modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
Contrastive-Tension/BERT-Large-CT-STSb
00c60a5feb749b2d2eb550813d954b0d4308e25d
2021-05-18T17:56:58.000Z
[ "pytorch", "tf", "jax", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
Contrastive-Tension
null
Contrastive-Tension/BERT-Large-CT-STSb
3
null
transformers
20,600
Entry not found
Culmenus/opus-mt-de-is-finetuned-de-to-is
faa1dd9beea86f2d6fefa3dc52bb4219072ea87a
2021-11-11T02:12:10.000Z
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Culmenus
null
Culmenus/opus-mt-de-is-finetuned-de-to-is
3
null
transformers
20,601
Entry not found
Culmenus/opus-mt-de-is-finetuned-de-to-is_nr2
1808f19b2b6b032ef95b384e55b07200c6c1839a
2021-11-11T02:20:02.000Z
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Culmenus
null
Culmenus/opus-mt-de-is-finetuned-de-to-is_nr2
3
null
transformers
20,602
Entry not found
DJSammy/bert-base-swedish-uncased_BotXO-ai
725478697a1a07f31063cd26c8f955f64538abfe
2020-10-25T03:42:06.000Z
[ "pytorch", "transformers" ]
null
false
DJSammy
null
DJSammy/bert-base-swedish-uncased_BotXO-ai
3
null
transformers
20,603
Entry not found
Davlan/bert-base-multilingual-cased-finetuned-kinyarwanda
0e7e407ca4613e493145c52979555f86bfa5b442
2021-06-15T20:11:29.000Z
[ "pytorch", "bert", "fill-mask", "rw", "transformers", "autotrain_compatible" ]
fill-mask
false
Davlan
null
Davlan/bert-base-multilingual-cased-finetuned-kinyarwanda
3
null
transformers
20,604
Hugging Face's logo --- language: rw datasets: --- # bert-base-multilingual-cased-finetuned-kinyarwanda ## Model description **bert-base-multilingual-cased-finetuned-kinyarwanda** is a **Kinyarwanda BERT** model obtained by fine-tuning **bert-base-multilingual-cased** model on Kinyarwanda language texts. It provides **better performance** than the multilingual BERT on named entity recognition datasets. Specifically, this model is a *bert-base-multilingual-cased* model that was fine-tuned on Kinyarwanda corpus. ## Intended uses & limitations #### How to use You can use this model with Transformers *pipeline* for masked token prediction. ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='Davlan/bert-base-multilingual-cased-finetuned-kinyarwanda') >>> unmasker("Twabonye ko igihe mu [MASK] hazaba hari ikirango abantu bakunze") ``` #### Limitations and bias This model is limited by its training dataset of entity-annotated news articles from a specific span of time. This may not generalize well for all use cases in different domains. ## Training data This model was fine-tuned on JW300 + [KIRNEWS](https://github.com/Andrews2017/KINNEWS-and-KIRNEWS-Corpus) + [BBC Gahuza](https://www.bbc.com/gahuza) ## Training procedure This model was trained on a single NVIDIA V100 GPU ## Eval results on Test set (F-score, average over 5 runs) Dataset| mBERT F1 | rw_bert F1 -|-|- [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) | 72.20 | 77.57 ### BibTeX entry and citation info By David Adelani ``` ```
Declan/Breitbart_model_v2
44d6d7eec8b7377b8b4c8d810bae74d32edfe9b3
2021-12-12T04:21:47.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Declan
null
Declan/Breitbart_model_v2
3
null
transformers
20,605
Entry not found
Declan/Breitbart_model_v5
7facb53fdf822f9e16f287a94034fc16865fb9d9
2021-12-15T06:54:40.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Declan
null
Declan/Breitbart_model_v5
3
null
transformers
20,606
Entry not found
Declan/Breitbart_model_v8
ac019e3afa7b0ecf31a145c57f19af7ef9e7e96b
2021-12-19T21:00:34.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Declan
null
Declan/Breitbart_model_v8
3
null
transformers
20,607
Entry not found
Declan/CNN_model_v4
f53fb9061be1b9cfa4adfa726a69f4dfbaa623a7
2021-12-15T12:30:03.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Declan
null
Declan/CNN_model_v4
3
null
transformers
20,608
Entry not found
Declan/CNN_model_v5
fcb59084ad3ee2ae125867b5e52ac8dbc0ef28b3
2021-12-15T13:11:12.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Declan
null
Declan/CNN_model_v5
3
null
transformers
20,609
Entry not found
Declan/FoxNews_model_v4
d7af62234c0e9766828facbf96f5f1da5636faad
2021-12-15T15:17:50.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Declan
null
Declan/FoxNews_model_v4
3
null
transformers
20,610
Entry not found
Declan/FoxNews_model_v6
ecabd1119f31b7954c6c0e95915b34cdf01f6532
2021-12-19T12:03:32.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Declan
null
Declan/FoxNews_model_v6
3
null
transformers
20,611
Entry not found
Declan/FoxNews_model_v8
902408c9312e23a08f208b69a259e792fcfcc54f
2021-12-19T22:28:52.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Declan
null
Declan/FoxNews_model_v8
3
null
transformers
20,612
Entry not found
Declan/Politico_model_v2
bf5c49721e2ad75db458df7e71180a588fd847bb
2021-12-16T05:05:39.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Declan
null
Declan/Politico_model_v2
3
null
transformers
20,613
Entry not found
Declan/Reuters_model_v1
27fee32dbb0f0e4154e93859f1d733dfb10fa676
2021-12-14T20:08:22.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Declan
null
Declan/Reuters_model_v1
3
null
transformers
20,614
Entry not found
Declan/WallStreetJournal_model_v2
7c67b52f4b474928f0c17f3efbe1ce76bcc9bc59
2021-12-17T23:19:32.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Declan
null
Declan/WallStreetJournal_model_v2
3
null
transformers
20,615
Entry not found
Declan/WallStreetJournal_model_v3
5096400b17e35dad4c4daa8c8d8cc25983ca9a5f
2021-12-18T00:14:35.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Declan
null
Declan/WallStreetJournal_model_v3
3
null
transformers
20,616
Entry not found
DeltaHub/adapter_t5-3b_cola
ab879b0c2c749255fcf5c864810d82b483a1b3f6
2022-02-09T13:46:34.000Z
[ "pytorch", "transformers" ]
null
false
DeltaHub
null
DeltaHub/adapter_t5-3b_cola
3
null
transformers
20,617
Entry not found
DeskDown/MarianMixFT_en-hi
9e0244109a2836b1b4b58e78d08e93405a6c8da0
2022-01-14T23:57:26.000Z
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
DeskDown
null
DeskDown/MarianMixFT_en-hi
3
null
transformers
20,618
Entry not found
DeskDown/MarianMixFT_en-vi
4ea0a16201d5cd31fb0783b3d43164188e3d9f71
2022-01-14T22:59:35.000Z
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
DeskDown
null
DeskDown/MarianMixFT_en-vi
3
null
transformers
20,619
Entry not found
Dipl0/test_paraphrase_fr
58c93d2515b9c88705b98d8e73195094da8b1b37
2021-08-29T16:12:18.000Z
[ "pytorch" ]
null
false
Dipl0
null
Dipl0/test_paraphrase_fr
3
null
null
20,620
Entry not found
DrishtiSharma/wav2vec2-large-xls-r-300m-hsb-v3
897581648c0cbd56d18c8b28f8aa5088aecd5935
2022-03-24T11:56:50.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "hsb", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
DrishtiSharma
null
DrishtiSharma/wav2vec2-large-xls-r-300m-hsb-v3
3
null
transformers
20,621
--- language: - hsb license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - hsb - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-large-xls-r-300m-hsb-v3 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: hsb metrics: - name: Test WER type: wer value: 0.4763681592039801 - name: Test CER type: cer value: 0.11194945177476305 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: hsb metrics: - name: Test WER type: wer value: NA - name: Test CER type: cer value: NA --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-hsb-v3 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - HSB dataset. It achieves the following results on the evaluation set: - Loss: 0.6549 - Wer: 0.4827 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-hsb-v3 --dataset mozilla-foundation/common_voice_8_0 --config hsb --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data Upper Sorbian (hsb) language not found in speech-recognition-community-v2/dev_data! ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00045 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 8.8951 | 3.23 | 100 | 3.6396 | 1.0 | | 3.314 | 6.45 | 200 | 3.2331 | 1.0 | | 3.1931 | 9.68 | 300 | 3.0947 | 0.9906 | | 1.7079 | 12.9 | 400 | 0.8865 | 0.8499 | | 0.6859 | 16.13 | 500 | 0.7994 | 0.7529 | | 0.4804 | 19.35 | 600 | 0.7783 | 0.7069 | | 0.3506 | 22.58 | 700 | 0.6904 | 0.6321 | | 0.2695 | 25.81 | 800 | 0.6519 | 0.5926 | | 0.222 | 29.03 | 900 | 0.7041 | 0.5720 | | 0.1828 | 32.26 | 1000 | 0.6608 | 0.5513 | | 0.1474 | 35.48 | 1100 | 0.7129 | 0.5319 | | 0.1269 | 38.71 | 1200 | 0.6664 | 0.5056 | | 0.1077 | 41.94 | 1300 | 0.6712 | 0.4942 | | 0.0934 | 45.16 | 1400 | 0.6467 | 0.4879 | | 0.0819 | 48.39 | 1500 | 0.6549 | 0.4827 | ### Framework versions - Transformers 4.16.1 - Pytorch 1.10.0+cu111 - Datasets 1.18.2 - Tokenizers 0.11.0
DrishtiSharma/wav2vec2-large-xls-r-300m-mr-v2
24ad8b97d33c46f2efce28177aa7a384b6470c51
2022-03-24T11:54:45.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "mr", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
DrishtiSharma
null
DrishtiSharma/wav2vec2-large-xls-r-300m-mr-v2
3
null
transformers
20,622
