modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
SEBIS/code_trans_t5_small_source_code_summarization_python_transfer_learning_finetune
e32f9bcbdb19d8e2149fba183b38f5b7c9462ae0
2021-06-23T10:23:41.000Z
[ "pytorch", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_small_source_code_summarization_python_transfer_learning_finetune
3
null
transformers
20,900
--- tags: - summarization widget: - text: '''with open ( CODE_STRING , CODE_STRING ) as in_file : buf = in_file . readlines ( ) with open ( CODE_STRING , CODE_STRING ) as out_file : for line in buf : if line == " ; Include this text " : line = line + " Include below " out_file . write ( line ) ''' --- # CodeTrans model for source code summarization python Pretrained model on programming language python using the t5 small model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized python code functions: it works best with tokenized python functions. ## Model description This CodeTrans model is based on the `t5-small` model. It has its own SentencePiece vocabulary model. It used transfer-learning pre-training on 7 unsupervised datasets in the software development domain. It is then fine-tuned on the source code summarization task for the python code snippets. ## Intended uses & limitations The model could be used to generate the description for the python function or be fine-tuned on other python code tasks. It can be used on unparsed and untokenized python code. However, if the python code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate python function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_small_source_code_summarization_python_transfer_learning_finetune"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_small_source_code_summarization_python_transfer_learning_finetune", skip_special_tokens=True), device=0 ) tokenized_code = '''with open ( CODE_STRING , CODE_STRING ) as in_file : buf = in_file . readlines ( ) with open ( CODE_STRING , CODE_STRING ) as out_file : for line in buf : if line == " ; Include this text " : line = line + " Include below " out_file . write ( line ) ''' pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/transfer%20learning%20fine-tuning/source%20code%20summarization/python/small_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Transfer-learning Pretraining The model was trained on a single TPU Pod V3-8 for 500,000 steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Fine-tuning This model was then fine-tuned on a single TPU Pod V2-8 for 5000 steps in total, using sequence length 512 (batch size 256), using only the dataset only containing python code. ## Evaluation results For the source code summarization tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Python | SQL | C# | | -------------------- | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 8.45 | 17.55 | 19.74 | | CodeTrans-ST-Base | 9.12 | 15.00 | 18.65 | | CodeTrans-TF-Small | 10.06 | 17.71 | 20.40 | | CodeTrans-TF-Base | 10.94 | 17.66 | 21.12 | | CodeTrans-TF-Large | 12.41 | 18.40 | 21.43 | | CodeTrans-MT-Small | 13.11 | 19.15 | 22.39 | | CodeTrans-MT-Base | **13.37** | 19.24 | 23.20 | | CodeTrans-MT-Large | 13.24 | 19.40 | **23.57** | | CodeTrans-MT-TF-Small | 12.10 | 18.25 | 22.03 | | CodeTrans-MT-TF-Base | 10.64 | 16.91 | 21.40 | | CodeTrans-MT-TF-Large | 12.14 | **19.98** | 21.10 | | CODE-NN | -- | 18.40 | 20.50 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/legal_t5_small_cls_de
1ed62966ab5a9f5e2d202577314af33e58bf931b
2021-06-23T10:27:59.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "Deustch", "dataset:jrc-acquis", "transformers", "classification Deustch model", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_cls_de
3
null
transformers
20,901
