modelId
stringlengths 4
112
| sha
stringlengths 40
40
| lastModified
stringlengths 24
24
| tags
sequence | pipeline_tag
stringclasses 29
values | private
bool 1
class | author
stringlengths 2
38
⌀ | config
null | id
stringlengths 4
112
| downloads
float64 0
36.8M
⌀ | likes
float64 0
712
⌀ | library_name
stringclasses 17
values | __index_level_0__
int64 0
38.5k
| readme
stringlengths 0
186k
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
huggingtweets/gaytoad2 | 1175e981233f6c5c22918ffa8165aafa7e8c6b78 | 2021-08-20T04:46:11.000Z | [
"pytorch",
"gpt2",
"text-generation",
"en",
"transformers",
"huggingtweets"
] | text-generation | false | huggingtweets | null | huggingtweets/gaytoad2 | 3 | null | transformers | 21,400 | ---
language: en
thumbnail: https://www.huggingtweets.com/gaytoad2/1629434767014/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1428482513417105413/TGlo7HWH_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">العلجوم</div>
<div style="text-align: center; font-size: 14px;">@gaytoad2</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from العلجوم.
| Data | العلجوم |
| --- | --- |
| Tweets downloaded | 3232 |
| Retweets | 379 |
| Short tweets | 1023 |
| Tweets kept | 1830 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2w8lap6f/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @gaytoad2's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/34u34diu) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/34u34diu/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/gaytoad2')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/gerardsans | 6719394c0faa6ec702040c726235d37ec9400519 | 2021-10-19T19:13:05.000Z | [
"pytorch",
"gpt2",
"text-generation",
"en",
"transformers",
"huggingtweets"
] | text-generation | false | huggingtweets | null | huggingtweets/gerardsans | 3 | null | transformers | 21,401 | ---
language: en
thumbnail: https://www.huggingtweets.com/gerardsans/1634670781074/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1431241007421665284/qoHnns8I_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">ᐸGerardSans/ᐳ🤣🇬🇧</div>
<div style="text-align: center; font-size: 14px;">@gerardsans</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from ᐸGerardSans/ᐳ🤣🇬🇧.
| Data | ᐸGerardSans/ᐳ🤣🇬🇧 |
| --- | --- |
| Tweets downloaded | 3250 |
| Retweets | 648 |
| Short tweets | 586 |
| Tweets kept | 2016 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/115pr1rh/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @gerardsans's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/10heg4by) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/10heg4by/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/gerardsans')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/guywiththepie | b653d668b674d0a707e1f76e295f195bfd4e9ce3 | 2021-07-29T15:40:25.000Z | [
"pytorch",
"gpt2",
"text-generation",
"en",
"transformers",
"huggingtweets"
] | text-generation | false | huggingtweets | null | huggingtweets/guywiththepie | 3 | null | transformers | 21,402 | ---
language: en
thumbnail: https://www.huggingtweets.com/guywiththepie/1627573203188/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1332093894218182659/-dCbl61O_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">GuyWithThePie (🎂 in 1 week)</div>
<div style="text-align: center; font-size: 14px;">@guywiththepie</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from GuyWithThePie (🎂 in 1 week).
| Data | GuyWithThePie (🎂 in 1 week) |
| --- | --- |
| Tweets downloaded | 3204 |
| Retweets | 445 |
| Short tweets | 422 |
| Tweets kept | 2337 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1lir19ia/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @guywiththepie's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2ru7uv7v) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2ru7uv7v/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/guywiththepie')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/heyimheroic | 390bbba90813ff0ad494aaa4913262c213aabad4 | 2021-05-22T06:51:42.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"transformers",
"huggingtweets"
] | text-generation | false | huggingtweets | null | huggingtweets/heyimheroic | 3 | null | transformers | 21,403 | ---
language: en
thumbnail: https://www.huggingtweets.com/heyimheroic/1614216737501/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1344095133348876294/ehT8yba2_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">i'm alice 🤖 AI Bot </div>
<div style="font-size: 15px">@heyimheroic bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@heyimheroic's tweets](https://twitter.com/heyimheroic).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3205 |
| Retweets | 250 |
| Short tweets | 317 |
| Tweets kept | 2638 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1oztcf0g/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @heyimheroic's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3t922fvw) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3t922fvw/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/heyimheroic')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/hideki_naganuma | 6927d47bba1afef6befd8962e6dc10f482249850 | 2021-05-22T06:52:59.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"transformers",
"huggingtweets"
] | text-generation | false | huggingtweets | null | huggingtweets/hideki_naganuma | 3 | null | transformers | 21,404 | ---
language: en
thumbnail: https://www.huggingtweets.com/hideki_naganuma/1619655487401/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1383312391962718211/ppzzt2V__400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">HIDEKI NAGANUMA|CEO OF FUNKY FRESH BEATS 🤖 AI Bot </div>
<div style="font-size: 15px">@hideki_naganuma bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@hideki_naganuma's tweets](https://twitter.com/hideki_naganuma).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3227 |
| Retweets | 1186 |
| Short tweets | 208 |
| Tweets kept | 1833 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1766c7eg/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @hideki_naganuma's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/13aynk8e) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/13aynk8e/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/hideki_naganuma')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/intifada | 0fc6093348eb01d18e5ea476814633914b072016 | 2021-05-22T08:28:08.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"transformers",
"huggingtweets"
] | text-generation | false | huggingtweets | null | huggingtweets/intifada | 3 | null | transformers | 21,405 | ---
language: en
thumbnail: https://www.huggingtweets.com/intifada/1603110719648/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css">
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/608132742224568320/x3yrArdT_400x400.png')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Electronic Intifada 🤖 AI Bot </div>
<div style="font-size: 15px; color: #657786">@intifada bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@intifada's tweets](https://twitter.com/intifada).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3241</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>6</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>0</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>3235</td>
</tr>
</tbody>
</table>
[Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/1qmm4ybr/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @intifada's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/8f4jzilg) for full transparency and reproducibility.
At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/8f4jzilg/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/intifada'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
<!--- random size file --> |
huggingtweets/jack | 4ff3174beb5dabf80792c648ebb80a141318a9c4 | 2022-05-23T06:40:42.000Z | [
"pytorch",
"gpt2",
"text-generation",
"en",
"transformers",
"huggingtweets"
] | text-generation | false | huggingtweets | null | huggingtweets/jack | 3 | null | transformers | 21,406 | ---
language: en
thumbnail: http://www.huggingtweets.com/jack/1653287961086/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1115644092329758721/AFjOr-K8_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">jack</div>
<div style="text-align: center; font-size: 14px;">@jack</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from jack.
| Data | jack |
| --- | --- |
| Tweets downloaded | 3231 |
| Retweets | 1147 |
| Short tweets | 817 |
| Tweets kept | 1267 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/dibfzjll/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @jack's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3f3e0roo) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3f3e0roo/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/jack')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/jacksfilms | d8e940ac93e8832ded4ac7d1d74897fbf3ddcb84 | 2022-05-21T01:18:12.000Z | [
"pytorch",
"gpt2",
"text-generation",
"en",
"transformers",
"huggingtweets"
] | text-generation | false | huggingtweets | null | huggingtweets/jacksfilms | 3 | null | transformers | 21,407 | ---
language: en
thumbnail: http://www.huggingtweets.com/jacksfilms/1653095886748/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1523106752668966913/tWNV2zbS_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">jacksfilms🌹</div>
<div style="text-align: center; font-size: 14px;">@jacksfilms</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from jacksfilms🌹.
| Data | jacksfilms🌹 |
| --- | --- |
| Tweets downloaded | 3249 |
| Retweets | 97 |
| Short tweets | 444 |
| Tweets kept | 2708 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1hsenlsv/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @jacksfilms's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2ow20675) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2ow20675/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/jacksfilms')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/jeemstate | b252aff0fd03266fc72d49b097e5d4aaceacaaa9 | 2021-05-22T09:27:23.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"transformers",
"huggingtweets"
] | text-generation | false | huggingtweets | null | huggingtweets/jeemstate | 3 | null | transformers | 21,408 | ---
language: en
thumbnail: https://www.huggingtweets.com/jeemstate/1614134968037/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1323369978247172097/HXimQ-3i_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">jeemers 🤖 AI Bot </div>
<div style="font-size: 15px">@jeemstate bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@jeemstate's tweets](https://twitter.com/jeemstate).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3243 |
| Retweets | 220 |
| Short tweets | 400 |
| Tweets kept | 2623 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3053t272/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @jeemstate's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2vb2sesn) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2vb2sesn/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/jeemstate')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/kendalljenner | e60101e9260f3f6e1453f1d025106fd22d4004fc | 2022-06-12T14:23:25.000Z | [
"pytorch",
"gpt2",
"text-generation",
"en",
"transformers",
"huggingtweets"
] | text-generation | false | huggingtweets | null | huggingtweets/kendalljenner | 3 | null | transformers | 21,409 | ---
language: en
thumbnail: http://www.huggingtweets.com/kendalljenner/1655043799952/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1417948566287360000/4nmMbMAu_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Kendall</div>
<div style="text-align: center; font-size: 14px;">@kendalljenner</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Kendall.
| Data | Kendall |
| --- | --- |
| Tweets downloaded | 3168 |
| Retweets | 614 |
| Short tweets | 675 |
| Tweets kept | 1879 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2bjob9fa/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @kendalljenner's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1r9j12kw) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1r9j12kw/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/kendalljenner')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/leannelleeds-scalzi | a8b11380fea9bee8e194779245b6032bd617bf02 | 2021-11-29T18:53:24.000Z | [
"pytorch",
"gpt2",
"text-generation",
"en",
"transformers",
"huggingtweets"
] | text-generation | false | huggingtweets | null | huggingtweets/leannelleeds-scalzi | 3 | null | transformers | 21,410 | ---
language: en
thumbnail: https://www.huggingtweets.com/leannelleeds-scalzi/1638211999598/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1210600033885794307/_XOFk1EQ_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/3475245194/59992708a306aaa836bf1699f8b47d5d_400x400.png')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Leanne Leeds 👻 & John Scalzi</div>
<div style="text-align: center; font-size: 14px;">@leannelleeds-scalzi</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Leanne Leeds 👻 & John Scalzi.
| Data | Leanne Leeds 👻 | John Scalzi |
| --- | --- | --- |
| Tweets downloaded | 2298 | 3249 |
| Retweets | 321 | 190 |
| Short tweets | 64 | 269 |
| Tweets kept | 1913 | 2790 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2swuksao/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @leannelleeds-scalzi's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2vhrptd6) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2vhrptd6/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/leannelleeds-scalzi')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/micky_cow | 958b1540aab2d690c534a04ed4de590f94a86591 | 2021-05-22T14:28:03.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"transformers",
"huggingtweets"
] | text-generation | false | huggingtweets | null | huggingtweets/micky_cow | 3 | null | transformers | 21,411 | ---
language: en
thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1362790988356464645/TGSSbvT0_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Micky the cow 🤖 AI Bot </div>
<div style="font-size: 15px">@micky_cow bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@micky_cow's tweets](https://twitter.com/micky_cow).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 135 |
| Retweets | 0 |
| Short tweets | 15 |
| Tweets kept | 120 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/ugkdnx6z/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @micky_cow's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2jfh2mjg) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2jfh2mjg/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/micky_cow')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/narendramodi | 019eaa5d093811eec8f28571bcd99be5a50ef302 | 2022-02-21T17:52:51.000Z | [
"pytorch",
"gpt2",
"text-generation",
"en",
"transformers",
"huggingtweets"
] | text-generation | false | huggingtweets | null | huggingtweets/narendramodi | 3 | null | transformers | 21,412 | ---
language: en
thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1479443900368519169/PgOyX1vt_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Narendra Modi</div>
<div style="text-align: center; font-size: 14px;">@narendramodi</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Narendra Modi.
| Data | Narendra Modi |
| --- | --- |
| Tweets downloaded | 3250 |
| Retweets | 42 |
| Short tweets | 13 |
| Tweets kept | 3195 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3f7klvhh/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @narendramodi's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3hyykmdd) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3hyykmdd/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/narendramodi')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/naval-warikoo | 21ec2c2f8cd57cb0d877fb2805cb0c6c42ca99ef | 2021-08-20T09:56:09.000Z | [
"pytorch",
"gpt2",
"text-generation",
"en",
"transformers",
"huggingtweets"
] | text-generation | false | huggingtweets | null | huggingtweets/naval-warikoo | 3 | null | transformers | 21,413 | ---
language: en
thumbnail: https://www.huggingtweets.com/naval-warikoo/1629453365067/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1256841238298292232/ycqwaMI2_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1156881198582382592/yUbrONnS_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Naval & Ankur Warikoo</div>
<div style="text-align: center; font-size: 14px;">@naval-warikoo</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Naval & Ankur Warikoo.
| Data | Naval | Ankur Warikoo |
| --- | --- | --- |
| Tweets downloaded | 3248 | 3249 |
| Retweets | 149 | 324 |
| Short tweets | 640 | 397 |
| Tweets kept | 2459 | 2528 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/g5rn77ku/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @naval-warikoo's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1o3o6mau) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1o3o6mau/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/naval-warikoo')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/oneonlygriffin | 41ccd999fe214e2bc3f66068113c68bc11351e24 | 2021-05-22T17:29:58.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"transformers",
"huggingtweets"
] | text-generation | false | huggingtweets | null | huggingtweets/oneonlygriffin | 3 | null | transformers | 21,414 | ---
language: en
thumbnail: https://www.huggingtweets.com/oneonlygriffin/1617765611936/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1233963742754459648/GfM8_yrS_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Griffin 🤖 AI Bot </div>
<div style="font-size: 15px">@oneonlygriffin bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@oneonlygriffin's tweets](https://twitter.com/oneonlygriffin).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3240 |
| Retweets | 449 |
| Short tweets | 580 |
| Tweets kept | 2211 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/6li8zjxg/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @oneonlygriffin's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2opessnr) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2opessnr/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/oneonlygriffin')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/pareinoia | 824deb5fe1a6e2ac80f3fbd12718c49ba38dc1ab | 2021-05-22T18:01:20.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"transformers",
"huggingtweets"
] | text-generation | false | huggingtweets | null | huggingtweets/pareinoia | 3 | null | transformers | 21,415 | ---
language: en
thumbnail: https://www.huggingtweets.com/pareinoia/1616618526006/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1350516642049110016/5Fm9kSGJ_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">🥝 kiwi, best of fruits 🥝 🤖 AI Bot </div>
<div style="font-size: 15px">@pareinoia bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@pareinoia's tweets](https://twitter.com/pareinoia).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 1999 |
| Retweets | 464 |
| Short tweets | 306 |
| Tweets kept | 1229 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2ca7c493/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @pareinoia's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2tntgk3a) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2tntgk3a/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/pareinoia')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/phantasyphiend | 65c594b6f5de800820fe5d8c4bdcb42b3229450e | 2021-05-22T18:35:02.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"transformers",
"huggingtweets"
] | text-generation | false | huggingtweets | null | huggingtweets/phantasyphiend | 3 | null | transformers | 21,416 | ---
language: en
thumbnail: https://www.huggingtweets.com/phantasyphiend/1616698324465/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/378800000130578639/207d4a749cd598bc91c77b9f9599cfaf_400x400.jpeg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Boredom is Strength 🤖 AI Bot </div>
<div style="font-size: 15px">@phantasyphiend bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@phantasyphiend's tweets](https://twitter.com/phantasyphiend).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3233 |
| Retweets | 1236 |
| Short tweets | 105 |
| Tweets kept | 1892 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3o8six8s/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @phantasyphiend's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/367y74jo) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/367y74jo/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/phantasyphiend')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/philoso_foster | 35bfaa5bf228818304e1a854425c0026e5436925 | 2021-05-22T18:37:27.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"transformers",
"huggingtweets"
] | text-generation | false | huggingtweets | null | huggingtweets/philoso_foster | 3 | null | transformers | 21,417 | ---
language: en
thumbnail: https://www.huggingtweets.com/philoso_foster/1616729629058/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1357526479987331073/YKjgUnEz_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">jen foster, scrunchie rights activist 🤖 AI Bot </div>
<div style="font-size: 15px">@philoso_foster bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@philoso_foster's tweets](https://twitter.com/philoso_foster).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3241 |
| Retweets | 634 |
| Short tweets | 410 |
| Tweets kept | 2197 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/15lvsiy3/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @philoso_foster's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1m83r9mb) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1m83r9mb/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/philoso_foster')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/praisegodbarbon | 4dad11198080245f9899ef93635a6029a754282e | 2021-10-24T03:47:17.000Z | [
"pytorch",
"gpt2",
"text-generation",
"en",
"transformers",
"huggingtweets"
] | text-generation | false | huggingtweets | null | huggingtweets/praisegodbarbon | 3 | null | transformers | 21,418 | ---
language: en
thumbnail: https://www.huggingtweets.com/praisegodbarbon/1635047234116/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1381764452098437120/74IgKP07_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Boston Psychology PhD</div>
<div style="text-align: center; font-size: 14px;">@praisegodbarbon</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Boston Psychology PhD.
| Data | Boston Psychology PhD |
| --- | --- |
| Tweets downloaded | 3212 |
| Retweets | 810 |
| Short tweets | 265 |
| Tweets kept | 2137 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/h4r5tyq8/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @praisegodbarbon's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1o2225sd) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1o2225sd/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/praisegodbarbon')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/preyproject | 7caec8805ae8ba4ecb048ad201cf63023825c6f0 | 2021-05-22T19:25:30.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"transformers",
"huggingtweets"
] | text-generation | false | huggingtweets | null | huggingtweets/preyproject | 3 | null | transformers | 21,419 | ---
language: en
thumbnail: https://www.huggingtweets.com/preyproject/1602171887142/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css">
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1218166964461490176/wzbbjD2z_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Prey 🤖 AI Bot </div>
<div style="font-size: 15px; color: #657786">@preyproject bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@preyproject's tweets](https://twitter.com/preyproject).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3201</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>173</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>160</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>2868</td>
</tr>
</tbody>
</table>
[Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/150pjkc4/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @preyproject's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/3i2h7bmn) for full transparency and reproducibility.
