modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
MultiBertGunjanPatrick/multiberts-seed-1-1900k
009ce0707cba155e577ab0782aa7bf60d4f18e59
2021-10-04T05:01:53.000Z
[ "pytorch", "bert", "pretraining", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:2106.16163", "transformers", "exbert", "multiberts", "multiberts-seed-1", "license:apache-2.0" ]
null
false
MultiBertGunjanPatrick
null
MultiBertGunjanPatrick/multiberts-seed-1-1900k
3
null
transformers
20,800
--- language: en tags: - exbert - multiberts - multiberts-seed-1 license: apache-2.0 datasets: - bookcorpus - wikipedia --- # MultiBERTs Seed 1 Checkpoint 1900k (uncased) Seed 1 intermediate checkpoint 1900k MultiBERTs (pretrained BERT) model on English language using a masked language modeling (MLM) objective. It was introduced in [this paper](https://arxiv.org/pdf/2106.16163.pdf) and first released in [this repository](https://github.com/google-research/language/tree/master/language/multiberts). This is an intermediate checkpoint. The final checkpoint can be found at [multiberts-seed-1](https://hf.co/multberts-seed-1). This model is uncased: it does not make a difference between english and English. Disclaimer: The team releasing MultiBERTs did not write a model card for this model so this model card has been written by [gchhablani](https://hf.co/gchhablani). ## Model description MultiBERTs models are transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. - Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to predict if the two sentences were following each other or not. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the MultiBERTs model as inputs. ## Intended uses & limitations You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=multiberts) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('multiberts-seed-1-1900k') model = BertModel.from_pretrained("multiberts-seed-1-1900k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ### Limitations and bias Even if the training data used for this model could be characterized as fairly neutral, this model can have biased predictions. This bias will also affect all fine-tuned versions of this model. For an understanding of bias of this particular checkpoint, please try out this checkpoint with the snippet present in the [Limitation and bias section](https://huggingface.co/bert-base-uncased#limitations-and-bias) of the [bert-base-uncased](https://huggingface.co/bert-base-uncased) checkpoint. ## Training data The MultiBERTs models were pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers). ## Training procedure ### Preprocessing The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are then of the form: ``` [CLS] Sentence A [SEP] Sentence B [SEP] ``` With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two "sentences" has a combined length of less than 512 tokens. The details of the masking procedure for each sentence are the following: - 15% of the tokens are masked. - In 80% of the cases, the masked tokens are replaced by `[MASK]`. - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace. - In the 10% remaining cases, the masked tokens are left as is. ### Pretraining The full model was trained on 16 Cloud TPU v2 chips for two million steps with a batch size of 256. The sequence length was set to 512 throughout. The optimizer used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01, learning rate warmup for 10,000 steps and linear decay of the learning rate after. ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2106-16163, author = {Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, title = {The MultiBERTs: {BERT} Reproductions for Robustness Analysis}, journal = {CoRR}, volume = {abs/2106.16163}, year = {2021}, url = {https://arxiv.org/abs/2106.16163}, eprinttype = {arXiv}, eprint = {2106.16163}, timestamp = {Mon, 05 Jul 2021 15:15:50 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2106-16163.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <a href="https://huggingface.co/exbert/?model=multiberts"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
MultiBertGunjanPatrick/multiberts-seed-1-200k
3664d2d78eafeeac74c2966b160b26e33acb19b0
2021-10-04T04:59:44.000Z
[ "pytorch", "bert", "pretraining", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:2106.16163", "transformers", "exbert", "multiberts", "multiberts-seed-1", "license:apache-2.0" ]
null
false
MultiBertGunjanPatrick
null
MultiBertGunjanPatrick/multiberts-seed-1-200k
3
null
transformers
20,801
--- language: en tags: - exbert - multiberts - multiberts-seed-1 license: apache-2.0 datasets: - bookcorpus - wikipedia --- # MultiBERTs Seed 1 Checkpoint 200k (uncased) Seed 1 intermediate checkpoint 200k MultiBERTs (pretrained BERT) model on English language using a masked language modeling (MLM) objective. It was introduced in [this paper](https://arxiv.org/pdf/2106.16163.pdf) and first released in [this repository](https://github.com/google-research/language/tree/master/language/multiberts). This is an intermediate checkpoint. The final checkpoint can be found at [multiberts-seed-1](https://hf.co/multberts-seed-1). This model is uncased: it does not make a difference between english and English. Disclaimer: The team releasing MultiBERTs did not write a model card for this model so this model card has been written by [gchhablani](https://hf.co/gchhablani). ## Model description MultiBERTs models are transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. - Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to predict if the two sentences were following each other or not. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the MultiBERTs model as inputs. ## Intended uses & limitations You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=multiberts) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('multiberts-seed-1-200k') model = BertModel.from_pretrained("multiberts-seed-1-200k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ### Limitations and bias Even if the training data used for this model could be characterized as fairly neutral, this model can have biased predictions. This bias will also affect all fine-tuned versions of this model. For an understanding of bias of this particular checkpoint, please try out this checkpoint with the snippet present in the [Limitation and bias section](https://huggingface.co/bert-base-uncased#limitations-and-bias) of the [bert-base-uncased](https://huggingface.co/bert-base-uncased) checkpoint. ## Training data The MultiBERTs models were pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers). ## Training procedure ### Preprocessing The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are then of the form: ``` [CLS] Sentence A [SEP] Sentence B [SEP] ``` With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two "sentences" has a combined length of less than 512 tokens. The details of the masking procedure for each sentence are the following: - 15% of the tokens are masked. - In 80% of the cases, the masked tokens are replaced by `[MASK]`. - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace. - In the 10% remaining cases, the masked tokens are left as is. ### Pretraining The full model was trained on 16 Cloud TPU v2 chips for two million steps with a batch size of 256. The sequence length was set to 512 throughout. The optimizer used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01, learning rate warmup for 10,000 steps and linear decay of the learning rate after. ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2106-16163, author = {Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, title = {The MultiBERTs: {BERT} Reproductions for Robustness Analysis}, journal = {CoRR}, volume = {abs/2106.16163}, year = {2021}, url = {https://arxiv.org/abs/2106.16163}, eprinttype = {arXiv}, eprint = {2106.16163}, timestamp = {Mon, 05 Jul 2021 15:15:50 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2106-16163.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <a href="https://huggingface.co/exbert/?model=multiberts"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
MultiBertGunjanPatrick/multiberts-seed-1-400k
d8471dc9d8ce2b2064d4d8d70430fd389b1f1159
2021-10-04T05:00:05.000Z
[ "pytorch", "bert", "pretraining", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:2106.16163", "transformers", "exbert", "multiberts", "multiberts-seed-1", "license:apache-2.0" ]
null
false
MultiBertGunjanPatrick
null
MultiBertGunjanPatrick/multiberts-seed-1-400k
3
null
transformers
20,802
--- language: en tags: - exbert - multiberts - multiberts-seed-1 license: apache-2.0 datasets: - bookcorpus - wikipedia --- # MultiBERTs Seed 1 Checkpoint 400k (uncased) Seed 1 intermediate checkpoint 400k MultiBERTs (pretrained BERT) model on English language using a masked language modeling (MLM) objective. It was introduced in [this paper](https://arxiv.org/pdf/2106.16163.pdf) and first released in [this repository](https://github.com/google-research/language/tree/master/language/multiberts). This is an intermediate checkpoint. The final checkpoint can be found at [multiberts-seed-1](https://hf.co/multberts-seed-1). This model is uncased: it does not make a difference between english and English. Disclaimer: The team releasing MultiBERTs did not write a model card for this model so this model card has been written by [gchhablani](https://hf.co/gchhablani). ## Model description MultiBERTs models are transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. - Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to predict if the two sentences were following each other or not. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the MultiBERTs model as inputs. ## Intended uses & limitations You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=multiberts) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('multiberts-seed-1-400k') model = BertModel.from_pretrained("multiberts-seed-1-400k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ### Limitations and bias Even if the training data used for this model could be characterized as fairly neutral, this model can have biased predictions. This bias will also affect all fine-tuned versions of this model. For an understanding of bias of this particular checkpoint, please try out this checkpoint with the snippet present in the [Limitation and bias section](https://huggingface.co/bert-base-uncased#limitations-and-bias) of the [bert-base-uncased](https://huggingface.co/bert-base-uncased) checkpoint. ## Training data The MultiBERTs models were pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers). ## Training procedure ### Preprocessing The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are then of the form: ``` [CLS] Sentence A [SEP] Sentence B [SEP] ``` With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two "sentences" has a combined length of less than 512 tokens. The details of the masking procedure for each sentence are the following: - 15% of the tokens are masked. - In 80% of the cases, the masked tokens are replaced by `[MASK]`. - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace. - In the 10% remaining cases, the masked tokens are left as is. ### Pretraining The full model was trained on 16 Cloud TPU v2 chips for two million steps with a batch size of 256. The sequence length was set to 512 throughout. The optimizer used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01, learning rate warmup for 10,000 steps and linear decay of the learning rate after. ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2106-16163, author = {Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, title = {The MultiBERTs: {BERT} Reproductions for Robustness Analysis}, journal = {CoRR}, volume = {abs/2106.16163}, year = {2021}, url = {https://arxiv.org/abs/2106.16163}, eprinttype = {arXiv}, eprint = {2106.16163}, timestamp = {Mon, 05 Jul 2021 15:15:50 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2106-16163.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <a href="https://huggingface.co/exbert/?model=multiberts"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
MultiBertGunjanPatrick/multiberts-seed-1-500k
761e56148fc48ebb117996e007134b579536baff
2021-10-04T05:00:12.000Z
[ "pytorch", "bert", "pretraining", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:2106.16163", "transformers", "exbert", "multiberts", "multiberts-seed-1", "license:apache-2.0" ]
null
false
MultiBertGunjanPatrick
null
MultiBertGunjanPatrick/multiberts-seed-1-500k
3
null
transformers
20,803
--- language: en tags: - exbert - multiberts - multiberts-seed-1 license: apache-2.0 datasets: - bookcorpus - wikipedia --- # MultiBERTs Seed 1 Checkpoint 500k (uncased) Seed 1 intermediate checkpoint 500k MultiBERTs (pretrained BERT) model on English language using a masked language modeling (MLM) objective. It was introduced in [this paper](https://arxiv.org/pdf/2106.16163.pdf) and first released in [this repository](https://github.com/google-research/language/tree/master/language/multiberts). This is an intermediate checkpoint. The final checkpoint can be found at [multiberts-seed-1](https://hf.co/multberts-seed-1). This model is uncased: it does not make a difference between english and English. Disclaimer: The team releasing MultiBERTs did not write a model card for this model so this model card has been written by [gchhablani](https://hf.co/gchhablani). ## Model description MultiBERTs models are transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. - Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to predict if the two sentences were following each other or not. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the MultiBERTs model as inputs. ## Intended uses & limitations You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=multiberts) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('multiberts-seed-1-500k') model = BertModel.from_pretrained("multiberts-seed-1-500k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ### Limitations and bias Even if the training data used for this model could be characterized as fairly neutral, this model can have biased predictions. This bias will also affect all fine-tuned versions of this model. For an understanding of bias of this particular checkpoint, please try out this checkpoint with the snippet present in the [Limitation and bias section](https://huggingface.co/bert-base-uncased#limitations-and-bias) of the [bert-base-uncased](https://huggingface.co/bert-base-uncased) checkpoint. ## Training data The MultiBERTs models were pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers). ## Training procedure ### Preprocessing The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are then of the form: ``` [CLS] Sentence A [SEP] Sentence B [SEP] ``` With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two "sentences" has a combined length of less than 512 tokens. The details of the masking procedure for each sentence are the following: - 15% of the tokens are masked. - In 80% of the cases, the masked tokens are replaced by `[MASK]`. - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace. - In the 10% remaining cases, the masked tokens are left as is. ### Pretraining The full model was trained on 16 Cloud TPU v2 chips for two million steps with a batch size of 256. The sequence length was set to 512 throughout. The optimizer used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01, learning rate warmup for 10,000 steps and linear decay of the learning rate after. ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2106-16163, author = {Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, title = {The MultiBERTs: {BERT} Reproductions for Robustness Analysis}, journal = {CoRR}, volume = {abs/2106.16163}, year = {2021}, url = {https://arxiv.org/abs/2106.16163}, eprinttype = {arXiv}, eprint = {2106.16163}, timestamp = {Mon, 05 Jul 2021 15:15:50 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2106-16163.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <a href="https://huggingface.co/exbert/?model=multiberts"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
MultiBertGunjanPatrick/multiberts-seed-16
180f2f2bc096ec6bc43f8781d9cc5ef453d06017
2021-10-04T04:53:39.000Z
[ "pytorch", "bert", "pretraining", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:2106.16163", "transformers", "exbert", "multiberts", "license:apache-2.0" ]
null
false
MultiBertGunjanPatrick
null
MultiBertGunjanPatrick/multiberts-seed-16
3
null
transformers
20,804
--- language: en tags: - exbert - multiberts license: apache-2.0 datasets: - bookcorpus - wikipedia --- # MultiBERTs Seed 16 (uncased) Seed 16 MultiBERTs (pretrained BERT) model on English language using a masked language modeling (MLM) objective. It was introduced in [this paper](https://arxiv.org/pdf/2106.16163.pdf) and first released in [this repository](https://github.com/google-research/language/tree/master/language/multiberts). This model is uncased: it does not make a difference between english and English. Disclaimer: The team releasing MultiBERTs did not write a model card for this model so this model card has been written by [gchhablani](https://hf.co/gchhablani). ## Model description MultiBERTs models are transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. - Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to predict if the two sentences were following each other or not. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the MultiBERTs model as inputs. ## Intended uses & limitations You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=multiberts) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('multiberts-seed-16') model = BertModel.from_pretrained("multiberts-seed-16") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ### Limitations and bias Even if the training data used for this model could be characterized as fairly neutral, this model can have biased predictions. This bias will also affect all fine-tuned versions of this model. For an understanding of bias of this particular checkpoint, please try out this checkpoint with the snippet present in the [Limitation and bias section](https://huggingface.co/bert-base-uncased#limitations-and-bias) of the [bert-base-uncased](https://huggingface.co/bert-base-uncased) checkpoint. ## Training data The MultiBERTs models were pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers). ## Training procedure ### Preprocessing The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are then of the form: ``` [CLS] Sentence A [SEP] Sentence B [SEP] ``` With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two "sentences" has a combined length of less than 512 tokens. The details of the masking procedure for each sentence are the following: - 15% of the tokens are masked. - In 80% of the cases, the masked tokens are replaced by `[MASK]`. - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace. - In the 10% remaining cases, the masked tokens are left as is. ### Pretraining The model was trained on 16 Cloud TPU v2 chips for two million steps with a batch size of 256. The sequence length was set to 512 throughout. The optimizer used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01, learning rate warmup for 10,000 steps and linear decay of the learning rate after. ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2106-16163, author = {Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, title = {The MultiBERTs: {BERT} Reproductions for Robustness Analysis}, journal = {CoRR}, volume = {abs/2106.16163}, year = {2021}, url = {https://arxiv.org/abs/2106.16163}, eprinttype = {arXiv}, eprint = {2106.16163}, timestamp = {Mon, 05 Jul 2021 15:15:50 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2106-16163.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <a href="https://huggingface.co/exbert/?model=multiberts"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
MultiBertGunjanPatrick/multiberts-seed-2-1300k
aa2dc6bd9d1d598fb7614088518282bad178517c
2021-10-04T05:04:51.000Z
[ "pytorch", "bert", "pretraining", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:2106.16163", "transformers", "exbert", "multiberts", "multiberts-seed-2", "license:apache-2.0" ]
null
false
MultiBertGunjanPatrick
null
MultiBertGunjanPatrick/multiberts-seed-2-1300k
3
null
transformers
20,805
--- language: en tags: - exbert - multiberts - multiberts-seed-2 license: apache-2.0 datasets: - bookcorpus - wikipedia --- # MultiBERTs Seed 2 Checkpoint 1300k (uncased) Seed 2 intermediate checkpoint 1300k MultiBERTs (pretrained BERT) model on English language using a masked language modeling (MLM) objective. It was introduced in [this paper](https://arxiv.org/pdf/2106.16163.pdf) and first released in [this repository](https://github.com/google-research/language/tree/master/language/multiberts). This is an intermediate checkpoint. The final checkpoint can be found at [multiberts-seed-2](https://hf.co/multberts-seed-2). This model is uncased: it does not make a difference between english and English. Disclaimer: The team releasing MultiBERTs did not write a model card for this model so this model card has been written by [gchhablani](https://hf.co/gchhablani). ## Model description MultiBERTs models are transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. - Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to predict if the two sentences were following each other or not. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the MultiBERTs model as inputs. ## Intended uses & limitations You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=multiberts) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('multiberts-seed-2-1300k') model = BertModel.from_pretrained("multiberts-seed-2-1300k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ### Limitations and bias Even if the training data used for this model could be characterized as fairly neutral, this model can have biased predictions. This bias will also affect all fine-tuned versions of this model. For an understanding of bias of this particular checkpoint, please try out this checkpoint with the snippet present in the [Limitation and bias section](https://huggingface.co/bert-base-uncased#limitations-and-bias) of the [bert-base-uncased](https://huggingface.co/bert-base-uncased) checkpoint. ## Training data The MultiBERTs models were pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers). ## Training procedure ### Preprocessing The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are then of the form: ``` [CLS] Sentence A [SEP] Sentence B [SEP] ``` With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two "sentences" has a combined length of less than 512 tokens. The details of the masking procedure for each sentence are the following: - 15% of the tokens are masked. - In 80% of the cases, the masked tokens are replaced by `[MASK]`. - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace. - In the 10% remaining cases, the masked tokens are left as is. ### Pretraining The full model was trained on 16 Cloud TPU v2 chips for two million steps with a batch size of 256. The sequence length was set to 512 throughout. The optimizer used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01, learning rate warmup for 10,000 steps and linear decay of the learning rate after. ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2106-16163, author = {Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, title = {The MultiBERTs: {BERT} Reproductions for Robustness Analysis}, journal = {CoRR}, volume = {abs/2106.16163}, year = {2021}, url = {https://arxiv.org/abs/2106.16163}, eprinttype = {arXiv}, eprint = {2106.16163}, timestamp = {Mon, 05 Jul 2021 15:15:50 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2106-16163.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <a href="https://huggingface.co/exbert/?model=multiberts"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
MultiBertGunjanPatrick/multiberts-seed-2-1700k
1b2d992d5b4df3eb4ef94f7a7352a7913e588b51
2021-10-04T05:05:22.000Z
[ "pytorch", "bert", "pretraining", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:2106.16163", "transformers", "exbert", "multiberts", "multiberts-seed-2", "license:apache-2.0" ]
null
false
MultiBertGunjanPatrick
null
MultiBertGunjanPatrick/multiberts-seed-2-1700k
3
null
transformers
20,806
--- language: en tags: - exbert - multiberts - multiberts-seed-2 license: apache-2.0 datasets: - bookcorpus - wikipedia --- # MultiBERTs Seed 2 Checkpoint 1700k (uncased) Seed 2 intermediate checkpoint 1700k MultiBERTs (pretrained BERT) model on English language using a masked language modeling (MLM) objective. It was introduced in [this paper](https://arxiv.org/pdf/2106.16163.pdf) and first released in [this repository](https://github.com/google-research/language/tree/master/language/multiberts). This is an intermediate checkpoint. The final checkpoint can be found at [multiberts-seed-2](https://hf.co/multberts-seed-2). This model is uncased: it does not make a difference between english and English. Disclaimer: The team releasing MultiBERTs did not write a model card for this model so this model card has been written by [gchhablani](https://hf.co/gchhablani). ## Model description MultiBERTs models are transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. - Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to predict if the two sentences were following each other or not. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the MultiBERTs model as inputs. ## Intended uses & limitations You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=multiberts) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('multiberts-seed-2-1700k') model = BertModel.from_pretrained("multiberts-seed-2-1700k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ### Limitations and bias Even if the training data used for this model could be characterized as fairly neutral, this model can have biased predictions. This bias will also affect all fine-tuned versions of this model. For an understanding of bias of this particular checkpoint, please try out this checkpoint with the snippet present in the [Limitation and bias section](https://huggingface.co/bert-base-uncased#limitations-and-bias) of the [bert-base-uncased](https://huggingface.co/bert-base-uncased) checkpoint. ## Training data The MultiBERTs models were pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers). ## Training procedure ### Preprocessing The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are then of the form: ``` [CLS] Sentence A [SEP] Sentence B [SEP] ``` With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two "sentences" has a combined length of less than 512 tokens. The details of the masking procedure for each sentence are the following: - 15% of the tokens are masked. - In 80% of the cases, the masked tokens are replaced by `[MASK]`. - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace. - In the 10% remaining cases, the masked tokens are left as is. ### Pretraining The full model was trained on 16 Cloud TPU v2 chips for two million steps with a batch size of 256. The sequence length was set to 512 throughout. The optimizer used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01, learning rate warmup for 10,000 steps and linear decay of the learning rate after. ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2106-16163, author = {Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, title = {The MultiBERTs: {BERT} Reproductions for Robustness Analysis}, journal = {CoRR}, volume = {abs/2106.16163}, year = {2021}, url = {https://arxiv.org/abs/2106.16163}, eprinttype = {arXiv}, eprint = {2106.16163}, timestamp = {Mon, 05 Jul 2021 15:15:50 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2106-16163.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <a href="https://huggingface.co/exbert/?model=multiberts"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
MultiBertGunjanPatrick/multiberts-seed-2-1800k
2e3295e9307f2428cc963909361e955e29ef3fbf
2021-10-04T05:05:29.000Z
[ "pytorch", "bert", "pretraining", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:2106.16163", "transformers", "exbert", "multiberts", "multiberts-seed-2", "license:apache-2.0" ]
null
false
MultiBertGunjanPatrick
null
MultiBertGunjanPatrick/multiberts-seed-2-1800k
3
null
transformers
20,807