--- language: Deustch tags: - classification Deustch model datasets: - jrc-acquis widget: - text: "BESCHLUSS DES RATES vom 17. Dezember 1999 über den Abschluß des Abkommens in Form eines Briefwechsels zwischen der Europäischen Gemeinschaft und der Tunesischen Republik über die Regelung für die Einfuhr von nicht behandeltem Olivenöl mit Ursprung in Tunesien in die Gemeinschaft (1999/873/EG) DER RAT DER EUROPÄISCHEN UNION - gestützt auf den Vertrag zur Gründung der Europäischen Gemeinschaft, insbesondere auf Artikel 133 in Verbindung mit Artikel 300 Absatz 2 Unterabsatz 1, auf Vorschlag der Kommission, in Erwägung nachstehender Gründe: (1) Zwischen der Europäischen Gemeinschaft und der Tunesischen Republik wurde ein Abkommen in Form eines Briefwechsels ausgehandelt, um die Geltungsdauer der Regelung für die Einfuhr von nicht behandeltem Olivenöl mit Ursprung in Tunesien in die Gemeinschaft, die in Artikel 3 des Protokolls Nr. 1 des Europa-Mittelmeer-Abkommens zur Gründung einer Assoziation zwischen der Europäischen Gemeinschaft und ihren Mitgliedstaaten einerseits und der Tunesischen Republik andererseits(1) vorgesehen ist, für die Zeit vom 1. Januar bis zum 31. Dezember 2000 zu verlängern. (2) Das Abkommen sollte im Namen der Gemeinschaft genehmigt werden - BESCHLIESST: Artikel 1 Das Abkommen in Form eines Briefwechsels zwischen der Europäischen Gemeinschaft und der Tunesischen Republik über die Regelung für die Einfuhr von nicht behandeltem Olivenöl mit Ursprung in Tunesien in die Gemeinschaft wird im Namen der Gemeinschaft genehmigt. Der Wortlaut des Abkommens ist diesem Beschluß beigefügt. Artikel 2 Der Präsident des Rates wird ermächtigt, die Person zu bestellen, die befugt ist, das Abkommen rechtsverbindlich für die Gemeinschaft zu unterzeichnen. Geschehen zu Brüssel am 17. Dezember 1999. Im Namen des Rates Der Präsident K. HEMILÄ (1) ABl. L 97 vom 30.3.1998, S. 1." --- # legal_t5_small_cls_de model Model for classification of legal text written in Deustch. It was first released in [this repository](https://github.com/agemagician/LegalTrans). This model is trained on three parallel corpus from jrc-acquis. ## Model description legal_t5_small_cls_de is based on the `t5-small` model and was trained on a large corpus of parallel text. This is a smaller model, which scales the baseline model of t5 down by using `dmodel = 512`, `dff = 2,048`, 8-headed attention, and only 6 layers each in the encoder and decoder. This variant has about 60 million parameters. ## Intended uses & limitations The model could be used for classification of legal texts written in Deustch. ### How to use Here is how to use this model to classify legal text written in Deustch in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_cls_de"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_cls_de", do_lower_case=False, skip_special_tokens=True), device=0 ) de_text = "BESCHLUSS DES RATES vom 17. Dezember 1999 über den Abschluß des Abkommens in Form eines Briefwechsels zwischen der Europäischen Gemeinschaft und der Tunesischen Republik über die Regelung für die Einfuhr von nicht behandeltem Olivenöl mit Ursprung in Tunesien in die Gemeinschaft (1999/873/EG) DER RAT DER EUROPÄISCHEN UNION - gestützt auf den Vertrag zur Gründung der Europäischen Gemeinschaft, insbesondere auf Artikel 133 in Verbindung mit Artikel 300 Absatz 2 Unterabsatz 1, auf Vorschlag der Kommission, in Erwägung nachstehender Gründe: (1) Zwischen der Europäischen Gemeinschaft und der Tunesischen Republik wurde ein Abkommen in Form eines Briefwechsels ausgehandelt, um die Geltungsdauer der Regelung für die Einfuhr von nicht behandeltem Olivenöl mit Ursprung in Tunesien in die Gemeinschaft, die in Artikel 3 des Protokolls Nr. 1 des Europa-Mittelmeer-Abkommens zur Gründung einer Assoziation zwischen der Europäischen Gemeinschaft und ihren Mitgliedstaaten einerseits und der Tunesischen Republik andererseits(1) vorgesehen ist, für die Zeit vom 1. Januar bis zum 31. Dezember 2000 zu verlängern. (2) Das Abkommen sollte im Namen der Gemeinschaft genehmigt werden - BESCHLIESST: Artikel 1 Das Abkommen in Form eines Briefwechsels zwischen der Europäischen Gemeinschaft und der Tunesischen Republik über die Regelung für die Einfuhr von nicht behandeltem Olivenöl mit Ursprung in Tunesien in die Gemeinschaft wird im Namen der Gemeinschaft genehmigt. Der Wortlaut des Abkommens ist diesem Beschluß beigefügt. Artikel 2 Der Präsident des Rates wird ermächtigt, die Person zu bestellen, die befugt ist, das Abkommen rechtsverbindlich für die Gemeinschaft zu unterzeichnen. Geschehen zu Brüssel am 17. Dezember 1999. Im Namen des Rates Der Präsident K. HEMILÄ (1) ABl. L 97 vom 30.3.1998, S. 1." pipeline([de_text], max_length=512) ``` ## Training data The legal_t5_small_cls_de model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html) dataset consisting of 23 Thousand texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 64). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining ## Evaluation results When the model is used for classification test dataset, achieves the following results: Test results : | Model | F1 score | |:-----:|:-----:| | legal_t5_small_cls_de | 0.6358| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SEBIS/legal_t5_small_multitask_cs_en
