modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
βŒ€
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
βŒ€
likes
float64
0
712
βŒ€
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
annahaz/xlm-roberta-base-misogyny-sexism-out-of-sample-test-opt
1857909865ba72c35e85f562f442729b454821b1
2022-07-12T20:11:04.000Z
[ "pytorch", "xlm-roberta", "text-classification", "transformers" ]
text-classification
false
annahaz
null
annahaz/xlm-roberta-base-misogyny-sexism-out-of-sample-test-opt
4
null
transformers
20,400
Entry not found
wonkwonlee/distilbert-base-uncased-finetuned-cola
d0bb97be32c7cddaf63c6eb689f719f01f9fc063
2022-07-12T20:17:18.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
wonkwonlee
null
wonkwonlee/distilbert-base-uncased-finetuned-cola
4
null
transformers
20,401
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5474713423103301 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.5263 - Matthews Correlation: 0.5475 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5222 | 1.0 | 535 | 0.5384 | 0.4304 | | 0.3494 | 2.0 | 1070 | 0.5128 | 0.4975 | | 0.2381 | 3.0 | 1605 | 0.5263 | 0.5475 | | 0.1753 | 4.0 | 2140 | 0.7498 | 0.5354 | | 0.1243 | 5.0 | 2675 | 0.8013 | 0.5414 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cpu - Datasets 2.3.2 - Tokenizers 0.12.1
dafraile/Clini-dialog-sum-T5
d96a0bcf140735665f2766210fdf78c722aa8cd1
2022-07-19T02:00:14.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
text2text-generation
false
dafraile
null
dafraile/Clini-dialog-sum-T5
4
null
transformers
20,402
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: tst-summarization results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tst-summarization This model is a fine-tuned version of [henryu-lin/t5-large-samsum-deepspeed](https://huggingface.co/henryu-lin/t5-large-samsum-deepspeed) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3922 - Rouge1: 54.905 - Rouge2: 26.6374 - Rougel: 40.4619 - Rougelsum: 52.3653 - Gen Len: 104.7241 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.10.0 - Datasets 1.18.4 - Tokenizers 0.11.6
cronous/wangchanberta-ner-2
f21c9cea7d013433ddf1f2b2ab1d845266722f52
2022-07-13T05:17:16.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
cronous
null
cronous/wangchanberta-ner-2
4
null
transformers
20,403
Entry not found
linxi/tiny-bert-sst2-distilled
443917c7acb27295a8441d0a8f2bdc45f3e6934d
2022-07-13T07:43:29.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
linxi
null
linxi/tiny-bert-sst2-distilled
4
null
transformers
20,404
Entry not found
jordyvl/biobert-base-cased-v1.2_ncbi_disease-sm-all-ner
4f03b5368c718280004fcf70235606f6a2712024
2022-07-13T11:14:23.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
jordyvl
null
jordyvl/biobert-base-cased-v1.2_ncbi_disease-sm-all-ner
4
null
transformers
20,405
Entry not found
asahi417/lmqg-mt5_base-koquad
c7c3f77edc3ef62a65893f3c98a5c2d6d30df7c0
2022-07-13T12:26:20.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
asahi417
null
asahi417/lmqg-mt5_base-koquad
4
null
transformers
20,406
Entry not found
ghadeermobasher/Originalbiobert-BioRED-Chem-256-16-5
dd2865c4167ab2aee954cb41665a90ab928c1c12
2022-07-13T13:54:03.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/Originalbiobert-BioRED-Chem-256-16-5
4
null
transformers
20,407
Entry not found
ghadeermobasher/Modified-biobertv1-BioRED-Chem-256-16-5
29bf13cfc4432f7737e061fdf2d6ceb50a733a9c
2022-07-13T13:55:11.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/Modified-biobertv1-BioRED-Chem-256-16-5
4
null
transformers
20,408
Entry not found
fourthbrain-demo/bert_modelxcxcx_reddit_tslghja_tvcbracked
018eb82a5b989916675a7d393c183a8eb1df0e47
2022-07-13T22:11:33.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
fourthbrain-demo
null
fourthbrain-demo/bert_modelxcxcx_reddit_tslghja_tvcbracked
4
null
transformers
20,409
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert_modelxcxcx_reddit_tslghja_tvcbracked results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert_modelxcxcx_reddit_tslghja_tvcbracked This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
fourthbrain-demo/alberta_base
d2b76c189c8e8bd714a6ccc4feda73bbea420603
2022-07-13T23:42:30.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "transformers" ]
text-classification
false
fourthbrain-demo
null
fourthbrain-demo/alberta_base
4
null
transformers
20,410
Entry not found
Ali-fb/bert_model
f98125576e7a198b6297b240e4b7ed51011f49e8
2022-07-14T05:50:29.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
Ali-fb
null
Ali-fb/bert_model
4
null
transformers
20,411
Entry not found
Ali-fb/alberta_base
e2402b670ccc23a9f7c8cad967f1a1136ba73102
2022-07-14T05:52:21.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
Ali-fb
null
Ali-fb/alberta_base
4
null
transformers
20,412
Entry not found
gossminn/predict-perception-bertino-cause-object
2871dc0e364b50fe6c65a40b655a1a79d30d4a76
2022-07-14T14:14:55.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
gossminn
null
gossminn/predict-perception-bertino-cause-object
4
null
transformers
20,413
--- license: mit tags: - generated_from_trainer model-index: - name: predict-perception-bertino-cause-object results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # predict-perception-bertino-cause-object This model is a fine-tuned version of [indigo-ai/BERTino](https://huggingface.co/indigo-ai/BERTino) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0766 - R2: 0.8216 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 20 - eval_batch_size: 8 - seed: 1996 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 47 ### Training results | Training Loss | Epoch | Step | Validation Loss | R2 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.6807 | 1.0 | 14 | 0.4011 | 0.0652 | | 0.3529 | 2.0 | 28 | 0.2304 | 0.4631 | | 0.1539 | 3.0 | 42 | 0.0596 | 0.8611 | | 0.0853 | 4.0 | 56 | 0.1600 | 0.6272 | | 0.066 | 5.0 | 70 | 0.1596 | 0.6280 | | 0.0563 | 6.0 | 84 | 0.1146 | 0.7330 | | 0.0777 | 7.0 | 98 | 0.1010 | 0.7646 | | 0.0299 | 8.0 | 112 | 0.0897 | 0.7910 | | 0.0311 | 9.0 | 126 | 0.0832 | 0.8061 | | 0.0274 | 10.0 | 140 | 0.0988 | 0.7697 | | 0.0262 | 11.0 | 154 | 0.1048 | 0.7557 | | 0.0204 | 12.0 | 168 | 0.0615 | 0.8566 | | 0.0254 | 13.0 | 182 | 0.0742 | 0.8270 | | 0.0251 | 14.0 | 196 | 0.0923 | 0.7850 | | 0.0149 | 15.0 | 210 | 0.0663 | 0.8456 | | 0.0141 | 16.0 | 224 | 0.0755 | 0.8241 | | 0.0112 | 17.0 | 238 | 0.0905 | 0.7891 | | 0.0108 | 18.0 | 252 | 0.0834 | 0.8057 | | 0.0096 | 19.0 | 266 | 0.0823 | 0.8082 | | 0.0073 | 20.0 | 280 | 0.0825 | 0.8078 | | 0.0092 | 21.0 | 294 | 0.0869 | 0.7974 | | 0.0075 | 22.0 | 308 | 0.0744 | 0.8266 | | 0.0075 | 23.0 | 322 | 0.0825 | 0.8078 | | 0.0062 | 24.0 | 336 | 0.0797 | 0.8144 | | 0.0065 | 25.0 | 350 | 0.0793 | 0.8152 | | 0.007 | 26.0 | 364 | 0.0840 | 0.8043 | | 0.0067 | 27.0 | 378 | 0.0964 | 0.7753 | | 0.0064 | 28.0 | 392 | 0.0869 | 0.7976 | | 0.0063 | 29.0 | 406 | 0.0766 | 0.8215 | | 0.0057 | 30.0 | 420 | 0.0764 | 0.8219 | | 0.0057 | 31.0 | 434 | 0.0796 | 0.8145 | | 0.0054 | 32.0 | 448 | 0.0853 | 0.8012 | | 0.0044 | 33.0 | 462 | 0.0750 | 0.8253 | | 0.0072 | 34.0 | 476 | 0.0782 | 0.8179 | | 0.006 | 35.0 | 490 | 0.0867 | 0.7979 | | 0.0054 | 36.0 | 504 | 0.0819 | 0.8092 | | 0.0047 | 37.0 | 518 | 0.0839 | 0.8045 | | 0.0043 | 38.0 | 532 | 0.0764 | 0.8221 | | 0.0039 | 39.0 | 546 | 0.0728 | 0.8303 | | 0.0041 | 40.0 | 560 | 0.0755 | 0.8241 | | 0.0038 | 41.0 | 574 | 0.0729 | 0.8301 | | 0.0034 | 42.0 | 588 | 0.0781 | 0.8180 | | 0.0038 | 43.0 | 602 | 0.0762 | 0.8224 | | 0.0032 | 44.0 | 616 | 0.0777 | 0.8189 | | 0.0035 | 45.0 | 630 | 0.0776 | 0.8191 | | 0.0037 | 46.0 | 644 | 0.0765 | 0.8217 | | 0.0036 | 47.0 | 658 | 0.0766 | 0.8216 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2+cu113 - Datasets 1.18.3 - Tokenizers 0.11.0
gossminn/predict-perception-bertino-cause-concept
84c9683fb4bc837e36396b56b279bf9f90a5074e
2022-07-14T14:22:13.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
gossminn
null
gossminn/predict-perception-bertino-cause-concept
4
null
transformers
20,414
--- license: mit tags: - generated_from_trainer model-index: - name: predict-perception-bertino-cause-concept results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # predict-perception-bertino-cause-concept This model is a fine-tuned version of [indigo-ai/BERTino](https://huggingface.co/indigo-ai/BERTino) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2035 - R2: -0.3662 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 20 - eval_batch_size: 8 - seed: 1996 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 47 ### Training results | Training Loss | Epoch | Step | Validation Loss | R2 | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.3498 | 1.0 | 14 | 0.1845 | -0.2382 | | 0.2442 | 2.0 | 28 | 0.1575 | -0.0573 | | 0.1553 | 3.0 | 42 | 0.2216 | -0.4872 | | 0.0726 | 4.0 | 56 | 0.1972 | -0.3234 | | 0.0564 | 5.0 | 70 | 0.2832 | -0.9009 | | 0.0525 | 6.0 | 84 | 0.1854 | -0.2444 | | 0.0385 | 7.0 | 98 | 0.2816 | -0.8900 | | 0.0257 | 8.0 | 112 | 0.1815 | -0.2183 | | 0.03 | 9.0 | 126 | 0.3065 | -1.0576 | | 0.0275 | 10.0 | 140 | 0.1991 | -0.3367 | | 0.0175 | 11.0 | 154 | 0.2400 | -0.6110 | | 0.017 | 12.0 | 168 | 0.1915 | -0.2856 | | 0.0158 | 13.0 | 182 | 0.2008 | -0.3477 | | 0.0127 | 14.0 | 196 | 0.1932 | -0.2968 | | 0.009 | 15.0 | 210 | 0.2500 | -0.6783 | | 0.0078 | 16.0 | 224 | 0.1969 | -0.3215 | | 0.0075 | 17.0 | 238 | 0.1857 | -0.2463 | | 0.0079 | 18.0 | 252 | 0.2405 | -0.6145 | | 0.0089 | 19.0 | 266 | 0.1865 | -0.2517 | | 0.0082 | 20.0 | 280 | 0.2275 | -0.5267 | | 0.0078 | 21.0 | 294 | 0.1890 | -0.2687 | | 0.0072 | 22.0 | 308 | 0.2230 | -0.4965 | | 0.0064 | 23.0 | 322 | 0.2286 | -0.5346 | | 0.0052 | 24.0 | 336 | 0.2154 | -0.4457 | | 0.0049 | 25.0 | 350 | 0.1901 | -0.2757 | | 0.0062 | 26.0 | 364 | 0.1917 | -0.2870 | | 0.0043 | 27.0 | 378 | 0.2042 | -0.3704 | | 0.0038 | 28.0 | 392 | 0.2251 | -0.5110 | | 0.0049 | 29.0 | 406 | 0.2092 | -0.4040 | | 0.0044 | 30.0 | 420 | 0.2119 | -0.4221 | | 0.0041 | 31.0 | 434 | 0.2018 | -0.3542 | | 0.0039 | 32.0 | 448 | 0.1875 | -0.2586 | | 0.0038 | 33.0 | 462 | 0.1980 | -0.3291 | | 0.0038 | 34.0 | 476 | 0.2071 | -0.3903 | | 0.0043 | 35.0 | 490 | 0.1998 | -0.3412 | | 0.0043 | 36.0 | 504 | 0.2052 | -0.3771 | | 0.004 | 37.0 | 518 | 0.2143 | -0.4382 | | 0.004 | 38.0 | 532 | 0.1977 | -0.3273 | | 0.0039 | 39.0 | 546 | 0.2002 | -0.3439 | | 0.0034 | 40.0 | 560 | 0.2035 | -0.3659 | | 0.0036 | 41.0 | 574 | 0.1994 | -0.3387 | | 0.0029 | 42.0 | 588 | 0.2036 | -0.3667 | | 0.0032 | 43.0 | 602 | 0.2055 | -0.3797 | | 0.0029 | 44.0 | 616 | 0.2025 | -0.3593 | | 0.0027 | 45.0 | 630 | 0.2047 | -0.3743 | | 0.0033 | 46.0 | 644 | 0.2067 | -0.3877 | | 0.0027 | 47.0 | 658 | 0.2035 | -0.3662 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2+cu113 - Datasets 1.18.3 - Tokenizers 0.11.0
gossminn/predict-perception-bertino-cause-none
8c5deb7838c486280295d0aaa4e769fef969b7d7
2022-07-14T14:26:27.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
gossminn
null
gossminn/predict-perception-bertino-cause-none
4
null
transformers
20,415