--- language: - mr license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - mr - robust-speech-event - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-large-xls-r-300m-mr-v2 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: mr metrics: - name: Test WER type: wer value: 0.49378259125551544 - name: Test CER type: cer value: 0.12470799640610962 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: mr metrics: - name: Test WER type: wer value: NA - name: Test CER type: cer value: NA --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-mr-v2 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - MR dataset. It achieves the following results on the evaluation set: - Loss: 0.8729 - Wer: 0.4942 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-mr-v2 --dataset mozilla-foundation/common_voice_8_0 --config mr --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-mr-v2 --dataset speech-recognition-community-v2/dev_data --config mr --split validation --chunk_length_s 10 --stride_length_s 1 Note: Marathi language not found in speech-recognition-community-v2/dev_data! ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000333 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 8.4934 | 9.09 | 200 | 3.7326 | 1.0 | | 3.4234 | 18.18 | 400 | 3.3383 | 0.9996 | | 3.2628 | 27.27 | 600 | 2.7482 | 0.9992 | | 1.7743 | 36.36 | 800 | 0.6755 | 0.6787 | | 1.0346 | 45.45 | 1000 | 0.6067 | 0.6193 | | 0.8137 | 54.55 | 1200 | 0.6228 | 0.5612 | | 0.6637 | 63.64 | 1400 | 0.5976 | 0.5495 | | 0.5563 | 72.73 | 1600 | 0.7009 | 0.5383 | | 0.4844 | 81.82 | 1800 | 0.6662 | 0.5287 | | 0.4057 | 90.91 | 2000 | 0.6911 | 0.5303 | | 0.3582 | 100.0 | 2200 | 0.7207 | 0.5327 | | 0.3163 | 109.09 | 2400 | 0.7107 | 0.5118 | | 0.2761 | 118.18 | 2600 | 0.7538 | 0.5118 | | 0.2415 | 127.27 | 2800 | 0.7850 | 0.5178 | | 0.2127 | 136.36 | 3000 | 0.8016 | 0.5034 | | 0.1873 | 145.45 | 3200 | 0.8302 | 0.5187 | | 0.1723 | 154.55 | 3400 | 0.9085 | 0.5223 | | 0.1498 | 163.64 | 3600 | 0.8396 | 0.5126 | | 0.1425 | 172.73 | 3800 | 0.8776 | 0.5094 | | 0.1258 | 181.82 | 4000 | 0.8651 | 0.5014 | | 0.117 | 190.91 | 4200 | 0.8772 | 0.4970 | | 0.1093 | 200.0 | 4400 | 0.8729 | 0.4942 | ### Framework versions - Transformers 4.16.1 - Pytorch 1.10.0+cu111 - Datasets 1.18.2 - Tokenizers 0.11.0
DrishtiSharma/wav2vec2-xls-r-300m-pa-IN-r5
255273d160eb27ccf5114a81d72916e3588d060b
2022-03-24T11:57:05.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "pa-IN", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
DrishtiSharma
null
DrishtiSharma/wav2vec2-xls-r-300m-pa-IN-r5
3
null
transformers
20,623
--- language: - pa-IN license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - pa-IN - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-xls-r-300m-pa-IN-r5 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: pa-IN metrics: - name: Test WER type: wer value: 0.4186593492747942 - name: Test CER type: cer value: 0.13301322550753938 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: pa-IN metrics: - name: Test WER type: wer value: NA - name: Test CER type: cer value: NA --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - PA-IN dataset. It achieves the following results on the evaluation set: - Loss: 0.8881 - Wer: 0.4175 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-xls-r-300m-pa-IN-r5 --dataset mozilla-foundation/common_voice_8_0 --config pa-IN --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data Punjabi language isn't available in speech-recognition-community-v2/dev_data ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000111 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 200.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 10.695 | 18.52 | 500 | 3.5681 | 1.0 | | 3.2718 | 37.04 | 1000 | 2.3081 | 0.9643 | | 0.8727 | 55.56 | 1500 | 0.7227 | 0.5147 | | 0.3349 | 74.07 | 2000 | 0.7498 | 0.4959 | | 0.2134 | 92.59 | 2500 | 0.7779 | 0.4720 | | 0.1445 | 111.11 | 3000 | 0.8120 | 0.4594 | | 0.1057 | 129.63 | 3500 | 0.8225 | 0.4610 | | 0.0826 | 148.15 | 4000 | 0.8307 | 0.4351 | | 0.0639 | 166.67 | 4500 | 0.8967 | 0.4316 | | 0.0528 | 185.19 | 5000 | 0.8875 | 0.4238 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
DrishtiSharma/wav2vec2-xls-r-myv-a1
59ffc43f72eb1b17da36b326b42937154805dc05
2022-03-24T11:57:14.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "myv", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
DrishtiSharma
null
DrishtiSharma/wav2vec2-xls-r-myv-a1
3
null
transformers
20,624
--- language: - myv license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - myv - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-xls-r-myv-a1 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: myv metrics: - name: Test WER type: wer value: 0.6514672686230248 - name: Test CER type: cer value: 0.17226131905088124 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: vot metrics: - name: Test WER type: wer value: NA - name: Test CER type: cer value: NA --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - MYV dataset. It achieves the following results on the evaluation set: - Loss: 1.0356 - Wer: 0.6524 ### Evaluation Commands **1. To evaluate on mozilla-foundation/common_voice_8_0 with test split** python eval.py --model_id DrishtiSharma/wav2vec2-xls-r-myv-a1 --dataset mozilla-foundation/common_voice_8_0 --config myv --split test --log_outputs **2. To evaluate on speech-recognition-community-v2/dev_data** Erzya language not found in speech-recognition-community-v2/dev_data ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0004 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 800 - num_epochs: 200.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:------:| | 5.649 | 9.62 | 500 | 3.0038 | 1.0 | | 1.6272 | 19.23 | 1000 | 0.7362 | 0.7819 | | 1.1354 | 28.85 | 1500 | 0.6410 | 0.7111 | | 1.0424 | 38.46 | 2000 | 0.6907 | 0.7431 | | 0.9293 | 48.08 | 2500 | 0.7249 | 0.7102 | | 0.8246 | 57.69 | 3000 | 0.7422 | 0.6966 | | 0.7837 | 67.31 | 3500 | 0.7413 | 0.6813 | | 0.7147 | 76.92 | 4000 | 0.7873 | 0.6930 | | 0.6276 | 86.54 | 4500 | 0.8038 | 0.6677 | | 0.6041 | 96.15 | 5000 | 0.8240 | 0.6831 | | 0.5336 | 105.77 | 5500 | 0.8748 | 0.6749 | | 0.4705 | 115.38 | 6000 | 0.9006 | 0.6497 | | 0.43 | 125.0 | 6500 | 0.8954 | 0.6551 | | 0.3859 | 134.62 | 7000 | 0.9074 | 0.6614 | | 0.3342 | 144.23 | 7500 | 0.9693 | 0.6560 | | 0.3155 | 153.85 | 8000 | 1.0073 | 0.6691 | | 0.2673 | 163.46 | 8500 | 1.0170 | 0.6632 | | 0.2409 | 173.08 | 9000 | 1.0304 | 0.6709 | | 0.2189 | 182.69 | 9500 | 0.9965 | 0.6546 | | 0.1973 | 192.31 | 10000 | 1.0360 | 0.6551 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0 ### Evaluation Command !python eval.py \ --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-myv-v1 \ --dataset mozilla-foundation/common_voice_8_0 --config myv --split test --log_outputs
DrishtiSharma/wav2vec2-xls-r-pa-IN-a1
f12cae881030694a5e0fda141fde53ef17020c59
2022-02-05T21:58:25.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "pa-IN", "dataset:common_voice", "transformers", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
DrishtiSharma
null
DrishtiSharma/wav2vec2-xls-r-pa-IN-a1
3
null
transformers
20,625
--- language: - pa-IN license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer datasets: - common_voice model-index: - name: '' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - PA-IN dataset. It achieves the following results on the evaluation set: - Loss: 1.1508 - Wer: 0.4908 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1500 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.5841 | 9.26 | 500 | 3.2514 | 0.9941 | | 0.3992 | 18.52 | 1000 | 0.8790 | 0.6107 | | 0.2409 | 27.78 | 1500 | 1.0012 | 0.6366 | | 0.1447 | 37.04 | 2000 | 1.0167 | 0.6276 | | 0.1109 | 46.3 | 2500 | 1.0638 | 0.5653 | | 0.0797 | 55.56 | 3000 | 1.1447 | 0.5715 | | 0.0636 | 64.81 | 3500 | 1.1503 | 0.5316 | | 0.0466 | 74.07 | 4000 | 1.2227 | 0.5386 | | 0.0372 | 83.33 | 4500 | 1.1214 | 0.5225 | | 0.0239 | 92.59 | 5000 | 1.1375 | 0.4998 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
Duugu/alexia-bot-test
2f97f44ffa4de52075270de0221f9517492d3d35
2021-09-19T13:18:43.000Z
[ "pytorch", "gpt_neo", "text-generation", "transformers" ]
text-generation
false
Duugu
null
Duugu/alexia-bot-test
3
null
transformers
20,626
# Alexia Bot Testing
EEE/DialoGPT-small-yoda
a3ecf50119d57d94b0d93dd18dbacd6474da0a75
2021-09-22T11:07:59.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
EEE
null
EEE/DialoGPT-small-yoda
3
null
transformers
20,627
--- tags: - conversational --- # Yoda DialoGPT Model
Ebtihal/AraBertMo_base_V4
efdc62dbb58b3e4e04c96df0bcdb74b727f251e7
2022-03-15T19:13:24.000Z
[ "pytorch", "bert", "fill-mask", "ar", "dataset:OSCAR", "transformers", "Fill-Mask", "autotrain_compatible" ]
fill-mask
false
Ebtihal
null
Ebtihal/AraBertMo_base_V4
3
null
transformers
20,628
--- language: ar tags: Fill-Mask datasets: OSCAR widget: - text: " السلام عليكم ورحمة[MASK] وبركاتة" - text: " اهلا وسهلا بكم في [MASK] من سيربح المليون" - text: " مرحبا بك عزيزي الزائر [MASK] موقعنا " --- # Arabic BERT Model **AraBERTMo** is an Arabic pre-trained language model based on [Google's BERT architechture](https://github.com/google-research/bert). AraBERTMo_base uses the same BERT-Base config. AraBERTMo_base now comes in 10 new variants All models are available on the `HuggingFace` model page under the [Ebtihal](https://huggingface.co/Ebtihal/) name. Checkpoints are available in PyTorch formats. ## Pretraining Corpus `AraBertMo_base_V4' model was pre-trained on ~3 million words: - [OSCAR](https://traces1.inria.fr/oscar/) - Arabic version "unshuffled_deduplicated_ar". ## Training results this model achieves the following results: | Task | Num examples | Num Epochs | Batch Size | steps | Wall time | training loss| |:----:|:----:|:----:|:----:|:-----:|:----:|:-----:| | Fill-Mask| 40032| 4 | 64 | 2500 | 5h 10m 20s | 7.6544 | ## Load Pretrained Model You can use this model by installing `torch` or `tensorflow` and Huggingface library `transformers`. And you can use it directly by initializing it like this: ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Ebtihal/AraBertMo_base_V4") model = AutoModelForMaskedLM.from_pretrained("Ebtihal/AraBertMo_base_V4") ``` ## This model was built for master's degree research in an organization: - [University of kufa](https://uokufa.edu.iq/). - [Faculty of Computer Science and Mathematics](https://mathcomp.uokufa.edu.iq/). - **Department of Computer Science**