5862e5d39b43934a3dd1ec45ea1d9fbfb067e390
2021-06-23T10:51:17.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "Cszech English", "dataset:dcep europarl jrc-acquis", "transformers", "translation Cszech English model", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_multitask_cs_en
3
null
transformers
20,902
--- language: Cszech English tags: - translation Cszech English model datasets: - dcep europarl jrc-acquis widget: - text: "Komise musí vypracovat zprávu o hodnotících zprávách týkajících se uplatňování této směrnice v členských státech." --- # legal_t5_small_multitask_cs_en model Model on translating legal text from Cszech to English. It was first released in [this repository](https://github.com/agemagician/LegalTrans). The model is parallely trained on the three parallel corpus with 42 language pair from jrc-acquis, europarl and dcep along with the unsupervised task where the model followed the task of prediction in a masked language model. ## Model description No pretraining is involved in case of legal_t5_small_multitask_cs_en model, rather the unsupervised task is added with all the translation task to realize the multitask learning scenario. ## Intended uses & limitations The model could be used for translation of legal texts from Cszech to English. ### How to use Here is how to use this model to translate legal text from Cszech to English in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_multitask_cs_en"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_multitask_cs_en", do_lower_case=False, skip_special_tokens=True), device=0 ) cs_text = "Komise musí vypracovat zprávu o hodnotících zprávách týkajících se uplatňování této směrnice v členských státech." pipeline([cs_text], max_length=512) ``` ## Training data The legal_t5_small_multitask_cs_en model (the supervised task which involved only the corresponding langauge pair and as well as unsupervised task where all of the data of all language pairs were available) model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 5 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_multitask_cs_en | 37.136| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SEBIS/legal_t5_small_multitask_de_sv
3c4ecb1d9bdfc9d292837b90cd8042c2af92da58
2021-06-23T10:56:56.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "Deustch Swedish", "dataset:dcep europarl jrc-acquis", "transformers", "translation Deustch Swedish model", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_multitask_de_sv
3
null
transformers
20,903
--- language: Deustch Swedish tags: - translation Deustch Swedish model datasets: - dcep europarl jrc-acquis widget: - text: "SCHRIFTLICHE ANFRAGE P-1584/03" --- # legal_t5_small_multitask_de_sv model Model on translating legal text from Deustch to Swedish. It was first released in [this repository](https://github.com/agemagician/LegalTrans). The model is parallely trained on the three parallel corpus with 42 language pair from jrc-acquis, europarl and dcep along with the unsupervised task where the model followed the task of prediction in a masked language model. ## Model description No pretraining is involved in case of legal_t5_small_multitask_de_sv model, rather the unsupervised task is added with all the translation task to realize the multitask learning scenario. ## Intended uses & limitations The model could be used for translation of legal texts from Deustch to Swedish. ### How to use Here is how to use this model to translate legal text from Deustch to Swedish in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_multitask_de_sv"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_multitask_de_sv", do_lower_case=False, skip_special_tokens=True), device=0 ) de_text = "SCHRIFTLICHE ANFRAGE P-1584/03" pipeline([de_text], max_length=512) ``` ## Training data The legal_t5_small_multitask_de_sv model (the supervised task which involved only the corresponding langauge pair and as well as unsupervised task where all of the data of all language pairs were available) model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 8 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_multitask_de_sv | 35.945| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SEBIS/legal_t5_small_multitask_fr_de