--- language: en tags: - exbert - multiberts - multiberts-seed-2 license: apache-2.0 datasets: - bookcorpus - wikipedia --- # MultiBERTs Seed 2 Checkpoint 1800k (uncased) Seed 2 intermediate checkpoint 1800k MultiBERTs (pretrained BERT) model on English language using a masked language modeling (MLM) objective. It was introduced in [this paper](https://arxiv.org/pdf/2106.16163.pdf) and first released in [this repository](https://github.com/google-research/language/tree/master/language/multiberts). This is an intermediate checkpoint. The final checkpoint can be found at [multiberts-seed-2](https://hf.co/multberts-seed-2). This model is uncased: it does not make a difference between english and English. Disclaimer: The team releasing MultiBERTs did not write a model card for this model so this model card has been written by [gchhablani](https://hf.co/gchhablani). ## Model description MultiBERTs models are transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. - Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to predict if the two sentences were following each other or not. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the MultiBERTs model as inputs. ## Intended uses & limitations You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=multiberts) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('multiberts-seed-2-1800k') model = BertModel.from_pretrained("multiberts-seed-2-1800k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ### Limitations and bias Even if the training data used for this model could be characterized as fairly neutral, this model can have biased predictions. This bias will also affect all fine-tuned versions of this model. For an understanding of bias of this particular checkpoint, please try out this checkpoint with the snippet present in the [Limitation and bias section](https://huggingface.co/bert-base-uncased#limitations-and-bias) of the [bert-base-uncased](https://huggingface.co/bert-base-uncased) checkpoint. ## Training data The MultiBERTs models were pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers). ## Training procedure ### Preprocessing The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are then of the form: ``` [CLS] Sentence A [SEP] Sentence B [SEP] ``` With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two "sentences" has a combined length of less than 512 tokens. The details of the masking procedure for each sentence are the following: - 15% of the tokens are masked. - In 80% of the cases, the masked tokens are replaced by `[MASK]`. - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace. - In the 10% remaining cases, the masked tokens are left as is. ### Pretraining The full model was trained on 16 Cloud TPU v2 chips for two million steps with a batch size of 256. The sequence length was set to 512 throughout. The optimizer used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01, learning rate warmup for 10,000 steps and linear decay of the learning rate after. ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2106-16163, author = {Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, title = {The MultiBERTs: {BERT} Reproductions for Robustness Analysis}, journal = {CoRR}, volume = {abs/2106.16163}, year = {2021}, url = {https://arxiv.org/abs/2106.16163}, eprinttype = {arXiv}, eprint = {2106.16163}, timestamp = {Mon, 05 Jul 2021 15:15:50 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2106-16163.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <a href="https://huggingface.co/exbert/?model=multiberts"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
MultiBertGunjanPatrick/multiberts-seed-2-2000k
71d9a6ac318e6c7396c8604fb3e4f973921c85dc
2021-10-04T05:05:44.000Z
[ "pytorch", "bert", "pretraining", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:2106.16163", "transformers", "exbert", "multiberts", "multiberts-seed-2", "license:apache-2.0" ]
null
false
MultiBertGunjanPatrick
null
MultiBertGunjanPatrick/multiberts-seed-2-2000k
3
null
transformers
20,808
--- language: en tags: - exbert - multiberts - multiberts-seed-2 license: apache-2.0 datasets: - bookcorpus - wikipedia --- # MultiBERTs Seed 2 Checkpoint 2000k (uncased) Seed 2 intermediate checkpoint 2000k MultiBERTs (pretrained BERT) model on English language using a masked language modeling (MLM) objective. It was introduced in [this paper](https://arxiv.org/pdf/2106.16163.pdf) and first released in [this repository](https://github.com/google-research/language/tree/master/language/multiberts). This is an intermediate checkpoint. The final checkpoint can be found at [multiberts-seed-2](https://hf.co/multberts-seed-2). This model is uncased: it does not make a difference between english and English. Disclaimer: The team releasing MultiBERTs did not write a model card for this model so this model card has been written by [gchhablani](https://hf.co/gchhablani). ## Model description MultiBERTs models are transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. - Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to predict if the two sentences were following each other or not. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the MultiBERTs model as inputs. ## Intended uses & limitations You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=multiberts) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('multiberts-seed-2-2000k') model = BertModel.from_pretrained("multiberts-seed-2-2000k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ### Limitations and bias Even if the training data used for this model could be characterized as fairly neutral, this model can have biased predictions. This bias will also affect all fine-tuned versions of this model. For an understanding of bias of this particular checkpoint, please try out this checkpoint with the snippet present in the [Limitation and bias section](https://huggingface.co/bert-base-uncased#limitations-and-bias) of the [bert-base-uncased](https://huggingface.co/bert-base-uncased) checkpoint. ## Training data The MultiBERTs models were pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers). ## Training procedure ### Preprocessing The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are then of the form: ``` [CLS] Sentence A [SEP] Sentence B [SEP] ``` With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two "sentences" has a combined length of less than 512 tokens. The details of the masking procedure for each sentence are the following: - 15% of the tokens are masked. - In 80% of the cases, the masked tokens are replaced by `[MASK]`. - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace. - In the 10% remaining cases, the masked tokens are left as is. ### Pretraining The full model was trained on 16 Cloud TPU v2 chips for two million steps with a batch size of 256. The sequence length was set to 512 throughout. The optimizer used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01, learning rate warmup for 10,000 steps and linear decay of the learning rate after. ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2106-16163, author = {Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, title = {The MultiBERTs: {BERT} Reproductions for Robustness Analysis}, journal = {CoRR}, volume = {abs/2106.16163}, year = {2021}, url = {https://arxiv.org/abs/2106.16163}, eprinttype = {arXiv}, eprint = {2106.16163}, timestamp = {Mon, 05 Jul 2021 15:15:50 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2106-16163.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <a href="https://huggingface.co/exbert/?model=multiberts"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
MultiBertGunjanPatrick/multiberts-seed-2-300k
ad7564333064d5fc865f488672c80d62c7ef0c8b
2021-10-04T05:03:33.000Z
[ "pytorch", "bert", "pretraining", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:2106.16163", "transformers", "exbert", "multiberts", "multiberts-seed-2", "license:apache-2.0" ]
null
false
MultiBertGunjanPatrick
null
MultiBertGunjanPatrick/multiberts-seed-2-300k
3
null
transformers
20,809
--- language: en tags: - exbert - multiberts - multiberts-seed-2 license: apache-2.0 datasets: - bookcorpus - wikipedia --- # MultiBERTs Seed 2 Checkpoint 300k (uncased) Seed 2 intermediate checkpoint 300k MultiBERTs (pretrained BERT) model on English language using a masked language modeling (MLM) objective. It was introduced in [this paper](https://arxiv.org/pdf/2106.16163.pdf) and first released in [this repository](https://github.com/google-research/language/tree/master/language/multiberts). This is an intermediate checkpoint. The final checkpoint can be found at [multiberts-seed-2](https://hf.co/multberts-seed-2). This model is uncased: it does not make a difference between english and English. Disclaimer: The team releasing MultiBERTs did not write a model card for this model so this model card has been written by [gchhablani](https://hf.co/gchhablani). ## Model description MultiBERTs models are transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. - Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to predict if the two sentences were following each other or not. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the MultiBERTs model as inputs. ## Intended uses & limitations You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=multiberts) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('multiberts-seed-2-300k') model = BertModel.from_pretrained("multiberts-seed-2-300k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ### Limitations and bias Even if the training data used for this model could be characterized as fairly neutral, this model can have biased predictions. This bias will also affect all fine-tuned versions of this model. For an understanding of bias of this particular checkpoint, please try out this checkpoint with the snippet present in the [Limitation and bias section](https://huggingface.co/bert-base-uncased#limitations-and-bias) of the [bert-base-uncased](https://huggingface.co/bert-base-uncased) checkpoint. ## Training data The MultiBERTs models were pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers). ## Training procedure ### Preprocessing The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are then of the form: ``` [CLS] Sentence A [SEP] Sentence B [SEP] ``` With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two "sentences" has a combined length of less than 512 tokens. The details of the masking procedure for each sentence are the following: - 15% of the tokens are masked. - In 80% of the cases, the masked tokens are replaced by `[MASK]`. - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace. - In the 10% remaining cases, the masked tokens are left as is. ### Pretraining The full model was trained on 16 Cloud TPU v2 chips for two million steps with a batch size of 256. The sequence length was set to 512 throughout. The optimizer used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01, learning rate warmup for 10,000 steps and linear decay of the learning rate after. ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2106-16163, author = {Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, title = {The MultiBERTs: {BERT} Reproductions for Robustness Analysis}, journal = {CoRR}, volume = {abs/2106.16163}, year = {2021}, url = {https://arxiv.org/abs/2106.16163}, eprinttype = {arXiv}, eprint = {2106.16163}, timestamp = {Mon, 05 Jul 2021 15:15:50 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2106-16163.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <a href="https://huggingface.co/exbert/?model=multiberts"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
MultiBertGunjanPatrick/multiberts-seed-2-600k
b440bc5c720c1c72034b200149329f52cf70e185
2021-10-04T05:03:56.000Z
[ "pytorch", "bert", "pretraining", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:2106.16163", "transformers", "exbert", "multiberts", "multiberts-seed-2", "license:apache-2.0" ]
null
false
MultiBertGunjanPatrick
null
MultiBertGunjanPatrick/multiberts-seed-2-600k
3
null
transformers
20,810
--- language: en tags: - exbert - multiberts - multiberts-seed-2 license: apache-2.0 datasets: - bookcorpus - wikipedia --- # MultiBERTs Seed 2 Checkpoint 600k (uncased) Seed 2 intermediate checkpoint 600k MultiBERTs (pretrained BERT) model on English language using a masked language modeling (MLM) objective. It was introduced in [this paper](https://arxiv.org/pdf/2106.16163.pdf) and first released in [this repository](https://github.com/google-research/language/tree/master/language/multiberts). This is an intermediate checkpoint. The final checkpoint can be found at [multiberts-seed-2](https://hf.co/multberts-seed-2). This model is uncased: it does not make a difference between english and English. Disclaimer: The team releasing MultiBERTs did not write a model card for this model so this model card has been written by [gchhablani](https://hf.co/gchhablani). ## Model description MultiBERTs models are transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. - Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to predict if the two sentences were following each other or not. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the MultiBERTs model as inputs. ## Intended uses & limitations You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=multiberts) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('multiberts-seed-2-600k') model = BertModel.from_pretrained("multiberts-seed-2-600k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ### Limitations and bias Even if the training data used for this model could be characterized as fairly neutral, this model can have biased predictions. This bias will also affect all fine-tuned versions of this model. For an understanding of bias of this particular checkpoint, please try out this checkpoint with the snippet present in the [Limitation and bias section](https://huggingface.co/bert-base-uncased#limitations-and-bias) of the [bert-base-uncased](https://huggingface.co/bert-base-uncased) checkpoint. ## Training data The MultiBERTs models were pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers). ## Training procedure ### Preprocessing The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are then of the form: ``` [CLS] Sentence A [SEP] Sentence B [SEP] ``` With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two "sentences" has a combined length of less than 512 tokens. The details of the masking procedure for each sentence are the following: - 15% of the tokens are masked. - In 80% of the cases, the masked tokens are replaced by `[MASK]`. - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace. - In the 10% remaining cases, the masked tokens are left as is. ### Pretraining The full model was trained on 16 Cloud TPU v2 chips for two million steps with a batch size of 256. The sequence length was set to 512 throughout. The optimizer used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01, learning rate warmup for 10,000 steps and linear decay of the learning rate after. ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2106-16163, author = {Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, title = {The MultiBERTs: {BERT} Reproductions for Robustness Analysis}, journal = {CoRR}, volume = {abs/2106.16163}, year = {2021}, url = {https://arxiv.org/abs/2106.16163}, eprinttype = {arXiv}, eprint = {2106.16163}, timestamp = {Mon, 05 Jul 2021 15:15:50 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2106-16163.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <a href="https://huggingface.co/exbert/?model=multiberts"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
MultiBertGunjanPatrick/multiberts-seed-2-700k
9e5fb3a072a729d0166cfbe0095acce97aea0e6a
2021-10-04T05:04:03.000Z
[ "pytorch", "bert", "pretraining", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:2106.16163", "transformers", "exbert", "multiberts", "multiberts-seed-2", "license:apache-2.0" ]
null
false
MultiBertGunjanPatrick
null
MultiBertGunjanPatrick/multiberts-seed-2-700k
3
null
transformers
20,811
--- language: en tags: - exbert - multiberts - multiberts-seed-2 license: apache-2.0 datasets: - bookcorpus - wikipedia --- # MultiBERTs Seed 2 Checkpoint 700k (uncased) Seed 2 intermediate checkpoint 700k MultiBERTs (pretrained BERT) model on English language using a masked language modeling (MLM) objective. It was introduced in [this paper](https://arxiv.org/pdf/2106.16163.pdf) and first released in [this repository](https://github.com/google-research/language/tree/master/language/multiberts). This is an intermediate checkpoint. The final checkpoint can be found at [multiberts-seed-2](https://hf.co/multberts-seed-2). This model is uncased: it does not make a difference between english and English. Disclaimer: The team releasing MultiBERTs did not write a model card for this model so this model card has been written by [gchhablani](https://hf.co/gchhablani). ## Model description MultiBERTs models are transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. - Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to predict if the two sentences were following each other or not. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the MultiBERTs model as inputs. ## Intended uses & limitations You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=multiberts) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('multiberts-seed-2-700k') model = BertModel.from_pretrained("multiberts-seed-2-700k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ### Limitations and bias Even if the training data used for this model could be characterized as fairly neutral, this model can have biased predictions. This bias will also affect all fine-tuned versions of this model. For an understanding of bias of this particular checkpoint, please try out this checkpoint with the snippet present in the [Limitation and bias section](https://huggingface.co/bert-base-uncased#limitations-and-bias) of the [bert-base-uncased](https://huggingface.co/bert-base-uncased) checkpoint. ## Training data The MultiBERTs models were pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers). ## Training procedure ### Preprocessing The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are then of the form: ``` [CLS] Sentence A [SEP] Sentence B [SEP] ``` With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two "sentences" has a combined length of less than 512 tokens. The details of the masking procedure for each sentence are the following: - 15% of the tokens are masked. - In 80% of the cases, the masked tokens are replaced by `[MASK]`. - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace. - In the 10% remaining cases, the masked tokens are left as is. ### Pretraining The full model was trained on 16 Cloud TPU v2 chips for two million steps with a batch size of 256. The sequence length was set to 512 throughout. The optimizer used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01, learning rate warmup for 10,000 steps and linear decay of the learning rate after. ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2106-16163, author = {Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, title = {The MultiBERTs: {BERT} Reproductions for Robustness Analysis}, journal = {CoRR}, volume = {abs/2106.16163}, year = {2021}, url = {https://arxiv.org/abs/2106.16163}, eprinttype = {arXiv}, eprint = {2106.16163}, timestamp = {Mon, 05 Jul 2021 15:15:50 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2106-16163.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <a href="https://huggingface.co/exbert/?model=multiberts"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
MultiBertGunjanPatrick/multiberts-seed-2-80k
f8d5967cb55d31644677b855fd10a31090c95eb3
2021-10-04T05:02:36.000Z
[ "pytorch", "bert", "pretraining", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:2106.16163", "transformers", "exbert", "multiberts", "multiberts-seed-2", "license:apache-2.0" ]
null
false
MultiBertGunjanPatrick
null
MultiBertGunjanPatrick/multiberts-seed-2-80k
3
null
transformers
20,812
--- language: en tags: - exbert - multiberts - multiberts-seed-2 license: apache-2.0 datasets: - bookcorpus - wikipedia --- # MultiBERTs Seed 2 Checkpoint 80k (uncased) Seed 2 intermediate checkpoint 80k MultiBERTs (pretrained BERT) model on English language using a masked language modeling (MLM) objective. It was introduced in [this paper](https://arxiv.org/pdf/2106.16163.pdf) and first released in [this repository](https://github.com/google-research/language/tree/master/language/multiberts). This is an intermediate checkpoint. The final checkpoint can be found at [multiberts-seed-2](https://hf.co/multberts-seed-2). This model is uncased: it does not make a difference between english and English. Disclaimer: The team releasing MultiBERTs did not write a model card for this model so this model card has been written by [gchhablani](https://hf.co/gchhablani). ## Model description MultiBERTs models are transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. - Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to predict if the two sentences were following each other or not. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the MultiBERTs model as inputs. ## Intended uses & limitations You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=multiberts) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('multiberts-seed-2-80k') model = BertModel.from_pretrained("multiberts-seed-2-80k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ### Limitations and bias Even if the training data used for this model could be characterized as fairly neutral, this model can have biased predictions. This bias will also affect all fine-tuned versions of this model. For an understanding of bias of this particular checkpoint, please try out this checkpoint with the snippet present in the [Limitation and bias section](https://huggingface.co/bert-base-uncased#limitations-and-bias) of the [bert-base-uncased](https://huggingface.co/bert-base-uncased) checkpoint. ## Training data The MultiBERTs models were pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers). ## Training procedure ### Preprocessing The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are then of the form: ``` [CLS] Sentence A [SEP] Sentence B [SEP] ``` With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two "sentences" has a combined length of less than 512 tokens. The details of the masking procedure for each sentence are the following: - 15% of the tokens are masked. - In 80% of the cases, the masked tokens are replaced by `[MASK]`. - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace. - In the 10% remaining cases, the masked tokens are left as is. ### Pretraining The full model was trained on 16 Cloud TPU v2 chips for two million steps with a batch size of 256. The sequence length was set to 512 throughout. The optimizer used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01, learning rate warmup for 10,000 steps and linear decay of the learning rate after. ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2106-16163, author = {Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, title = {The MultiBERTs: {BERT} Reproductions for Robustness Analysis}, journal = {CoRR}, volume = {abs/2106.16163}, year = {2021}, url = {https://arxiv.org/abs/2106.16163}, eprinttype = {arXiv}, eprint = {2106.16163}, timestamp = {Mon, 05 Jul 2021 15:15:50 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2106-16163.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <a href="https://huggingface.co/exbert/?model=multiberts"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
MultiBertGunjanPatrick/multiberts-seed-23
b46cac984d29e7f0055437d22cec02894e09d0ac
2021-10-04T04:54:32.000Z
[ "pytorch", "bert", "pretraining", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:2106.16163", "transformers", "exbert", "multiberts", "license:apache-2.0" ]
null
false
MultiBertGunjanPatrick
null
MultiBertGunjanPatrick/multiberts-seed-23
3
null
transformers
20,813
--- language: en tags: - exbert - multiberts license: apache-2.0 datasets: - bookcorpus - wikipedia --- # MultiBERTs Seed 23 (uncased) Seed 23 MultiBERTs (pretrained BERT) model on English language using a masked language modeling (MLM) objective. It was introduced in [this paper](https://arxiv.org/pdf/2106.16163.pdf) and first released in [this repository](https://github.com/google-research/language/tree/master/language/multiberts). This model is uncased: it does not make a difference between english and English. Disclaimer: The team releasing MultiBERTs did not write a model card for this model so this model card has been written by [gchhablani](https://hf.co/gchhablani). ## Model description MultiBERTs models are transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. - Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to predict if the two sentences were following each other or not. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the MultiBERTs model as inputs. ## Intended uses & limitations You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=multiberts) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('multiberts-seed-23') model = BertModel.from_pretrained("multiberts-seed-23") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ### Limitations and bias Even if the training data used for this model could be characterized as fairly neutral, this model can have biased predictions. This bias will also affect all fine-tuned versions of this model. For an understanding of bias of this particular checkpoint, please try out this checkpoint with the snippet present in the [Limitation and bias section](https://huggingface.co/bert-base-uncased#limitations-and-bias) of the [bert-base-uncased](https://huggingface.co/bert-base-uncased) checkpoint. ## Training data The MultiBERTs models were pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers). ## Training procedure ### Preprocessing The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are then of the form: ``` [CLS] Sentence A [SEP] Sentence B [SEP] ``` With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two "sentences" has a combined length of less than 512 tokens. The details of the masking procedure for each sentence are the following: - 15% of the tokens are masked. - In 80% of the cases, the masked tokens are replaced by `[MASK]`. - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace. - In the 10% remaining cases, the masked tokens are left as is. ### Pretraining The model was trained on 16 Cloud TPU v2 chips for two million steps with a batch size of 256. The sequence length was set to 512 throughout. The optimizer used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01, learning rate warmup for 10,000 steps and linear decay of the learning rate after. ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2106-16163, author = {Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, title = {The MultiBERTs: {BERT} Reproductions for Robustness Analysis}, journal = {CoRR}, volume = {abs/2106.16163}, year = {2021}, url = {https://arxiv.org/abs/2106.16163}, eprinttype = {arXiv}, eprint = {2106.16163}, timestamp = {Mon, 05 Jul 2021 15:15:50 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2106-16163.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <a href="https://huggingface.co/exbert/?model=multiberts"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
MultiBertGunjanPatrick/multiberts-seed-3-1100k
3432fbd8f02021fb012f0984a5968d99b55418ee
2021-10-04T05:08:14.000Z
[ "pytorch", "bert", "pretraining", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:2106.16163", "transformers", "exbert", "multiberts", "multiberts-seed-3", "license:apache-2.0" ]
null
false
MultiBertGunjanPatrick
null
MultiBertGunjanPatrick/multiberts-seed-3-1100k
3
null
transformers
20,814
--- language: en tags: - exbert - multiberts - multiberts-seed-3 license: apache-2.0 datasets: - bookcorpus - wikipedia --- # MultiBERTs Seed 3 Checkpoint 1100k (uncased) Seed 3 intermediate checkpoint 1100k MultiBERTs (pretrained BERT) model on English language using a masked language modeling (MLM) objective. It was introduced in [this paper](https://arxiv.org/pdf/2106.16163.pdf) and first released in [this repository](https://github.com/google-research/language/tree/master/language/multiberts). This is an intermediate checkpoint. The final checkpoint can be found at [multiberts-seed-3](https://hf.co/multberts-seed-3). This model is uncased: it does not make a difference between english and English. Disclaimer: The team releasing MultiBERTs did not write a model card for this model so this model card has been written by [gchhablani](https://hf.co/gchhablani). ## Model description MultiBERTs models are transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. - Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to predict if the two sentences were following each other or not. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the MultiBERTs model as inputs. ## Intended uses & limitations You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=multiberts) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('multiberts-seed-3-1100k') model = BertModel.from_pretrained("multiberts-seed-3-1100k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ### Limitations and bias Even if the training data used for this model could be characterized as fairly neutral, this model can have biased predictions. This bias will also affect all fine-tuned versions of this model. For an understanding of bias of this particular checkpoint, please try out this checkpoint with the snippet present in the [Limitation and bias section](https://huggingface.co/bert-base-uncased#limitations-and-bias) of the [bert-base-uncased](https://huggingface.co/bert-base-uncased) checkpoint. ## Training data The MultiBERTs models were pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers). ## Training procedure ### Preprocessing The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are then of the form: ``` [CLS] Sentence A [SEP] Sentence B [SEP] ``` With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two "sentences" has a combined length of less than 512 tokens. The details of the masking procedure for each sentence are the following: - 15% of the tokens are masked. - In 80% of the cases, the masked tokens are replaced by `[MASK]`. - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace. - In the 10% remaining cases, the masked tokens are left as is. ### Pretraining The full model was trained on 16 Cloud TPU v2 chips for two million steps with a batch size of 256. The sequence length was set to 512 throughout. The optimizer used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01, learning rate warmup for 10,000 steps and linear decay of the learning rate after. ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2106-16163, author = {Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, title = {The MultiBERTs: {BERT} Reproductions for Robustness Analysis}, journal = {CoRR}, volume = {abs/2106.16163}, year = {2021}, url = {https://arxiv.org/abs/2106.16163}, eprinttype = {arXiv}, eprint = {2106.16163}, timestamp = {Mon, 05 Jul 2021 15:15:50 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2106-16163.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <a href="https://huggingface.co/exbert/?model=multiberts"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