--- license: mit tags: - generated_from_trainer model-index: - name: predict-perception-bertino-cause-none results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # predict-perception-bertino-cause-none This model is a fine-tuned version of [indigo-ai/BERTino](https://huggingface.co/indigo-ai/BERTino) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1988 - R2: 0.4467 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 20 - eval_batch_size: 8 - seed: 1996 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 47 ### Training results | Training Loss | Epoch | Step | Validation Loss | R2 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.56 | 1.0 | 14 | 0.3460 | 0.0372 | | 0.3752 | 2.0 | 28 | 0.3082 | 0.1423 | | 0.147 | 3.0 | 42 | 0.2299 | 0.3603 | | 0.0961 | 4.0 | 56 | 0.3254 | 0.0944 | | 0.0859 | 5.0 | 70 | 0.2650 | 0.2625 | | 0.0735 | 6.0 | 84 | 0.2430 | 0.3237 | | 0.042 | 7.0 | 98 | 0.2567 | 0.2856 | | 0.0328 | 8.0 | 112 | 0.2092 | 0.4180 | | 0.028 | 9.0 | 126 | 0.2262 | 0.3706 | | 0.0237 | 10.0 | 140 | 0.2170 | 0.3960 | | 0.0235 | 11.0 | 154 | 0.2137 | 0.4054 | | 0.0195 | 12.0 | 168 | 0.2009 | 0.4409 | | 0.0217 | 13.0 | 182 | 0.2001 | 0.4431 | | 0.0176 | 14.0 | 196 | 0.2123 | 0.4091 | | 0.0226 | 15.0 | 210 | 0.2076 | 0.4224 | | 0.019 | 16.0 | 224 | 0.1920 | 0.4657 | | 0.0122 | 17.0 | 238 | 0.2301 | 0.3598 | | 0.0121 | 18.0 | 252 | 0.2092 | 0.4178 | | 0.0112 | 19.0 | 266 | 0.2038 | 0.4329 | | 0.0081 | 20.0 | 280 | 0.2008 | 0.4411 | | 0.0079 | 21.0 | 294 | 0.1930 | 0.4631 | | 0.0083 | 22.0 | 308 | 0.2076 | 0.4222 | | 0.0061 | 23.0 | 322 | 0.2036 | 0.4334 | | 0.0057 | 24.0 | 336 | 0.1986 | 0.4472 | | 0.0059 | 25.0 | 350 | 0.2079 | 0.4215 | | 0.0082 | 26.0 | 364 | 0.2125 | 0.4087 | | 0.0093 | 27.0 | 378 | 0.2096 | 0.4168 | | 0.0061 | 28.0 | 392 | 0.2129 | 0.4076 | | 0.005 | 29.0 | 406 | 0.2054 | 0.4284 | | 0.0058 | 30.0 | 420 | 0.2024 | 0.4368 | | 0.006 | 31.0 | 434 | 0.1999 | 0.4437 | | 0.0047 | 32.0 | 448 | 0.1917 | 0.4666 | | 0.0046 | 33.0 | 462 | 0.2000 | 0.4435 | | 0.005 | 34.0 | 476 | 0.2003 | 0.4425 | | 0.0041 | 35.0 | 490 | 0.2057 | 0.4276 | | 0.0037 | 36.0 | 504 | 0.1985 | 0.4476 | | 0.0049 | 37.0 | 518 | 0.2029 | 0.4353 | | 0.0031 | 38.0 | 532 | 0.1963 | 0.4539 | | 0.0031 | 39.0 | 546 | 0.1957 | 0.4554 | | 0.0031 | 40.0 | 560 | 0.1962 | 0.4540 | | 0.0029 | 41.0 | 574 | 0.2000 | 0.4433 | | 0.0028 | 42.0 | 588 | 0.1986 | 0.4473 | | 0.0035 | 43.0 | 602 | 0.1972 | 0.4514 | | 0.0029 | 44.0 | 616 | 0.1984 | 0.4479 | | 0.0036 | 45.0 | 630 | 0.2005 | 0.4422 | | 0.0033 | 46.0 | 644 | 0.1994 | 0.4452 | | 0.0029 | 47.0 | 658 | 0.1988 | 0.4467 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2+cu113 - Datasets 1.18.3 - Tokenizers 0.11.0
gossminn/predict-perception-bertino-focus-assassin
336a000136e017003f888a039b304341033ff24d
2022-07-14T14:34:40.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
gossminn
null
gossminn/predict-perception-bertino-focus-assassin
4
null
transformers
20,416
--- license: mit tags: - generated_from_trainer model-index: - name: predict-perception-bertino-focus-assassin results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # predict-perception-bertino-focus-assassin This model is a fine-tuned version of [indigo-ai/BERTino](https://huggingface.co/indigo-ai/BERTino) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3409 - R2: 0.3205 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 20 - eval_batch_size: 8 - seed: 1996 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 47 ### Training results | Training Loss | Epoch | Step | Validation Loss | R2 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.5573 | 1.0 | 14 | 0.4856 | 0.0321 | | 0.1739 | 2.0 | 28 | 0.4735 | 0.0562 | | 0.0813 | 3.0 | 42 | 0.3416 | 0.3191 | | 0.0764 | 4.0 | 56 | 0.3613 | 0.2799 | | 0.0516 | 5.0 | 70 | 0.3264 | 0.3495 | | 0.0459 | 6.0 | 84 | 0.4193 | 0.1643 | | 0.0414 | 7.0 | 98 | 0.3502 | 0.3019 | | 0.028 | 8.0 | 112 | 0.3361 | 0.3301 | | 0.0281 | 9.0 | 126 | 0.3610 | 0.2804 | | 0.027 | 10.0 | 140 | 0.3523 | 0.2978 | | 0.0216 | 11.0 | 154 | 0.3440 | 0.3143 | | 0.0181 | 12.0 | 168 | 0.3506 | 0.3012 | | 0.013 | 13.0 | 182 | 0.3299 | 0.3424 | | 0.0116 | 14.0 | 196 | 0.3611 | 0.2803 | | 0.0118 | 15.0 | 210 | 0.3505 | 0.3013 | | 0.0139 | 16.0 | 224 | 0.3529 | 0.2967 | | 0.0099 | 17.0 | 238 | 0.3536 | 0.2952 | | 0.0096 | 18.0 | 252 | 0.3542 | 0.2941 | | 0.0107 | 19.0 | 266 | 0.3770 | 0.2486 | | 0.0088 | 20.0 | 280 | 0.3467 | 0.3091 | | 0.0065 | 21.0 | 294 | 0.3327 | 0.3369 | | 0.0073 | 22.0 | 308 | 0.3479 | 0.3066 | | 0.0062 | 23.0 | 322 | 0.3566 | 0.2893 | | 0.0063 | 24.0 | 336 | 0.3503 | 0.3019 | | 0.0057 | 25.0 | 350 | 0.3371 | 0.3282 | | 0.0049 | 26.0 | 364 | 0.3334 | 0.3355 | | 0.0045 | 27.0 | 378 | 0.3399 | 0.3225 | | 0.0049 | 28.0 | 392 | 0.3379 | 0.3266 | | 0.0049 | 29.0 | 406 | 0.3377 | 0.3268 | | 0.0055 | 30.0 | 420 | 0.3357 | 0.3309 | | 0.005 | 31.0 | 434 | 0.3394 | 0.3235 | | 0.0046 | 32.0 | 448 | 0.3432 | 0.3159 | | 0.0048 | 33.0 | 462 | 0.3427 | 0.3169 | | 0.0041 | 34.0 | 476 | 0.3450 | 0.3123 | | 0.0041 | 35.0 | 490 | 0.3436 | 0.3151 | | 0.0051 | 36.0 | 504 | 0.3394 | 0.3234 | | 0.0037 | 37.0 | 518 | 0.3370 | 0.3283 | | 0.004 | 38.0 | 532 | 0.3370 | 0.3284 | | 0.0033 | 39.0 | 546 | 0.3339 | 0.3344 | | 0.0034 | 40.0 | 560 | 0.3335 | 0.3352 | | 0.003 | 41.0 | 574 | 0.3373 | 0.3276 | | 0.0035 | 42.0 | 588 | 0.3380 | 0.3264 | | 0.0032 | 43.0 | 602 | 0.3382 | 0.3259 | | 0.0034 | 44.0 | 616 | 0.3432 | 0.3158 | | 0.003 | 45.0 | 630 | 0.3421 | 0.3181 | | 0.0027 | 46.0 | 644 | 0.3410 | 0.3203 | | 0.0037 | 47.0 | 658 | 0.3409 | 0.3205 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2+cu113 - Datasets 1.18.3 - Tokenizers 0.11.0
gossminn/predict-perception-bertino-focus-victim
8b04135e124f9727a0fc892fdd2253fffef0a824
2022-07-14T14:42:05.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
gossminn
null
gossminn/predict-perception-bertino-focus-victim
4
null
transformers
20,417
--- license: mit tags: - generated_from_trainer model-index: - name: predict-perception-bertino-focus-victim results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # predict-perception-bertino-focus-victim This model is a fine-tuned version of [indigo-ai/BERTino](https://huggingface.co/indigo-ai/BERTino) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2497 - R2: 0.6131 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 20 - eval_batch_size: 8 - seed: 1996 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 47 ### Training results | Training Loss | Epoch | Step | Validation Loss | R2 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.5438 | 1.0 | 14 | 0.4405 | 0.3175 | | 0.2336 | 2.0 | 28 | 0.2070 | 0.6792 | | 0.0986 | 3.0 | 42 | 0.2868 | 0.5555 | | 0.0907 | 4.0 | 56 | 0.2916 | 0.5481 | | 0.0652 | 5.0 | 70 | 0.2187 | 0.6611 | | 0.0591 | 6.0 | 84 | 0.2320 | 0.6406 | | 0.0478 | 7.0 | 98 | 0.2501 | 0.6125 | | 0.0347 | 8.0 | 112 | 0.2425 | 0.6243 | | 0.021 | 9.0 | 126 | 0.2670 | 0.5863 | | 0.0214 | 10.0 | 140 | 0.2853 | 0.5580 | | 0.0172 | 11.0 | 154 | 0.2726 | 0.5776 | | 0.0177 | 12.0 | 168 | 0.2629 | 0.5927 | | 0.0152 | 13.0 | 182 | 0.2396 | 0.6287 | | 0.012 | 14.0 | 196 | 0.2574 | 0.6012 | | 0.0119 | 15.0 | 210 | 0.2396 | 0.6288 | | 0.0128 | 16.0 | 224 | 0.2517 | 0.6100 | | 0.0109 | 17.0 | 238 | 0.2509 | 0.6112 | | 0.008 | 18.0 | 252 | 0.2522 | 0.6092 | | 0.0101 | 19.0 | 266 | 0.2503 | 0.6121 | | 0.0075 | 20.0 | 280 | 0.2527 | 0.6084 | | 0.0082 | 21.0 | 294 | 0.2544 | 0.6058 | | 0.0061 | 22.0 | 308 | 0.2510 | 0.6111 | | 0.006 | 23.0 | 322 | 0.2402 | 0.6279 | | 0.005 | 24.0 | 336 | 0.2539 | 0.6066 | | 0.0058 | 25.0 | 350 | 0.2438 | 0.6222 | | 0.0051 | 26.0 | 364 | 0.2439 | 0.6221 | | 0.006 | 27.0 | 378 | 0.2442 | 0.6216 | | 0.0061 | 28.0 | 392 | 0.2416 | 0.6257 | | 0.0053 | 29.0 | 406 | 0.2519 | 0.6097 | | 0.0045 | 30.0 | 420 | 0.2526 | 0.6085 | | 0.0034 | 31.0 | 434 | 0.2578 | 0.6006 | | 0.0039 | 32.0 | 448 | 0.2557 | 0.6038 | | 0.0043 | 33.0 | 462 | 0.2538 | 0.6068 | | 0.0041 | 34.0 | 476 | 0.2535 | 0.6072 | | 0.0042 | 35.0 | 490 | 0.2560 | 0.6033 | | 0.0037 | 36.0 | 504 | 0.2576 | 0.6009 | | 0.0036 | 37.0 | 518 | 0.2634 | 0.5919 | | 0.0037 | 38.0 | 532 | 0.2582 | 0.5999 | | 0.0038 | 39.0 | 546 | 0.2552 | 0.6045 | | 0.0034 | 40.0 | 560 | 0.2563 | 0.6028 | | 0.0033 | 41.0 | 574 | 0.2510 | 0.6110 | | 0.0029 | 42.0 | 588 | 0.2515 | 0.6103 | | 0.0033 | 43.0 | 602 | 0.2525 | 0.6088 | | 0.0028 | 44.0 | 616 | 0.2522 | 0.6093 | | 0.0028 | 45.0 | 630 | 0.2526 | 0.6085 | | 0.0027 | 46.0 | 644 | 0.2494 | 0.6136 | | 0.0024 | 47.0 | 658 | 0.2497 | 0.6131 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2+cu113 - Datasets 1.18.3 - Tokenizers 0.11.0
gossminn/predict-perception-bertino-focus-object
23284365f60e3c93e0b49f4fae65e42578110c18
2022-07-14T14:46:13.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
gossminn
null
gossminn/predict-perception-bertino-focus-object
4
null
transformers
20,418
--- license: mit tags: - generated_from_trainer model-index: - name: predict-perception-bertino-focus-object results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # predict-perception-bertino-focus-object This model is a fine-tuned version of [indigo-ai/BERTino](https://huggingface.co/indigo-ai/BERTino) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2766 - R2: 0.5460 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 20 - eval_batch_size: 8 - seed: 1996 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 47 ### Training results | Training Loss | Epoch | Step | Validation Loss | R2 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.4798 | 1.0 | 14 | 0.4519 | 0.2581 | | 0.2481 | 2.0 | 28 | 0.3042 | 0.5007 | | 0.12 | 3.0 | 42 | 0.3746 | 0.3851 | | 0.0969 | 4.0 | 56 | 0.3186 | 0.4770 | | 0.0907 | 5.0 | 70 | 0.3727 | 0.3882 | | 0.0673 | 6.0 | 84 | 0.2847 | 0.5327 | | 0.0457 | 7.0 | 98 | 0.3141 | 0.4844 | | 0.0431 | 8.0 | 112 | 0.3369 | 0.4470 | | 0.028 | 9.0 | 126 | 0.3039 | 0.5012 | | 0.0244 | 10.0 | 140 | 0.2964 | 0.5135 | | 0.0201 | 11.0 | 154 | 0.3072 | 0.4958 | | 0.0153 | 12.0 | 168 | 0.3049 | 0.4995 | | 0.0155 | 13.0 | 182 | 0.2924 | 0.5201 | | 0.015 | 14.0 | 196 | 0.2585 | 0.5757 | | 0.0181 | 15.0 | 210 | 0.3258 | 0.4652 | | 0.0136 | 16.0 | 224 | 0.3142 | 0.4842 | | 0.0105 | 17.0 | 238 | 0.2536 | 0.5837 | | 0.0104 | 18.0 | 252 | 0.2407 | 0.6050 | | 0.0107 | 19.0 | 266 | 0.2727 | 0.5524 | | 0.0084 | 20.0 | 280 | 0.3117 | 0.4883 | | 0.0102 | 21.0 | 294 | 0.2999 | 0.5078 | | 0.0074 | 22.0 | 308 | 0.3018 | 0.5047 | | 0.0068 | 23.0 | 322 | 0.2826 | 0.5361 | | 0.0054 | 24.0 | 336 | 0.2804 | 0.5398 | | 0.0044 | 25.0 | 350 | 0.2912 | 0.5220 | | 0.0048 | 26.0 | 364 | 0.2813 | 0.5382 | | 0.005 | 27.0 | 378 | 0.2933 | 0.5186 | | 0.0046 | 28.0 | 392 | 0.2820 | 0.5371 | | 0.004 | 29.0 | 406 | 0.2717 | 0.5541 | | 0.0054 | 30.0 | 420 | 0.2717 | 0.5540 | | 0.0042 | 31.0 | 434 | 0.2699 | 0.5570 | | 0.0033 | 32.0 | 448 | 0.2630 | 0.5684 | | 0.0038 | 33.0 | 462 | 0.2578 | 0.5767 | | 0.0032 | 34.0 | 476 | 0.2687 | 0.5589 | | 0.004 | 35.0 | 490 | 0.2737 | 0.5507 | | 0.0031 | 36.0 | 504 | 0.2753 | 0.5481 | | 0.0037 | 37.0 | 518 | 0.2819 | 0.5373 | | 0.0034 | 38.0 | 532 | 0.2759 | 0.5471 | | 0.0034 | 39.0 | 546 | 0.2835 | 0.5347 | | 0.0029 | 40.0 | 560 | 0.2814 | 0.5381 | | 0.0033 | 41.0 | 574 | 0.2801 | 0.5403 | | 0.0025 | 42.0 | 588 | 0.2759 | 0.5472 | | 0.0029 | 43.0 | 602 | 0.2790 | 0.5421 | | 0.0028 | 44.0 | 616 | 0.2801 | 0.5401 | | 0.003 | 45.0 | 630 | 0.2772 | 0.5451 | | 0.0028 | 46.0 | 644 | 0.2764 | 0.5463 | | 0.0026 | 47.0 | 658 | 0.2766 | 0.5460 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2+cu113 - Datasets 1.18.3 - Tokenizers 0.11.0
yunbaree/distilbert-base-uncased-finetuned-emotion