Ebtihal/AraDiaBERT_V3
7a609a1f38bfec4571bd589cb522f3753e5df51f
2021-10-30T08:44:38.000Z
[ "pytorch", "bert", "text-generation", "transformers" ]
text-generation
false
Ebtihal
null
Ebtihal/AraDiaBERT_V3
3
null
transformers
20,629
Entry not found
Ebtihal/Aurora
1ec75513bf9344e280091e9667abe575e083628a
2021-07-11T23:53:52.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Ebtihal
null
Ebtihal/Aurora
3
null
transformers
20,630
Entry not found
Einmalumdiewelt/PegasusXSUM_GNAD
8e7dc2eeebfb56524a9f007233bb96114a6c4fff
2022-01-12T21:51:11.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Einmalumdiewelt
null
Einmalumdiewelt/PegasusXSUM_GNAD
3
null
transformers
20,631
Entry not found
Eunooeh/test
6e76518b86568aed96a61927f30e2b83f9d0739c
2021-09-30T06:36:14.000Z
[ "pytorch", "bert", "pretraining", "transformers" ]
null
false
Eunooeh
null
Eunooeh/test
3
null
transformers
20,632
Entry not found
Fidlobabovic/beta-kvantorium-small
acfb6ee8589591d6f5d2937137636b2691afbe7c
2021-05-20T11:50:54.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Fidlobabovic
null
Fidlobabovic/beta-kvantorium-small
3
null
transformers
20,633
Beta-kavntorium-simple-small is a transformers model RoBerta pretrained on a large corpus of Russion kvantorim data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with objective: Automate communication with the Quantorium community and mentors. https://sun9-49.userapi.com/impg/CIJZKA_r9xoLYd47Lvjv_8jyu6epadPyergP3Q/zw3J_E6IlJo.jpg?size=546x385&quality=96&sign=139fa29b864d36958feab4731cc684dc&type=album
Filosofas/DialoGPT-medium-PALPATINE2
33bea9fb02eb6aa26d0943c20817d5bcbe2f095e
2022-01-16T16:06:07.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Filosofas
null
Filosofas/DialoGPT-medium-PALPATINE2
3
null
transformers
20,634
--- tags: - conversational --- # PALPATINE DialoGPT Model
Firat/albert-base-v2-finetuned-squad
b069240bc30bdd0d6d2126fa5274d75d8a4e1f84
2022-01-11T09:15:49.000Z
[ "pytorch", "albert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
Firat
null
Firat/albert-base-v2-finetuned-squad
3
null
transformers
20,635
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: albert-base-v2-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # albert-base-v2-finetuned-squad This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 0.9901 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.8584 | 1.0 | 5540 | 0.9056 | | 0.6473 | 2.0 | 11080 | 0.8975 | | 0.4801 | 3.0 | 16620 | 0.9901 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1 - Datasets 1.17.0 - Tokenizers 0.10.3
Firat/roberta-base-finetuned-squad
19505872759531fd835455069fa3ae50175907dd
2022-01-09T22:12:48.000Z
[ "pytorch", "roberta", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
question-answering
false
Firat
null
Firat/roberta-base-finetuned-squad
3
null
transformers
20,636
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: roberta-base-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-finetuned-squad This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 0.8953 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.8926 | 1.0 | 5536 | 0.8694 | | 0.6821 | 2.0 | 11072 | 0.8428 | | 0.5335 | 3.0 | 16608 | 0.8953 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1 - Datasets 1.17.0 - Tokenizers 0.10.3
For/sheldonbot
8e6de275bbf08d6e8ff7400adb97d9eb2eef21bf
2021-06-02T15:54:07.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
For
null
For/sheldonbot
3
null
transformers
20,637
--- tags: - conversational --- #
FranzStrauss/ponet-base-uncased
3b4adf28ad56c7ac6e866bbf75157d8e09803208
2021-12-31T17:14:32.000Z
[ "pytorch", "ponet", "transformers" ]
null
false
FranzStrauss
null
FranzStrauss/ponet-base-uncased
3
null
transformers
20,638
Entry not found
GKLMIP/bert-khmer-small-uncased-tokenized
c942251fb0d99c8332584818b22d5d592f717cee
2021-07-31T04:53:16.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
GKLMIP
null
GKLMIP/bert-khmer-small-uncased-tokenized
3
null
transformers
20,639
https://github.com/GKLMIP/Pretrained-Models-For-Khmer If you use our model, please consider citing our paper: ``` @article{, author="Jiang, Shengyi and Fu, Sihui and Lin, Nankai and Fu, Yingwen", title="Pre-trained Models and Evaluation Data for the Khmer Language", year="2021", publisher="Tsinghua Science and Technology", } ```
GKLMIP/electra-khmer-base-uncased-tokenized
2b962eb40b590036fde783fad4bb367b89d9d0fd
2021-07-31T05:22:04.000Z
[ "pytorch", "electra", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
GKLMIP
null
GKLMIP/electra-khmer-base-uncased-tokenized
3
null
transformers
20,640
https://github.com/GKLMIP/Pretrained-Models-For-Khmer If you use our model, please consider citing our paper: ``` @article{, author="Jiang, Shengyi and Fu, Sihui and Lin, Nankai and Fu, Yingwen", title="Pre-trained Models and Evaluation Data for the Khmer Language", year="2021", publisher="Tsinghua Science and Technology", } ```
GKLMIP/electra-laos-base-uncased
acaee663087c8b01837470a659deaa3c61ddabfa
2021-07-31T06:21:25.000Z
[ "pytorch", "electra", "pretraining", "transformers" ]
null
false
GKLMIP
null
GKLMIP/electra-laos-base-uncased
3
null
transformers
20,641
The Usage of tokenizer for Lao is in https://github.com/GKLMIP/Pretrained-Models-For-Laos.
GKLMIP/roberta-tagalog-base
1a7c598beadeb531a960b9168fffd6eaf4d02a34
2021-07-31T02:43:47.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
GKLMIP
null
GKLMIP/roberta-tagalog-base
3
null
transformers
20,642
https://github.com/GKLMIP/Pretrained-Models-For-Tagalog If you use our model, please consider citing our paper: ``` @InProceedings{, author="Jiang, Shengyi and Fu, Yingwen and Lin, Xiaotian and Lin, Nankai", title="Pre-trained Language models for Tagalog with Multi-source data", booktitle="Natural Language Processing and Chinese Computing", year="2021", publisher="Springer International Publishing", address="Cham", } ```
GPL/fiqa-msmarco-distilbert-gpl
c1f52f88093115d7246ff6cf79d9308b4bca549b
2022-04-19T15:17:19.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
GPL
null
GPL/fiqa-msmarco-distilbert-gpl
3
null
sentence-transformers
20,643
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 140000 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `gpl.toolkit.loss.MarginDistillationLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 140000, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
GPL/robust04-msmarco-distilbert-gpl
c99e7404b2982af4df2640edd83bab5bd576743e
2022-04-19T15:19:47.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
GPL
null
GPL/robust04-msmarco-distilbert-gpl
3
null
sentence-transformers
20,644
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 140000 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `gpl.toolkit.loss.MarginDistillationLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 140000, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
GPL/scifact-msmarco-distilbert-gpl
1ddc5b4a5bc7c2f12b74b23d2fab95f77e9be84c
2022-04-19T15:17:48.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
GPL
null
GPL/scifact-msmarco-distilbert-gpl
3
1
sentence-transformers
20,645
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 140000 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `gpl.toolkit.loss.MarginDistillationLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 140000, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Galaxy/DialoGPT-small-hermoine
e24fb272a1335c49b84bae1c63ef2526021038fe
2021-08-28T07:25:00.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Galaxy
null
Galaxy/DialoGPT-small-hermoine
3
null
transformers
20,646
--- tags: - conversational --- # Harry Potter DialoGPT Model
Gantenbein/ADDI-DE-XLM-R
33a77f7de1b1ec06bc45b3e1b0c6eea815eddf14
2021-06-01T14:31:33.000Z
[ "pytorch", "xlm-roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
Gantenbein
null
Gantenbein/ADDI-DE-XLM-R
3
null
transformers
20,647
Entry not found
Gantenbein/ADDI-FI-RoBERTa
c6bfbcd92d62f52e40a343338ac687662b1ee48b
2021-06-01T14:12:02.000Z
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
Gantenbein
null
Gantenbein/ADDI-FI-RoBERTa
3
null
transformers
20,648
Entry not found
Gastron/lp-initial-aed-short
f6bcbf440e8d5fddf6048873c1d86659797b1111
2021-12-03T10:00:50.000Z
[ "fi", "speechbrain", "automatic-speech-recognition", "Attention", "pytorch" ]
automatic-speech-recognition
false
Gastron
null
Gastron/lp-initial-aed-short
3
null
speechbrain
20,649
--- language: "fi" thumbnail: tags: - automatic-speech-recognition - Attention - pytorch - speechbrain metrics: - wer - cer --- # CRDNN with Attention trained on LP This is a an initial model, partly wrong configuration, just to show an initial example.
