modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
s3h/mt5-small-finetuned-src-to-trg-testing
4cc2bcde5b3bf42bca82f8daf733cff7b3ed19a8
2021-12-21T17:28:28.000Z
[ "pytorch", "tensorboard", "mt5", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
s3h
null
s3h/mt5-small-finetuned-src-to-trg-testing
3
null
transformers
21,700
--- license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: mt5-small-finetuned-src-to-trg-testing results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-finetuned-src-to-trg-testing This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 15.8614 - Bleu: 0.1222 - Gen Len: 3.75 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | No log | 1.0 | 4 | 15.8782 | 0.1222 | 3.75 | | No log | 2.0 | 8 | 15.7909 | 0.1222 | 3.75 | | No log | 3.0 | 12 | 15.8614 | 0.1222 | 3.75 | ### Framework versions - Transformers 4.14.1 - Pytorch 1.7.1 - Datasets 1.16.2.dev0 - Tokenizers 0.10.3
s87204/distilbert-base-uncased-finetuned-cola
266cbd3fbc3107e0a9a476d3859326c24f8083ce
2022-01-07T14:03:20.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
s87204
null
s87204/distilbert-base-uncased-finetuned-cola
3
null
transformers
21,701
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5365264430934975 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8505 - Matthews Correlation: 0.5365 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5201 | 1.0 | 535 | 0.5345 | 0.4153 | | 0.3469 | 2.0 | 1070 | 0.5033 | 0.5109 | | 0.2367 | 3.0 | 1605 | 0.6589 | 0.5209 | | 0.1705 | 4.0 | 2140 | 0.7778 | 0.5354 | | 0.125 | 5.0 | 2675 | 0.8505 | 0.5365 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
saburbutt/testing
b6860ee37555235014a6cd5eea732dd5ce31683d
2020-12-09T17:11:22.000Z
[ "pytorch", "albert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
saburbutt
null
saburbutt/testing
3
null
transformers
21,702
Entry not found
sadakmed/dpr-passage_encoder-spanish
c029b37468a2ca1ac62c4302b93d50f4194ff02e
2021-05-20T04:37:11.000Z
[ "pytorch", "bert", "es", "transformers", "dpr" ]
null
false
sadakmed
null
sadakmed/dpr-passage_encoder-spanish
3
null
transformers
21,703
--- language: es tags: - dpr --- This is a DPR passage_encoder model, finetuned with `dpr-question_encoder-spanish` on Spanish question answering data.
saibo/random-roberta-mini
e5975979be8f930632c93595009c8d9965565ff3
2021-07-18T18:31:47.000Z
[ "pytorch", "tf", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
saibo
null
saibo/random-roberta-mini
3
null
transformers
21,704
# random-roberta-mini We introduce random-roberta-mini, which is a unpretrained version of a mini RoBERTa model(4 layer and 256 heads). The weight of random-roberta-mini is randomly initiated and this can be particularly useful when we aim to train a language model from scratch or benchmark the effect of pretraining. It's important to note that tokenizer of random-roberta-mini is the same as roberta-base because it's not a trivial task to get a random tokenizer and it's less meaningful compared to the random weight. A debatable advantage of pulling random-roberta-mini from Huggingface is to avoid using random seed in order to obtain the same randomness at each time. The code to obtain such random model: ```python from transformers import RobertaConfig, RobertaModel def get_custom_blank_roberta(h=768, l=12): # Initializing a RoBERTa configuration configuration = RobertaConfig(num_attention_heads=h, num_hidden_layers=l) # Initializing a model from the configuration model = RobertaModel(configuration) return model rank="mini" h=256 l=4 model_type = "roberta" tokenizer = AutoTokenizer.from_pretrained("roberta-base") model_name ="random-"+model_type+"-"+rank model = get_custom_blank_roberta(h, l) ```
saibo/random-roberta-tiny
c72295479db0e1332a060683e883d213fb21fe01
2021-07-18T18:28:26.000Z
[ "pytorch", "tf", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
saibo
null
saibo/random-roberta-tiny
3
null
transformers
21,705
# random-roberta-tiny We introduce random-roberta-tiny, which is a unpretrained version of a mini RoBERTa model(2 layer and 128 heads). The weight of random-roberta-tiny is randomly initiated and this can be particularly useful when we aim to train a language model from scratch or benchmark the effect of pretraining. It's important to note that tokenizer of random-roberta-tiny is the same as roberta-base because it's not a trivial task to get a random tokenizer and it's less meaningful compared to the random weight. A debatable advantage of pulling random-roberta-tiny from Huggingface is to avoid using random seed in order to obtain the same randomness at each time. The code to obtain such random model: ```python from transformers import RobertaConfig, RobertaModel def get_custom_blank_roberta(h=768, l=12): # Initializing a RoBERTa configuration configuration = RobertaConfig(num_attention_heads=h, num_hidden_layers=l) # Initializing a model from the configuration model = RobertaModel(configuration) return model rank="tiny" h=128 l=2 model_type = "roberta" tokenizer = AutoTokenizer.from_pretrained("roberta-base") model_name ="random-"+model_type+"-"+rank model = get_custom_blank_roberta(h, l) ```
salesken/clariq_gpt2
fc78dbadf17a7957e35cca45134568de36a7a05d
2021-05-23T12:22:04.000Z
[ "pytorch", "jax", "salesken", "gpt2", "lm-head", "causal-lm", "license:apache-2.0" ]
null
false
salesken
null
salesken/clariq_gpt2
3
1
null
21,706
--- tags: - salesken - gpt2 - lm-head - causal-lm - salesken license: apache-2.0 inference: False --- The ClariQ challenge [3] is organized as part of the Search-oriented Conversational AI (SCAI) EMNLP workshop in 2020. The main aim of the conversational systems is to return an appropriate answer in response to the user requests. However, some user requests might be ambiguous. In Information Retrieval (IR) settings such a situation is handled mainly through the diversification of search result page. It is however much more challenging in dialogue settings. Hence, we aim to study the following situation for dialogue settings:<br /> A user is asking an ambiguous question (where ambiguous question is a question to which one can return > 1 possible answers);, instead of trying to answer it directly, ask a good clarifying question. __Query: Serve your models directly from Hugging Face infrastructure and run large scale NLP models in milliseconds with just a few lines of code__ ***Top 5 clarifications generated:*** <br /> - are you looking for a suitable cloud platform to run your models on (Score: 0.3862) <br /> - are you looking for a quick test or a more complex model (Score: 0.3364) <br /> - how would you like your nlp model to be used (Score: 0.3249) <br /> - are you looking for a suitable ldl to use as a server or a client (Score: 0.3182) <br /> - how would you like to consume the nlp model (Score: 0.2842) <br /> ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("salesken/clariq_gpt2") model = AutoModelWithLMHead.from_pretrained("salesken/clariq_gpt2") input_query="Serve your models directly from Hugging Face infrastructure and run large scale NLP models in milliseconds with just a few lines of code" query= input_query + " ~~ " input_ids = tokenizer.encode(query.lower(), return_tensors='pt') sample_outputs = model.generate(input_ids, do_sample=True, num_beams=1, max_length=128, temperature=0.9, top_k = 40, num_return_sequences=10) clarifications_gen = [] for i in range(len(sample_outputs)): r = tokenizer.decode(sample_outputs[i], skip_special_tokens=True).split('||')[0] r = r.split(' ~~ ~~')[1] if r not in clarifications_gen: clarifications_gen.append(r) print(clarifications_gen) # to select the top n results: from sentence_transformers import SentenceTransformer, util import torch embedder = SentenceTransformer('paraphrase-distilroberta-base-v1') corpus = clarifications_gen corpus_embeddings = embedder.encode(corpus, convert_to_tensor=True) query = input_query.lower() query_embedding = embedder.encode(query, convert_to_tensor=True) cos_scores = util.pytorch_cos_sim(query_embedding, corpus_embeddings)[0] top_results = torch.topk(cos_scores, k=5) print("Top clarifications generated :") for score, idx in zip(top_results[0], top_results[1]): print(corpus[idx], "(Score: {:.4f})".format(score)) ```
samitizerxu/wav2vec2-xls-r-300m-eo
45c165446737b8fb0a54ed198a36f42f58b6cada
2022-03-23T18:29:06.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "eo", "dataset:common_voice", "transformers", "common_voice", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
samitizerxu
null
samitizerxu/wav2vec2-xls-r-300m-eo
3
null
transformers
21,707
--- language: - eo license: apache-2.0 tags: - automatic-speech-recognition - common_voice - eo - generated_from_trainer - hf-asr-leaderboard - robust-speech-event datasets: - common_voice model-index: - name: wav2vec2-xls-r-300m-eo results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: eo metrics: - name: Test WER type: wer value: 34.72 - name: Test CER type: cer value: 7.54 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-eo This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the COMMON_VOICE - EO dataset. It achieves the following results on the evaluation set: - Loss: 0.2584 - Wer: 0.3114 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.1701 | 0.8 | 500 | 2.8105 | 1.0 | | 1.9143 | 1.6 | 1000 | 0.5977 | 0.7002 | | 1.1259 | 2.4 | 1500 | 0.5063 | 0.6157 | | 0.9732 | 3.2 | 2000 | 0.4264 | 0.5673 | | 0.8983 | 4.0 | 2500 | 0.4249 | 0.4902 | | 0.8507 | 4.8 | 3000 | 0.3811 | 0.4536 | | 0.8064 | 5.6 | 3500 | 0.3643 | 0.4467 | | 0.7866 | 6.4 | 4000 | 0.3600 | 0.4453 | | 0.7773 | 7.2 | 4500 | 0.3724 | 0.4470 | | 0.747 | 8.0 | 5000 | 0.3501 | 0.4189 | | 0.7279 | 8.8 | 5500 | 0.3500 | 0.4261 | | 0.7153 | 9.6 | 6000 | 0.3328 | 0.3966 | | 0.7 | 10.4 | 6500 | 0.3314 | 0.3869 | | 0.6784 | 11.2 | 7000 | 0.3396 | 0.4051 | | 0.6582 | 12.0 | 7500 | 0.3236 | 0.3899 | | 0.6478 | 12.8 | 8000 | 0.3263 | 0.3832 | | 0.6277 | 13.6 | 8500 | 0.3139 | 0.3769 | | 0.6053 | 14.4 | 9000 | 0.2955 | 0.3536 | | 0.5777 | 15.2 | 9500 | 0.2793 | 0.3413 | | 0.5631 | 16.0 | 10000 | 0.2789 | 0.3353 | | 0.5446 | 16.8 | 10500 | 0.2709 | 0.3264 | | 0.528 | 17.6 | 11000 | 0.2693 | 0.3234 | | 0.5169 | 18.4 | 11500 | 0.2656 | 0.3193 | | 0.5041 | 19.2 | 12000 | 0.2575 | 0.3102 | | 0.4971 | 20.0 | 12500 | 0.2584 | 0.3114 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_7_0` with split `test` ```bash python eval.py --model_id samitizerxu/wav2vec2-xls-r-300m-eo --dataset mozilla-foundation/common_voice_7_0 --config eo --split test ```
sammy786/wav2vec2-xlsr-breton
3c63e90f648a6a21bf5a7e41a962544a7c4e9290
2022-03-23T18:33:06.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "br", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
sammy786
null
sammy786/wav2vec2-xlsr-breton
3
null
transformers
21,708
--- language: - br license: apache-2.0 tags: - automatic-speech-recognition - br - generated_from_trainer - hf-asr-leaderboard - model_for_talk - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: sammy786/wav2vec2-xlsr-breton results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: br metrics: - name: Test WER type: wer value: 48.2 - name: Test CER type: cer value: 15.02 --- # sammy786/wav2vec2-xlsr-breton This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - br dataset. ## Model description "facebook/wav2vec2-xls-r-1b" was finetuned. ## Intended uses & limitations More information needed ## Training and evaluation data Training data - Common voice Finnish train.tsv, dev.tsv and other.tsv ## Training procedure For creating the train dataset, all possible datasets were appended and 90-10 split was used. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000045637994662983496 - train_batch_size: 8 - eval_batch_size: 32 - seed: 13 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.10.3 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id sammy786/wav2vec2-xlsr-breton --dataset mozilla-foundation/common_voice_8_0 --config br --split test ```
sammy786/wav2vec2-xlsr-chuvash
4d538d34ffcb21782ba93af5cc0450c5577f29f2
2022-03-24T11:58:35.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "cv", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
sammy786
null
sammy786/wav2vec2-xlsr-chuvash
3
null
transformers
21,709
--- language: - cv license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - cv - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: sammy786/wav2vec2-xlsr-chuvash results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: cv metrics: - name: Test WER type: wer value: 27.81 - name: Test CER type: cer value: 5.79 --- # sammy786/wav2vec2-xlsr-chuvash This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - cv dataset. It achieves the following results on evaluation set (which is 10 percent of train data set merged with other and dev datasets): - Loss: 18.02 - Wer: 29.22 ## Model description "facebook/wav2vec2-xls-r-1b" was finetuned. ## Intended uses & limitations More information needed ## Training and evaluation data Training data - Common voice Finnish train.tsv, dev.tsv and other.tsv ## Training procedure For creating the train dataset, all possible datasets were appended and 90-10 split was used. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000045637994662983496 - train_batch_size: 8 - eval_batch_size: 16 - seed: 13 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Step | Training Loss | Validation Loss | Wer | |:----:|:-------------:|:---------------:|:--------:| | 200 | 6.559100 | 2.274687 | 1.000000 | | 400 | 1.346100 | 0.508268 | 0.681995 | | 600 | 0.797500 | 0.391174 | 0.572876 | | 800 | 0.556300 | 0.308620 | 0.489283 | | 1000 | 0.435800 | 0.273956 | 0.454014 | | 1200 | 0.388700 | 0.311027 | 0.499415 | | 1400 | 0.338300 | 0.243977 | 0.413874 | | 1600 | 0.294000 | 0.214134 | 0.385230 | | 1800 | 0.276000 | 0.245991 | 0.397311 | | 2000 | 0.253900 | 0.208324 | 0.363016 | | 2200 | 0.233600 | 0.222156 | 0.370811 | | 2400 | 0.219700 | 0.202602 | 0.364186 | | 2600 | 0.205000 | 0.241339 | 0.384451 | | 2800 | 0.176000 | 0.263558 | 0.384061 | | 3000 | 0.166700 | 0.211768 | 0.333398 | | 3200 | 0.160600 | 0.198677 | 0.321512 | | 3400 | 0.154600 | 0.208655 | 0.328722 | | 3600 | 0.146800 | 0.188022 | 0.317810 | | 3800 | 0.133200 | 0.181083 | 0.313133 | | 4000 | 0.134200 | 0.190084 | 0.316251 | | 4200 | 0.114200 | 0.193034 | 0.312159 | | 4400 | 0.117300 | 0.194122 | 0.312354 | | 4600 | 0.112300 | 0.191111 | 0.305534 | | 4800 | 0.107800 | 0.185930 | 0.302611 | | 5000 | 0.100400 | 0.178625 | 0.299883 | | 5200 | 0.099800 | 0.176442 | 0.294622 | | 5400 | 0.100800 | 0.177935 | 0.294427 | | 5600 | 0.096300 | 0.182903 | 0.293843 | | 5800 | 0.094200 | 0.181041 | 0.293453 | | 6000 | 0.097600 | 0.179865 | 0.290725 | | 6200 | 0.091600 | 0.180327 | 0.292868 | | 6400 | 0.093100 | 0.180275 | 0.292284 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.10.3 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id sammy786/wav2vec2-xlsr-chuvash --dataset mozilla-foundation/common_voice_8_0 --config cv --split test ```
sammy786/wav2vec2-xlsr-georgian
60c826901a411f75d9c4f97d5afd265081b9d931
2022-03-24T11:56:11.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "ka", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
sammy786
null
sammy786/wav2vec2-xlsr-georgian
3
null
transformers
21,710
--- language: - ka license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - ka - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: sammy786/wav2vec2-xlsr-czech results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: ka metrics: - name: Test WER type: wer value: 23.9 - name: Test CER type: cer value: 3.59 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: ka metrics: - name: Test WER type: wer value: 75.07 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: ka metrics: - name: Test WER type: wer value: 74.41 --- # sammy786/wav2vec2-xlsr-georgian This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - ka dataset. It achieves the following results on evaluation set (which is 10 percent of train data set merged with other and dev datasets): - Loss: 10.54 - Wer: 27.53 ## Model description "facebook/wav2vec2-xls-r-1b" was finetuned. ## Intended uses & limitations More information needed ## Training and evaluation data Training data - Common voice Finnish train.tsv, dev.tsv and other.tsv ## Training procedure For creating the train dataset, all possible datasets were appended and 90-10 split was used. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000045637994662983496 - train_batch_size: 8 - eval_batch_size: 16 - seed: 13 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Step | Training Loss | Validation Loss | Wer | |:----:|:-------------:|:---------------:|:--------:| | 200 | 4.152100 | 0.823672 | 0.967814 | | 400 | 0.889500 | 0.196740 | 0.444792 | | 600 | 0.493700 | 0.155659 | 0.366115 | | 800 | 0.328000 | 0.138066 | 0.358069 | | 1000 | 0.260600 | 0.119236 | 0.324989 | | 1200 | 0.217200 | 0.114050 | 0.313366 | | 1400 | 0.188800 | 0.112600 | 0.302190 | | 1600 | 0.166900 | 0.111154 | 0.295485 | | 1800 | 0.155500 | 0.109963 | 0.286544 | | 2000 | 0.140400 | 0.107587 | 0.277604 | | 2200 | 0.142600 | 0.105662 | 0.277157 | | 2400 | 0.135400 | 0.105414 | 0.275369 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.10.3 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id sammy786/wav2vec2-xlsr-georgian --dataset mozilla-foundation/common_voice_8_0 --config ka --split test ```
sancharidan/quantized_expfinder
3bb7d910e0cd7363777f254ff2ed578744621822
2022-02-22T11:25:30.000Z
[ "pytorch", "bert", "text-classification", "transformers", "license:other" ]
text-classification
false
sancharidan
null
sancharidan/quantized_expfinder
3
null
transformers
21,711
--- license: other ---
sanjaycode/demo_model
083cf9c45265fa7fe26f0cb4c8159e3c05359c3e
2021-09-07T04:22:09.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
sanjaycode
null
sanjaycode/demo_model
3
null
transformers
21,712
Entry not found
sanqiang/qa_base
d2a0d57bc0ffea2941222c6158d13ae5f41cb8dd
2021-10-21T21:27:40.000Z
[ "pytorch", "t5", "feature-extraction", "transformers" ]
feature-extraction
false
sanqiang
null
sanqiang/qa_base
3
null
transformers
21,713
Entry not found