414e298d86f3079f8cb28f0d717b3c084ee24208
2022-07-14T16:27:55.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
yunbaree
null
yunbaree/distilbert-base-uncased-finetuned-emotion
4
null
transformers
20,419
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.924 - name: F1 type: f1 value: 0.9240032665380036 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2244 - Accuracy: 0.924 - F1: 0.9240 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.843 | 1.0 | 250 | 0.3250 | 0.906 | 0.9041 | | 0.254 | 2.0 | 500 | 0.2244 | 0.924 | 0.9240 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Team-PIXEL/pixel-base-finetuned-masakhaner-amh
624a582333d5bedd10ddb7a74217b563c19a4451
2022-07-14T19:02:29.000Z
[ "pytorch", "pixel", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
Team-PIXEL
null
Team-PIXEL/pixel-base-finetuned-masakhaner-amh
4
null
transformers
20,420
Entry not found
Sayan01/tiny-bert-cola-128-distilled
b2030f0b212182e43bf7d30e7b7d3e5799118bd0
2022-07-14T23:59:38.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Sayan01
null
Sayan01/tiny-bert-cola-128-distilled
4
null
transformers
20,421
Entry not found
CennetOguz/bert-large-uncased-finetuned-youcook_1
c9ab76b25cf229fa5085529e64160bf9200c674f
2022-07-15T00:05:07.000Z
[ "pytorch", "tensorboard", "bert", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
CennetOguz
null
CennetOguz/bert-large-uncased-finetuned-youcook_1
4
null
transformers
20,422
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-large-uncased-finetuned-youcook_1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-large-uncased-finetuned-youcook_1 This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.9929 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 5 - eval_batch_size: 5 - seed: 42 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.3915 | 1.0 | 206 | 2.1036 | | 2.0412 | 2.0 | 412 | 2.2207 | | 1.9062 | 3.0 | 618 | 1.7281 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0a0+17540c5 - Datasets 2.3.2 - Tokenizers 0.12.1
CennetOguz/bert-large-uncased-finetuned-youcook_4
52f949fd2f3153f727a4f8ce23069c728a6ce15e
2022-07-15T00:43:32.000Z
[ "pytorch", "tensorboard", "bert", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
CennetOguz
null
CennetOguz/bert-large-uncased-finetuned-youcook_4
4
null
transformers
20,423
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-large-uncased-finetuned-youcook_4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-large-uncased-finetuned-youcook_4 This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.9929 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 5 - eval_batch_size: 5 - seed: 42 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.3915 | 1.0 | 206 | 2.1036 | | 2.0412 | 2.0 | 412 | 2.2207 | | 1.9062 | 3.0 | 618 | 1.7281 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0a0+17540c5 - Datasets 2.3.2 - Tokenizers 0.12.1
Team-PIXEL/pixel-base-finetuned-mrpc
8463f234ac9e2f2404c2051913ca5aede9267a6d
2022-07-15T02:46:30.000Z
[ "pytorch", "pixel", "text-classification", "en", "dataset:glue", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
Team-PIXEL
null
Team-PIXEL/pixel-base-finetuned-mrpc
4
null
transformers
20,424
--- language: - en tags: - generated_from_trainer datasets: - glue model-index: - name: pixel-base-finetuned-mrpc results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pixel-base-finetuned-mrpc This model is a fine-tuned version of [Team-PIXEL/pixel-base](https://huggingface.co/Team-PIXEL/pixel-base) on the GLUE MRPC dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 64 - eval_batch_size: 8 - seed: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 15000 - mixed_precision_training: Apex, opt level O1 ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0 - Datasets 2.0.0 - Tokenizers 0.12.1
ecnmchedsgn/distilbert-base-uncased-finetuned-emotion
6171b643f0ec27af089a879cafebd27fe8c087b3
2022-07-15T03:04:52.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
ecnmchedsgn
null
ecnmchedsgn/distilbert-base-uncased-finetuned-emotion
4
null
transformers
20,425
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.929 - name: F1 type: f1 value: 0.9289631525394138 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2237 - Accuracy: 0.929 - F1: 0.9290 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8466 | 1.0 | 250 | 0.3299 | 0.899 | 0.8944 | | 0.2589 | 2.0 | 500 | 0.2237 | 0.929 | 0.9290 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.12.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
Team-PIXEL/pixel-base-finetuned-qqp
a90d4dbf9bf438e9cd13766286fdbd0193a1c31d
2022-07-15T02:56:49.000Z
[ "pytorch", "pixel", "text-classification", "transformers" ]
text-classification
false
Team-PIXEL
null
Team-PIXEL/pixel-base-finetuned-qqp
4
null
transformers
20,426
Entry not found
Team-PIXEL/pixel-base-finetuned-rte
2e6b09812b1cdcc8c5bf6d508d5d5d89a6d1bfa0
2022-07-15T03:00:54.000Z
[ "pytorch", "pixel", "text-classification", "en", "dataset:glue", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
Team-PIXEL
null
Team-PIXEL/pixel-base-finetuned-rte
4
null
transformers
20,427
--- language: - en tags: - generated_from_trainer datasets: - glue model-index: - name: pixel-base-finetuned-rte results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pixel-base-finetuned-rte This model is a fine-tuned version of [Team-PIXEL/pixel-base](https://huggingface.co/Team-PIXEL/pixel-base) on the GLUE RTE dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 64 - eval_batch_size: 8 - seed: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 15000 - mixed_precision_training: Apex, opt level O1 ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0 - Datasets 2.0.0 - Tokenizers 0.12.1
asahi417/lmqg-mt5_base-itquad
540123b1bd2fbac0a2f03e1f94eac39e3d3695b8
2022-07-15T05:11:58.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
asahi417
null
asahi417/lmqg-mt5_base-itquad
4
null
transformers
20,428
Entry not found
YNnnn/distilbert-base-uncased-finetuned-sst2
afbc8e4663eb04f4363f745f9318294b6321c064
2022-07-15T12:20:56.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers" ]
text-classification
false
YNnnn
null
YNnnn/distilbert-base-uncased-finetuned-sst2
4
null
transformers
20,429
Entry not found
jinwooChoi/hjw_base_25_48_1e-05
27993ea52cc8937dd014b48aa10baca852e07b4d
2022-07-15T08:07:13.000Z
[ "pytorch", "electra", "text-classification", "transformers" ]
text-classification
false
jinwooChoi
null
jinwooChoi/hjw_base_25_48_1e-05
4
null
transformers
20,430
Entry not found
darragh/swinunetr-btcv-small
f014e9c2ca59b45165bfb586f0da5002402f5d98
2022-07-15T21:00:57.000Z
[ "pytorch", "en", "dataset:BTCV", "transformers", "btcv", "medical", "swin", "license:apache-2.0" ]
null
false
darragh
null
darragh/swinunetr-btcv-small
4
null
transformers
20,431
--- language: en tags: - btcv - medical - swin license: apache-2.0 datasets: - BTCV --- # Model Overview This repository contains the code for Swin UNETR [1,2]. Swin UNETR is the state-of-the-art on Medical Segmentation Decathlon (MSD) and Beyond the Cranial Vault (BTCV) Segmentation Challenge dataset. In [1], a novel methodology is devised for pre-training Swin UNETR backbone in a self-supervised manner. We provide the option for training Swin UNETR by fine-tuning from pre-trained self-supervised weights or from scratch. The source repository for the training of these models can be found [here](https://github.com/Project-MONAI/research-contributions/tree/main/SwinUNETR/BTCV). # Installing Dependencies Dependencies for training and inference can be installed using the model requirements : ``` bash pip install -r requirements.txt ``` # Intended uses & limitations You can use the raw model for dicom segmentation, but it's mostly intended to be fine-tuned on a downstream task. Note that this model is primarily aimed at being fine-tuned on tasks which segment CAT scans or MRIs on images in dicom format. Dicom meta data mostly differs across medical facilities, so if applying to a new dataset, the model should be finetuned. # How to use To install necessary dependencies, run the below in bash. ``` git clone https://github.com/darraghdog/Project-MONAI-research-contributions pmrc pip install -r pmrc/requirements.txt cd pmrc/SwinUNETR/BTCV ``` To load the model from the hub. ``` >>> from swinunetr import SwinUnetrModelForInference >>> model = SwinUnetrModelForInference.from_pretrained('darragh/swinunetr-btcv-tiny') ``` # Limitations and bias The training data used for this model is specific to CAT scans from certain health facilities and machines. Data from other facilities may difffer in image distributions, and may require finetuning of the models for best performance. # Evaluation results We provide several pre-trained models on BTCV dataset in the following. <table> <tr> <th>Name</th> <th>Dice (overlap=0.7)</th> <th>Dice (overlap=0.5)</th> <th>Feature Size</th> <th># params (M)</th> <th>Self-Supervised Pre-trained </th> </tr> <tr> <td>Swin UNETR/Base</td> <td>82.25</td> <td>81.86</td> <td>48</td> <td>62.1</td> <td>Yes</td> </tr> <tr> <td>Swin UNETR/Small</td> <td>79.79</td> <td>79.34</td> <td>24</td> <td>15.7</td> <td>No</td> </tr> <tr> <td>Swin UNETR/Tiny</td> <td>72.05</td> <td>70.35</td> <td>12</td> <td>4.0</td> <td>No</td> </tr> </table> # Data Preparation ![image](https://lh3.googleusercontent.com/pw/AM-JKLX0svvlMdcrchGAgiWWNkg40lgXYjSHsAAuRc5Frakmz2pWzSzf87JQCRgYpqFR0qAjJWPzMQLc_mmvzNjfF9QWl_1OHZ8j4c9qrbR6zQaDJWaCLArRFh0uPvk97qAa11HtYbD6HpJ-wwTCUsaPcYvM=w1724-h522-no?authuser=0) The training data is from the [BTCV challenge dataset](https://www.synapse.org/#!Synapse:syn3193805/wiki/217752). - Target: 13 abdominal organs including 1. Spleen 2. Right Kidney 3. Left Kideny 4.Gallbladder 5.Esophagus 6. Liver 7. Stomach 8.Aorta 9. IVC 10. Portal and Splenic Veins 11. Pancreas 12.Right adrenal gland 13.Left adrenal gland. - Task: Segmentation - Modality: CT - Size: 30 3D volumes (24 Training + 6 Testing) # Training See the source repository [here](https://github.com/Project-MONAI/research-contributions/tree/main/SwinUNETR/BTCV) for information on training. # BibTeX entry and citation info If you find this repository useful, please consider citing the following papers: ``` @inproceedings{tang2022self, title={Self-supervised pre-training of swin transformers for 3d medical image analysis}, author={Tang, Yucheng and Yang, Dong and Li, Wenqi and Roth, Holger R and Landman, Bennett and Xu, Daguang and Nath, Vishwesh and Hatamizadeh, Ali}, booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition}, pages={20730--20740}, year={2022} } @article{hatamizadeh2022swin, title={Swin UNETR: Swin Transformers for Semantic Segmentation of Brain Tumors in MRI Images}, author={Hatamizadeh, Ali and Nath, Vishwesh and Tang, Yucheng and Yang, Dong and Roth, Holger and Xu, Daguang}, journal={arXiv preprint arXiv:2201.01266}, year={2022} } ``` # References [1]: Tang, Y., Yang, D., Li, W., Roth, H.R., Landman, B., Xu, D., Nath, V. and Hatamizadeh, A., 2022. Self-supervised pre-training of swin transformers for 3d medical image analysis. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 20730-20740). [2]: Hatamizadeh, A., Nath, V., Tang, Y., Yang, D., Roth, H. and Xu, D., 2022. Swin UNETR: Swin Transformers for Semantic Segmentation of Brain Tumors in MRI Images. arXiv preprint arXiv:2201.01266.