Geotrend/bert-base-da-cased
a68ad651af408fae9349a406d62b820891f2d6bf
2021-05-18T18:49:40.000Z
[ "pytorch", "tf", "jax", "bert", "fill-mask", "da", "dataset:wikipedia", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Geotrend
null
Geotrend/bert-base-da-cased
3
null
transformers
20,650
--- language: da datasets: wikipedia license: apache-2.0 --- # bert-base-da-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-da-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-da-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
Geotrend/bert-base-en-es-it-cased
c0d369350481147c96f706d92be0e5700deb6c0b
2021-05-18T19:10:03.000Z
[ "pytorch", "tf", "jax", "bert", "fill-mask", "multilingual", "dataset:wikipedia", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Geotrend
null
Geotrend/bert-base-en-es-it-cased
3
null
transformers
20,651
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # bert-base-en-es-it-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-en-es-it-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-en-es-it-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
Geotrend/bert-base-en-fr-ar-cased
2926cd5ced09e30f61c7d73b0d3f533698d18321
2021-05-18T19:14:08.000Z
[ "pytorch", "tf", "jax", "bert", "fill-mask", "multilingual", "dataset:wikipedia", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Geotrend
null
Geotrend/bert-base-en-fr-ar-cased
3
null
transformers
20,652
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # bert-base-en-fr-ar-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-en-fr-ar-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-en-fr-ar-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
Geotrend/bert-base-en-fr-es-pt-it-cased
f32fe24217a830ae9b070749f14a552a6de2da23
2021-05-18T19:23:18.000Z
[ "pytorch", "tf", "jax", "bert", "fill-mask", "multilingual", "dataset:wikipedia", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Geotrend
null
Geotrend/bert-base-en-fr-es-pt-it-cased
3
null
transformers
20,653
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # bert-base-en-fr-es-pt-it-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-en-fr-es-pt-it-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-en-fr-es-pt-it-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Multilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
Geotrend/bert-base-en-nl-cased
ad460f8547b40117cb14f8aaaf471f7b51d03ade
2021-05-18T19:39:31.000Z
[ "pytorch", "tf", "jax", "bert", "fill-mask", "multilingual", "dataset:wikipedia", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Geotrend
null
Geotrend/bert-base-en-nl-cased
3
null
transformers
20,654
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # bert-base-en-nl-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-en-nl-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-en-nl-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
Geotrend/bert-base-en-ro-cased
f1e6a3e2aaaf5dc1c52e1e56cf2c67f0ecded727
2021-05-18T19:43:58.000Z
[ "pytorch", "tf", "jax", "bert", "fill-mask", "multilingual", "dataset:wikipedia", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Geotrend
null
Geotrend/bert-base-en-ro-cased
3
null
transformers
20,655
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # bert-base-en-ro-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-en-ro-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-en-ro-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
Geotrend/bert-base-lt-cased
8c670dd895836aa0e09cf1c844a49144d41d242c
2021-05-18T20:01:07.000Z
[ "pytorch", "tf", "jax", "bert", "fill-mask", "lt", "dataset:wikipedia", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Geotrend
null
Geotrend/bert-base-lt-cased
3
null
transformers
20,656
--- language: lt datasets: wikipedia license: apache-2.0 --- # bert-base-lt-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-lt-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-lt-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
Geotrend/distilbert-base-en-ar-cased
37c654632d62be99defae7848e3dadfa6ac49e85
2021-08-16T14:07:17.000Z
[ "pytorch", "distilbert", "fill-mask", "multilingual", "dataset:wikipedia", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Geotrend
null
Geotrend/distilbert-base-en-ar-cased
3
null
transformers
20,657
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # distilbert-base-en-ar-cased We are sharing smaller versions of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) that handle a custom number of languages. Our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/distilbert-base-en-ar-cased") model = AutoModel.from_pretrained("Geotrend/distilbert-base-en-ar-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermdistilbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
Geotrend/distilbert-base-en-el-cased
eb9a8c94e59a501e1baab2be7f7061bad330de10
2021-08-16T14:00:28.000Z
[ "pytorch", "distilbert", "fill-mask", "multilingual", "dataset:wikipedia", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Geotrend
null
Geotrend/distilbert-base-en-el-cased
3
null
transformers
20,658
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # distilbert-base-en-el-cased We are sharing smaller versions of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) that handle a custom number of languages. Our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/distilbert-base-en-el-cased") model = AutoModel.from_pretrained("Geotrend/distilbert-base-en-el-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermdistilbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
Geotrend/distilbert-base-en-el-ru-cased
e92f396137d506cd25294cfc1d4b5941468b6112
2021-07-29T13:00:03.000Z
[ "pytorch", "distilbert", "fill-mask", "multilingual", "dataset:wikipedia", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Geotrend
null
Geotrend/distilbert-base-en-el-ru-cased
3
null
transformers
20,659
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # distilbert-base-en-el-ru-cased We are sharing smaller versions of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) that handle a custom number of languages. Our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/distilbert-base-en-el-ru-cased") model = AutoModel.from_pretrained("Geotrend/distilbert-base-en-el-ru-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermdistilbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
Geotrend/distilbert-base-en-fr-de-cased
bfa19a29c7441c40c428fec1e06afe3aed1615ff
2021-07-28T00:20:23.000Z
[ "pytorch", "distilbert", "fill-mask", "multilingual", "dataset:wikipedia", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Geotrend
null
Geotrend/distilbert-base-en-fr-de-cased
3
null
transformers
20,660
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # distilbert-base-en-fr-de-cased We are sharing smaller versions of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) that handle a custom number of languages. Our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/distilbert-base-en-fr-de-cased") model = AutoModel.from_pretrained("Geotrend/distilbert-base-en-fr-de-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermdistilbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
Geotrend/distilbert-base-en-fr-es-cased
349356d0687847abc5fcc2bcd6e6f69c9b10dcce
2021-07-27T23:19:52.000Z
[ "pytorch", "distilbert", "fill-mask", "multilingual", "dataset:wikipedia", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Geotrend
null
Geotrend/distilbert-base-en-fr-es-cased
3
null
transformers
20,661
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # distilbert-base-en-fr-es-cased We are sharing smaller versions of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) that handle a custom number of languages. Our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/distilbert-base-en-fr-es-cased") model = AutoModel.from_pretrained("Geotrend/distilbert-base-en-fr-es-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermdistilbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
Geotrend/distilbert-base-en-fr-lt-no-pl-cased
0f9577d74de6f9aae5f8b704ea573904cc11418c
2021-07-28T13:08:26.000Z
[ "pytorch", "distilbert", "fill-mask", "multilingual", "dataset:wikipedia", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Geotrend
null
Geotrend/distilbert-base-en-fr-lt-no-pl-cased
3
null
transformers
20,662
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # distilbert-base-en-fr-lt-no-pl-cased We are sharing smaller versions of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) that handle a custom number of languages. Our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/distilbert-base-en-fr-lt-no-pl-cased") model = AutoModel.from_pretrained("Geotrend/distilbert-base-en-fr-lt-no-pl-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermdistilbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
Geotrend/distilbert-base-en-fr-nl-ru-ar-cased
3d70a3cd22fa81ab89cdffe92cac2b3f57a029f6
2021-07-28T15:56:18.000Z
[ "pytorch", "distilbert", "fill-mask", "multilingual", "dataset:wikipedia", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Geotrend
null
Geotrend/distilbert-base-en-fr-nl-ru-ar-cased
3
null
transformers
20,663
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # distilbert-base-en-fr-nl-ru-ar-cased We are sharing smaller versions of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) that handle a custom number of languages. Our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/distilbert-base-en-fr-nl-ru-ar-cased") model = AutoModel.from_pretrained("Geotrend/distilbert-base-en-fr-nl-ru-ar-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermdistilbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
Geotrend/distilbert-base-ro-cased
50842e98d825f301fed5c996373e4789ff606570
2021-07-28T22:35:06.000Z
[ "pytorch", "distilbert", "fill-mask", "ro", "dataset:wikipedia", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Geotrend
null
Geotrend/distilbert-base-ro-cased
3
null
transformers
20,664
--- language: ro datasets: wikipedia license: apache-2.0 --- # distilbert-base-ro-cased We are sharing smaller versions of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) that handle a custom number of languages. Our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/distilbert-base-ro-cased") model = AutoModel.from_pretrained("Geotrend/distilbert-base-ro-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermdistilbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
Geotrend/distilbert-base-sw-cased
eba526e9f94c737a208fd4389ba615f46229de08
2021-08-16T13:29:45.000Z
[ "pytorch", "distilbert", "fill-mask", "sw", "dataset:wikipedia", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Geotrend
null
Geotrend/distilbert-base-sw-cased
3
null
transformers
20,665
--- language: sw datasets: wikipedia license: apache-2.0 --- # distilbert-base-sw-cased We are sharing smaller versions of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) that handle a custom number of languages. Our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/distilbert-base-sw-cased") model = AutoModel.from_pretrained("Geotrend/distilbert-base-sw-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermdistilbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