saraks/cuad-distil-governing_law-08-25-v1
54dbac6da583eb5de5cb80bd3629c6e0a48810f6
2021-08-25T16:31:01.000Z
[ "pytorch", "distilbert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
saraks
null
saraks/cuad-distil-governing_law-08-25-v1
3
null
transformers
21,714
Entry not found
sarnikowski/convbert-medium-small-da-cased
2920e56f28103cf552b43c12fc94c8f4fb9826bb
2021-03-18T22:27:12.000Z
[ "pytorch", "tf", "convbert", "da", "arxiv:2008.02496", "transformers", "license:cc-by-4.0" ]
null
false
sarnikowski
null
sarnikowski/convbert-medium-small-da-cased
3
null
transformers
21,715
--- language: da license: cc-by-4.0 --- # Danish ConvBERT medium small (cased) [ConvBERT](https://arxiv.org/abs/2008.02496) model pretrained on a custom Danish corpus (~17.5gb). For details regarding data sources and training procedure, along with benchmarks on downstream tasks, go to: https://github.com/sarnikowski/danish_transformers ## Usage ```python from transformers import ConvBertTokenizer, ConvBertModel tokenizer = ConvBertTokenizer.from_pretrained("sarnikowski/convbert-medium-small-da-cased") model = ConvBertModel.from_pretrained("sarnikowski/convbert-medium-small-da-cased") ``` ## Questions? If you have any questions feel free to open an issue on the [danish_transformers](https://github.com/sarnikowski/danish_transformers) repository, or send an email to [email protected]
seduerr/pai_pol
f1c78e740add53d59c8af81096d70648a116087b
2021-06-25T06:24:06.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
seduerr
null
seduerr/pai_pol
3
null
transformers
21,716
Entry not found
sefaozalpadl/stop_the_steal_relevancy_analysis-binary
e3f918a269c2ae0edec42bbe8dd00e0d2518cfc7
2021-11-07T16:57:11.000Z
[ "pytorch", "roberta", "text-classification", "en", "dataset:sefaozalpadl/autonlp-data-stop_the_steal_relevancy_analysis", "transformers", "coe", "co2_eq_emissions" ]
text-classification
false
sefaozalpadl
null
sefaozalpadl/stop_the_steal_relevancy_analysis-binary
3
null
transformers
21,717
--- tags: coe language: en widget: - text: "take our country back. Stop the steal! #trump2020" datasets: - sefaozalpadl/autonlp-data-stop_the_steal_relevancy_analysis co2_eq_emissions: 0.6503024714880831 --- # Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 23995359 - CO2 Emissions (in grams): 0.6503024714880831 ## Validation Metrics - Loss: 0.49598395824432373 - Accuracy: 0.7907801418439716 - Precision: 0.7841726618705036 - Recall: 0.7898550724637681 - AUC: 0.8774154589371981 - F1: 0.7870036101083032 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/sefaozalpadl/stop_the_steal_relevancy_analysis-binary ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("sefaozalpadl/stop_the_steal_relevancy_analysis-binary", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("sefaozalpadl/stop_the_steal_relevancy_analysis-binary", use_auth_token=True) inputs = tokenizer("take our country back. Stop the steal! #trump2020", return_tensors="pt") outputs = model(**inputs) ```
sello-ralethe/bert-base-frozen-generics-mlm
9aecb0488f70826d0ee70b2d1e6679ec6bed7ec2
2021-05-20T05:11:38.000Z
[ "pytorch", "jax", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
sello-ralethe
null
sello-ralethe/bert-base-frozen-generics-mlm
3
null
transformers
21,718
BERT model finetuned for masked language modeling on generics dataset by freezing all the weights of pretrained BERT except the last layer. The aim is to investigate if the model will overgeneralize generics and treat quantified statements such as 'All ducks lay eggs', 'All tigers have stripes' as if these are generics.
seyonec/ChemBERTA_PubChem1M_shard00
83412d7b3bb604e2912e2a7258da186fa82f0cdf
2021-05-20T20:50:55.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
seyonec
null
seyonec/ChemBERTA_PubChem1M_shard00
3
null
transformers
21,719
Entry not found
seyonec/ChemBERTA_PubChem1M_shard00_75k
d9f425d6043840cb02e285c4f40ec4e36f36a0d2
2021-05-20T20:54:57.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
seyonec
null
seyonec/ChemBERTA_PubChem1M_shard00_75k
3
null
transformers
21,720
Entry not found
seyonec/PubChem10M_SMILES_BPE_390k
922b97451583e4e54fd590946c9571a6b869313c
2021-05-20T21:00:52.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
seyonec
null
seyonec/PubChem10M_SMILES_BPE_390k
3
null
transformers
21,721
Entry not found
seyonec/SMILES_BPE_PubChem_100k_shard00
e6b39d103d1ca94d0cf51e56c8e7a221d0d2dd00
2021-05-20T21:05:05.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
seyonec
null
seyonec/SMILES_BPE_PubChem_100k_shard00
3
null
transformers
21,722
Entry not found
sgugger/custom-resnet
235083771e73d9fdaea63c012dfef9dbfa85e51c
2022-02-09T14:47:38.000Z
[ "pytorch", "resnet", "transformers" ]
null
false
sgugger
null
sgugger/custom-resnet
3
null
transformers
21,723
Entry not found
sgugger/esberto-small
88c67f644f42f41bf35ff1d7e21fc79333e0b667
2021-07-26T20:53:03.000Z
[ "pytorch", "tensorboard", "roberta", "fill-mask", "dataset:oscar", "transformers", "generated_from_trainer", "autotrain_compatible" ]
fill-mask
false
sgugger
null
sgugger/esberto-small
3
null
transformers
21,724
--- tags: - generated_from_trainer datasets: - oscar model_index: - name: esberto-small results: - task: name: Masked Language Modeling type: fill-mask dataset: name: oscar type: oscar args: unshuffled_original_eo --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # esberto-small This model is a fine-tuned version of [](https://huggingface.co/) on the oscar dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: tpu - num_devices: 8 - total_train_batch_size: 64 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.10.0.dev0 - Pytorch 1.9.0+cu102 - Datasets 1.10.3.dev0 - Tokenizers 0.10.3
sgugger/finetuned-bert
91ffe4fc44a670119a874124497f056eca12dd08
2021-06-23T19:45:24.000Z
[ "pytorch", "bert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0" ]
text-classification
false
sgugger
null
sgugger/finetuned-bert
3
null
transformers
21,725
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model_index: - name: finetuned-bert results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: mrpc metric: name: F1 type: f1 value: 0.9125214408233276 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned-bert This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.3916 - Accuracy: 0.875 - F1: 0.9125 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.581 | 1.0 | 230 | 0.4086 | 0.8260 | 0.8711 | | 0.366 | 2.0 | 460 | 0.3758 | 0.8480 | 0.8963 | | 0.2328 | 3.0 | 690 | 0.3916 | 0.875 | 0.9125 | ### Framework versions - Transformers 4.9.0.dev0 - Pytorch 1.8.1+cu111 - Datasets 1.8.1.dev0 - Tokenizers 0.10.1
shaer/xlm-roberta-base-finetuned-marc-en-test-run
a55eeb586d7535c02cfc85bf9e080df6aeff8853
2021-10-22T13:12:39.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "text-classification", "dataset:amazon_reviews_multi", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
shaer
null
shaer/xlm-roberta-base-finetuned-marc-en-test-run
3
null
transformers
21,726
--- license: mit tags: - generated_from_trainer datasets: - amazon_reviews_multi model-index: - name: xlm-roberta-base-finetuned-marc-en-test-run results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-marc-en-test-run This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.8957 - Mae: 0.4390 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.1079 | 1.0 | 235 | 0.9742 | 0.5366 | | 0.9488 | 2.0 | 470 | 0.8957 | 0.4390 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
shainahub/covid_qa_distillbert
34fe91fea8afd148d8b615d5c682da4341cce2fb
2021-12-15T19:10:48.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "dataset:covid_qa_deepset", "transformers", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible" ]
question-answering
false
shainahub
null
shainahub/covid_qa_distillbert
3
null
transformers
21,727
--- license: apache-2.0 tags: - generated_from_trainer datasets: - covid_qa_deepset metrics: - squad_v2 # Example: wer. Use metric id from https://hf.co/metrics widget: - text: "What is COVID-19?" context: "Coronavirus disease 2019 (COVID-19) is a contagious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The first known case was identified in Wuhan, China, in December 2019.[7] The disease has since spread worldwide, leading to an ongoing pandemic." - text: "Where was COVID-19 first discovered?" context: "The first known infections from SARS-CoV-2 were discovered in Wuhan, China. The original source of viral transmission to humans remains unclear, as does whether the virus became pathogenic before or after the spillover event." - text: "What is Post-COVID syndrome?" context: "Long COVID, also known as post-COVID-19 syndrome, post-acute sequelae of COVID-19 (PASC), or chronic COVID syndrome (CCS) is a condition characterized by long-term sequelae appearing or persisting after the typical convalescence period of COVID-19. Long COVID can affect nearly every organ system, with sequelae including respiratory system disorders, nervous system and neurocognitive disorders, mental health disorders, metabolic disorders, cardiovascular disorders, gastrointestinal disorders, malaise, fatigue, musculoskeletal pain, and anemia. A wide range of symptoms are commonly reported, including fatigue, headaches, shortness of breath, anosmia (loss of smell), parosmia (distorted smell), muscle weakness, low fever and cognitive dysfunction." --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the covid_qa_deepset dataset. It achieves the following results on the evaluation set: - Loss: 0.0976 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.2502 | 1.0 | 3880 | 0.1824 | | 0.2007 | 2.0 | 7760 | 0.1250 | | 0.1338 | 3.0 | 11640 | 0.0976 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
shamikbose89/mt5-small-finetuned-arxiv-cs
a0dc7519a2e498e8b3c0731e44d275319cf47163
2021-11-19T17:48:21.000Z
[ "pytorch", "tensorboard", "mt5", "text2text-generation", "transformers", "generated_from_trainer", "summarization", "license:apache-2.0", "model-index", "autotrain_compatible" ]
summarization
false
shamikbose89
null
shamikbose89/mt5-small-finetuned-arxiv-cs
3
null
transformers
21,728
--- license: apache-2.0 tags: - generated_from_trainer - summarization metrics: - rouge model-index: - name: mt5-small-finetuned-arxiv-cs results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-finetuned-arxiv-cs This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on a subset of the arxiv dataset. It achieves the following results on the evaluation set: - Loss: 1.6922 - Rouge1: 0.7734 - Rouge2: 0.2865 - Rougel: 0.6665 - Rougelsum: 0.6743 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| | 14.0947 | 1.0 | 500 | 2.7666 | 1.2101 | 0.459 | 1.1426 | 1.1385 | | 2.8524 | 2.0 | 1000 | 1.8208 | 0.0 | 0.0 | 0.0 | 0.0 | | 2.2623 | 3.0 | 1500 | 1.6922 | 0.7734 | 0.2865 | 0.6665 | 0.6743 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
shivam/wav2vec2-xls-r-hindi
7142f5a4f435af9a41ecb75be68d48998d804532
2022-03-23T18:33:12.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "hi", "dataset:mozilla-foundation/common_voice_7_0", "transformers", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
shivam
null
shivam/wav2vec2-xls-r-hindi
3
1
transformers
21,729
--- language: - hi license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - hi - mozilla-foundation/common_voice_7_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 metrics: - wer - cer model-index: - name: shivam/wav2vec2-xls-r-hindi results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Common Voice Corpus 7.0 type: mozilla-foundation/common_voice_7_0 args: hi metrics: - name: Test WER type: wer value: 52.3 - name: Test CER type: cer value: 26.09 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - HI dataset. It achieves the following results on the evaluation set: - Loss: 1.2282 - Wer: 0.6838 ## Evaluation results on Common Voice 7 "test" (Running ./eval.py): ### With LM - WER: 52.30 - CER: 26.09 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.3155 | 3.4 | 500 | 4.5582 | 1.0 | | 3.3369 | 6.8 | 1000 | 3.4269 | 1.0 | | 2.1785 | 10.2 | 1500 | 1.7191 | 0.8831 | | 1.579 | 13.6 | 2000 | 1.3604 | 0.7647 | | 1.3773 | 17.01 | 2500 | 1.2737 | 0.7519 | | 1.3165 | 20.41 | 3000 | 1.2457 | 0.7401 | | 1.2274 | 23.81 | 3500 | 1.3617 | 0.7301 | | 1.1787 | 27.21 | 4000 | 1.2068 | 0.7010 | | 1.1467 | 30.61 | 4500 | 1.2416 | 0.6946 | | 1.0801 | 34.01 | 5000 | 1.2312 | 0.6990 | | 1.0709 | 37.41 | 5500 | 1.2984 | 0.7138 | | 1.0307 | 40.81 | 6000 | 1.2049 | 0.6871 | | 1.0003 | 44.22 | 6500 | 1.1956 | 0.6841 | | 1.004 | 47.62 | 7000 | 1.2101 | 0.6793 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu113 - Datasets 1.18.1.dev0 - Tokenizers 0.11.0
shivam/xls-r-hindi
4631df09751ca7151560f04dc38496e72bdfab81
2022-01-21T14:00:59.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "hi", "dataset:common_voice", "transformers", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
shivam
null
shivam/xls-r-hindi
3
1
transformers
21,730
--- language: - hi license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_7_0 - generated_from_trainer datasets: - common_voice model-index: - name: '' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - HI dataset. It achieves the following results on the evaluation set: - Loss: 0.4484 - Wer: 1.0145 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.1844 | 3.4 | 500 | 5.2015 | 0.9999 | | 3.3962 | 6.8 | 1000 | 3.4017 | 1.0002 | | 2.5433 | 10.2 | 1500 | 1.6884 | 1.0222 | | 1.5099 | 13.6 | 2000 | 0.7929 | 1.0188 | | 1.2685 | 17.01 | 2500 | 0.6122 | 1.0191 | | 1.1844 | 20.41 | 3000 | 0.5434 | 1.0197 | | 1.0945 | 23.81 | 3500 | 0.5208 | 1.0316 | | 1.0506 | 27.21 | 4000 | 0.4941 | 1.0139 | | 1.0199 | 30.61 | 4500 | 0.4736 | 1.0106 | | 0.9546 | 34.01 | 5000 | 0.4664 | 1.0164 | | 0.9388 | 37.41 | 5500 | 0.4565 | 1.0085 | | 0.9125 | 40.81 | 6000 | 0.4636 | 1.0148 | | 0.8733 | 44.22 | 6500 | 0.4530 | 1.0154 | | 0.8829 | 47.62 | 7000 | 0.4494 | 1.0152 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
shivangi/STS-B_64_128_output
e211276f8ca10fea2c5b1b7efe93b3ac24b5d0c9
2021-05-20T05:53:35.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
shivangi
null
shivangi/STS-B_64_128_output
3
null
transformers
21,731
Entry not found
shiyue/roberta-large-pyrxsum
d23b1420759cd001d0a0c73b169b077a5036e544
2021-09-22T02:09:07.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
shiyue
null
shiyue/roberta-large-pyrxsum
3
null
transformers
21,732
Entry not found
shiyue/roberta-large-realsumm-by-examples-fold3
c75e5e21c267b80dae719a5062708e09e6186a60
2021-09-23T19:19:08.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
shiyue
null
shiyue/roberta-large-realsumm-by-examples-fold3
3
null
transformers
21,733
Entry not found
shiyue/roberta-large-realsumm-by-systems-fold1
691854fd714a64ac1bc9672e0084ff5d7534bdcc
2021-09-23T19:36:42.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
shiyue
null
shiyue/roberta-large-realsumm-by-systems-fold1
3
null
transformers
21,734
Entry not found
shiyue/roberta-large-realsumm-by-systems-fold2
ce3601810fac67b6ad3b37131f44f87a6e308b94
2021-09-23T19:39:21.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
shiyue
null
shiyue/roberta-large-realsumm-by-systems-fold2
3
null
transformers
21,735
Entry not found
shiyue/roberta-large-realsumm-by-systems-fold5
9916d08de9c2c68dba7443a7c16db8cb038431c9
2021-09-23T19:50:11.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
shiyue
null
shiyue/roberta-large-realsumm-by-systems-fold5
3
null
transformers
21,736
Entry not found
shiyue/roberta-large-tac08-tac09
9c229d6ca92f240e370487a1f496bf4ca218c066
2021-12-24T02:41:44.000Z
[ "pytorch", "jax", "roberta", "text-classification", "transformers" ]
text-classification
false
shiyue
null
shiyue/roberta-large-tac08-tac09
3
null
transformers
21,737
Entry not found
shokiokita/distilbert-base-uncased-finetuned-cola
8401d32a56571b2ed422d3deeb66fff77d61b589
2021-11-05T10:27:36.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
shokiokita
null
shokiokita/distilbert-base-uncased-finetuned-cola
3
null
transformers
21,738
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5536405531329313 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8455 - Matthews Correlation: 0.5536 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.524 | 1.0 | 535 | 0.5547 | 0.3891 | | 0.3463 | 2.0 | 1070 | 0.5250 | 0.5011 | | 0.2329 | 3.0 | 1605 | 0.6321 | 0.5239 | | 0.1677 | 4.0 | 2140 | 0.7752 | 0.5372 | | 0.1197 | 5.0 | 2675 | 0.8455 | 0.5536 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
shreeshaaithal/DialoGPT-small-Michael-Scott
4b14fcd47bb1c6924fdfdf015eae0dc32f032987
2021-07-07T11:56:25.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational", "license:mit" ]
conversational
false
shreeshaaithal
null
shreeshaaithal/DialoGPT-small-Michael-Scott
3
null
transformers
21,739
--- thumbnail: https://huggingface.co/front/thumbnails/dialogpt.png tags: - conversational license: mit --- # DialoGPT Trained on WhatsApp chats This is an instance of [microsoft/DialoGPT-medium](https://huggingface.co/microsoft/DialoGPT-medium) trained on WhatsApp chats or you can train this model on [a Kaggle game script dataset](https://www.kaggle.com/ruolinzheng/twewy-game-script). feel free to ask me questions on discord server [discord server](https://discord.gg/Gqhje8Z7DX) Chat with the model: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("harrydonni/DialoGPT-small-Michael-Scott") model = AutoModelWithLMHead.from_pretrained("harrydonni/DialoGPT-small-Michael-Scott") # Let's chat for 4 lines for step in range(4): # encode the new user input, add the eos_token and return a tensor in Pytorch new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt') # print(new_user_input_ids) # append the new user input tokens to the chat history bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids # generated a response while limiting the total chat history to 1000 tokens, chat_history_ids = model.generate( bot_input_ids, max_length=200, pad_token_id=tokenizer.eos_token_id, no_repeat_ngram_size=3, do_sample=True, top_k=100, top_p=0.7, temperature=0.8 ) # pretty print last ouput tokens from bot print("Michael: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True))) ``` this is done by shreesha thank you......