At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/3i2h7bmn/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/preyproject'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
<!--- random size file --> |
huggingtweets/prezoh | 40cd460e32bb240867db26905556401bf278410e | 2022-01-28T00:19:35.000Z | [
"pytorch",
"gpt2",
"text-generation",
"en",
"transformers",
"huggingtweets"
] | text-generation | false | huggingtweets | null | huggingtweets/prezoh | 3 | null | transformers | 21,420 | ---
language: en
thumbnail: http://www.huggingtweets.com/prezoh/1643329170626/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1475922946166251521/ySh4PG3J_400x400.png')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">prezoh</div>
<div style="text-align: center; font-size: 14px;">@prezoh</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from prezoh.
| Data | prezoh |
| --- | --- |
| Tweets downloaded | 3248 |
| Retweets | 23 |
| Short tweets | 909 |
| Tweets kept | 2316 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3vixstd5/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @prezoh's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/fqwb6pxf) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/fqwb6pxf/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/prezoh')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/projectalpha22 | df5b1cee6c9ff18f1a0ca63d430943a361d26000 | 2021-05-22T19:33:07.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"transformers",
"huggingtweets"
] | text-generation | false | huggingtweets | null | huggingtweets/projectalpha22 | 3 | null | transformers | 21,421 | ---
language: en
thumbnail: https://www.huggingtweets.com/projectalpha22/1619426799771/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1252253457756631043/oZnj5yYj_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">ProjectAlpha22 🏳️🌈 🤖 AI Bot </div>
<div style="font-size: 15px">@projectalpha22 bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@projectalpha22's tweets](https://twitter.com/projectalpha22).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3140 |
| Retweets | 2683 |
| Short tweets | 46 |
| Tweets kept | 411 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1vu11jz3/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @projectalpha22's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/l3kq0669) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/l3kq0669/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/projectalpha22')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/queenofbithynia | 9477456976cc49fb17d0f80f935af729fbaa2f19 | 2021-09-20T18:03:12.000Z | [
"pytorch",
"gpt2",
"text-generation",
"en",
"transformers",
"huggingtweets"
] | text-generation | false | huggingtweets | null | huggingtweets/queenofbithynia | 3 | null | transformers | 21,422 | ---
language: en
thumbnail: https://www.huggingtweets.com/queenofbithynia/1632160988421/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1010627358879932416/0xVVQg3X_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">the needle-felted head of joyce carol oates</div>
<div style="text-align: center; font-size: 14px;">@queenofbithynia</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from the needle-felted head of joyce carol oates.
| Data | the needle-felted head of joyce carol oates |
| --- | --- |
| Tweets downloaded | 3250 |
| Retweets | 4 |
| Short tweets | 30 |
| Tweets kept | 3216 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/21v0b2yw/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @queenofbithynia's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2ze5vcu7) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2ze5vcu7/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/queenofbithynia')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/rajcs4 | 1e0583adecc395682bc5927f6b58c58599ecc539 | 2021-05-22T20:17:39.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"transformers",
"huggingtweets"
] | text-generation | false | huggingtweets | null | huggingtweets/rajcs4 | 3 | null | transformers | 21,423 | ---
language: en
thumbnail: https://www.huggingtweets.com/rajcs4/1605724471297/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css">
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1240082056861933569/KlfArvNx_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Rajiv Shah 🤖 AI Bot </div>
<div style="font-size: 15px; color: #657786">@rajcs4 bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@rajcs4's tweets](https://twitter.com/rajcs4).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>709</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>207</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>10</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>492</td>
</tr>
</tbody>
</table>
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3qquksx3/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @rajcs4's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/5jjg9ijo) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/5jjg9ijo/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/rajcs4'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
<!--- random size file --> |
huggingtweets/saxena_puru | ba18a1b1d501476217bc931fa22b85d00a119cda | 2021-08-12T02:56:41.000Z | [
"pytorch",
"gpt2",
"text-generation",
"en",
"transformers",
"huggingtweets"
] | text-generation | false | huggingtweets | null | huggingtweets/saxena_puru | 3 | null | transformers | 21,424 | ---
language: en
thumbnail: https://www.huggingtweets.com/saxena_puru/1628736988431/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1127527290970071040/NJIJtY2g_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Puru Saxena</div>
<div style="text-align: center; font-size: 14px;">@saxena_puru</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Puru Saxena.
| Data | Puru Saxena |
| --- | --- |
| Tweets downloaded | 3250 |
| Retweets | 8 |
| Short tweets | 647 |
| Tweets kept | 2595 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1xkgnnc0/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @saxena_puru's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1l7iz1fz) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1l7iz1fz/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/saxena_puru')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/seanmombo | ea4de59fb27a3f318a5056db4905534be32a18a8 | 2022-03-23T16:22:13.000Z | [
"pytorch",
"gpt2",
"text-generation",
"en",
"transformers",
"huggingtweets"
] | text-generation | false | huggingtweets | null | huggingtweets/seanmombo | 3 | null | transformers | 21,425 | ---
language: en
thumbnail: http://www.huggingtweets.com/seanmombo/1648052490598/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1494366913090273285/lmJtNNT2_400x400.png')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">mo bombo</div>
<div style="text-align: center; font-size: 14px;">@seanmombo</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from mo bombo.
| Data | mo bombo |
| --- | --- |
| Tweets downloaded | 3249 |
| Retweets | 5 |
| Short tweets | 560 |
| Tweets kept | 2684 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1bl9qwdw/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @seanmombo's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3p8cy5st) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3p8cy5st/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/seanmombo')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/shamscharania | 552401243cd2fbf4c14332061042a713c7fed464 | 2022-05-05T18:24:58.000Z | [
"pytorch",
"gpt2",
"text-generation",
"en",
"transformers",
"huggingtweets"
] | text-generation | false | huggingtweets | null | huggingtweets/shamscharania | 3 | null | transformers | 21,426 | ---
language: en
thumbnail: http://www.huggingtweets.com/shamscharania/1651775009937/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1436503855861276680/8qzEXb9B_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Shams Charania</div>
<div style="text-align: center; font-size: 14px;">@shamscharania</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Shams Charania.
| Data | Shams Charania |
| --- | --- |
| Tweets downloaded | 3250 |
| Retweets | 179 |
| Short tweets | 6 |
| Tweets kept | 3065 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/cqone02p/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @shamscharania's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3bxi3cc8) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3bxi3cc8/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/shamscharania')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/shartitheclown | 442f034536a39839ff8900203d45af3c9a4e9280 | 2021-05-22T22:40:38.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"transformers",
"huggingtweets"
] | text-generation | false | huggingtweets | null | huggingtweets/shartitheclown | 3 | null | transformers | 21,427 | ---
language: en
thumbnail: https://www.huggingtweets.com/shartitheclown/1614136368554/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1362921843292831749/wwbmtSCM_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Franklin 💀✨ 🤖 AI Bot </div>
<div style="font-size: 15px">@shartitheclown bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@shartitheclown's tweets](https://twitter.com/shartitheclown).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3192 |
| Retweets | 1453 |
| Short tweets | 164 |
| Tweets kept | 1575 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3bp8bisb/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @shartitheclown's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/bc8j6l7q) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/bc8j6l7q/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/shartitheclown')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/slime_machine | 320e1a76afe69d91723c0b18de904da3c88e17dd | 2021-12-23T09:54:26.000Z | [
"pytorch",
"gpt2",
"text-generation",
"en",
"transformers",
"huggingtweets"
] | text-generation | false | huggingtweets | null | huggingtweets/slime_machine | 3 | null | transformers | 21,428 | ---
language: en
thumbnail: http://www.huggingtweets.com/slime_machine/1640253262516/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1468034520326701062/LDp_yytu_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">rich homie cron</div>
<div style="text-align: center; font-size: 14px;">@slime_machine</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from rich homie cron.
| Data | rich homie cron |
| --- | --- |
| Tweets downloaded | 3234 |
| Retweets | 590 |
| Short tweets | 494 |
| Tweets kept | 2150 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/28uf2bgx/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @slime_machine's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3h5ua6ik) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3h5ua6ik/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/slime_machine')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/stablekwon | 8f429d1804281eb152e696b804bb21712bb3e093 | 2022-05-27T22:11:17.000Z | [
"pytorch",
"gpt2",
"text-generation",
"en",
"transformers",
"huggingtweets"
] | text-generation | false | huggingtweets | null | huggingtweets/stablekwon | 3 | null | transformers | 21,429 | ---
language: en
thumbnail: http://www.huggingtweets.com/stablekwon/1653689473049/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1512936067846270978/SO5a1OMb_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Do Kwon 🌕</div>
<div style="text-align: center; font-size: 14px;">@stablekwon</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Do Kwon 🌕.
| Data | Do Kwon 🌕 |
| --- | --- |
| Tweets downloaded | 3241 |
| Retweets | 447 |
| Short tweets | 680 |
| Tweets kept | 2114 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/26ij0ppu/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @stablekwon's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/q6os4sts) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/q6os4sts/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/stablekwon')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/taliasturm | a99c70dadd4d32696c773dd1540eebb985b19892 | 2021-05-23T00:34:38.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"transformers",
"huggingtweets"
] | text-generation | false | huggingtweets | null | huggingtweets/taliasturm | 3 | null | transformers | 21,430 | ---
language: en
thumbnail: https://www.huggingtweets.com/taliasturm/1617900946245/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1355263497639055361/W68QzpUo_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">asuka quantico soryu 🏴☠️ 🤖 AI Bot </div>
<div style="font-size: 15px">@taliasturm bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@taliasturm's tweets](https://twitter.com/taliasturm).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3231 |
| Retweets | 709 |
| Short tweets | 306 |
| Tweets kept | 2216 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2sxr8nu3/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @taliasturm's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3efhta1i) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3efhta1i/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/taliasturm')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/tallfuzzball | 36dc6089280fb469209b69796112e35be9b6352d | 2022-03-27T10:18:12.000Z | [
"pytorch",
"gpt2",
"text-generation",
"en",
"transformers",
"huggingtweets"
] | text-generation | false | huggingtweets | null | huggingtweets/tallfuzzball | 3 | null | transformers | 21,431 | ---
language: en
thumbnail: http://www.huggingtweets.com/tallfuzzball/1648376287891/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1427037875242094595/9nOa6vhI_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">PAPA BARKS MAR 25 - APR 15</div>
<div style="text-align: center; font-size: 14px;">@tallfuzzball</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from PAPA BARKS MAR 25 - APR 15.
| Data | PAPA BARKS MAR 25 - APR 15 |
| --- | --- |
| Tweets downloaded | 3244 |
| Retweets | 746 |
| Short tweets | 765 |
| Tweets kept | 1733 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3jvsle26/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @tallfuzzball's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1dg9rstx) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1dg9rstx/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/tallfuzzball')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/thatstupiddoll | 32ba71651c6d7ceb8591a2f45b4f85c0279efa6c | 2021-05-23T01:15:35.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"transformers",
"huggingtweets"
] | text-generation | false | huggingtweets | null | huggingtweets/thatstupiddoll | 3 | null | transformers | 21,432 | ---
language: en
thumbnail: https://www.huggingtweets.com/thatstupiddoll/1617902319163/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1226040597779230720/Az4lUGMe_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">ThatStupidDoll 🤖 AI Bot </div>
<div style="font-size: 15px">@thatstupiddoll bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@thatstupiddoll's tweets](https://twitter.com/thatstupiddoll).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3203 |
| Retweets | 1350 |
| Short tweets | 485 |
| Tweets kept | 1368 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/ynlpcpqs/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @thatstupiddoll's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1kfzy9s0) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1kfzy9s0/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/thatstupiddoll')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/thinkiamsad | 9381cef3799c6faf3b62ec52a5dc47fe1b28fea4 | 2021-05-23T02:08:14.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"transformers",
"huggingtweets"
] | text-generation | false | huggingtweets | null | huggingtweets/thinkiamsad | 3 | null | transformers | 21,433 | ---
language: en
thumbnail: https://www.huggingtweets.com/thinkiamsad/1614110614531/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1277678034577956865/Q2rbCSah_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">🏴i open up my wallet and it's full of blood.🏴 🤖 AI Bot </div>
<div style="font-size: 15px">@thinkiamsad bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@thinkiamsad's tweets](https://twitter.com/thinkiamsad).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3212 |
| Retweets | 2728 |
| Short tweets | 38 |
| Tweets kept | 446 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/333v8jzi/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @thinkiamsad's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3sgh1eyx) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3sgh1eyx/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/thinkiamsad')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/tim_hosgood | ff6a389e3e641b36b1b1e97e32abd90ab25b9ba0 | 2021-05-23T02:21:16.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"transformers",
"huggingtweets"
] | text-generation | false | huggingtweets | null | huggingtweets/tim_hosgood | 3 | null | transformers | 21,434 | ---
language: en
thumbnail: https://www.huggingtweets.com/tim_hosgood/1616770120572/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1280298808065302532/F7MrU729_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Tim Hosgood 🤖 AI Bot </div>
<div style="font-size: 15px">@tim_hosgood bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@tim_hosgood's tweets](https://twitter.com/tim_hosgood).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3238 |
| Retweets | 383 |
| Short tweets | 179 |
| Tweets kept | 2676 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/12cym848/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @tim_hosgood's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/21afj5yw) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/21afj5yw/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/tim_hosgood')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/tundeeednut | d8d3cc23bca8f0f9ab71c4ce54bef61dc2701e5c | 2021-05-23T02:59:51.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"transformers",
"huggingtweets"
] | text-generation | false | huggingtweets | null | huggingtweets/tundeeednut | 3 | null | transformers | 21,435 | ---
language: en
thumbnail: https://www.huggingtweets.com/tundeeednut/1618647737599/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1183255447782023169/jRr7LNFv_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Tunde Ednut 🤖 AI Bot </div>
<div style="font-size: 15px">@tundeeednut bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@tundeeednut's tweets](https://twitter.com/tundeeednut).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 2767 |
| Retweets | 689 |
| Short tweets | 46 |
| Tweets kept | 2032 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2dq56wnm/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @tundeeednut's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/34yo9k1n) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/34yo9k1n/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/tundeeednut')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/vanpelt | cb88bdec769af19ed2848a87864ad92068792b5a | 2021-05-23T03:32:00.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"transformers",
"huggingtweets"
] | text-generation | false | huggingtweets | null | huggingtweets/vanpelt | 3 | null | transformers | 21,436 | ---
language: en
thumbnail: https://www.huggingtweets.com/vanpelt/1605216961273/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css">
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/995187395531161601/4mrM2flB_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Chris Van Pelt (CVP) 🤖 AI Bot </div>
<div style="font-size: 15px; color: #657786">@vanpelt bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@vanpelt's tweets](https://twitter.com/vanpelt).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>813</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>87</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>43</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>683</td>
</tr>
</tbody>
</table>
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1oxi9b39/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @vanpelt's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2bfgtsxu) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2bfgtsxu/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/vanpelt'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
<!--- random size file --> |
huggingtweets/verafiedposter | 68590bb6de45b1598197faad072949a6a95823ff | 2021-05-23T03:44:52.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"transformers",
"huggingtweets"
] | text-generation | false | huggingtweets | null | huggingtweets/verafiedposter | 3 | null | transformers | 21,437 | ---
language: en
thumbnail: https://www.huggingtweets.com/verafiedposter/1616696054193/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1276868958600204289/OgyIJae3_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">big black cloud will come 🤖 AI Bot </div>
<div style="font-size: 15px">@verafiedposter bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@verafiedposter's tweets](https://twitter.com/verafiedposter).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3222 |
| Retweets | 226 |
| Short tweets | 234 |
| Tweets kept | 2762 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2byyqoj9/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @verafiedposter's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/27jpl5l8) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/27jpl5l8/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/verafiedposter')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
hugo/secret-project-all-w1 | b353f740206240a57f6979fb3fd5e9b7ca9ffbe4 | 2021-12-09T12:18:12.000Z | [
"pytorch",
"bert",
"text-classification",
"transformers"
] | text-classification | false | hugo | null | hugo/secret-project-all-w1 | 3 | null | transformers | 21,438 | Entry not found |
hugo/secret-project-ms-2 | 0920a0c8d123f1398575dadeb9bae222bdb47a80 | 2021-12-07T01:03:32.000Z | [
"pytorch",
"bert",
"text-classification",
"transformers"
] | text-classification | false | hugo | null | hugo/secret-project-ms-2 | 3 | null | transformers | 21,439 | Entry not found |
husnu/xtremedistil-l6-h256-uncased-TQUAD-finetuned_lr-2e-05_epochs-6 | 6435e4a236a432670d4e3794004698f25d3c4ff8 | 2022-01-15T05:09:21.000Z | [
"pytorch",
"tensorboard",
"bert",
"question-answering",
"dataset:squad",
"transformers",
"generated_from_trainer",
"license:mit",
"model-index",
"autotrain_compatible"
] | question-answering | false | husnu | null | husnu/xtremedistil-l6-h256-uncased-TQUAD-finetuned_lr-2e-05_epochs-6 | 3 | null | transformers | 21,440 | ---
license: mit
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: xtremedistil-l6-h256-uncased-TQUAD-finetuned_lr-2e-05_epochs-6
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xtremedistil-l6-h256-uncased-TQUAD-finetuned_lr-2e-05_epochs-6
This model is a fine-tuned version of [microsoft/xtremedistil-l6-h256-uncased](https://huggingface.co/microsoft/xtremedistil-l6-h256-uncased) on the Turkish squad dataset.