Geotrend/distilbert-base-uk-cased
096f70b5e5880d25f54781543e3187b086854253
2021-07-29T16:43:45.000Z
[ "pytorch", "distilbert", "fill-mask", "uk", "dataset:wikipedia", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Geotrend
null
Geotrend/distilbert-base-uk-cased
3
1
transformers
20,666
--- language: uk datasets: wikipedia license: apache-2.0 --- # distilbert-base-uk-cased We are sharing smaller versions of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) that handle a custom number of languages. Our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/distilbert-base-uk-cased") model = AutoModel.from_pretrained("Geotrend/distilbert-base-uk-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermdistilbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
GusNicho/bert-base-cased-finetuned
cb701b1486822a8b695c90957df6523bad090cce
2022-01-12T07:38:10.000Z
[ "pytorch", "tensorboard", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
GusNicho
null
GusNicho/bert-base-cased-finetuned
3
null
transformers
20,667
Entry not found
HarrisDePerceptron/xls-r-1b-ur
707424029d900f78cb666b82b05dabfe3ca296e3
2022-03-24T11:57:20.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "ur", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
HarrisDePerceptron
null
HarrisDePerceptron/xls-r-1b-ur
3
null
transformers
20,668
--- language: - ur license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - ur - robust-speech-event - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: '' results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8.0 type: mozilla-foundation/common_voice_8_0 args: ur metrics: - name: Test WER type: wer value: 44.13 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - UR dataset. It achieves the following results on the evaluation set: - Loss: 0.9613 - Wer: 0.5376 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.3118 | 1.96 | 100 | 2.9093 | 0.9982 | | 2.2071 | 3.92 | 200 | 1.1737 | 0.7779 | | 1.6098 | 5.88 | 300 | 0.9984 | 0.7015 | | 1.4333 | 7.84 | 400 | 0.9800 | 0.6705 | | 1.2859 | 9.8 | 500 | 0.9582 | 0.6487 | | 1.2073 | 11.76 | 600 | 0.8841 | 0.6077 | | 1.1417 | 13.73 | 700 | 0.9118 | 0.6343 | | 1.0988 | 15.69 | 800 | 0.9217 | 0.6196 | | 1.0279 | 17.65 | 900 | 0.9165 | 0.5867 | | 0.9765 | 19.61 | 1000 | 0.9306 | 0.5978 | | 0.9161 | 21.57 | 1100 | 0.9305 | 0.5768 | | 0.8395 | 23.53 | 1200 | 0.9828 | 0.5819 | | 0.8306 | 25.49 | 1300 | 0.9397 | 0.5760 | | 0.7819 | 27.45 | 1400 | 0.9544 | 0.5742 | | 0.7509 | 29.41 | 1500 | 0.9278 | 0.5690 | | 0.7218 | 31.37 | 1600 | 0.9003 | 0.5587 | | 0.6725 | 33.33 | 1700 | 0.9659 | 0.5554 | | 0.6287 | 35.29 | 1800 | 0.9522 | 0.5561 | | 0.6077 | 37.25 | 1900 | 0.9154 | 0.5465 | | 0.5873 | 39.22 | 2000 | 0.9331 | 0.5469 | | 0.5621 | 41.18 | 2100 | 0.9335 | 0.5491 | | 0.5168 | 43.14 | 2200 | 0.9632 | 0.5458 | | 0.5114 | 45.1 | 2300 | 0.9349 | 0.5387 | | 0.4986 | 47.06 | 2400 | 0.9364 | 0.5380 | | 0.4761 | 49.02 | 2500 | 0.9584 | 0.5391 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
HarrisDePerceptron/xls-r-300m-ur-cv7
2ded961021fa15ac18847fc0617416e8ba1207c2
2022-02-05T11:21:29.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "ur", "dataset:common_voice", "transformers", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
HarrisDePerceptron
null
HarrisDePerceptron/xls-r-300m-ur-cv7
3
null
transformers
20,669
--- language: - ur license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_7_0 - generated_from_trainer datasets: - common_voice model-index: - name: '' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - UR dataset. It achieves the following results on the evaluation set: - Loss: 1.2924 - Wer: 0.7201 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 200.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 11.2783 | 4.17 | 100 | 4.6409 | 1.0 | | 3.5578 | 8.33 | 200 | 3.1649 | 1.0 | | 3.1279 | 12.5 | 300 | 3.0335 | 1.0 | | 2.9944 | 16.67 | 400 | 2.9526 | 0.9983 | | 2.9275 | 20.83 | 500 | 2.9291 | 1.0009 | | 2.8077 | 25.0 | 600 | 2.5633 | 0.9895 | | 2.4438 | 29.17 | 700 | 1.9045 | 0.9564 | | 1.9659 | 33.33 | 800 | 1.4114 | 0.7960 | | 1.7092 | 37.5 | 900 | 1.2584 | 0.7637 | | 1.517 | 41.67 | 1000 | 1.2040 | 0.7507 | | 1.3966 | 45.83 | 1100 | 1.1273 | 0.7463 | | 1.3197 | 50.0 | 1200 | 1.1054 | 0.6957 | | 1.2476 | 54.17 | 1300 | 1.1035 | 0.7001 | | 1.1796 | 58.33 | 1400 | 1.0890 | 0.7097 | | 1.1237 | 62.5 | 1500 | 1.0883 | 0.7167 | | 1.0777 | 66.67 | 1600 | 1.1067 | 0.7219 | | 1.0051 | 70.83 | 1700 | 1.1115 | 0.7236 | | 0.9521 | 75.0 | 1800 | 1.0867 | 0.7132 | | 0.9147 | 79.17 | 1900 | 1.0852 | 0.7210 | | 0.8798 | 83.33 | 2000 | 1.1411 | 0.7097 | | 0.8317 | 87.5 | 2100 | 1.1634 | 0.7018 | | 0.7946 | 91.67 | 2200 | 1.1621 | 0.7201 | | 0.7594 | 95.83 | 2300 | 1.1482 | 0.7036 | | 0.729 | 100.0 | 2400 | 1.1493 | 0.7062 | | 0.7055 | 104.17 | 2500 | 1.1726 | 0.6931 | | 0.6622 | 108.33 | 2600 | 1.1938 | 0.7001 | | 0.6583 | 112.5 | 2700 | 1.1832 | 0.7149 | | 0.6299 | 116.67 | 2800 | 1.1996 | 0.7175 | | 0.5903 | 120.83 | 2900 | 1.1986 | 0.7132 | | 0.5816 | 125.0 | 3000 | 1.1909 | 0.7010 | | 0.5583 | 129.17 | 3100 | 1.2079 | 0.6870 | | 0.5392 | 133.33 | 3200 | 1.2109 | 0.7228 | | 0.5412 | 137.5 | 3300 | 1.2353 | 0.7245 | | 0.5136 | 141.67 | 3400 | 1.2390 | 0.7254 | | 0.5007 | 145.83 | 3500 | 1.2273 | 0.7123 | | 0.4883 | 150.0 | 3600 | 1.2773 | 0.7289 | | 0.4835 | 154.17 | 3700 | 1.2678 | 0.7289 | | 0.4568 | 158.33 | 3800 | 1.2592 | 0.7350 | | 0.4525 | 162.5 | 3900 | 1.2705 | 0.7254 | | 0.4379 | 166.67 | 4000 | 1.2717 | 0.7306 | | 0.4198 | 170.83 | 4100 | 1.2618 | 0.7219 | | 0.4216 | 175.0 | 4200 | 1.2909 | 0.7158 | | 0.4305 | 179.17 | 4300 | 1.2808 | 0.7167 | | 0.399 | 183.33 | 4400 | 1.2750 | 0.7193 | | 0.3937 | 187.5 | 4500 | 1.2719 | 0.7149 | | 0.3905 | 191.67 | 4600 | 1.2816 | 0.7158 | | 0.3892 | 195.83 | 4700 | 1.2951 | 0.7210 | | 0.3932 | 200.0 | 4800 | 1.2924 | 0.7201 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
HarrisDePerceptron/xlsr-large-53-ur
6091035715b54c219924e845a82cf48491a3b524
2022-03-24T11:54:55.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "ur", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
HarrisDePerceptron
null
HarrisDePerceptron/xlsr-large-53-ur
3
null
transformers
20,670
--- language: - ur license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - ur - robust-speech-event - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: '' results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8.0 type: mozilla-foundation/common_voice_8_0 args: ur metrics: - name: Test WER type: wer value: 62.47 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - UR dataset. It achieves the following results on the evaluation set: - Loss: 0.8888 - Wer: 0.6642 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 10.1224 | 1.96 | 100 | 3.5429 | 1.0 | | 3.2411 | 3.92 | 200 | 3.1786 | 1.0 | | 3.1283 | 5.88 | 300 | 3.0571 | 1.0 | | 3.0044 | 7.84 | 400 | 2.9560 | 0.9996 | | 2.9388 | 9.8 | 500 | 2.8977 | 1.0011 | | 2.86 | 11.76 | 600 | 2.6944 | 0.9952 | | 2.5538 | 13.73 | 700 | 2.0967 | 0.9435 | | 2.1214 | 15.69 | 800 | 1.4816 | 0.8428 | | 1.8136 | 17.65 | 900 | 1.2459 | 0.8048 | | 1.6795 | 19.61 | 1000 | 1.1232 | 0.7649 | | 1.5571 | 21.57 | 1100 | 1.0510 | 0.7432 | | 1.4975 | 23.53 | 1200 | 1.0298 | 0.6963 | | 1.4485 | 25.49 | 1300 | 0.9775 | 0.7074 | | 1.3924 | 27.45 | 1400 | 0.9798 | 0.6956 | | 1.3604 | 29.41 | 1500 | 0.9345 | 0.7092 | | 1.3224 | 31.37 | 1600 | 0.9535 | 0.6830 | | 1.2816 | 33.33 | 1700 | 0.9178 | 0.6679 | | 1.2623 | 35.29 | 1800 | 0.9249 | 0.6679 | | 1.2421 | 37.25 | 1900 | 0.9124 | 0.6734 | | 1.2208 | 39.22 | 2000 | 0.8962 | 0.6664 | | 1.2145 | 41.18 | 2100 | 0.8903 | 0.6734 | | 1.1888 | 43.14 | 2200 | 0.8883 | 0.6708 | | 1.1933 | 45.1 | 2300 | 0.8928 | 0.6723 | | 1.1838 | 47.06 | 2400 | 0.8868 | 0.6679 | | 1.1634 | 49.02 | 2500 | 0.8886 | 0.6657 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
Harveenchadha/vakyansh-wav2vec2-nepali-nem-130
002c6200bcdacd8558e696583361f47e8154df67
2021-08-02T18:55:50.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
Harveenchadha
null
Harveenchadha/vakyansh-wav2vec2-nepali-nem-130
3
null
transformers
20,671
Entry not found
Helsinki-NLP/opus-mt-bi-sv
fa443f611486bd359dee28a2ef896a03ca81e515
2021-09-09T21:27:55.000Z
[ "pytorch", "marian", "text2text-generation", "bi", "sv", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-bi-sv
3
null
transformers
20,672
--- tags: - translation license: apache-2.0 --- ### opus-mt-bi-sv * source languages: bi * target languages: sv * OPUS readme: [bi-sv](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/bi-sv/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-20.zip](https://object.pouta.csc.fi/OPUS-MT-models/bi-sv/opus-2020-01-20.zip) * test set translations: [opus-2020-01-20.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/bi-sv/opus-2020-01-20.test.txt) * test set scores: [opus-2020-01-20.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/bi-sv/opus-2020-01-20.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.bi.sv | 22.7 | 0.403 |
Helsinki-NLP/opus-mt-csg-es
9742b7a5ed07cb69c4051567686b2e1ace50b061
2021-09-09T21:29:36.000Z
[ "pytorch", "marian", "text2text-generation", "csg", "es", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-csg-es
3
null
transformers
20,673
--- tags: - translation license: apache-2.0 --- ### opus-mt-csg-es * source languages: csg * target languages: es * OPUS readme: [csg-es](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/csg-es/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-15.zip](https://object.pouta.csc.fi/OPUS-MT-models/csg-es/opus-2020-01-15.zip) * test set translations: [opus-2020-01-15.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/csg-es/opus-2020-01-15.test.txt) * test set scores: [opus-2020-01-15.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/csg-es/opus-2020-01-15.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.csg.es | 93.1 | 0.952 |
Helsinki-NLP/opus-mt-de-bcl
628737ef8907e7d2db7989660f413420cfad41f5
2021-09-09T21:30:14.000Z
[ "pytorch", "marian", "text2text-generation", "de", "bcl", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-de-bcl
3
null
transformers
20,674
--- tags: - translation license: apache-2.0 --- ### opus-mt-de-bcl * source languages: de * target languages: bcl * OPUS readme: [de-bcl](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/de-bcl/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-20.zip](https://object.pouta.csc.fi/OPUS-MT-models/de-bcl/opus-2020-01-20.zip) * test set translations: [opus-2020-01-20.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/de-bcl/opus-2020-01-20.test.txt) * test set scores: [opus-2020-01-20.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/de-bcl/opus-2020-01-20.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.de.bcl | 34.6 | 0.563 |
Helsinki-NLP/opus-mt-de-eu
20b23b953fb829fa7aa146ed7b8026ec476a7ba3
2021-01-18T07:59:10.000Z
[ "pytorch", "marian", "text2text-generation", "de", "eu", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-de-eu