MultiBertGunjanPatrick/multiberts-seed-3-1600k
93e0fc06d1ef4470bdc5b86e492b14d293bcd878
2021-10-04T05:08:53.000Z
[ "pytorch", "bert", "pretraining", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:2106.16163", "transformers", "exbert", "multiberts", "multiberts-seed-3", "license:apache-2.0" ]
null
false
MultiBertGunjanPatrick
null
MultiBertGunjanPatrick/multiberts-seed-3-1600k
3
null
transformers
20,815
--- language: en tags: - exbert - multiberts - multiberts-seed-3 license: apache-2.0 datasets: - bookcorpus - wikipedia --- # MultiBERTs Seed 3 Checkpoint 1600k (uncased) Seed 3 intermediate checkpoint 1600k MultiBERTs (pretrained BERT) model on English language using a masked language modeling (MLM) objective. It was introduced in [this paper](https://arxiv.org/pdf/2106.16163.pdf) and first released in [this repository](https://github.com/google-research/language/tree/master/language/multiberts). This is an intermediate checkpoint. The final checkpoint can be found at [multiberts-seed-3](https://hf.co/multberts-seed-3). This model is uncased: it does not make a difference between english and English. Disclaimer: The team releasing MultiBERTs did not write a model card for this model so this model card has been written by [gchhablani](https://hf.co/gchhablani). ## Model description MultiBERTs models are transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. - Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to predict if the two sentences were following each other or not. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the MultiBERTs model as inputs. ## Intended uses & limitations You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=multiberts) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('multiberts-seed-3-1600k') model = BertModel.from_pretrained("multiberts-seed-3-1600k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ### Limitations and bias Even if the training data used for this model could be characterized as fairly neutral, this model can have biased predictions. This bias will also affect all fine-tuned versions of this model. For an understanding of bias of this particular checkpoint, please try out this checkpoint with the snippet present in the [Limitation and bias section](https://huggingface.co/bert-base-uncased#limitations-and-bias) of the [bert-base-uncased](https://huggingface.co/bert-base-uncased) checkpoint. ## Training data The MultiBERTs models were pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers). ## Training procedure ### Preprocessing The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are then of the form: ``` [CLS] Sentence A [SEP] Sentence B [SEP] ``` With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two "sentences" has a combined length of less than 512 tokens. The details of the masking procedure for each sentence are the following: - 15% of the tokens are masked. - In 80% of the cases, the masked tokens are replaced by `[MASK]`. - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace. - In the 10% remaining cases, the masked tokens are left as is. ### Pretraining The full model was trained on 16 Cloud TPU v2 chips for two million steps with a batch size of 256. The sequence length was set to 512 throughout. The optimizer used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01, learning rate warmup for 10,000 steps and linear decay of the learning rate after. ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2106-16163, author = {Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, title = {The MultiBERTs: {BERT} Reproductions for Robustness Analysis}, journal = {CoRR}, volume = {abs/2106.16163}, year = {2021}, url = {https://arxiv.org/abs/2106.16163}, eprinttype = {arXiv}, eprint = {2106.16163}, timestamp = {Mon, 05 Jul 2021 15:15:50 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2106-16163.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <a href="https://huggingface.co/exbert/?model=multiberts"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
MultiBertGunjanPatrick/multiberts-seed-3-180k
f51f279aaf9a575bce60e5bc6419ed0234a8bd56
2021-10-04T05:06:58.000Z
[ "pytorch", "bert", "pretraining", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:2106.16163", "transformers", "exbert", "multiberts", "multiberts-seed-3", "license:apache-2.0" ]
null
false
MultiBertGunjanPatrick
null
MultiBertGunjanPatrick/multiberts-seed-3-180k
3
null
transformers
20,816
--- language: en tags: - exbert - multiberts - multiberts-seed-3 license: apache-2.0 datasets: - bookcorpus - wikipedia --- # MultiBERTs Seed 3 Checkpoint 180k (uncased) Seed 3 intermediate checkpoint 180k MultiBERTs (pretrained BERT) model on English language using a masked language modeling (MLM) objective. It was introduced in [this paper](https://arxiv.org/pdf/2106.16163.pdf) and first released in [this repository](https://github.com/google-research/language/tree/master/language/multiberts). This is an intermediate checkpoint. The final checkpoint can be found at [multiberts-seed-3](https://hf.co/multberts-seed-3). This model is uncased: it does not make a difference between english and English. Disclaimer: The team releasing MultiBERTs did not write a model card for this model so this model card has been written by [gchhablani](https://hf.co/gchhablani). ## Model description MultiBERTs models are transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. - Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to predict if the two sentences were following each other or not. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the MultiBERTs model as inputs. ## Intended uses & limitations You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=multiberts) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('multiberts-seed-3-180k') model = BertModel.from_pretrained("multiberts-seed-3-180k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ### Limitations and bias Even if the training data used for this model could be characterized as fairly neutral, this model can have biased predictions. This bias will also affect all fine-tuned versions of this model. For an understanding of bias of this particular checkpoint, please try out this checkpoint with the snippet present in the [Limitation and bias section](https://huggingface.co/bert-base-uncased#limitations-and-bias) of the [bert-base-uncased](https://huggingface.co/bert-base-uncased) checkpoint. ## Training data The MultiBERTs models were pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers). ## Training procedure ### Preprocessing The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are then of the form: ``` [CLS] Sentence A [SEP] Sentence B [SEP] ``` With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two "sentences" has a combined length of less than 512 tokens. The details of the masking procedure for each sentence are the following: - 15% of the tokens are masked. - In 80% of the cases, the masked tokens are replaced by `[MASK]`. - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace. - In the 10% remaining cases, the masked tokens are left as is. ### Pretraining The full model was trained on 16 Cloud TPU v2 chips for two million steps with a batch size of 256. The sequence length was set to 512 throughout. The optimizer used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01, learning rate warmup for 10,000 steps and linear decay of the learning rate after. ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2106-16163, author = {Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, title = {The MultiBERTs: {BERT} Reproductions for Robustness Analysis}, journal = {CoRR}, volume = {abs/2106.16163}, year = {2021}, url = {https://arxiv.org/abs/2106.16163}, eprinttype = {arXiv}, eprint = {2106.16163}, timestamp = {Mon, 05 Jul 2021 15:15:50 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2106-16163.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <a href="https://huggingface.co/exbert/?model=multiberts"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
MultiBertGunjanPatrick/multiberts-seed-3-200k
ce822ae6054d321380f83af9cdb2cc6e166e71d2
2021-10-04T05:07:05.000Z
[ "pytorch", "bert", "pretraining", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:2106.16163", "transformers", "exbert", "multiberts", "multiberts-seed-3", "license:apache-2.0" ]
null
false
MultiBertGunjanPatrick
null
MultiBertGunjanPatrick/multiberts-seed-3-200k
3
null
transformers
20,817
--- language: en tags: - exbert - multiberts - multiberts-seed-3 license: apache-2.0 datasets: - bookcorpus - wikipedia --- # MultiBERTs Seed 3 Checkpoint 200k (uncased) Seed 3 intermediate checkpoint 200k MultiBERTs (pretrained BERT) model on English language using a masked language modeling (MLM) objective. It was introduced in [this paper](https://arxiv.org/pdf/2106.16163.pdf) and first released in [this repository](https://github.com/google-research/language/tree/master/language/multiberts). This is an intermediate checkpoint. The final checkpoint can be found at [multiberts-seed-3](https://hf.co/multberts-seed-3). This model is uncased: it does not make a difference between english and English. Disclaimer: The team releasing MultiBERTs did not write a model card for this model so this model card has been written by [gchhablani](https://hf.co/gchhablani). ## Model description MultiBERTs models are transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. - Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to predict if the two sentences were following each other or not. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the MultiBERTs model as inputs. ## Intended uses & limitations You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=multiberts) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('multiberts-seed-3-200k') model = BertModel.from_pretrained("multiberts-seed-3-200k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ### Limitations and bias Even if the training data used for this model could be characterized as fairly neutral, this model can have biased predictions. This bias will also affect all fine-tuned versions of this model. For an understanding of bias of this particular checkpoint, please try out this checkpoint with the snippet present in the [Limitation and bias section](https://huggingface.co/bert-base-uncased#limitations-and-bias) of the [bert-base-uncased](https://huggingface.co/bert-base-uncased) checkpoint. ## Training data The MultiBERTs models were pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers). ## Training procedure ### Preprocessing The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are then of the form: ``` [CLS] Sentence A [SEP] Sentence B [SEP] ``` With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two "sentences" has a combined length of less than 512 tokens. The details of the masking procedure for each sentence are the following: - 15% of the tokens are masked. - In 80% of the cases, the masked tokens are replaced by `[MASK]`. - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace. - In the 10% remaining cases, the masked tokens are left as is. ### Pretraining The full model was trained on 16 Cloud TPU v2 chips for two million steps with a batch size of 256. The sequence length was set to 512 throughout. The optimizer used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01, learning rate warmup for 10,000 steps and linear decay of the learning rate after. ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2106-16163, author = {Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, title = {The MultiBERTs: {BERT} Reproductions for Robustness Analysis}, journal = {CoRR}, volume = {abs/2106.16163}, year = {2021}, url = {https://arxiv.org/abs/2106.16163}, eprinttype = {arXiv}, eprint = {2106.16163}, timestamp = {Mon, 05 Jul 2021 15:15:50 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2106-16163.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <a href="https://huggingface.co/exbert/?model=multiberts"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
MultiBertGunjanPatrick/multiberts-seed-3-20k
eae2524b300cbddf5d0bddf48c959288beb09da3
2021-10-04T05:06:01.000Z
[ "pytorch", "bert", "pretraining", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:2106.16163", "transformers", "exbert", "multiberts", "multiberts-seed-3", "license:apache-2.0" ]
null
false
MultiBertGunjanPatrick
null
MultiBertGunjanPatrick/multiberts-seed-3-20k
3
null
transformers
20,818
--- language: en tags: - exbert - multiberts - multiberts-seed-3 license: apache-2.0 datasets: - bookcorpus - wikipedia --- # MultiBERTs Seed 3 Checkpoint 20k (uncased) Seed 3 intermediate checkpoint 20k MultiBERTs (pretrained BERT) model on English language using a masked language modeling (MLM) objective. It was introduced in [this paper](https://arxiv.org/pdf/2106.16163.pdf) and first released in [this repository](https://github.com/google-research/language/tree/master/language/multiberts). This is an intermediate checkpoint. The final checkpoint can be found at [multiberts-seed-3](https://hf.co/multberts-seed-3). This model is uncased: it does not make a difference between english and English. Disclaimer: The team releasing MultiBERTs did not write a model card for this model so this model card has been written by [gchhablani](https://hf.co/gchhablani). ## Model description MultiBERTs models are transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. - Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to predict if the two sentences were following each other or not. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the MultiBERTs model as inputs. ## Intended uses & limitations You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=multiberts) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('multiberts-seed-3-20k') model = BertModel.from_pretrained("multiberts-seed-3-20k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ### Limitations and bias Even if the training data used for this model could be characterized as fairly neutral, this model can have biased predictions. This bias will also affect all fine-tuned versions of this model. For an understanding of bias of this particular checkpoint, please try out this checkpoint with the snippet present in the [Limitation and bias section](https://huggingface.co/bert-base-uncased#limitations-and-bias) of the [bert-base-uncased](https://huggingface.co/bert-base-uncased) checkpoint. ## Training data The MultiBERTs models were pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers). ## Training procedure ### Preprocessing The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are then of the form: ``` [CLS] Sentence A [SEP] Sentence B [SEP] ``` With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two "sentences" has a combined length of less than 512 tokens. The details of the masking procedure for each sentence are the following: - 15% of the tokens are masked. - In 80% of the cases, the masked tokens are replaced by `[MASK]`. - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace. - In the 10% remaining cases, the masked tokens are left as is. ### Pretraining The full model was trained on 16 Cloud TPU v2 chips for two million steps with a batch size of 256. The sequence length was set to 512 throughout. The optimizer used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01, learning rate warmup for 10,000 steps and linear decay of the learning rate after. ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2106-16163, author = {Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, title = {The MultiBERTs: {BERT} Reproductions for Robustness Analysis}, journal = {CoRR}, volume = {abs/2106.16163}, year = {2021}, url = {https://arxiv.org/abs/2106.16163}, eprinttype = {arXiv}, eprint = {2106.16163}, timestamp = {Mon, 05 Jul 2021 15:15:50 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2106-16163.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <a href="https://huggingface.co/exbert/?model=multiberts"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
MultiBertGunjanPatrick/multiberts-seed-3-500k
0104fafb6c18ff58b860fd3072afccfc15ea1ee5
2021-10-04T05:07:32.000Z
[ "pytorch", "bert", "pretraining", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:2106.16163", "transformers", "exbert", "multiberts", "multiberts-seed-3", "license:apache-2.0" ]
null
false
MultiBertGunjanPatrick
null
MultiBertGunjanPatrick/multiberts-seed-3-500k
3
null
transformers
20,819
--- language: en tags: - exbert - multiberts - multiberts-seed-3 license: apache-2.0 datasets: - bookcorpus - wikipedia --- # MultiBERTs Seed 3 Checkpoint 500k (uncased) Seed 3 intermediate checkpoint 500k MultiBERTs (pretrained BERT) model on English language using a masked language modeling (MLM) objective. It was introduced in [this paper](https://arxiv.org/pdf/2106.16163.pdf) and first released in [this repository](https://github.com/google-research/language/tree/master/language/multiberts). This is an intermediate checkpoint. The final checkpoint can be found at [multiberts-seed-3](https://hf.co/multberts-seed-3). This model is uncased: it does not make a difference between english and English. Disclaimer: The team releasing MultiBERTs did not write a model card for this model so this model card has been written by [gchhablani](https://hf.co/gchhablani). ## Model description MultiBERTs models are transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. - Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to predict if the two sentences were following each other or not. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the MultiBERTs model as inputs. ## Intended uses & limitations You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=multiberts) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('multiberts-seed-3-500k') model = BertModel.from_pretrained("multiberts-seed-3-500k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ### Limitations and bias Even if the training data used for this model could be characterized as fairly neutral, this model can have biased predictions. This bias will also affect all fine-tuned versions of this model. For an understanding of bias of this particular checkpoint, please try out this checkpoint with the snippet present in the [Limitation and bias section](https://huggingface.co/bert-base-uncased#limitations-and-bias) of the [bert-base-uncased](https://huggingface.co/bert-base-uncased) checkpoint. ## Training data The MultiBERTs models were pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers). ## Training procedure ### Preprocessing The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are then of the form: ``` [CLS] Sentence A [SEP] Sentence B [SEP] ``` With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two "sentences" has a combined length of less than 512 tokens. The details of the masking procedure for each sentence are the following: - 15% of the tokens are masked. - In 80% of the cases, the masked tokens are replaced by `[MASK]`. - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace. - In the 10% remaining cases, the masked tokens are left as is. ### Pretraining The full model was trained on 16 Cloud TPU v2 chips for two million steps with a batch size of 256. The sequence length was set to 512 throughout. The optimizer used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01, learning rate warmup for 10,000 steps and linear decay of the learning rate after. ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2106-16163, author = {Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, title = {The MultiBERTs: {BERT} Reproductions for Robustness Analysis}, journal = {CoRR}, volume = {abs/2106.16163}, year = {2021}, url = {https://arxiv.org/abs/2106.16163}, eprinttype = {arXiv}, eprint = {2106.16163}, timestamp = {Mon, 05 Jul 2021 15:15:50 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2106-16163.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <a href="https://huggingface.co/exbert/?model=multiberts"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
MultiBertGunjanPatrick/multiberts-seed-3-80k
d4da32c2529e52cb27927be46c9461c65fef48b7
2021-10-04T05:06:22.000Z
[ "pytorch", "bert", "pretraining", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:2106.16163", "transformers", "exbert", "multiberts", "multiberts-seed-3", "license:apache-2.0" ]
null
false
MultiBertGunjanPatrick
null
MultiBertGunjanPatrick/multiberts-seed-3-80k
3
null
transformers
20,820
--- language: en tags: - exbert - multiberts - multiberts-seed-3 license: apache-2.0 datasets: - bookcorpus - wikipedia --- # MultiBERTs Seed 3 Checkpoint 80k (uncased) Seed 3 intermediate checkpoint 80k MultiBERTs (pretrained BERT) model on English language using a masked language modeling (MLM) objective. It was introduced in [this paper](https://arxiv.org/pdf/2106.16163.pdf) and first released in [this repository](https://github.com/google-research/language/tree/master/language/multiberts). This is an intermediate checkpoint. The final checkpoint can be found at [multiberts-seed-3](https://hf.co/multberts-seed-3). This model is uncased: it does not make a difference between english and English. Disclaimer: The team releasing MultiBERTs did not write a model card for this model so this model card has been written by [gchhablani](https://hf.co/gchhablani). ## Model description MultiBERTs models are transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. - Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to predict if the two sentences were following each other or not. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the MultiBERTs model as inputs. ## Intended uses & limitations You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=multiberts) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('multiberts-seed-3-80k') model = BertModel.from_pretrained("multiberts-seed-3-80k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ### Limitations and bias Even if the training data used for this model could be characterized as fairly neutral, this model can have biased predictions. This bias will also affect all fine-tuned versions of this model. For an understanding of bias of this particular checkpoint, please try out this checkpoint with the snippet present in the [Limitation and bias section](https://huggingface.co/bert-base-uncased#limitations-and-bias) of the [bert-base-uncased](https://huggingface.co/bert-base-uncased) checkpoint. ## Training data The MultiBERTs models were pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers). ## Training procedure ### Preprocessing The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are then of the form: ``` [CLS] Sentence A [SEP] Sentence B [SEP] ``` With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two "sentences" has a combined length of less than 512 tokens. The details of the masking procedure for each sentence are the following: - 15% of the tokens are masked. - In 80% of the cases, the masked tokens are replaced by `[MASK]`. - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace. - In the 10% remaining cases, the masked tokens are left as is. ### Pretraining The full model was trained on 16 Cloud TPU v2 chips for two million steps with a batch size of 256. The sequence length was set to 512 throughout. The optimizer used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01, learning rate warmup for 10,000 steps and linear decay of the learning rate after. ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2106-16163, author = {Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, title = {The MultiBERTs: {BERT} Reproductions for Robustness Analysis}, journal = {CoRR}, volume = {abs/2106.16163}, year = {2021}, url = {https://arxiv.org/abs/2106.16163}, eprinttype = {arXiv}, eprint = {2106.16163}, timestamp = {Mon, 05 Jul 2021 15:15:50 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2106-16163.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <a href="https://huggingface.co/exbert/?model=multiberts"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
MultiBertGunjanPatrick/multiberts-seed-4-0k
d50e6a21d22273a21302bb1d582df2fa5cc736a2
2021-10-04T05:09:30.000Z
[ "pytorch", "bert", "pretraining", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:2106.16163", "transformers", "exbert", "multiberts", "multiberts-seed-4", "license:apache-2.0" ]
null
false
MultiBertGunjanPatrick
null
MultiBertGunjanPatrick/multiberts-seed-4-0k
3
null
transformers
20,821
--- language: en tags: - exbert - multiberts - multiberts-seed-4 license: apache-2.0 datasets: - bookcorpus - wikipedia --- # MultiBERTs Seed 4 Checkpoint 0k (uncased) Seed 4 intermediate checkpoint 0k MultiBERTs (pretrained BERT) model on English language using a masked language modeling (MLM) objective. It was introduced in [this paper](https://arxiv.org/pdf/2106.16163.pdf) and first released in [this repository](https://github.com/google-research/language/tree/master/language/multiberts). This is an intermediate checkpoint. The final checkpoint can be found at [multiberts-seed-4](https://hf.co/multberts-seed-4). This model is uncased: it does not make a difference between english and English. Disclaimer: The team releasing MultiBERTs did not write a model card for this model so this model card has been written by [gchhablani](https://hf.co/gchhablani). ## Model description MultiBERTs models are transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. - Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to predict if the two sentences were following each other or not. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the MultiBERTs model as inputs. ## Intended uses & limitations You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=multiberts) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('multiberts-seed-4-0k') model = BertModel.from_pretrained("multiberts-seed-4-0k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ### Limitations and bias Even if the training data used for this model could be characterized as fairly neutral, this model can have biased predictions. This bias will also affect all fine-tuned versions of this model. For an understanding of bias of this particular checkpoint, please try out this checkpoint with the snippet present in the [Limitation and bias section](https://huggingface.co/bert-base-uncased#limitations-and-bias) of the [bert-base-uncased](https://huggingface.co/bert-base-uncased) checkpoint. ## Training data The MultiBERTs models were pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers). ## Training procedure ### Preprocessing The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are then of the form: ``` [CLS] Sentence A [SEP] Sentence B [SEP] ``` With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two "sentences" has a combined length of less than 512 tokens. The details of the masking procedure for each sentence are the following: - 15% of the tokens are masked. - In 80% of the cases, the masked tokens are replaced by `[MASK]`. - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace. - In the 10% remaining cases, the masked tokens are left as is. ### Pretraining The full model was trained on 16 Cloud TPU v2 chips for two million steps with a batch size of 256. The sequence length was set to 512 throughout. The optimizer used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01, learning rate warmup for 10,000 steps and linear decay of the learning rate after. ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2106-16163, author = {Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, title = {The MultiBERTs: {BERT} Reproductions for Robustness Analysis}, journal = {CoRR}, volume = {abs/2106.16163}, year = {2021}, url = {https://arxiv.org/abs/2106.16163}, eprinttype = {arXiv}, eprint = {2106.16163}, timestamp = {Mon, 05 Jul 2021 15:15:50 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2106-16163.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <a href="https://huggingface.co/exbert/?model=multiberts"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