It achieves the following results on the evaluation set:
- Loss: 2.8135
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 48
- eval_batch_size: 48
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 1.0 | 350 | 3.8389 |
| 4.4474 | 2.0 | 700 | 3.3748 |
| 3.512 | 3.0 | 1050 | 3.0657 |
| 3.512 | 4.0 | 1400 | 2.9219 |
| 3.1526 | 5.0 | 1750 | 2.8517 |
| 2.9972 | 6.0 | 2100 | 2.8135 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.0+cu111
- Datasets 1.17.0
- Tokenizers 0.10.3
|
iAmmarTahir/domain-adapted-negation | 92f65650110b920b2238aa2f72a94dbde8c775e2 | 2021-05-20T16:46:43.000Z | [
"pytorch",
"jax",
"roberta",
"text-classification",
"transformers"
] | text-classification | false | iAmmarTahir | null | iAmmarTahir/domain-adapted-negation | 3 | null | transformers | 21,441 | Entry not found |
ibraheemmoosa/xlmindic-base-uniscript-soham | c1feafbeaf09f88f6bba8675cd99d5770f6bc0b3 | 2022-01-12T12:28:05.000Z | [
"pytorch",
"tf",
"jax",
"albert",
"text-classification",
"as",
"bn",
"gu",
"hi",
"mr",
"ne",
"or",
"pa",
"si",
"sa",
"bpy",
"mai",
"bh",
"gom",
"dataset:oscar",
"transformers",
"multilingual",
"xlmindic",
"nlp",
"indoaryan",
"indicnlp",
"iso15919",
"transliteration",
"license:apache-2.0",
"co2_eq_emissions"
] | text-classification | false | ibraheemmoosa | null | ibraheemmoosa/xlmindic-base-uniscript-soham | 3 | null | transformers | 21,442 | ---
language:
- as
- bn
- gu
- hi
- mr
- ne
- or
- pa
- si
- sa
- bpy
- mai
- bh
- gom
license: apache-2.0
datasets:
- oscar
tags:
- multilingual
- albert
- xlmindic
- nlp
- indoaryan
- indicnlp
- iso15919
- transliteration
- text-classification
widget:
- text : 'cīnēra madhyāñcalē āraō ēkaṭi śaharēra bāsindārā ābāra gharabandī haẏē paṛēchēna. āja maṅgalabāra natuna karē lakaḍāuna–saṁkrānta bidhiniṣēdha jāri haōẏāra para gharē āṭakā paṛēchēna tām̐rā. karōnāra ati saṁkrāmaka natuna dharana amikranēra bistāra ṭhēkātē ēmana padakṣēpa niẏēchē kartr̥pakṣa. khabara bārtā saṁsthā ēēphapira.'
co2_eq_emissions:
emissions: "0.21 in grams of CO2"
source: "calculated using this webstie https://mlco2.github.io/impact/#compute"
training_type: "fine-tuning"
geographical_location: "NA"
hardware_used: "P100 for about 1.5 hours"
---
# XLMIndic Base Uniscript
This model is finetuned from [this model](https://huggingface.co/ibraheemmoosa/xlmindic-base-uniscript) on Soham Bangla News Classification task which is part of the IndicGLUE benchmark. **Before pretraining this model we transliterate the text to [ISO-15919](https://en.wikipedia.org/wiki/ISO_15919) format using the [Aksharamukha](https://pypi.org/project/aksharamukha/)
library.** A demo of Aksharamukha library is hosted [here](https://aksharamukha.appspot.com/converter)
where you can transliterate your text and use it on our model on the inference widget.
## Model description
This model has the same configuration as the [ALBERT Base v2 model](https://huggingface.co/albert-base-v2/). Specifically, this model has the following configuration:
- 12 repeating layers
- 128 embedding dimension
- 768 hidden dimension
- 12 attention heads
- 11M parameters
- 512 sequence length
## Training data
This model was fine-tuned on Soham dataset that is part of the IndicGLUE benchmark.
## Transliteration
*The unique component of this model is that it takes in ISO-15919 transliterated text.*
The motivation behind this is this. When two languages share vocabularies, a machine learning model can exploit that to learn good cross-lingual representations. However if these two languages use different writing scripts it is difficult for a model to make the connection. Thus if if we can write the two languages in a single script then it is easier for the model to learn good cross-lingual representation.
For many of the scripts currently in use, there are standard transliteration schemes to convert to the Latin script. In particular, for the Indic scripts the ISO-15919 transliteration scheme is designed to consistently transliterate texts written in different Indic scripts to the Latin script.
An example of ISO-15919 transliteration for a piece of **Bangla** text is the following:
**Original:** "রবীন্দ্রনাথ ঠাকুর এফআরএএস (৭ মে ১৮৬১ - ৭ আগস্ট ১৯৪১; ২৫ বৈশাখ ১২৬৮ - ২২ শ্রাবণ ১৩৪৮ বঙ্গাব্দ) ছিলেন অগ্রণী বাঙালি কবি, ঔপন্যাসিক, সংগীতস্রষ্টা, নাট্যকার, চিত্রকর, ছোটগল্পকার, প্রাবন্ধিক, অভিনেতা, কণ্ঠশিল্পী ও দার্শনিক।"
**Transliterated:** 'rabīndranātha ṭhākura ēphaāraēēsa (7 mē 1861 - 7 āgasṭa 1941; 25 baiśākha 1268 - 22 śrābaṇa 1348 baṅgābda) chilēna agraṇī bāṅāli kabi, aupanyāsika, saṁgītasraṣṭā, nāṭyakāra, citrakara, chōṭagalpakāra, prābandhika, abhinētā, kaṇṭhaśilpī ō dārśanika.'
Another example for a piece of **Hindi** text is the following:
**Original:** "चूंकि मानव परिवार के सभी सदस्यों के जन्मजात गौरव और समान तथा अविच्छिन्न अधिकार की स्वीकृति ही विश्व-शान्ति, न्याय और स्वतन्त्रता की बुनियाद है"
**Transliterated:** "cūṁki mānava parivāra kē sabhī sadasyōṁ kē janmajāta gaurava aura samāna tathā avicchinna adhikāra kī svīkr̥ti hī viśva-śānti, nyāya aura svatantratā kī buniyāda hai"
## Training procedure
### Preprocessing
The texts are transliterated to ISO-15919 format using the Aksharamukha library. Then these are tokenized using SentencePiece and a vocabulary size of 50,000.
### Training
The model was trained for 8 epochs with a batch size of 16 and a learning rate of *2e-5*.
## Evaluation results
See results specific to Soham in the following table.
### IndicGLUE
Task | mBERT | XLM-R | IndicBERT-Base | XLMIndic-Base-Uniscript (This Model) | XLMIndic-Base-Multiscript (Ablation Model)
-----| ----- | ----- | ------ | ------- | --------
Wikipedia Section Title Prediction | 71.90 | 65.45 | 69.40 | **81.78 ± 0.60** | 77.17 ± 0.76
Article Genre Classification | 88.64 | 96.61 | 97.72 | **98.70 ± 0.29** | 98.30 ± 0.26
Named Entity Recognition (F1-score) | 71.29 | 62.18 | 56.69 | **89.85 ± 1.14** | 83.19 ± 1.58
BBC Hindi News Article Classification | 60.55 | 75.52 | 74.60 | **79.14 ± 0.60** | 77.28 ± 1.50
Soham Bangla News Article Classification | 80.23 | 87.6 | 78.45 | **93.89 ± 0.48** | 93.22 ± 0.49
INLTK Gujarati Headlines Genre Classification | - | - | **92.91** | 90.73 ± 0.75 | 90.41 ± 0.69
INLTK Marathi Headlines Genre Classification | - | - | **94.30** | 92.04 ± 0.47 | 92.21 ± 0.23
IITP Hindi Product Reviews Sentiment Classification | 74.57 | **78.97** | 71.32 | 77.18 ± 0.77 | 76.33 ± 0.84
IITP Hindi Movie Reviews Sentiment Classification | 56.77 | 61.61 | 59.03 | **66.34 ± 0.16** | 65.91 ± 2.20
MIDAS Hindi Discourse Type Classification | 71.20 | **79.94** | 78.44 | 78.54 ± 0.91 | 78.39 ± 0.33
Cloze Style Question Answering (Fill-mask task) | - | - | 37.16 | **41.54** | 38.21
## Intended uses & limitations
This model is pretrained on Indo-Aryan languages. Thus it is intended to be used for downstream tasks on these languages. However, since Dravidian languages such as Malayalam, Telegu, Kannada etc share a lot of vocabulary with the Indo-Aryan languages, this model can potentially be used on those languages too (after transliterating the text to ISO-15919).
You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to
be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=xlmindic) to look for
fine-tuned versions on a task that interests you.
Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked)
to make decisions, such as sequence classification, token classification or question answering. For tasks such as text
generation you should look at model like GPT2.
### How to use
To use this model you will need to first install the [Aksharamukha](https://pypi.org/project/aksharamukha/) library.
```bash
pip install aksharamukha
```
Using this library you can transliterate any text wriiten in Indic scripts in the following way:
```python
>>> from aksharamukha import transliterate
>>> text = "चूंकि मानव परिवार के सभी सदस्यों के जन्मजात गौरव और समान तथा अविच्छिन्न अधिकार की स्वीकृति ही विश्व-शान्ति, न्याय और स्वतन्त्रता की बुनियाद है"
>>> transliterated_text = transliterate.process('autodetect', 'ISO', text)
>>> transliterated_text
"cūṁki mānava parivāra kē sabhī sadasyōṁ kē janmajāta gaurava aura samāna tathā avicchinna adhikāra kī svīkr̥ti hī viśva-śānti, nyāya aura svatantratā kī buniyāda hai"
```
Then you can use this model directly with a pipeline for masked language modeling:
```python
>>> from transformers import pipeline
>>> from aksharamukha import transliterate
>>> unmasker = pipeline('fill-mask', model='ibraheemmoosa/xlmindic-base-uniscript')
>>> text = "রবীন্দ্রনাথ ঠাকুর এফআরএএস (৭ মে ১৮৬১ - ৭ আগস্ট ১৯৪১; ২৫ বৈশাখ ১২৬৮ - ২২ শ্রাবণ ১৩৪৮ বঙ্গাব্দ) ছিলেন অগ্রণী বাঙালি [MASK], ঔপন্যাসিক, সংগীতস্রষ্টা, নাট্যকার, চিত্রকর, ছোটগল্পকার, প্রাবন্ধিক, অভিনেতা, কণ্ঠশিল্পী ও দার্শনিক। ১৯১৩ সালে গীতাঞ্জলি কাব্যগ্রন্থের ইংরেজি অনুবাদের জন্য তিনি এশীয়দের মধ্যে সাহিত্যে প্রথম নোবেল পুরস্কার লাভ করেন।"
>>> transliterated_text = transliterate.process('Bengali', 'ISO', text)
>>> transliterated_text
'rabīndranātha ṭhākura ēphaāraēēsa (7 mē 1861 - 7 āgasṭa 1941; 25 baiśākha 1268 - 22 śrābaṇa 1348 baṅgābda) chilēna agraṇī bāṅāli [MASK], aupanyāsika, saṁgītasraṣṭā, nāṭyakāra, citrakara, chōṭagalpakāra, prābandhika, abhinētā, kaṇṭhaśilpī ō dārśanika. 1913 sālē gītāñjali kābyagranthēra iṁrēji anubādēra janya tini ēśīẏadēra madhyē sāhityē prathama [MASK] puraskāra lābha karēna.'
>>> unmasker(transliterated_text)
[{'score': 0.39705055952072144,
'token': 1500,
'token_str': 'abhinētā',
'sequence': 'rabīndranātha ṭhākura ēphaāraēēsa (7 mē 1861 - 7 āgasṭa 1941; 25 baiśākha 1268 - 22 śrābaṇa 1348 baṅgābda) chilēna agraṇī bāṅāli abhinētā, aupanyāsika, saṁgītasraṣṭā, nāṭyakāra, citrakara, chōṭagalpakāra, prābandhika, abhinētā, kaṇṭhaśilpī ō dārśanika. 1913 sālē gītāñjali kābyagranthēra iṁrēji anubādēra janya tini ēśīẏadēra madhyē sāhityē prathama nōbēla puraskāra lābha karēna.'},
{'score': 0.20499080419540405,
'token': 3585,
'token_str': 'kabi',
'sequence': 'rabīndranātha ṭhākura ēphaāraēēsa (7 mē 1861 - 7 āgasṭa 1941; 25 baiśākha 1268 - 22 śrābaṇa 1348 baṅgābda) chilēna agraṇī bāṅāli kabi, aupanyāsika, saṁgītasraṣṭā, nāṭyakāra, citrakara, chōṭagalpakāra, prābandhika, abhinētā, kaṇṭhaśilpī ō dārśanika. 1913 sālē gītāñjali kābyagranthēra iṁrēji anubādēra janya tini ēśīẏadēra madhyē sāhityē prathama nōbēla puraskāra lābha karēna.'},
{'score': 0.1314290314912796,
'token': 15402,
'token_str': 'rājanētā',
'sequence': 'rabīndranātha ṭhākura ēphaāraēēsa (7 mē 1861 - 7 āgasṭa 1941; 25 baiśākha 1268 - 22 śrābaṇa 1348 baṅgābda) chilēna agraṇī bāṅāli rājanētā, aupanyāsika, saṁgītasraṣṭā, nāṭyakāra, citrakara, chōṭagalpakāra, prābandhika, abhinētā, kaṇṭhaśilpī ō dārśanika. 1913 sālē gītāñjali kābyagranthēra iṁrēji anubādēra janya tini ēśīẏadēra madhyē sāhityē prathama nōbēla puraskāra lābha karēna.'},
{'score': 0.060830358415842056,
'token': 3212,
'token_str': 'kalākāra',
'sequence': 'rabīndranātha ṭhākura ēphaāraēēsa (7 mē 1861 - 7 āgasṭa 1941; 25 baiśākha 1268 - 22 śrābaṇa 1348 baṅgābda) chilēna agraṇī bāṅāli kalākāra, aupanyāsika, saṁgītasraṣṭā, nāṭyakāra, citrakara, chōṭagalpakāra, prābandhika, abhinētā, kaṇṭhaśilpī ō dārśanika. 1913 sālē gītāñjali kābyagranthēra iṁrēji anubādēra janya tini ēśīẏadēra madhyē sāhityē prathama nōbēla puraskāra lābha karēna.'},
{'score': 0.035522934049367905,
'token': 11586,
'token_str': 'sāhityakāra',
'sequence': 'rabīndranātha ṭhākura ēphaāraēēsa (7 mē 1861 - 7 āgasṭa 1941; 25 baiśākha 1268 - 22 śrābaṇa 1348 baṅgābda) chilēna agraṇī bāṅāli sāhityakāra, aupanyāsika, saṁgītasraṣṭā, nāṭyakāra, citrakara, chōṭagalpakāra, prābandhika, abhinētā, kaṇṭhaśilpī ō dārśanika. 1913 sālē gītāñjali kābyagranthēra iṁrēji anubādēra janya tini ēśīẏadēra madhyē sāhityē prathama nōbēla puraskāra lābha karēna.'}]
```
### Limitations and bias
Even though we pretrain on a comparatively large multilingual corpus the model may exhibit harmful gender, ethnic and political bias. If you fine-tune this model on a task where these issues are important you should take special care when relying on the model to make decisions.