3
1
transformers
20,675
--- language: - de - eu tags: - translation license: apache-2.0 --- ### deu-eus * source group: German * target group: Basque * OPUS readme: [deu-eus](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/deu-eus/README.md) * model: transformer-align * source language(s): deu * target language(s): eus * model: transformer-align * pre-processing: normalization + SentencePiece (spm12k,spm12k) * download original weights: [opus-2020-06-16.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/deu-eus/opus-2020-06-16.zip) * test set translations: [opus-2020-06-16.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/deu-eus/opus-2020-06-16.test.txt) * test set scores: [opus-2020-06-16.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/deu-eus/opus-2020-06-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.deu.eus | 31.8 | 0.574 | ### System Info: - hf_name: deu-eus - source_languages: deu - target_languages: eus - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/deu-eus/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['de', 'eu'] - src_constituents: {'deu'} - tgt_constituents: {'eus'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm12k,spm12k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/deu-eus/opus-2020-06-16.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/deu-eus/opus-2020-06-16.test.txt - src_alpha3: deu - tgt_alpha3: eus - short_pair: de-eu - chrF2_score: 0.574 - bleu: 31.8 - brevity_penalty: 0.9209999999999999 - ref_len: 2829.0 - src_name: German - tgt_name: Basque - train_date: 2020-06-16 - src_alpha2: de - tgt_alpha2: eu - prefer_old: False - long_pair: deu-eus - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-el-ar
5d93e0361f1a6252e203323ad8eb434f7784d3cd
2021-01-18T08:03:55.000Z
[ "pytorch", "marian", "text2text-generation", "el", "ar", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-el-ar
3
null
transformers
20,676
--- language: - el - ar tags: - translation license: apache-2.0 --- ### ell-ara * source group: Modern Greek (1453-) * target group: Arabic * OPUS readme: [ell-ara](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ell-ara/README.md) * model: transformer * source language(s): ell * target language(s): ara arz * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * a sentence initial language token is required in the form of `>>id<<` (id = valid target language ID) * download original weights: [opus-2020-07-03.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/ell-ara/opus-2020-07-03.zip) * test set translations: [opus-2020-07-03.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ell-ara/opus-2020-07-03.test.txt) * test set scores: [opus-2020-07-03.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ell-ara/opus-2020-07-03.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.ell.ara | 21.9 | 0.485 | ### System Info: - hf_name: ell-ara - source_languages: ell - target_languages: ara - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ell-ara/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['el', 'ar'] - src_constituents: {'ell'} - tgt_constituents: {'apc', 'ara', 'arq_Latn', 'arq', 'afb', 'ara_Latn', 'apc_Latn', 'arz'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/ell-ara/opus-2020-07-03.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/ell-ara/opus-2020-07-03.test.txt - src_alpha3: ell - tgt_alpha3: ara - short_pair: el-ar - chrF2_score: 0.485 - bleu: 21.9 - brevity_penalty: 0.972 - ref_len: 1686.0 - src_name: Modern Greek (1453-) - tgt_name: Arabic - train_date: 2020-07-03 - src_alpha2: el - tgt_alpha2: ar - prefer_old: False - long_pair: ell-ara - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-en-cpf
60bc6ee533bef83beea6cf16b4aa7e72fbe4fe46
2021-01-18T08:06:10.000Z
[ "pytorch", "marian", "text2text-generation", "en", "ht", "cpf", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-en-cpf
3
null
transformers
20,677
--- language: - en - ht - cpf tags: - translation license: apache-2.0 --- ### eng-cpf * source group: English * target group: Creoles and pidgins, French‑based * OPUS readme: [eng-cpf](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-cpf/README.md) * model: transformer * source language(s): eng * target language(s): gcf_Latn hat mfe * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * a sentence initial language token is required in the form of `>>id<<` (id = valid target language ID) * download original weights: [opus-2020-07-26.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-cpf/opus-2020-07-26.zip) * test set translations: [opus-2020-07-26.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-cpf/opus-2020-07-26.test.txt) * test set scores: [opus-2020-07-26.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-cpf/opus-2020-07-26.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.eng-gcf.eng.gcf | 6.2 | 0.262 | | Tatoeba-test.eng-hat.eng.hat | 25.7 | 0.451 | | Tatoeba-test.eng-mfe.eng.mfe | 80.1 | 0.900 | | Tatoeba-test.eng.multi | 15.9 | 0.354 | ### System Info: - hf_name: eng-cpf - source_languages: eng - target_languages: cpf - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-cpf/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['en', 'ht', 'cpf'] - src_constituents: {'eng'} - tgt_constituents: {'gcf_Latn', 'hat', 'mfe'} - src_multilingual: False - tgt_multilingual: True - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/eng-cpf/opus-2020-07-26.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/eng-cpf/opus-2020-07-26.test.txt - src_alpha3: eng - tgt_alpha3: cpf - short_pair: en-cpf - chrF2_score: 0.354 - bleu: 15.9 - brevity_penalty: 1.0 - ref_len: 1012.0 - src_name: English - tgt_name: Creoles and pidgins, French‑based - train_date: 2020-07-26 - src_alpha2: en - tgt_alpha2: cpf - prefer_old: False - long_pair: eng-cpf - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-en-sit
98e54cb04296640b18d593f1e883afbf75e1f8b7
2021-01-18T08:15:53.000Z
[ "pytorch", "marian", "text2text-generation", "en", "sit", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-en-sit
3
null
transformers
20,678
--- language: - en - sit tags: - translation license: apache-2.0 --- ### eng-sit * source group: English * target group: Sino-Tibetan languages * OPUS readme: [eng-sit](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-sit/README.md) * model: transformer * source language(s): eng * target language(s): bod brx brx_Latn cjy_Hans cjy_Hant cmn cmn_Hans cmn_Hant gan lzh lzh_Hans mya nan wuu yue yue_Hans yue_Hant zho zho_Hans zho_Hant * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * a sentence initial language token is required in the form of `>>id<<` (id = valid target language ID) * download original weights: [opus2m-2020-08-01.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-sit/opus2m-2020-08-01.zip) * test set translations: [opus2m-2020-08-01.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-sit/opus2m-2020-08-01.test.txt) * test set scores: [opus2m-2020-08-01.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-sit/opus2m-2020-08-01.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | newsdev2017-enzh-engzho.eng.zho | 23.5 | 0.217 | | newstest2017-enzh-engzho.eng.zho | 23.2 | 0.223 | | newstest2018-enzh-engzho.eng.zho | 25.0 | 0.230 | | newstest2019-enzh-engzho.eng.zho | 20.2 | 0.225 | | Tatoeba-test.eng-bod.eng.bod | 0.4 | 0.147 | | Tatoeba-test.eng-brx.eng.brx | 0.5 | 0.012 | | Tatoeba-test.eng.multi | 25.7 | 0.223 | | Tatoeba-test.eng-mya.eng.mya | 0.2 | 0.222 | | Tatoeba-test.eng-zho.eng.zho | 29.2 | 0.249 | ### System Info: - hf_name: eng-sit - source_languages: eng - target_languages: sit - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-sit/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['en', 'sit'] - src_constituents: {'eng'} - tgt_constituents: set() - src_multilingual: False - tgt_multilingual: True - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/eng-sit/opus2m-2020-08-01.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/eng-sit/opus2m-2020-08-01.test.txt - src_alpha3: eng - tgt_alpha3: sit - short_pair: en-sit - chrF2_score: 0.223 - bleu: 25.7 - brevity_penalty: 0.907 - ref_len: 109538.0 - src_name: English - tgt_name: Sino-Tibetan languages - train_date: 2020-08-01 - src_alpha2: en - tgt_alpha2: sit - prefer_old: False - long_pair: eng-sit - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-eo-it
7b68faa4a3fa2b61cee6b6440827d59cd09ba9c4
2021-01-18T08:20:50.000Z
[ "pytorch", "marian", "text2text-generation", "eo", "it", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-eo-it
3
null
transformers
20,679
--- language: - eo - it tags: - translation license: apache-2.0 --- ### epo-ita * source group: Esperanto * target group: Italian * OPUS readme: [epo-ita](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/epo-ita/README.md) * model: transformer-align * source language(s): epo * target language(s): ita * model: transformer-align * pre-processing: normalization + SentencePiece (spm4k,spm4k) * download original weights: [opus-2020-06-16.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/epo-ita/opus-2020-06-16.zip) * test set translations: [opus-2020-06-16.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/epo-ita/opus-2020-06-16.test.txt) * test set scores: [opus-2020-06-16.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/epo-ita/opus-2020-06-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.epo.ita | 23.8 | 0.465 | ### System Info: - hf_name: epo-ita - source_languages: epo - target_languages: ita - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/epo-ita/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['eo', 'it'] - src_constituents: {'epo'} - tgt_constituents: {'ita'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm4k,spm4k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/epo-ita/opus-2020-06-16.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/epo-ita/opus-2020-06-16.test.txt - src_alpha3: epo - tgt_alpha3: ita - short_pair: eo-it - chrF2_score: 0.465 - bleu: 23.8 - brevity_penalty: 0.9420000000000001 - ref_len: 67118.0 - src_name: Esperanto - tgt_name: Italian - train_date: 2020-06-16 - src_alpha2: eo - tgt_alpha2: it - prefer_old: False - long_pair: epo-ita - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-fi-st
d58c5159d40d662231c3d4de5318000f2f89ee34
2021-09-09T21:51:01.000Z
[ "pytorch", "marian", "text2text-generation", "fi", "st", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-fi-st
3
null
transformers
20,680
--- tags: - translation license: apache-2.0 --- ### opus-mt-fi-st * source languages: fi * target languages: st * OPUS readme: [fi-st](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fi-st/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-24.zip](https://object.pouta.csc.fi/OPUS-MT-models/fi-st/opus-2020-01-24.zip) * test set translations: [opus-2020-01-24.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-st/opus-2020-01-24.test.txt) * test set scores: [opus-2020-01-24.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-st/opus-2020-01-24.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.fi.st | 37.1 | 0.570 |