asahi417/lmqg-mt5_base-dequad
02ffc96c5b2034a6cf2c24068202c8e538ac1ae0
2022-07-15T14:01:22.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
asahi417
null
asahi417/lmqg-mt5_base-dequad
4
null
transformers
20,432
Entry not found
jhonparra18/bert-base-cased-cv-studio_name-pooler
cdbc3df68ba3705b9e19f946ef4b29457c719646
2022-07-15T16:38:17.000Z
[ "pytorch", "bert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
jhonparra18
null
jhonparra18/bert-base-cased-cv-studio_name-pooler
4
null
transformers
20,433
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert-base-cased-cv-studio_name-pooler results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-cv-studio_name-pooler This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9427 - Accuracy: 0.3881 - F1 Micro: 0.3881 - F1 Macro: 0.1563 - Precision Micro: 0.3881 - Recall Micro: 0.3881 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 20 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Micro | F1 Macro | Precision Micro | Recall Micro | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:|:--------:|:---------------:|:------------:| | 2.3164 | 0.98 | 1000 | 2.2860 | 0.2556 | 0.2556 | 0.0327 | 0.2556 | 0.2556 | | 2.2301 | 1.96 | 2000 | 2.1948 | 0.3052 | 0.3052 | 0.0791 | 0.3052 | 0.3052 | | 2.1534 | 2.93 | 3000 | 2.1321 | 0.3179 | 0.3179 | 0.0811 | 0.3179 | 0.3179 | | 2.092 | 3.91 | 4000 | 2.0889 | 0.3392 | 0.3392 | 0.1002 | 0.3392 | 0.3392 | | 2.0748 | 4.89 | 5000 | 2.0511 | 0.3541 | 0.3541 | 0.1108 | 0.3541 | 0.3541 | | 2.0555 | 5.87 | 6000 | 2.0292 | 0.3602 | 0.3602 | 0.1111 | 0.3602 | 0.3602 | | 2.0416 | 6.84 | 7000 | 2.0080 | 0.3715 | 0.3715 | 0.1287 | 0.3715 | 0.3715 | | 2.0162 | 7.82 | 8000 | 1.9921 | 0.3663 | 0.3663 | 0.1240 | 0.3663 | 0.3663 | | 1.9931 | 8.8 | 9000 | 1.9805 | 0.3746 | 0.3746 | 0.1431 | 0.3746 | 0.3746 | | 1.9644 | 9.78 | 10000 | 1.9660 | 0.3805 | 0.3805 | 0.1468 | 0.3805 | 0.3805 | | 1.9664 | 10.75 | 11000 | 1.9573 | 0.3815 | 0.3815 | 0.1461 | 0.3815 | 0.3815 | | 1.9606 | 11.73 | 12000 | 1.9508 | 0.3842 | 0.3842 | 0.1505 | 0.3842 | 0.3842 | | 1.9666 | 12.71 | 13000 | 1.9489 | 0.3859 | 0.3859 | 0.1583 | 0.3859 | 0.3859 | | 1.9507 | 13.69 | 14000 | 1.9435 | 0.3851 | 0.3851 | 0.1530 | 0.3851 | 0.3851 | | 1.9522 | 14.66 | 15000 | 1.9427 | 0.3881 | 0.3881 | 0.1563 | 0.3881 | 0.3881 | ### Framework versions - Transformers 4.19.0 - Pytorch 1.8.2+cu111 - Datasets 1.6.2 - Tokenizers 0.12.1
abdulmatinomotoso/testing_headline_generator
aa590468f437e487edf986db5ffcc2e5ea46bd70
2022-07-16T11:53:47.000Z
[ "pytorch", "tensorboard", "pegasus", "text2text-generation", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
abdulmatinomotoso
null
abdulmatinomotoso/testing_headline_generator
4
null
transformers
20,434
--- tags: - generated_from_trainer model-index: - name: testing_headline_generator results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # testing_headline_generator This model is a fine-tuned version of [google/pegasus-multi_news](https://huggingface.co/google/pegasus-multi_news) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
nbolton04/bert_model
1e756d60eb906eab8233b124427b662b3d0710c7
2022-07-16T23:24:19.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
nbolton04
null
nbolton04/bert_model
4
null
transformers
20,435
Entry not found
asahi417/lmqg-mt5_base-ruquad
cd373171a9be97472f6688dc86c6d6c955f2d528
2022-07-17T02:17:52.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
asahi417
null
asahi417/lmqg-mt5_base-ruquad
4
null
transformers
20,436
Entry not found
abdulmatinomotoso/testing_headline_generator_1
e6314d1e09ebe77ad506f1c9b3cd2f89d283127e
2022-07-17T09:55:19.000Z
[ "pytorch", "tensorboard", "pegasus", "text2text-generation", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
abdulmatinomotoso
null
abdulmatinomotoso/testing_headline_generator_1
4
null
transformers
20,437
--- tags: - generated_from_trainer model-index: - name: testing_headline_generator_1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # testing_headline_generator_1 This model is a fine-tuned version of [google/pegasus-multi_news](https://huggingface.co/google/pegasus-multi_news) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
Edresson/wav2vec2-large-100k-voxpopuli-ft-TTS-Dataset-russian
42138f73d2a98116f4448be3b1c7d369e8d97e55
2022-07-17T17:36:19.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "ru", "dataset:Common Voice", "arxiv:2204.00618", "transformers", "audio", "speech", "Russian-speech-corpus", "PyTorch", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Edresson
null
Edresson/wav2vec2-large-100k-voxpopuli-ft-TTS-Dataset-russian
4
null
transformers
20,438
--- language: ru datasets: - Common Voice metrics: - wer tags: - audio - speech - wav2vec2 - Russian-speech-corpus - automatic-speech-recognition - speech - PyTorch license: apache-2.0 model-index: - name: Edresson Casanova Wav2vec2 Large 100k Voxpopuli fine-tuned with a single-speaker dataset in Russian results: - task: name: Speech Recognition type: automatic-speech-recognition metrics: - name: Test Common Voice 7.0 WER type: wer value: 74.02 --- # Wav2vec2 Large 100k Voxpopuli fine-tuned with a single-speaker dataset in Russian [Wav2vec2 Large 100k Voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) fine-tuned in Russian using a single-speaker dataset. # Use this model ```python from transformers import AutoTokenizer, Wav2Vec2ForCTC tokenizer = AutoTokenizer.from_pretrained("Edresson/wav2vec2-large-100k-voxpopuli-ft-TTS-Dataset-russian") model = Wav2Vec2ForCTC.from_pretrained("Edresson/wav2vec2-large-100k-voxpopuli-ft-TTS-Dataset-russian") ``` # Results For the results check the [paper](https://arxiv.org/abs/2204.00618) # Example test with Common Voice Dataset ```python dataset = load_dataset("common_voice", "ru", split="test", data_dir="./cv-corpus-7.0-2021-07-21") resampler = torchaudio.transforms.Resampl(orig_freq=48_000, new_freq=16_000) def map_to_array(batch): speech, _ = torchaudio.load(batch["path"]) batch["speech"] = resampler.forward(speech.squeeze(0)).numpy() batch["sampling_rate"] = resampler.new_freq batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("Ò€ℒ", "'") return batch ``` ```python ds = dataset.map(map_to_array) result = ds.map(map_to_pred, batched=True, batch_size=1, remove_columns=list(ds.features.keys())) print(wer.compute(predictions=result["predicted"], references=result["target"])) ```
Edresson/wav2vec2-large-100k-voxpopuli-ft-TTS-Dataset-portuguese
7406a887bc04ca9bac7dd1d72fe5dc591fae035b
2022-07-17T17:37:08.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "pt", "dataset:Common Voice", "arxiv:2204.00618", "transformers", "audio", "speech", "portuguese-speech-corpus", "PyTorch", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Edresson
null
Edresson/wav2vec2-large-100k-voxpopuli-ft-TTS-Dataset-portuguese
4
null
transformers
20,439
--- language: pt datasets: - Common Voice metrics: - wer tags: - audio - speech - wav2vec2 - pt - portuguese-speech-corpus - automatic-speech-recognition - speech - PyTorch license: apache-2.0 model-index: - name: Edresson Casanova Wav2vec2 Large 100k Voxpopuli fine-tuned with a single-speaker dataset in Portuguese results: - task: name: Speech Recognition type: automatic-speech-recognition metrics: - name: Test Common Voice 7.0 WER type: wer value: 63.90 --- # Wav2vec2 Large 100k Voxpopuli fine-tuned with a single-speaker dataset plus Data Augmentation in Portuguese [Wav2vec2 Large 100k Voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) fine-tuned in Portuguese using a single-speaker dataset (TTS-Portuguese Corpus). # Use this model ```python from transformers import AutoTokenizer, Wav2Vec2ForCTC tokenizer = AutoTokenizer.from_pretrained("Edresson/wav2vec2-large-100k-voxpopuli-ft-TTS-Dataset-portuguese") model = Wav2Vec2ForCTC.from_pretrained("Edresson/wav2vec2-large-100k-voxpopuli-ft-TTS-Dataset-portuguese") ``` # Results For the results check the [paper](https://arxiv.org/abs/2204.00618) # Example test with Common Voice Dataset ```python dataset = load_dataset("common_voice", "pt", split="test", data_dir="./cv-corpus-7.0-2021-07-21") resampler = torchaudio.transforms.Resample(orig_freq=48_000, new_freq=16_000) def map_to_array(batch): speech, _ = torchaudio.load(batch["path"]) batch["speech"] = resampler.forward(speech.squeeze(0)).numpy() batch["sampling_rate"] = resampler.new_freq batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("Ò€ℒ", "'") return batch ``` ```python ds = dataset.map(map_to_array) result = ds.map(map_to_pred, batched=True, batch_size=1, remove_columns=list(ds.features.keys())) print(wer.compute(predictions=result["predicted"], references=result["target"])) ```
johnsonj561/distilbert-base-uncased-finetuned-emotion
6f17c21e124e08fcebd8b14a2a929193d268918f
2022-07-17T22:57:57.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
johnsonj561
null
johnsonj561/distilbert-base-uncased-finetuned-emotion
4
null
transformers
20,440
Entry not found
asahi417/lmqg-mt5_base-frquad
3a246da792dc4b85f406d6feb9242c5bbc18151d
2022-07-17T23:47:07.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
asahi417
null
asahi417/lmqg-mt5_base-frquad
4
null
transformers
20,441
Entry not found
uer/roberta-medium-wwm-chinese-cluecorpussmall
3afe2405c5ab6a9b6a12877636af62fcb2b34078
2022-07-18T05:47:54.000Z
[ "pytorch", "bert", "fill-mask", "zh", "dataset:CLUECorpusSmall", "arxiv:1909.05658", "arxiv:1908.08962", "transformers", "autotrain_compatible" ]
fill-mask
false
uer
null
uer/roberta-medium-wwm-chinese-cluecorpussmall
4
null
transformers
20,442
--- language: zh datasets: CLUECorpusSmall widget: - text: "εŒ—δΊ¬ζ˜―[MASK]ε›½ηš„ι¦–ιƒ½γ€‚" --- # Chinese Whole Word Masking RoBERTa Miniatures ## Model description This is the set of 6 Chinese Whole Word Masking RoBERTa models pre-trained by [UER-py](https://arxiv.org/abs/1909.05658). [Turc et al.](https://arxiv.org/abs/1908.08962) have shown that the standard BERT recipe is effective on a wide range of model sizes. Following their paper, we released the 6 Chinese Whole Word Masking RoBERTa models. In order to facilitate users to reproduce the results, we used the publicly available corpus and word segmentation tool, and provided all training details. You can download the 6 Chinese RoBERTa miniatures either from the [UER-py Github page](https://github.com/dbiir/UER-py/), or via HuggingFace from the links below: | | Link | | -------- | :-----------------------: | | **Tiny** | [**2/128 (Tiny)**][2_128] | | **Mini** | [**4/256 (Mini)**][4_256] | | **Small** | [**4/512 (Small)**][4_512] | | **Medium** | [**8/512 (Medium)**][8_512] | | **Base** | [**12/768 (Base)**][12_768] | | **Large** | [**24/1024 (Large)**][24_1024] | Here are scores on the devlopment set of six Chinese tasks: | Model | Score | douban | chnsenticorp | lcqmc | tnews(CLUE) | iflytek(CLUE) | ocnli(CLUE) | | ------------------ | :---: | :----: | :----------: | :---: | :---------: | :-----------: | :---------: | | RoBERTa-Tiny-WWM | 72.1 | 82.8 | 91.8 | 81.8 | 62.1 | 55.4 | 58.6 | | RoBERTa-Mini-WWM | 76.1 | 84.9 | 93.0 | 86.8 | 64.4 | 58.7 | 68.8 | | RoBERTa-Small-WWM | 77.3 | 86.8 | 93.8 | 87.2 | 65.2 | 59.6 | 71.4 | | RoBERTa-Medium-WWM | 78.4 | 88.2 | 94.4 | 88.8 | 66.0 | 59.9 | 73.2 | | RoBERTa-Base-WWM | 80.1 | 90.0 | 95.8 | 89.4 | 67.5 | 61.8 | 76.2 | | RoBERTa-Large-WWM | 81.0 | 90.4 | 95.8 | 90.0 | 68.5 | 62.1 | 79.1 | For each task, we selected the best fine-tuning hyperparameters from the lists below, and trained with the sequence length of 128: - epochs: 3, 5, 8 - batch sizes: 32, 64 - learning rates: 3e-5, 1e-4, 3e-4 ## How to use You can use this model directly with a pipeline for masked language modeling: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='uer/roberta-tiny-wwm-chinese-cluecorpussmall') >>> unmasker("εŒ—δΊ¬ζ˜―[MASK]ε›½ηš„ι¦–ιƒ½γ€‚") [ {'score': 0.294228732585907, 'token': 704, 'token_str': 'δΈ­', 'sequence': 'εŒ— δΊ¬ 是 δΈ­ ε›½ ηš„ ι¦– 都 。'}, {'score': 0.19691626727581024, 'token': 1266, 'token_str': 'εŒ—', 'sequence': 'εŒ— δΊ¬ 是 εŒ— ε›½ ηš„ ι¦– 都 。'}, {'score': 0.1070084273815155, 'token': 7506, 'token_str': '韩', 'sequence': 'εŒ— δΊ¬ 是 韩 ε›½ ηš„ ι¦– 都 。'}, {'score': 0.031527262181043625, 'token': 2769, 'token_str': 'ζˆ‘', 'sequence': 'εŒ— δΊ¬ 是 ζˆ‘ ε›½ ηš„ ι¦– 都 。'}, {'score': 0.023054633289575577, 'token': 1298, 'token_str': '南', 'sequence': 'εŒ— δΊ¬ 是 南 ε›½ ηš„ ι¦– 都 。'} ] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('uer/roberta-base-wwm-chinese-cluecorpussmall') model = BertModel.from_pretrained("uer/roberta-base-wwm-chinese-cluecorpussmall") text = "η”¨δ½ ε–œζ¬’ηš„δ»»δ½•ζ–‡ζœ¬ζ›Ώζ’ζˆ‘γ€‚" encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('uer/roberta-base-wwm-chinese-cluecorpussmall') model = TFBertModel.from_pretrained("uer/roberta-base-wwm-chinese-cluecorpussmall") text = "η”¨δ½ ε–œζ¬’ηš„δ»»δ½•ζ–‡ζœ¬ζ›Ώζ’ζˆ‘γ€‚" encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ## Training data [CLUECorpusSmall](https://github.com/CLUEbenchmark/CLUECorpus2020/) is used as training data. ## Training procedure Models are pre-trained by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud](https://cloud.tencent.com/). We pre-train 1,000,000 steps with a sequence length of 128 and then pre-train 250,000 additional steps with a sequence length of 512. We use the same hyper-parameters on different model sizes. [jieba](https://github.com/fxsjy/jieba) is used as word segmentation tool. Taking the case of Whole Word Masking RoBERTa-Medium Stage1: ``` python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ --vocab_path models/google_zh_vocab.txt \ --dataset_path cluecorpussmall_seq128_dataset.pt \ --processes_num 32 --seq_length 128 \ --dynamic_masking --data_processor mlm ``` ``` python3 pretrain.py --dataset_path cluecorpussmall_word_seq128_dataset.pt \ --vocab_path models/google_zh_vocab.txt \ --config_path models/bert/medium_config.json \ --output_model_path models/cluecorpussmall_wwm_roberta_medium_seq128_model.bin \ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --total_steps 1000000 --save_checkpoint_steps 100000 --report_steps 50000 \ --learning_rate 1e-4 --batch_size 64 \ --whole_word_masking \ --data_processor mlm --target mlm ``` Stage2: ``` python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ --vocab_path models/google_zh_vocab.txt \ --dataset_path cluecorpussmall_seq512_dataset.pt \ --processes_num 32 --seq_length 512 \ --dynamic_masking --data_processor mlm ``` ``` python3 pretrain.py --dataset_path cluecorpussmall_seq512_dataset.pt \ --vocab_path models/google_zh_vocab.txt \ --pretrained_model_path models/cluecorpussmall_wwm_roberta_medium_seq128_model.bin-1000000 \ --config_path models/bert/medium_config.json \ --output_model_path models/cluecorpussmall_wwm_roberta_medium_seq512_model.bin \ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --total_steps 250000 --save_checkpoint_steps 50000 --report_steps 10000 \ --learning_rate 5e-5 --batch_size 16 \ --whole_word_masking \ --data_processor mlm --target mlm ``` Finally, we convert the pre-trained model into Huggingface's format: ``` python3 scripts/convert_bert_from_uer_to_huggingface.py --input_model_path models/cluecorpussmall_wwm_roberta_medium_seq512_model.bin \ --output_model_path pytorch_model.bin \ --layers_num 8 --type mlm ``` ### BibTeX entry and citation info ``` @article{zhao2019uer, title={UER: An Open-Source Toolkit for Pre-training Models}, author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong}, journal={EMNLP-IJCNLP 2019}, pages={241}, year={2019} } ``` [2_128]:https://huggingface.co/uer/roberta-tiny-wwm-chinese-cluecorpussmall [4_256]:https://huggingface.co/uer/roberta-mini-wwm-chinese-cluecorpussmall [4_512]:https://huggingface.co/uer/roberta-small-wwm-chinese-cluecorpussmall [8_512]:https://huggingface.co/uer/roberta-medium-wwm-chinese-cluecorpussmall [12_768]:https://huggingface.co/uer/roberta-base-wwm-chinese-cluecorpussmall [24_1024]:https://huggingface.co/uer/roberta-large-wwm-chinese-cluecorpussmall