## Contact
Feel free to contact us if you have any ideas or if you want to know more about our models.
- Ibraheem Muhammad Moosa ([email protected])
- Mahmud Elahi Akhter ([email protected])
- Ashfia Binte Habib
## BibTeX entry and citation info
Coming soon!
|
ietz/bert-base-uncased-finetuned-jira-inteldaos-issue-titles-and-bodies | 09b67345cce31cb100218fb559afffed77d7be0d | 2022-02-04T08:47:13.000Z | [
"pytorch",
"bert",
"fill-mask",
"transformers",
"autotrain_compatible"
] | fill-mask | false | ietz | null | ietz/bert-base-uncased-finetuned-jira-inteldaos-issue-titles-and-bodies | 3 | null | transformers | 21,443 | Entry not found |
ifis-zork/ZORK_AI_SCI_FI_TEMP | 8056350d3d25980b8cb2e12a19c915b46be8b3d2 | 2021-07-21T13:06:26.000Z | [
"pytorch",
"tensorboard",
"gpt2",
"text-generation",
"transformers",
"generated_from_trainer"
] | text-generation | false | ifis-zork | null | ifis-zork/ZORK_AI_SCI_FI_TEMP | 3 | null | transformers | 21,444 | ---
tags:
- generated_from_trainer
model_index:
- name: ZORK_AI_SCI_FI_TEMP
results:
- task:
name: Causal Language Modeling
type: text-generation
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ZORK_AI_SCI_FI_TEMP
This model is a fine-tuned version of [gpt2-medium](https://huggingface.co/gpt2-medium) on an unkown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- num_epochs: 3
### Training results
### Framework versions
- Transformers 4.8.2
- Pytorch 1.9.0+cu102
- Tokenizers 0.10.3
|
ilevs/opus-mt-ru-en-finetuned-ru-to-en | f275d28a133677e7398d0bf83890463c76a70946 | 2022-01-16T19:29:07.000Z | [
"pytorch",
"tensorboard",
"marian",
"text2text-generation",
"transformers",
"generated_from_trainer",
"license:apache-2.0",
"model-index",
"autotrain_compatible"
] | text2text-generation | false | ilevs | null | ilevs/opus-mt-ru-en-finetuned-ru-to-en | 3 | null | transformers | 21,445 | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: opus-mt-ru-en-finetuned-ru-to-en
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# opus-mt-ru-en-finetuned-ru-to-en
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-ru-en](https://huggingface.co/Helsinki-NLP/opus-mt-ru-en) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.1251
- Bleu: 15.9892
- Gen Len: 5.0168
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|
| 2.6914 | 1.0 | 4956 | 2.5116 | 11.1411 | 4.9989 |
| 2.2161 | 2.0 | 9912 | 2.3255 | 11.7334 | 5.1678 |
| 1.9237 | 3.0 | 14868 | 2.2388 | 13.6802 | 5.1463 |
| 1.7087 | 4.0 | 19824 | 2.1892 | 13.8815 | 5.0625 |
| 1.5423 | 5.0 | 24780 | 2.1586 | 14.8182 | 5.0779 |
| 1.3909 | 6.0 | 29736 | 2.1445 | 14.3603 | 5.2194 |
| 1.3041 | 7.0 | 34692 | 2.1323 | 16.2138 | 5.0438 |
| 1.2078 | 8.0 | 39648 | 2.1275 | 16.2574 | 5.0165 |
| 1.1523 | 9.0 | 44604 | 2.1255 | 16.0368 | 5.014 |
| 1.1005 | 10.0 | 49560 | 2.1251 | 15.9892 | 5.0168 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.0+cu111
- Datasets 1.17.0
- Tokenizers 0.10.3
|
iliketurtles/distilgpt2-finetuned-wikitext2 | 7a027d44eee5992e8963894332de9fe71b270edf | 2021-12-21T19:51:47.000Z | [
"pytorch",
"tensorboard",
"gpt2",
"text-generation",
"transformers",
"generated_from_trainer",
"license:apache-2.0",
"model-index"
] | text-generation | false | iliketurtles | null | iliketurtles/distilgpt2-finetuned-wikitext2 | 3 | null | transformers | 21,446 | ---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: distilgpt2-finetuned-wikitext2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilgpt2-finetuned-wikitext2
This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.6424
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 3.7608 | 1.0 | 2334 | 3.6655 |
| 3.6335 | 2.0 | 4668 | 3.6455 |
| 3.6066 | 3.0 | 7002 | 3.6424 |
### Framework versions
- Transformers 4.13.0
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
imosnoi/md_inv | 3ab969ee8983c393d43768cd600e54fd7f45722b | 2022-01-18T21:20:06.000Z | [
"pytorch",
"layoutlm",
"token-classification",
"transformers",
"autotrain_compatible"
] | token-classification | false | imosnoi | null | imosnoi/md_inv | 3 | null | transformers | 21,447 | Entry not found |
imrit1999/DialoGPT-small-MCU | 9b8d8cd5ee4d254df148f8cf36576b47633ddca5 | 2021-07-17T23:35:10.000Z | [
"pytorch",
"gpt2",
"text-generation",
"transformers",
"conversational",
"license:mit"
] | conversational | false | imrit1999 | null | imrit1999/DialoGPT-small-MCU | 3 | null | transformers | 21,448 | ---
thumbnail: https://huggingface.co/front/thumbnails/dialogpt.png
tags:
- conversational
license: mit
---
# DialoGPT Trained on MCU Dialogues |
infinitejoy/wav2vec2-large-xls-r-300m-abkhaz-cv8 | 04170d650fec365a8e850f52dbcd24f09758d18e | 2022-03-23T18:27:00.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"ab",
"dataset:mozilla-foundation/common_voice_8_0",
"transformers",
"generated_from_trainer",
"hf-asr-leaderboard",
"model_for_talk",
"mozilla-foundation/common_voice_8_0",
"robust-speech-event",
"license:apache-2.0",
"model-index"
] | automatic-speech-recognition | false | infinitejoy | null | infinitejoy/wav2vec2-large-xls-r-300m-abkhaz-cv8 | 3 | null | transformers | 21,449 | ---
language:
- ab
license: apache-2.0
tags:
- ab
- automatic-speech-recognition
- generated_from_trainer
- hf-asr-leaderboard
- model_for_talk
- mozilla-foundation/common_voice_8_0
- robust-speech-event
datasets:
- mozilla-foundation/common_voice_8_0
model-index:
- name: XLS-R-300M - Abkhaz
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 8
type: mozilla-foundation/common_voice_8_0
args: ab
metrics:
- name: Test WER
type: wer
value: 27.6
- name: Test CER
type: cer
value: 4.577
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xls-r-300m-abkhaz-cv8
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - AB dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1614
- Wer: 0.2907
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 4000
- num_epochs: 50.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 1.2881 | 4.26 | 4000 | 0.3764 | 0.6461 |
| 1.0767 | 8.53 | 8000 | 0.2657 | 0.5164 |
| 0.9841 | 12.79 | 12000 | 0.2330 | 0.4445 |
| 0.9274 | 17.06 | 16000 | 0.2134 | 0.3929 |
| 0.8781 | 21.32 | 20000 | 0.1945 | 0.3886 |
| 0.8381 | 25.59 | 24000 | 0.1840 | 0.3737 |
| 0.8054 | 29.85 | 28000 | 0.1756 | 0.3523 |
| 0.7763 | 34.12 | 32000 | 0.1745 | 0.3299 |
| 0.7474 | 38.38 | 36000 | 0.1677 | 0.3074 |
| 0.7298 | 42.64 | 40000 | 0.1649 | 0.2963 |
| 0.7125 | 46.91 | 44000 | 0.1617 | 0.2931 |
### Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.18.3
- Tokenizers 0.11.0
|
infinitejoy/wav2vec2-large-xls-r-300m-abkhaz | caa4ca38b1f8853a6006453c78694b1cb3a1c9b2 | 2022-03-23T18:28:58.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"ab",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"generated_from_trainer",
"hf-asr-leaderboard",
"mozilla-foundation/common_voice_7_0",
"robust-speech-event",
"license:apache-2.0",
"model-index"
] | automatic-speech-recognition | false | infinitejoy | null | infinitejoy/wav2vec2-large-xls-r-300m-abkhaz | 3 | null | transformers | 21,450 | ---
language:
- ab
license: apache-2.0
tags:
- ab
- automatic-speech-recognition
- generated_from_trainer
- hf-asr-leaderboard
- mozilla-foundation/common_voice_7_0
- robust-speech-event
datasets:
- mozilla-foundation/common_voice_7_0
model-index:
- name: XLS-R-300M - Abkhaz
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 7
type: mozilla-foundation/common_voice_7_0
args: ab
metrics:
- name: Test WER
type: wer
value: 60.07
- name: Test CER
type: cer
value: 12.5
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xls-r-300m-abkhaz
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - AB dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5359
- Wer: 0.6192
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- num_epochs: 100.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 2.8617 | 22.73 | 500 | 2.6264 | 1.0013 |
| 1.2716 | 45.45 | 1000 | 0.6218 | 0.6942 |
| 1.049 | 68.18 | 1500 | 0.5442 | 0.6368 |
| 0.9632 | 90.91 | 2000 | 0.5364 | 0.6242 |
### Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.17.1.dev0
- Tokenizers 0.11.0
|
infinitejoy/wav2vec2-large-xls-r-300m-chuvash | 20511b1a37b88f2799682bd8c65adeda58d70cb1 | 2022-03-24T11:55:42.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"cv",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"mozilla-foundation/common_voice_7_0",
"generated_from_trainer",
"robust-speech-event",
"model_for_talk",
"hf-asr-leaderboard",
"license:apache-2.0",
"model-index"
] | automatic-speech-recognition | false | infinitejoy | null | infinitejoy/wav2vec2-large-xls-r-300m-chuvash | 3 | null | transformers | 21,451 | ---
language:
- cv
license: apache-2.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_7_0
- generated_from_trainer
- cv
- robust-speech-event
- model_for_talk
- hf-asr-leaderboard
datasets:
- mozilla-foundation/common_voice_7_0
model-index:
- name: XLS-R-300M - Chuvash
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 7
type: mozilla-foundation/common_voice_7_0
args: cv
metrics:
- name: Test WER
type: wer
value: 60.31
- name: Test CER
type: cer
value: 15.08
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xls-r-300m-chuvash
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - CV dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7651
- Wer: 0.6166
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 100.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 1.8032 | 8.77 | 500 | 0.8059 | 0.8352 |
| 1.2608 | 17.54 | 1000 | 0.5828 | 0.6769 |
| 1.1337 | 26.32 | 1500 | 0.6892 | 0.6908 |
| 1.0457 | 35.09 | 2000 | 0.7077 | 0.6781 |
| 0.97 | 43.86 | 2500 | 0.5993 | 0.6228 |
| 0.8767 | 52.63 | 3000 | 0.7213 | 0.6604 |
| 0.8223 | 61.4 | 3500 | 0.8161 | 0.6968 |
| 0.7441 | 70.18 | 4000 | 0.7057 | 0.6184 |
| 0.7011 | 78.95 | 4500 | 0.7027 | 0.6024 |
| 0.6542 | 87.72 | 5000 | 0.7092 | 0.5979 |
| 0.6081 | 96.49 | 5500 | 0.7917 | 0.6324 |
### Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.17.1.dev0
- Tokenizers 0.11.0
|
infinitejoy/wav2vec2-large-xls-r-300m-galician | f56555a59071f95a907880e2fbc9df3dc6dfc450 | 2022-03-23T18:34:49.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"gl",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"generated_from_trainer",
"hf-asr-leaderboard",
"model_for_talk",
"mozilla-foundation/common_voice_7_0",
"robust-speech-event",
"license:apache-2.0",
"model-index"
] | automatic-speech-recognition | false | infinitejoy | null | infinitejoy/wav2vec2-large-xls-r-300m-galician | 3 | null | transformers | 21,452 | ---
language:
- gl
license: apache-2.0
tags:
- automatic-speech-recognition
- generated_from_trainer
- gl
- hf-asr-leaderboard
- model_for_talk
- mozilla-foundation/common_voice_7_0
- robust-speech-event
datasets:
- mozilla-foundation/common_voice_7_0
model-index:
- name: XLS-R-300M - Galician
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 7.0
type: mozilla-foundation/common_voice_7_0
args: gl
metrics:
- name: Test WER
type: wer
value: 101.54
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Dev Data
type: speech-recognition-community-v2/dev_data
args: gl
metrics:
- name: Test WER
type: wer
value: 105.69
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Test Data
type: speech-recognition-community-v2/eval_data
args: gl
metrics:
- name: Test WER
type: wer
value: 101.95
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xls-r-300m-galician
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - GL dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1525
- Wer: 0.1542
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 20.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 3.0067 | 4.35 | 500 | 2.9632 | 1.0 |
| 1.4939 | 8.7 | 1000 | 0.5005 | 0.4157 |
| 0.9982 | 13.04 | 1500 | 0.1967 | 0.1857 |
| 0.8726 | 17.39 | 2000 | 0.1587 | 0.1564 |
### Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.17.1.dev0
- Tokenizers 0.11.0
|
infinitejoy/wav2vec2-large-xls-r-300m-hausa | bcbb45b0dcd61a87eaf10e819bb02c38cfbd4d5e | 2022-03-24T11:58:04.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"ha",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"mozilla-foundation/common_voice_7_0",
"generated_from_trainer",
"robust-speech-event",
"model_for_talk",
"hf-asr-leaderboard",
"license:apache-2.0",
"model-index"
] | automatic-speech-recognition | false | infinitejoy | null | infinitejoy/wav2vec2-large-xls-r-300m-hausa | 3 | null | transformers | 21,453 | ---
language:
- ha
license: apache-2.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_7_0
- generated_from_trainer
- ha
- robust-speech-event
- model_for_talk
- hf-asr-leaderboard
datasets:
- mozilla-foundation/common_voice_7_0
model-index:
- name: XLS-R-300M - Hausa
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 7
type: mozilla-foundation/common_voice_7_0
args: ha
metrics:
- name: Test WER
type: wer
value: 100
- name: Test CER
type: cer
value: 132.32
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xls-r-300m-hausa
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - HA dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5756
- Wer: 0.6014
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 100.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 2.7064 | 11.36 | 500 | 2.7112 | 1.0 |
| 1.3079 | 22.73 | 1000 | 0.7337 | 0.7776 |
| 1.0919 | 34.09 | 1500 | 0.5938 | 0.7023 |
| 0.9546 | 45.45 | 2000 | 0.5698 | 0.6133 |
| 0.8895 | 56.82 | 2500 | 0.5739 | 0.6142 |
| 0.8152 | 68.18 | 3000 | 0.5579 | 0.6091 |
| 0.7703 | 79.55 | 3500 | 0.5813 | 0.6210 |
| 0.732 | 90.91 | 4000 | 0.5756 | 0.5860 |
### Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.17.1.dev0
- Tokenizers 0.11.0
|
infinitejoy/wav2vec2-large-xls-r-300m-hungarian | b31e9157bb1a98ca89d992583c3d94b77925a8b3 | 2022-03-23T18:34:54.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"hu",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"generated_from_trainer",
"hf-asr-leaderboard",
"model_for_talk",
"mozilla-foundation/common_voice_7_0",
"robust-speech-event",
"license:apache-2.0",
"model-index"
] | automatic-speech-recognition | false | infinitejoy | null | infinitejoy/wav2vec2-large-xls-r-300m-hungarian | 3 | null | transformers | 21,454 | ---
language:
- hu
license: apache-2.0
tags:
- automatic-speech-recognition
- generated_from_trainer
- hf-asr-leaderboard
- hu
- model_for_talk
- mozilla-foundation/common_voice_7_0
- robust-speech-event
datasets:
- mozilla-foundation/common_voice_7_0
model-index:
- name: XLS-R-300M - Hungarian
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 7
type: mozilla-foundation/common_voice_7_0
args: hu
metrics:
- name: Test WER
type: wer
value: 31.099
- name: Test CER
type: cer
value: 6.737