788fde3bfde790c0a5f3869a45e99da440063c3c
2021-06-23T11:09:30.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_multitask_fr_de
3
null
transformers
20,904
Entry not found
SEBIS/legal_t5_small_multitask_fr_sv
85f84277d5a941b720f65405e612c8b1893059fa
2021-06-23T11:12:04.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "French Swedish", "dataset:dcep europarl jrc-acquis", "transformers", "translation French Swedish model", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_multitask_fr_sv
3
null
transformers
20,905
--- language: French Swedish tags: - translation French Swedish model datasets: - dcep europarl jrc-acquis widget: - text: "**I Procédure de coopération (première lecture)" --- # legal_t5_small_multitask_fr_sv model Model on translating legal text from French to Swedish. It was first released in [this repository](https://github.com/agemagician/LegalTrans). The model is parallely trained on the three parallel corpus with 42 language pair from jrc-acquis, europarl and dcep along with the unsupervised task where the model followed the task of prediction in a masked language model. ## Model description No pretraining is involved in case of legal_t5_small_multitask_fr_sv model, rather the unsupervised task is added with all the translation task to realize the multitask learning scenario. ## Intended uses & limitations The model could be used for translation of legal texts from French to Swedish. ### How to use Here is how to use this model to translate legal text from French to Swedish in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_multitask_fr_sv"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_multitask_fr_sv", do_lower_case=False, skip_special_tokens=True), device=0 ) fr_text = "**I Procédure de coopération (première lecture)" pipeline([fr_text], max_length=512) ``` ## Training data The legal_t5_small_multitask_fr_sv model (the supervised task which involved only the corresponding langauge pair and as well as unsupervised task where all of the data of all language pairs were available) model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 8 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_multitask_fr_sv | 39.947| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SEBIS/legal_t5_small_multitask_sv_en
d2e7048fad0dd360ef45b7da347878504dec4fa3
2021-06-23T11:18:13.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "Swedish English", "dataset:dcep europarl jrc-acquis", "transformers", "translation Swedish English model", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_multitask_sv_en
3
null
transformers
20,906
--- language: Swedish English tags: - translation Swedish English model datasets: - dcep europarl jrc-acquis widget: - text: "inlämnat av följande ledamöter:" --- # legal_t5_small_multitask_sv_en model Model on translating legal text from Swedish to English. It was first released in [this repository](https://github.com/agemagician/LegalTrans). The model is parallely trained on the three parallel corpus with 42 language pair from jrc-acquis, europarl and dcep along with the unsupervised task where the model followed the task of prediction in a masked language model. ## Model description No pretraining is involved in case of legal_t5_small_multitask_sv_en model, rather the unsupervised task is added with all the translation task to realize the multitask learning scenario. ## Intended uses & limitations The model could be used for translation of legal texts from Swedish to English. ### How to use Here is how to use this model to translate legal text from Swedish to English in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_multitask_sv_en"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_multitask_sv_en", do_lower_case=False, skip_special_tokens=True), device=0 ) sv_text = "inlämnat av följande ledamöter:" pipeline([sv_text], max_length=512) ``` ## Training data The legal_t5_small_multitask_sv_en model (the supervised task which involved only the corresponding langauge pair and as well as unsupervised task where all of the data of all language pairs were available) model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 9 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_multitask_sv_en | 36.195| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SEBIS/legal_t5_small_summ_cs