sibyl/BART-large-commongen
8353dfbd66022cc25fe621fde65ee306118f4d76
2021-08-10T02:22:28.000Z
[ "pytorch", "tensorboard", "bart", "text2text-generation", "dataset:gem", "transformers", "generated_from_trainer", "license:mit", "autotrain_compatible" ]
text2text-generation
false
sibyl
null
sibyl/BART-large-commongen
3
null
transformers
21,740
--- license: mit tags: - generated_from_trainer datasets: - gem model_index: - name: BART-large-commongen results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: gem type: gem args: common_gen --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BART-large-commongen This model is a fine-tuned version of [facebook/bart-large](https://huggingface.co/facebook/bart-large) on the gem dataset. It achieves the following results on the evaluation set: - Loss: 1.1409 - Spice: 0.4009 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 6317 ### Training results | Training Loss | Epoch | Step | Validation Loss | Spice | |:-------------:|:-----:|:----:|:---------------:|:------:| | 10.1086 | 0.05 | 100 | 4.9804 | 0.3736 | | 4.4168 | 0.09 | 200 | 2.4402 | 0.4079 | | 1.8158 | 0.14 | 300 | 1.1096 | 0.4258 | | 1.1723 | 0.19 | 400 | 1.0845 | 0.4086 | | 1.0894 | 0.24 | 500 | 1.0727 | 0.423 | | 1.0949 | 0.28 | 600 | 1.0889 | 0.4224 | | 1.0773 | 0.33 | 700 | 1.0977 | 0.4201 | | 1.0708 | 0.38 | 800 | 1.1157 | 0.4213 | | 1.0663 | 0.43 | 900 | 1.1798 | 0.421 | | 1.0985 | 0.47 | 1000 | 1.1611 | 0.4025 | | 1.0561 | 0.52 | 1100 | 1.1048 | 0.421 | | 1.0594 | 0.57 | 1200 | 1.2044 | 0.3626 | | 1.0689 | 0.62 | 1300 | 1.1409 | 0.4009 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.1.dev0 - Tokenizers 0.10.3
simjo/dummy-model
13818bb63d1d1d8f049ee2ae37696fad5f058155
2021-11-29T21:51:23.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
simjo
null
simjo/dummy-model
3
null
transformers
21,741
Entry not found
simonlevine/biomed_roberta_base-4096
5ff70e92dfbe1f7e362e95da136d62fe0591db0b
2021-05-20T21:28:43.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
simonlevine
null
simonlevine/biomed_roberta_base-4096
3
null
transformers
21,742
Entry not found
simonmun/COHA1860s
d600d92eba3833708a1e4e1a52581a5a2639bef0
2021-05-20T21:34:42.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
simonmun
null
simonmun/COHA1860s
3
null
transformers
21,743
Entry not found
simonmun/COHA1880s
63aaad78a0573da6d534bb339f4f42d6c118cfed
2021-05-20T21:37:16.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
simonmun
null
simonmun/COHA1880s
3
null
transformers
21,744
Entry not found
simonmun/COHA1890s
c4ffa49e32ac37874f5de7b3ebe46f782e5960f6
2021-05-20T21:38:04.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
simonmun
null
simonmun/COHA1890s
3
null
transformers
21,745
Entry not found
simonmun/COHA1940s
bd10ea7396fd7981e9b713fb53ab2b3b2180369e
2021-05-20T21:43:36.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
simonmun
null
simonmun/COHA1940s
3
null
transformers
21,746
Entry not found
simonmun/COHA1960s
9e7175e61adff57d7bb6cc6793a0c0648c90bae5
2021-05-20T21:45:53.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
simonmun
null
simonmun/COHA1960s
3
null
transformers
21,747
Entry not found
simonmun/Eyse_SentenceClassification
628cee44593400370c463d01bdc5f9a6e61606d1
2021-05-20T05:57:27.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
simonmun
null
simonmun/Eyse_SentenceClassification
3
null
transformers
21,748
Entry not found
sismetanin/mbart_ru_sum_gazeta-ru-sentiment-liniscrowd
ffb93ed5edd4ce5ba55488e08d91cd1e22c8a0d4
2021-02-21T15:23:51.000Z
[ "pytorch", "mbart", "text-classification", "transformers" ]
text-classification
false
sismetanin
null
sismetanin/mbart_ru_sum_gazeta-ru-sentiment-liniscrowd
3
null
transformers
21,749
Entry not found
sismetanin/mbart_ru_sum_gazeta-ru-sentiment-rutweetcorp
7229a631968d2e2baf4aa80c7b66e49780f2811b
2021-02-26T09:17:28.000Z
[ "pytorch", "mbart", "text-classification", "transformers" ]
text-classification
false
sismetanin
null
sismetanin/mbart_ru_sum_gazeta-ru-sentiment-rutweetcorp
3
null
transformers
21,750
Entry not found
sismetanin/mbart_ru_sum_gazeta-ru-sentiment-sentirueval2016
6be5922e23e3b0796adce0b78f1865f47e8ae544
2021-02-25T02:51:46.000Z
[ "pytorch", "mbart", "text-classification", "transformers" ]
text-classification
false
sismetanin
null
sismetanin/mbart_ru_sum_gazeta-ru-sentiment-sentirueval2016
3
null
transformers
21,751
Entry not found
sismetanin/rubert_conversational-ru-sentiment-krnd
a2ac479145d5100714de6f970bccc5d4f03bb5f2
2021-05-20T06:17:56.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
sismetanin
null
sismetanin/rubert_conversational-ru-sentiment-krnd
3
null
transformers
21,752
Entry not found
sismetanin/rubert_conversational-ru-sentiment-liniscrowd
c3d36406997bcadd1fea01a7c16083d8227c4176
2021-05-20T06:19:29.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
sismetanin
null
sismetanin/rubert_conversational-ru-sentiment-liniscrowd
3
null
transformers
21,753
Entry not found
sismetanin/xlm_roberta_base-ru-sentiment-rutweetcorp
132967300fe62094771ed75ff6600e7524b292be
2021-02-22T02:27:30.000Z
[ "pytorch", "xlm-roberta", "text-classification", "transformers" ]
text-classification
false
sismetanin
null
sismetanin/xlm_roberta_base-ru-sentiment-rutweetcorp
3
null
transformers
21,754
Entry not found
sismetanin/xlm_roberta_base-ru-sentiment-sentirueval2016
d944d0c6619f24d48ca1fc371e34871a2ac60edf
2021-02-25T02:52:13.000Z
[ "pytorch", "xlm-roberta", "text-classification", "transformers" ]
text-classification
false
sismetanin
null
sismetanin/xlm_roberta_base-ru-sentiment-sentirueval2016
3
null
transformers
21,755
Entry not found
sismetanin/xlm_roberta_large-ru-sentiment-rutweetcorp
4bfde058505de3012ecd283c0af33d7059a5ea12
2021-02-22T02:27:46.000Z
[ "pytorch", "xlm-roberta", "text-classification", "transformers" ]
text-classification
false
sismetanin
null
sismetanin/xlm_roberta_large-ru-sentiment-rutweetcorp
3
null
transformers
21,756
Entry not found
slider/ernie-gram
8cbece2d121f5a34b5923b9b8fd629dce49aa784
2021-12-10T01:58:06.000Z
[ "pytorch", "bert", "transformers" ]
null
false
slider
null
slider/ernie-gram
3
null
transformers
21,757
Entry not found
sm6342/FinRoberta
f4a58cfc5cd22b4886f3c27447625ff076271f67
2021-05-20T21:54:09.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
sm6342
null
sm6342/FinRoberta
3
null
transformers
21,758
"hello"
smallbenchnlp/ELECTRA-DeBERTa-Small
e2edf04bf05aba3225f5f5f7fa7cc948a4b0599f
2021-10-25T05:51:07.000Z
[ "pytorch", "deberta", "feature-extraction", "transformers" ]
feature-extraction
false
smallbenchnlp
null
smallbenchnlp/ELECTRA-DeBERTa-Small
3
null
transformers
21,759
Entry not found
smartpim/k2t_ru_03
6ff03ae7fc38c9eb9bff9d53176d318cfb05e178
2022-02-14T06:08:31.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
smartpim
null
smartpim/k2t_ru_03
3
null
transformers
21,760
Entry not found
smartpim/k2t_ru_04
d286d23c00f6051537946f018012e54b28178cd1
2022-02-14T13:08:12.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "license:other", "autotrain_compatible" ]
text2text-generation
false
smartpim
null
smartpim/k2t_ru_04
3
null
transformers
21,761
--- license: other ---
smeoni/electra-large-discriminator-clrp
e0f4aa6a09a1d31bd26e526b769b01b3657ce303
2021-06-23T09:56:24.000Z
[ "pytorch", "electra", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
smeoni
null
smeoni/electra-large-discriminator-clrp
3
null
transformers
21,762
Entry not found
soheeyang/rdr-ctx_encoder-single-trivia-base
0bb7797b445302490bf1727942862319755175c6
2021-04-15T15:52:44.000Z
[ "pytorch", "tf", "dpr", "arxiv:2010.10999", "transformers" ]
null
false
soheeyang
null
soheeyang/rdr-ctx_encoder-single-trivia-base
3
null
transformers
21,763
# rdr-ctx_encoder-single-trivia-base Reader-Distilled Retriever (`RDR`) Sohee Yang and Minjoon Seo, [Is Retriever Merely an Approximator of Reader?](https://arxiv.org/abs/2010.10999), arXiv 2020 The paper proposes to distill the reader into the retriever so that the retriever absorbs the strength of the reader while keeping its own benefit. The model is a DPR retriever further finetuned using knowledge distillation from the DPR reader. Using this approach, the answer recall rate increases by a large margin, especially at small numbers of top-k. This model is the context encoder of RDR trained solely on TriviaQA (single-trivia). This model is trained by the authors and is the official checkpoint of RDR. ## Performance The following is the answer recall rate measured using PyTorch 1.4.0 and transformers 4.5.0. For the values of DPR, those in parentheses are directly taken from the paper. The values without parentheses are reported using the reproduction of DPR that consists of [this context encoder](https://huggingface.co/soheeyang/dpr-ctx_encoder-single-trivia-base) and [this queston encoder](https://huggingface.co/soheeyang/dpr-question_encoder-single-trivia-base). | | Top-K Passages | 1 | 5 | 20 | 50 | 100 | |-------------|------------------|-----------|-----------|-----------|-----------|-----------| |**TriviaQA Dev** | **DPR** | 54.27 | 71.11 | 79.53 | 82.72 | 85.07 | | | **RDR (This Model)** | **61.84** | **75.93** | **82.56** | **85.35** | **87.00** | |**TriviaQA Test**| **DPR** | 54.41 | 70.99 | 79.31 (79.4) | 82.90 | 84.99 (85.0) | | | **RDR (This Model)** | **62.56** | **75.92** | **82.52** | **85.64** | **87.26** | ## How to Use RDR shares the same architecture with DPR. Therefore, It uses `DPRContextEncoder` as the model class. Using `AutoModel` does not properly detect whether the checkpoint is for `DPRContextEncoder` or `DPRQuestionEncoder`. Therefore, please specify the exact class to use the model. ```python from transformers import DPRContextEncoder, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("soheeyang/rdr-ctx_encoder-single-trivia-base") ctx_encoder = DPRContextEncoder.from_pretrained("soheeyang/rdr-ctx_encoder-single-trivia-base") data = tokenizer("context comes here", return_tensors="pt") ctx_embedding = ctx_encoder(**data).pooler_output # embedding vector for context ```
song/bert_cn_finetuning
0d9854a8ff738ecdb1958faec953f4074b3e5ec6
2021-05-20T07:08:53.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
song
null
song/bert_cn_finetuning
3
null
transformers
21,764
Entry not found
spacemanidol/neuralmagic-bert-squad-12layer-0sparse
2a4c3c13af312b7813f73a7d19f8dbb9b0e80bfb
2021-05-20T07:11:25.000Z
[ "pytorch", "jax", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
spacemanidol
null
spacemanidol/neuralmagic-bert-squad-12layer-0sparse
3
null
transformers
21,765
hello
spencerh/rightcenterpartisan
eda3914f5a57623a47870cde63302760e9977d86
2021-04-23T19:56:43.000Z
[ "pytorch", "tf", "distilbert", "text-classification", "transformers" ]
text-classification
false
spencerh
null
spencerh/rightcenterpartisan
3
null
transformers
21,766
Entry not found
spentaur/post-here
0b0b04fc85c23a88256ba01017eeae7111f09214
2020-11-11T18:38:10.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
spentaur
null
spentaur/post-here
3
null
transformers
21,767
Entry not found
springml111/T5_Paraphrase_model
