice", "transformers", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
reichenbach
null
reichenbach/wav2vec2-large-xls-r-300m-as
3
null
transformers
21,688
--- license: apache-2.0 language: - as tags: - generated_from_trainer - robust-speech-event - hf-asr-leaderboard datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-as results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-as This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.8318 - Wer: 0.5174 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.12 - num_epochs: 120 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.882 | 25.0 | 400 | 1.2290 | 0.8182 | | 0.8275 | 50.0 | 800 | 0.6835 | 0.5398 | | 0.337 | 75.0 | 1200 | 0.7789 | 0.5107 | | 0.2113 | 100.0 | 1600 | 0.8318 | 0.5174 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.10.3 ### Test Evaluation Common Voice Assamese Test Set (v7.0) - WER: 0.7224 - CER: 0.2882
researchaccount/sa_sub1
d939c605f04dc890974b907f6ce59c10170501b7
2021-05-20T04:20:12.000Z
[ "pytorch", "jax", "bert", "text-classification", "en", "transformers" ]
text-classification
false
researchaccount
null
researchaccount/sa_sub1
3
null
transformers
21,689
--- language: en widget: - text: "USER USER USER USER لاحول ولاقوه الا بالله 💔 💔 💔 💔 HASH TAG متي يصدر قرار العشرين ! ! ! ! ! !" --- Sub 1
researchaccount/sa_sub5
bbb440eb95413b26de062501baf81b420acf91e4
2021-05-20T04:26:03.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
researchaccount
null
researchaccount/sa_sub5
3
null
transformers
21,690
Entry not found
rexxar96/autonlp-roberta-large-finetuned-467612250
11859f8153ddbff57790a73e42f51bb31a10e34e
2022-01-03T14:24:32.000Z
[ "pytorch", "roberta", "text-classification", "unk", "dataset:rexxar96/autonlp-data-roberta-large-finetuned", "transformers", "autonlp", "co2_eq_emissions" ]
text-classification
false
rexxar96
null
rexxar96/autonlp-roberta-large-finetuned-467612250
3
null
transformers
21,691
--- tags: autonlp language: unk widget: - text: "I love AutoNLP 🤗" datasets: - rexxar96/autonlp-data-roberta-large-finetuned co2_eq_emissions: 73.72876780772296 --- # Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 467612250 - CO2 Emissions (in grams): 73.72876780772296 ## Validation Metrics - Loss: 0.18261319398880005 - Accuracy: 0.9541659567217584 - Precision: 0.9530625832223701 - Recall: 0.9572049481778669 - AUC: 0.9901737875196123 - F1: 0.9551292743953294 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/rexxar96/autonlp-roberta-large-finetuned-467612250 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("rexxar96/autonlp-roberta-large-finetuned-467612250", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("rexxar96/autonlp-roberta-large-finetuned-467612250", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
ricardo-filho/sbertimbau-large-quora-multitask
51f9d657bcab712c6cf9ee8def4d790bb7fe0041
2021-08-18T06:02:15.000Z
[ "pytorch", "bert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
ricardo-filho
null
ricardo-filho/sbertimbau-large-quora-multitask
3
null
sentence-transformers
21,692
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 8605 with parameters: ``` {'batch_size': 24, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 11553 with parameters: ``` {'batch_size': 24, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.OnlineContrastiveLoss.OnlineContrastiveLoss` Parameters of the fit()-Method: ``` { "callback": null, "epochs": 10, "evaluation_steps": 0, "evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 64, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
rizvandwiki/seq_classifier_model
60b80889b139715306c16b73bd1f974bb371c8a8
2021-08-12T02:51:37.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
rizvandwiki
null
rizvandwiki/seq_classifier_model
3
null
transformers
21,693
Entry not found
robkayinto/xlm-roberta-base-finetuned-panx-de
5cb9fdcc9e79b531f99ea59059cf3874c9618b0b
2022-07-13T17:10:32.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
robkayinto
null
robkayinto/xlm-roberta-base-finetuned-panx-de
3
null
transformers
21,694
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.863677639046538 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1343 - F1: 0.8637 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2578 | 1.0 | 525 | 0.1562 | 0.8273 | | 0.1297 | 2.0 | 1050 | 0.1330 | 0.8474 | | 0.0809 | 3.0 | 1575 | 0.1343 | 0.8637 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
rohansingh/autonlp-Fake-news-detection-system-29906863
f4d20a7e87e68b448a47f328246eb5909b825789
2021-11-06T12:24:22.000Z
[ "pytorch", "xlm-roberta", "text-classification", "hi", "dataset:rohansingh/autonlp-data-Fake-news-detection-system", "transformers", "autonlp", "co2_eq_emissions" ]
text-classification
false
rohansingh
null
rohansingh/autonlp-Fake-news-detection-system-29906863
3
null
transformers
21,695
--- tags: autonlp language: hi widget: - text: "I love AutoNLP 🤗" datasets: - rohansingh/autonlp-data-Fake-news-detection-system co2_eq_emissions: 3.8624397961432106 --- # Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 29906863 - CO2 Emissions (in grams): 3.8624397961432106 ## Validation Metrics - Loss: 0.2536192238330841 - Accuracy: 0.9084807809640024 - Precision: 0.9421172886519421 - Recall: 0.9435545385202135 - AUC: 0.9517288050454876 - F1: 0.9428353658536586 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/rohansingh/autonlp-Fake-news-detection-system-29906863 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("rohansingh/autonlp-Fake-news-detection-system-29906863", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("rohansingh/autonlp-Fake-news-detection-system-29906863", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
roschmid/my-first-model
f0e1814f332624453d3ccace8e5ba87821750078
2022-02-23T11:01:35.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
roschmid
null
roschmid/my-first-model
3
null
transformers
21,696
Entry not found
rossanez/opus-mt-finetuned-en-es
969e23ce8b52e24c08635b64a997355e1f0ce465
2021-11-29T22:50:12.000Z
[ "pytorch", "tensorboard", "marian", "text2text-generation", "dataset:opus_books", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
rossanez
null
rossanez/opus-mt-finetuned-en-es
3
null
transformers
21,697
--- license: apache-2.0 tags: - generated_from_trainer datasets: - opus_books metrics: - bleu model-index: - name: opus-mt-finetuned-en-es results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: opus_books type: opus_books args: en-es metrics: - name: Bleu type: bleu value: 21.5636 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-finetuned-en-es This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-es](https://huggingface.co/Helsinki-NLP/opus-mt-en-es) on the opus_books dataset. It achieves the following results on the evaluation set: - Loss: 1.9813 - Bleu: 21.5636 - Gen Len: 30.0992 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | 2.09 | 1.0 | 4382 | 1.9813 | 21.5636 | 30.0992 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
rossanez/t5-small-finetuned-de-en-256-wd-01
2f58291f30a074af50decac70d7dab855ac8fb13
2021-12-01T00:48:47.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:wmt14", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
rossanez
null
rossanez/t5-small-finetuned-de-en-256-wd-01
3
null
transformers
21,698
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wmt14 model-index: - name: t5-small-finetuned-de-en-256-wd-01 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-de-en-256-wd-01 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wmt14 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | No log | 1.0 | 188 | 2.1202 | 7.5964 | 17.3996 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
ruiqi-zhong/roberta-base-meta-tuning-test
42f2321a589bf95d6d173a36285f709c5d28bcb7
2021-09-15T02:40:42.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
ruiqi-zhong
null
ruiqi-zhong/roberta-base-meta-tuning-test
3
null
transformers
21,699
Entry not found