fumakurata/distilbert-base-uncased-finetuned-emotion
6f86b9405c70aad220a464bb0a1c63d0c0dc4cbd
2022-07-18T10:12:18.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
fumakurata
null
fumakurata/distilbert-base-uncased-finetuned-emotion
4
null
transformers
20,443
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.834 - name: F1 type: f1 value: 0.8171742650957551 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.5401 - Accuracy: 0.834 - F1: 0.8172 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 192 - eval_batch_size: 192 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 84 | 0.7993 | 0.74 | 0.6827 | | No log | 2.0 | 168 | 0.5401 | 0.834 | 0.8172 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
jordyvl/bert-base-cased_conll2003-CRF-first-ner
ab398a731ad05f0f6e6a570ce10c63ab39f18e78
2022-07-18T16:48:55.000Z
[ "pytorch", "tensorboard", "bert", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
null
false
jordyvl
null
jordyvl/bert-base-cased_conll2003-CRF-first-ner
4
null
transformers
20,444
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-cased_conll2003-CRF-first-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased_conll2003-CRF-first-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0546 - Precision: 0.6483 - Recall: 0.3940 - F1: 0.4902 - Accuracy: 0.9225 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.089 | 1.0 | 7021 | 0.0522 | 0.6315 | 0.3781 | 0.4730 | 0.9193 | | 0.0203 | 2.0 | 14042 | 0.0481 | 0.6587 | 0.4044 | 0.5011 | 0.9233 | | 0.0166 | 3.0 | 21063 | 0.0546 | 0.6483 | 0.3940 | 0.4902 | 0.9225 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.2+cu102 - Datasets 2.2.2 - Tokenizers 0.12.1
borjagomez/bert_model_2
916372de26193464a172dcae18bae74251931cd6
2022-07-19T10:43:04.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
borjagomez
null
borjagomez/bert_model_2
4
null
transformers
20,445
Entry not found
nbolton04/alberta_base
67634aa6acf288f41ff338837013f31a08dea7cf
2022-07-18T12:41:19.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
nbolton04
null
nbolton04/alberta_base
4
null
transformers
20,446
Entry not found
claudiovaliense/teste_claudio3
4153c0d360403e2554810bd90bc3ca37ae1be807
2022-07-18T15:31:14.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
claudiovaliense
null
claudiovaliense/teste_claudio3
4
null
transformers
20,447
Entry not found
borjagomez/alberta_base
c54ac87e0c7440df869263b319f9fdbbf68aa525
2022-07-19T14:05:51.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
borjagomez
null
borjagomez/alberta_base
4
null
transformers
20,448
Entry not found
Kayvane/distilbert-base-uncased-wandb-week-3-complaints-classifier-1024
c6cbee2e98de17860e660604867aed5229d8f460
2022-07-19T03:39:12.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:consumer-finance-complaints", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Kayvane
null
Kayvane/distilbert-base-uncased-wandb-week-3-complaints-classifier-1024
4
null
transformers
20,449
--- license: apache-2.0 tags: - generated_from_trainer datasets: - consumer-finance-complaints metrics: - accuracy - f1 - recall - precision model-index: - name: distilbert-base-uncased-wandb-week-3-complaints-classifier-1024 results: - task: name: Text Classification type: text-classification dataset: name: consumer-finance-complaints type: consumer-finance-complaints args: default metrics: - name: Accuracy type: accuracy value: 0.8166760103970236 - name: F1 type: f1 value: 0.8089132637288794 - name: Recall type: recall value: 0.8166760103970236 - name: Precision type: precision value: 0.810259366582512 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-wandb-week-3-complaints-classifier-1024 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the consumer-finance-complaints dataset. It achieves the following results on the evaluation set: - Loss: 0.5664 - Accuracy: 0.8167 - F1: 0.8089 - Recall: 0.8167 - Precision: 0.8103 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.9291066722689668e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1024 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| | 0.7592 | 0.61 | 1500 | 0.6981 | 0.7776 | 0.7495 | 0.7776 | 0.7610 | | 0.5859 | 1.22 | 3000 | 0.6082 | 0.8085 | 0.7990 | 0.8085 | 0.8005 | | 0.5228 | 1.83 | 4500 | 0.5664 | 0.8167 | 0.8089 | 0.8167 | 0.8103 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
pnr-svc/Electra-Sentiment-Analysis-Turkish
b2f024b73a58b00e81796fad8fc5a852222a5797
2022-07-18T19:44:12.000Z
[ "pytorch", "electra", "text-classification", "transformers" ]
text-classification
false
pnr-svc
null
pnr-svc/Electra-Sentiment-Analysis-Turkish
4
null
transformers
20,450
Entry not found
rifkat/uzbert
dcd519f40a75247738c064ae3e8c8234408a5fa9
2022-07-20T19:14:28.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
rifkat
null
rifkat/uzbert
4
null
transformers
20,451
Entry not found
domenicrosati/opus-mt-es-en-scielo
cd2401ceb4a330b252baedc549444421a0cc8df2
2022-07-18T22:14:58.000Z
[ "pytorch", "tensorboard", "marian", "text2text-generation", "dataset:scielo", "transformers", "translation", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
translation
false
domenicrosati
null
domenicrosati/opus-mt-es-en-scielo
4
null
transformers
20,452
--- license: apache-2.0 tags: - translation - generated_from_trainer datasets: - scielo metrics: - bleu model-index: - name: opus-mt-es-en-scielo results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: scielo type: scielo args: en-es metrics: - name: Bleu type: bleu value: 40.87878888820179 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-es-en-scielo This model is a fine-tuned version of [Helsinki-NLP/opus-mt-es-en](https://huggingface.co/Helsinki-NLP/opus-mt-es-en) on the scielo dataset. It achieves the following results on the evaluation set: - Loss: 1.2593 - Bleu: 40.8788 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | |:-------------:|:-----:|:-----:|:---------------:|:-------:| | 1.4277 | 1.0 | 10001 | 1.3473 | 40.5849 | | 1.2007 | 2.0 | 20002 | 1.3146 | 41.3308 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
Kayvane/distilbert-base-uncased-wandb-week-3-complaints-classifier-512
096d99d9861678a8631880df5daec295fe1baa15
2022-07-18T21:55:04.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:consumer-finance-complaints", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Kayvane
null
Kayvane/distilbert-base-uncased-wandb-week-3-complaints-classifier-512
4
null
transformers
20,453
--- license: apache-2.0 tags: - generated_from_trainer datasets: - consumer-finance-complaints metrics: - accuracy - f1 - recall - precision model-index: - name: distilbert-base-uncased-wandb-week-3-complaints-classifier-512 results: - task: name: Text Classification type: text-classification dataset: name: consumer-finance-complaints type: consumer-finance-complaints args: default metrics: - name: Accuracy type: accuracy value: 0.6745323887671373 - name: F1 type: f1 value: 0.6355967633316707 - name: Recall type: recall value: 0.6745323887671373 - name: Precision type: precision value: 0.6122130681567332 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-wandb-week-3-complaints-classifier-512 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the consumer-finance-complaints dataset. It achieves the following results on the evaluation set: - Loss: 1.0839 - Accuracy: 0.6745 - F1: 0.6356 - Recall: 0.6745 - Precision: 0.6122 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0007879237562376572 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 512 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| | 1.2707 | 0.61 | 1500 | 1.3009 | 0.6381 | 0.5848 | 0.6381 | 0.5503 | | 1.1348 | 1.22 | 3000 | 1.1510 | 0.6610 | 0.6178 | 0.6610 | 0.5909 | | 1.0649 | 1.83 | 4500 | 1.0839 | 0.6745 | 0.6356 | 0.6745 | 0.6122 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
Mathissimo/bert_model
4a3ea2eebdacb2e23d0a30748b9c8ab10db80775
2022-07-20T08:33:23.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
Mathissimo
null
Mathissimo/bert_model
4
null
transformers
20,454
Entry not found
martomor/bert_model
df58d85012d8d2aafcac1f72441a8bf2f641dcca
2022-07-19T18:14:56.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
martomor
null
martomor/bert_model
4
null
transformers
20,455
Entry not found
danielhou13/bert-finetuned_papers
a6b85c9c5fe16f042d2abcc194e2974ff5f0a747
2022-07-19T02:57:15.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
danielhou13
null
danielhou13/bert-finetuned_papers
4
null
transformers
20,456
Entry not found
Kayvane/distilroberta-base-wandb-week-3-complaints-classifier-512
1eb20382810dc47f156472307f69f4d5d1362172
2022-07-19T05:04:51.000Z
[ "pytorch", "roberta", "text-classification", "dataset:consumer-finance-complaints", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Kayvane
null
Kayvane/distilroberta-base-wandb-week-3-complaints-classifier-512
4
null
transformers
20,457
--- license: apache-2.0 tags: - generated_from_trainer datasets: - consumer-finance-complaints metrics: - accuracy - f1 - recall - precision model-index: - name: distilroberta-base-wandb-week-3-complaints-classifier-512 results: - task: name: Text Classification type: text-classification dataset: name: consumer-finance-complaints type: consumer-finance-complaints args: default metrics: - name: Accuracy type: accuracy value: 0.8038326283064064 - name: F1 type: f1 value: 0.791857014338201 - name: Recall type: recall value: 0.8038326283064064 - name: Precision type: precision value: 0.7922430702228043 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-wandb-week-3-complaints-classifier-512 This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the consumer-finance-complaints dataset. It achieves the following results on the evaluation set: - Loss: 0.6004 - Accuracy: 0.8038 - F1: 0.7919 - Recall: 0.8038 - Precision: 0.7922 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.7835312622444155e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 512 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| | 0.7559 | 0.61 | 1500 | 0.7307 | 0.7733 | 0.7411 | 0.7733 | 0.7286 | | 0.6361 | 1.22 | 3000 | 0.6559 | 0.7846 | 0.7699 | 0.7846 | 0.7718 | | 0.5774 | 1.83 | 4500 | 0.6004 | 0.8038 | 0.7919 | 0.8038 | 0.7922 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
danielhou13/bert-finetuned-news
7266dda9f50e327440994ee318f4eef35aec501d
2022-07-19T05:01:23.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
danielhou13
null
danielhou13/bert-finetuned-news
4
null
transformers
20,458
Entry not found
jordyvl/udpos28-en-sm-first-POS
e3a03227e7ed31535796280eb1b51f8586925155
2022-07-19T09:41:54.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
jordyvl
null
jordyvl/udpos28-en-sm-first-POS
4
null
transformers
20,459
Entry not found
google/ddpm-bedroom-256
108e9fce884967ff7b4eac68c3cb2f56e30bbd5e
2022-07-21T15:00:35.000Z
[ "diffusers", "arxiv:2006.11239", "pytorch", "unconditional-image-generation", "license:apache-2.0" ]
unconditional-image-generation
false
google
null
google/ddpm-bedroom-256
4
null
diffusers
20,460
--- license: apache-2.0 tags: - pytorch - diffusers - unconditional-image-generation --- # Denoising Diffusion Probabilistic Models (DDPM) **Paper**: [Denoising Diffusion Probabilistic Models](https://arxiv.org/abs/2006.11239) **Authors**: Jonathan Ho, Ajay Jain, Pieter Abbeel **Abstract**: *We present high quality image synthesis results using diffusion probabilistic models, a class of latent variable models inspired by considerations from nonequilibrium thermodynamics. Our best results are obtained by training on a weighted variational bound designed according to a novel connection between diffusion probabilistic models and denoising score matching with Langevin dynamics, and our models naturally admit a progressive lossy decompression scheme that can be interpreted as a generalization of autoregressive decoding. On the unconditional CIFAR10 dataset, we obtain an Inception score of 9.46 and a state-of-the-art FID score of 3.17. On 256x256 LSUN, we obtain sample quality similar to ProgressiveGAN.* ## Inference **DDPM** models can use *discrete noise schedulers* such as: - [scheduling_ddpm](https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_ddpm.py) - [scheduling_ddim](https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_ddim.py) - [scheduling_pndm](https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_pndm.py) for inference. Note that while the *ddpm* scheduler yields the highest quality, it also takes the longest. For a good trade-off between quality and inference speed you might want to consider the *ddim* or *pndm* schedulers instead. See the following code: ```python # !pip install diffusers from diffusers import DDPMPipeline, DDIMPipeline, PNDMPipeline model_id = "google/ddpm-bedroom-256" # load model and scheduler ddpm = DDPMPipeline.from_pretrained(model_id) # you can replace DDPMPipeline with DDIMPipeline or PNDMPipeline for faster inference # run pipeline in inference (sample random noise and denoise) image = ddpm()["sample"] # save image image[0].save("ddpm_generated_image.png") ``` For more in-detail information, please have a look at the [official inference example](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/diffusers_intro.ipynb) ## Training If you want to train your own model, please have a look at the [official training example](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/training_example.ipynb) ## Samples 1. ![sample_1](https://huggingface.co/google/ddpm-bedroom-256/resolve/main/images/generated_image_0.png) 2. ![sample_2](https://huggingface.co/google/ddpm-bedroom-256/resolve/main/images/generated_image_1.png) 3. ![sample_3](https://huggingface.co/google/ddpm-bedroom-256/resolve/main/images/generated_image_2.png) 4. ![sample_4](https://huggingface.co/google/ddpm-bedroom-256/resolve/main/images/generated_image_3.png)