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Dev Data
type: speech-recognition-community-v2/dev_data
args: hu
metrics:
- name: Test WER
type: wer
value: 45.469
- name: Test CER
type: cer
value: 15.727
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Test Data
type: speech-recognition-community-v2/eval_data
args: hu
metrics:
- name: Test WER
type: wer
value: 48.2
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xls-r-300m-hungarian
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - HU dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2562
- Wer: 0.3112
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 50.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 2.3964 | 3.52 | 1000 | 1.2251 | 0.8781 |
| 1.3176 | 7.04 | 2000 | 0.3872 | 0.4462 |
| 1.1999 | 10.56 | 3000 | 0.3244 | 0.3922 |
| 1.1633 | 14.08 | 4000 | 0.3014 | 0.3704 |
| 1.1132 | 17.61 | 5000 | 0.2913 | 0.3623 |
| 1.0888 | 21.13 | 6000 | 0.2864 | 0.3498 |
| 1.0487 | 24.65 | 7000 | 0.2821 | 0.3435 |
| 1.0431 | 28.17 | 8000 | 0.2739 | 0.3308 |
| 0.9896 | 31.69 | 9000 | 0.2629 | 0.3243 |
| 0.9839 | 35.21 | 10000 | 0.2806 | 0.3308 |
| 0.9586 | 38.73 | 11000 | 0.2650 | 0.3235 |
| 0.9501 | 42.25 | 12000 | 0.2585 | 0.3173 |
| 0.938 | 45.77 | 13000 | 0.2561 | 0.3117 |
| 0.921 | 49.3 | 14000 | 0.2559 | 0.3115 |
### Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.17.1.dev0
- Tokenizers 0.11.0
|
infinitejoy/wav2vec2-large-xls-r-300m-sakha | 8703f5317e998349cef12a9e760420ab12ceb23b | 2022-03-24T11:58:14.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"sah",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"mozilla-foundation/common_voice_7_0",
"generated_from_trainer",
"robust-speech-event",
"model_for_talk",
"hf-asr-leaderboard",
"license:apache-2.0",
"model-index"
] | automatic-speech-recognition | false | infinitejoy | null | infinitejoy/wav2vec2-large-xls-r-300m-sakha | 3 | null | transformers | 21,455 | ---
language:
- sah
license: apache-2.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_7_0
- generated_from_trainer
- sah
- robust-speech-event
- model_for_talk
- hf-asr-leaderboard
datasets:
- mozilla-foundation/common_voice_7_0
model-index:
- name: XLS-R-300M - Sakha
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 7
type: mozilla-foundation/common_voice_7_0
args: sah
metrics:
- name: Test WER
type: wer
value: 44.196
- name: Test CER
type: cer
value: 10.271
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xls-r-300m-sakha
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - SAH dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4995
- Wer: 0.4421
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 32
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 100.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 1.8597 | 8.47 | 500 | 0.7731 | 0.7211 |
| 1.2508 | 16.95 | 1000 | 0.5368 | 0.5989 |
| 1.1066 | 25.42 | 1500 | 0.5034 | 0.5533 |
| 1.0064 | 33.9 | 2000 | 0.4686 | 0.5114 |
| 0.9324 | 42.37 | 2500 | 0.4927 | 0.5056 |
| 0.876 | 50.85 | 3000 | 0.4734 | 0.4795 |
| 0.8082 | 59.32 | 3500 | 0.4748 | 0.4799 |
| 0.7604 | 67.8 | 4000 | 0.4949 | 0.4691 |
| 0.7241 | 76.27 | 4500 | 0.5090 | 0.4627 |
| 0.6739 | 84.75 | 5000 | 0.4967 | 0.4452 |
| 0.6447 | 93.22 | 5500 | 0.5071 | 0.4437 |
### Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.17.1.dev0
- Tokenizers 0.11.0
|
infinitejoy/wav2vec2-large-xls-r-300m-slovak | dfbe8085d0963f453c5736b0fe136b4834bab5fe | 2022-03-24T11:50:01.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"sk",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"mozilla-foundation/common_voice_7_0",
"generated_from_trainer",
"robust-speech-event",
"model_for_talk",
"hf-asr-leaderboard",
"license:apache-2.0",
"model-index"
] | automatic-speech-recognition | false | infinitejoy | null | infinitejoy/wav2vec2-large-xls-r-300m-slovak | 3 | null | transformers | 21,456 | ---
language:
- sk
license: apache-2.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_7_0
- generated_from_trainer
- sk
- robust-speech-event
- model_for_talk
- hf-asr-leaderboard
datasets:
- mozilla-foundation/common_voice_7_0
model-index:
- name: XLS-R-300M - Slovak
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 7
type: mozilla-foundation/common_voice_7_0
args: sk
metrics:
- name: Test WER
type: wer
value: 24.852
- name: Test CER
type: cer
value: 5.09
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Dev Data
type: speech-recognition-community-v2/dev_data
args: sk
metrics:
- name: Test WER
type: wer
value: 56.388
- name: Test CER
type: cer
value: 20.654
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Test Data
type: speech-recognition-community-v2/eval_data
args: sk
metrics:
- name: Test WER
type: wer
value: 59.25
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xls-r-300m-slovak
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - SK dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2915
- Wer: 0.2481
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7e-05
- train_batch_size: 32
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 3000
- num_epochs: 100.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 1.0076 | 19.74 | 3000 | 0.3274 | 0.3806 |
| 0.6889 | 39.47 | 6000 | 0.2824 | 0.2942 |
| 0.5863 | 59.21 | 9000 | 0.2700 | 0.2735 |
| 0.4798 | 78.95 | 12000 | 0.2844 | 0.2602 |
| 0.4399 | 98.68 | 15000 | 0.2907 | 0.2489 |
### Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.17.1.dev0
- Tokenizers 0.11.0
|
infinitejoy/wav2vec2-large-xls-r-300m-slovenian | 0c5ac121c2b077a310e67507ee10627e8ff3e91b | 2022-03-24T11:49:25.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"sl",
"dataset:mozilla-foundation/common_voice_7_0",
"transformers",
"mozilla-foundation/common_voice_7_0",
"generated_from_trainer",
"robust-speech-event",
"model_for_talk",
"hf-asr-leaderboard",
"license:apache-2.0",
"model-index"
] | automatic-speech-recognition | false | infinitejoy | null | infinitejoy/wav2vec2-large-xls-r-300m-slovenian | 3 | null | transformers | 21,457 | ---
language:
- sl
license: apache-2.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_7_0
- generated_from_trainer
- sl
- robust-speech-event
- model_for_talk
- hf-asr-leaderboard
datasets:
- mozilla-foundation/common_voice_7_0
model-index:
- name: XLS-R-300M - Slovenian
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 7
type: mozilla-foundation/common_voice_7_0
args: sl
metrics:
- name: Test WER
type: wer
value: 18.97
- name: Test CER
type: cer
value: 4.534
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Dev Data
type: speech-recognition-community-v2/dev_data
args: sl
metrics:
- name: Test WER
type: wer
value: 55.048
- name: Test CER
type: cer
value: 22.739
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Test Data
type: speech-recognition-community-v2/eval_data
args: sl
metrics:
- name: Test WER
type: wer
value: 54.81
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xls-r-300m-slovenian
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - SL dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2093
- Wer: 0.1907
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 100.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 1.785 | 12.5 | 1000 | 0.7465 | 0.6812 |
| 0.8989 | 25.0 | 2000 | 0.2495 | 0.2732 |
| 0.7118 | 37.5 | 3000 | 0.2126 | 0.2284 |
| 0.6367 | 50.0 | 4000 | 0.2049 | 0.2049 |
| 0.5763 | 62.5 | 5000 | 0.2116 | 0.2055 |
| 0.5196 | 75.0 | 6000 | 0.2111 | 0.1910 |
| 0.4949 | 87.5 | 7000 | 0.2131 | 0.1931 |
| 0.4797 | 100.0 | 8000 | 0.2093 | 0.1907 |
### Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.18.3
- Tokenizers 0.11.0
|
institutogloria/hate-pt-tweet-binary | aa1f23e8296e86e8fc87376dabbf914d1ed87d62 | 2022-01-03T18:30:39.000Z | [
"pytorch",
"bert",
"text-classification",
"transformers"
] | text-classification | false | institutogloria | null | institutogloria/hate-pt-tweet-binary | 3 | null | transformers | 21,458 | Entry not found |
isakbos/Q8BERT_COLA_L_512 | fab28d99a74a124cfca129e43048cc632e22d67f | 2022-02-23T06:32:53.000Z | [
"pytorch",
"bert",
"text-classification",
"transformers"
] | text-classification | false | isakbos | null | isakbos/Q8BERT_COLA_L_512 | 3 | null | transformers | 21,459 | Entry not found |
it5/it5-large-ilgiornale-to-repubblica | dede1cdc7aa4d681738a56fa4135ed6255581795 | 2022-03-09T08:04:16.000Z | [
"pytorch",
"tf",
"jax",
"tensorboard",
"t5",
"text2text-generation",
"it",
"dataset:gsarti/change_it",
"arxiv:2203.03759",
"transformers",
"italian",
"sequence-to-sequence",
"newspaper",
"ilgiornale",
"repubblica",
"style-transfer",
"license:apache-2.0",
"model-index",
"co2_eq_emissions",
"autotrain_compatible"
] | text2text-generation | false | it5 | null | it5/it5-large-ilgiornale-to-repubblica | 3 | null | transformers | 21,460 | ---
language:
- it
license: apache-2.0
datasets:
- gsarti/change_it
tags:
- italian
- sequence-to-sequence
- newspaper
- ilgiornale
- repubblica
- style-transfer
widget:
- text: "WASHINGTON - La Corea del Nord torna dopo nove anni nella blacklist Usa degli Stati considerati sponsor del terrorismo. Come Iran, Siria e Sudan. Lo ha deciso Donald Trump , che ha preferito dare l'annuncio non durante il suo recente viaggio in Asia ma ieri, in una riunione del governo alla Casa Bianca. 'Oggi gli Stati Uniti designeranno la Corea del nord come uno stato sponsor del terrorismo', ha tuonato il tycoon, anticipando che sarà formalizzata oggi dal dipartimento di stato e sarà accompagnata da nuove e più severe sanzioni. 'Il livello più alto' mai imposto a Pyongyang, ha promesso. 'Avrebbe dovuto succedere molto tempo fa', ha aggiunto, scaricando per l'ennesima volta la responsabilità dell'attuale crisi sull'amministrazione Obama. Poi si è scagliato contro un 'regime assassino' che 'deve mettere fine allo sviluppo del suo programma illegale nucleare e balistico'. Per giustificare la svolta, Trump ha accusato Pyongyang non solo di 'minacciare il mondo con una devastazione nucleare' ma anche di aver 'ripetutamente sostenuto atti di terrorismo internazionale', compreso omicidi in suolo straniero. Il riferimento è all' uccisione all'aeroporto della capitale malese di Kim Jong Nam , il fratellastro del leader nordcoreano Kim Jong Un , ma non ci sono altri episodi noti. Tanto che alcuni esperti, come pure dirigenti Usa coperti dall'anonimato, dubitano che Pyongyang risponda ai criteri per una tale designazione. La mossa appare altamente simbolica, dato che la Corea del Nord è già pesantemente sanzionata a livello internazionale. Per il segretario di stato Rex Tillerson è solo l'ultima di una serie di passi per rafforzare la pressione su Pyongyang e costringerla a sedersi ad un tavolo perché gli Usa hanno sempre 'speranza nella diplomazia'. Ma nello stesso tempo è un monito per 'fermare e dissuadere' altri Paesi dal sostenere la Corea del Nord, finita nella blacklist 'anche per l'uso di armi chimiche'. Ma la mossa potrebbe anche essere controproducente, provocando una risposta di Kim o minando gli sforzi per sollecitare Pechino ad una maggiore pressione su Pyongyang. In ogni caso non aiuta il dialogo diretto tra Usa e Corea del Nord, che sembrava essere stato avviato in modo riservato. Come non aiutano gli scambi di insulti fra Trump e Kim. Nord Corea, Trump: 'Cerco di essere amico di Kim, sarebbe una bella cosa per il mondo'. Pyongyang era stata messa nella lista Usa degli Stati sponsor del terrorismo per aver fatto esplodere nel 1987 un volo della Korean Air uccidendo tutti i 115 passeggeri a bordo. Ma l'amministrazione di George W. Bush l'aveva rimossa sperando di far avanzare i negoziati sulla denuclearizzazione della penisola coreana. Il governo giapponese sostiene la decisione degli Stati Uniti di inserire la Corea del Nord nella lista degli stati che sponsorizzano il terrorismo, pur riconoscendo che l'annuncio potrebbe provocare una reazione immediata del regime di Pyongyang. Il premier Shinzo Abe ha accolto con consenso il comunicato Usa e ha detto alla stampa che servirà a incrementare la pressione sulla Corea del Nord. Il ministro della Difesa Itsunori Onodera , pur valutando positivamente la notifica, ha spiegato che si attendono azioni provocatorie dallo stato eremita, ribadendo che è vitale rimanere vigili. Secondo la stampa nipponica Abe aveva richiesto al dipartimento di Stato Usa di mettere la Corea del Nord sulla lista durante l'incontro col presidente Usa Donald Trump a Tokyo a inizio mese. L'ultimo lancio di missile balistico condotto da Pyongyang nell'oceano Pacifico, sorvolando il mare del Giappone, risale allo scorso settembre."
- text: "ROMA - Una nuova droga killer è stata sequestrata per la prima volta in Europa dagli investigatori del Nas. Si tratta di una nuova \"miscela psicoattiva altamente tossica\" per la prima volta individuata da forze di polizia, simile all'eroina sintetica, ma molto più economica e letale. Tanto che i 20 grammi scoperti sarebbero stati sufficienti per fabbricare ben 20.000 dosi e lo stesso contatto attraverso la pelle può provocare intossicazione. Individuata per la prima volta, la nuova droga presenta una struttura simile al farmaco sedativo Fentanyl ma con effetti molto più devastanti per l'organismo. Proveniva dell'estero ed era contenuta in un plico postale indirizzato in una città del centro Italia: è stata intercettata tramite accertamenti sul web grazie a un'operazione di intelligence che ha visto come protagonisti i militari della Sezione operativa centrale del Comando carabinieri per la Tutela della salute (Nas). Economica e letale, secondo gli investigatori \"in confronto l'eroina è quasi 'acqua fresca', anzi, proprio per la sua economicità, in alcuni casi viene venduta dai pusher a giovani conviti di comprare eroina\". La diffusione di nuove droghe sintetiche che continuamente appaiono sui mercati necessita di un'attività investigativa costante e complessa. Si tratta infatti di sostanze dalla struttura molecolare molto simile a quella del Fentanyl ma ogni volta leggermente diversa. Di qui la difficoltà di individuarle e l'importanza del nuovo sequestro. \"La chiamano impropriamente 'eroina sintetica' - spiega il comandante dei Nas, generale Adelmo Lusi - per il tipo di effetto psicotropo simile, ma dal punto di vista della tossicità è molto peggio: con 25 milligrammi di eroina ci si sballa, con 25mg di simil-fentanyl, come quello appena sequestrato, si muore\". Le indagini sono partite da ricoveri per overdose in ospedale, in cui arrivavano ragazzi che non rispondevano al trattamento disintossicante per l'eroina. La nuova sostanza verrà ora segnalata per l'inserimento tra le tabelle ministeriali degli stupefacenti prevista dal Dpr 309/1990."