3735446afbf1786057fe27936ae35ebd29f8b795
2021-12-01T05:51:56.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
springml111
null
springml111/T5_Paraphrase_model
3
null
transformers
21,768
Entry not found
sramasamy8/testModel
a12f24e8b282ec75608a2f19177ec38a1661a1d3
2021-05-20T20:58:24.000Z
[ "pytorch", "bert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1810.04805", "transformers", "exbert", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
sramasamy8
null
sramasamy8/testModel
3
null
transformers
21,769
--- language: en tags: - exbert license: apache-2.0 datasets: - bookcorpus - wikipedia --- # BERT base model (uncased) Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in [this paper](https://arxiv.org/abs/1810.04805) and first released in [this repository](https://github.com/google-research/bert). This model is uncased: it does not make a difference between english and English. Disclaimer: The team releasing BERT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description BERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. - Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to predict if the two sentences were following each other or not. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the BERT model as inputs. ## Intended uses & limitations You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=bert) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use You can use this model directly with a pipeline for masked language modeling: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='bert-base-uncased') >>> unmasker("Hello I'm a [MASK] model.") [{'sequence': "[CLS] hello i'm a fashion model. [SEP]", 'score': 0.1073106899857521, 'token': 4827, 'token_str': 'fashion'}, {'sequence': "[CLS] hello i'm a role model. [SEP]", 'score': 0.08774490654468536, 'token': 2535, 'token_str': 'role'}, {'sequence': "[CLS] hello i'm a new model. [SEP]", 'score': 0.05338378623127937, 'token': 2047, 'token_str': 'new'}, {'sequence': "[CLS] hello i'm a super model. [SEP]", 'score': 0.04667217284440994, 'token': 3565, 'token_str': 'super'}, {'sequence': "[CLS] hello i'm a fine model. [SEP]", 'score': 0.027095865458250046, 'token': 2986, 'token_str': 'fine'}] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = BertModel.from_pretrained("bert-base-uncased") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = TFBertModel.from_pretrained("bert-base-uncased") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ### Limitations and bias Even if the training data used for this model could be characterized as fairly neutral, this model can have biased predictions: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='bert-base-uncased') >>> unmasker("The man worked as a [MASK].") [{'sequence': '[CLS] the man worked as a carpenter. [SEP]', 'score': 0.09747550636529922, 'token': 10533, 'token_str': 'carpenter'}, {'sequence': '[CLS] the man worked as a waiter. [SEP]', 'score': 0.0523831807076931, 'token': 15610, 'token_str': 'waiter'}, {'sequence': '[CLS] the man worked as a barber. [SEP]', 'score': 0.04962705448269844, 'token': 13362, 'token_str': 'barber'}, {'sequence': '[CLS] the man worked as a mechanic. [SEP]', 'score': 0.03788609802722931, 'token': 15893, 'token_str': 'mechanic'}, {'sequence': '[CLS] the man worked as a salesman. [SEP]', 'score': 0.037680890411138535, 'token': 18968, 'token_str': 'salesman'}] >>> unmasker("The woman worked as a [MASK].") [{'sequence': '[CLS] the woman worked as a nurse. [SEP]', 'score': 0.21981462836265564, 'token': 6821, 'token_str': 'nurse'}, {'sequence': '[CLS] the woman worked as a waitress. [SEP]', 'score': 0.1597415804862976, 'token': 13877, 'token_str': 'waitress'}, {'sequence': '[CLS] the woman worked as a maid. [SEP]', 'score': 0.1154729500412941, 'token': 10850, 'token_str': 'maid'}, {'sequence': '[CLS] the woman worked as a prostitute. [SEP]', 'score': 0.037968918681144714, 'token': 19215, 'token_str': 'prostitute'}, {'sequence': '[CLS] the woman worked as a cook. [SEP]', 'score': 0.03042375110089779, 'token': 5660, 'token_str': 'cook'}] ``` This bias will also affect all fine-tuned versions of this model. ## Training data The BERT model was pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers). ## Training procedure ### Preprocessing The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are then of the form: ``` [CLS] Sentence A [SEP] Sentence B [SEP] ``` With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two "sentences" has a combined length of less than 512 tokens. The details of the masking procedure for each sentence are the following: - 15% of the tokens are masked. - In 80% of the cases, the masked tokens are replaced by `[MASK]`. - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace. - In the 10% remaining cases, the masked tokens are left as is. ### Pretraining The model was trained on 4 cloud TPUs in Pod configuration (16 TPU chips total) for one million steps with a batch size of 256. The sequence length was limited to 128 tokens for 90% of the steps and 512 for the remaining 10%. The optimizer used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01, learning rate warmup for 10,000 steps and linear decay of the learning rate after. ## Evaluation results When fine-tuned on downstream tasks, this model achieves the following results: Glue test results: | Task | MNLI-(m/mm) | QQP | QNLI | SST-2 | CoLA | STS-B | MRPC | RTE | Average | |:----:|:-----------:|:----:|:----:|:-----:|:----:|:-----:|:----:|:----:|:-------:| | | 84.6/83.4 | 71.2 | 90.5 | 93.5 | 52.1 | 85.8 | 88.9 | 66.4 | 79.6 | ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-1810-04805, author = {Jacob Devlin and Ming{-}Wei Chang and Kenton Lee and Kristina Toutanova}, title = {{BERT:} Pre-training of Deep Bidirectional Transformers for Language Understanding}, journal = {CoRR}, volume = {abs/1810.04805}, year = {2018}, url = {http://arxiv.org/abs/1810.04805}, archivePrefix = {arXiv}, eprint = {1810.04805}, timestamp = {Tue, 30 Oct 2018 20:39:56 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-1810-04805.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <a href="https://huggingface.co/exbert/?model=bert-base-uncased"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
ssardorf/t5-web-summ
5ca51c226a52967f18d6c97bef35538cd5a18ea6
2022-02-20T16:27:25.000Z
[ "pytorch", "t5", "feature-extraction", "transformers" ]
feature-extraction
false
ssardorf
null
ssardorf/t5-web-summ
3
null
transformers
21,770
Entry not found
sshleifer/student_cnn_9_9
c1b4760109de4ce301bbdd91fec3f534f3a656b4
2021-06-14T09:25:20.000Z
[ "pytorch", "jax", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
sshleifer
null
sshleifer/student_cnn_9_9
3
null
transformers
21,771
Entry not found
sshleifer/student_xsum_12_1
712030af6ebc0980db38f4c466dc9329bedaa573
2021-06-14T09:40:24.000Z
[ "pytorch", "jax", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
sshleifer
null
sshleifer/student_xsum_12_1
3
null
transformers
21,772
Entry not found
sshleifer/student_xsum_12_9
070224b6611e69dc07a14bfc47ad87fc0cbcd41b
2021-06-14T09:54:50.000Z
[ "pytorch", "jax", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
sshleifer
null
sshleifer/student_xsum_12_9
3
null
transformers
21,773
Entry not found
sshleifer/student_xsum_6_6
c331a6bdad645c15d2c78afa19a3ca1e17dd1482
2021-06-14T10:10:51.000Z
[ "pytorch", "jax", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
sshleifer
null
sshleifer/student_xsum_6_6
3
null
transformers
21,774
Entry not found
sshleifer/student_xsum_9_12
a9964851946debb85e1c2dbbc827447e0f60e56d
2021-06-14T10:13:47.000Z
[ "pytorch", "jax", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
sshleifer
null
sshleifer/student_xsum_9_12
3
null
transformers
21,775
Entry not found
sshleifer/t5-tinier-random
2165f97265e45a3b45f19007ae1aeacb23465fc5
2021-06-23T14:25:45.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
sshleifer
null
sshleifer/t5-tinier-random
3
null
transformers
21,776
Entry not found
sszyr/finetuned-bert-bounti
c556b17e11edb8caa770e4eaf239b55d56cf6d7f
2021-11-18T18:44:50.000Z
[ "pytorch", "bert", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
sszyr
null
sszyr/finetuned-bert-bounti
3
null
transformers
21,777
--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: finetuned-bert-bounti results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned-bert-bounti This model is a fine-tuned version of [dbmdz/bert-base-turkish-128k-uncased](https://huggingface.co/dbmdz/bert-base-turkish-128k-uncased) on the BounTi Turkish Twitter sentiment dataset. It achieves the following results on the evaluation set: - Loss: 1.1188 - Accuracy: 0.7246 - F1: 0.6845 - Precision: 0.6892 - Recall: 0.6806 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 24 - eval_batch_size: 36 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 300 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 1.0974 | 0.02 | 5 | 1.0790 | 0.3756 | 0.3064 | 0.3255 | 0.3232 | | 1.1345 | 0.04 | 10 | 1.0784 | 0.3725 | 0.3037 | 0.3219 | 0.3197 | | 1.1441 | 0.06 | 15 | 1.0776 | 0.3772 | 0.3072 | 0.3250 | 0.3234 | | 1.122 | 0.08 | 20 | 1.0774 | 0.3787 | 0.3077 | 0.3244 | 0.3228 | | 1.1201 | 0.1 | 25 | 1.0776 | 0.3787 | 0.3047 | 0.3193 | 0.3216 | | 1.1489 | 0.13 | 30 | 1.0783 | 0.3787 | 0.3012 | 0.3120 | 0.3189 | | 1.0716 | 0.15 | 35 | 1.0783 | 0.3897 | 0.3093 | 0.3212 | 0.3282 | | 1.082 | 0.17 | 40 | 1.0767 | 0.3865 | 0.3060 | 0.3203 | 0.3238 | | 1.1113 | 0.19 | 45 | 1.0738 | 0.3897 | 0.3058 | 0.3219 | 0.3211 | | 1.0892 | 0.21 | 50 | 1.0715 | 0.4069 | 0.3290 | 0.3475 | 0.3374 | | 1.0913 | 0.23 | 55 | 1.0719 | 0.4178 | 0.3283 | 0.3398 | 0.3361 | | 1.1114 | 0.25 | 60 | 1.0694 | 0.4397 | 0.3479 | 0.3605 | 0.3538 | | 1.1129 | 0.27 | 65 | 1.0682 | 0.4491 | 0.3593 | 0.3731 | 0.3648 | | 1.1283 | 0.29 | 70 | 1.0671 | 0.4664 | 0.3719 | 0.3775 | 0.3780 | | 1.1267 | 0.31 | 75 | 1.0714 | 0.4507 | 0.3826 | 0.3834 | 0.3835 | | 1.1325 | 0.33 | 80 | 1.0762 | 0.4335 | 0.3909 | 0.3918 | 0.3954 | | 1.0919 | 0.36 | 85 | 1.0723 | 0.4335 | 0.3930 | 0.3937 | 0.3982 | | 1.0545 | 0.38 | 90 | 1.0694 | 0.4507 | 0.4161 | 0.4180 | 0.4279 | | 1.1121 | 0.4 | 95 | 1.0698 | 0.4491 | 0.4151 | 0.4280 | 0.4324 | | 1.0675 | 0.42 | 100 | 1.0711 | 0.4382 | 0.4005 | 0.4349 | 0.4494 | | 1.0954 | 0.44 | 105 | 1.0720 | 0.4085 | 0.3690 | 0.4233 | 0.4326 | | 1.1087 | 0.46 | 110 | 1.0562 | 0.4820 | 0.4463 | 0.4762 | 0.4841 | | 1.0669 | 0.48 | 115 | 1.0459 | 0.5086 | 0.4746 | 0.4844 | 0.4997 | | 1.0529 | 0.5 | 120 | 1.0364 | 0.5243 | 0.4935 | 0.4946 | 0.5119 | | 1.0348 | 0.52 | 125 | 1.0248 | 0.5321 | 0.4953 | 0.4977 | 0.5067 | | 1.0454 | 0.54 | 130 | 1.0169 | 0.5415 | 0.5089 | 0.5084 | 0.5232 | | 1.0366 | 0.56 | 135 | 1.0071 | 0.5493 | 0.5176 | 0.5156 | 0.5344 | | 1.0197 | 0.59 | 140 | 1.0010 | 0.5446 | 0.5132 | 0.5150 | 0.5350 | | 1.0459 | 0.61 | 145 | 0.9966 | 0.5399 | 0.5094 | 0.5184 | 0.5383 | | 1.0059 | 0.63 | 150 | 1.0011 | 0.5477 | 0.5222 | 0.5394 | 0.5617 | | 0.9455 | 0.65 | 155 | 0.9898 | 0.5399 | 0.5173 | 0.5390 | 0.5583 | | 0.9732 | 0.67 | 160 | 0.9750 | 0.5477 | 0.5207 | 0.5406 | 