MultiBertGunjanPatrick/multiberts-seed-4-100k
89b0065ac4d1a1b7149492795910d1077af8a730
2021-10-04T05:10:05.000Z
[ "pytorch", "bert", "pretraining", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:2106.16163", "transformers", "exbert", "multiberts", "multiberts-seed-4", "license:apache-2.0" ]
null
false
MultiBertGunjanPatrick
null
MultiBertGunjanPatrick/multiberts-seed-4-100k
3
null
transformers
20,822
--- language: en tags: - exbert - multiberts - multiberts-seed-4 license: apache-2.0 datasets: - bookcorpus - wikipedia --- # MultiBERTs Seed 4 Checkpoint 100k (uncased) Seed 4 intermediate checkpoint 100k MultiBERTs (pretrained BERT) model on English language using a masked language modeling (MLM) objective. It was introduced in [this paper](https://arxiv.org/pdf/2106.16163.pdf) and first released in [this repository](https://github.com/google-research/language/tree/master/language/multiberts). This is an intermediate checkpoint. The final checkpoint can be found at [multiberts-seed-4](https://hf.co/multberts-seed-4). This model is uncased: it does not make a difference between english and English. Disclaimer: The team releasing MultiBERTs did not write a model card for this model so this model card has been written by [gchhablani](https://hf.co/gchhablani). ## Model description MultiBERTs models are transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. - Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to predict if the two sentences were following each other or not. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the MultiBERTs model as inputs. ## Intended uses & limitations You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=multiberts) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('multiberts-seed-4-100k') model = BertModel.from_pretrained("multiberts-seed-4-100k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ### Limitations and bias Even if the training data used for this model could be characterized as fairly neutral, this model can have biased predictions. This bias will also affect all fine-tuned versions of this model. For an understanding of bias of this particular checkpoint, please try out this checkpoint with the snippet present in the [Limitation and bias section](https://huggingface.co/bert-base-uncased#limitations-and-bias) of the [bert-base-uncased](https://huggingface.co/bert-base-uncased) checkpoint. ## Training data The MultiBERTs models were pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers). ## Training procedure ### Preprocessing The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are then of the form: ``` [CLS] Sentence A [SEP] Sentence B [SEP] ``` With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two "sentences" has a combined length of less than 512 tokens. The details of the masking procedure for each sentence are the following: - 15% of the tokens are masked. - In 80% of the cases, the masked tokens are replaced by `[MASK]`. - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace. - In the 10% remaining cases, the masked tokens are left as is. ### Pretraining The full model was trained on 16 Cloud TPU v2 chips for two million steps with a batch size of 256. The sequence length was set to 512 throughout. The optimizer used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01, learning rate warmup for 10,000 steps and linear decay of the learning rate after. ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2106-16163, author = {Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, title = {The MultiBERTs: {BERT} Reproductions for Robustness Analysis}, journal = {CoRR}, volume = {abs/2106.16163}, year = {2021}, url = {https://arxiv.org/abs/2106.16163}, eprinttype = {arXiv}, eprint = {2106.16163}, timestamp = {Mon, 05 Jul 2021 15:15:50 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2106-16163.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <a href="https://huggingface.co/exbert/?model=multiberts"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
MultiBertGunjanPatrick/multiberts-seed-4-1100k
104e41bf6b4a34b9fa75f7c43b7cc78ad164649f
2021-10-04T05:11:55.000Z
[ "pytorch", "bert", "pretraining", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:2106.16163", "transformers", "exbert", "multiberts", "multiberts-seed-4", "license:apache-2.0" ]
null
false
MultiBertGunjanPatrick
null
MultiBertGunjanPatrick/multiberts-seed-4-1100k
3
null
transformers
20,823
--- language: en tags: - exbert - multiberts - multiberts-seed-4 license: apache-2.0 datasets: - bookcorpus - wikipedia --- # MultiBERTs Seed 4 Checkpoint 1100k (uncased) Seed 4 intermediate checkpoint 1100k MultiBERTs (pretrained BERT) model on English language using a masked language modeling (MLM) objective. It was introduced in [this paper](https://arxiv.org/pdf/2106.16163.pdf) and first released in [this repository](https://github.com/google-research/language/tree/master/language/multiberts). This is an intermediate checkpoint. The final checkpoint can be found at [multiberts-seed-4](https://hf.co/multberts-seed-4). This model is uncased: it does not make a difference between english and English. Disclaimer: The team releasing MultiBERTs did not write a model card for this model so this model card has been written by [gchhablani](https://hf.co/gchhablani). ## Model description MultiBERTs models are transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. - Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to predict if the two sentences were following each other or not. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the MultiBERTs model as inputs. ## Intended uses & limitations You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=multiberts) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('multiberts-seed-4-1100k') model = BertModel.from_pretrained("multiberts-seed-4-1100k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ### Limitations and bias Even if the training data used for this model could be characterized as fairly neutral, this model can have biased predictions. This bias will also affect all fine-tuned versions of this model. For an understanding of bias of this particular checkpoint, please try out this checkpoint with the snippet present in the [Limitation and bias section](https://huggingface.co/bert-base-uncased#limitations-and-bias) of the [bert-base-uncased](https://huggingface.co/bert-base-uncased) checkpoint. ## Training data The MultiBERTs models were pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers). ## Training procedure ### Preprocessing The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are then of the form: ``` [CLS] Sentence A [SEP] Sentence B [SEP] ``` With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two "sentences" has a combined length of less than 512 tokens. The details of the masking procedure for each sentence are the following: - 15% of the tokens are masked. - In 80% of the cases, the masked tokens are replaced by `[MASK]`. - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace. - In the 10% remaining cases, the masked tokens are left as is. ### Pretraining The full model was trained on 16 Cloud TPU v2 chips for two million steps with a batch size of 256. The sequence length was set to 512 throughout. The optimizer used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01, learning rate warmup for 10,000 steps and linear decay of the learning rate after. ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2106-16163, author = {Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, title = {The MultiBERTs: {BERT} Reproductions for Robustness Analysis}, journal = {CoRR}, volume = {abs/2106.16163}, year = {2021}, url = {https://arxiv.org/abs/2106.16163}, eprinttype = {arXiv}, eprint = {2106.16163}, timestamp = {Mon, 05 Jul 2021 15:15:50 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2106-16163.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <a href="https://huggingface.co/exbert/?model=multiberts"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
MultiBertGunjanPatrick/multiberts-seed-4-160k
989dca36b6862e5d3a3b360e558a28af15eadea7
2021-10-04T05:10:26.000Z
[ "pytorch", "bert", "pretraining", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:2106.16163", "transformers", "exbert", "multiberts", "multiberts-seed-4", "license:apache-2.0" ]
null
false
MultiBertGunjanPatrick
null
MultiBertGunjanPatrick/multiberts-seed-4-160k
3
null
transformers
20,824
--- language: en tags: - exbert - multiberts - multiberts-seed-4 license: apache-2.0 datasets: - bookcorpus - wikipedia --- # MultiBERTs Seed 4 Checkpoint 160k (uncased) Seed 4 intermediate checkpoint 160k MultiBERTs (pretrained BERT) model on English language using a masked language modeling (MLM) objective. It was introduced in [this paper](https://arxiv.org/pdf/2106.16163.pdf) and first released in [this repository](https://github.com/google-research/language/tree/master/language/multiberts). This is an intermediate checkpoint. The final checkpoint can be found at [multiberts-seed-4](https://hf.co/multberts-seed-4). This model is uncased: it does not make a difference between english and English. Disclaimer: The team releasing MultiBERTs did not write a model card for this model so this model card has been written by [gchhablani](https://hf.co/gchhablani). ## Model description MultiBERTs models are transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. - Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to predict if the two sentences were following each other or not. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the MultiBERTs model as inputs. ## Intended uses & limitations You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=multiberts) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('multiberts-seed-4-160k') model = BertModel.from_pretrained("multiberts-seed-4-160k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ### Limitations and bias Even if the training data used for this model could be characterized as fairly neutral, this model can have biased predictions. This bias will also affect all fine-tuned versions of this model. For an understanding of bias of this particular checkpoint, please try out this checkpoint with the snippet present in the [Limitation and bias section](https://huggingface.co/bert-base-uncased#limitations-and-bias) of the [bert-base-uncased](https://huggingface.co/bert-base-uncased) checkpoint. ## Training data The MultiBERTs models were pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers). ## Training procedure ### Preprocessing The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are then of the form: ``` [CLS] Sentence A [SEP] Sentence B [SEP] ``` With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two "sentences" has a combined length of less than 512 tokens. The details of the masking procedure for each sentence are the following: - 15% of the tokens are masked. - In 80% of the cases, the masked tokens are replaced by `[MASK]`. - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace. - In the 10% remaining cases, the masked tokens are left as is. ### Pretraining The full model was trained on 16 Cloud TPU v2 chips for two million steps with a batch size of 256. The sequence length was set to 512 throughout. The optimizer used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01, learning rate warmup for 10,000 steps and linear decay of the learning rate after. ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2106-16163, author = {Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, title = {The MultiBERTs: {BERT} Reproductions for Robustness Analysis}, journal = {CoRR}, volume = {abs/2106.16163}, year = {2021}, url = {https://arxiv.org/abs/2106.16163}, eprinttype = {arXiv}, eprint = {2106.16163}, timestamp = {Mon, 05 Jul 2021 15:15:50 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2106-16163.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <a href="https://huggingface.co/exbert/?model=multiberts"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
MultiBertGunjanPatrick/multiberts-seed-4-60k
843e9d916831769225436a6fe219d248822e3fb2
2021-10-04T05:09:51.000Z
[ "pytorch", "bert", "pretraining", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:2106.16163", "transformers", "exbert", "multiberts", "multiberts-seed-4", "license:apache-2.0" ]
null
false
MultiBertGunjanPatrick
null
MultiBertGunjanPatrick/multiberts-seed-4-60k
3
null
transformers
20,825
--- language: en tags: - exbert - multiberts - multiberts-seed-4 license: apache-2.0 datasets: - bookcorpus - wikipedia --- # MultiBERTs Seed 4 Checkpoint 60k (uncased) Seed 4 intermediate checkpoint 60k MultiBERTs (pretrained BERT) model on English language using a masked language modeling (MLM) objective. It was introduced in [this paper](https://arxiv.org/pdf/2106.16163.pdf) and first released in [this repository](https://github.com/google-research/language/tree/master/language/multiberts). This is an intermediate checkpoint. The final checkpoint can be found at [multiberts-seed-4](https://hf.co/multberts-seed-4). This model is uncased: it does not make a difference between english and English. Disclaimer: The team releasing MultiBERTs did not write a model card for this model so this model card has been written by [gchhablani](https://hf.co/gchhablani). ## Model description MultiBERTs models are transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. - Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to predict if the two sentences were following each other or not. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the MultiBERTs model as inputs. ## Intended uses & limitations You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=multiberts) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('multiberts-seed-4-60k') model = BertModel.from_pretrained("multiberts-seed-4-60k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ### Limitations and bias Even if the training data used for this model could be characterized as fairly neutral, this model can have biased predictions. This bias will also affect all fine-tuned versions of this model. For an understanding of bias of this particular checkpoint, please try out this checkpoint with the snippet present in the [Limitation and bias section](https://huggingface.co/bert-base-uncased#limitations-and-bias) of the [bert-base-uncased](https://huggingface.co/bert-base-uncased) checkpoint. ## Training data The MultiBERTs models were pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers). ## Training procedure ### Preprocessing The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are then of the form: ``` [CLS] Sentence A [SEP] Sentence B [SEP] ``` With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two "sentences" has a combined length of less than 512 tokens. The details of the masking procedure for each sentence are the following: - 15% of the tokens are masked. - In 80% of the cases, the masked tokens are replaced by `[MASK]`. - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace. - In the 10% remaining cases, the masked tokens are left as is. ### Pretraining The full model was trained on 16 Cloud TPU v2 chips for two million steps with a batch size of 256. The sequence length was set to 512 throughout. The optimizer used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01, learning rate warmup for 10,000 steps and linear decay of the learning rate after. ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2106-16163, author = {Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, title = {The MultiBERTs: {BERT} Reproductions for Robustness Analysis}, journal = {CoRR}, volume = {abs/2106.16163}, year = {2021}, url = {https://arxiv.org/abs/2106.16163}, eprinttype = {arXiv}, eprint = {2106.16163}, timestamp = {Mon, 05 Jul 2021 15:15:50 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2106-16163.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <a href="https://huggingface.co/exbert/?model=multiberts"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
MultiBertGunjanPatrick/multiberts-seed-4-800k
b096c9867655d8f195179f415581849deb7cb733
2021-10-04T05:11:33.000Z
[ "pytorch", "bert", "pretraining", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:2106.16163", "transformers", "exbert", "multiberts", "multiberts-seed-4", "license:apache-2.0" ]
null
false
MultiBertGunjanPatrick
null
MultiBertGunjanPatrick/multiberts-seed-4-800k
3
null
transformers
20,826
--- language: en tags: - exbert - multiberts - multiberts-seed-4 license: apache-2.0 datasets: - bookcorpus - wikipedia --- # MultiBERTs Seed 4 Checkpoint 800k (uncased) Seed 4 intermediate checkpoint 800k MultiBERTs (pretrained BERT) model on English language using a masked language modeling (MLM) objective. It was introduced in [this paper](https://arxiv.org/pdf/2106.16163.pdf) and first released in [this repository](https://github.com/google-research/language/tree/master/language/multiberts). This is an intermediate checkpoint. The final checkpoint can be found at [multiberts-seed-4](https://hf.co/multberts-seed-4). This model is uncased: it does not make a difference between english and English. Disclaimer: The team releasing MultiBERTs did not write a model card for this model so this model card has been written by [gchhablani](https://hf.co/gchhablani). ## Model description MultiBERTs models are transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. - Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to predict if the two sentences were following each other or not. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the MultiBERTs model as inputs. ## Intended uses & limitations You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=multiberts) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('multiberts-seed-4-800k') model = BertModel.from_pretrained("multiberts-seed-4-800k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ### Limitations and bias Even if the training data used for this model could be characterized as fairly neutral, this model can have biased predictions. This bias will also affect all fine-tuned versions of this model. For an understanding of bias of this particular checkpoint, please try out this checkpoint with the snippet present in the [Limitation and bias section](https://huggingface.co/bert-base-uncased#limitations-and-bias) of the [bert-base-uncased](https://huggingface.co/bert-base-uncased) checkpoint. ## Training data The MultiBERTs models were pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers). ## Training procedure ### Preprocessing The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are then of the form: ``` [CLS] Sentence A [SEP] Sentence B [SEP] ``` With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two "sentences" has a combined length of less than 512 tokens. The details of the masking procedure for each sentence are the following: - 15% of the tokens are masked. - In 80% of the cases, the masked tokens are replaced by `[MASK]`. - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace. - In the 10% remaining cases, the masked tokens are left as is. ### Pretraining The full model was trained on 16 Cloud TPU v2 chips for two million steps with a batch size of 256. The sequence length was set to 512 throughout. The optimizer used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01, learning rate warmup for 10,000 steps and linear decay of the learning rate after. ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2106-16163, author = {Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, title = {The MultiBERTs: {BERT} Reproductions for Robustness Analysis}, journal = {CoRR}, volume = {abs/2106.16163}, year = {2021}, url = {https://arxiv.org/abs/2106.16163}, eprinttype = {arXiv}, eprint = {2106.16163}, timestamp = {Mon, 05 Jul 2021 15:15:50 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2106-16163.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <a href="https://huggingface.co/exbert/?model=multiberts"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
MultiBertGunjanPatrick/multiberts-seed-6
ebe3c53dccd3e6f44841c30c83da56a93e0d09b7
2021-10-04T05:40:19.000Z
[ "pytorch", "bert", "pretraining", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:2106.16163", "transformers", "exbert", "multiberts", "license:apache-2.0" ]
null
false
MultiBertGunjanPatrick
null
MultiBertGunjanPatrick/multiberts-seed-6
3
null
transformers
20,827
--- language: en tags: - exbert - multiberts license: apache-2.0 datasets: - bookcorpus - wikipedia --- # MultiBERTs Seed 0 (uncased) Seed 0 MultiBERTs (pretrained BERT) model on English language using a masked language modeling (MLM) objective. It was introduced in [this paper](https://arxiv.org/pdf/2106.16163.pdf) and first released in [this repository](https://github.com/google-research/language/tree/master/language/multiberts). This model is uncased: it does not make a difference between english and English. Disclaimer: The team releasing MultiBERTs did not write a model card for this model so this model card has been written by [gchhablani](https://hf.co/gchhablani). ## Model description MultiBERTs models are transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. - Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to predict if the two sentences were following each other or not. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the MultiBERTs model as inputs. ## Intended uses & limitations You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=multiberts) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('multiberts-seed-0') model = BertModel.from_pretrained("multiberts-seed-0") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ### Limitations and bias Even if the training data used for this model could be characterized as fairly neutral, this model can have biased predictions. This bias will also affect all fine-tuned versions of this model. For an understanding of bias of this particular checkpoint, please try out this checkpoint with the snippet present in the [Limitation and bias section](https://huggingface.co/bert-base-uncased#limitations-and-bias) of the [bert-base-uncased](https://huggingface.co/bert-base-uncased) checkpoint. ## Training data The MultiBERTs models were pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers). ## Training procedure ### Preprocessing The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are then of the form: ``` [CLS] Sentence A [SEP] Sentence B [SEP] ``` With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two "sentences" has a combined length of less than 512 tokens. The details of the masking procedure for each sentence are the following: - 15% of the tokens are masked. - In 80% of the cases, the masked tokens are replaced by `[MASK]`. - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace. - In the 10% remaining cases, the masked tokens are left as is. ### Pretraining The model was trained on 16 Cloud TPU v2 chips for two million steps with a batch size of 256. The sequence length was set to 512 throughout. The optimizer used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01, learning rate warmup for 10,000 steps and linear decay of the learning rate after. ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2106-16163, author = {Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, title = {The MultiBERTs: {BERT} Reproductions for Robustness Analysis}, journal = {CoRR}, volume = {abs/2106.16163}, year = {2021}, url = {https://arxiv.org/abs/2106.16163}, eprinttype = {arXiv}, eprint = {2106.16163}, timestamp = {Mon, 05 Jul 2021 15:15:50 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2106-16163.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <a href="https://huggingface.co/exbert/?model=multiberts"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
NahedAbdelgaber/evaluating-student-writing-distibert-ner
e067b98d644c556b42659333d1c0a605cfa1ceed
2022-01-06T05:49:02.000Z
[ "pytorch", "tensorboard", "distilbert", "token-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
NahedAbdelgaber
null
NahedAbdelgaber/evaluating-student-writing-distibert-ner
3
null
transformers
20,828
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: evaluating-student-writing-distibert-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # evaluating-student-writing-distibert-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7688 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.871 | 1.0 | 1755 | 0.8158 | | 0.7476 | 2.0 | 3510 | 0.7688 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
Narsil/pretrained
ee6fec4778d6cb0f12ad63b8d377a68e6ad2d97f
2020-01-28T08:09:28.000Z
[ "pytorch", "transformers" ]
null
false
Narsil
null
Narsil/pretrained
3
null
transformers
20,829
Entry not found
Naveen-k/KanBERTo
4ef4b1ef1e39b0ca3ed09032d389bfd9730e2552
2021-05-20T12:16:02.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "kn", "transformers", "autotrain_compatible" ]
fill-mask
false
Naveen-k
null
Naveen-k/KanBERTo
3
1
transformers
20,830
--- language: kn --- # Welcome to KanBERTo (ಕನ್ಬರ್ಟೋ) ## Model Description > This is a small language model for [Kannada](https://en.wikipedia.org/wiki/Kannada) language with 1M data samples taken from [OSCAR page](https://traces1.inria.fr/oscar/files/compressed-orig/kn.txt.gz) ## Training params - **Dataset** - 1M data samples are used to train this model from OSCAR page(https://traces1.inria.fr/oscar/) eventhough data set is of 1.7 GB due to resource constraint to train I have picked only 1M data from the total 1.7GB data set. If you are interested in collaboration and have computational resources to train on you are most welcome to do so. - **Preprocessing** - ByteLevelBPETokenizer is used to tokenize the sentences at character level and vocabulary size is set to 52k as per standard values given by 🤗 - **Hyperparameters** - __ByteLevelBPETokenizer__ : vocabulary size = 52_000 and min_frequency = 2 __Trainer__ : num_train_epochs=12 - trained for 12 epochs per_gpu_train_batch_size=64 - batch size for the datasamples is 64 save_steps=10_000 - save model for every 10k steps save_total_limit=2 - save limit is set for 2 **Intended uses & limitations** this is for anyone who wants to make use of kannada language models for various tasks like language generation, translation and many more use cases. **Whatever else is helpful!** If you are intersted in collaboration feel free to reach me [Naveen](mailto:[email protected])
NbAiLab/XLSR-300M-bokmaal
1941e5ace6a2ee6103277aa263d9bc78556c62a7
2022-03-24T11:53:12.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "nb-NO", "dataset:NbAiLab/NPSC", "transformers", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
NbAiLab
null
NbAiLab/XLSR-300M-bokmaal
3
null
transformers
20,831
--- license: apache-2.0 tags: - generated_from_trainer - automatic-speech-recognition - NbAiLab/NPSC - robust-speech-event - false - nb-NO - hf-asr-leaderboard datasets: - NbAiLab/NPSC language: - nb-NO model-index: - name: XLSR-300M-bokmaal results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: NPSC type: NbAiLab/NPSC args: 16K_mp3_bokmaal metrics: - name: "Test (Bokm\xE5l) WER" type: wer value: 0.07699635320946434 - name: "Test (Bokm\xE5l) CER" type: cer value: 0.0284288464829 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # XLSR-300M-bokmaal This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the NBAILAB/NPSC - 16K_MP3_BOKMAAL dataset. It achieves the following results on the evaluation set: - Loss: 0.1635 - Wer: 0.1005 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 15.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.0307 | 0.32 | 500 | 3.0026 | 1.0 | | 2.7865 | 0.64 | 1000 | 2.4849 | 0.9926 | | 0.7522 | 0.95 | 1500 | 0.4567 | 0.3594 | | 0.5703 | 1.27 | 2000 | 0.3440 | 0.2586 | | 0.4762 | 1.59 | 2500 | 0.2925 | 0.2178 | | 0.4585 | 1.91 | 3000 | 0.2442 | 0.1981 | | 0.4013 | 2.23 | 3500 | 0.2495 | 0.1818 | | 0.449 | 2.54 | 4000 | 0.2152 | 0.1808 | | 0.355 | 2.86 | 4500 | 0.2179 | 0.1670 | | 0.3142 | 3.18 | 5000 | 0.1953 | 0.1542 | | 0.3242 | 3.5 | 5500 | 0.2103 | 0.1526 | | 0.3016 | 3.82 | 6000 | 0.1911 | 0.1477 | | 0.2713 | 4.13 | 6500 | 0.1836 | 0.1422 | | 0.2807 | 4.45 | 7000 | 0.1924 | 0.1447 | | 0.2929 | 4.77 | 7500 | 0.1848 | 0.1402 | | 0.2595 | 5.09 | 8000 | 0.1783 | 0.1330 | | 0.2289 | 5.41 | 8500 | 0.1901 | 0.1313 | | 0.2567 | 5.72 | 9000 | 0.1784 | 0.1298 | | 0.2401 | 6.04 | 9500 | 0.1956 | 0.1298 | | 0.2098 | 6.36 | 10000 | 0.1748 | 0.1277 | | 0.2246 | 6.68 | 10500 | 0.1777 | 0.1254 | | 0.2197 | 7.0 | 11000 | 0.1703 | 0.1222 | | 0.2122 | 7.32 | 11500 | 0.1917 | 0.1221 | | 0.2746 | 7.63 | 12000 | 0.1769 | 0.1215 | | 0.2148 | 7.95 | 12500 | 0.1736 | 0.1193 | | 0.1915 | 8.27 | 13000 | 0.1814 | 0.1161 | | 0.2462 | 8.59 | 13500 | 0.1748 | 0.1166 | | 0.1872 | 8.91 | 14000 | 0.1769 | 0.1133 | | 0.1886 | 9.22 | 14500 | 0.1852 | 0.1143 | | 0.1789 | 9.54 | 15000 | 0.1696 | 0.1126 | | 0.1692 | 9.86 | 15500 | 0.1817 | 0.1122 | | 0.1765 | 10.18 | 16000 | 0.1769 | 0.1093 | | 0.1699 | 10.5 | 16500 | 0.1604 | 0.1084 | | 0.1591 | 10.81 | 17000 | 0.1777 | 0.1080 | | 0.1499 | 11.13 | 17500 | 0.1645 | 0.1074 | | 0.163 | 11.45 | 18000 | 0.1704 | 0.1065 | | 0.1597 | 11.77 | 18500 | 0.1576 | 0.1064 | | 0.1484 | 12.09 | 19000 | 0.1637 | 0.1041 | | 0.1464 | 12.4 | 19500 | 0.1631 | 0.1047 | | 0.156 | 12.72 | 20000 | 0.1686 | 0.1029 | | 0.1625 | 13.04 | 20500 | 0.1648 | 0.1023 | | 0.1395 | 13.36 | 21000 | 0.1688 | 0.1027 | | 0.1387 | 13.68 | 21500 | 0.1670 | 0.1013 | | 0.1434 | 13.99 | 22000 | 0.1677 | 0.1017 | | 0.1442 | 14.31 | 22500 | 0.1688 | 0.1008 | | 0.1439 | 14.63 | 23000 | 0.1647 | 0.1004 | | 0.137 | 14.95 | 23500 | 0.1636 | 0.1006 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