- text: "Fragile come il burro. Il nostro territorio è precario. Ne sanno qualcosa i comuni che sono stati investititi dal maltempo . Il dissesto idrogeologico imperversa su tutto il territorio. Infatti, oltre 6.600 comuni , pari all’82% del totale, sono in aree ad elevato rischio idrogeologico, pari al 10% della sua superficie. La popolazione potenzialmente esposta è stimata in 5,8 milioni di persone. I dati emergono dalle recenti analisi fatte da Legambiente e Protezione civile, che mettono in evidenza come in 10 anni in Italia sia raddoppiata l’area dei territori colpiti da alluvioni e frane , passando da una media di quattro regioni all’anno a otto regioni. Nella classifica delle regioni a maggior rischio idrogeologico prima è la Calabria con il 100% dei comuni esposti; al 100% ci sono anche la provincia di Trento, il Molise, la Basilicata, l’Umbria, la Valle d’Aosta. Poi Marche, Liguria al 99%; Lazio, Toscana al 98%; Abruzzo (96%), Emilia-Romagna (95%), Campania e Friuli Venezia Giulia al 92%, Piemonte (87%), Sardegna (81%), Puglia (78%), Sicilia (71%), Lombardia (60%), provincia di Bolzano (59%), Veneto (56%). Tra le cause che condizionano ed amplificano il rischio idrogeologico c’è l’azione dell’uomo (abbandono e degrado, cementificazione, consumo di suolo, abusivismo, disboscamento e incendi). Ma anche e soprattutto la mancanza di una seria manutenzione ordinaria e non ad una organica politica di prevenzione."
- text: "Arriva dal Partito nazionalista basco (Pnv) la conferma che i cinque deputati che siedono in parlamento voteranno la sfiducia al governo guidato da Mariano Rajoy. Pochi voti, ma significativi quelli della formazione politica di Aitor Esteban, che interverrà nel pomeriggio. Pur con dimensioni molto ridotte, il partito basco si è trovato a fare da ago della bilancia in aula. E il sostegno alla mozione presentata dai Socialisti potrebbe significare per il primo ministro non trovare quei 176 voti che gli servono per continuare a governare. \" Perché dovrei dimettermi io che per il momento ho la fiducia della Camera e quella che mi è stato data alle urne \", ha detto oggi Rajoy nel suo intervento in aula, mentre procedeva la discussione sulla mozione di sfiducia. Il voto dei baschi ora cambia le carte in tavola e fa crescere ulteriormente la pressione sul premier perché rassegni le sue dimissioni. La sfiducia al premier, o un'eventuale scelta di dimettersi, porterebbe alle estreme conseguenze lo scandalo per corruzione che ha investito il Partito popolare. Ma per ora sembra pensare a tutt'altro. \"Non ha intenzione di dimettersi - ha detto il segretario generale del Partito popolare , María Dolores de Cospedal - Non gioverebbe all'interesse generale o agli interessi del Pp\"."
metrics:
- rouge
- bertscore
- headline-headline-consistency-classifier
- headline-article-consistency-classifier
model-index:
- name: it5-large-ilgiornale-to-repubblica
results:
- task:
type: headline-style-transfer-ilgiornale-to-repubblica
name: "Headline style transfer (Il Giornale to Repubblica)"
dataset:
type: gsarti/change_it
name: "CHANGE-IT"
metrics:
- type: rouge1
value: 0.270
name: "Test Rouge1"
- type: rouge2
value: 0.089
name: "Test Rouge2"
- type: rougeL
value: 0.237
name: "Test RougeL"
- type: bertscore
value: 0.400
name: "Test BERTScore"
args:
- model_type: "dbmdz/bert-base-italian-xxl-uncased"
- lang: "it"
- num_layers: 10
- rescale_with_baseline: True
- baseline_path: "bertscore_baseline_ita.tsv"
- type: headline-headline-consistency-classifier
value: 0.906
name: "Test Headline-Headline Consistency Accuracy"
- type: headline-article-consistency-classifier
value: 0.852
name: "Test Headline-Article Consistency Accuracy"
co2_eq_emissions:
emissions: "51g"
source: "Google Cloud Platform Carbon Footprint"
training_type: "fine-tuning"
geographical_location: "Eemshaven, Netherlands, Europe"
hardware_used: "1 TPU v3-8 VM"
thumbnail: https://gsarti.com/publication/it5/featured.png
---
# IT5 Large for News Headline Style Transfer (Il Giornale to Repubblica) 🗞️➡️🗞️ 🇮🇹
This repository contains the checkpoint for the [IT5 Large](https://huggingface.co/gsarti/it5-large) model fine-tuned on news headline style transfer in the Il Giornale to Repubblica direction on the Italian CHANGE-IT dataset as part of the experiments of the paper [IT5: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation](https://arxiv.org/abs/2203.03759) by [Gabriele Sarti](https://gsarti.com) and [Malvina Nissim](https://malvinanissim.github.io).
A comprehensive overview of other released materials is provided in the [gsarti/it5](https://github.com/gsarti/it5) repository. Refer to the paper for additional details concerning the reported scores and the evaluation approach.
## Using the model
The model is trained to generate an headline in the style of Repubblica from the full body of an article written in the style of Il Giornale. Model checkpoints are available for usage in Tensorflow, Pytorch and JAX. They can be used directly with pipelines as:
```python
from transformers import pipelines
g2r = pipeline("text2text-generation", model='it5/it5-large-ilgiornale-to-repubblica')
g2r("Arriva dal Partito nazionalista basco (Pnv) la conferma che i cinque deputati che siedono in parlamento voteranno la sfiducia al governo guidato da Mariano Rajoy. Pochi voti, ma significativi quelli della formazione politica di Aitor Esteban, che interverrà nel pomeriggio. Pur con dimensioni molto ridotte, il partito basco si è trovato a fare da ago della bilancia in aula. E il sostegno alla mozione presentata dai Socialisti potrebbe significare per il primo ministro non trovare quei 176 voti che gli servono per continuare a governare. \" Perché dovrei dimettermi io che per il momento ho la fiducia della Camera e quella che mi è stato data alle urne \", ha detto oggi Rajoy nel suo intervento in aula, mentre procedeva la discussione sulla mozione di sfiducia. Il voto dei baschi ora cambia le carte in tavola e fa crescere ulteriormente la pressione sul premier perché rassegni le sue dimissioni. La sfiducia al premier, o un'eventuale scelta di dimettersi, porterebbe alle estreme conseguenze lo scandalo per corruzione che ha investito il Partito popolare. Ma per ora sembra pensare a tutt'altro. \"Non ha intenzione di dimettersi - ha detto il segretario generale del Partito popolare , María Dolores de Cospedal - Non gioverebbe all'interesse generale o agli interessi del Pp\".")
>>> [{"generated_text": "il nazionalista rajoy: 'voteremo la sfiducia'"}]
```
or loaded using autoclasses:
```python
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("it5/it5-large-ilgiornale-to-repubblica")
model = AutoModelForSeq2SeqLM.from_pretrained("it5/it5-large-ilgiornale-to-repubblica")
```
If you use this model in your research, please cite our work as:
```bibtex
@article{sarti-nissim-2022-it5,
title={{IT5}: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation},
author={Sarti, Gabriele and Nissim, Malvina},
journal={ArXiv preprint 2203.03759},
url={https://arxiv.org/abs/2203.03759},
year={2022},
month={mar}
}
``` |
itsunoda/wolfbbsRoBERTa-large | 899adeb42de47b2ed3cfc571073ff5303aed1fc0 | 2021-01-11T12:34:29.000Z | [
"pytorch",
"tf",
"camembert",
"fill-mask",
"transformers",
"autotrain_compatible"
] | fill-mask | false | itsunoda | null | itsunoda/wolfbbsRoBERTa-large | 3 | null | transformers | 21,461 | Entry not found |
iwontbecreative/rembert | 12d126dba046355e5a83a78915cf1a92c9559e0a | 2021-07-01T03:14:33.000Z | [
"pytorch",
"tf",
"rembert",
"transformers"
] | null | false | iwontbecreative | null | iwontbecreative/rembert | 3 | null | transformers | 21,462 | Entry not found |
jacksee/gpt2-finetuned-biochemistry | 371b085f630ca8bca2e653c22305dee9f1130b25 | 2021-10-29T06:02:09.000Z | [
"pytorch",
"gpt2",
"text-generation",
"transformers"
] | text-generation | false | jacksee | null | jacksee/gpt2-finetuned-biochemistry | 3 | null | transformers | 21,463 | |
jacobduncan00/hackMIT-finetuned-sst2 | 687010469a87a7de8df786560a9a95c80b6f94f3 | 2021-08-24T04:05:25.000Z | [
"pytorch",
"tensorboard",
"bert",
"text-classification",
"dataset:glue",
"transformers",
"generated_from_trainer"
] | text-classification | false | jacobduncan00 | null | jacobduncan00/hackMIT-finetuned-sst2 | 3 | null | transformers | 21,464 | ---
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model_index:
- name: hackMIT-finetuned-sst2
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: glue
type: glue
args: sst2
metric:
name: Accuracy
type: accuracy
value: 0.7970183486238532
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hackMIT-finetuned-sst2
This model is a fine-tuned version of [Blaine-Mason/hackMIT-finetuned-sst2](https://huggingface.co/Blaine-Mason/hackMIT-finetuned-sst2) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0046
- Accuracy: 0.7970
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1.7339491016138283e-05
- train_batch_size: 64
- eval_batch_size: 16
- seed: 23
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.0652 | 1.0 | 1053 | 0.9837 | 0.7970 |
| 0.0586 | 2.0 | 2106 | 0.9927 | 0.7959 |
| 0.0549 | 3.0 | 3159 | 1.0046 | 0.7970 |
### Framework versions
- Transformers 4.9.2
- Pytorch 1.9.0+cu102
- Datasets 1.11.0
- Tokenizers 0.10.3
|
jaketae/fastspeech2-ljspeech | 439ffc2606bdc1e3716f4e116d6c17f739ae59b3 | 2022-04-16T07:27:27.000Z | [
"pytorch",
"fastspeech2",
"transformers"
] | null | false | jaketae | null | jaketae/fastspeech2-ljspeech | 3 | null | transformers | 21,465 | Entry not found |
jamescalam/bert-stsb-aug | b432ebb00d7cc1ff40ba94757cebb385871bb7c9 | 2021-12-17T08:52:21.000Z | [
"pytorch",
"bert",
"feature-extraction",
"sentence-transformers",
"sentence-similarity",
"transformers"
] | sentence-similarity | false | jamescalam | null | jamescalam/bert-stsb-aug | 3 | null | sentence-transformers | 21,466 | ---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
---
# Augmented SBERT STSb
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
It is used as a demo model within the [NLP for Semantic Search course](https://www.pinecone.io/learn/nlp), for the chapter on [In-domain Data Augmentation with BERT](https://www.pinecone.io/learn/data-augmentation/).
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('bert-stsb-aug')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('bert-stsb-aug')
model = AutoModel.from_pretrained('bert-stsb-aug')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 2059 with parameters:
```
{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
Parameters of the fit()-Method:
```
{
"epochs": 1,
"evaluation_steps": 0,
"evaluator": "NoneType",
"max_grad_norm": 1,
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 308,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
|
jamesmullenbach/CLIP_TTP_BERT_Context_250k | e5da0353d8a8c6e2f974f05de1e710b5d39241e9 | 2021-08-03T19:03:12.000Z | [
"pytorch",
"bert",
"fill-mask",
"transformers",
"autotrain_compatible"
] | fill-mask | false | jamesmullenbach | null | jamesmullenbach/CLIP_TTP_BERT_Context_250k | 3 | 1 | transformers | 21,467 | Entry not found |
jannesg/takalane_nbl_roberta | d824f5bdc807eb723d057bfae0a4b8a9175bf2e6 | 2021-09-22T08:52:01.000Z | [
"pytorch",
"jax",
"roberta",
"fill-mask",
"nr",
"transformers",
"masked-lm",
"license:mit",
"autotrain_compatible"
] | fill-mask | false | jannesg | null | jannesg/takalane_nbl_roberta | 3 | null | transformers | 21,468 | ---
language:
- nr
thumbnail: https://pbs.twimg.com/media/EVjR6BsWoAAFaq5.jpg
tags:
- nr
- fill-mask
- pytorch
- roberta
- masked-lm
license: mit
---
# Takalani Sesame - Ndebele 🇿🇦
<img src="https://pbs.twimg.com/media/EVjR6BsWoAAFaq5.jpg" width="600"/>
## Model description
Takalani Sesame (named after the South African version of Sesame Street) is a project that aims to promote the use of South African languages in NLP, and in particular look at techniques for low-resource languages to equalise performance with larger languages around the world.
## Intended uses & limitations
#### How to use
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("jannesg/takalane_nbl_roberta")
model = AutoModelWithLMHead.from_pretrained("jannesg/takalane_nbl_roberta")
```
#### Limitations and bias
Updates will be added continously to improve performance. This is a very low resource language, results may be poor at first.
## Training data
Data collected from [https://wortschatz.uni-leipzig.de/en](https://wortschatz.uni-leipzig.de/en) <br/>
**Sentences:** 318M
## Training procedure
No preprocessing. Standard Huggingface hyperparameters.
## Author
Jannes Germishuys [website](http://jannesgg.github.io)
|
jannesg/takalane_nso_roberta | 25e73351d6d5a6b36bcb9fcbb1e1529b7e53c6a4 | 2021-09-22T08:52:04.000Z | [
"pytorch",
"jax",
"roberta",
"fill-mask",
"nso",
"transformers",
"masked-lm",
"license:mit",
"autotrain_compatible"
] | fill-mask | false | jannesg | null | jannesg/takalane_nso_roberta | 3 | null | transformers | 21,469 | ---
language:
- nso
thumbnail: https://pbs.twimg.com/media/EVjR6BsWoAAFaq5.jpg
tags:
- nso
- fill-mask
- pytorch
- roberta
- masked-lm
license: mit
---
# Takalani Sesame - Northern Sotho 🇿🇦
<img src="https://pbs.twimg.com/media/EVjR6BsWoAAFaq5.jpg" width="600"/>
## Model description
Takalani Sesame (named after the South African version of Sesame Street) is a project that aims to promote the use of South African languages in NLP, and in particular look at techniques for low-resource languages to equalise performance with larger languages around the world.
## Intended uses & limitations
#### How to use
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("jannesg/takalane_nso_roberta")
model = AutoModelWithLMHead.from_pretrained("jannesg/takalane_nso_roberta")
```
#### Limitations and bias
Updates will be added continously to improve performance.
## Training data
Data collected from [https://wortschatz.uni-leipzig.de/en](https://wortschatz.uni-leipzig.de/en) <br/>
**Sentences:** 4746
## Training procedure
No preprocessing. Standard Huggingface hyperparameters.
## Author
Jannes Germishuys [website](http://jannesgg.github.io)
|
jannesg/takalane_zul_roberta | bb451723252ef6b73cb6e36be5a5e66786a0036b | 2021-09-22T08:52:21.000Z | [
"pytorch",
"jax",
"roberta",
"fill-mask",
"zul",
"transformers",
"masked-lm",
"license:mit",
"autotrain_compatible"
] | fill-mask | false | jannesg | null | jannesg/takalane_zul_roberta | 3 | null | transformers | 21,470 | ---
language:
- zul
thumbnail: https://pbs.twimg.com/media/EVjR6BsWoAAFaq5.jpg
tags:
- zul
- fill-mask
- pytorch
- roberta
- masked-lm
license: mit
---
# Takalani Sesame - Zulu 🇿🇦
<img src="https://pbs.twimg.com/media/EVjR6BsWoAAFaq5.jpg" width="600"/>
## Model description
Takalani Sesame (named after the South African version of Sesame Street) is a project that aims to promote the use of South African languages in NLP, and in particular look at techniques for low-resource languages to equalise performance with larger languages around the world.
## Intended uses & limitations
#### How to use
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("jannesg/takalane_zul_roberta")
model = AutoModelWithLMHead.from_pretrained("jannesg/takalane_zul_roberta")
```
#### Limitations and bias
Updates will be added continously to improve performance.
## Training data
Data collected from [https://wortschatz.uni-leipzig.de/en](https://wortschatz.uni-leipzig.de/en) <br/>
**Sentences:** 410000
## Training procedure
No preprocessing. Standard Huggingface hyperparameters.
## Author
Jannes Germishuys [website](http://jannesgg.github.io)
|
jatinshah/distilbert-base-uncased-finetuned-imdb | 9d08d6477f2a6bd495140849d7c038d508ac1931 | 2022-02-14T04:17:56.000Z | [
"pytorch",
"tensorboard",
"distilbert",
"fill-mask",
"dataset:imdb",
"transformers",
"generated_from_trainer",
"license:apache-2.0",
"model-index",
"autotrain_compatible"
] | fill-mask | false | jatinshah | null | jatinshah/distilbert-base-uncased-finetuned-imdb | 3 | null | transformers | 21,471 | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imdb
model-index:
- name: distilbert-base-uncased-finetuned-imdb
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-imdb
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset.