Helsinki-NLP/opus-mt-fr-ca
e4851508d5f6cd47566501fb505f330b602098df
2021-01-18T08:42:14.000Z
[ "pytorch", "marian", "text2text-generation", "fr", "ca", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-fr-ca
3
null
transformers
20,681
--- language: - fr - ca tags: - translation license: apache-2.0 --- ### fra-cat * source group: French * target group: Catalan * OPUS readme: [fra-cat](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/fra-cat/README.md) * model: transformer-align * source language(s): fra * target language(s): cat * model: transformer-align * pre-processing: normalization + SentencePiece (spm12k,spm12k) * download original weights: [opus-2020-06-16.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/fra-cat/opus-2020-06-16.zip) * test set translations: [opus-2020-06-16.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/fra-cat/opus-2020-06-16.test.txt) * test set scores: [opus-2020-06-16.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/fra-cat/opus-2020-06-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.fra.cat | 43.4 | 0.645 | ### System Info: - hf_name: fra-cat - source_languages: fra - target_languages: cat - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/fra-cat/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['fr', 'ca'] - src_constituents: {'fra'} - tgt_constituents: {'cat'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm12k,spm12k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/fra-cat/opus-2020-06-16.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/fra-cat/opus-2020-06-16.test.txt - src_alpha3: fra - tgt_alpha3: cat - short_pair: fr-ca - chrF2_score: 0.645 - bleu: 43.4 - brevity_penalty: 0.982 - ref_len: 5214.0 - src_name: French - tgt_name: Catalan - train_date: 2020-06-16 - src_alpha2: fr - tgt_alpha2: ca - prefer_old: False - long_pair: fra-cat - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-fr-pis
4d07a2598586a8619afae6e84f6fdb2473deee70
2021-09-09T21:56:07.000Z
[ "pytorch", "marian", "text2text-generation", "fr", "pis", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-fr-pis
3
null
transformers
20,682
--- tags: - translation license: apache-2.0 --- ### opus-mt-fr-pis * source languages: fr * target languages: pis * OPUS readme: [fr-pis](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fr-pis/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/fr-pis/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fr-pis/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fr-pis/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.fr.pis | 29.0 | 0.486 |
Helsinki-NLP/opus-mt-he-sv
030c52039da6bc829fa4a7a1965c2ee76a8a08ea
2021-09-09T22:09:50.000Z
[ "pytorch", "marian", "text2text-generation", "he", "sv", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-he-sv
3
null
transformers
20,683
--- tags: - translation license: apache-2.0 --- ### opus-mt-he-sv * source languages: he * target languages: sv * OPUS readme: [he-sv](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/he-sv/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/he-sv/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/he-sv/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/he-sv/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.he.sv | 28.9 | 0.493 |
Helsinki-NLP/opus-mt-he-uk
437fa60238af6e191fe1773da6a441cc9bb2a5cc
2020-08-21T14:42:46.000Z
[ "pytorch", "marian", "text2text-generation", "he", "uk", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-he-uk
3
null
transformers
20,684
--- language: - he - uk tags: - translation license: apache-2.0 --- ### heb-ukr * source group: Hebrew * target group: Ukrainian * OPUS readme: [heb-ukr](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/heb-ukr/README.md) * model: transformer-align * source language(s): heb * target language(s): ukr * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/heb-ukr/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/heb-ukr/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/heb-ukr/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.heb.ukr | 35.4 | 0.552 | ### System Info: - hf_name: heb-ukr - source_languages: heb - target_languages: ukr - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/heb-ukr/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['he', 'uk'] - src_constituents: {'heb'} - tgt_constituents: {'ukr'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/heb-ukr/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/heb-ukr/opus-2020-06-17.test.txt - src_alpha3: heb - tgt_alpha3: ukr - short_pair: he-uk - chrF2_score: 0.552 - bleu: 35.4 - brevity_penalty: 0.971 - ref_len: 5163.0 - src_name: Hebrew - tgt_name: Ukrainian - train_date: 2020-06-17 - src_alpha2: he - tgt_alpha2: uk - prefer_old: False - long_pair: heb-ukr - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-id-sv
066633bdaab93489b24820fff325f8a7a2eed437
2021-09-09T22:11:25.000Z
[ "pytorch", "marian", "text2text-generation", "id", "sv", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-id-sv
3
null
transformers
20,685
--- tags: - translation license: apache-2.0 --- ### opus-mt-id-sv * source languages: id * target languages: sv * OPUS readme: [id-sv](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/id-sv/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/id-sv/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/id-sv/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/id-sv/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.id.sv | 32.7 | 0.527 |
Helsinki-NLP/opus-mt-ig-es
0e814965834648c1c738941f9f6378731802ce08
2021-09-09T22:11:37.000Z
[ "pytorch", "marian", "text2text-generation", "ig", "es", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-ig-es
3
null
transformers
20,686
--- tags: - translation license: apache-2.0 --- ### opus-mt-ig-es * source languages: ig * target languages: es * OPUS readme: [ig-es](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/ig-es/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/ig-es/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/ig-es/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/ig-es/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.ig.es | 24.6 | 0.420 |
Helsinki-NLP/opus-mt-iso-sv
0be45fee82b8c1409eb72710943ed7419fcb8413
2021-09-10T13:52:45.000Z
[ "pytorch", "marian", "text2text-generation", "iso", "sv", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-iso-sv
3
null
transformers
20,687
--- tags: - translation license: apache-2.0 --- ### opus-mt-iso-sv * source languages: iso * target languages: sv * OPUS readme: [iso-sv](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/iso-sv/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/iso-sv/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/iso-sv/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/iso-sv/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.iso.sv | 25.0 | 0.430 |
Helsinki-NLP/opus-mt-it-eo
9de5660471622e2a92c8bfe880d2f509e68dc9ce
2020-08-21T14:42:46.000Z
[ "pytorch", "marian", "text2text-generation", "it", "eo", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-it-eo
3
null
transformers
20,688
--- language: - it - eo tags: - translation license: apache-2.0 --- ### ita-epo * source group: Italian * target group: Esperanto * OPUS readme: [ita-epo](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ita-epo/README.md) * model: transformer-align * source language(s): ita * target language(s): epo * model: transformer-align * pre-processing: normalization + SentencePiece (spm4k,spm4k) * download original weights: [opus-2020-06-16.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/ita-epo/opus-2020-06-16.zip) * test set translations: [opus-2020-06-16.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ita-epo/opus-2020-06-16.test.txt) * test set scores: [opus-2020-06-16.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ita-epo/opus-2020-06-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.ita.epo | 28.2 | 0.500 | ### System Info: - hf_name: ita-epo - source_languages: ita - target_languages: epo - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ita-epo/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['it', 'eo'] - src_constituents: {'ita'} - tgt_constituents: {'epo'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm4k,spm4k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/ita-epo/opus-2020-06-16.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/ita-epo/opus-2020-06-16.test.txt - src_alpha3: ita - tgt_alpha3: epo - short_pair: it-eo - chrF2_score: 0.5 - bleu: 28.2 - brevity_penalty: 0.9570000000000001 - ref_len: 67846.0 - src_name: Italian - tgt_name: Esperanto - train_date: 2020-06-16 - src_alpha2: it - tgt_alpha2: eo - prefer_old: False - long_pair: ita-epo - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-kg-sv
abff720b6ffe340fe58b0bd5ddadf331a21c5cbe
2021-09-10T13:53:49.000Z
[ "pytorch", "marian", "text2text-generation", "kg", "sv", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-kg-sv
3
null
transformers
20,689
--- tags: - translation license: apache-2.0 --- ### opus-mt-kg-sv * source languages: kg * target languages: sv * OPUS readme: [kg-sv](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/kg-sv/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/kg-sv/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/kg-sv/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/kg-sv/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.kg.sv | 26.3 | 0.440 |
Helsinki-NLP/opus-mt-kqn-sv
00c5a65f59fd8f29c692036c3bd9ac288493f2df
2021-09-10T13:54:20.000Z
[ "pytorch", "marian", "text2text-generation", "kqn", "sv", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-kqn-sv
3
null
transformers
20,690
--- tags: - translation license: apache-2.0 --- ### opus-mt-kqn-sv * source languages: kqn * target languages: sv * OPUS readme: [kqn-sv](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/kqn-sv/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/kqn-sv/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/kqn-sv/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/kqn-sv/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.kqn.sv | 23.3 | 0.409 |
Helsinki-NLP/opus-mt-lt-eo
9417c8430e515f180602674d410b49ed99f0a134
2020-08-21T14:42:47.000Z
[ "pytorch", "marian", "text2text-generation", "lt", "eo", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-lt-eo
3
null
transformers
20,691