0.5601 | | 1.0215 | 0.69 | 165 | 0.9494 | 0.5790 | 0.5495 | 0.5511 | 0.5759 | | 0.99 | 0.71 | 170 | 0.9331 | 0.5696 | 0.5355 | 0.5372 | 0.5500 | | 1.0102 | 0.73 | 175 | 0.9284 | 0.5759 | 0.5425 | 0.5488 | 0.5567 | | 0.9633 | 0.75 | 180 | 0.9313 | 0.5837 | 0.5571 | 0.5726 | 0.5758 | | 0.9388 | 0.77 | 185 | 0.9262 | 0.5869 | 0.5625 | 0.5830 | 0.5817 | | 0.9606 | 0.79 | 190 | 0.9140 | 0.5915 | 0.5638 | 0.5728 | 0.5835 | | 0.969 | 0.82 | 195 | 0.9170 | 0.5978 | 0.5712 | 0.5769 | 0.5964 | | 0.8779 | 0.84 | 200 | 0.9089 | 0.5947 | 0.5696 | 0.5790 | 0.5925 | | 0.9041 | 0.86 | 205 | 0.9013 | 0.6166 | 0.5874 | 0.5894 | 0.6083 | | 0.8643 | 0.88 | 210 | 0.8783 | 0.6275 | 0.5961 | 0.5972 | 0.6140 | | 0.8864 | 0.9 | 215 | 0.8651 | 0.6307 | 0.5984 | 0.6060 | 0.6152 | | 0.9075 | 0.92 | 220 | 0.8562 | 0.6401 | 0.6107 | 0.6096 | 0.6313 | | 0.8659 | 0.94 | 225 | 0.8407 | 0.6244 | 0.5896 | 0.5864 | 0.6085 | | 0.8921 | 0.96 | 230 | 0.8171 | 0.6385 | 0.6014 | 0.5955 | 0.6138 | | 0.9176 | 0.98 | 235 | 0.8120 | 0.6432 | 0.6052 | 0.6001 | 0.6183 | | 0.8124 | 1.0 | 240 | 0.8084 | 0.6479 | 0.6087 | 0.6058 | 0.6229 | | 0.7606 | 1.03 | 245 | 0.7978 | 0.6588 | 0.6198 | 0.6166 | 0.6258 | | 0.7879 | 1.05 | 250 | 0.8361 | 0.6322 | 0.6002 | 0.6090 | 0.6310 | | 0.8515 | 1.07 | 255 | 0.8527 | 0.6307 | 0.6063 | 0.6070 | 0.6368 | | 0.7861 | 1.09 | 260 | 0.8300 | 0.6510 | 0.6229 | 0.6172 | 0.6449 | | 0.8782 | 1.11 | 265 | 0.8068 | 0.6588 | 0.6262 | 0.6195 | 0.6412 | | 0.6993 | 1.13 | 270 | 0.8127 | 0.6573 | 0.6245 | 0.6186 | 0.6414 | | 0.7961 | 1.15 | 275 | 0.8302 | 0.6448 | 0.6129 | 0.6142 | 0.6382 | | 0.829 | 1.17 | 280 | 0.8130 | 0.6416 | 0.6068 | 0.6047 | 0.6264 | | 0.7315 | 1.19 | 285 | 0.8127 | 0.6714 | 0.6414 | 0.6348 | 0.6609 | | 0.7115 | 1.21 | 290 | 0.8074 | 0.6651 | 0.6367 | 0.6297 | 0.6577 | | 0.7937 | 1.23 | 295 | 0.8018 | 0.6667 | 0.6405 | 0.6338 | 0.6595 | | 0.8213 | 1.26 | 300 | 0.7846 | 0.6651 | 0.6317 | 0.6313 | 0.6424 | | 0.9309 | 1.28 | 305 | 0.7801 | 0.6651 | 0.6267 | 0.6314 | 0.6357 | | 0.7616 | 1.3 | 310 | 0.8000 | 0.6635 | 0.6403 | 0.6352 | 0.6657 | | 0.7075 | 1.32 | 315 | 0.8006 | 0.6635 | 0.6395 | 0.6354 | 0.6642 | | 0.8925 | 1.34 | 320 | 0.8418 | 0.6385 | 0.6185 | 0.6205 | 0.6531 | | 0.7579 | 1.36 | 325 | 0.8114 | 0.6541 | 0.6308 | 0.6281 | 0.6602 | | 0.6983 | 1.38 | 330 | 0.7589 | 0.6745 | 0.6424 | 0.6356 | 0.6538 | | 0.756 | 1.4 | 335 | 0.7540 | 0.6870 | 0.6423 | 0.6454 | 0.6436 | | 0.8183 | 1.42 | 340 | 0.7762 | 0.6651 | 0.6304 | 0.6248 | 0.6486 | | 0.7386 | 1.44 | 345 | 0.8212 | 0.6510 | 0.6244 | 0.6229 | 0.6535 | | 0.7175 | 1.46 | 350 | 0.8002 | 0.6573 | 0.6269 | 0.6229 | 0.6512 | | 0.7076 | 1.49 | 355 | 0.7799 | 0.6682 | 0.6310 | 0.6281 | 0.6506 | | 0.7115 | 1.51 | 360 | 0.7525 | 0.6886 | 0.6576 | 0.6510 | 0.6697 | | 0.7092 | 1.53 | 365 | 0.7882 | 0.6714 | 0.6272 | 0.6513 | 0.6330 | | 0.6852 | 1.55 | 370 | 0.7909 | 0.6698 | 0.6287 | 0.6548 | 0.6363 | | 0.673 | 1.57 | 375 | 0.7396 | 0.6901 | 0.6523 | 0.6536 | 0.6542 | | 0.7115 | 1.59 | 380 | 0.7270 | 0.6933 | 0.6539 | 0.6532 | 0.6546 | | 0.6391 | 1.61 | 385 | 0.7389 | 0.6964 | 0.6654 | 0.6576 | 0.6790 | | 0.6018 | 1.63 | 390 | 0.7619 | 0.6886 | 0.6628 | 0.6571 | 0.6835 | | 0.743 | 1.65 | 395 | 0.7635 | 0.6854 | 0.6579 | 0.6546 | 0.6780 | | 0.6865 | 1.67 | 400 | 0.7457 | 0.7011 | 0.6709 | 0.6681 | 0.6855 | | 0.6629 | 1.69 | 405 | 0.7309 | 0.7058 | 0.6752 | 0.6717 | 0.6861 | | 0.6887 | 1.72 | 410 | 0.7389 | 0.6933 | 0.6628 | 0.6555 | 0.6809 | | 0.6494 | 1.74 | 415 | 0.7742 | 0.6823 | 0.6565 | 0.6519 | 0.6831 | | 0.6798 | 1.76 | 420 | 0.7751 | 0.6667 | 0.6337 | 0.6345 | 0.6614 | | 0.6825 | 1.78 | 425 | 0.7798 | 0.6604 | 0.6269 | 0.6375 | 0.6594 | | 0.7926 | 1.8 | 430 | 0.7085 | 0.7105 | 0.6726 | 0.6670 | 0.6804 | | 0.6508 | 1.82 | 435 | 0.7455 | 0.6964 | 0.6439 | 0.6653 | 0.6460 | | 0.7772 | 1.84 | 440 | 0.7669 | 0.6964 | 0.6531 | 0.6780 | 0.6594 | | 0.7265 | 1.86 | 445 | 0.7454 | 0.7089 | 0.6722 | 0.6800 | 0.6826 | | 0.5965 | 1.88 | 450 | 0.7700 | 0.6933 | 0.6670 | 0.6623 | 0.6931 | | 0.6436 | 1.9 | 455 | 0.7910 | 0.6901 | 0.6654 | 0.6620 | 0.6951 | | 0.6887 | 1.92 | 460 | 0.7752 | 0.6870 | 0.6590 | 0.6552 | 0.6872 | | 0.7574 | 1.95 | 465 | 0.7511 | 0.6980 | 0.6686 | 0.6621 | 0.6925 | | 0.6853 | 1.97 | 470 | 0.7446 | 0.7074 | 0.6775 | 0.6711 | 0.6981 | | 0.7416 | 1.99 | 475 | 0.7151 | 0.7105 | 0.6783 | 0.6703 | 0.6938 | | 0.723 | 2.01 | 480 | 0.6886 | 0.7105 | 0.6727 | 0.6691 | 0.6776 | | 0.5993 | 2.03 | 485 | 0.6947 | 0.7152 | 0.6767 | 0.6711 | 0.6865 | | 0.549 | 2.05 | 490 | 0.7140 | 0.7167 | 0.6833 | 0.6764 | 0.6969 | | 0.5739 | 2.07 | 495 | 0.7372 | 0.7136 | 0.6843 | 0.6828 | 0.6961 | | 0.6444 | 2.09 | 500 | 0.7733 | 0.7089 | 0.6796 | 0.6943 | 0.6920 | | 0.5526 | 2.11 | 505 | 0.7368 | 0.7277 | 0.6954 | 0.6927 | 0.7074 | | 0.5429 | 2.13 | 510 | 0.7194 | 0.7246 | 0.6886 | 0.6879 | 0.6913 | | 0.5838 | 2.15 | 515 | 0.7465 | 0.7214 | 0.6818 | 0.6933 | 0.6866 | | 0.6746 | 2.18 | 520 | 0.7644 | 0.7152 | 0.6865 | 0.6819 | 0.7054 | | 0.7252 | 2.2 | 525 | 0.7564 | 0.7042 | 0.6713 | 0.6645 | 0.6918 | | 0.5443 | 2.22 | 530 | 0.7337 | 0.7027 | 0.6636 | 0.6598 | 0.6782 | | 0.5526 | 2.24 | 535 | 0.7324 | 0.7183 | 0.6795 | 0.6831 | 0.6865 | | 0.692 | 2.26 | 540 | 0.7622 | 0.7121 | 0.6826 | 0.6841 | 0.6971 | | 0.5897 | 2.28 | 545 | 0.7525 | 0.7089 | 0.6771 | 0.6708 | 0.6951 | | 0.708 | 2.3 | 550 | 0.7366 | 0.7105 | 0.6763 | 0.6690 | 0.6938 | | 0.6009 | 2.32 | 555 | 0.7232 | 0.7136 | 0.6741 | 0.6690 | 0.6843 | | 0.6622 | 2.34 | 560 | 0.7104 | 0.7136 | 0.6763 | 0.6727 | 0.6816 | | 0.8816 | 2.36 | 565 | 0.7150 | 0.7183 | 0.6830 | 0.6775 | 0.6932 | | 0.6642 | 2.38 | 570 | 0.7545 | 0.6980 | 0.6681 | 0.6652 | 0.6961 | | 0.5929 | 2.41 | 575 | 0.7167 | 0.7136 | 0.6778 | 0.6704 | 0.6930 | | 0.6612 | 2.43 | 580 | 0.7078 | 0.7277 | 0.6912 | 0.6858 | 0.7023 | | 0.4924 | 2.45 | 585 | 0.7138 | 0.7167 | 0.6809 | 0.6753 | 0.6938 | | 0.544 | 2.47 | 590 | 0.7088 | 0.7183 | 0.6807 | 0.6749 | 0.6901 | | 0.4047 | 2.49 | 595 | 0.7210 | 0.7199 | 0.6843 | 0.6775 | 0.6965 | | 0.5416 | 2.51 | 600 | 0.7199 | 0.7214 | 0.6845 | 0.6777 | 0.6952 | | 0.5407 | 2.53 | 605 | 0.7159 | 0.7293 | 0.6934 | 0.6873 | 0.7017 | | 0.5775 | 2.55 | 610 | 0.7354 | 0.7308 | 0.6975 | 0.6902 | 0.7133 | | 0.6107 | 2.57 | 615 | 0.7402 | 0.7261 | 0.6932 | 0.6863 | 0.7103 | | 0.5679 | 2.59 | 620 | 0.7266 | 0.7293 | 0.6946 | 0.6869 | 0.7091 | | 0.5599 | 2.62 | 625 | 0.7049 | 0.7136 | 0.6736 | 0.6716 | 0.6757 | | 0.6608 | 2.64 | 630 | 0.7150 | 0.7183 | 0.6834 | 0.6761 | 0.6952 | | 0.6886 | 2.66 | 635 | 0.7334 | 0.7230 | 0.6925 | 0.6856 | 0.7107 | | 0.6524 | 2.68 | 640 | 0.7106 | 0.7324 | 0.6955 | 0.6907 | 0.7060 | | 0.5027 | 2.7 | 645 | 0.7031 | 0.7261 | 0.6871 | 0.6896 | 0.6883 | | 0.5327 | 2.72 | 650 | 0.7033 | 0.7230 | 0.6824 | 0.6863 | 0.6812 | | 0.6561 | 2.74 | 655 | 0.7188 | 0.7183 | 0.6846 | 0.6770 | 0.6979 | | 0.591 | 2.76 | 660 | 0.7449 | 0.7136 | 0.6844 | 0.6793 | 0.7087 | | 0.4584 | 2.78 | 665 | 0.7220 | 0.7074 | 0.6732 | 0.6661 | 0.6855 | | 0.501 | 2.8 | 670 | 0.7212 | 0.7199 | 0.6829 | 0.6830 | 0.6879 | | 0.7118 | 2.82 | 675 | 0.7327 | 0.7167 | 0.6827 | 0.6775 | 0.6962 | | 0.5037 | 2.85 | 680 | 0.7544 | 0.7121 | 0.6818 | 0.6742 | 0.7042 | | 0.4921 | 2.87 | 685 | 0.7265 | 0.7136 | 0.6791 | 0.6714 | 0.6926 | | 0.5255 | 2.89 | 690 | 0.7278 | 0.7074 | 0.6706 | 0.6659 | 0.6855 | | 0.509 | 2.91 | 695 | 0.7334 | 0.7027 | 0.6654 | 0.6599 | 0.6806 | | 0.4321 | 2.93 | 700 | 0.7358 | 0.7152 | 0.6805 | 0.6728 | 0.6944 | | 0.6196 | 2.95 | 705 | 0.7406 | 0.7293 | 0.6971 | 0.6895 | 0.7119 | | 0.5289 | 2.97 | 710 | 0.7363 | 0.7324 | 0.7017 | 0.6944 | 0.7162 | | 0.6204 | 2.99 | 715 | 0.7401 | 0.7324 | 0.7024 | 0.6949 | 0.7182 | | 0.5459 | 3.01 | 720 | 0.7360 | 0.7308 | 0.7010 | 0.6937 | 0.7152 | | 0.4793 | 3.03 | 725 | 0.7363 | 0.7324 | 0.7007 | 0.6966 | 0.7123 | | 0.5157 | 3.05 | 730 | 0.7330 | 0.7355 | 0.7026 | 0.6999 | 0.7107 | | 0.4863 | 3.08 | 735 | 0.7231 | 0.7199 | 0.6842 | 0.6803 | 0.6887 | | 0.423 | 3.1 | 740 | 0.7313 | 0.7230 | 0.6873 | 0.6816 | 0.6950 | | 0.4879 | 3.12 | 745 | 0.7546 | 0.7199 | 0.6895 | 0.6828 | 0.7064 | | 0.2499 | 3.14 | 750 | 0.7727 | 0.7214 | 0.6934 | 0.6913 | 0.7093 | | 0.487 | 3.16 | 755 | 0.7621 | 0.7230 | 0.6906 | 0.6832 | 0.7052 | | 0.3501 | 3.18 | 760 | 0.7966 | 0.7027 | 0.6689 | 0.6664 | 0.6919 | | 0.5762 | 3.2 | 765 | 0.7694 | 0.7121 | 0.6747 | 0.6708 | 0.6896 | | 0.4491 | 3.22 | 770 | 0.7482 | 0.7230 | 0.6873 | 0.6860 | 0.6887 | | 0.4803 | 3.24 | 775 | 0.7584 | 0.7261 | 0.6895 | 0.6910 | 0.6934 | | 0.3349 | 3.26 | 780 | 0.7874 | 0.7183 | 0.6870 | 0.6929 | 0.6956 | | 0.5481 | 3.28 | 785 | 0.8124 | 0.7105 | 0.6856 | 0.6831 | 0.7075 | | 0.3695 | 3.31 | 790 | 0.7935 | 0.7089 | 0.6798 | 0.6714 | 0.6995 | | 0.3998 | 3.33 | 795 | 0.7702 | 0.7152 | 0.6811 | 0.6748 | 0.6912 | | 0.5214 | 3.35 | 800 | 0.7705 | 0.7152 | 0.6765 | 0.6772 | 0.6759 | | 0.4914 | 3.37 | 805 | 0.7796 | 0.7293 | 0.6954 | 0.6887 | 0.7048 | | 0.4096 | 3.39 | 810 | 0.7912 | 0.7121 | 0.6818 | 0.6732 | 0.6999 | | 0.4346 | 3.41 | 815 | 0.7758 | 0.7293 | 0.6958 | 0.6887 | 0.7060 | | 0.4933 | 3.43 | 820 | 0.7802 | 0.7136 | 0.6795 | 0.6719 | 0.6942 | | 0.4561 | 3.45 | 825 | 0.7670 | 0.7261 | 0.6929 | 0.6863 | 0.7020 | | 0.5619 | 3.47 | 830 | 0.7656 | 0.7293 | 0.6916 | 0.6950 | 0.6915 | | 0.4934 | 3.49 | 835 | 0.7875 | 0.7277 | 0.6872 | 0.7002 | 0.6866 | | 0.545 | 3.51 | 840 | 0.7675 | 0.7199 | 0.6733 | 0.6852 | 0.6663 | | 0.4279 | 3.54 | 845 | 0.7582 | 0.7136 | 0.6709 | 0.6735 | 0.6690 | | 0.351 | 3.56 | 850 | 0.7599 | 0.7136 | 0.6728 | 0.6724 | 0.6741 | | 0.3701 | 3.58 | 855 | 0.7602 | 0.7293 | 0.6922 | 0.6940 | 0.6915 | | 0.5307 | 3.6 | 860 | 0.7689 | 0.7308 | 0.6936 | 0.6968 | 0.6940 | | 0.3895 | 3.62 | 865 | 0.7657 | 0.7246 | 0.6897 | 0.6852 | 0.6952 | | 0.4676 | 3.64 | 870 | 0.7715 | 0.7230 | 0.6875 | 0.6811 | 0.6965 | | 0.4124 | 3.66 | 875 | 0.7795 | 0.7230 | 0.6899 | 0.6822 | 0.7024 | | 0.464 | 3.68 | 880 | 0.7933 | 0.7214 | 0.6893 | 0.6829 | 0.7022 | | 0.4911 | 3.7 | 885 | 0.8201 | 0.7324 | 0.6947 | 0.6999 | 0.7029 | | 0.4753 | 3.72 | 890 | 0.7907 | 0.7324 | 0.6978 | 0.6928 | 0.7060 | | 0.3981 | 3.74 | 895 | 0.7811 | 0.7214 | 0.6832 | 0.6823 | 0.6842 | | 0.5685 | 3.77 | 900 | 0.7806 | 0.7277 | 0.6899 | 0.6880 | 0.6920 | | 0.4643 | 3.79 | 905 | 0.7792 | 0.7308 | 0.6961 | 0.6942 | 0.6995 | | 0.4609 | 3.81 | 910 | 0.7886 | 0.7152 | 0.6814 | 0.6738 | 0.6940 | | 0.5575 | 3.83 | 915 | 0.8158 | 0.7011 | 0.6688 | 0.6656 | 0.6925 | | 0.4409 | 3.85 | 920 | 0.7921 | 0.7074 | 0.6717 | 0.6657 | 0.6890 | | 0.5152 | 3.87 | 925 | 0.7839 | 0.7214 | 0.6859 | 0.6783 | 0.7003 | | 0.4547 | 3.89 | 930 | 0.7646 | 0.7387 | 0.7034 | 0.6998 | 0.7111 | | 0.32 | 3.91 | 935 | 0.7502 | 0.7277 | 0.6885 | 0.6893 | 0.6881 | | 0.2742 | 3.93 | 940 | 0.7583 | 0.7167 | 0.6734 | 0.6794 | 0.6686 | | 0.5842 | 3.95 | 945 | 0.7613 | 0.7261 | 0.6885 | 0.6842 | 0.6942 | | 0.4406 | 3.97 | 950 | 0.7951 | 0.7387 | 0.7056 | 0.7011 | 0.7178 | | 0.5251 | 4.0 | 955 | 0.7932 | 0.7261 | 0.6918 | 0.6851 | 0.7056 | | 0.4235 | 4.02 | 960 | 0.7839 | 0.7167 | 0.6818 | 0.6745 | 0.6949 | | 0.3876 | 4.04 | 965 | 0.7668 | 0.7277 | 