google/ddpm-ema-cat-256
d6e79baae6343099116c4c96c0ef679c25169ab3
2022-07-21T15:00:10.000Z
[ "diffusers", "arxiv:2006.11239", "pytorch", "unconditional-image-generation", "license:apache-2.0" ]
unconditional-image-generation
false
google
null
google/ddpm-ema-cat-256
4
null
diffusers
20,461
--- license: apache-2.0 tags: - pytorch - diffusers - unconditional-image-generation --- # Denoising Diffusion Probabilistic Models (DDPM) **Paper**: [Denoising Diffusion Probabilistic Models](https://arxiv.org/abs/2006.11239) **Authors**: Jonathan Ho, Ajay Jain, Pieter Abbeel **Abstract**: *We present high quality image synthesis results using diffusion probabilistic models, a class of latent variable models inspired by considerations from nonequilibrium thermodynamics. Our best results are obtained by training on a weighted variational bound designed according to a novel connection between diffusion probabilistic models and denoising score matching with Langevin dynamics, and our models naturally admit a progressive lossy decompression scheme that can be interpreted as a generalization of autoregressive decoding. On the unconditional CIFAR10 dataset, we obtain an Inception score of 9.46 and a state-of-the-art FID score of 3.17. On 256x256 LSUN, we obtain sample quality similar to ProgressiveGAN.* ## Inference **DDPM** models can use *discrete noise schedulers* such as: - [scheduling_ddpm](https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_ddpm.py) - [scheduling_ddim](https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_ddim.py) - [scheduling_pndm](https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_pndm.py) for inference. Note that while the *ddpm* scheduler yields the highest quality, it also takes the longest. For a good trade-off between quality and inference speed you might want to consider the *ddim* or *pndm* schedulers instead. See the following code: ```python # !pip install diffusers from diffusers import DDPMPipeline, DDIMPipeline, PNDMPipeline model_id = "google/ddpm-ema-cat-256" # load model and scheduler ddpm = DDPMPipeline.from_pretrained(model_id) # you can replace DDPMPipeline with DDIMPipeline or PNDMPipeline for faster inference # run pipeline in inference (sample random noise and denoise) image = ddpm()["sample"] # save image image[0].save("ddpm_generated_image.png") ``` For more in-detail information, please have a look at the [official inference example](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/diffusers_intro.ipynb) ## Training If you want to train your own model, please have a look at the [official training example](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/training_example.ipynb) ## Samples 1. ![sample_1](https://huggingface.co/google/ddpm-ema-cat-256/resolve/main/images/generated_image_0.png) 2. ![sample_2](https://huggingface.co/google/ddpm-ema-cat-256/resolve/main/images/generated_image_1.png) 3. ![sample_3](https://huggingface.co/google/ddpm-ema-cat-256/resolve/main/images/generated_image_2.png) 4. ![sample_4](https://huggingface.co/google/ddpm-ema-cat-256/resolve/main/images/generated_image_3.png)
Tahsin-Mayeesha/t5-end2end-questions-generation
1b37dc835bd0193bced9d63b8d58130a93b2d7b1
2022-07-19T13:52:43.000Z
[ "pytorch", "t5", "text2text-generation", "dataset:squad_modified_for_t5_qg", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
Tahsin-Mayeesha
null
Tahsin-Mayeesha/t5-end2end-questions-generation
4
null
transformers
20,462
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad_modified_for_t5_qg model-index: - name: t5-end2end-questions-generation results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-end2end-questions-generation This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the squad_modified_for_t5_qg dataset. It achieves the following results on the evaluation set: - eval_loss: 1.6143 - eval_runtime: 96.0898 - eval_samples_per_second: 21.511 - eval_steps_per_second: 5.38 - epoch: 2.03 - step: 600 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
abdulmatinomotoso/testing_headline_generator_4
895431ae787a9dacdfbe95ebcf55896e8ee73892
2022-07-19T13:56:33.000Z
[ "pytorch", "tensorboard", "pegasus", "text2text-generation", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
abdulmatinomotoso
null
abdulmatinomotoso/testing_headline_generator_4
4
null
transformers
20,463
--- tags: - generated_from_trainer model-index: - name: testing_headline_generator_4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # testing_headline_generator_4 This model is a fine-tuned version of [google/pegasus-multi_news](https://huggingface.co/google/pegasus-multi_news) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 7.5919 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 7.7781 | 0.53 | 100 | 7.5919 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
jordyvl/bert-base-cased_conll2003-lowC-sm-first-ner
a3001fa798a3fb9b88a027b8a69f718585bf117f
2022-07-19T13:59:35.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
jordyvl
null
jordyvl/bert-base-cased_conll2003-lowC-sm-first-ner
4
null
transformers
20,464
Entry not found
jordyvl/bert-base-cased_conll2003-lowC-CRF-first-ner
5ec9c0f4c9f7c62b3756eaef36df2b80e91cd03b
2022-07-19T14:42:21.000Z
[ "pytorch", "tensorboard", "bert", "transformers" ]
null
false
jordyvl
null
jordyvl/bert-base-cased_conll2003-lowC-CRF-first-ner
4
null
transformers
20,465
Entry not found
jordyvl/bert-base-portuguese-cased_harem-selective-lowC-sm-first-ner
d4c8d644022b1a14b575d0241fc2bf01cce1eb0a
2022-07-19T15:08:00.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "dataset:harem", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
jordyvl
null
jordyvl/bert-base-portuguese-cased_harem-selective-lowC-sm-first-ner
4
null
transformers
20,466
--- license: mit tags: - generated_from_trainer datasets: - harem metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-portuguese-cased_harem-selective-lowC-sm-first-ner results: - task: name: Token Classification type: token-classification dataset: name: harem type: harem args: selective metrics: - name: Precision type: precision value: 0.8 - name: Recall type: recall value: 0.8764044943820225 - name: F1 type: f1 value: 0.8364611260053619 - name: Accuracy type: accuracy value: 0.9764089121887287 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-portuguese-cased_harem-selective-lowC-sm-first-ner This model is a fine-tuned version of [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on the harem dataset. It achieves the following results on the evaluation set: - Loss: 0.1160 - Precision: 0.8 - Recall: 0.8764 - F1: 0.8365 - Accuracy: 0.9764 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.055 | 1.0 | 2517 | 0.0934 | 0.81 | 0.9101 | 0.8571 | 0.9699 | | 0.0236 | 2.0 | 5034 | 0.0883 | 0.8307 | 0.8820 | 0.8556 | 0.9751 | | 0.0129 | 3.0 | 7551 | 0.1160 | 0.8 | 0.8764 | 0.8365 | 0.9764 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.2+cu102 - Datasets 2.2.2 - Tokenizers 0.12.1
charles-go/distilbert-base-uncased-finetuned-emotion
d31787e2165ad06e16fb9c7e5a494334c24555ce
2022-07-19T18:52:04.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
charles-go
null
charles-go/distilbert-base-uncased-finetuned-emotion
4
null
transformers
20,467
Entry not found
Evelyn18/roberta-base-spanish-squades-modelo-robertav1b3
f624b01bd18299924958e512f983f1077fb40d45
2022-07-19T18:51:05.000Z
[ "pytorch", "tensorboard", "roberta", "question-answering", "dataset:becasv3", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
Evelyn18
null
Evelyn18/roberta-base-spanish-squades-modelo-robertav1b3
4
null
transformers
20,468
--- tags: - generated_from_trainer datasets: - becasv3 model-index: - name: roberta-base-spanish-squades-modelo-robertav1b3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-spanish-squades-modelo-robertav1b3 This model is a fine-tuned version of [IIC/roberta-base-spanish-squades](https://huggingface.co/IIC/roberta-base-spanish-squades) on the becasv3 dataset. It achieves the following results on the evaluation set: - Loss: 2.3537 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 11 - eval_batch_size: 11 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 6 | 2.0804 | | No log | 2.0 | 12 | 1.6591 | | No log | 3.0 | 18 | 1.9973 | | No log | 4.0 | 24 | 2.1109 | | No log | 5.0 | 30 | 2.2085 | | No log | 6.0 | 36 | 2.3537 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
martomor/alberta_base
f8ab56b4acccf0c577de04b762cf0e60ee2a3b44
2022-07-20T02:37:56.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
martomor
null
martomor/alberta_base
4
null
transformers
20,469
Entry not found
Mathissimo/alberta_base
916b661d3bd6946bfbdaa77f4f7cf14643abe4ed
2022-07-20T20:20:14.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
Mathissimo
null
Mathissimo/alberta_base
4
null
transformers
20,470
Entry not found
kalpeshk2011/rankgen-t5-large-all
61c35e4cf8a254672de3ea6ed342acb8d9f5efa2
2022-07-23T16:20:48.000Z
[ "pytorch", "t5", "en", "dataset:Wikipedia", "dataset:PG19", "dataset:Project Gutenberg", "dataset:C4", "dataset:relic", "dataset:ChapterBreak", "dataset:HellaSwag", "dataset:ROCStories", "transformers", "contrastive learning", "ranking", "decoding", "metric learning", "text generation", "retrieval", "license:apache-2.0" ]
null
false
kalpeshk2011
null
kalpeshk2011/rankgen-t5-large-all
4
null
transformers
20,471
--- language: - en thumbnail: "https://pbs.twimg.com/media/FThx_rEWAAEoujW?format=jpg&name=medium" tags: - t5 - contrastive learning - ranking - decoding - metric learning - pytorch - text generation - retrieval license: "apache-2.0" datasets: - Wikipedia - PG19 - Project Gutenberg - C4 - relic - ChapterBreak - HellaSwag - ROCStories metrics: - MAUVE - human --- ## Main repository https://github.com/martiansideofthemoon/rankgen ## What is RankGen? RankGen is a suite of encoder models (100M-1.2B parameters) which map prefixes and generations from any pretrained English language model to a shared vector space. RankGen can be used to rerank multiple full-length samples from an LM, and it can also be incorporated as a scoring function into beam search to significantly improve generation quality (0.85 vs 0.77 MAUVE, 75% preference according to humans annotators who are English writers). RankGen can also be used like a dense retriever, and achieves state-of-the-art performance on [literary retrieval](https://relic.cs.umass.edu/leaderboard.html). ## Setup **Requirements** (`pip` will install these dependencies for you) Python 3.7+, `torch` (CUDA recommended), `transformers` **Installation** ``` python3.7 -m virtualenv rankgen-venv source rankgen-venv/bin/activate pip install rankgen ``` Get the data [here](https://drive.google.com/drive/folders/1DRG2ess7fK3apfB-6KoHb_azMuHbsIv4?usp=sharing) and place folder in root directory. Alternatively, use `gdown` as shown below, ``` gdown --folder https://drive.google.com/drive/folders/1DRG2ess7fK3apfB-6KoHb_azMuHbsIv4 ``` Run the test script to make sure the RankGen checkpoint has loaded correctly, ``` python -m rankgen.test_rankgen_encoder --model_path kalpeshk2011/rankgen-t5-base-all ### Expected output 0.0009239262409127233 0.0011521980725477804 ``` ## Using RankGen Loading RankGen is simple using the HuggingFace APIs (see Method-2 below), but we suggest using [`RankGenEncoder`](https://github.com/martiansideofthemoon/rankgen/blob/master/rankgen/rankgen_encoder.py), which is a small wrapper around the HuggingFace APIs for correctly preprocessing data and doing tokenization automatically. You can either download [our repository](https://github.com/martiansideofthemoon/rankgen) and install the API, or copy the implementation from [below](#rankgenencoder-implementation). #### [SUGGESTED] Method-1: Loading the model with RankGenEncoder ``` from rankgen import RankGenEncoder, RankGenGenerator rankgen_encoder = RankGenEncoder("kalpeshk2011/rankgen-t5-large-all") # Encoding vectors prefix_vectors = rankgen_encoder.encode(["This is a prefix sentence."], vectors_type="prefix") suffix_vectors = rankgen_encoder.encode(["This is a suffix sentence."], vectors_type="suffix") # Generating text # use a HuggingFace compatible language model generator = RankGenGenerator(rankgen_encoder=rankgen_encoder, language_model="gpt2-medium") inputs = ["Whatever might be the nature of the tragedy it would be over with long before this, and those moving black spots away yonder to the west, that he had discerned from the bluff, were undoubtedly the departing raiders. There was nothing left for Keith to do except determine the fate of the unfortunates, and give their bodies decent burial. That any had escaped, or yet lived, was altogether unlikely, unless, perchance, women had been in the party, in which case they would have been borne away prisoners."] # Baseline nucleus sampling print(generator.generate_single(inputs, top_p=0.9)[0][0]) # Over-generate and re-rank print(generator.overgenerate_rerank(inputs, top_p=0.9, num_samples=10)[0][0]) # Beam search print(generator.beam_search(inputs, top_p=0.9, num_samples=10, beam_size=2)[0][0]) ``` #### Method-2: Loading the model with HuggingFace APIs ``` from transformers import T5Tokenizer, AutoModel tokenizer = T5Tokenizer.from_pretrained(f"google/t5-v1_1-large") model = AutoModel.from_pretrained("kalpeshk2011/rankgen-t5-large-all", trust_remote_code=True) ``` ### RankGenEncoder Implementation ``` import tqdm from transformers import T5Tokenizer, T5EncoderModel, AutoModel class RankGenEncoder(): def __init__(self, model_path, max_batch_size=32, model_size=None, cache_dir=None): assert model_path in ["kalpeshk2011/rankgen-t5-xl-all", "kalpeshk2011/rankgen-t5-xl-pg19", "kalpeshk2011/rankgen-t5-base-all", "kalpeshk2011/rankgen-t5-large-all"] self.max_batch_size = max_batch_size self.device = 'cuda' if torch.cuda.is_available() else 'cpu' if model_size is None: if "t5-large" in model_path or "t5_large" in model_path: self.model_size = "large" elif "t5-xl" in model_path or "t5_xl" in model_path: self.model_size = "xl" else: self.model_size = "base" else: self.model_size = model_size self.tokenizer = T5Tokenizer.from_pretrained(f"google/t5-v1_1-{self.model_size}", cache_dir=cache_dir) self.model = AutoModel.from_pretrained(model_path, trust_remote_code=True) self.model.to(self.device) self.model.eval() def encode(self, inputs, vectors_type="prefix", verbose=False, return_input_ids=False): tokenizer = self.tokenizer max_batch_size = self.max_batch_size if isinstance(inputs, str): inputs = [inputs] if vectors_type == 'prefix': inputs = ['pre ' + input for input in inputs] max_length = 512 else: inputs = ['suffi ' + input for input in inputs] max_length = 128 all_embeddings = [] all_input_ids = [] for i in tqdm.tqdm(range(0, len(inputs), max_batch_size), total=(len(inputs) // max_batch_size) + 1, disable=not verbose, desc=f"Encoding {vectors_type} inputs:"): tokenized_inputs = tokenizer(inputs[i:i + max_batch_size], return_tensors="pt", padding=True) for k, v in tokenized_inputs.items(): tokenized_inputs[k] = v[:, :max_length] tokenized_inputs = tokenized_inputs.to(self.device) with torch.inference_mode(): batch_embeddings = self.model(**tokenized_inputs) all_embeddings.append(batch_embeddings) if return_input_ids: all_input_ids.extend(tokenized_inputs.input_ids.cpu().tolist()) return { "embeddings": torch.cat(all_embeddings, dim=0), "input_ids": all_input_ids } ```