NbAiLab/XLSR-300M-nynorsk
382c5b5b3c341abe1929ea1c7b71d516a09d9e3b
2022-03-24T11:51:51.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "nn-NO", "dataset:NbAiLab/NPSC", "transformers", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
NbAiLab
null
NbAiLab/XLSR-300M-nynorsk
3
null
transformers
20,832
--- license: apache-2.0 tags: - generated_from_trainer - automatic-speech-recognition - NbAiLab/NPSC - robust-speech-event - false - nn-NO - hf-asr-leaderboard datasets: - NbAiLab/NPSC language: - nn-NO model-index: - name: XLSR-300M-nynorsk results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: NPSC type: NbAiLab/NPSC args: 16K_mp3_nynorsk metrics: - name: Test (Nynorsk) WER type: wer value: 0.12136286840623241 - name: Test (Nynorsk) CER type: cer value: 0.041988362534453025 ---
NbAiLab/nb-roberta-base-v3
a1ca1971e5776b1a30d5193cdfc40f2ba374accf
2021-12-17T13:02:38.000Z
[ "pytorch", "jax", "tensorboard", "roberta", "fill-mask", "no", "transformers", "norwegian", "license:cc-by-4.0", "autotrain_compatible" ]
fill-mask
false
NbAiLab
null
NbAiLab/nb-roberta-base-v3
3
null
transformers
20,833
--- language: no license: cc-by-4.0 tags: - norwegian - roberta pipeline_tag: fill-mask widget: - text: På biblioteket kan du <mask> en bok. - text: Dette er et <mask> eksempel. - text: Av og til kan en språkmodell gi et <mask> resultat. - text: Som ansat får du <mask> for at bidrage til borgernes adgang til dansk kulturarv, til forskning og til samfundets demokratiske udvikling. --- norwegian-roberta-base but with higher learning rate and batch size
NbAiLab/nb-wav2vec2-300m-nynorsk
3d5c655fb7799db32b639daa344fdb83671bb6b7
2022-06-13T10:55:14.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "nn-NO", "dataset:NbAiLab/NPSC", "transformers", "NbAiLab/NPSC", "no", "nn", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
NbAiLab
null
NbAiLab/nb-wav2vec2-300m-nynorsk
3
null
transformers
20,834
--- license: apache-2.0 tags: - automatic-speech-recognition - NbAiLab/NPSC - no - nn - nn-NO datasets: - NbAiLab/NPSC language: - nn-NO model-index: - name: nb-wav2vec2-300m-nynorsk results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: NPSC type: NbAiLab/NPSC args: 16K_mp3_nynorsk metrics: - name: Test (Nynorsk) WER type: wer value: 0.1222 - name: Test (Nynorsk) CER type: cer value: 0.0419 --- # Norwegian Wav2Vec2 Model - 300M - VoxRex - Nynorsk This model is finetuned on top of feature extractor [VoxRex-model](https://huggingface.co/KBLab/wav2vec2-large-voxrex) from the National Library of Sweden. The finetuned model achieves the following results on the test set with a 5-gram KenLM. The numbers in parentheses are the results without the language model: - **WER: 0.1222** (0.1537) - **CER: 0.0419** (0.0468) ## Model description This is one of several Wav2Vec-models our team created during the 🤗 hosted [Robust Speech Event](https://discuss.huggingface.co/t/open-to-the-community-robust-speech-recognition-challenge/13614?s=09). This is the complete list of our models and their final scores: | Model | Final WER | | |:--------------|:------------|:------------:| | [NbAiLab/nb-wav2vec2-1b-bokmaal](https://huggingface.co/NbAiLab/nb-wav2vec2-1b-bokmaal) | 6.33 | | | [NbAiLab/nb-wav2vec2-300m-bokmaal](https://huggingface.co/NbAiLab/nb-wav2vec2-300m-bokmaal) | 7.03 | | | NbAiLab/nb-wav2vec2-300m-nynorsk (this model) | 12.22 | | ### Dataset In parallel with the event, the team also converted the [Norwegian Parliamentary Speech Corpus (NPSC)](https://www.nb.no/sprakbanken/en/resource-catalogue/oai-nb-no-sbr-58/) to the [NbAiLab/NPSC](https://huggingface.co/datasets/NbAiLab/NPSC) in 🤗 Dataset format and used that as the main source for training. ## Code We have released all the code developed during the event so that the Norwegian NLP community can build upon it when developing even better Norwegian ASR models. The finetuning of these models is not very computationally demanding. After following the instructions here, you should be able to train your own automatic speech recognition system in less than a day with an average GPU. ## Team The following people contributed to building this model: Rolv-Arild Braaten, Per Egil Kummervold, Andre Kåsen, Javier de la Rosa, Per Erik Solberg, and Freddy Wetjen. ## Training procedure To reproduce these results, we strongly recommend that you follow the [instructions from 🤗](https://github.com/huggingface/transformers/tree/master/examples/research_projects/robust-speech-event#talks) to train a simple Swedish model. When you have verified that you are able to do this, create a fresh new repo. You can then start by copying the files ```run.sh``` and ```run_speech_recognition_ctc.py``` from our repo. Running these will create all the other necessary files, and should let you reproduce our results. With some tweaks to the hyperparameters, you might even be able to build an even better ASR. Good luck! ### Language Model As the scores indicate, adding even a simple 5-gram language will improve the results. 🤗 has provided another [very nice blog](https://huggingface.co/blog/wav2vec2-with-ngram) explaining how to add a 5-gram language model to improve the ASR model. You can build this from your own corpus, for instance by extracting some suitable text from the [Norwegian Colossal Corpus](https://huggingface.co/datasets/NbAiLab/NCC). You can also skip some of the steps in the guide, and copy the [5-gram model from this repo](https://huggingface.co/NbAiLab/XLSR-300M-bokmaal/tree/main/language_model). ### Parameters The final model was run using these parameters: ``` --dataset_name="NbAiLab/NPSC" --model_name_or_path="KBLab/wav2vec2-large-voxrex" --dataset_config_name="16K_mp3_nynorsk" --output_dir="./" --overwrite_output_dir --num_train_epochs="80" --per_device_train_batch_size="16" --per_device_eval_batch_size="16" --gradient_accumulation_steps="2" --learning_rate="1e-4" --warmup_steps="2000" --length_column_name="input_length" --evaluation_strategy="steps" --text_column_name="text" --save_steps="500" --eval_steps="500" --logging_steps="100" --layerdrop="0.041" --attention_dropout="0.094" --activation_dropout="0.055" --hidden_dropout="0.047" --save_total_limit="3" --freeze_feature_encoder --feat_proj_dropout="0.04" --mask_time_prob="0.082" --mask_time_length="10" --mask_feature_prob="0.25" --mask_feature_length="64" --gradient_checkpointing --min_duration_in_seconds="0.5" --max_duration_in_seconds="30.0" --use_auth_token --seed="42" --fp16 --group_by_length --do_train --do_eval --push_to_hub --preprocessing_num_workers="32" ``` Using these settings, the training might take 3-4 days on an average GPU. You can, however, get a decent model and faster results by tweaking these parameters. | Parameter| Comment | |:-------------|:-----| | per_device_train_batch_size | Adjust this to the maximum of available memory. 16 or 24 might be good settings depending on your system | |gradient_accumulation_steps |Can be adjusted even further up to increase batch size and speed up training without running into memory issues | | learning_rate|Can be increased, maybe as high as 1e-4. Speeds up training but might add instability | | epochs| Can be decreased significantly. This is a huge dataset and you might get a decent result already after a couple of epochs|
NbAiLab/notram-bert-norwegian-cased-pod-030421
3b4a4460a54d155d87d76dc55ab74815e1153687
2021-12-01T22:31:14.000Z
[ "pytorch", "bert", "transformers" ]
null
false
NbAiLab
null
NbAiLab/notram-bert-norwegian-cased-pod-030421
3
null
transformers
20,835
Entry not found
NbAiLab/wav2vec2-large-voxrex-npsc-bokmaal
8671e1762556519b2f53d77a21f73c1452234b1b
2022-03-24T11:57:23.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "nb-NO", "dataset:NbAiLab/NPSC", "transformers", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
NbAiLab
null
NbAiLab/wav2vec2-large-voxrex-npsc-bokmaal
3
null
transformers
20,836
--- license: apache-2.0 tags: - generated_from_trainer - automatic-speech-recognition - NbAiLab/NPSC - robust-speech-event - false - nb-NO - hf-asr-leaderboard datasets: - NbAiLab/NPSC language: - nb-NO model-index: - name: wav2vec2-large-voxrex-npsc-bokmaal results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: NPSC type: NbAiLab/NPSC args: 16K_mp3_bokmaal metrics: - name: "Test (Bokm\xE5l) WER" type: wer value: 0.07028972259374369 - name: "Test (Bokm\xE5l) CER" type: cer value: 0.026870600821650645 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-voxrex-npsc-bokmaal This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1311 - Wer: 0.1038 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8.379967082059723e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 0.1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2127 | 0.32 | 500 | 0.1335 | 0.1047 | | 0.1976 | 0.64 | 1000 | 0.1309 | 0.1039 | | 0.1887 | 0.97 | 1500 | 0.1306 | 0.1040 | | 0.18 | 1.29 | 2000 | 0.1311 | 0.1038 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu113 - Datasets 1.18.4.dev0 - Tokenizers 0.11.0
NbAiLab/wav2vec2-large-voxrex-npsc-nynorsk
086f0a825f91a170df822b98e2d7865bb2caffaa
2022-03-24T13:40:35.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "nn-NO", "dataset:NbAiLab/NPSC", "transformers", "generated_from_trainer", "NbAiLab/NPSC", "robust-speech-event", "no", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
NbAiLab
null
NbAiLab/wav2vec2-large-voxrex-npsc-nynorsk
3
null
transformers
20,837
--- license: apache-2.0 tags: - generated_from_trainer - automatic-speech-recognition - NbAiLab/NPSC - robust-speech-event - "no" - nn-NO - hf-asr-leaderboard datasets: - NbAiLab/NPSC language: - nn-NO model-index: - name: wav2vec2-large-voxrex-npsc-nynorsk results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: NPSC type: NbAiLab/NPSC args: 16K_mp3_nynorsk metrics: - name: Test (Nynorsk) WER type: wer value: 0.12220762155059132 - name: Test (Nynorsk) CER type: cer value: 0.04195612578778549 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-voxrex-npsc-nynorsk This model is a fine-tuned version of [KBLab/wav2vec2-large-voxrex](https://huggingface.co/KBLab/wav2vec2-large-voxrex) on the NBAILAB/NPSC - 16K_MP3_NYNORSK dataset. It achieves the following results on the evaluation set: - Loss: 0.4142 - Wer: 0.1576 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 40.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.086 | 2.17 | 500 | 3.0773 | 1.0 | | 2.8532 | 4.35 | 1000 | 2.8393 | 1.0 | | 0.9738 | 6.52 | 1500 | 0.7283 | 0.4890 | | 0.6763 | 8.7 | 2000 | 0.5340 | 0.3662 | | 0.5303 | 10.87 | 2500 | 0.4521 | 0.3140 | | 0.4765 | 13.04 | 3000 | 0.4181 | 0.2853 | | 0.4219 | 15.22 | 3500 | 0.4156 | 0.2934 | | 0.3564 | 17.39 | 4000 | 0.3925 | 0.2509 | | 0.3282 | 19.57 | 4500 | 0.3824 | 0.2420 | | 0.3118 | 21.74 | 5000 | 0.3636 | 0.2354 | | 0.2919 | 23.91 | 5500 | 0.3615 | 0.2281 | | 0.2961 | 26.09 | 6000 | 0.3548 | 0.2255 | | 0.284 | 28.26 | 6500 | 0.3526 | 0.2209 | | 0.2566 | 30.43 | 7000 | 0.3526 | 0.2205 | | 0.2422 | 32.61 | 7500 | 0.3569 | 0.2173 | | 0.2472 | 34.78 | 8000 | 0.3592 | 0.2166 | | 0.2337 | 36.96 | 8500 | 0.3625 | 0.2172 | | 0.2315 | 39.13 | 9000 | 0.3580 | 0.2155 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
NbAiLab/wav2vec2-xlsr-300m-norwegian2
643374114062bfb47fc804dc09bbcc72d74c9747
2022-01-29T12:58:59.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "license:cc" ]
automatic-speech-recognition
false
NbAiLab
null
NbAiLab/wav2vec2-xlsr-300m-norwegian2
3
null
transformers
20,838
--- license: cc ---
NbAiLab/xls-npsc-oh
fe407b10ec8f2af7d68df4b6d9145f0d44ee2a82
2022-01-27T14:31:11.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:npsc", "transformers", "NbAiLab/NPSC", "generated_from_trainer", "license:cc0-1.0", "model-index" ]
automatic-speech-recognition
false
NbAiLab
null
NbAiLab/xls-npsc-oh
3
null
transformers
20,839
--- license: cc0-1.0 tags: - automatic-speech-recognition - NbAiLab/NPSC - generated_from_trainer datasets: - npsc model-index: - name: xls-npsc-oh results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xls-npsc-oh This model is a fine-tuned version of [KBLab/wav2vec2-large-voxrex](https://huggingface.co/KBLab/wav2vec2-large-voxrex) on the NBAILAB/NPSC - 48K_MP3 dataset. It achieves the following results on the evaluation set: - Loss: 0.2106 - Wer: 0.8586 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 5.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.1093 | 2.61 | 1000 | 0.2572 | 0.9293 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.18.1.dev0 - Tokenizers 0.11.0
NhatPham/wav2vec2-base-finetuned-ks
eaf49baa473f044790fc3cd857ca12d1e8ba6654
2021-11-01T04:32:59.000Z
[ "pytorch", "tensorboard", "wav2vec2", "audio-classification", "dataset:superb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
audio-classification
false
NhatPham
null
NhatPham/wav2vec2-base-finetuned-ks
3
null
transformers
20,840
--- license: apache-2.0 tags: - generated_from_trainer datasets: - superb metrics: - accuracy model-index: - name: wav2vec2-base-finetuned-ks results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-finetuned-ks This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the superb dataset. It achieves the following results on the evaluation set: - Loss: 0.1258 - Accuracy: 0.9793 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1561 | 1.0 | 399 | 1.1127 | 0.6643 | | 0.4803 | 2.0 | 798 | 0.3547 | 0.9687 | | 0.2855 | 3.0 | 1197 | 0.1663 | 0.9763 | | 0.1987 | 4.0 | 1596 | 0.1258 | 0.9793 | | 0.2097 | 5.0 | 1995 | 0.1171 | 0.9791 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
Nicki/citadel
e3b62534895a18f84aba61d0b4c402202c0143a2
2021-08-15T16:53:10.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
Nicki
null
Nicki/citadel
3
null
transformers
20,841
Entry not found
NimaBoscarino/aot-gan-places2
efa10114468c163df0ba650d6af5681cec6ba154
2022-01-25T08:43:40.000Z
[ "pytorch", "dataset:places2", "transformers", "scene-recognition", "scene-generation", "generative-adversarial-network" ]
null
false
NimaBoscarino
null
NimaBoscarino/aot-gan-places2
3
null
transformers
20,842
--- tags: - scene-recognition - scene-generation - generative-adversarial-network metrics: - L1 - PSNR - SSIM - FID datasets: - places2 --- # AOT-GAN Places2 AOT-GAN is a model that can be used for image in-painting. The Places2 checkpoint is trained on a dataset which should make it suitable for touching up and restoring images of landscapes, buildings, and other natural and developed places. This model was generated using [AOT-GAN-for-Inpainting](https://github.com/researchmm/AOT-GAN-for-Inpainting), cited as ``` @inproceedings{yan2021agg, author = {Zeng, Yanhong and Fu, Jianlong and Chao, Hongyang and Guo, Baining}, title = {Aggregated Contextual Transformations for High-Resolution Image Inpainting}, booktitle = {Arxiv}, pages={-}, year = {2020} } ``` ## Dataset The Places2 dataset can be found here: http://places2.csail.mit.edu/download.html
Norimoji/DialoGPT-medium-FF7
2089693bee005a1a3c10ab0b7309717e2f4d8eff
2021-09-02T20:47:47.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
Norimoji
null
Norimoji/DialoGPT-medium-FF7
3
null
transformers
20,843
Entry not found
Numenta/BertSparse85
0a35af18f5c43f996c74d36b4d800044bd6d481a
2021-12-03T23:14:55.000Z
[ "pytorch" ]
null
false
Numenta
null
Numenta/BertSparse85
3
null
null
20,844
Entry not found
OwOmeister/bullshit
8b0698d89a5e10397a8c7d1136ba8841e6157c23
2021-09-05T08:06:02.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
OwOmeister
null
OwOmeister/bullshit
3
null
transformers
20,845
--- tags: - conversational --- #balls
PaegiPang/bert_base_hate_speech
af92beb67ff9a2896326d2aa4b637f5efea89406
2021-10-14T13:07:50.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
PaegiPang
null
PaegiPang/bert_base_hate_speech
3
null
transformers
20,846
Entry not found
Palak/google_electra-base-discriminator_squad
9f33e051a7dc69843d8db7a318403c924b932d79
2021-12-24T18:15:58.000Z
[ "pytorch", "electra", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
Palak
null
Palak/google_electra-base-discriminator_squad
3
null
transformers
20,847
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: google_electra-base-discriminator_squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # google_electra-base-discriminator_squad This model is a fine-tuned version of [google/electra-base-discriminator](https://huggingface.co/google/electra-base-discriminator) on the **squadV1** dataset. - "eval_exact_match": 85.33585619678335 - "eval_f1": 91.97363450387108 - "eval_samples": 10784 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.14.1 - Pytorch 1.9.0 - Datasets 1.16.1 - Tokenizers 0.10.3
ParkMyungkyu/KLUE-STS-roberta-base
563c9313d54404158909e6303122b5e72617d64f
2021-07-06T01:47:59.000Z
[ "pytorch", "roberta", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
ParkMyungkyu
null
ParkMyungkyu/KLUE-STS-roberta-base
3
null
sentence-transformers
20,848
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 365 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "callback": null, "epochs": 4, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 146, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
PedroR/xlm-roberta-4-final
5b46939c7aeaf909071ccecc937dab3c232be06f
2021-07-29T17:18:37.000Z
[ "pytorch", "xlm-roberta", "feature-extraction", "transformers" ]
feature-extraction
false
PedroR
null
PedroR/xlm-roberta-4-final
3
null
transformers
20,849
Entry not found
PedroR/xlm-roberta-4-pretrained
6d8d0593d4ca782c62380a77aad88f0e61720539
2021-07-29T11:07:52.000Z
[ "pytorch", "xlm-roberta", "feature-extraction", "transformers" ]
feature-extraction
false
PedroR
null
PedroR/xlm-roberta-4-pretrained
3
null
transformers
20,850
Entry not found
PedroR/xlm-roberta-5-final
af0d1062f3c7798abb7d92e738caa64985601acb
2021-07-29T17:20:41.000Z
[ "pytorch", "xlm-roberta", "feature-extraction", "transformers" ]
feature-extraction
false
PedroR
null
PedroR/xlm-roberta-5-final
3
null
transformers
20,851
Entry not found
PedroR/xlm-roberta-6-final
7373ba32fd68640b46642cb524c4dd852dcf8ade
2021-07-29T17:25:23.000Z
[ "pytorch", "xlm-roberta", "feature-extraction", "transformers" ]
feature-extraction
false
PedroR
null
PedroR/xlm-roberta-6-final
3
null
transformers
20,852
Entry not found
PedroR/xlm-roberta-7
a3d98a9603d671179feb4134fae5d409f22ef58b
2021-07-27T22:04:22.000Z
[ "pytorch", "xlm-roberta", "feature-extraction", "transformers" ]
feature-extraction
false
PedroR
null
PedroR/xlm-roberta-7
3
null
transformers
20,853
Entry not found
PereLluis13/wav2vec2-xls-r-1b-ca
b7a1b8135f1e4f4dfe89f09aac79f1bcc0dd3d46
2022-03-29T08:44:49.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "ca", "dataset:mozilla-foundation/common_voice_8_0", "dataset:collectivat/tv3_parla", "dataset:projecte-aina/parlament_parla", "transformers", "collectivat/tv3_parla", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "projecte-aina/parlament_parla", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
PereLluis13
null
PereLluis13/wav2vec2-xls-r-1b-ca
3
null
transformers
20,854
--- language: - ca license: apache-2.0 tags: - automatic-speech-recognition - collectivat/tv3_parla - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_8_0 - projecte-aina/parlament_parla - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 - collectivat/tv3_parla - projecte-aina/parlament_parla model-index: - name: wav2vec2-xls-r-1b-ca results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_8_0 ca type: mozilla-foundation/common_voice_8_0 args: ca metrics: - name: Test WER type: wer value: 11.030639657300516 - name: Test CER type: cer value: 2.8405630530040634 - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: projecte-aina/parlament_parla ca type: projecte-aina/parlament_parla args: clean metrics: - name: Test WER type: wer value: 6.483115660665961 - name: Test CER type: cer value: 2.0212863746191828 - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: collectivat/tv3_parla ca type: collectivat/tv3_parla args: ca metrics: - name: Test WER type: wer value: 17.917773414943988 - name: Test CER type: cer value: 8.872589572206396 - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Catalan Dev Data type: speech-recognition-community-v2/dev_data args: ca metrics: - name: Test WER type: wer value: 27.126683954209097 - name: Test CER type: cer value: 14.213308815078726 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: ca metrics: - name: Test WER type: wer value: 18.7 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-1b-ca This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - CA, the [tv3_parla](https://huggingface.co/datasets/collectivat/tv3_parla) and [parlament_parla](https://huggingface.co/datasets/projecte-aina/parlament_parla) datasets. ## Model description Please check the original [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) Model card. This is just a finetuned version of that model. ## Intended uses & limitations As any model trained on crowdsourced data, this model can show the biases and particularities of the data and model used to train this model. Moreover, since this is a speech recognition model, it may underperform for some lower-resourced dialects for the catalan language. ## Training and evaluation data ## Training procedure The data is preprocessed to remove characters not on the catalan alphabet. Moreover, numbers are verbalized using code provided by [@ccoreilly](https://github.com/ccoreilly), which can be found on the text/ folder or [here](https://github.com/CollectivaT-dev/catotron-cpu/blob/master/text/numbers_ca.py). ### Training results Check the Tensorboard tab to check the training profile and evaluation results along training. The model was evaluated on the test splits for each of the datasets used during training. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0 # Thanks Want to thank both [@ccoreilly](https://github.com/ccoreilly) and [@gullabi](https://github.com/gullabi) who have contributed with their own resources and knowledge into making this model possible.
PereLluis13/wav2vec2-xls-r-300m-ca-lm
6e983c8205ee7a9ff9c88202550aa3309a7db7cc
2022-03-29T08:42:55.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "ca", "dataset:mozilla-foundation/common_voice_8_0", "dataset:collectivat/tv3_parla", "dataset:projecte-aina/parlament_parla", "transformers", "collectivat/tv3_parla", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "projecte-aina/parlament_parla", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
PereLluis13
null
PereLluis13/wav2vec2-xls-r-300m-ca-lm
3
null
transformers
20,855
--- language: - ca license: apache-2.0 tags: - automatic-speech-recognition - collectivat/tv3_parla - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_8_0 - projecte-aina/parlament_parla - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 - collectivat/tv3_parla - projecte-aina/parlament_parla model-index: - name: wav2vec2-xls-r-300m-ca-lm results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_8_0 ca type: mozilla-foundation/common_voice_8_0 args: ca metrics: - name: Test WER type: wer value: 6.771703090587865 - name: Test CER type: cer value: 2.1007777843712293 - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: projecte-aina/parlament_parla ca type: projecte-aina/parlament_parla args: clean metrics: - name: Test WER type: wer value: 5.565360630662431 - name: Test CER type: cer value: 1.8594390167034354 - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: collectivat/tv3_parla ca type: collectivat/tv3_parla args: ca metrics: - name: Test WER type: wer value: 13.53312545713516 - name: Test CER type: cer value: 8.684635913340556 - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Catalan Dev Data type: speech-recognition-community-v2/dev_data args: ca metrics: - name: Test WER type: wer value: 26.04515843400164 - name: Test CER type: cer value: 15.056890012642224 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: ca metrics: - name: Test WER type: wer value: 17.68 --- # wav2vec2-xls-r-300m-ca-lm This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - CA, the [tv3_parla](https://huggingface.co/datasets/collectivat/tv3_parla) and [parlament_parla](https://huggingface.co/datasets/projecte-aina/parlament_parla) datasets. It achieves the following results on the evaluation set (for the three datasets and without the LM): - Loss: 0.2472 - Wer: 0.1499 ## Model description Please check the original [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) Model card. This is just a finetuned version of that model. ## Intended uses & limitations As any model trained on crowdsourced data, this model can show the biases and particularities of the data and model used to train this model. Moreover, since this is a speech recognition model, it may underperform for some lower-resourced dialects for the catalan language. ## Training and evaluation data More information needed ## Training procedure The data is preprocessed to remove characters not on the catalan alphabet. Moreover, numbers are verbalized using code provided by [@ccoreilly](https://github.com/ccoreilly), which can be found on the text/ folder or [here](https://github.com/CollectivaT-dev/catotron-cpu/blob/master/text/numbers_ca.py). ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 18.0 - mixed_precision_training: Native AMP ### Training results Check the Tensorboard tab to check the training profile and evaluation results along training. The model was evaluated on the test splits for each of the datasets used during training. | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 6.2099 | 0.09 | 500 | 3.4125 | 1.0 | | 2.9961 | 0.18 | 1000 | 2.9224 | 1.0 | | 2.2147 | 0.26 | 1500 | 0.6521 | 0.5568 | | 1.3017 | 0.35 | 2000 | 0.3153 | 0.2761 | | 1.1196 | 0.44 | 2500 | 0.2444 | 0.2367 | | 1.0712 | 0.53 | 3000 | 0.2324 | 0.2132 | | 1.052 | 0.62 | 3500 | 0.2173 | 0.2032 | | 1.2813 | 2.13 | 4000 | 0.3326 | 0.2099 | | 1.2365 | 2.4 | 4500 | 0.3224 | 0.2003 | | 1.2193 | 2.66 | 5000 | 0.3198 | 0.1957 | | 1.2072 | 2.93 | 5500 | 0.3063 | 0.1933 | | 1.213 | 3.2 | 6000 | 0.3051 | 0.1980 | | 1.2074 | 3.46 | 6500 | 0.3012 | 0.1879 | | 1.1918 | 3.73 | 7000 | 0.2947 | 0.1829 | | 1.1893 | 4.0 | 7500 | 0.2895 | 0.1807 | | 1.1751 | 4.26 | 8000 | 0.2878 | 0.1776 | | 1.1628 | 4.53 | 8500 | 0.2835 | 0.1731 | | 1.1577 | 4.79 | 9000 | 0.2816 | 0.1761 | | 1.1448 | 5.06 | 9500 | 0.2757 | 0.1740 | | 1.1407 | 5.33 | 10000 | 0.2768 | 0.1798 | | 1.1401 | 5.59 | 10500 | 0.2780 | 0.1816 | | 1.1333 | 5.86 | 11000 | 0.2748 | 0.1750 | | 1.1571 | 6.13 | 11500 | 0.2808 | 0.1708 | | 1.1505 | 6.39 | 12000 | 0.2726 | 0.1692 | | 1.1519 | 6.66 | 12500 | 0.2749 | 0.1654 | | 1.136 | 6.93 | 13000 | 0.2765 | 0.1643 | | 1.1326 | 7.19 | 13500 | 0.2706 | 0.1668 | | 1.1342 | 7.46 | 14000 | 0.2665 | 0.1638 | | 1.1286 | 7.72 | 14500 | 0.2669 | 0.1636 | | 1.1243 | 7.99 | 15000 | 0.2619 | 0.1623 | | 1.1173 | 8.26 | 15500 | 0.2652 | 0.1604 | | 1.1129 | 8.52 | 16000 | 0.2610 | 0.1598 | | 1.1091 | 8.79 | 16500 | 0.2608 | 0.1584 | | 1.1053 | 9.06 | 17000 | 0.2633 | 0.1664 | | 1.1004 | 9.32 | 17500 | 0.2594 | 0.1662 | | 1.0995 | 9.59 | 18000 | 0.2623 | 0.1569 | | 1.0964 | 9.86 | 18500 | 0.2624 | 0.1597 | | 1.09 | 10.12 | 19000 | 0.2577 | 0.1578 | | 1.089 | 10.39 | 19500 | 0.2574 | 0.1531 | | 1.0864 | 10.66 | 20000 | 0.2556 | 0.1546 | | 1.0806 | 10.92 | 20500 | 0.2548 | 0.1583 | | 1.0842 | 11.19 | 21000 | 0.2550 | 0.1542 | | 1.0805 | 11.45 | 21500 | 0.2561 | 0.1524 | | 1.0722 | 11.72 | 22000 | 0.2540 | 0.1566 | | 1.0763 | 11.99 | 22500 | 0.2549 | 0.1572 | | 1.0835 | 12.25 | 23000 | 0.2586 | 0.1521 | | 1.0883 | 12.52 | 23500 | 0.2583 | 0.1519 | | 1.0888 | 12.79 | 24000 | 0.2551 | 0.1582 | | 1.0933 | 13.05 | 24500 | 0.2628 | 0.1537 | | 1.0799 | 13.32 | 25000 | 0.2600 | 0.1508 | | 1.0804 | 13.59 | 25500 | 0.2620 | 0.1475 | | 1.0814 | 13.85 | 26000 | 0.2537 | 0.1517 | | 1.0693 | 14.12 | 26500 | 0.2560 | 0.1542 | | 1.0724 | 14.38 | 27000 | 0.2540 | 0.1574 | | 1.0704 | 14.65 | 27500 | 0.2548 | 0.1626 | | 1.0729 | 14.92 | 28000 | 0.2548 | 0.1601 | | 1.0724 | 15.18 | 28500 | 0.2511 | 0.1512 | | 1.0655 | 15.45 | 29000 | 0.2498 | 0.1490 | | 1.0608 | 15.98 | 30000 | 0.2487 | 0.1481 | | 1.0541 | 16.52 | 31000 | 0.2468 | 0.1504 | | 1.0584 | 17.05 | 32000 | 0.2467 | 0.1493 | | 1.0507 | 17.58 | 33000 | 0.2481 | 0.1517 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0 # Thanks Want to thank both [@ccoreilly](https://github.com/ccoreilly) and [@gullabi](https://github.com/gullabi) who have contributed with their own resources and knowledge into making this model possible.