It achieves the following results on the evaluation set:
- Loss: 2.4726
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.7091 | 1.0 | 157 | 2.4999 |
| 2.5768 | 2.0 | 314 | 2.4239 |
| 2.5371 | 3.0 | 471 | 2.4366 |
### Framework versions
- Transformers 4.16.2
- Pytorch 1.10.0a0+0aef44c
- Datasets 1.18.3
- Tokenizers 0.11.0
|
jbarry/irish-gpt2 | 8e3ef58064f8390f14ad8610a89400dc1e20eb4b | 2021-10-20T16:40:12.000Z | [
"pytorch",
"jax",
"tensorboard",
"gpt2",
"text-generation",
"transformers"
] | text-generation | false | jbarry | null | jbarry/irish-gpt2 | 3 | null | transformers | 21,472 | This model was trained on the OSCAR ga dataset for experimental purposes. The files used for training the tokenizer and model are included in this repository. |
jcblaise/bert-tagalog-base-cased-WWM | 438d4b07a5bcd039d293ee02fda85655346ef265 | 2021-11-12T03:21:18.000Z | [
"pytorch",
"jax",
"bert",
"fill-mask",
"tl",
"transformers",
"tagalog",
"filipino",
"license:gpl-3.0",
"autotrain_compatible"
] | fill-mask | false | jcblaise | null | jcblaise/bert-tagalog-base-cased-WWM | 3 | null | transformers | 21,473 | ---
language: tl
tags:
- bert
- tagalog
- filipino
license: gpl-3.0
inference: false
---
**Deprecation Notice**
This model is deprecated. New Filipino Transformer models trained with a much larger corpora are available.
Use [`jcblaise/roberta-tagalog-base`](https://huggingface.co/jcblaise/roberta-tagalog-base) or [`jcblaise/roberta-tagalog-large`](https://huggingface.co/jcblaise/roberta-tagalog-large) instead for better performance.
---
# BERT Tagalog Base Cased (Whole Word Masking)
Tagalog version of BERT trained on a large preprocessed text corpus scraped and sourced from the internet. This model is part of a larger research project. We open-source the model to allow greater usage within the Filipino NLP community. This particular version uses whole word masking.
## Citations
All model details and training setups can be found in our papers. If you use our model or find it useful in your projects, please cite our work:
```
@article{cruz2020establishing,
title={Establishing Baselines for Text Classification in Low-Resource Languages},
author={Cruz, Jan Christian Blaise and Cheng, Charibeth},
journal={arXiv preprint arXiv:2005.02068},
year={2020}
}
@article{cruz2019evaluating,
title={Evaluating Language Model Finetuning Techniques for Low-resource Languages},
author={Cruz, Jan Christian Blaise and Cheng, Charibeth},
journal={arXiv preprint arXiv:1907.00409},
year={2019}
}
```
## Data and Other Resources
Data used to train this model as well as other benchmark datasets in Filipino can be found in my website at https://blaisecruz.com
## Contact
If you have questions, concerns, or if you just want to chat about NLP and low-resource languages in general, you may reach me through my work email at [email protected]
|
jegormeister/bert-base-dutch-cased | a134403b141aaea1a945e742f8ca331416f3bc32 | 2021-08-05T19:28:55.000Z | [
"pytorch",
"bert",
"feature-extraction",
"sentence-transformers",
"sentence-similarity",
"transformers"
] | sentence-similarity | false | jegormeister | null | jegormeister/bert-base-dutch-cased | 3 | 2 | sentence-transformers | 21,474 | ---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
---
# bert-base-dutch-cased-snli
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 256 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('bert-base-dutch-cased-snli')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('bert-base-dutch-cased-snli')
model = AutoModel.from_pretrained('bert-base-dutch-cased-snli')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, max pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=bert-base-dutch-cased-snli)
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 339 with parameters:
```
{'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
```
{'scale': 20.0, 'similarity_fct': 'cos_sim'}
```
Parameters of the fit()-Method:
```
{
"callback": null,
"epochs": 1,
"evaluation_steps": 0,
"evaluator": "utils.CombEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 10000,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 256, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
<!--- Describe where people can find more information --> |
jery33/distilbert-base-uncased-finetuned-cola | c3d097a7fa07b1f86ab79feb551ddec1ab1d164c | 2021-12-13T12:09:54.000Z | [
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"dataset:glue",
"transformers",
"generated_from_trainer",
"license:apache-2.0",
"model-index"
] | text-classification | false | jery33 | null | jery33/distilbert-base-uncased-finetuned-cola | 3 | null | transformers | 21,475 | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- matthews_correlation
model-index:
- name: distilbert-base-uncased-finetuned-cola
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: glue
type: glue
args: cola
metrics:
- name: Matthews Correlation
type: matthews_correlation
value: 0.5373281885173845
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-cola
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7637
- Matthews Correlation: 0.5373
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Matthews Correlation |
|:-------------:|:-----:|:----:|:---------------:|:--------------------:|
| 0.5306 | 1.0 | 535 | 0.5156 | 0.4063 |
| 0.3524 | 2.0 | 1070 | 0.5249 | 0.5207 |
| 0.2417 | 3.0 | 1605 | 0.6514 | 0.5029 |
| 0.1762 | 4.0 | 2140 | 0.7637 | 0.5373 |
| 0.1252 | 5.0 | 2675 | 0.8746 | 0.5291 |
### Framework versions
- Transformers 4.13.0
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
jfarray/Model_paraphrase-multilingual-MiniLM-L12-v2_1_Epochs | 4f291cd0cb74d6f391d6a649909624cccf603d35 | 2022-02-12T20:28:53.000Z | [
"pytorch",
"bert",
"feature-extraction",
"sentence-transformers",
"sentence-similarity",
"transformers"
] | sentence-similarity | false | jfarray | null | jfarray/Model_paraphrase-multilingual-MiniLM-L12-v2_1_Epochs | 3 | null | sentence-transformers | 21,476 | ---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
---
# {MODEL_NAME}
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
model = AutoModel.from_pretrained('{MODEL_NAME}')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 11 with parameters:
```
{'batch_size': 15, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
Parameters of the fit()-Method:
```
{
"epochs": 1,
"evaluation_steps": 1,
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 2,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
<!--- Describe where people can find more information --> |
jgammack/SAE-distilbert-base-uncased | c587ef52876943df7c05ca219a1d8c2268a77eef | 2022-02-09T15:32:40.000Z | [
"pytorch",
"tensorboard",
"distilbert",
"fill-mask",
"transformers",
"generated_from_trainer",
"license:apache-2.0",
"model-index",
"autotrain_compatible"
] | fill-mask | false | jgammack | null | jgammack/SAE-distilbert-base-uncased | 3 | null | transformers | 21,477 | ---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: SAE-distilbert-base-uncased
results: []
widget:
- text: "Wind noise was detected coming from the car [MASK] closure system."
example_title: "Closure system"
---
# SAE-distilbert-base-uncased
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the [jgammack/SAE-door-abstracts](https://huggingface.co/datasets/jgammack/SAE-door-abstracts) dataset.
It achieves the following results on the evaluation set:
- Loss: 2.2970
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 15
- eval_batch_size: 15
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.5323 | 1.0 | 37 | 2.4503 |
| 2.4968 | 2.0 | 74 | 2.4571 |
| 2.4688 | 3.0 | 111 | 2.4099 |
| 2.419 | 4.0 | 148 | 2.3343 |
| 2.4229 | 5.0 | 185 | 2.3072 |
| 2.4067 | 6.0 | 222 | 2.2927 |
| 2.3877 | 7.0 | 259 | 2.2836 |
| 2.374 | 8.0 | 296 | 2.3767 |
| 2.3582 | 9.0 | 333 | 2.2493 |
| 2.356 | 10.0 | 370 | 2.2847 |
| 2.3294 | 11.0 | 407 | 2.3234 |
| 2.3358 | 12.0 | 444 | 2.2660 |
| 2.3414 | 13.0 | 481 | 2.2887 |
| 2.3154 | 14.0 | 518 | 2.3737 |
| 2.311 | 15.0 | 555 | 2.2686 |
### Framework versions
- Transformers 4.16.2
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.11.0
|
ji-xin/bert_base-RTE-two_stage | b18280aa68741563e0008f04d2d0a809130a8fb7 | 2020-07-08T14:54:15.000Z | [
"pytorch",
"transformers"
] | null | false | ji-xin | null | ji-xin/bert_base-RTE-two_stage | 3 | null | transformers | 21,478 | Entry not found |
ji-xin/roberta_large-MRPC-two_stage | 77db3a295762646b99a219c48a70254d153014fd | 2020-07-08T15:03:50.000Z | [
"pytorch",
"fill-mask",
"transformers",
"autotrain_compatible"
] | fill-mask | false | ji-xin | null | ji-xin/roberta_large-MRPC-two_stage | 3 | null | transformers | 21,479 | Entry not found |
jimregan/BERTreach | 76a4f2431e9d338594c678401a2c564af2110e4f | 2021-12-01T20:51:13.000Z | [
"pytorch",
"jax",
"roberta",
"fill-mask",
"ga",
"transformers",
"irish",
"license:apache-2.0",
"autotrain_compatible"
] | fill-mask | false | jimregan | null | jimregan/BERTreach | 3 | null | transformers | 21,480 | ---
license: apache-2.0
language: ga
tags:
- irish
---
## BERTreach
([beirtreach](https://www.teanglann.ie/en/fgb/beirtreach) means 'oyster bed')
**Model size:** 84M
**Training data:**
* [PARSEME 1.2](https://gitlab.com/parseme/parseme_corpus_ga/-/blob/master/README.md)
* Newscrawl 300k portion of the [Leipzig Corpora](https://wortschatz.uni-leipzig.de/en/download/irish)
* Private news corpus crawled with [Corpus Crawler](https://github.com/google/corpuscrawler)
(2125804 sentences, 47419062 tokens, as reckoned by wc)
```
from transformers import pipeline
fill_mask = pipeline("fill-mask", model="jimregan/BERTreach", tokenizer="jimregan/BERTreach")
```
|
jimregan/wav2vec2-large-xls-r-300m-irish-colab | 8308a74cfd7ab2de64d6b5a6f6897b8e3b678adf | 2021-11-30T17:53:09.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"dataset:common_voice",
"transformers",
"generated_from_trainer",
"license:apache-2.0",
"model-index"
] | automatic-speech-recognition | false | jimregan | null | jimregan/wav2vec2-large-xls-r-300m-irish-colab | 3 | null | transformers | 21,481 | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- common_voice
model-index:
- name: wav2vec2-large-xls-r-300m-irish-colab
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xls-r-300m-irish-colab
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4286
- Wer: 0.5097
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 210
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 4.3406 | 24.97 | 400 | 1.1677 | 0.7270 |
| 0.2527 | 49.97 | 800 | 1.2686 | 0.5927 |
| 0.0797 | 74.97 | 1200 | 1.3970 | 0.5769 |
| 0.0424 | 99.97 | 1600 | 1.4093 | 0.5600 |
| 0.0286 | 124.97 | 2000 | 1.3684 | 0.5407 |
| 0.0174 | 149.97 | 2400 | 1.4571 | 0.5205 |
| 0.0109 | 174.97 | 2800 | 1.4327 | 0.5178 |
| 0.0072 | 199.97 | 3200 | 1.4286 | 0.5097 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu113
- Datasets 1.13.3
- Tokenizers 0.10.3
|
jimregan/wav2vec2-large-xlsr-irish-basic | 89822e125a46bffd96f8024eff764360d3ceae8a | 2021-09-22T08:52:55.000Z | [
"pytorch",
"jax",
"wav2vec2",
"automatic-speech-recognition",
"ga",
"dataset:common_voice",
"transformers",
"audio",
"speech",
"xlsr-fine-tuning-week",
"license:apache-2.0",
"model-index"
] | automatic-speech-recognition | false | jimregan | null | jimregan/wav2vec2-large-xlsr-irish-basic | 3 | null | transformers | 21,482 | ---
language: ga
datasets:
- common_voice
metrics:
- wer
tags:
- audio
- automatic-speech-recognition
- speech
- xlsr-fine-tuning-week
license: apache-2.0
model-index:
- name: XLSR Wav2Vec2 Irish by Jim O'Regan
results:
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice ga-IE
type: common_voice
args: ga-IE
metrics:
- name: Test WER
type: wer
value: 47.4
---
# Wav2Vec2-Large-XLSR-Irish
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53)
on the [Irish Common Voice dataset](https://huggingface.co/datasets/common_voice).
When using this model, make sure that your speech input is sampled at 16kHz.
## Usage
The model can be used directly (without a language model) as follows:
```python
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "ga-IE", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("jimregan/wav2vec2-large-xlsr-irish-basic")
model = Wav2Vec2ForCTC.from_pretrained("jimregan/wav2vec2-large-xlsr-irish-basic")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
```
## Evaluation
The model can be evaluated as follows on the Irish test data of Common Voice.
```python
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "ga-IE", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("jimregan/wav2vec2-large-xlsr-irish-basic")
model = Wav2Vec2ForCTC.from_pretrained("jimregan/wav2vec2-large-xlsr-irish-basic")
model.to("cuda")
# So, tolower() for Irish is a bit complicated: tAthar -> t-athair
# toupper() is non-deterministic :)
def is_upper_vowel(letter):
if letter in ['A', 'E', 'I', 'O', 'U', 'Á', 'É', 'Í', 'Ó', 'Ú']:
return True
else:
return False
def irish_lower(word):
if len(word) > 1 and word[0] in ['n', 't'] and is_upper_vowel(word[1]):
return word[0] + '-' + word[1:].lower()
else:
return word.lower()
def irish_lower_sentence(sentence):
return " ".join([irish_lower(w) for w in sentence.split(" ")])
chars_to_ignore_regex = '[,\?\.\!\;\:\"\“\%\‘\”\(\)\*]'
def remove_special_characters(sentence):
tmp = re.sub('’ ', ' ', sentence)
tmp = re.sub("’$", '', tmp)
tmp = re.sub('’', '\'', tmp)
tmp = re.sub(chars_to_ignore_regex, '', tmp)
sentence = irish_lower_sentence(tmp) + ' '
return sentence
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
batch["sentence"] = remove_special_characters(batch["sentence"])
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
# Preprocessing the datasets.
# We need to read the audio files as arrays
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
```
**Test Result**: 43.7 %
## Training
The Common Voice `train` and `validation` datasets were used for training.