kalpeshk2011/rankgen-t5-xl-pg19
ceab00d8723c2e35cc331dccd70a8cb3d83f16ce
2022-07-23T16:20:58.000Z
[ "pytorch", "t5", "en", "dataset:Wikipedia", "dataset:PG19", "dataset:Project Gutenberg", "dataset:C4", "dataset:relic", "dataset:ChapterBreak", "dataset:HellaSwag", "dataset:ROCStories", "transformers", "contrastive learning", "ranking", "decoding", "metric learning", "text generation", "retrieval", "license:apache-2.0" ]
null
false
kalpeshk2011
null
kalpeshk2011/rankgen-t5-xl-pg19
4
1
transformers
20,472
--- language: - en thumbnail: "https://pbs.twimg.com/media/FThx_rEWAAEoujW?format=jpg&name=medium" tags: - t5 - contrastive learning - ranking - decoding - metric learning - pytorch - text generation - retrieval license: "apache-2.0" datasets: - Wikipedia - PG19 - Project Gutenberg - C4 - relic - ChapterBreak - HellaSwag - ROCStories metrics: - MAUVE - human --- ## Main repository https://github.com/martiansideofthemoon/rankgen ## What is RankGen? RankGen is a suite of encoder models (100M-1.2B parameters) which map prefixes and generations from any pretrained English language model to a shared vector space. RankGen can be used to rerank multiple full-length samples from an LM, and it can also be incorporated as a scoring function into beam search to significantly improve generation quality (0.85 vs 0.77 MAUVE, 75% preference according to humans annotators who are English writers). RankGen can also be used like a dense retriever, and achieves state-of-the-art performance on [literary retrieval](https://relic.cs.umass.edu/leaderboard.html). ## Setup **Requirements** (`pip` will install these dependencies for you) Python 3.7+, `torch` (CUDA recommended), `transformers` **Installation** ``` python3.7 -m virtualenv rankgen-venv source rankgen-venv/bin/activate pip install rankgen ``` Get the data [here](https://drive.google.com/drive/folders/1DRG2ess7fK3apfB-6KoHb_azMuHbsIv4?usp=sharing) and place folder in root directory. Alternatively, use `gdown` as shown below, ``` gdown --folder https://drive.google.com/drive/folders/1DRG2ess7fK3apfB-6KoHb_azMuHbsIv4 ``` Run the test script to make sure the RankGen checkpoint has loaded correctly, ``` python -m rankgen.test_rankgen_encoder --model_path kalpeshk2011/rankgen-t5-base-all ### Expected output 0.0009239262409127233 0.0011521980725477804 ``` ## Using RankGen Loading RankGen is simple using the HuggingFace APIs (see Method-2 below), but we suggest using [`RankGenEncoder`](https://github.com/martiansideofthemoon/rankgen/blob/master/rankgen/rankgen_encoder.py), which is a small wrapper around the HuggingFace APIs for correctly preprocessing data and doing tokenization automatically. You can either download [our repository](https://github.com/martiansideofthemoon/rankgen) and install the API, or copy the implementation from [below](#rankgenencoder-implementation). #### [SUGGESTED] Method-1: Loading the model with RankGenEncoder ``` from rankgen import RankGenEncoder, RankGenGenerator rankgen_encoder = RankGenEncoder("kalpeshk2011/rankgen-t5-xl-pg19") # Encoding vectors prefix_vectors = rankgen_encoder.encode(["This is a prefix sentence."], vectors_type="prefix") suffix_vectors = rankgen_encoder.encode(["This is a suffix sentence."], vectors_type="suffix") # Generating text # use a HuggingFace compatible language model generator = RankGenGenerator(rankgen_encoder=rankgen_encoder, language_model="gpt2-medium") inputs = ["Whatever might be the nature of the tragedy it would be over with long before this, and those moving black spots away yonder to the west, that he had discerned from the bluff, were undoubtedly the departing raiders. There was nothing left for Keith to do except determine the fate of the unfortunates, and give their bodies decent burial. That any had escaped, or yet lived, was altogether unlikely, unless, perchance, women had been in the party, in which case they would have been borne away prisoners."] # Baseline nucleus sampling print(generator.generate_single(inputs, top_p=0.9)[0][0]) # Over-generate and re-rank print(generator.overgenerate_rerank(inputs, top_p=0.9, num_samples=10)[0][0]) # Beam search print(generator.beam_search(inputs, top_p=0.9, num_samples=10, beam_size=2)[0][0]) ``` #### Method-2: Loading the model with HuggingFace APIs ``` from transformers import T5Tokenizer, AutoModel tokenizer = T5Tokenizer.from_pretrained(f"google/t5-v1_1-xl") model = AutoModel.from_pretrained("kalpeshk2011/rankgen-t5-xl-pg19", trust_remote_code=True) ``` ### RankGenEncoder Implementation ``` import tqdm from transformers import T5Tokenizer, T5EncoderModel, AutoModel class RankGenEncoder(): def __init__(self, model_path, max_batch_size=32, model_size=None, cache_dir=None): assert model_path in ["kalpeshk2011/rankgen-t5-xl-all", "kalpeshk2011/rankgen-t5-xl-pg19", "kalpeshk2011/rankgen-t5-base-all", "kalpeshk2011/rankgen-t5-large-all"] self.max_batch_size = max_batch_size self.device = 'cuda' if torch.cuda.is_available() else 'cpu' if model_size is None: if "t5-large" in model_path or "t5_large" in model_path: self.model_size = "large" elif "t5-xl" in model_path or "t5_xl" in model_path: self.model_size = "xl" else: self.model_size = "base" else: self.model_size = model_size self.tokenizer = T5Tokenizer.from_pretrained(f"google/t5-v1_1-{self.model_size}", cache_dir=cache_dir) self.model = AutoModel.from_pretrained(model_path, trust_remote_code=True) self.model.to(self.device) self.model.eval() def encode(self, inputs, vectors_type="prefix", verbose=False, return_input_ids=False): tokenizer = self.tokenizer max_batch_size = self.max_batch_size if isinstance(inputs, str): inputs = [inputs] if vectors_type == 'prefix': inputs = ['pre ' + input for input in inputs] max_length = 512 else: inputs = ['suffi ' + input for input in inputs] max_length = 128 all_embeddings = [] all_input_ids = [] for i in tqdm.tqdm(range(0, len(inputs), max_batch_size), total=(len(inputs) // max_batch_size) + 1, disable=not verbose, desc=f"Encoding {vectors_type} inputs:"): tokenized_inputs = tokenizer(inputs[i:i + max_batch_size], return_tensors="pt", padding=True) for k, v in tokenized_inputs.items(): tokenized_inputs[k] = v[:, :max_length] tokenized_inputs = tokenized_inputs.to(self.device) with torch.inference_mode(): batch_embeddings = self.model(**tokenized_inputs) all_embeddings.append(batch_embeddings) if return_input_ids: all_input_ids.extend(tokenized_inputs.input_ids.cpu().tolist()) return { "embeddings": torch.cat(all_embeddings, dim=0), "input_ids": all_input_ids } ```
johanna-k/pw-canine-ameps
35e663fa99ef46194dff71ceb098193a0b81b91a
2022-07-20T07:39:18.000Z
[ "pytorch", "canine", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
johanna-k
null
johanna-k/pw-canine-ameps
4
null
transformers
20,473
Entry not found
ManqingLiu/distilbert-base-uncased-finetuned-clinc
84e7b4ff172a2a0a12669f97ecc9e97a95d79724
2022-07-20T21:02:46.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:clinc_oos", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
ManqingLiu
null
ManqingLiu/distilbert-base-uncased-finetuned-clinc
4
null
transformers
20,474
--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos args: plus metrics: - name: Accuracy type: accuracy value: 0.9170967741935484 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.7755 - Accuracy: 0.9171 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 4.2892 | 1.0 | 318 | 3.2834 | 0.7394 | | 2.6289 | 2.0 | 636 | 1.8732 | 0.8348 | | 1.5479 | 3.0 | 954 | 1.1580 | 0.8903 | | 1.0135 | 4.0 | 1272 | 0.8585 | 0.9077 | | 0.7968 | 5.0 | 1590 | 0.7755 | 0.9171 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
egirones/distilbert-base-uncased-finetuned-emotion
a029701745848d5060393f087f4163d7655b540c
2022-07-20T21:43:23.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers" ]
text-classification
false
egirones
null
egirones/distilbert-base-uncased-finetuned-emotion
4
null
transformers
20,475
Entry not found
trevorj/BART_reddit_advice_story
9d5fe77312887bfe13d0e75a5c1a93c62b8be94d
2022-07-21T05:35:30.000Z
[ "pytorch", "tensorboard", "bart", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
trevorj
null
trevorj/BART_reddit_advice_story
4
null
transformers
20,476
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: BART_reddit_advice_story results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BART_reddit_advice_story This model is a fine-tuned version of [sshleifer/distilbart-xsum-6-6](https://huggingface.co/sshleifer/distilbart-xsum-6-6) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.2552 - Rouge1: 21.9349 - Rouge2: 6.3417 - Rougel: 17.7133 - Rougelsum: 18.7199 - Gen Len: 21.092 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 3.3743 | 1.0 | 1875 | 3.2787 | 21.1275 | 5.9618 | 17.3772 | 18.317 | 20.447 | | 3.025 | 2.0 | 3750 | 3.2466 | 21.8443 | 6.2351 | 17.6358 | 18.6259 | 21.506 | | 2.7628 | 3.0 | 5625 | 3.2552 | 21.9349 | 6.3417 | 17.7133 | 18.7199 | 21.092 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
koanlp/bart-large-cnn-finetuned-news
819928a5679b918ff5856999dcc289fb33021d6b
2022-07-21T07:59:43.000Z
[ "pytorch", "bart", "text2text-generation", "dataset:multi_news", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
text2text-generation
false
koanlp
null
koanlp/bart-large-cnn-finetuned-news
4
null
transformers
20,477
--- license: mit tags: - generated_from_trainer datasets: - multi_news model-index: - name: bart-large-cnn-finetuned-news results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-cnn-finetuned-news This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on the multi_news dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 - label_smoothing_factor: 0.1 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
psato/distilbert-base-uncased-finetuned-squad
20be0b161f2dd3e86fb1fae500801850ed871004
2022-07-25T17:07:29.000Z
[ "pytorch", "distilbert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
psato
null
psato/distilbert-base-uncased-finetuned-squad
4
null
transformers
20,478
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.1552 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2264 | 1.0 | 5533 | 1.1785 | | 0.9409 | 2.0 | 11066 | 1.0934 | | 0.7492 | 3.0 | 16599 | 1.1552 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
rbiswas4/distilbert-base-uncased-finetuned-squad
8e2b4bbb0cd07d3532f4024b20df74385bb086a7
2022-07-21T17:48:26.000Z
[ "pytorch", "distilbert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
rbiswas4
null
rbiswas4/distilbert-base-uncased-finetuned-squad
4
null
transformers
20,479
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.1542 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2137 | 1.0 | 5533 | 1.1516 | | 0.9463 | 2.0 | 11066 | 1.1115 | | 0.7665 | 3.0 | 16599 | 1.1542 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.10.0 - Datasets 2.3.2 - Tokenizers 0.12.1
trevorj/BART_reddit_gaming
cf9a64b7339c66b2d202bd284547f5b7c8669293
2022-07-21T16:51:59.000Z
[ "pytorch", "tensorboard", "bart", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
trevorj
null
trevorj/BART_reddit_gaming
4
null
transformers
20,480
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: BART_reddit_gaming results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BART_reddit_gaming This model is a fine-tuned version of [sshleifer/distilbart-xsum-6-6](https://huggingface.co/sshleifer/distilbart-xsum-6-6) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.7373 - Rouge1: 18.1202 - Rouge2: 4.6045 - Rougel: 15.1273 - Rougelsum: 15.7601 - Gen Len: 18.208 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 3.864 | 1.0 | 1875 | 3.7752 | 17.3754 | 4.51 | 14.6763 | 15.22 | 16.944 | | 3.4755 | 2.0 | 3750 | 3.7265 | 17.8066 | 4.4188 | 14.9432 | 15.5396 | 18.104 | | 3.2629 | 3.0 | 5625 | 3.7373 | 18.1202 | 4.6045 | 15.1273 | 15.7601 | 18.208 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
trevorj/BART_reddit_other
8663f90cb1b0971d35bcab471041eb0dfeb5f10f
2022-07-21T18:56:10.000Z
[ "pytorch", "tensorboard", "bart", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
trevorj
null
trevorj/BART_reddit_other
4
null
transformers
20,481
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: BART_reddit_other results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BART_reddit_other This model is a fine-tuned version of [sshleifer/distilbart-xsum-6-6](https://huggingface.co/sshleifer/distilbart-xsum-6-6) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.5792 - Rouge1: 18.5705 - Rouge2: 5.0107 - Rougel: 15.2581 - Rougelsum: 16.082 - Gen Len: 19.402 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 3.7887 | 1.0 | 1875 | 3.6044 | 18.4668 | 5.182 | 15.359 | 16.169 | 19.341 | | 3.3816 | 2.0 | 3750 | 3.5628 | 18.0998 | 4.8937 | 15.0179 | 15.7615 | 17.789 | | 3.134 | 3.0 | 5625 | 3.5792 | 18.5705 | 5.0107 | 15.2581 | 16.082 | 19.402 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