Phuoc/asr_model
662433523e94b9193707bc5f31739863b69718ec
2021-11-12T03:31:46.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
Phuoc
null
Phuoc/asr_model
3
null
transformers
20,856
Entry not found
Plim/test_lm
ef6bf69c5d3533128634d050d00203c5c81ae952
2022-02-07T23:08:21.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "fr", "transformers", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Plim
null
Plim/test_lm
3
null
transformers
20,857
--- language: - fr license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer model-index: - name: XLS-R-1B - French results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: fr metrics: - name: Test WER type: wer value: 18.33 - name: Test CER type: cer value: 5.60 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: fr metrics: - name: Test WER type: wer value: 60.25 - name: Test CER type: cer value: 15.68 --- ## Model description This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - FR dataset. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 4.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.9827 | 0.29 | 1000 | inf | 0.2937 | | 1.0203 | 0.57 | 2000 | inf | 0.2711 | | 1.0048 | 0.86 | 3000 | inf | 0.2620 | | 0.9858 | 1.15 | 4000 | inf | 0.2522 | | 0.9709 | 1.43 | 5000 | inf | 0.2365 | | 0.9347 | 1.72 | 6000 | inf | 0.2332 | | 0.9256 | 2.01 | 7000 | inf | 0.2261 | | 0.8936 | 2.29 | 8000 | inf | 0.2203 | | 0.877 | 2.58 | 9000 | inf | 0.2096 | | 0.8393 | 2.87 | 10000 | inf | 0.2017 | | 0.8156 | 3.15 | 11000 | inf | 0.1936 | | 0.8015 | 3.44 | 12000 | inf | 0.1880 | | 0.774 | 3.73 | 13000 | inf | 0.1834 | It achieves the best result on the validation set on STEP 13000: - Wer: 0.1834 Some problem occurs when calculating the validation loss. ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3.dev0 - Tokenizers 0.11.0 ### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8` with split `test` ```bash python eval.py --model_id Plim/xls-r-1b-cv_8-fr --dataset mozilla-foundation/common_voice_8_0 --config fr --split test ``` 2. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py --model_id Plim/xls-r-1b-cv_8-fr --dataset speech-recognition-community-v2/dev_data --config fr --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ```
PremalMatalia/albert-base-best-squad2
86c2d4e4811e525b62dbe0b2afd8952a7455871e
2021-08-05T13:02:13.000Z
[ "pytorch", "albert", "question-answering", "dataset:squad_v2", "transformers", "autotrain_compatible" ]
question-answering
false
PremalMatalia
null
PremalMatalia/albert-base-best-squad2
3
1
transformers
20,858
--- datasets: - squad_v2 --- # ALBERT-base for QA ## Overview **Language model:** albert-base </br> **Language:** English </br> **Downstream-task:** Extractive QA </br> **Training data:** SQuAD 2.0 </br> **Eval data:** SQuAD 2.0 </br> **Code:** <TBD> </br> ## Env Information `transformers` version: 4.9.1 </br> Platform: Linux-5.4.104+-x86_64-with-Ubuntu-18.04-bionic </br> Python version: 3.7.11 </br> PyTorch version (GPU?): 1.9.0+cu102 (False)</br> Tensorflow version (GPU?): 2.5.0 (False)</br> ## Hyperparameters ``` max_seq_len=386 doc_stride=128 n_best_size=20 max_answer_length=30 min_null_score=7.0 batch_size=32 n_epochs=3 base_LM_model = "albert-base-v2" learning_rate=3e-5 adam_epsilon=1e-5 adam_beta1=0.95 adam_beta2=0.999 warmup_steps=300 weight_decay=0.01 optimizer=AdamW lr_scheduler="polynomial" ``` ## Performance ``` "exact": 78.253 "f1": 81.523 "total": 11873 "HasAns_exact": 73.616 "HasAns_f1": 80.165 "HasAns_total": 5928 "NoAns_exact": 82.876 "NoAns_f1": 82.876 "NoAns_total": 5945 ``` ## Usage ### In Transformers ```python from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline model_name = "PremalMatalia/albert-base-best-squad2" # a) Get predictions nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) QA_input = { 'question': 'Which name is also used to describe the Amazon rainforest in English?', 'context': 'The Amazon rainforest (Portuguese: Floresta Amazônica or Amazônia; Spanish: Selva Amazónica, Amazonía or usually Amazonia; French: Forêt amazonienne; Dutch: Amazoneregenwoud), also known in English as Amazonia or the Amazon Jungle, is a moist broadleaf forest that covers most of the Amazon basin of South America. This basin encompasses 7,000,000 square kilometres (2,700,000 sq mi), of which 5,500,000 square kilometres (2,100,000 sq mi) are covered by the rainforest. This region includes territory belonging to nine nations. The majority of the forest is contained within Brazil, with 60% of the rainforest, followed by Peru with 13%, Colombia with 10%, and with minor amounts in Venezuela, Ecuador, Bolivia, Guyana, Suriname and French Guiana. States or departments in four nations contain "Amazonas" in their names. The Amazon represents over half of the planet\'s remaining rainforests, and comprises the largest and most biodiverse tract of tropical rainforest in the world, with an estimated 390 billion individual trees divided into 16,000 species.' } res = nlp(QA_input) print(res) # b) Load model & tokenizer model = AutoModelForQuestionAnswering.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) ``` ## Authors Premal Matalia
Pyke/DS-config-12
9c8b651907e09c5d162c392175a679c10f36700d
2021-08-21T18:40:29.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Pyke
null
Pyke/DS-config-12
3
null
transformers
20,859
Entry not found
Pyke/DS-config-16
8fd3b2331a776c0cc9df403e15509db941d57fd3
2021-08-22T13:16:34.000Z
[ "pytorch", "bart", "feature-extraction", "transformers" ]
feature-extraction
false
Pyke
null
Pyke/DS-config-16
3
null
transformers
20,860
Entry not found
Pyke/DS-config-20
74d35c8196e59a36cd72b5288929fb6f19e738fa
2021-08-22T18:37:50.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Pyke
null
Pyke/DS-config-20
3
null
transformers
20,861
Entry not found
Pyke/DS-config-21
0ca1f50970bd99a72d599636bb4ce59830195216
2021-08-23T16:23:42.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Pyke
null
Pyke/DS-config-21
3
null
transformers
20,862
Entry not found
Pyke/DS-config-6
413defdd78a7b9d3b159002c5a64423be0a7ceda
2021-08-19T16:34:13.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Pyke
null
Pyke/DS-config-6
3
null
transformers
20,863
Entry not found
Pyke/DS-config-8
9220eabc07ae66fc51931c5cb23c80b3f2a13238
2021-08-19T17:38:17.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Pyke
null
Pyke/DS-config-8
3
null
transformers
20,864
Entry not found
Pyke/bart-finetuned-on-patent-Deepspeed-DS-4
a3fe8e8ae4c1765b5c581aa54dc39620954f0f79
2021-08-18T02:18:07.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Pyke
null
Pyke/bart-finetuned-on-patent-Deepspeed-DS-4
3
null
transformers
20,865
Entry not found
Pyke/bart-finetuned-on-patent-Deepspeed-Test2
a2f9202c398577eda1082c804d7d395b10e12de0
2021-08-13T18:07:58.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Pyke
null
Pyke/bart-finetuned-on-patent-Deepspeed-Test2
3
null
transformers
20,866
Entry not found
Pyke/bart-finetuned-on-patent-Deepspeed-Test35
2ea085be2abd390367248f71e48b177c9129296a
2021-08-16T16:07:46.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Pyke
null
Pyke/bart-finetuned-on-patent-Deepspeed-Test35
3
null
transformers
20,867
Entry not found
QuickRead/PPO_training
95e06be96ace106b2c34dcc192f8b7263ded4060
2022-04-13T15:28:37.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
QuickRead
null
QuickRead/PPO_training
3
null
transformers
20,868
Testing PPO-trainer
RAPIDS/electra-cyberlogs
7e0930397c74de6c457a6c9692624247c1137e24
2020-10-23T17:14:35.000Z
[ "pytorch", "transformers" ]
null
false
RAPIDS
null
RAPIDS/electra-cyberlogs
3
null
transformers
20,869
Entry not found
RahulRaman/kannada-LM-Electra
9aabe0f7616d358eab3141c2b2e9256174afe244
2022-01-25T12:56:05.000Z
[ "pytorch" ]
null
false
RahulRaman
null
RahulRaman/kannada-LM-Electra
3
null
null
20,870
Entry not found
Rainiefantasy/GO1984_DistilBERT
8d774be52d634fe085891f81cbc29c4977b92a5c
2021-09-14T08:56:13.000Z
[ "pytorch", "distilbert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
Rainiefantasy
null
Rainiefantasy/GO1984_DistilBERT
3
1
transformers
20,871
Entry not found
Raphaelg9/distilbert-base-uncased-finetuned-squad
82797a383df1b510af8468009ab45ddbc8ebb176
2021-11-30T17:30:54.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "dataset:squad_v2", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
Raphaelg9
null
Raphaelg9/distilbert-base-uncased-finetuned-squad
3
null
transformers
20,872
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad_v2 dataset. It achieves the following results on the evaluation set: - Loss: 2.1323 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.8535 | 1.0 | 661 | 2.0684 | | 1.5385 | 2.0 | 1322 | 2.0954 | | 1.2312 | 3.0 | 1983 | 2.1323 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
RealShreyas/ATSC
7225111596a6de33a2378c9967e8e3123ba1da09
2022-02-15T10:09:52.000Z
[ "pytorch", "transformers" ]
null
false
RealShreyas
null
RealShreyas/ATSC
3
null
transformers
20,873
Entry not found
Rumesh/mbart-si-simp
c084d4a5d696dfef171ad031ffa1cfe6f3e5a455
2022-02-18T16:24:32.000Z
[ "pytorch", "mbart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Rumesh
null
Rumesh/mbart-si-simp
3
null
transformers
20,874
Entry not found
Rumesh/txt-smp-mbart
6dc24ba9ae2d766f97f5c67ea60bc25ceb6ba3d3
2022-02-02T10:27:05.000Z
[ "pytorch", "mbart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Rumesh
null
Rumesh/txt-smp-mbart
3
null
transformers
20,875
Entry not found
Rumesh/txt-smp-si
0ec2b028396c7f7111908744459f426c18596b57
2022-02-01T16:40:06.000Z
[ "pytorch", "mt5", "feature-extraction", "transformers" ]
feature-extraction
false
Rumesh
null
Rumesh/txt-smp-si
3
null
transformers
20,876
Entry not found
Rumesh/txt-smp-si2
452e434d1674aa2b052079d3fc4e38890efd7f23
2022-02-02T03:19:35.000Z
[ "pytorch", "mt5", "feature-extraction", "transformers" ]
feature-extraction
false
Rumesh
null
Rumesh/txt-smp-si2
3
null
transformers
20,877
Entry not found
RuudVelo/wav2vec2-large-xls-r-1b-nl
47226afec7f744f136717d13c8cf8b80d344a960
2022-03-24T11:53:24.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "nl", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
RuudVelo
null
RuudVelo/wav2vec2-large-xls-r-1b-nl
3
null
transformers
20,878
--- language: - nl license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - nl - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-large-xls-r-1b-nl results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: nl metrics: - name: Test WER type: wer value: 11.12 - name: Test CER type: cer value: 3.2 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: nl metrics: - name: Test WER type: wer value: 31.92 - name: Test CER type: cer value: 13.87 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: nl metrics: - name: Test WER type: wer value: 32.17 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - NL dataset. This model is also available with a language model which improves these results. This model can be found at https://huggingface.co/RuudVelo/wav2vec2-large-xls-r-1b-nl-lm. The Common Voice 8 Dutch test Wer is 9.73 of that model. It achieves the following results on the evaluation set: - Loss: 0.1479 - Wer: 0.1156 ## Model description Model fine-tuned using the wav2vec-als-r-1b model architecture ## Intended uses & limitations More information needed ## Training and evaluation data Model has been trained on Common Voice 8 Dutch ## Training procedure ### Training hyperparameters Model parameters can be found under Files and versions in the run.sh file. ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.2223 | 0.52 | 500 | 0.3866 | 0.3425 | | 1.0748 | 1.03 | 1000 | 0.2574 | 0.2169 | | 1.0416 | 1.55 | 1500 | 0.2177 | 0.1946 | | 0.9951 | 2.06 | 2000 | 0.2008 | 0.1760 | | 0.975 | 2.58 | 2500 | 0.1961 | 0.1751 | | 0.9461 | 3.1 | 3000 | 0.1989 | 0.1782 | | 0.9381 | 3.61 | 3500 | 0.1928 | 0.1699 | | 0.934 | 4.13 | 4000 | 0.1923 | 0.1633 | | 0.9322 | 4.64 | 4500 | 0.1871 | 0.1634 | | 0.9012 | 5.16 | 5000 | 0.1890 | 0.1702 | | 0.9045 | 5.68 | 5500 | 0.1882 | 0.1740 | | 0.8826 | 6.19 | 6000 | 0.1856 | 0.1575 | | 0.8848 | 6.71 | 6500 | 0.1861 | 0.1617 | | 0.8723 | 7.22 | 7000 | 0.1927 | 0.1646 | | 0.8725 | 7.74 | 7500 | 0.1798 | 0.1531 | | 0.8573 | 8.26 | 8000 | 0.1781 | 0.1587 | | 0.8633 | 8.77 | 8500 | 0.1852 | 0.1628 | | 0.8603 | 9.29 | 9000 | 0.1833 | 0.1601 | | 0.8421 | 9.8 | 9500 | 0.1788 | 0.1543 | | 0.8404 | 10.32 | 10000 | 0.1844 | 0.1556 | | 0.8342 | 10.84 | 10500 | 0.1770 | 0.1538 | | 0.8161 | 11.35 | 11000 | 0.1821 | 0.1567 | | 0.8371 | 11.87 | 11500 | 0.1909 | 0.1629 | | 0.8083 | 12.38 | 12000 | 0.1778 | 0.1498 | | 0.806 | 12.9 | 12500 | 0.1802 | 0.1547 | | 0.8013 | 13.42 | 13000 | 0.1859 | 0.1584 | | 0.7913 | 13.93 | 13500 | 0.1875 | 0.1517 | | 0.8063 | 14.45 | 14000 | 0.1799 | 0.1571 | | 0.7991 | 14.96 | 14500 | 0.1792 | 0.1538 | | 0.7843 | 15.48 | 15000 | 0.1753 | 0.1464 | | 0.7905 | 16.0 | 15500 | 0.1784 | 0.1508 | | 0.7808 | 16.51 | 16000 | 0.1771 | 0.1485 | | 0.7743 | 17.03 | 16500 | 0.1795 | 0.1491 | | 0.7833 | 17.54 | 17000 | 0.1722 | 0.1484 | | 0.7763 | 18.06 | 17500 | 0.1767 | 0.1518 | | 0.7698 | 18.58 | 18000 | 0.1720 | 0.1460 | | 0.7571 | 19.09 | 18500 | 0.1735 | 0.1478 | | 0.7673 | 19.61 | 19000 | 0.1817 | 0.1511 | | 0.7415 | 20.12 | 19500 | 0.1763 | 0.1481 | | 0.751 | 20.64 | 20000 | 0.1742 | 0.1484 | | 0.7563 | 21.16 | 20500 | 0.1810 | 0.1611 | | 0.7423 | 21.67 | 21000 | 0.1817 | 0.1557 | | 0.7242 | 22.19 | 21500 | 0.1690 | 0.1446 | | 0.7251 | 22.7 | 22000 | 0.1684 | 0.1446 | | 0.7302 | 23.22 | 22500 | 0.1735 | 0.1430 | | 0.733 | 23.74 | 23000 | 0.1720 | 0.1454 | | 0.7128 | 24.25 | 23500 | 0.1668 | 0.1383 | | 0.7184 | 24.77 | 24000 | 0.1635 | 0.1377 | | 0.7015 | 25.28 | 24500 | 0.1646 | 0.1389 | | 0.7198 | 25.8 | 25000 | 0.1775 | 0.1462 | | 0.7178 | 26.32 | 25500 | 0.1705 | 0.1419 | | 0.7199 | 26.83 | 26000 | 0.1649 | 0.1416 | | 0.6981 | 27.35 | 26500 | 0.1724 | 0.1418 | | 0.6886 | 27.86 | 27000 | 0.1633 | 0.1382 | | 0.6922 | 28.38 | 27500 | 0.1698 | 0.1420 | | 0.6833 | 28.9 | 28000 | 0.1611 | 0.1351 | | 0.6798 | 29.41 | 28500 | 0.1639 | 0.1365 | | 0.6711 | 29.93 | 29000 | 0.1668 | 0.1358 | | 0.6762 | 30.44 | 29500 | 0.1682 | 0.1355 | | 0.6594 | 30.96 | 30000 | 0.1629 | 0.1345 | | 0.6664 | 31.48 | 30500 | 0.1625 | 0.1321 | | 0.6838 | 31.99 | 31000 | 0.1597 | 0.1372 | | 0.6603 | 32.51 | 31500 | 0.1583 | 0.1302 | | 0.6468 | 33.02 | 32000 | 0.1595 | 0.1322 | | 0.6464 | 33.54 | 32500 | 0.1609 | 0.1315 | | 0.6623 | 34.06 | 33000 | 0.1622 | 0.1366 | | 0.6414 | 34.57 | 33500 | 0.1587 | 0.1330 | | 0.6242 | 35.09 | 34000 | 0.1614 | 0.1337 | | 0.632 | 35.6 | 34500 | 0.1568 | 0.1272 | | 0.6346 | 36.12 | 35000 | 0.1583 | 0.1274 | | 0.6143 | 36.64 | 35500 | 0.1576 | 0.1264 | | 0.6208 | 37.15 | 36000 | 0.1621 | 0.1263 | | 0.6185 | 37.67 | 36500 | 0.1623 | 0.1270 | | 0.6128 | 38.18 | 37000 | 0.1604 | 0.1268 | | 0.6151 | 38.7 | 37500 | 0.1593 | 0.1246 | | 0.6082 | 39.22 | 38000 | 0.1532 | 0.1238 | | 0.6 | 39.73 | 38500 | 0.1524 | 0.1224 | | 0.6032 | 40.25 | 39000 | 0.1521 | 0.1212 | | 0.6016 | 40.76 | 39500 | 0.1551 | 0.1215 | | 0.6009 | 41.28 | 40000 | 0.1523 | 0.1215 | | 0.5875 | 41.8 | 40500 | 0.1541 | 0.1216 | | 0.608 | 42.31 | 41000 | 0.1536 | 0.1209 | | 0.5876 | 42.83 | 41500 | 0.1567 | 0.1211 | | 0.5714 | 43.34 | 42000 | 0.1532 | 0.1217 | | 0.5756 | 43.86 | 42500 | 0.1516 | 0.1196 | | 0.5719 | 44.38 | 43000 | 0.1491 | 0.1191 | | 0.5829 | 44.89 | 43500 | 0.1497 | 0.1193 | | 0.5664 | 45.41 | 44000 | 0.1487 | 0.1173 | | 0.5707 | 45.92 | 44500 | 0.1470 | 0.1164 | | 0.5696 | 46.44 | 45000 | 0.1479 | 0.1161 | | 0.5767 | 46.96 | 45500 | 0.1492 | 0.1175 | | 0.5573 | 47.47 | 46000 | 0.1471 | 0.1165 | | 0.5625 | 47.99 | 46500 | 0.1484 | 0.1168 | | 0.5671 | 48.5 | 47000 | 0.1474 | 0.1162 | | 0.5484 | 49.02 | 47500 | 0.1479 | 0.1158 | | 0.555 | 49.54 | 48000 | 0.1477 | 0.1157 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
Ryukie/DialoGPT-small-Rick
52994182780118bcbcf0700899a0452e6a312368
2021-10-10T01:30:09.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Ryukie
null
Ryukie/DialoGPT-small-Rick
3
null
transformers
20,879
--- tags: - conversational --- # Rick DialoGPT model
S34NtheGuy/DialoGPT-small-wetterlettuce
6548f91cdb2f791a94c086d61e9014e5168f7e30
2021-10-10T17:59:38.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
S34NtheGuy
null
S34NtheGuy/DialoGPT-small-wetterlettuce
3
null
transformers
20,880
--- tags: - conversational --- # DialoGPT chat bot model using discord messages as data
SCS/Pre-trained-model
56387c13ae123424c0016a7000e67803293dfad4
2021-08-13T15:43:00.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
SCS
null
SCS/Pre-trained-model
3
null
transformers
20,881
Entry not found
SEBIS/code_trans_t5_base_api_generation
6b2237a8e99432cdd9ff10e6b11f06ea4668ed25
2021-06-23T03:57:33.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_base_api_generation
3
null
transformers
20,882
--- tags: - summarization widget: - text: "parse the uses licence node of this package , if any , and returns the license definition if theres" --- # CodeTrans model for api recommendation generation Pretrained model for api recommendation generation using the t5 base model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). ## Model description This CodeTrans model is based on the `t5-base` model. It has its own SentencePiece vocabulary model. It used single-task training on Api Recommendation Generation dataset. ## Intended uses & limitations The model could be used to generate api usage for the java programming tasks. ### How to use Here is how to use this model to generate java function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_base_api_generation"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_base_api_generation", skip_special_tokens=True), device=0 ) tokenized_code = "parse the uses licence node of this package , if any , and returns the license definition if theres" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/single%20task/api%20generation/base_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Java | | -------------------- | :------------: | | CodeTrans-ST-Small | 68.71 | | CodeTrans-ST-Base | 70.45 | | CodeTrans-TF-Small | 68.90 | | CodeTrans-TF-Base | 72.11 | | CodeTrans-TF-Large | 73.26 | | CodeTrans-MT-Small | 58.43 | | CodeTrans-MT-Base | 67.97 | | CodeTrans-MT-Large | 72.29 | | CodeTrans-MT-TF-Small | 69.29 | | CodeTrans-MT-TF-Base | 72.89 | | CodeTrans-MT-TF-Large | **73.39** | | State of the art | 54.42 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_base_code_documentation_generation_go
f350896ec766b653aae84133f3c39c6525b86336
2021-06-23T04:12:04.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_base_code_documentation_generation_go
3
null
transformers
20,883
--- tags: - summarization widget: - text: "func ( pr * Progress ) needSnapshotAbort ( ) bool { return pr . State == ProgressStateSnapshot && pr . Match >= pr . PendingSnapshot }" --- # CodeTrans model for code documentation generation go Pretrained model on programming language go using the t5 base model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized go code functions: it works best with tokenized go functions. ## Model description This CodeTrans model is based on the `t5-base` model. It has its own SentencePiece vocabulary model. It used single-task training on CodeSearchNet Corpus go dataset. ## Intended uses & limitations The model could be used to generate the description for the go function or be fine-tuned on other go code tasks. It can be used on unparsed and untokenized go code. However, if the go code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate go function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_base_code_documentation_generation_go"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_base_code_documentation_generation_go", skip_special_tokens=True), device=0 ) tokenized_code = "func ( pr * Progress ) needSnapshotAbort ( ) bool { return pr . State == ProgressStateSnapshot && pr . Match >= pr . PendingSnapshot }" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/single%20task/function%20documentation%20generation/go/base_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Python | Java | Go | Php | Ruby | JavaScript | | -------------------- | :------------: | :------------: | :------------: | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 17.31 | 16.65 | 16.89 | 23.05 | 9.19 | 13.7 | | CodeTrans-ST-Base | 16.86 | 17.17 | 17.16 | 22.98 | 8.23 | 13.17 | | CodeTrans-TF-Small | 19.93 | 19.48 | 18.88 | 25.35 | 13.15 | 17.23 | | CodeTrans-TF-Base | 20.26 | 20.19 | 19.50 | 25.84 | 14.07 | 18.25 | | CodeTrans-TF-Large | 20.35 | 20.06 | **19.54** | 26.18 | 14.94 | **18.98** | | CodeTrans-MT-Small | 19.64 | 19.00 | 19.15 | 24.68 | 14.91 | 15.26 | | CodeTrans-MT-Base | **20.39** | 21.22 | 19.43 | **26.23** | **15.26** | 16.11 | | CodeTrans-MT-Large | 20.18 | **21.87** | 19.38 | 26.08 | 15.00 | 16.23 | | CodeTrans-MT-TF-Small | 19.77 | 20.04 | 19.36 | 25.55 | 13.70 | 17.24 | | CodeTrans-MT-TF-Base | 19.77 | 21.12 | 18.86 | 25.79 | 14.24 | 18.62 | | CodeTrans-MT-TF-Large | 18.94 | 21.42 | 18.77 | 26.20 | 14.19 | 18.83 | | State of the art | 19.06 | 17.65 | 18.07 | 25.16 | 12.16 | 14.90 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_base_program_synthese_multitask_finetune
a71639c26a456bea57dd42782d3f3ce4bac2dcda
2021-06-23T05:09:05.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_base_program_synthese_multitask_finetune
3
null
transformers
20,884
--- tags: - summarization widget: - text: "you are given an array of numbers a and a number b , compute the difference of elements in a and b" --- # CodeTrans model for program synthesis Pretrained model on programming language lisp inspired DSL using the t5 base model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). ## Model description This CodeTrans model is based on the `t5-base` model. It has its own SentencePiece vocabulary model. It used multi-task training on 13 supervised tasks in the software development domain and 7 unsupervised datasets. It is then fine-tuned on the program synthesis task for the lisp inspired DSL code. ## Intended uses & limitations The model could be used to generate lisp inspired DSL code given the human language description tasks. ### How to use Here is how to use this model to generate lisp inspired DSL code using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_base_program_synthese_multitask_finetune"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_base_program_synthese_multitask_finetune", skip_special_tokens=True), device=0 ) tokenized_code = "you are given an array of numbers a and a number b , compute the difference of elements in a and b" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/multitask/fine-tuning/program%20synthesis/base_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Multi-task Pretraining The model was trained on a single TPU Pod V3-8 for 500,000 steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Fine-tuning This model was then fine-tuned on a single TPU Pod V2-8 for 30,000 steps in total, using sequence length 512 (batch size 256), using only the dataset only containing lisp inspired DSL data. ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | LISP | | -------------------- | :------------: | | CodeTrans-ST-Small | 89.43 | | CodeTrans-ST-Base | 89.65 | | CodeTrans-TF-Small | 90.30 | | CodeTrans-TF-Base | 90.24 | | CodeTrans-TF-Large | 90.21 | | CodeTrans-MT-Small | 82.88 | | CodeTrans-MT-Base | 86.99 | | CodeTrans-MT-Large | 90.27 | | CodeTrans-MT-TF-Small | **90.31** | | CodeTrans-MT-TF-Base | 90.30 | | CodeTrans-MT-TF-Large | 90.17 | | State of the art | 85.80 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_large_code_comment_generation_java_multitask