a89f83bc050971dd1bcb65b17731a92a7ece5d1c
2021-06-23T11:20:42.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "Cszech", "dataset:jrc-acquis", "transformers", "summarization Cszech model", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_summ_cs
3
null
transformers
20,907
--- language: Cszech tags: - summarization Cszech model datasets: - jrc-acquis widget: - text: "(2006/C 67/15) (Text s významem pro EHP) Dne 10. března 2006 se Komise rozhodla nevznést námitky proti výše uvedenému spojení a prohlásit ho za slučitelné se společným trhem. Toto rozhodnutí je založeno na čl. 6 odst. 1 písm. b) nařízení Rady (ES) č. 139/2004. Celý text rozhodnutí je přístupný pouze v angličtině a bude uveřejněn poté, co bude zbaven obchodního tajemství, které může případně obsahovat. Text bude dosažitelný: - na webové stránce Europa – hospodářská soutěž (http://europa.eu.int/comm/competition/mergers/cases/). Tato webová stránka umožňuje vyhledat jednotlivá rozhodnutí o spojení, a to včetně společnosti, čísla případu, data a indexu odvětví hospodářství. - v elektronické podobě na webové stránce EUR-Lex, pod dokumentem č. 32006M4093. EUR-Lex umožňuje přístup k Evropskému právu přes Internet. (http://europa.eu.int/eur-lex/lex) -------------------------------------------------- " --- # legal_t5_small_summ_cs model Model for Summarization of legal text written in Cszech. It was first released in [this repository](https://github.com/agemagician/LegalTrans). This model is trained on three parallel corpus from jrc-acquis. ## Model description legal_t5_small_summ_cs is based on the `t5-small` model and was trained on a large corpus of parallel text. This is a smaller model, which scales the baseline model of t5 down by using `dmodel = 512`, `dff = 2,048`, 8-headed attention, and only 6 layers each in the encoder and decoder. This variant has about 60 million parameters. ## Intended uses & limitations The model could be used for summarization of legal texts written in Cszech. ### How to use Here is how to use this model to summarize legal text written in Cszech in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_summ_cs"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_summ_cs", do_lower_case=False, skip_special_tokens=True), device=0 ) cs_text = "(2006/C 67/15) (Text s významem pro EHP) Dne 10. března 2006 se Komise rozhodla nevznést námitky proti výše uvedenému spojení a prohlásit ho za slučitelné se společným trhem. Toto rozhodnutí je založeno na čl. 6 odst. 1 písm. b) nařízení Rady (ES) č. 139/2004. Celý text rozhodnutí je přístupný pouze v angličtině a bude uveřejněn poté, co bude zbaven obchodního tajemství, které může případně obsahovat. Text bude dosažitelný: - na webové stránce Europa – hospodářská soutěž (http://europa.eu.int/comm/competition/mergers/cases/). Tato webová stránka umožňuje vyhledat jednotlivá rozhodnutí o spojení, a to včetně společnosti, čísla případu, data a indexu odvětví hospodářství. - v elektronické podobě na webové stránce EUR-Lex, pod dokumentem č. 32006M4093. EUR-Lex umožňuje přístup k Evropskému právu přes Internet. (http://europa.eu.int/eur-lex/lex) -------------------------------------------------- " pipeline([cs_text], max_length=512) ``` ## Training data The legal_t5_small_summ_cs model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html) dataset consisting of 18 Thousand texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 64). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining ## Evaluation results When the model is used for classification test dataset, achieves the following results: Test results : | Model | Rouge1 | Rouge2 | Rouge Lsum | |:-----:|:-----:|:-----:|:-----:| | legal_t5_small_summ_cs | 75.86|65.82 |74.95| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SEBIS/legal_t5_small_summ_fr
3b192ad3344dc58279b327c1302b31eed9bf4236
2021-06-23T11:23:07.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "French", "dataset:jrc-acquis", "transformers", "summarization French model", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_summ_fr
3
null
transformers
20,908