NbAiLab/wav2vec2-large-voxrex-npsc-nst-bokmaal-fixed
a35227a84500a62d1df37401c3965564f9a6be75
2022-07-30T09:47:44.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
NbAiLab
null
NbAiLab/wav2vec2-large-voxrex-npsc-nst-bokmaal-fixed
4
null
transformers
20,482
Entry not found
maykcaldas/dummy-model-test
6b6d7c5490ee88915797ec7d2801fb5528e9378e
2022-07-22T19:53:05.000Z
[ "pytorch", "camembert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
maykcaldas
null
maykcaldas/dummy-model-test
4
null
transformers
20,483
bla
enoriega/rule_learning_margin_3mm_many_negatives_spanpred_attention
0bf315b387ef5f8bc438dcb599e555746a3b4699
2022-07-25T21:21:23.000Z
[ "pytorch", "tensorboard", "bert", "dataset:enoriega/odinsynth_dataset", "transformers", "generated_from_trainer", "model-index" ]
null
false
enoriega
null
enoriega/rule_learning_margin_3mm_many_negatives_spanpred_attention
4
null
transformers
20,484
--- tags: - generated_from_trainer datasets: - enoriega/odinsynth_dataset model-index: - name: rule_learning_margin_3mm_many_negatives_spanpred_attention results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # rule_learning_margin_3mm_many_negatives_spanpred_attention This model is a fine-tuned version of [enoriega/rule_softmatching](https://huggingface.co/enoriega/rule_softmatching) on the enoriega/odinsynth_dataset dataset. It achieves the following results on the evaluation set: - Loss: 0.2196 - Margin Accuracy: 0.8969 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2000 - total_train_batch_size: 8000 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Margin Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------------:| | 0.3149 | 0.16 | 60 | 0.3098 | 0.8608 | | 0.2754 | 0.32 | 120 | 0.2725 | 0.8733 | | 0.2619 | 0.48 | 180 | 0.2512 | 0.8872 | | 0.2378 | 0.64 | 240 | 0.2391 | 0.8925 | | 0.2451 | 0.8 | 300 | 0.2305 | 0.8943 | | 0.2357 | 0.96 | 360 | 0.2292 | 0.8949 | | 0.2335 | 1.12 | 420 | 0.2269 | 0.8952 | | 0.2403 | 1.28 | 480 | 0.2213 | 0.8957 | | 0.2302 | 1.44 | 540 | 0.2227 | 0.8963 | | 0.2353 | 1.6 | 600 | 0.2222 | 0.8961 | | 0.2271 | 1.76 | 660 | 0.2207 | 0.8964 | | 0.228 | 1.92 | 720 | 0.2218 | 0.8967 | | 0.2231 | 2.08 | 780 | 0.2201 | 0.8967 | | 0.2128 | 2.24 | 840 | 0.2219 | 0.8967 | | 0.2186 | 2.4 | 900 | 0.2202 | 0.8967 | | 0.2245 | 2.56 | 960 | 0.2205 | 0.8969 | | 0.2158 | 2.72 | 1020 | 0.2196 | 0.8969 | | 0.2106 | 2.88 | 1080 | 0.2192 | 0.8968 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0 - Datasets 2.2.1 - Tokenizers 0.12.1
planhanasan/hana-model
9fc435d2e72902e8dccf7d20af3d4159b13c55b5
2022-07-23T07:39:59.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
planhanasan
null
planhanasan/hana-model
4
null
transformers
20,485
Entry not found
Ahmed007/google-mt5-small-ibn-Shaddad-v1
6a3af5e608ddfe3e2a066616af6da51c453f4590
2022-07-23T11:16:10.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "Poet", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
Ahmed007
null
Ahmed007/google-mt5-small-ibn-Shaddad-v1
4
null
transformers
20,486
--- license: apache-2.0 tags: - Poet - generated_from_trainer model-index: - name: google-mt5-small-ibn-Shaddad-v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # google-mt5-small-ibn-Shaddad-v1 This model is a fine-tuned version of [google/t5-v1_1-small](https://huggingface.co/google/t5-v1_1-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0015 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.8795 | 1.0 | 1067 | 0.0011 | | 0.0505 | 2.0 | 2134 | 0.0015 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Sarmila/distilbert-base-uncased-distilled-squad
3c4c73f36528ead2435197766bed054da270c1cd
2022-07-24T18:46:37.000Z
[ "pytorch", "distilbert", "question-answering", "en", "transformers", "Not available", "autotrain_compatible" ]
question-answering
false
Sarmila
null
Sarmila/distilbert-base-uncased-distilled-squad
4
null
transformers
20,487
--- language: en tags: Not available datasets: [] metrics: Not available thumbnail: null --- ## Model description PyTorch implementation containing all the modelling needed for your NLP task. Combines a language model and a prediction head. Allows for gradient flow back to the language model component. ## Model Type not defined ## Model Details ## - version: 1 - device: cuda - number of labels: not found - number_of_parameters: 66364418 - base_model: this is a base model itself ## Training No Information ## Evaluation No Information ## quantitative_analyses not filled yet ## ethical_considerations not filled yet ## caveats_and_recommendations not filled yet
relbert/relbert-roberta-large-semeval2012-average-prompt-e-nce
b82b8c221430b5cbd355c4acb30158fc5bb62c21
2022-07-25T18:35:07.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
relbert
null
relbert/relbert-roberta-large-semeval2012-average-prompt-e-nce
4
null
transformers
20,488
Entry not found
jonatasgrosman/exp_w2v2r_de_vp-100k_gender_male-8_female-2_s564
b2900f3dca361f4c80835f4f9604590fb12fb66c
2022-07-25T04:48:13.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "de", "dataset:mozilla-foundation/common_voice_7_0", "transformers", "license:apache-2.0" ]
automatic-speech-recognition
false
jonatasgrosman
null
jonatasgrosman/exp_w2v2r_de_vp-100k_gender_male-8_female-2_s564
4
null
transformers
20,489
--- language: - de license: apache-2.0 tags: - automatic-speech-recognition - de datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_de_vp-100k_gender_male-8_female-2_s564 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
amartyobanerjee/bert-finetuned-ner
1a0606bf3bf673fc5fb371ed410f1c83649deb91
2022-07-25T08:27:35.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
amartyobanerjee
null
amartyobanerjee/bert-finetuned-ner
4
null
transformers
20,490
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9314097279472382 - name: Recall type: recall value: 0.9506900033658701 - name: F1 type: f1 value: 0.94095111185142 - name: Accuracy type: accuracy value: 0.9862541943839407 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0622 - Precision: 0.9314 - Recall: 0.9507 - F1: 0.9410 - Accuracy: 0.9863 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0821 | 1.0 | 1756 | 0.0639 | 0.9108 | 0.9371 | 0.9238 | 0.9834 | | 0.0366 | 2.0 | 3512 | 0.0585 | 0.9310 | 0.9497 | 0.9403 | 0.9857 | | 0.019 | 3.0 | 5268 | 0.0622 | 0.9314 | 0.9507 | 0.9410 | 0.9863 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
huggingtweets/bwahwtfbwah
592a06db972eaa824fb7adbc4ff149c1e000bc81
2022-07-25T11:22:47.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/bwahwtfbwah
4
null
transformers
20,491
--- language: en thumbnail: http://www.huggingtweets.com/bwahwtfbwah/1658748163123/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1543387213370638338/Xn8bL7wJ_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">πŸ€πŸ–€</div> <div style="text-align: center; font-size: 14px;">@bwahwtfbwah</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from πŸ€πŸ–€. | Data | πŸ€πŸ–€ | | --- | --- | | Tweets downloaded | 3245 | | Retweets | 501 | | Short tweets | 655 | | Tweets kept | 2089 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/p4n65kie/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bwahwtfbwah's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3pyxv8zk) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3pyxv8zk/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/bwahwtfbwah') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
jinwooChoi/SKKU_AP_SA_KBT8
4660fb99253bcf42eee631ee8bcb9fca131cb062
2022-07-26T02:01:42.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
jinwooChoi
null
jinwooChoi/SKKU_AP_SA_KBT8
4
null
transformers
20,492
Entry not found
Frikallo/output
c5fde4c607cc6afc6c3c2c069de9c04dbe962151
2022-07-26T07:08:03.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-generation
false
Frikallo
null
Frikallo/output
4
null
transformers
20,493
--- license: mit tags: - generated_from_trainer model-index: - name: output results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # output This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001372 - train_batch_size: 1 - eval_batch_size: 8 - seed: 2811898863 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.9.1+cu111 - Datasets 2.3.2 - Tokenizers 0.12.1
Frikallo/Dodo82J-vgdunkey
1cf1840925ac4b963c3cac7db323f242b378a578
2022-07-26T07:21:52.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-generation
false
Frikallo
null
Frikallo/Dodo82J-vgdunkey
4
null
transformers
20,494
--- license: mit tags: - generated_from_trainer model-index: - name: Dodo82J-vgdunkey results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Dodo82J-vgdunkey This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001372 - train_batch_size: 1 - eval_batch_size: 8 - seed: 2423377218 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.9.1+cu111 - Datasets 2.3.2 - Tokenizers 0.12.1
AykeeSalazar/vc-bantai-vit-withoutAMBI-adunest
b03019b40bffaf1f551f4977b04d0cbc84c0372f
2022-07-27T02:12:37.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "dataset:imagefolder", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
image-classification
false
AykeeSalazar
null
AykeeSalazar/vc-bantai-vit-withoutAMBI-adunest
4
null
transformers
20,495
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vc-bantai-vit-withoutAMBI-adunest results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder args: Violation-Classification---Raw-6 metrics: - name: Accuracy type: accuracy value: 0.9388646288209607 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vc-bantai-vit-withoutAMBI-adunest This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.1950 - Accuracy: 0.9389 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4821 | 0.11 | 100 | 0.7644 | 0.6714 | | 0.7032 | 0.23 | 200 | 0.5568 | 0.75 | | 0.5262 | 0.34 | 300 | 0.4440 | 0.7806 | | 0.4719 | 0.45 | 400 | 0.3893 | 0.8144 | | 0.5021 | 0.57 | 500 | 0.5129 | 0.8090 | | 0.3123 | 0.68 | 600 | 0.4536 | 0.7980 | | 0.3606 | 0.79 | 700 | 0.3679 | 0.8483 | | 0.4081 | 0.91 | 800 | 0.3335 | 0.8559 | | 0.3624 | 1.02 | 900 | 0.3149 | 0.8592 | | 0.1903 | 1.14 | 1000 | 0.3296 | 0.8766 | | 0.334 | 1.25 | 1100 | 0.2832 | 0.8897 | | 0.2731 | 1.36 | 1200 | 0.2546 | 0.8930 | | 0.311 | 1.48 | 1300 | 0.2585 | 0.8908 | | 0.3209 | 1.59 | 1400 | 0.2701 | 0.8854 | | 0.4005 | 1.7 | 1500 | 0.2643 | 0.8897 | | 0.3128 | 1.82 | 1600 | 0.2864 | 0.8843 | | 0.3376 | 1.93 | 1700 | 0.2882 | 0.8657 | | 0.2698 | 2.04 | 1800 | 0.2876 | 0.9028 | | 0.2347 | 2.16 | 1900 | 0.2405 | 0.8974 | | 0.2436 | 2.27 | 2000 | 0.2804 | 0.8886 | | 0.1764 | 2.38 | 2100 | 0.2852 | 0.8952 | | 0.1197 | 2.5 | 2200 | 0.2312 | 0.9127 | | 0.1082 | 2.61 | 2300 | 0.2133 | 0.9116 | | 0.1245 | 2.72 | 2400 | 0.2677 | 0.8985 | | 0.1335 | 2.84 | 2500 | 0.2098 | 0.9181 | | 0.2194 | 2.95 | 2600 | 0.1911 | 0.9127 | | 0.089 | 3.06 | 2700 | 0.2062 | 0.9181 | | 0.0465 | 3.18 | 2800 | 0.2414 | 0.9247 | | 0.0985 | 3.29 | 2900 | 0.1869 | 0.9389 | | 0.1113 | 3.41 | 3000 | 0.1819 | 0.9323 | | 0.1392 | 3.52 | 3100 | 0.2101 | 0.9312 | | 0.0621 | 3.63 | 3200 | 0.2201 | 0.9367 | | 0.1168 | 3.75 | 3300 | 0.1935 | 0.9389 | | 0.059 | 3.86 | 3400 | 0.1946 | 0.9367 | | 0.0513 | 3.97 | 3500 | 0.1950 | 0.9389 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
fourthbrain-demo/bert_model_reddit_tsla_tracked_actions
48925fcbd0766f87dc2168551f3db5de510736eb
2022-07-26T16:00:15.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
fourthbrain-demo
null
fourthbrain-demo/bert_model_reddit_tsla_tracked_actions
4
null
transformers
20,496
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert_model_reddit_tsla_tracked_actions results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert_model_reddit_tsla_tracked_actions This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
Shenzy2/autotrain-tk-1181244086
0c8aa0eb31862583bdb1e0653c241ec68dc58bfe
2022-07-26T13:03:18.000Z
[ "pytorch", "bert", "token-classification", "en", "dataset:Shenzy2/autotrain-data-tk", "transformers", "autotrain", "co2_eq_emissions", "autotrain_compatible" ]
token-classification
false
Shenzy2
null
Shenzy2/autotrain-tk-1181244086
4
null
transformers
20,497
--- tags: autotrain language: en widget: - text: "I love AutoTrain πŸ€—" datasets: - Shenzy2/autotrain-data-tk co2_eq_emissions: 0.004663044473485149 --- # Model Trained Using AutoTrain - Problem type: Entity Extraction - Model ID: 1181244086 - CO2 Emissions (in grams): 0.004663044473485149 ## Validation Metrics - Loss: 0.5532978773117065 - Accuracy: 0.8263097949886105 - Precision: 0.5104166666666666 - Recall: 0.4681528662420382 - F1: 0.4883720930232558 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/Shenzy2/autotrain-tk-1181244086 ``` Or Python API: ``` from transformers import AutoModelForTokenClassification, AutoTokenizer model = AutoModelForTokenClassification.from_pretrained("Shenzy2/autotrain-tk-1181244086", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("Shenzy2/autotrain-tk-1181244086", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
swtx/ernie-3.0-medium-chinese
190de263ddb59677b0c7e1216fe9ab53a7833a71
2022-07-26T15:08:03.000Z
[ "pytorch", "transformers", "license:apache-2.0" ]
null
false
swtx
null
swtx/ernie-3.0-medium-chinese
4
null
transformers
20,498
--- license: apache-2.0 ---
jperezv/bert-finetuned-ner
0b5f2b521665b8a4e537fe46c182acffbf0d4960
2022-07-26T16:09:56.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
jperezv
null
jperezv/bert-finetuned-ner
4
null
transformers
20,499
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9389414302306288 - name: Recall type: recall value: 0.9523729384045776 - name: F1 type: f1 value: 0.9456094911855628 - name: Accuracy type: accuracy value: 0.9866074056631542 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0627 - Precision: 0.9389 - Recall: 0.9524 - F1: 0.9456 - Accuracy: 0.9866 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0835 | 1.0 | 1756 | 0.0711 | 0.9200 | 0.9334 | 0.9266 | 0.9825 | | 0.0329 | 2.0 | 3512 | 0.0648 | 0.9308 | 0.9485 | 0.9396 | 0.9858 | | 0.0179 | 3.0 | 5268 | 0.0627 | 0.9389 | 0.9524 | 0.9456 | 0.9866 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1