0.6918 | 0.6864 | 0.6987 | | 0.4244 | 4.06 | 970 | 0.7622 | 0.7246 | 0.6851 | 0.6872 | 0.6834 | | 0.3872 | 4.08 | 975 | 0.7696 | 0.7261 | 0.6879 | 0.6903 | 0.6867 | | 0.3878 | 4.1 | 980 | 0.7760 | 0.7183 | 0.6781 | 0.6779 | 0.6787 | | 0.3029 | 4.12 | 985 | 0.7897 | 0.7340 | 0.6971 | 0.6933 | 0.7027 | | 0.3147 | 4.14 | 990 | 0.7987 | 0.7308 | 0.6946 | 0.6903 | 0.7003 | | 0.3531 | 4.16 | 995 | 0.8009 | 0.7167 | 0.6750 | 0.6746 | 0.6753 | | 0.393 | 4.18 | 1000 | 0.8072 | 0.7136 | 0.6724 | 0.6730 | 0.6718 | | 0.5162 | 4.21 | 1005 | 0.8105 | 0.7277 | 0.6902 | 0.6861 | 0.6952 | | 0.4582 | 4.23 | 1010 | 0.8124 | 0.7293 | 0.6919 | 0.6873 | 0.6977 | | 0.4746 | 4.25 | 1015 | 0.8130 | 0.7340 | 0.7015 | 0.6944 | 0.7125 | | 0.453 | 4.27 | 1020 | 0.8024 | 0.7418 | 0.7083 | 0.7019 | 0.7174 | | 0.3852 | 4.29 | 1025 | 0.7856 | 0.7183 | 0.6778 | 0.6763 | 0.6798 | | 0.3614 | 4.31 | 1030 | 0.7797 | 0.7167 | 0.6766 | 0.6757 | 0.6781 | | 0.3222 | 4.33 | 1035 | 0.7949 | 0.7293 | 0.6897 | 0.6983 | 0.6899 | | 0.3769 | 4.35 | 1040 | 0.8036 | 0.7246 | 0.6853 | 0.6974 | 0.6826 | | 0.3626 | 4.37 | 1045 | 0.7951 | 0.7340 | 0.6947 | 0.7033 | 0.6925 | | 0.335 | 4.39 | 1050 | 0.8133 | 0.7293 | 0.6999 | 0.6923 | 0.7139 | | 0.4664 | 4.41 | 1055 | 0.8644 | 0.7074 | 0.6818 | 0.6747 | 0.7095 | | 0.3939 | 4.44 | 1060 | 0.8280 | 0.7246 | 0.6949 | 0.6859 | 0.7140 | | 0.3793 | 4.46 | 1065 | 0.7876 | 0.7293 | 0.6919 | 0.6879 | 0.6966 | | 0.4559 | 4.48 | 1070 | 0.7933 | 0.7277 | 0.6837 | 0.6939 | 0.6787 | | 0.362 | 4.5 | 1075 | 0.7908 | 0.7308 | 0.6886 | 0.6955 | 0.6862 | | 0.3833 | 4.52 | 1080 | 0.8061 | 0.7246 | 0.6894 | 0.6912 | 0.6948 | | 0.2983 | 4.54 | 1085 | 0.8001 | 0.7371 | 0.6958 | 0.7029 | 0.6956 | | 0.4279 | 4.56 | 1090 | 0.7939 | 0.7340 | 0.6985 | 0.6970 | 0.7007 | | 0.371 | 4.58 | 1095 | 0.8178 | 0.7355 | 0.7047 | 0.6957 | 0.7213 | | 0.2119 | 4.6 | 1100 | 0.8276 | 0.7277 | 0.6953 | 0.6877 | 0.7129 | | 0.4231 | 4.62 | 1105 | 0.8099 | 0.7402 | 0.7089 | 0.7007 | 0.7219 | | 0.1754 | 4.64 | 1110 | 0.8107 | 0.7340 | 0.6973 | 0.7013 | 0.6991 | | 0.2922 | 4.67 | 1115 | 0.8135 | 0.7324 | 0.6945 | 0.6989 | 0.6954 | | 0.3584 | 4.69 | 1120 | 0.8163 | 0.7433 | 0.7120 | 0.7076 | 0.7192 | | 0.3186 | 4.71 | 1125 | 0.8135 | 0.7449 | 0.7120 | 0.7076 | 0.7178 | | 0.2247 | 4.73 | 1130 | 0.8224 | 0.7418 | 0.7103 | 0.7060 | 0.7166 | | 0.5324 | 4.75 | 1135 | 0.8359 | 0.7402 | 0.7119 | 0.7071 | 0.7216 | | 0.3348 | 4.77 | 1140 | 0.8277 | 0.7340 | 0.6964 | 0.6981 | 0.6991 | | 0.2568 | 4.79 | 1145 | 0.8138 | 0.7340 | 0.6960 | 0.6974 | 0.6956 | | 0.3209 | 4.81 | 1150 | 0.8127 | 0.7293 | 0.6892 | 0.6901 | 0.6883 | | 0.4479 | 4.83 | 1155 | 0.8081 | 0.7340 | 0.6962 | 0.6930 | 0.6999 | | 0.3882 | 4.85 | 1160 | 0.8195 | 0.7371 | 0.7053 | 0.6981 | 0.7156 | | 0.3669 | 4.87 | 1165 | 0.8290 | 0.7293 | 0.6967 | 0.6885 | 0.7107 | | 0.3157 | 4.9 | 1170 | 0.8288 | 0.7355 | 0.7019 | 0.6943 | 0.7135 | | 0.4165 | 4.92 | 1175 | 0.8225 | 0.7340 | 0.6982 | 0.6948 | 0.7039 | | 0.2225 | 4.94 | 1180 | 0.8172 | 0.7293 | 0.6896 | 0.6894 | 0.6903 | | 0.3322 | 4.96 | 1185 | 0.8276 | 0.7246 | 0.6833 | 0.6856 | 0.6814 | | 0.3355 | 4.98 | 1190 | 0.8414 | 0.7214 | 0.6813 | 0.6819 | 0.6838 | | 0.3134 | 5.0 | 1195 | 0.8560 | 0.7324 | 0.6976 | 0.6927 | 0.7103 | | 0.2255 | 5.02 | 1200 | 0.8507 | 0.7308 | 0.6970 | 0.6901 | 0.7070 | | 0.3257 | 5.04 | 1205 | 0.8506 | 0.7214 | 0.6806 | 0.6834 | 0.6814 | | 0.2508 | 5.06 | 1210 | 0.8652 | 0.7261 | 0.6840 | 0.6932 | 0.6805 | | 0.2465 | 5.08 | 1215 | 0.8663 | 0.7246 | 0.6814 | 0.6902 | 0.6771 | | 0.273 | 5.1 | 1220 | 0.8629 | 0.7199 | 0.6769 | 0.6790 | 0.6765 | | 0.2377 | 5.13 | 1225 | 0.8664 | 0.7355 | 0.6996 | 0.6956 | 0.7052 | | 0.2537 | 5.15 | 1230 | 0.8793 | 0.7324 | 0.6998 | 0.6947 | 0.7088 | | 0.2031 | 5.17 | 1235 | 0.8715 | 0.7261 | 0.6928 | 0.6877 | 0.7005 | | 0.2148 | 5.19 | 1240 | 0.8654 | 0.7355 | 0.6980 | 0.6962 | 0.7001 | | 0.2889 | 5.21 | 1245 | 0.8712 | 0.7261 | 0.6872 | 0.6881 | 0.6863 | | 0.368 | 5.23 | 1250 | 0.8732 | 0.7308 | 0.6917 | 0.6929 | 0.6913 | | 0.2998 | 5.25 | 1255 | 0.8758 | 0.7293 | 0.6927 | 0.6905 | 0.6958 | | 0.3705 | 5.27 | 1260 | 0.8713 | 0.7308 | 0.6939 | 0.6906 | 0.6975 | | 0.2486 | 5.29 | 1265 | 0.8734 | 0.7277 | 0.6929 | 0.6872 | 0.7003 | | 0.2424 | 5.31 | 1270 | 0.8772 | 0.7214 | 0.6847 | 0.6820 | 0.6909 | | 0.3169 | 5.33 | 1275 | 0.8768 | 0.7230 | 0.6828 | 0.6847 | 0.6856 | | 0.2918 | 5.36 | 1280 | 0.8836 | 0.7246 | 0.6856 | 0.6839 | 0.6913 | | 0.2464 | 5.38 | 1285 | 0.8798 | 0.7246 | 0.6859 | 0.6835 | 0.6909 | | 0.3308 | 5.4 | 1290 | 0.8762 | 0.7340 | 0.6947 | 0.6909 | 0.6995 | | 0.2678 | 5.42 | 1295 | 0.8799 | 0.7340 | 0.6952 | 0.6900 | 0.7019 | | 0.3768 | 5.44 | 1300 | 0.8762 | 0.7293 | 0.6880 | 0.6862 | 0.6907 | | 0.3272 | 5.46 | 1305 | 0.8741 | 0.7246 | 0.6816 | 0.6831 | 0.6806 | | 0.2762 | 5.48 | 1310 | 0.8801 | 0.7308 | 0.6872 | 0.6914 | 0.6850 | | 0.3292 | 5.5 | 1315 | 0.8855 | 0.7324 | 0.6884 | 0.6922 | 0.6868 | | 0.2974 | 5.52 | 1320 | 0.8856 | 0.7324 | 0.6879 | 0.6911 | 0.6868 | | 0.3522 | 5.54 | 1325 | 0.8799 | 0.7214 | 0.6767 | 0.6759 | 0.6775 | | 0.2946 | 5.56 | 1330 | 0.8815 | 0.7199 | 0.6783 | 0.6769 | 0.6804 | | 0.2064 | 5.59 | 1335 | 0.8876 | 0.7293 | 0.6894 | 0.6839 | 0.6970 | | 0.2353 | 5.61 | 1340 | 0.9266 | 0.7261 | 0.6938 | 0.6878 | 0.7087 | | 0.2696 | 5.63 | 1345 | 0.9339 | 0.7152 | 0.6817 | 0.6789 | 0.6956 | | 0.4084 | 5.65 | 1350 | 0.8897 | 0.7308 | 0.6886 | 0.6897 | 0.6901 | | 0.3375 | 5.67 | 1355 | 0.8848 | 0.7246 | 0.6812 | 0.6874 | 0.6775 | | 0.2449 | 5.69 | 1360 | 0.8848 | 0.7230 | 0.6789 | 0.6850 | 0.6749 | | 0.2459 | 5.71 | 1365 | 0.8859 | 0.7246 | 0.6815 | 0.6832 | 0.6806 | | 0.3471 | 5.73 | 1370 | 0.8895 | 0.7230 | 0.6818 | 0.6805 | 0.6832 | | 0.3112 | 5.75 | 1375 | 0.9040 | 0.7261 | 0.6881 | 0.6876 | 0.6919 | | 0.3404 | 5.77 | 1380 | 0.9397 | 0.7214 | 0.6836 | 0.6910 | 0.6897 | | 0.2509 | 5.79 | 1385 | 0.9319 | 0.7277 | 0.6852 | 0.6963 | 0.6878 | | 0.367 | 5.82 | 1390 | 0.8828 | 0.7261 | 0.6839 | 0.6861 | 0.6832 | | 0.3158 | 5.84 | 1395 | 0.8770 | 0.7167 | 0.6741 | 0.6770 | 0.6729 | | 0.1901 | 5.86 | 1400 | 0.8789 | 0.7183 | 0.6771 | 0.6783 | 0.6779 | | 0.2183 | 5.88 | 1405 | 0.8804 | 0.7261 | 0.6845 | 0.6838 | 0.6856 | | 0.3058 | 5.9 | 1410 | 0.8927 | 0.7277 | 0.6877 | 0.6921 | 0.6866 | | 0.1906 | 5.92 | 1415 | 0.8929 | 0.7261 | 0.6859 | 0.6889 | 0.6856 | | 0.2887 | 5.94 | 1420 | 0.8876 | 0.7293 | 0.6904 | 0.6908 | 0.6915 | | 0.2236 | 5.96 | 1425 | 0.8900 | 0.7261 | 0.6866 | 0.6823 | 0.6918 | | 0.3345 | 5.98 | 1430 | 0.8948 | 0.7293 | 0.6902 | 0.6884 | 0.6930 | | 0.3004 | 6.0 | 1435 | 0.8938 | 0.7277 | 0.6871 | 0.6868 | 0.6873 | | 0.3376 | 6.03 | 1440 | 0.8939 | 0.7308 | 0.6902 | 0.6895 | 0.6913 | | 0.1774 | 6.05 | 1445 | 0.9019 | 0.7261 | 0.6893 | 0.6890 | 0.6915 | | 0.1947 | 6.07 | 1450 | 0.8971 | 0.7308 | 0.6913 | 0.6917 | 0.6913 | | 0.1641 | 6.09 | 1455 | 0.9135 | 0.7089 | 0.6639 | 0.6746 | 0.6574 | | 0.3712 | 6.11 | 1460 | 0.9258 | 0.7089 | 0.6612 | 0.6755 | 0.6543 | | 0.234 | 6.13 | 1465 | 0.8986 | 0.7261 | 0.6863 | 0.6868 | 0.6863 | | 0.2605 | 6.15 | 1470 | 0.9004 | 0.7277 | 0.6875 | 0.6874 | 0.6881 | | 0.1891 | 6.17 | 1475 | 0.9035 | 0.7293 | 0.6881 | 0.6867 | 0.6907 | | 0.1988 | 6.19 | 1480 | 0.9032 | 0.7230 | 0.6807 | 0.6796 | 0.6824 | | 0.1683 | 6.21 | 1485 | 0.9044 | 0.7293 | 0.6867 | 0.6876 | 0.6864 | | 0.2669 | 6.23 | 1490 | 0.9156 | 0.7277 | 0.6879 | 0.6887 | 0.6885 | | 0.2185 | 6.26 | 1495 | 0.9242 | 0.7324 | 0.6922 | 0.6927 | 0.6938 | | 0.1485 | 6.28 | 1500 | 0.9264 | 0.7308 | 0.6916 | 0.6921 | 0.6925 | | 0.1654 | 6.3 | 1505 | 0.9295 | 0.7308 | 0.6907 | 0.6913 | 0.6905 | | 0.2177 | 6.32 | 1510 | 0.9347 | 0.7293 | 0.6884 | 0.6898 | 0.6871 | | 0.1512 | 6.34 | 1515 | 0.9451 | 0.7261 | 0.6853 | 0.6842 | 0.6867 | | 0.1006 | 6.36 | 1520 | 0.9623 | 0.7261 | 0.6869 | 0.6850 | 0.6911 | | 0.1367 | 6.38 | 1525 | 0.9851 | 0.7277 | 0.6901 | 0.6916 | 0.6932 | | 0.2743 | 6.4 | 1530 | 0.9740 | 0.7340 | 0.6958 | 0.6982 | 0.6960 | | 0.2843 | 6.42 | 1535 | 0.9689 | 0.7261 | 0.6873 | 0.6892 | 0.6856 | | 0.2563 | 6.44 | 1540 | 0.9781 | 0.7199 | 0.6757 | 0.6819 | 0.6706 | | 0.2941 | 6.46 | 1545 | 0.9763 | 0.7246 | 0.6844 | 0.6915 | 0.6799 | | 0.2245 | 6.49 | 1550 | 0.9718 | 0.7340 | 0.6948 | 0.6962 | 0.6952 | | 0.1545 | 6.51 | 1555 | 0.9737 | 0.7324 | 0.6921 | 0.6921 | 0.6934 | | 0.3361 | 6.53 | 1560 | 0.9692 | 0.7324 | 0.6944 | 0.6931 | 0.6966 | | 0.162 | 6.55 | 1565 | 0.9704 | 0.7324 | 0.6946 | 0.6925 | 0.6982 | | 0.2815 | 6.57 | 1570 | 0.9656 | 0.7340 | 0.6957 | 0.6962 | 0.6964 | | 0.2087 | 6.59 | 1575 | 0.9639 | 0.7308 | 0.6927 | 0.6919 | 0.6952 | | 0.2326 | 6.61 | 1580 | 0.9696 | 0.7324 | 0.6959 | 0.6929 | 0.7009 | | 0.1923 | 6.63 | 1585 | 0.9611 | 0.7340 | 0.6981 | 0.6959 | 0.7019 | | 0.1684 | 6.65 | 1590 | 0.9606 | 0.7355 | 0.6964 | 0.6978 | 0.6954 | | 0.3993 | 6.67 | 1595 | 0.9609 | 0.7293 | 0.6888 | 0.6921 | 0.6860 | | 0.3185 | 6.69 | 1600 | 0.9627 | 0.7355 | 0.6970 | 0.6974 | 0.6982 | | 0.2099 | 6.72 | 1605 | 0.9814 | 0.7261 | 0.6910 | 0.6906 | 0.6962 | | 0.1302 | 6.74 | 1610 | 0.9806 | 0.7308 | 0.6938 | 0.6922 | 0.6991 | | 0.238 | 6.76 | 1615 | 0.9711 | 0.7324 | 0.6928 | 0.6940 | 0.6927 | | 0.3351 | 6.78 | 1620 | 0.9749 | 0.7230 | 0.6788 | 0.6868 | 0.6738 | | 0.3485 | 6.8 | 1625 | 0.9761 | 0.7308 | 0.6884 | 0.6937 | 0.6858 | | 0.137 | 6.82 | 1630 | 0.9766 | 0.7324 | 0.6909 | 0.6947 | 0.6895 | | 0.1751 | 6.84 | 1635 | 0.9776 | 0.7324 | 0.6932 | 0.6928 | 0.6946 | | 0.1701 | 6.86 | 1640 | 0.9787 | 0.7355 | 0.6977 | 0.6954 | 0.7005 | | 0.148 | 6.88 | 1645 | 0.9830 | 0.7387 | 0.7036 | 0.7001 | 0.7076 | | 0.2204 | 6.9 | 1650 | 0.9860 | 0.7340 | 0.6949 | 0.6942 | 0.6960 | | 0.1966 | 6.92 | 1655 | 0.9920 | 0.7214 | 0.6793 | 0.6817 | 0.6775 | | 0.2242 | 6.95 | 1660 | 0.9979 | 0.7152 | 0.6727 | 0.6771 | 0.6688 | | 0.157 | 6.97 | 1665 | 1.0002 | 0.7293 | 0.6876 | 0.6925 | 0.6852 | | 0.2665 | 6.99 | 1670 | 1.0067 | 0.7230 | 0.6838 | 0.6860 | 0.6860 | | 0.159 | 7.01 | 1675 | 1.0002 | 0.7230 | 0.6841 | 0.6834 | 0.6867 | | 0.1399 | 7.03 | 1680 | 0.9954 | 0.7277 | 0.6887 | 0.6874 | 0.6909 | | 0.16 | 7.05 | 1685 | 0.9981 | 0.7277 | 0.6878 | 0.6878 | 0.6889 | | 0.1074 | 7.07 | 1690 | 1.0067 | 0.7277 | 0.6881 | 0.6886 | 0.6889 | | 0.15 | 7.09 | 1695 | 1.0130 | 0.7261 | 0.6857 | 0.6860 | 0.6863 | | 0.1956 | 7.11 | 1700 | 1.0177 | 0.7261 | 0.6858 | 0.6854 | 0.6871 | | 0.0964 | 7.13 | 1705 | 1.0193 | 0.7277 | 0.6877 | 0.6884 | 0.6881 | | 0.1922 | 7.15 | 1710 | 1.0224 | 0.7277 | 0.6867 | 0.6894 | 0.6854 | | 0.1334 | 7.18 | 1715 | 1.0224 | 0.7261 | 0.6844 | 0.6883 | 0.6812 | | 0.1071 | 7.2 | 1720 | 1.0252 | 0.7183 | 0.6746 | 0.6796 | 0.6704 | | 0.1798 | 7.22 | 1725 | 1.0306 | 0.7214 | 0.6781 | 0.6851 | 0.6724 | | 0.2293 | 7.24 | 1730 | 1.0302 | 0.7277 | 0.6878 | 0.6900 | 0.6865 | | 0.1813 | 7.26 | 1735 | 1.0316 | 0.7261 | 0.6884 | 0.6898 | 0.6895 | | 0.1884 | 7.28 | 1740 | 1.0327 | 0.7261 | 0.6884 | 0.6898 | 0.6895 | | 0.1482 | 7.3 | 1745 | 1.0328 | 0.7261 | 0.6877 | 0.6900 | 0.6883 | | 0.1044 | 7.32 | 1750 | 1.0387 | 0.7324 | 0.6947 | 0.6989 | 0.6946 | | 0.3129 | 7.34 | 1755 | 1.0264 | 0.7261 | 0.6884 | 0.6905 | 0.6887 | | 0.1136 | 7.36 | 1760 | 1.0226 | 0.7183 | 0.6789 | 0.6826 | 0.6759 | | 0.1869 | 7.38 | 1765 | 1.0219 | 0.7214 | 0.6812 | 0.6852 | 0.6783 | | 0.1363 | 7.41 | 1770 | 1.0230 | 0.7261 | 0.6865 | 0.6913 | 0.6836 | | 0.0683 | 7.43 | 1775 | 1.0295 | 0.7230 | 0.6835 | 0.6885 | 0.6800 | | 0.155 | 7.45 | 1780 | 1.0372 | 0.7214 | 0.6805 | 0.6870 | 0.6767 | | 0.3063 | 7.47 | 1785 | 1.0365 | 0.7246 | 0.6849 | 0.6885 | 0.6834 | | 0.0882 | 7.49 | 1790 | 1.0347 | 0.7214 | 0.6821 | 0.6856 | 0.6795 | | 0.1951 | 7.51 | 1795 | 1.0363 | 0.7183 | 0.6786 | 0.6803 | 0.6771 | | 0.1963 | 7.53 | 1800 | 1.0397 | 0.7261 | 0.6865 | 0.6878 | 0.6875 | | 0.2286 | 7.55 | 1805 | 1.0406 | 0.7261 | 0.6868 | 0.6880 | 0.6883 | | 0.1509 | 7.57 | 1810 | 1.0362 | 0.7293 | 0.6896 | 0.6930 | 0.6887 | | 0.1184 | 7.59 | 1815 | 1.0418 | 0.7105 | 0.6661 | 0.6765 | 0.6584 | | 0.1063 | 7.62 | 1820 | 1.0522 | 0.7105 | 0.6630 | 0.6777 | 0.6529 | | 0.134 | 7.64 | 1825 | 1.0484 | 0.7199 | 0.6762 | 0.6882 | 0.6686 | | 0.2583 | 7.66 | 1830 | 1.0450 | 0.7261 | 0.6826 | 0.6912 | 0.6789 | | 0.1144 | 7.68 | 1835 | 1.0507 | 0.7277 | 0.6882 | 0.6944 | 0.6877 | | 0.1107 | 7.7 | 1840 | 1.0511 | 0.7214 | 0.6839 | 0.6853 | 0.6877 | | 0.2604 | 7.72 | 1845 | 1.0395 | 0.7246 | 0.6863 | 0.6858 | 0.6881 | | 0.1464 | 7.74 | 1850 | 1.0398 | 0.7199 | 0.6787 | 0.6801 | 0.6777 | | 0.2535 | 7.76 | 1855 | 1.0411 | 0.7246 | 0.6820 | 0.6869 | 0.6779 | | 0.1572 | 7.78 | 1860 | 1.0406 | 0.7183 | 0.6765 | 0.6789 | 0.6743 | | 0.1646 | 7.8 | 1865 | 1.0415 | 0.7183 | 0.6746 | 0.6796 | 0.6704 | | 0.2349 | 7.82 | 1870 | 1.0426 | 0.7261 | 0.6844 | 0.6890 | 0.6816 | | 0.2146 | 7.85 | 1875 | 1.0449 | 0.7277 | 0.6882 | 0.6907 | 0.6885 | | 0.1505 | 7.87 | 1880 | 1.0456 | 0.7277 | 0.6915 | 0.6908 | 0.6944 | | 0.2806 | 7.89 | 1885 | 1.0445 | 0.7261 | 0.6900 | 0.6894 | 0.6926 | | 0.2245 | 7.91 | 1890 | 1.0402 | 0.7277 | 0.6908 | 0.6904 | 0.6916 | | 0.1388 | 7.93 | 1895 | 1.0410 | 0.7293 | 0.6914 | 0.6919 | 0.6911 | | 0.3175 | 7.95 | 1900 | 1.0403 | 0.7261 | 0.6876 | 0.6899 | 0.6856 | | 0.2023 | 7.97 | 1905 | 1.0379 | 0.7230 | 0.6857 | 0.6885 | 0.6832 | | 0.1165 | 7.99 | 1910 | 1.0389 | 0.7261 | 0.6881 | 0.6913 | 0.6852 | | 0.1103 | 8.01 | 1915 | 1.0431 | 0.7246 | 0.6865 | 0.6899 | 0.6834 | | 0.1822 | 8.03 | 1920 | 1.0520 | 0.7214 | 0.6820 | 0.6872 | 0.6775 | | 0.1773 | 8.05 | 1925 | 1.0600 | 0.7121 | 0.6690 | 0.6790 | 0.6614 | | 0.1259 | 8.08 | 1930 | 1.0601 | 0.7183 | 0.6773 | 0.6843 | 0.6716 | | 0.1737 | 8.1 | 1935 | 1.0619 | 0.7183 | 0.6804 | 0.6845 | 0.6775 | | 0.1776 | 8.12 | 1940 | 1.0646 | 0.7277 | 0.6901 | 0.6921 | 0.6905 | | 0.112 | 8.14 | 1945 | 1.0652 | 0.7324 | 0.6965 | 0.6968 | 0.6982 | | 0.1649 | 8.16 | 1950 | 1.0650 | 0.7324 | 0.6962 | 0.6960 | 0.6982 | | 0.1296 | 8.18 | 1955 | 1.0660 | 0.7308 | 0.6958 | 0.6954 | 0.6976 | | 0.1325 | 8.2 | 1960 | 1.0651 | 0.7277 | 0.6897 | 0.6905 | 0.6901 | | 0.1422 | 8.22 | 1965 | 1.0680 | 0.7199 | 0.6782 | 0.6839 | 0.6738 | | 0.3486 | 8.24 | 1970 | 1.0723 | 0.7183 | 0.6729 | 0.6821 | 0.6661 | | 0.2213 | 8.26 | 1975 | 1.0700 | 0.7121 | 0.6632 | 0.6738 | 0.6563 | | 0.1206 | 8.28 | 1980 | 1.0671 | 0.7152 | 0.6673 | 0.6766 | 0.6622 | | 0.1196 | 8.31 | 1985 | 1.0657 | 0.7183 | 0.6723 | 0.6796 | 0.6692 | | 0.1955 | 8.33 | 1990 | 1.0568 | 0.7183 | 0.6745 | 0.6812 | 0.6696 | | 0.1085 | 8.35 | 1995 | 1.0566 | 0.7152 | 0.6735 | 0.6813 | 0.6672 | | 0.1359 | 8.37 | 2000 | 1.0549 | 0.7230 | 0.6862 | 0.6890 | 0.6836 | | 0.2431 | 8.39 | 2005 | 1.0555 | 0.7308 | 0.6960 | 0.6976 | 0.6944 | | 0.1512 | 8.41 | 2010 | 1.0570 | 0.7324 | 0.6966 | 0.6972 | 0.6970 | | 0.1002 | 8.43 | 2015 | 1.0601 | 0.7355 | 0.6997 | 0.7000 | 0.7005 | | 0.1529 | 8.45 | 2020 | 1.0601 | 0.7277 | 0.6913 | 0.6915 | 0.6913 | | 0.1633 | 8.47 | 2025 | 1.0618 | 0.7261 | 0.6881 | 0.6882 | 0.6883 | | 0.068 | 8.49 | 2030 | 1.0657 | 0.7199 | 0.6816 | 0.6826 | 0.6812 | | 0.1883 | 8.51 | 2035 | 1.0644 | 0.7261 | 0.6885 | 0.6881 | 0.6891 | | 0.1484 | 8.54 | 2040 | 1.0624 | 0.7324 | 0.6961 | 0.6952 | 0.6970 | | 0.1438 | 8.56 | 2045 | 1.0642 | 0.7340 | 0.6983 | 0.6973 | 0.6995 | | 0.1164 | 8.58 | 2050 | 1.0660 | 0.7308 | 0.6950 | 0.6948 | 0.6952 | | 0.1523 | 8.6 | 2055 | 1.0702 | 0.7246 | 0.6875 | 0.6895 | 0.6857 | | 0.0793 | 8.62 | 2060 | 1.0749 | 0.7230 | 0.6832 | 0.6874 | 0.6797 | | 0.0752 | 8.64 | 2065 | 1.0783 | 0.7214 | 0.6797 | 0.6853 | 0.6755 | | 0.0825 | 8.66 | 2070 | 1.0854 | 0.7230 | 0.6798 | 0.6868 | 0.6745 | | 0.1463 | 8.68 | 2075 | 1.0937 | 0.7199 | 0.6748 | 0.6837 | 0.6686 | | 0.1806 | 8.7 | 2080 | 1.0951 | 0.7199 | 0.6786 | 0.6854 | 0.6741 | | 0.1354 | 8.72 | 2085 | 1.0925 | 0.7277 | 0.6885 | 0.6918 | 0.6877 | | 0.1348 | 8.74 | 2090 | 1.0896 | 0.7324 | 0.6960 | 0.6958 | 0.6982 | | 0.174 | 8.77 | 2095 | 1.0875 | 0.7261 | 0.6908 | 0.6900 | 0.6918 | | 0.1424 | 8.79 | 2100 | 1.0902 | 0.7261 | 0.6896 | 0.6897 | 0.6895 | | 0.1056 | 8.81 | 2105 | 1.0938 | 0.7261 | 0.6886 | 0.6906 | 0.6867 | | 0.1662 | 8.83 | 2110 | 1.0952 | 0.7261 | 0.6866 | 0.6900 | 0.6836 | | 0.1077 | 8.85 | 2115 | 1.0970 | 0.7246 | 0.6853 | 0.6887 | 0.6830 | | 0.2363 | 8.87 | 2120 | 1.0967 | 0.7230 | 0.6832 | 0.6872 | 0.6808 | | 0.1287 | 8.89 | 2125 | 1.0975 | 0.7261 | 0.6875 | 0.6916 | 0.6860 | | 0.141 | 8.91 | 2130 | 1.0982 | 0.7277 | 0.6890 | 0.6930 | 0.6877 | | 0.1411 | 8.93 | 2135 | 1.0962 | 0.7230 | 0.6824 | 0.6861 | 0.6800 | | 0.1088 | 8.95 | 2140 | 1.0954 | 0.7230 | 0.6823 | 0.6880 | 0.6777 | | 0.1032 | 8.97 | 2145 | 1.0942 | 0.7214 | 0.6807 | 0.6866 | 0.6759 | | 0.0683 | 9.0 | 2150 | 1.0915 | 0.7230 | 0.6825 | 0.6877 | 0.6785 | | 0.1402 | 9.02 | 2155 | 1.0894 | 0.7277 | 0.6894 | 0.6934 | 0.6861 | | 0.0853 | 9.04 | 2160 | 1.0914 | 0.7246 | 0.6841 | 0.6891 | 0.6802 | | 0.1155 | 9.06 | 2165 | 1.0937 | 0.7214 | 0.6787 | 0.6846 | 0.6743 | | 0.0675 | 9.08 | 2170 | 1.0961 | 0.7230 | 0.6801 | 0.6869 | 0.6753 | | 0.0754 | 9.1 | 2175 | 1.0959 | 0.7246 | 0.6828 | 0.6881 | 0.6791 | | 0.0974 | 9.12 | 2180 | 1.0975 | 0.7293 | 0.6892 | 0.6926 | 0.6867 | | 0.1567 | 9.14 | 2185 | 1.0993 | 0.7246 | 0.6850 | 0.6886 | 0.6822 | | 0.1691 | 9.16 | 2190 | 1.0999 | 0.7261 | 0.6866 | 0.6917 | 0.6824 | | 0.1026 | 9.18 | 2195 | 1.1006 | 0.7246 | 0.6850 | 0.6904 | 0.6806 | | 0.0727 | 9.21 | 2200 | 1.1029 | 0.7246 | 0.6850 | 0.6904 | 0.6806 | | 0.0834 | 9.23 | 2205 | 1.1046 | 0.7199 | 0.6783 | 0.6843 | 0.6738 | | 0.1159 | 9.25 | 2210 | 1.1049 | 0.7230 | 0.6823 | 0.6880 | 0.6777 | | 0.1586 | 9.27 | 2215 | 1.1046 | 0.7214 | 0.6808 | 0.6852 | 0.6775 | | 0.1292 | 9.29 | 2220 | 1.1043 | 0.7230 | 0.6824 | 0.6865 | 0.6793 | | 0.0743 | 9.31 | 2225 | 1.1035 | 0.7246 | 0.6851 | 0.6889 | 0.6822 | | 0.06 | 9.33 | 2230 | 1.1022 | 0.7277 | 0.6912 | 0.6927 | 0.6901 | | 0.1545 | 9.35 | 2235 | 1.1039 | 0.7293 | 0.6916 | 0.6932 | 0.6907 | | 0.1546 | 9.37 | 2240 | 1.1058 | 0.7230 | 0.6833 | 0.6861 | 0.6812 | | 0.2023 | 9.39 | 2245 | 1.1066 | 0.7214 | 0.6808 | 0.6852 | 0.6775 | | 0.1607 | 9.41 | 2250 | 1.1077 | 0.7230 | 0.6818 | 0.6868 | 0.6777 | | 0.0658 | 9.44 | 2255 | 1.1090 | 0.7230 | 0.6818 | 0.6868 | 0.6777 | | 0.0417 | 9.46 | 2260 | 1.1107 | 0.7230 | 0.6818 | 0.6868 | 0.6777 | | 0.063 | 9.48 | 2265 | 1.1129 | 0.7230 | 0.6818 | 0.6868 | 0.6777 | | 0.0988 | 9.5 | 2270 | 1.1147 | 0.7230 | 0.6833 | 0.6886 | 0.6789 | | 0.1082 | 9.52 | 2275 | 1.1155 | 0.7230 | 0.6833 | 0.6886 | 0.6789 | | 0.1984 | 9.54 | 2280 | 1.1154 | 0.7246 | 0.6845 | 0.6892 | 0.6806 | | 0.1793 | 9.56 | 2285 | 1.1153 | 0.7246 | 0.6845 | 0.6892 | 0.6806 | | 0.1324 | 9.58 | 2290 | 1.1152 | 0.7230 | 0.6818 | 0.6868 | 0.6777 | | 0.1059 | 9.6 | 2295 | 1.1157 | 0.7230 | 0.6818 | 0.6868 | 0.6777 | | 0.0473 | 9.62 | 2300 | 1.1158 | 0.7230 | 0.6818 | 0.6868 | 0.6777 | | 0.1065 | 9.64 | 2305 | 1.1166 | 0.7230 | 0.6818 | 0.6868 | 0.6777 | | 0.1373 | 9.67 | 2310 | 1.1173 | 0.7246 | 0.6845 | 0.6892 | 0.6806 | | 0.1248 | 9.69 | 2315 | 1.1177 | 0.7246 | 0.6845 | 0.6892 | 0.6806 | | 0.0966 | 9.71 | 2320 | 1.1183 | 0.7246 | 0.6845 | 0.6892 | 0.6806 | | 0.0742 | 9.73 | 2325 | 1.1189 | 0.7246 | 0.6845 | 0.6892 | 0.6806 | | 0.0827 | 9.75 | 2330 | 1.1193 | 0.7246 | 0.6845 | 0.6892 | 0.6806 | | 0.143 | 9.77 | 2335 | 1.1202 | 0.7246 | 0.6845 | 0.6892 | 0.6806 | | 0.1623 | 9.79 | 2340 | 1.1201 | 0.7246 | 0.6845 | 0.6892 | 0.6806 | | 0.1495 | 9.81 | 2345 | 1.1197 | 0.7246 | 0.6845 | 0.6892 | 0.6806 | | 0.0965 | 9.83 | 2350 | 1.1195 | 0.7246 | 0.6845 | 0.6892 | 0.6806 | | 0.1297 | 9.85 | 2355 | 1.1194 | 0.7246 | 0.6845 | 0.6892 | 0.6806 | | 0.1164 | 9.87 | 2360 | 1.1195 | 0.7246 | 0.6845 | 0.6892 | 0.6806 | | 0.1759 | 9.9 | 2365 | 1.1195 | 0.7246 | 0.6845 | 0.6892 | 0.6806 | | 0.2404 | 9.92 | 2370 | 1.1192 | 0.7246 | 0.6845 | 0.6892 | 0.6806 | | 0.1467 | 9.94 | 2375 | 1.1189 | 0.7246 | 0.6845 | 0.6892 | 0.6806 | | 0.1969 | 9.96 | 2380 | 1.1187 | 0.7246 | 0.6845 | 0.6892 | 0.6806 | | 0.1573 | 9.98 | 2385 | 1.1187 | 0.7246 | 0.6845 | 0.6892 | 0.6806 | | 0.2614 | 10.0 | 2390 | 1.1188 | 0.7246 | 0.6845 | 0.6892 | 0.6806 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Tokenizers 0.10.3
stanleychu2/roberta-fever
15491e847784e59c53d1c884017ba860fa28bba9
2021-06-15T21:43:15.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
stanleychu2
null
stanleychu2/roberta-fever
3
null
transformers
21,778
Entry not found
stefan-it/electra-base-gc4-64k-300000-cased-generator
979473bc60a3d6b0d2538df775116951a8ce0e5b
2021-05-01T11:18:30.000Z
[ "pytorch", "tf", "electra", "fill-mask", "de", "dataset:german-nlp-group/german_common_crawl", "transformers", "license:mit", "autotrain_compatible" ]
fill-mask
false
stefan-it
null
stefan-it/electra-base-gc4-64k-300000-cased-generator
3
null
transformers
21,779
--- language: de license: mit datasets: - german-nlp-group/german_common_crawl widget: - text: "Heute ist ein [MASK] Tag" --- # GC4LM: A Colossal (Biased) language model for German This repository presents a colossal (and biased) language model for German trained on the recently released ["German colossal, clean Common Crawl corpus"](https://german-nlp-group.github.io/projects/gc4-corpus.html) (GC4), with a total dataset size of ~844GB. --- **Disclaimer**: the presented and trained language models in this repository are for **research only** purposes. The GC4 corpus - that was used for training - contains crawled texts from the internet. Thus, the language models can be considered as highly biased, resulting in a model that encodes stereotypical associations along gender, race, ethnicity and disability status. Before using and working with the released checkpoints, it is highly recommended to read: [On the Dangers of Stochastic Parrots: Can Language Models Be Too Big?](https://faculty.washington.edu/ebender/papers/Stochastic_Parrots.pdf) from Emily M. Bender, Timnit Gebru, Angelina McMillan-Major and Shmargaret Shmitchell. The aim of the released checkpoints is to boost research on large pre-trained language models for German, especially for identifying biases and how to prevent them, as most research is currently done only for English. --- Please use the new GitHub Discussions feature in order to discuss or present further research questions. Feel free to use `#gc4lm` on Twitter 🐦.