411ec05f1b941d2c9f8c329e2e54cac21512b099
2021-06-23T05:56:53.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_large_code_comment_generation_java_multitask
3
null
transformers
20,885
--- tags: - summarization widget: - text: "protected String renderUri ( URI uri ) { return uri . toASCIIString ( ) ; }" --- # CodeTrans model for code comment generation java Pretrained model on programming language java using the t5 large model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized java code functions: it works best with tokenized java functions. ## Model description This CodeTrans model is based on the `t5-large` model. It has its own SentencePiece vocabulary model. It used multi-task training on 13 supervised tasks in the software development domain and 7 unsupervised datasets. ## Intended uses & limitations The model could be used to generate the description for the java function or be fine-tuned on other java code tasks. It can be used on unparsed and untokenized java code. However, if the java code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate java function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_large_code_comment_generation_java_multitask"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_large_code_comment_generation_java_multitask", skip_special_tokens=True), device=0 ) tokenized_code = "protected String renderUri ( URI uri ) { return uri . toASCIIString ( ) ; }" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/multitask/pre-training/code%20comment%20generation/large_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Multi-task Pretraining The model was trained on a single TPU Pod V3-8 for 260,000 steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Java | | -------------------- | :------------: | | CodeTrans-ST-Small | 37.98 | | CodeTrans-ST-Base | 38.07 | | CodeTrans-TF-Small | 38.56 | | CodeTrans-TF-Base | 39.06 | | CodeTrans-TF-Large | **39.50** | | CodeTrans-MT-Small | 20.15 | | CodeTrans-MT-Base | 27.44 | | CodeTrans-MT-Large | 34.69 | | CodeTrans-MT-TF-Small | 38.37 | | CodeTrans-MT-TF-Base | 38.90 | | CodeTrans-MT-TF-Large | 39.25 | | State of the art | 38.17 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_large_code_documentation_generation_go_multitask_finetune
2f1ca1316cdcae5400f332238842414151310f4c
2021-06-23T06:27:30.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_large_code_documentation_generation_go_multitask_finetune
3
null
transformers
20,886
--- tags: - summarization widget: - text: "func ( pr * Progress ) needSnapshotAbort ( ) bool { return pr . State == ProgressStateSnapshot && pr . Match >= pr . PendingSnapshot }" --- # CodeTrans model for code documentation generation go Pretrained model on programming language go using the t5 large model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized go code functions: it works best with tokenized go functions. ## Model description This CodeTrans model is based on the `t5-large` model. It has its own SentencePiece vocabulary model. It used multi-task training on 13 supervised tasks in the software development domain and 7 unsupervised datasets. It is then fine-tuned on the code documentation generation task for the go function/method. ## Intended uses & limitations The model could be used to generate the description for the go function or be fine-tuned on other go code tasks. It can be used on unparsed and untokenized go code. However, if the go code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate go function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_large_code_documentation_generation_go_multitask_finetune"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_large_code_documentation_generation_go_multitask_finetune", skip_special_tokens=True), device=0 ) tokenized_code = "func ( pr * Progress ) needSnapshotAbort ( ) bool { return pr . State == ProgressStateSnapshot && pr . Match >= pr . PendingSnapshot }" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/multitask/fine-tuning/function%20documentation%20generation/go/large_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Multi-task Pretraining The model was trained on a single TPU Pod V3-8 for half million steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Fine-tuning This model was then fine-tuned on a single TPU Pod V2-8 for 4500 steps in total, using sequence length 512 (batch size 256), using only the dataset only containing go code. ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Python | Java | Go | Php | Ruby | JavaScript | | -------------------- | :------------: | :------------: | :------------: | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 17.31 | 16.65 | 16.89 | 23.05 | 9.19 | 13.7 | | CodeTrans-ST-Base | 16.86 | 17.17 | 17.16 | 22.98 | 8.23 | 13.17 | | CodeTrans-TF-Small | 19.93 | 19.48 | 18.88 | 25.35 | 13.15 | 17.23 | | CodeTrans-TF-Base | 20.26 | 20.19 | 19.50 | 25.84 | 14.07 | 18.25 | | CodeTrans-TF-Large | 20.35 | 20.06 | **19.54** | 26.18 | 14.94 | **18.98** | | CodeTrans-MT-Small | 19.64 | 19.00 | 19.15 | 24.68 | 14.91 | 15.26 | | CodeTrans-MT-Base | **20.39** | 21.22 | 19.43 | **26.23** | **15.26** | 16.11 | | CodeTrans-MT-Large | 20.18 | **21.87** | 19.38 | 26.08 | 15.00 | 16.23 | | CodeTrans-MT-TF-Small | 19.77 | 20.04 | 19.36 | 25.55 | 13.70 | 17.24 | | CodeTrans-MT-TF-Base | 19.77 | 21.12 | 18.86 | 25.79 | 14.24 | 18.62 | | CodeTrans-MT-TF-Large | 18.94 | 21.42 | 18.77 | 26.20 | 14.19 | 18.83 | | State of the art | 19.06 | 17.65 | 18.07 | 25.16 | 12.16 | 14.90 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_large_code_documentation_generation_go_transfer_learning_finetune
87560121e11293fffd82dc323979ad6cb6f0096b
2021-06-23T06:33:23.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_large_code_documentation_generation_go_transfer_learning_finetune
3
null
transformers
20,887
--- tags: - summarization widget: - text: "func ( pr * Progress ) needSnapshotAbort ( ) bool { return pr . State == ProgressStateSnapshot && pr . Match >= pr . PendingSnapshot }" --- # CodeTrans model for code documentation generation go Pretrained model on programming language go using the t5 large model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized go code functions: it works best with tokenized go functions. ## Model description This CodeTrans model is based on the `t5-large` model. It has its own SentencePiece vocabulary model. It used transfer-learning pre-training on 7 unsupervised datasets in the software development domain. It is then fine-tuned on the code documentation generation task for the go function/method. ## Intended uses & limitations The model could be used to generate the description for the go function or be fine-tuned on other go code tasks. It can be used on unparsed and untokenized go code. However, if the go code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate go function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_large_code_documentation_generation_go_transfer_learning_finetune"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_large_code_documentation_generation_go_transfer_learning_finetune", skip_special_tokens=True), device=0 ) tokenized_code = "func ( pr * Progress ) needSnapshotAbort ( ) bool { return pr . State == ProgressStateSnapshot && pr . Match >= pr . PendingSnapshot }" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/transfer%20learning%20fine-tuning/function%20documentation%20generation/go/large_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Transfer-learning Pretraining The model was trained on a single TPU Pod V3-8 for 240,000 steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Fine-tuning This model was then fine-tuned on a single TPU Pod V2-8 for 1000 steps in total, using sequence length 512 (batch size 256), using only the dataset only containing go code. ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Python | Java | Go | Php | Ruby | JavaScript | | -------------------- | :------------: | :------------: | :------------: | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 17.31 | 16.65 | 16.89 | 23.05 | 9.19 | 13.7 | | CodeTrans-ST-Base | 16.86 | 17.17 | 17.16 | 22.98 | 8.23 | 13.17 | | CodeTrans-TF-Small | 19.93 | 19.48 | 18.88 | 25.35 | 13.15 | 17.23 | | CodeTrans-TF-Base | 20.26 | 20.19 | 19.50 | 25.84 | 14.07 | 18.25 | | CodeTrans-TF-Large | 20.35 | 20.06 | **19.54** | 26.18 | 14.94 | **18.98** | | CodeTrans-MT-Small | 19.64 | 19.00 | 19.15 | 24.68 | 14.91 | 15.26 | | CodeTrans-MT-Base | **20.39** | 21.22 | 19.43 | **26.23** | **15.26** | 16.11 | | CodeTrans-MT-Large | 20.18 | **21.87** | 19.38 | 26.08 | 15.00 | 16.23 | | CodeTrans-MT-TF-Small | 19.77 | 20.04 | 19.36 | 25.55 | 13.70 | 17.24 | | CodeTrans-MT-TF-Base | 19.77 | 21.12 | 18.86 | 25.79 | 14.24 | 18.62 | | CodeTrans-MT-TF-Large | 18.94 | 21.42 | 18.77 | 26.20 | 14.19 | 18.83 | | State of the art | 19.06 | 17.65 | 18.07 | 25.16 | 12.16 | 14.90 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_large_code_documentation_generation_javascript_multitask_finetune
ed67b76ea8f8be40613c2e846b81b5395871e816
2021-06-23T07:00:56.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_large_code_documentation_generation_javascript_multitask_finetune
3
null
transformers
20,888
--- tags: - summarization widget: - text: "function isStandardBrowserEnv ( ) { if ( typeof navigator !== 'undefined' && ( navigator . product === 'ReactNative' || navigator . product === 'NativeScript' || navigator . product === 'NS' ) ) { return false ; } return ( typeof window !== 'undefined' && typeof document !== 'undefined' ) ; }" --- # CodeTrans model for code documentation generation javascript Pretrained model on programming language javascript using the t5 large model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized javascript code functions: it works best with tokenized javascript functions. ## Model description This CodeTrans model is based on the `t5-large` model. It has its own SentencePiece vocabulary model. It used multi-task training on 13 supervised tasks in the software development domain and 7 unsupervised datasets. It is then fine-tuned on the code documentation generation task for the javascript function/method. ## Intended uses & limitations The model could be used to generate the description for the javascript function or be fine-tuned on other javascript code tasks. It can be used on unparsed and untokenized javascript code. However, if the javascript code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate javascript function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_large_code_documentation_generation_javascript_multitask_finetune"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_large_code_documentation_generation_javascript_multitask_finetune", skip_special_tokens=True), device=0 ) tokenized_code = "function isStandardBrowserEnv ( ) { if ( typeof navigator !== 'undefined' && ( navigator . product === 'ReactNative' || navigator . product === 'NativeScript' || navigator . product === 'NS' ) ) { return false ; } return ( typeof window !== 'undefined' && typeof document !== 'undefined' ) ; }" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/multitask/fine-tuning/function%20documentation%20generation/javascript/large_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Multi-task Pretraining The model was trained on a single TPU Pod V3-8 for half million steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Fine-tuning This model was then fine-tuned on a single TPU Pod V2-8 for 2,500 steps in total, using sequence length 512 (batch size 256), using only the dataset only containing javascript code. ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Python | Java | Go | Php | Ruby | JavaScript | | -------------------- | :------------: | :------------: | :------------: | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 17.31 | 16.65 | 16.89 | 23.05 | 9.19 | 13.7 | | CodeTrans-ST-Base | 16.86 | 17.17 | 17.16 | 22.98 | 8.23 | 13.17 | | CodeTrans-TF-Small | 19.93 | 19.48 | 18.88 | 25.35 | 13.15 | 17.23 | | CodeTrans-TF-Base | 20.26 | 20.19 | 19.50 | 25.84 | 14.07 | 18.25 | | CodeTrans-TF-Large | 20.35 | 20.06 | **19.54** | 26.18 | 14.94 | **18.98** | | CodeTrans-MT-Small | 19.64 | 19.00 | 19.15 | 24.68 | 14.91 | 15.26 | | CodeTrans-MT-Base | **20.39** | 21.22 | 19.43 | **26.23** | **15.26** | 16.11 | | CodeTrans-MT-Large | 20.18 | **21.87** | 19.38 | 26.08 | 15.00 | 16.23 | | CodeTrans-MT-TF-Small | 19.77 | 20.04 | 19.36 | 25.55 | 13.70 | 17.24 | | CodeTrans-MT-TF-Base | 19.77 | 21.12 | 18.86 | 25.79 | 14.24 | 18.62 | | CodeTrans-MT-TF-Large | 18.94 | 21.42 | 18.77 | 26.20 | 14.19 | 18.83 | | State of the art | 19.06 | 17.65 | 18.07 | 25.16 | 12.16 | 14.90 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_large_code_documentation_generation_python_multitask_finetune
66a414300351f2992eb3b0f09de200116bc6e949
2021-06-23T07:39:56.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_large_code_documentation_generation_python_multitask_finetune
3
null
transformers
20,889
--- tags: - summarization widget: - text: "def e ( message , exit_code = None ) : print_log ( message , YELLOW , BOLD ) if exit_code is not None : sys . exit ( exit_code )" --- # CodeTrans model for code documentation generation python Pretrained model on programming language python using the t5 large model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized python code functions: it works best with tokenized python functions. ## Model description This CodeTrans model is based on the `t5-large` model. It has its own SentencePiece vocabulary model. It used multi-task training on 13 supervised tasks in the software development domain and 7 unsupervised datasets. It is then fine-tuned on the code documentation generation task for the python function/method. ## Intended uses & limitations The model could be used to generate the description for the python function or be fine-tuned on other python code tasks. It can be used on unparsed and untokenized python code. However, if the python code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate python function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_large_code_documentation_generation_python_multitask_finetune"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_large_code_documentation_generation_python_multitask_finetune", skip_special_tokens=True), device=0 ) tokenized_code = "def e ( message , exit_code = None ) : print_log ( message , YELLOW , BOLD ) if exit_code is not None : sys . exit ( exit_code )" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/multitask/fine-tuning/function%20documentation%20generation/python/large_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Multi-task Pretraining The model was trained on a single TPU Pod V3-8 for half million steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Fine-tuning This model was then fine-tuned on a single TPU Pod V2-8 for 500 steps in total, using sequence length 512 (batch size 256), using only the dataset only containing python code. ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Python | Java | Go | Php | Ruby | JavaScript | | -------------------- | :------------: | :------------: | :------------: | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 17.31 | 16.65 | 16.89 | 23.05 | 9.19 | 13.7 | | CodeTrans-ST-Base | 16.86 | 17.17 | 17.16 | 22.98 | 8.23 | 13.17 | | CodeTrans-TF-Small | 19.93 | 19.48 | 18.88 | 25.35 | 13.15 | 17.23 | | CodeTrans-TF-Base | 20.26 | 20.19 | 19.50 | 25.84 | 14.07 | 18.25 | | CodeTrans-TF-Large | 20.35 | 20.06 | **19.54** | 26.18 | 14.94 | **18.98** | | CodeTrans-MT-Small | 19.64 | 19.00 | 19.15 | 24.68 | 14.91 | 15.26 | | CodeTrans-MT-Base | **20.39** | 21.22 | 19.43 | **26.23** | **15.26** | 16.11 | | CodeTrans-MT-Large | 20.18 | **21.87** | 19.38 | 26.08 | 15.00 | 16.23 | | CodeTrans-MT-TF-Small | 19.77 | 20.04 | 19.36 | 25.55 | 13.70 | 17.24 | | CodeTrans-MT-TF-Base | 19.77 | 21.12 | 18.86 | 25.79 | 14.24 | 18.62 | | CodeTrans-MT-TF-Large | 18.94 | 21.42 | 18.77 | 26.20 | 14.19 | 18.83 | | State of the art | 19.06 | 17.65 | 18.07 | 25.16 | 12.16 | 14.90 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_large_code_documentation_generation_ruby_transfer_learning_finetune
5bb1993d834f20e9f6abb09cfa02affd7e05aa29
2021-06-23T08:03:43.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_large_code_documentation_generation_ruby_transfer_learning_finetune
3
null
transformers
20,890
--- tags: - summarization widget: - text: "def add ( severity , progname , & block ) return true if io . nil? || severity < level message = format_message ( severity , progname , yield ) MUTEX . synchronize { io . write ( message ) } true end" --- # CodeTrans model for code documentation generation ruby Pretrained model on programming language ruby using the t5 large model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized ruby code functions: it works best with tokenized ruby functions. ## Model description This CodeTrans model is based on the `t5-large` model. It has its own SentencePiece vocabulary model. It used transfer-learning pre-training on 7 unsupervised datasets in the software development domain. It is then fine-tuned on the code documentation generation task for the ruby function/method. ## Intended uses & limitations The model could be used to generate the description for the ruby function or be fine-tuned on other ruby code tasks. It can be used on unparsed and untokenized ruby code. However, if the ruby code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate ruby function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_large_code_documentation_generation_ruby_transfer_learning_finetune"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_large_code_documentation_generation_ruby_transfer_learning_finetune", skip_special_tokens=True), device=0 ) tokenized_code = "def add ( severity , progname , & block ) return true if io . nil? || severity < level message = format_message ( severity , progname , yield ) MUTEX . synchronize { io . write ( message ) } true end" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/transfer%20learning%20fine-tuning/function%20documentation%20generation/ruby/large_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Transfer-learning Pretraining The model was trained on a single TPU Pod V3-8 for half million steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Fine-tuning This model was then fine-tuned on a single TPU Pod V2-8 for 5000 steps in total, using sequence length 512 (batch size 256), using only the dataset only containing ruby code. ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Python | Java | Go | Php | Ruby | JavaScript | | -------------------- | :------------: | :------------: | :------------: | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 17.31 | 16.65 | 16.89 | 23.05 | 9.19 | 13.7 | | CodeTrans-ST-Base | 16.86 | 17.17 | 17.16 | 22.98 | 8.23 | 13.17 | | CodeTrans-TF-Small | 19.93 | 19.48 | 18.88 | 25.35 | 13.15 | 17.23 | | CodeTrans-TF-Base | 20.26 | 20.19 | 19.50 | 25.84 | 14.07 | 18.25 | | CodeTrans-TF-Large | 20.35 | 20.06 | **19.54** | 26.18 | 14.94 | **18.98** | | CodeTrans-MT-Small | 19.64 | 19.00 | 19.15 | 24.68 | 14.91 | 15.26 | | CodeTrans-MT-Base | **20.39** | 21.22 | 19.43 | **26.23** | **15.26** | 16.11 | | CodeTrans-MT-Large | 20.18 | **21.87** | 19.38 | 26.08 | 15.00 | 16.23 | | CodeTrans-MT-TF-Small | 19.77 | 20.04 | 19.36 | 25.55 | 13.70 | 17.24 | | CodeTrans-MT-TF-Base | 19.77 | 21.12 | 18.86 | 25.79 | 14.24 | 18.62 | | CodeTrans-MT-TF-Large | 18.94 | 21.42 | 18.77 | 26.20 | 14.19 | 18.83 | | State of the art | 19.06 | 17.65 | 18.07 | 25.16 | 12.16 | 14.90 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_large_program_synthese_transfer_learning_finetune
495c6a5b42daebee4bf1f99dbb0f4f79f21f60fd
2021-06-23T08:51:56.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_large_program_synthese_transfer_learning_finetune
3
null
transformers
20,891
--- tags: - summarization widget: - text: "you are given an array of numbers a and a number b , compute the difference of elements in a and b" --- # CodeTrans model for program synthesis Pretrained model on programming language lisp inspired DSL using the t5 large model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). ## Model description This CodeTrans model is based on the `t5-large` model. It has its own SentencePiece vocabulary model. It used transfer-learning pre-training on 7 unsupervised datasets in the software development domain. It is then fine-tuned on the program synthesis task for the lisp inspired DSL code. ## Intended uses & limitations The model could be used to generate lisp inspired DSL code given the human language description tasks. ### How to use Here is how to use this model to generate lisp inspired DSL code using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_large_program_synthese_transfer_learning_finetune"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_large_program_synthese_transfer_learning_finetune", skip_special_tokens=True), device=0 ) tokenized_code = "you are given an array of numbers a and a number b , compute the difference of elements in a and b" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/multitask/transfer%20learning%20fine-tuning/large_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Transfer-learning Pretraining The model was trained on a single TPU Pod V3-8 for 240,000 steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Fine-tuning This model was then fine-tuned on a single TPU Pod V2-8 for 3,500 steps in total, using sequence length 512 (batch size 256), using only the dataset only containing lisp inspired DSL data. ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | LISP | | -------------------- | :------------: | | CodeTrans-ST-Small | 89.43 | | CodeTrans-ST-Base | 89.65 | | CodeTrans-TF-Small | 90.30 | | CodeTrans-TF-Base | 90.24 | | CodeTrans-TF-Large | 90.21 | | CodeTrans-MT-Small | 82.88 | | CodeTrans-MT-Base | 86.99 | | CodeTrans-MT-Large | 90.27 | | CodeTrans-MT-TF-Small | **90.31** | | CodeTrans-MT-TF-Base | 90.30 | | CodeTrans-MT-TF-Large | 90.17 | | State of the art | 85.80 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_large_source_code_summarization_csharp_multitask_finetune