--- language: - lt - eo tags: - translation license: apache-2.0 --- ### lit-epo * source group: Lithuanian * target group: Esperanto * OPUS readme: [lit-epo](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/lit-epo/README.md) * model: transformer-align * source language(s): lit * target language(s): epo * model: transformer-align * pre-processing: normalization + SentencePiece (spm4k,spm4k) * download original weights: [opus-2020-06-16.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/lit-epo/opus-2020-06-16.zip) * test set translations: [opus-2020-06-16.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/lit-epo/opus-2020-06-16.test.txt) * test set scores: [opus-2020-06-16.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/lit-epo/opus-2020-06-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.lit.epo | 13.0 | 0.313 | ### System Info: - hf_name: lit-epo - source_languages: lit - target_languages: epo - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/lit-epo/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['lt', 'eo'] - src_constituents: {'lit'} - tgt_constituents: {'epo'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm4k,spm4k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/lit-epo/opus-2020-06-16.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/lit-epo/opus-2020-06-16.test.txt - src_alpha3: lit - tgt_alpha3: epo - short_pair: lt-eo - chrF2_score: 0.313 - bleu: 13.0 - brevity_penalty: 1.0 - ref_len: 70340.0 - src_name: Lithuanian - tgt_name: Esperanto - train_date: 2020-06-16 - src_alpha2: lt - tgt_alpha2: eo - prefer_old: False - long_pair: lit-epo - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-lue-sv
fd9371fa847f74869b8504d543cc709c27890330
2021-09-10T13:56:37.000Z
[ "pytorch", "marian", "text2text-generation", "lue", "sv", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-lue-sv
3
null
transformers
20,692
--- tags: - translation license: apache-2.0 --- ### opus-mt-lue-sv * source languages: lue * target languages: sv * OPUS readme: [lue-sv](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/lue-sv/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/lue-sv/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/lue-sv/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/lue-sv/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.lue.sv | 23.7 | 0.412 |
Helsinki-NLP/opus-mt-lus-fr
3819159e58e4e0e7b7eaebe5a4b0084d5abf8ab7
2021-09-10T13:57:00.000Z
[ "pytorch", "marian", "text2text-generation", "lus", "fr", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-lus-fr
3
null
transformers
20,693
--- tags: - translation license: apache-2.0 --- ### opus-mt-lus-fr * source languages: lus * target languages: fr * OPUS readme: [lus-fr](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/lus-fr/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/lus-fr/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/lus-fr/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/lus-fr/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.lus.fr | 25.5 | 0.423 |
Helsinki-NLP/opus-mt-mh-es
848bbc2ceef41fbd20bd37775ee534aef26798c0
2021-09-10T13:57:47.000Z
[ "pytorch", "marian", "text2text-generation", "mh", "es", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-mh-es
3
null
transformers
20,694
--- tags: - translation license: apache-2.0 --- ### opus-mt-mh-es * source languages: mh * target languages: es * OPUS readme: [mh-es](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/mh-es/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/mh-es/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/mh-es/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/mh-es/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.mh.es | 23.6 | 0.407 |
Helsinki-NLP/opus-mt-ms-it
0e002c3293f7bc5e66124490870b36b1c3a5ba15
2020-08-21T14:42:48.000Z
[ "pytorch", "marian", "text2text-generation", "ms", "it", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-ms-it
3
null
transformers
20,695
--- language: - ms - it tags: - translation license: apache-2.0 --- ### msa-ita * source group: Malay (macrolanguage) * target group: Italian * OPUS readme: [msa-ita](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/msa-ita/README.md) * model: transformer-align * source language(s): ind zsm_Latn * target language(s): ita * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/msa-ita/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/msa-ita/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/msa-ita/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.msa.ita | 37.8 | 0.613 | ### System Info: - hf_name: msa-ita - source_languages: msa - target_languages: ita - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/msa-ita/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['ms', 'it'] - src_constituents: {'zsm_Latn', 'ind', 'max_Latn', 'zlm_Latn', 'min'} - tgt_constituents: {'ita'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/msa-ita/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/msa-ita/opus-2020-06-17.test.txt - src_alpha3: msa - tgt_alpha3: ita - short_pair: ms-it - chrF2_score: 0.613 - bleu: 37.8 - brevity_penalty: 0.995 - ref_len: 2758.0 - src_name: Malay (macrolanguage) - tgt_name: Italian - train_date: 2020-06-17 - src_alpha2: ms - tgt_alpha2: it - prefer_old: False - long_pair: msa-ita - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-nso-fi
a091d627ace0ba1342fa65d98bd170073c1a7dcf
2021-09-10T13:59:37.000Z
[ "pytorch", "marian", "text2text-generation", "nso", "fi", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-nso-fi
3
null
transformers
20,696
--- tags: - translation license: apache-2.0 --- ### opus-mt-nso-fi * source languages: nso * target languages: fi * OPUS readme: [nso-fi](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/nso-fi/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/nso-fi/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/nso-fi/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/nso-fi/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.nso.fi | 27.8 | 0.523 |
Helsinki-NLP/opus-mt-pl-eo
7f02da4aac0e1292655f5f39c9cb7964e49e068e
2020-08-21T14:42:48.000Z
[ "pytorch", "marian", "text2text-generation", "pl", "eo", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-pl-eo
3
null
transformers
20,697
--- language: - pl - eo tags: - translation license: apache-2.0 --- ### pol-epo * source group: Polish * target group: Esperanto * OPUS readme: [pol-epo](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/pol-epo/README.md) * model: transformer-align * source language(s): pol * target language(s): epo * model: transformer-align * pre-processing: normalization + SentencePiece (spm4k,spm4k) * download original weights: [opus-2020-06-16.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/pol-epo/opus-2020-06-16.zip) * test set translations: [opus-2020-06-16.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/pol-epo/opus-2020-06-16.test.txt) * test set scores: [opus-2020-06-16.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/pol-epo/opus-2020-06-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.pol.epo | 24.8 | 0.451 | ### System Info: - hf_name: pol-epo - source_languages: pol - target_languages: epo - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/pol-epo/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['pl', 'eo'] - src_constituents: {'pol'} - tgt_constituents: {'epo'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm4k,spm4k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/pol-epo/opus-2020-06-16.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/pol-epo/opus-2020-06-16.test.txt - src_alpha3: pol - tgt_alpha3: epo - short_pair: pl-eo - chrF2_score: 0.451 - bleu: 24.8 - brevity_penalty: 0.9670000000000001 - ref_len: 17191.0 - src_name: Polish - tgt_name: Esperanto - train_date: 2020-06-16 - src_alpha2: pl - tgt_alpha2: eo - prefer_old: False - long_pair: pol-epo - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-pt-gl
36fda1fd0a05c656bd1269e8c09fe26b6654e452
2020-08-21T14:42:48.000Z
[ "pytorch", "marian", "text2text-generation", "pt", "gl", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-pt-gl
3
null
transformers
20,698
--- language: - pt - gl tags: - translation license: apache-2.0 --- ### por-glg * source group: Portuguese * target group: Galician * OPUS readme: [por-glg](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/por-glg/README.md) * model: transformer-align * source language(s): por * target language(s): glg * model: transformer-align * pre-processing: normalization + SentencePiece (spm4k,spm4k) * download original weights: [opus-2020-06-16.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/por-glg/opus-2020-06-16.zip) * test set translations: [opus-2020-06-16.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/por-glg/opus-2020-06-16.test.txt) * test set scores: [opus-2020-06-16.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/por-glg/opus-2020-06-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.por.glg | 55.8 | 0.737 | ### System Info: - hf_name: por-glg - source_languages: por - target_languages: glg - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/por-glg/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['pt', 'gl'] - src_constituents: {'por'} - tgt_constituents: {'glg'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm4k,spm4k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/por-glg/opus-2020-06-16.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/por-glg/opus-2020-06-16.test.txt - src_alpha3: por - tgt_alpha3: glg - short_pair: pt-gl - chrF2_score: 0.737 - bleu: 55.8 - brevity_penalty: 0.996 - ref_len: 2989.0 - src_name: Portuguese - tgt_name: Galician - train_date: 2020-06-16 - src_alpha2: pt - tgt_alpha2: gl - prefer_old: False - long_pair: por-glg - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-ru-eo
cdde46f679fed727208b0461b52bdbe5496f6091
2020-08-21T14:42:49.000Z
[ "pytorch", "marian", "text2text-generation", "ru", "eo", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-ru-eo
3
null
transformers
20,699
--- language: - ru - eo tags: - translation license: apache-2.0 --- ### rus-epo * source group: Russian * target group: Esperanto * OPUS readme: [rus-epo](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/rus-epo/README.md) * model: transformer-align * source language(s): rus * target language(s): epo * model: transformer-align * pre-processing: normalization + SentencePiece (spm4k,spm4k) * download original weights: [opus-2020-06-16.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/rus-epo/opus-2020-06-16.zip) * test set translations: [opus-2020-06-16.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/rus-epo/opus-2020-06-16.test.txt) * test set scores: [opus-2020-06-16.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/rus-epo/opus-2020-06-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.rus.epo | 24.2 | 0.436 | ### System Info: - hf_name: rus-epo - source_languages: rus - target_languages: epo - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/rus-epo/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['ru', 'eo'] - src_constituents: {'rus'} - tgt_constituents: {'epo'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm4k,spm4k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/rus-epo/opus-2020-06-16.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/rus-epo/opus-2020-06-16.test.txt - src_alpha3: rus - tgt_alpha3: epo - short_pair: ru-eo - chrF2_score: 0.436 - bleu: 24.2 - brevity_penalty: 0.925 - ref_len: 77197.0 - src_name: Russian - tgt_name: Esperanto - train_date: 2020-06-16 - src_alpha2: ru - tgt_alpha2: eo - prefer_old: False - long_pair: rus-epo - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41