stefan-it/flair-ner-conll03
6184fd8983961469b6b12a0e689b71cb9d7f41a7
2020-12-11T10:07:20.000Z
[ "pytorch", "en", "flair", "sequence-tagger-model", "license:mit" ]
null
false
stefan-it
null
stefan-it/flair-ner-conll03
3
null
flair
21,780
--- language: en tags: - flair - sequence-tagger-model license: mit --- # CoNLL-2003 NER Model Imported sequence tagger model for Flair, that was trained on English CoNLL-2003 corpus for NER.
stfuowned/nek
ca2d149608996f8a211e05cd6e4b64ad67278cd0
2021-06-08T18:38:27.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
stfuowned
null
stfuowned/nek
3
null
transformers
21,781
--- tags: - conversational --- # My Awesome Model
subbareddyiiit/RobertaNLP
4337b5e6c370e066ec0cf82b9005fc7a9e193672
2021-05-20T21:57:23.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
subbareddyiiit
null
subbareddyiiit/RobertaNLP
3
null
transformers
21,782
hello
subbareddyiiit/TeRobeRta
e103f5986a4cb8093b5223210048712cc89961d6
2021-05-20T21:58:55.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
subbareddyiiit
null
subbareddyiiit/TeRobeRta
3
null
transformers
21,783
Entry not found
sukritin/hindi-bert
e837db3a8976dfb9a90041b5bc7e4205a3b9da5a
2021-05-20T07:19:00.000Z
[ "pytorch", "jax", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
sukritin
null
sukritin/hindi-bert
3
null
transformers
21,784
Entry not found
superb/wav2vec2-large-superb-ks
cd6f4485d59f23c9e158e35815633aff8f1a583c
2021-11-04T16:03:43.000Z
[ "pytorch", "wav2vec2", "audio-classification", "en", "dataset:superb", "arxiv:2105.01051", "transformers", "speech", "audio", "license:apache-2.0" ]
audio-classification
false
superb
null
superb/wav2vec2-large-superb-ks
3
null
transformers
21,785
--- language: en datasets: - superb tags: - speech - audio - wav2vec2 - audio-classification license: apache-2.0 widget: - example_title: Speech Commands "down" src: https://cdn-media.huggingface.co/speech_samples/keyword_spotting_down.wav - example_title: Speech Commands "go" src: https://cdn-media.huggingface.co/speech_samples/keyword_spotting_go.wav --- # Wav2Vec2-Large for Keyword Spotting ## Model description This is a ported version of [S3PRL's Wav2Vec2 for the SUPERB Keyword Spotting task](https://github.com/s3prl/s3prl/tree/master/s3prl/downstream/speech_commands). The base model is [wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60), which is pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. For more information refer to [SUPERB: Speech processing Universal PERformance Benchmark](https://arxiv.org/abs/2105.01051) ## Task and dataset description Keyword Spotting (KS) detects preregistered keywords by classifying utterances into a predefined set of words. The task is usually performed on-device for the fast response time. Thus, accuracy, model size, and inference time are all crucial. SUPERB uses the widely used [Speech Commands dataset v1.0](https://www.tensorflow.org/datasets/catalog/speech_commands) for the task. The dataset consists of ten classes of keywords, a class for silence, and an unknown class to include the false positive. For the original model's training and evaluation instructions refer to the [S3PRL downstream task README](https://github.com/s3prl/s3prl/tree/master/s3prl/downstream#ks-keyword-spotting). ## Usage examples You can use the model via the Audio Classification pipeline: ```python from datasets import load_dataset from transformers import pipeline dataset = load_dataset("anton-l/superb_demo", "ks", split="test") classifier = pipeline("audio-classification", model="superb/wav2vec2-large-superb-ks") labels = classifier(dataset[0]["file"], top_k=5) ``` Or use the model directly: ```python import torch from datasets import load_dataset from transformers import Wav2Vec2ForSequenceClassification, Wav2Vec2FeatureExtractor from torchaudio.sox_effects import apply_effects_file effects = [["channels", "1"], ["rate", "16000"], ["gain", "-3.0"]] def map_to_array(example): speech, _ = apply_effects_file(example["file"], effects) example["speech"] = speech.squeeze(0).numpy() return example # load a demo dataset and read audio files dataset = load_dataset("anton-l/superb_demo", "ks", split="test") dataset = dataset.map(map_to_array) model = Wav2Vec2ForSequenceClassification.from_pretrained("superb/wav2vec2-large-superb-ks") feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("superb/wav2vec2-large-superb-ks") # compute attention masks and normalize the waveform if needed inputs = feature_extractor(dataset[:4]["speech"], sampling_rate=16000, padding=True, return_tensors="pt") logits = model(**inputs).logits predicted_ids = torch.argmax(logits, dim=-1) labels = [model.config.id2label[_id] for _id in predicted_ids.tolist()] ``` ## Eval results The evaluation metric is accuracy. | | **s3prl** | **transformers** | |--------|-----------|------------------| |**test**| `0.9666` | `N/A` | ### BibTeX entry and citation info ```bibtex @article{yang2021superb, title={SUPERB: Speech processing Universal PERformance Benchmark}, author={Yang, Shu-wen and Chi, Po-Han and Chuang, Yung-Sung and Lai, Cheng-I Jeff and Lakhotia, Kushal and Lin, Yist Y and Liu, Andy T and Shi, Jiatong and Chang, Xuankai and Lin, Guan-Ting and others}, journal={arXiv preprint arXiv:2105.01051}, year={2021} } ```
tamedai/marian-mt-es-de-epoch1-paracrawl-europarl-tilde-books-news
8636701a474f144d7f1472f87ed1c052a0be5aa8
2021-12-11T16:11:15.000Z
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
tamedai
null
tamedai/marian-mt-es-de-epoch1-paracrawl-europarl-tilde-books-news
3
null
transformers
21,786
Entry not found
tanay/layoutlm-custom
337a897033cde2a6754c234e824f10d4d710c947
2021-07-09T06:51:24.000Z
[ "pytorch", "layoutlm", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
tanay
null
tanay/layoutlm-custom
3
null
transformers
21,787
Entry not found
taoroalin/12_aug_50k_labels
a6e6e75489185e41cd62367f97b8221ec627e212
2021-09-21T01:07:16.000Z
[ "pytorch", "deberta", "text-classification", "transformers" ]
text-classification
false
taoroalin
null
taoroalin/12_aug_50k_labels
3
null
transformers
21,788
Entry not found
tareknaous/t5-empathetic-dialogues
e0d62ce0d4f5a71798eb4f4c8a1315e582ecbf39
2022-02-21T08:54:58.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
tareknaous
null
tareknaous/t5-empathetic-dialogues
3
null
transformers
21,789
Entry not found
tcaputi/guns-relevant-b300
c82389b47a1924d1054eacfe8fd4c9124be2d2b9
2021-05-20T07:24:39.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
tcaputi
null
tcaputi/guns-relevant-b300
3
null
transformers
21,790
Entry not found
teacookies/autonlp-roberta-base-squad2-24465516
17996508f48c40ec39823a4de1e656265c57534a
2021-10-22T08:21:22.000Z
[ "pytorch", "xlm-roberta", "question-answering", "unk", "dataset:teacookies/autonlp-data-roberta-base-squad2", "transformers", "autonlp", "co2_eq_emissions", "autotrain_compatible" ]
question-answering
false
teacookies
null
teacookies/autonlp-roberta-base-squad2-24465516
3
null
transformers
21,791
--- tags: - autonlp - question-answering language: unk widget: - text: "Who loves AutoNLP?" context: "Everyone loves AutoNLP" datasets: - teacookies/autonlp-data-roberta-base-squad2 co2_eq_emissions: 65.5797497320557 --- # Model Trained Using AutoNLP - Problem type: Extractive Question Answering - Model ID: 24465516 - CO2 Emissions (in grams): 65.5797497320557 ## Validation Metrics - Loss: 0.6545609831809998 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"question": "Who loves AutoNLP?", "context": "Everyone loves AutoNLP"}' https://api-inference.huggingface.co/models/teacookies/autonlp-roberta-base-squad2-24465516 ``` Or Python API: ``` import torch from transformers import AutoModelForQuestionAnswering, AutoTokenizer model = AutoModelForQuestionAnswering.from_pretrained("teacookies/autonlp-roberta-base-squad2-24465516", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("teacookies/autonlp-roberta-base-squad2-24465516", use_auth_token=True) from transformers import BertTokenizer, BertForQuestionAnswering question, text = "Who loves AutoNLP?", "Everyone loves AutoNLP" inputs = tokenizer(question, text, return_tensors='pt') start_positions = torch.tensor([1]) end_positions = torch.tensor([3]) outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions) loss = outputs.loss start_scores = outputs.start_logits end_scores = outputs.end_logits ```
textattack/facebook-bart-large-RTE
a0f41a32294a3471c256178b4e95d00a7f10fc78
2020-06-09T16:50:55.000Z
[ "pytorch", "bart", "text-classification", "transformers" ]
text-classification
false
textattack
null
textattack/facebook-bart-large-RTE
3
null
transformers
21,792
Entry not found
textattack/facebook-bart-large-WNLI
7035cbb0022e7444722e6dd0f491c4863df8acc5
2020-06-09T16:52:24.000Z
[ "pytorch", "bart", "text-classification", "transformers" ]
text-classification
false
textattack
null
textattack/facebook-bart-large-WNLI
3
null
transformers
21,793
Entry not found
textattack/xlnet-base-cased-MRPC
8efd034dcc1b7375dd30de77a8c70aecca584b51
2020-07-06T16:30:46.000Z
[ "pytorch", "xlnet", "text-generation", "transformers" ]
text-generation
false
textattack
null
textattack/xlnet-base-cased-MRPC
3
null
transformers
21,794
## TextAttack Model Card This `xlnet-base-cased` model was fine-tuned for sequence classification using TextAttack and the glue dataset loaded using the `nlp` library. The model was fine-tuned for 5 epochs with a batch size of 32, a learning rate of 5e-05, and a maximum sequence length of 256. Since this was a classification task, the model was trained with a cross-entropy loss function. The best score the model achieved on this task was 0.8897058823529411, as measured by the eval set accuracy, found after 2 epochs. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
textattack/xlnet-base-cased-QNLI
02cd512cd4078cab27ed6f90e500600f62bb6f44
2020-06-09T16:56:10.000Z
[ "pytorch", "xlnet", "text-classification", "transformers" ]
text-classification
false
textattack
null
textattack/xlnet-base-cased-QNLI
3
null
transformers
21,795
Entry not found
thatdramebaazguy/roberta-base-MITmovie-squad
f08839e074d3c62464d536ce45d6c30b16f3e9e6
2022-07-01T18:56:48.000Z
[ "pytorch", "tf", "jax", "roberta", "question-answering", "English", "dataset:MIT Movie", "dataset:SQuAD", "transformers", "roberta-base", "qa", "movies", "license:cc-by-4.0", "autotrain_compatible" ]
question-answering
false
thatdramebaazguy
null
thatdramebaazguy/roberta-base-MITmovie-squad
3
1
transformers
21,796
--- datasets: - MIT Movie - SQuAD language: - English thumbnail: tags: - roberta - roberta-base - question-answering - qa - movies license: cc-by-4.0 --- # roberta-base + Task Transfer (NER) --> Domain-Specific QA Objective: This is Roberta Base without any Domain Adaptive Pretraining --> Then trained for the NER task using MIT Movie Dataset --> Then a changed head to do the SQuAD Task. This makes a QA model capable of answering questions in the movie domain, with additional information coming from a different task (NER - Task Transfer). https://huggingface.co/thatdramebaazguy/roberta-base-MITmovie was used as the Roberta Base + NER model. ``` model_name = "thatdramebaazguy/roberta-base-MITmovie-squad" pipeline(model=model_name, tokenizer=model_name, revision="v1.0", task="question-answering") ``` ## Overview **Language model:** roberta-base **Language:** English **Downstream-task:** NER --> QA **Training data:** MIT Movie, SQuADv1 **Eval data:** MoviesQA (From https://github.com/ibm-aur-nlp/domain-specific-QA) **Infrastructure**: 4x Tesla v100 **Code:** See [example](https://github.com/adityaarunsinghal/Domain-Adaptation/blob/master/scripts/shell_scripts/movieR_NER_squad.sh) ## Hyperparameters ``` Num examples = 88567 Num Epochs = 3 Instantaneous batch size per device = 32 Total train batch size (w. parallel, distributed & accumulation) = 128 ``` ## Performance ### Eval on MoviesQA - eval_samples = 5032 - exact_match = 55.80286 - f1 = 70.31451 ### Eval on SQuADv1 - exact_match = 85.6859 - f1 = 91.96064 Github Repo: - [Domain-Adaptation Project](https://github.com/adityaarunsinghal/Domain-Adaptation/) ---
theiconik/hermione-granger
353d4d4c0c4f2b0680f33ba3c87c52c36c6ae6f1
2021-08-26T16:11:58.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
theiconik
null
theiconik/hermione-granger
3
null
transformers
21,797
--- tags: - conversational --- # Hermione Granger Model
thomwolf/codeparrot
f6657cfdaf922dee188c7e81412894dff2203d64
2021-07-21T14:19:03.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
thomwolf
null
thomwolf/codeparrot
3
1
transformers
21,798
Entry not found
thyagosme/bert-base-cased-wikitext2
b85f4e7230a5d2d48aa654d6aa9181d8a1690863
2022-02-09T03:44:53.000Z
[ "pytorch", "tensorboard", "bert", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
thyagosme
null
thyagosme/bert-base-cased-wikitext2
3
null
transformers
21,799
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-base-cased-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-wikitext2 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 6.8517 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 7.0902 | 1.0 | 2346 | 7.0492 | | 6.9027 | 2.0 | 4692 | 6.8692 | | 6.8553 | 3.0 | 7038 | 6.8882 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0