6385e90744d6730d19541ec2022767c3249c532d
2021-06-23T09:03:53.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_large_source_code_summarization_csharp_multitask_finetune
3
null
transformers
20,892
--- tags: - summarization widget: - text: "public static DateTime ParseUnixDateTime ( double unixTime ) { var dt = new DateTime ( CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , System . DateTimeKind . Utc ) ; dt = dt . AddSeconds ( unixTimeStamp ) . ToLocalTime ( ) ; return dt ; }" --- # CodeTrans model for source code summarization csharp Pretrained model on programming language csharp using the t5 large model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized csharp code functions: it works best with tokenized csharp functions. ## Model description This CodeTrans model is based on the `t5-large` model. It has its own SentencePiece vocabulary model. It used multi-task training on 13 supervised tasks in the software development domain and 7 unsupervised datasets. It is then fine-tuned on the source code summarization task for the csharp code snippets. ## Intended uses & limitations The model could be used to generate the description for the csharp function or be fine-tuned on other csharp code tasks. It can be used on unparsed and untokenized csharp code. However, if the csharp code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate csharp function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_large_source_code_summarization_csharp_multitask_finetune"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_large_source_code_summarization_csharp_multitask_finetune", skip_special_tokens=True), device=0 ) tokenized_code = "public static DateTime ParseUnixDateTime ( double unixTime ) { var dt = new DateTime ( CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , System . DateTimeKind . Utc ) ; dt = dt . AddSeconds ( unixTimeStamp ) . ToLocalTime ( ) ; return dt ; }" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/multitask/fine-tuning/source%20code%20summarization/csharp/large_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Multi-task Pretraining The model was trained on a single TPU Pod V3-8 for 260,000 steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Fine-tuning This model was then fine-tuned on a single TPU Pod V2-8 for 100 steps in total, using sequence length 512 (batch size 256), using only the dataset only containing csharp code. ## Evaluation results For the source code summarization tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Python | SQL | C# | | -------------------- | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 8.45 | 17.55 | 19.74 | | CodeTrans-ST-Base | 9.12 | 15.00 | 18.65 | | CodeTrans-TF-Small | 10.06 | 17.71 | 20.40 | | CodeTrans-TF-Base | 10.94 | 17.66 | 21.12 | | CodeTrans-TF-Large | 12.41 | 18.40 | 21.43 | | CodeTrans-MT-Small | 13.11 | 19.15 | 22.39 | | CodeTrans-MT-Base | **13.37** | 19.24 | 23.20 | | CodeTrans-MT-Large | 13.24 | 19.40 | **23.57** | | CodeTrans-MT-TF-Small | 12.10 | 18.25 | 22.03 | | CodeTrans-MT-TF-Base | 10.64 | 16.91 | 21.40 | | CodeTrans-MT-TF-Large | 12.14 | **19.98** | 21.10 | | CODE-NN | -- | 18.40 | 20.50 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_large_source_code_summarization_csharp_transfer_learning_finetune
2111b60f791b94ef9be3a84de67cd37d8f9af5b9
2021-06-23T09:09:48.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_large_source_code_summarization_csharp_transfer_learning_finetune
3
null
transformers
20,893
--- tags: - summarization widget: - text: "public static DateTime ParseUnixDateTime ( double unixTime ) { var dt = new DateTime ( CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , System . DateTimeKind . Utc ) ; dt = dt . AddSeconds ( unixTimeStamp ) . ToLocalTime ( ) ; return dt ; }" --- # CodeTrans model for source code summarization csharp Pretrained model on programming language csharp using the t5 large model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized csharp code functions: it works best with tokenized csharp functions. ## Model description This CodeTrans model is based on the `t5-large` model. It has its own SentencePiece vocabulary model. It used transfer-learning pre-training on 7 unsupervised datasets in the software development domain. It is then fine-tuned on the source code summarization task for the csharp code snippets. ## Intended uses & limitations The model could be used to generate the description for the csharp function or be fine-tuned on other csharp code tasks. It can be used on unparsed and untokenized csharp code. However, if the csharp code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate csharp function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_large_source_code_summarization_csharp_transfer_learning_finetune"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_large_source_code_summarization_csharp_transfer_learning_finetune", skip_special_tokens=True), device=0 ) tokenized_code = "public static DateTime ParseUnixDateTime ( double unixTime ) { var dt = new DateTime ( CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , System . DateTimeKind . Utc ) ; dt = dt . AddSeconds ( unixTimeStamp ) . ToLocalTime ( ) ; return dt ; }" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/transfer%20learning%20fine-tuning/source%20code%20summarization/csharp/large_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Transfer-learning Pretraining The model was trained on a single TPU Pod V3-8 for 240,000 steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Fine-tuning This model was then fine-tuned on a single TPU Pod V2-8 for 200 steps in total, using sequence length 512 (batch size 256), using only the dataset only containing csharp code. ## Evaluation results For the source code summarization tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Python | SQL | C# | | -------------------- | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 8.45 | 17.55 | 19.74 | | CodeTrans-ST-Base | 9.12 | 15.00 | 18.65 | | CodeTrans-TF-Small | 10.06 | 17.71 | 20.40 | | CodeTrans-TF-Base | 10.94 | 17.66 | 21.12 | | CodeTrans-TF-Large | 12.41 | 18.40 | 21.43 | | CodeTrans-MT-Small | 13.11 | 19.15 | 22.39 | | CodeTrans-MT-Base | **13.37** | 19.24 | 23.20 | | CodeTrans-MT-Large | 13.24 | 19.40 | **23.57** | | CodeTrans-MT-TF-Small | 12.10 | 18.25 | 22.03 | | CodeTrans-MT-TF-Base | 10.64 | 16.91 | 21.40 | | CodeTrans-MT-TF-Large | 12.14 | **19.98** | 21.10 | | CODE-NN | -- | 18.40 | 20.50 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_large_transfer_learning_pretrain
30c8b9348b45711f4cfaf647e219b3ba380da6f4
2021-06-23T09:53:13.000Z
[ "pytorch", "t5", "feature-extraction", "transformers" ]
feature-extraction
false
SEBIS
null
SEBIS/code_trans_t5_large_transfer_learning_pretrain
3
1
transformers
20,894
# CodeTrans transfer learning pre-trained model Pretrained model on programming languages using the t5 large model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). ## Model description This CodeTrans model is based on the `t5-large` model. It has its own SentencePiece vocabulary model. It used transfer-learning pre-training on 7 unsupervised datasets in the software development domain. The model was trained on a single TPU Pod V3-8 for 240,000 steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. It could be used to fine-tune other tasks in the software development domain. > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_small_code_documentation_generation_go
9a023f33efcbf966b47491737addd5a73341163a
2021-06-23T09:58:10.000Z
[ "pytorch", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_small_code_documentation_generation_go
3
null
transformers
20,895
--- tags: - summarization widget: - text: "func ( pr * Progress ) needSnapshotAbort ( ) bool { return pr . State == ProgressStateSnapshot && pr . Match >= pr . PendingSnapshot }" --- # CodeTrans model for code documentation generation go Pretrained model on programming language go using the t5 small model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized go code functions: it works best with tokenized go functions. ## Model description This CodeTrans model is based on the `t5-small` model. It has its own SentencePiece vocabulary model. It used single-task training on CodeSearchNet Corpus go dataset. ## Intended uses & limitations The model could be used to generate the description for the go function or be fine-tuned on other go code tasks. It can be used on unparsed and untokenized go code. However, if the go code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate go function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_small_code_documentation_generation_go"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_small_code_documentation_generation_go", skip_special_tokens=True), device=0 ) tokenized_code = "func ( pr * Progress ) needSnapshotAbort ( ) bool { return pr . State == ProgressStateSnapshot && pr . Match >= pr . PendingSnapshot }" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/single%20task/function%20documentation%20generation/go/small_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Python | Java | Go | Php | Ruby | JavaScript | | -------------------- | :------------: | :------------: | :------------: | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 17.31 | 16.65 | 16.89 | 23.05 | 9.19 | 13.7 | | CodeTrans-ST-Base | 16.86 | 17.17 | 17.16 | 22.98 | 8.23 | 13.17 | | CodeTrans-TF-Small | 19.93 | 19.48 | 18.88 | 25.35 | 13.15 | 17.23 | | CodeTrans-TF-Base | 20.26 | 20.19 | 19.50 | 25.84 | 14.07 | 18.25 | | CodeTrans-TF-Large | 20.35 | 20.06 | **19.54** | 26.18 | 14.94 | **18.98** | | CodeTrans-MT-Small | 19.64 | 19.00 | 19.15 | 24.68 | 14.91 | 15.26 | | CodeTrans-MT-Base | **20.39** | 21.22 | 19.43 | **26.23** | **15.26** | 16.11 | | CodeTrans-MT-Large | 20.18 | **21.87** | 19.38 | 26.08 | 15.00 | 16.23 | | CodeTrans-MT-TF-Small | 19.77 | 20.04 | 19.36 | 25.55 | 13.70 | 17.24 | | CodeTrans-MT-TF-Base | 19.77 | 21.12 | 18.86 | 25.79 | 14.24 | 18.62 | | CodeTrans-MT-TF-Large | 18.94 | 21.42 | 18.77 | 26.20 | 14.19 | 18.83 | | State of the art | 19.06 | 17.65 | 18.07 | 25.16 | 12.16 | 14.90 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_small_code_documentation_generation_go_multitask
8e4a945fbafb96fec0d332908f8df0b47ca78edd
2021-06-23T09:58:38.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_small_code_documentation_generation_go_multitask
3
null
transformers
20,896
--- tags: - summarization widget: - text: "func ( pr * Progress ) needSnapshotAbort ( ) bool { return pr . State == ProgressStateSnapshot && pr . Match >= pr . PendingSnapshot }" --- # CodeTrans model for code documentation generation go Pretrained model on programming language go using the t5 small model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized go code functions: it works best with tokenized go functions. ## Model description This CodeTrans model is based on the `t5-small` model. It has its own SentencePiece vocabulary model. It used multi-task training on 13 supervised tasks in the software development domain and 7 unsupervised datasets. ## Intended uses & limitations The model could be used to generate the description for the go function or be fine-tuned on other go code tasks. It can be used on unparsed and untokenized go code. However, if the go code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate go function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_small_code_documentation_generation_go_multitask"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_small_code_documentation_generation_go_multitask", skip_special_tokens=True), device=0 ) tokenized_code = "func ( pr * Progress ) needSnapshotAbort ( ) bool { return pr . State == ProgressStateSnapshot && pr . Match >= pr . PendingSnapshot }" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/multitask/pre-training/function%20documentation%20generation/go/small_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Multi-task Pretraining The model was trained on a single TPU Pod V3-8 for 340,000 steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Python | Java | Go | Php | Ruby | JavaScript | | -------------------- | :------------: | :------------: | :------------: | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 17.31 | 16.65 | 16.89 | 23.05 | 9.19 | 13.7 | | CodeTrans-ST-Base | 16.86 | 17.17 | 17.16 | 22.98 | 8.23 | 13.17 | | CodeTrans-TF-Small | 19.93 | 19.48 | 18.88 | 25.35 | 13.15 | 17.23 | | CodeTrans-TF-Base | 20.26 | 20.19 | 19.50 | 25.84 | 14.07 | 18.25 | | CodeTrans-TF-Large | 20.35 | 20.06 | **19.54** | 26.18 | 14.94 | **18.98** | | CodeTrans-MT-Small | 19.64 | 19.00 | 19.15 | 24.68 | 14.91 | 15.26 | | CodeTrans-MT-Base | **20.39** | 21.22 | 19.43 | **26.23** | **15.26** | 16.11 | | CodeTrans-MT-Large | 20.18 | **21.87** | 19.38 | 26.08 | 15.00 | 16.23 | | CodeTrans-MT-TF-Small | 19.77 | 20.04 | 19.36 | 25.55 | 13.70 | 17.24 | | CodeTrans-MT-TF-Base | 19.77 | 21.12 | 18.86 | 25.79 | 14.24 | 18.62 | | CodeTrans-MT-TF-Large | 18.94 | 21.42 | 18.77 | 26.20 | 14.19 | 18.83 | | State of the art | 19.06 | 17.65 | 18.07 | 25.16 | 12.16 | 14.90 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_small_code_documentation_generation_go_multitask_finetune
d49587709002787dc76817662e6c61be59058d8f
2021-06-23T09:59:15.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_small_code_documentation_generation_go_multitask_finetune
3
null
transformers
20,897
--- tags: - summarization widget: - text: "func ( pr * Progress ) needSnapshotAbort ( ) bool { return pr . State == ProgressStateSnapshot && pr . Match >= pr . PendingSnapshot }" --- # CodeTrans model for code documentation generation go Pretrained model on programming language go using the t5 small model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized go code functions: it works best with tokenized go functions. ## Model description This CodeTrans model is based on the `t5-small` model. It has its own SentencePiece vocabulary model. It used multi-task training on 13 supervised tasks in the software development domain and 7 unsupervised datasets. It is then fine-tuned on the code documentation generation task for the go function/method. ## Intended uses & limitations The model could be used to generate the description for the go function or be fine-tuned on other go code tasks. It can be used on unparsed and untokenized go code. However, if the go code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate go function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_small_code_documentation_generation_go_multitask_finetune"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_small_code_documentation_generation_go_multitask_finetune", skip_special_tokens=True), device=0 ) tokenized_code = "func ( pr * Progress ) needSnapshotAbort ( ) bool { return pr . State == ProgressStateSnapshot && pr . Match >= pr . PendingSnapshot }" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/multitask/fine-tuning/function%20documentation%20generation/go/small_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Multi-task Pretraining The model was trained on a single TPU Pod V3-8 for half million steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Fine-tuning This model was then fine-tuned on a single TPU Pod V2-8 for 2000 steps in total, using sequence length 512 (batch size 256), using only the dataset only containing go code. ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Python | Java | Go | Php | Ruby | JavaScript | | -------------------- | :------------: | :------------: | :------------: | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 17.31 | 16.65 | 16.89 | 23.05 | 9.19 | 13.7 | | CodeTrans-ST-Base | 16.86 | 17.17 | 17.16 | 22.98 | 8.23 | 13.17 | | CodeTrans-TF-Small | 19.93 | 19.48 | 18.88 | 25.35 | 13.15 | 17.23 | | CodeTrans-TF-Base | 20.26 | 20.19 | 19.50 | 25.84 | 14.07 | 18.25 | | CodeTrans-TF-Large | 20.35 | 20.06 | **19.54** | 26.18 | 14.94 | **18.98** | | CodeTrans-MT-Small | 19.64 | 19.00 | 19.15 | 24.68 | 14.91 | 15.26 | | CodeTrans-MT-Base | **20.39** | 21.22 | 19.43 | **26.23** | **15.26** | 16.11 | | CodeTrans-MT-Large | 20.18 | **21.87** | 19.38 | 26.08 | 15.00 | 16.23 | | CodeTrans-MT-TF-Small | 19.77 | 20.04 | 19.36 | 25.55 | 13.70 | 17.24 | | CodeTrans-MT-TF-Base | 19.77 | 21.12 | 18.86 | 25.79 | 14.24 | 18.62 | | CodeTrans-MT-TF-Large | 18.94 | 21.42 | 18.77 | 26.20 | 14.19 | 18.83 | | State of the art | 19.06 | 17.65 | 18.07 | 25.16 | 12.16 | 14.90 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_small_code_documentation_generation_java_multitask
5e45152fd1e653050fb4d60c9784c71c84923cdc
2021-06-23T10:01:01.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_small_code_documentation_generation_java_multitask
3
null
transformers
20,898
--- tags: - summarization widget: - text: "public static < T , U > Function < T , U > castFunction ( Class < U > target ) { return new CastToClass < T , U > ( target ) ; }" --- # CodeTrans model for code documentation generation java Pretrained model on programming language java using the t5 small model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized java code functions: it works best with tokenized java functions. ## Model description This CodeTrans model is based on the `t5-small` model. It has its own SentencePiece vocabulary model. It used multi-task training on 13 supervised tasks in the software development domain and 7 unsupervised datasets. ## Intended uses & limitations The model could be used to generate the description for the java function or be fine-tuned on other java code tasks. It can be used on unparsed and untokenized java code. However, if the java code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate java function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_small_code_documentation_generation_java_multitask"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_small_code_documentation_generation_java_multitask", skip_special_tokens=True), device=0 ) tokenized_code = "public static < T , U > Function < T , U > castFunction ( Class < U > target ) { return new CastToClass < T , U > ( target ) ; }" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/multitask/pre-training/function%20documentation%20generation/java/small_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Multi-task Pretraining The model was trained on a single TPU Pod V3-8 for 400,000 steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Python | Java | Go | Php | Ruby | JavaScript | | -------------------- | :------------: | :------------: | :------------: | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 17.31 | 16.65 | 16.89 | 23.05 | 9.19 | 13.7 | | CodeTrans-ST-Base | 16.86 | 17.17 | 17.16 | 22.98 | 8.23 | 13.17 | | CodeTrans-TF-Small | 19.93 | 19.48 | 18.88 | 25.35 | 13.15 | 17.23 | | CodeTrans-TF-Base | 20.26 | 20.19 | 19.50 | 25.84 | 14.07 | 18.25 | | CodeTrans-TF-Large | 20.35 | 20.06 | **19.54** | 26.18 | 14.94 | **18.98** | | CodeTrans-MT-Small | 19.64 | 19.00 | 19.15 | 24.68 | 14.91 | 15.26 | | CodeTrans-MT-Base | **20.39** | 21.22 | 19.43 | **26.23** | **15.26** | 16.11 | | CodeTrans-MT-Large | 20.18 | **21.87** | 19.38 | 26.08 | 15.00 | 16.23 | | CodeTrans-MT-TF-Small | 19.77 | 20.04 | 19.36 | 25.55 | 13.70 | 17.24 | | CodeTrans-MT-TF-Base | 19.77 | 21.12 | 18.86 | 25.79 | 14.24 | 18.62 | | CodeTrans-MT-TF-Large | 18.94 | 21.42 | 18.77 | 26.20 | 14.19 | 18.83 | | State of the art | 19.06 | 17.65 | 18.07 | 25.16 | 12.16 | 14.90 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_small_code_documentation_generation_python_multitask
187b99d79cb16ec06fe92fd2db804b699cc8d73d
2021-06-23T10:10:08.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_small_code_documentation_generation_python_multitask
3
null
transformers
20,899
--- tags: - summarization widget: - text: "def e ( message , exit_code = None ) : print_log ( message , YELLOW , BOLD ) if exit_code is not None : sys . exit ( exit_code )" --- # CodeTrans model for code documentation generation python Pretrained model on programming language python using the t5 small model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized python code functions: it works best with tokenized python functions. ## Model description This CodeTrans model is based on the `t5-small` model. It has its own SentencePiece vocabulary model. It used multi-task training on 13 supervised tasks in the software development domain and 7 unsupervised datasets. ## Intended uses & limitations The model could be used to generate the description for the python function or be fine-tuned on other python code tasks. It can be used on unparsed and untokenized python code. However, if the python code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate python function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_small_code_documentation_generation_python_multitask"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_small_code_documentation_generation_python_multitask", skip_special_tokens=True), device=0 ) tokenized_code = "def e ( message , exit_code = None ) : print_log ( message , YELLOW , BOLD ) if exit_code is not None : sys . exit ( exit_code )" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/multitask/pre-training/function%20documentation%20generation/python/small_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Multi-task Pretraining The model was trained on a single TPU Pod V3-8 for 420,000 steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Python | Java | Go | Php | Ruby | JavaScript | | -------------------- | :------------: | :------------: | :------------: | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 17.31 | 16.65 | 16.89 | 23.05 | 9.19 | 13.7 | | CodeTrans-ST-Base | 16.86 | 17.17 | 17.16 | 22.98 | 8.23 | 13.17 | | CodeTrans-TF-Small | 19.93 | 19.48 | 18.88 | 25.35 | 13.15 | 17.23 | | CodeTrans-TF-Base | 20.26 | 20.19 | 19.50 | 25.84 | 14.07 | 18.25 | | CodeTrans-TF-Large | 20.35 | 20.06 | **19.54** | 26.18 | 14.94 | **18.98** | | CodeTrans-MT-Small | 19.64 | 19.00 | 19.15 | 24.68 | 14.91 | 15.26 | | CodeTrans-MT-Base | **20.39** | 21.22 | 19.43 | **26.23** | **15.26** | 16.11 | | CodeTrans-MT-Large | 20.18 | **21.87** | 19.38 | 26.08 | 15.00 | 16.23 | | CodeTrans-MT-TF-Small | 19.77 | 20.04 | 19.36 | 25.55 | 13.70 | 17.24 | | CodeTrans-MT-TF-Base | 19.77 | 21.12 | 18.86 | 25.79 | 14.24 | 18.62 | | CodeTrans-MT-TF-Large | 18.94 | 21.42 | 18.77 | 26.20 | 14.19 | 18.83 | | State of the art | 19.06 | 17.65 | 18.07 | 25.16 | 12.16 | 14.90 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)