The script used for training can be found [here](https://github.com/jimregan/wav2vec2-sprint/blob/main/irish/fine-tune-xlsr-wav2vec2-on-irish-asr-with-transformers.ipynb)
|
jinlmsft/t5-large-multiwoz | e1241494948b72b1de8ea4dd019be18f27888dbc | 2022-02-04T23:08:18.000Z | [
"pytorch",
"tensorboard",
"t5",
"text2text-generation",
"transformers",
"generated_from_trainer",
"license:apache-2.0",
"model-index",
"autotrain_compatible"
] | text2text-generation | false | jinlmsft | null | jinlmsft/t5-large-multiwoz | 3 | null | transformers | 21,483 | ---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: t5-large-multiwoz
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-large-multiwoz
This model is a fine-tuned version of [t5-large](https://huggingface.co/t5-large) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0064
- Acc: 1.0
- True Num: 56671
- Num: 56776
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Acc | True Num | Num |
|:-------------:|:-----:|:----:|:---------------:|:----:|:--------:|:-----:|
| 0.1261 | 1.13 | 1000 | 0.0933 | 0.98 | 55574 | 56776 |
| 0.0951 | 2.25 | 2000 | 0.0655 | 0.98 | 55867 | 56776 |
| 0.0774 | 3.38 | 3000 | 0.0480 | 0.99 | 56047 | 56776 |
| 0.0584 | 4.51 | 4000 | 0.0334 | 0.99 | 56252 | 56776 |
| 0.042 | 5.64 | 5000 | 0.0222 | 0.99 | 56411 | 56776 |
| 0.0329 | 6.76 | 6000 | 0.0139 | 1.0 | 56502 | 56776 |
| 0.0254 | 7.89 | 7000 | 0.0094 | 1.0 | 56626 | 56776 |
| 0.0214 | 9.02 | 8000 | 0.0070 | 1.0 | 56659 | 56776 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu102
- Datasets 1.15.1
- Tokenizers 0.10.3
|
jnz/electra-ka-anti-gov | 40b95a4132c49d2dbb631f8e28b5b5ca194f5c3a | 2021-03-30T14:03:28.000Z | [
"pytorch",
"electra",
"text-classification",
"transformers"
] | text-classification | false | jnz | null | jnz/electra-ka-anti-gov | 3 | null | transformers | 21,484 | Entry not found |
jnz/electra-ka-discrediting | 00af37e91a65376c43a4c3b0d58bbe9ed0c5ddb6 | 2021-03-30T14:01:41.000Z | [
"pytorch",
"electra",
"text-classification",
"transformers"
] | text-classification | false | jnz | null | jnz/electra-ka-discrediting | 3 | null | transformers | 21,485 | Entry not found |
jnz/electra-ka-fake-news-tagging | be9f716f2ed1d27d34ff27c82e827efbf9043126 | 2020-11-15T20:41:39.000Z | [
"pytorch",
"electra",
"text-classification",
"transformers"
] | text-classification | false | jnz | null | jnz/electra-ka-fake-news-tagging | 3 | null | transformers | 21,486 | Entry not found |
jogonba2/POCTS | 02db7ec3ae4f36068d5f17ebd5d27507624c4aae | 2021-09-21T09:35:25.000Z | [
"pytorch",
"bart",
"text2text-generation",
"transformers",
"summarization",
"license:apache-2.0",
"model-index",
"autotrain_compatible"
] | summarization | false | jogonba2 | null | jogonba2/POCTS | 3 | null | transformers | 21,487 | ---
license: apache-2.0
tags:
- summarization
metrics:
- rouge
model-index:
- name: POCTS
results:
- task:
name: Summarization
type: summarization
metrics:
- name: Rouge1
type: rouge
value: 26.1391
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# POCTS
This model is a fine-tuned version of [facebook/bart-large](https://huggingface.co/facebook/bart-large) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 3.0970
- Rouge1: 26.1391
- Rouge2: 7.3101
- Rougel: 19.1217
- Rougelsum: 21.9706
- Gen Len: 46.2245
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.15
- num_epochs: 3.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:------:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:|
| 3.3259 | 1.0 | 33875 | 3.2535 | 17.942 | 4.5143 | 14.2766 | 15.582 | 19.3901 |
| 2.9764 | 2.0 | 67750 | 3.1278 | 18.6558 | 5.1844 | 15.0939 | 16.3367 | 19.9174 |
| 2.5889 | 3.0 | 101625 | 3.0970 | 19.1763 | 5.4517 | 15.5342 | 16.7186 | 19.8855 |
### Framework versions
- Transformers 4.10.2
- Pytorch 1.7.1+cu110
- Datasets 1.11.0
- Tokenizers 0.10.3
|
joheras/anglosaxon | 394f4adae712b238c397390df23e421895f2abd6 | 2021-06-23T05:50:15.000Z | [
"pytorch",
"roberta",
"fill-mask",
"transformers",
"autotrain_compatible"
] | fill-mask | false | joheras | null | joheras/anglosaxon | 3 | null | transformers | 21,488 | Entry not found |
johnpaulbin/cvai-bert-asag | 774a74a695af791a33cc7d4780a981f6c5d8baf2 | 2021-12-13T23:17:55.000Z | [
"pytorch",
"bert",
"text-classification",
"transformers"
] | text-classification | false | johnpaulbin | null | johnpaulbin/cvai-bert-asag | 3 | null | transformers | 21,489 | Entry not found |
johnpaulbin/cvai-deberta3-asag | ad17d5a741c2631d8bd43423dcba41b377fe505a | 2021-12-14T02:16:56.000Z | [
"pytorch",
"deberta-v2",
"text-classification",
"transformers"
] | text-classification | false | johnpaulbin | null | johnpaulbin/cvai-deberta3-asag | 3 | null | transformers | 21,490 | Entry not found |
johnpaulbin/gpt2-skript-80-v3 | 250ece8dc5d0fdea0ec569021059bf747720719b | 2021-07-18T04:53:22.000Z | [
"pytorch",
"gpt2",
"text-generation",
"transformers"
] | text-generation | false | johnpaulbin | null | johnpaulbin/gpt2-skript-80-v3 | 3 | null | transformers | 21,491 | GPT-2 Skript 80k lines. v3
Training loss: `0.594200`
1.5 GB
Inferencing colab: https://colab.research.google.com/drive/1uTAPLa1tuNXFpG0qVLSseMro6iU9-xNc |
jonatasgrosman/bartuque-bart-base-pretrained-rm-2 | 58510ab69835b386923f846c54c8d4bc86852460 | 2021-02-25T23:07:45.000Z | [
"pytorch",
"bart",
"text2text-generation",
"transformers",
"autotrain_compatible"
] | text2text-generation | false | jonatasgrosman | null | jonatasgrosman/bartuque-bart-base-pretrained-rm-2 | 3 | null | transformers | 21,492 | Just a test
|
joaoalvarenga/wav2vec2-large-100k-voxpopuli-pt | f88a308a9d5897ad4ded4879fb2b386c8ecf8884 | 2021-07-06T09:11:37.000Z | [
"pytorch",
"jax",
"wav2vec2",
"automatic-speech-recognition",
"pt",
"dataset:common_voice",
"transformers",
"audio",
"speech",
"apache-2.0",
"portuguese-speech-corpus",
"PyTorch",
"voxpopuli",
"license:apache-2.0",
"model-index"
] | automatic-speech-recognition | false | joaoalvarenga | null | joaoalvarenga/wav2vec2-large-100k-voxpopuli-pt | 3 | null | transformers | 21,493 | ---
language: pt
datasets:
- common_voice
metrics:
- wer
tags:
- audio
- speech
- wav2vec2
- pt
- apache-2.0
- portuguese-speech-corpus
- automatic-speech-recognition
- speech
- PyTorch
- voxpopuli
license: apache-2.0
model-index:
- name: JoaoAlvarenga Wav2Vec2 Large 100k VoxPopuli Portuguese
results:
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice pt
type: common_voice
args: pt
metrics:
- name: Test WER
type: wer
value: 19.735723%
---
# Wav2Vec2-Large-100k-VoxPopuli-Portuguese
Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) on Portuguese using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset.
## Usage
The model can be used directly (without a language model) as follows:
```python
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "pt", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("joorock12/wav2vec2-large-100k-voxpopuli-pt")
model = Wav2Vec2ForCTC.from_pretrained("joorock12/wav2vec2-large-100k-voxpopuli-pt")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
```
## Evaluation
The model can be evaluated as follows on the Portuguese test data of Common Voice.
You need to install Enelvo, an open-source spell correction trained with Twitter user posts
`pip install enelvo`
```python
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
from enelvo import normaliser
import re
test_dataset = load_dataset("common_voice", "pt", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("joorock12/wav2vec2-large-100k-voxpopuli-pt")
model = Wav2Vec2ForCTC.from_pretrained("joorock12/wav2vec2-large-100k-voxpopuli-pt")
model.to("cuda")
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
norm = normaliser.Normaliser()
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = [norm.normalise(i) for i in processor.batch_decode(pred_ids)]
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
```
**Test Result (wer)**: 19.735723%
## Training
The Common Voice `train`, `validation` datasets were used for training.
|
jsfoon/slogan-gptneo | d0fd128b1b0ca522dabe705a433a0ec277e1337a | 2021-08-04T12:23:47.000Z | [
"pytorch",
"gpt_neo",
"text-generation",
"transformers"
] | text-generation | false | jsfoon | null | jsfoon/slogan-gptneo | 3 | null | transformers | 21,494 | Entry not found |
jsnfly/wav2vec2-xls-r-1b-de-cv8 | 41c16f10bb2dd6bb64c4c22f8a571c5415e11c14 | 2022-03-23T18:26:40.000Z | [
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"de",
"dataset:mozilla-foundation/common_voice_8_0",
"transformers",
"hf-asr-leaderboard",
"mozilla-foundation/common_voice_8_0",
"robust-speech-event",
"license:apache-2.0",
"model-index"
] | automatic-speech-recognition | false | jsnfly | null | jsnfly/wav2vec2-xls-r-1b-de-cv8 | 3 | null | transformers | 21,495 | ---
language:
- de
license: apache-2.0
tags:
- automatic-speech-recognition
- de
- hf-asr-leaderboard
- mozilla-foundation/common_voice_8_0
- robust-speech-event
datasets:
- mozilla-foundation/common_voice_8_0
model-index:
- name: XLS-R-1B - German
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 8
type: mozilla-foundation/common_voice_8_0
args: de
metrics:
- name: Test WER
type: wer
value: 11.37
- name: Test CER
type: cer
value: 2.89
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Dev Data
type: speech-recognition-community-v2/dev_data
args: de
metrics:
- name: Dev WER
type: wer
value: 31.16
- name: Dev CER
type: cer
value: 13.41
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Test Data
type: speech-recognition-community-v2/eval_data
args: de
metrics:
- name: Test WER
type: wer
value: 36.79
---
# XLS-R-1b-DE
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - DE dataset. (See `run.sh` for training parameters). |
julien-c/timm-dpn92 | 5411e038a5952ec38968e55c6c9b7762a45d0110 | 2021-02-18T11:18:56.000Z | [
"pytorch",
"dataset:imagenet",
"arxiv:1707.01629",
"arxiv:1906.02659",
"arxiv:2010.15052",
"timm",
"image-classification",
"dpn",
"license:apache-2.0"
] | image-classification | false | julien-c | null | julien-c/timm-dpn92 | 3 | null | timm | 21,496 | ---
tags:
- image-classification
- timm
- dpn
license: apache-2.0
datasets:
- imagenet
---
# `dpn92` from `rwightman/pytorch-image-models`
From [`rwightman/pytorch-image-models`](https://github.com/rwightman/pytorch-image-models):
```
""" PyTorch implementation of DualPathNetworks
Based on original MXNet implementation https://github.com/cypw/DPNs with
many ideas from another PyTorch implementation https://github.com/oyam/pytorch-DPNs.
This implementation is compatible with the pretrained weights from cypw's MXNet implementation.
Hacked together by / Copyright 2020 Ross Wightman
"""
```
## Model description
[Dual Path Networks](https://arxiv.org/abs/1707.01629)
## Intended uses & limitations
You can use the raw model to classify images along the 1,000 ImageNet labels, but you can also change its head
to fine-tune it on a downstream task (another classification task with different labels, image segmentation or
object detection, to name a few).
### How to use
You can use this model with the usual factory method in `timm`:
```python
import PIL
import timm
import torch
model = timm.create_model("julien-c/timm-dpn92")
img = PIL.Image.open(path_to_an_image)
img = img.convert("RGB")
config = model.default_cfg
if isinstance(config["input_size"], tuple):
img_size = config["input_size"][-2:]
else:
img_size = config["input_size"]
transform = timm.data.transforms_factory.transforms_imagenet_eval(
img_size=img_size,
interpolation=config["interpolation"],
mean=config["mean"],
std=config["std"],
)
input_tensor = transform(cat_img)
input_tensor = input_tensor.unsqueeze(0)
# ^ batch size = 1
with torch.no_grad():
output = model(input_tensor)
probs = output.squeeze(0).softmax(dim=0)
```
### Limitations and bias
The training images in the dataset are usually photos clearly representing one of the 1,000 labels. The model will
probably not generalize well on drawings or images containing multiple objects with different labels.
The training images in the dataset come mostly from the US (45.4%) and Great Britain (7.6%). As such the model or
models created by fine-tuning this model will work better on images picturing scenes from these countries (see
[this paper](https://arxiv.org/abs/1906.02659) for examples).
More generally, [recent research](https://arxiv.org/abs/2010.15052) has shown that even models trained in an
unsupervised fashion on ImageNet (i.e. without using the labels) will pick up racial and gender bias represented in
the training images.
## Training data
This model was pretrained on [ImageNet](http://www.image-net.org/), a dataset consisting of 14 millions of
hand-annotated images with 1,000 categories.
## Training procedure
To be completed
### Preprocessing
To be completed
## Evaluation results
To be completed
### BibTeX entry and citation info
```bibtex
@misc{rw2019timm,
author = {Ross Wightman},
title = {PyTorch Image Models},
year = {2019},
publisher = {GitHub},
journal = {GitHub repository},
doi = {10.5281/zenodo.4414861},
howpublished = {\url{https://github.com/rwightman/pytorch-image-models}}
}
```
and
```bibtex
@misc{chen2017dual,
title={Dual Path Networks},
author={Yunpeng Chen and Jianan Li and Huaxin Xiao and Xiaojie Jin and Shuicheng Yan and Jiashi Feng},
year={2017},
eprint={1707.01629},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
``` |
juliensimon/autonlp-imdb-demo-hf-16622767 | 3b69f57eb6f3ff4fbd2b3619e1c51b225b6146fc | 2021-10-11T12:38:37.000Z | [
"pytorch",
"distilbert",
"text-classification",
"en",
"dataset:juliensimon/autonlp-data-imdb-demo-hf",
"transformers",
"autonlp"
] | text-classification | false | juliensimon | null | juliensimon/autonlp-imdb-demo-hf-16622767 | 3 | null | transformers | 21,497 | ---
tags: autonlp
language: en
widget:
- text: "I love AutoNLP 🤗"
datasets:
- juliensimon/autonlp-data-imdb-demo-hf
---
# Model Trained Using AutoNLP
- Problem type: Binary Classification
- Model ID: 16622767
## Validation Metrics
- Loss: 0.20029613375663757
- Accuracy: 0.9256
- Precision: 0.9090909090909091
- Recall: 0.9466984884645983
- AUC: 0.979257749523025
- F1: 0.9275136399064692
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/juliensimon/autonlp-imdb-demo-hf-16622767
```
Or Python API:
```
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("juliensimon/autonlp-imdb-demo-hf-16622767", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("juliensimon/autonlp-imdb-demo-hf-16622767", use_auth_token=True)
inputs = tokenizer("I love AutoNLP", return_tensors="pt")
outputs = model(**inputs)
``` |
junnyu/electra_small_generator | b3e6c6288125df8de0900e6584ab194a8f6f476a | 2021-09-22T08:54:18.000Z | [
"pytorch",
"electra",
"fill-mask",
"en",
"dataset:openwebtext",
"transformers",
"masked-lm",
"license:mit",
"autotrain_compatible"
] | fill-mask | false | junnyu | null | junnyu/electra_small_generator | 3 | null | transformers | 21,498 | ---
language: en
thumbnail: https://github.com/junnyu
tags:
- pytorch
- electra
- masked-lm
license: mit
datasets:
- openwebtext
---
# 一、 个人在openwebtext数据集上训练得到的electra-small模型
# 二、 复现结果(dev dataset)
|Model|CoLA|SST|MRPC|STS|QQP|MNLI|QNLI|RTE|Avg.|
|---|---|---|---|---|---|---|---|---|---|
|ELECTRA-Small-OWT(original)|56.8|88.3|87.4|86.8|88.3|78.9|87.9|68.5|80.36|
|**ELECTRA-Small-OWT (this)**| 55.82 |89.67|87.0|86.96|89.28|80.08|87.50|66.07|80.30|
# 三、 训练细节
- 数据集 openwebtext
- 训练batch_size 256
- 学习率lr 5e-4
- 最大句子长度max_seqlen 128
- 训练total step 62.5W
- GPU RTX3090
- 训练时间总共耗费2.5天
# 四、 使用
```python
from transformers import pipeline
fill_mask = pipeline(
"fill-mask",
model="junnyu/electra_small_generator",
tokenizer="junnyu/electra_small_generator"
)
print(
fill_mask("HuggingFace is creating a [MASK] that the community uses to solve NLP tasks.")
)
``` |
junnyu/uer_large | 78a0e00c4f9506fc72d05f322435b72823dfdcf0 | 2021-07-21T08:42:35.000Z | [
"pytorch",
"bert",
"fill-mask",
"zh",
"transformers",
"autotrain_compatible"
] | fill-mask | false | junnyu | null | junnyu/uer_large | 3 | 2 | transformers | 21,499 | ---
language: zh
tags:
- bert
- pytorch
widget:
- text: "巴黎是[MASK]国的首都。"
---
https://github.com/dbiir/UER-py/wiki/Modelzoo 中的
MixedCorpus+BertEncoder(large)+MlmTarget
https://share.weiyun.com/5G90sMJ
Pre-trained on mixed large Chinese corpus. The configuration file is bert_large_config.json
## 引用
```tex
@article{zhao2019uer,
title={UER: An Open-Source Toolkit for Pre-training Models},
author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong},
journal={EMNLP-IJCNLP 2019},
pages={241},
year={2019}
}
```
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.