--- language: French tags: - summarization French model datasets: - jrc-acquis widget: - text: "LA COMMISSION DES COMMUNAUTÉS EUROPÉENNES, vu le traité instituant la Communauté européenne, vu le règlement (CE) no 1784/2003 du Conseil du 29 septembre 2003 portant organisation commune des marchés dans le secteur des céréales [1], et notamment son article 13, paragraphe 3, vu le règlement (CE) no 1785/2003 du Conseil du 29 septembre 2003 portant organisation commune du marché du riz [2], et notamment son article 14, paragraphe 3, considérant ce qui suit: (1) Conformément à l'article 13, paragraphe 1, du règlement (CE) no 1784/2003 et à l'article 14, paragraphe 1, du règlement (CE) no 1785/2003, la différence entre les cours ou les prix sur le marché mondial des produits visés à l'article 1er de chacun de ces deux règlements et les prix dans la Communauté peut être couverte par une restitution à l'exportation. (2) Le règlement (CE) no 1043/2005 de la Commission du 30 juin 2005 portant application du règlement (CE) no 3448/93 du Conseil en ce qui concerne le système d’octroi des restitutions à l'exportation pour certains produits agricoles exportés sous forme de marchandises ne relevant pas de l'annexe I du traité ainsi que les critères de fixation de leurs montants [3] a spécifié ceux de ces produits pour lesquels il y a lieu de fixer un taux de restitution applicable lors de leur exportation sous forme de marchandises reprises, selon le cas, à l'annexe III du règlement (CE) no 1784/2003 ou à l'annexe IV du règlement (CE) no 1785/2003. (3) Conformément à l'article 14, paragraphe 1, du règlement (CE) no 1043/2005, le taux de la restitution par 100 kilogrammes de chacun des produits de base considérés doit être fixé chaque mois. (4) Les engagements pris en matière de restitutions pouvant être octroyées à l'exportation de produits agricoles incorporés dans des marchandises ne relevant pas de l'annexe I du traité peuvent être mis en péril par la fixation à l'avance de taux de restitution élevés. Il convient, dès lors, de prendre des mesures de sauvegarde dans ces situations sans empêcher pour autant la conclusion de contrats à long terme. La fixation d'un taux de restitution spécifique pour la fixation à l'avance des restitutions est une mesure permettant de rencontrer ces différents objectifs. (5) À la suite de l'arrangement entre la Communauté européenne et les États-Unis d'Amérique concernant les exportations de pâtes alimentaires de la Communauté aux États-Unis approuvé par la décision 87/482/CEE du Conseil [4], il est nécessaire de différencier la restitution pour les marchandises relevant des codes NC 19021100 et 190219 selon leur destination. (6) Conformément à l'article 15, paragraphes 2 et 3, du règlement (CE) no 1043/2005, il y a lieu de fixer un taux de restitution à l'exportation réduit, compte tenu du montant de la restitution à la production applicable, en vertu du règlement (CEE) no 1722/93 de la Commission [5], au produit de base mis en œuvre, valable au cours de la période présumée de fabrication des marchandises. (7) Les boissons spiritueuses sont considérées comme moins sensibles au prix des céréales mises en œuvre pour leur fabrication. Toutefois, le protocole 19 du traité d'adhésion du Royaume-Uni, de l'Irlande et du Danemark prévoit que des mesures nécessaires doivent être arrêtées afin de faciliter l'utilisation des céréales communautaires pour la fabrication de boissons spiritueuses obtenues à partir de céréales. Il convient donc d'adapter le taux de restitution applicable aux céréales exportées sous forme de boissons spiritueuses. (8) Le comité de gestion des céréales n'a pas émis d'avis dans le délai imparti par son président, A ARRÊTÉ LE PRÉSENT RÈGLEMENT: Article premier Les taux des restitutions applicables aux produits de base figurant à l'annexe I du règlement (CE) no 1043/2005 et à l'article 1er du règlement (CE) no 1784/2003 ou à l'article 1er du règlement (CE) no 1785/2003 modifié, qui sont exportés sous forme de marchandises reprises respectivement à l'annexe III du règlement (CE) no 1784/2003 ou à l'annexe IV du règlement (CE) no 1785/2003, sont fixés comme indiqué à l'annexe du présent règlement. Article 2 Le présent règlement entre en vigueur le 23 septembre 2005. Le présent règlement est obligatoire dans tous ses éléments et directement applicable dans tout État membre. Fait à Bruxelles, le 22 septembre 2005. Par la Commission Günter Verheugen Vice-président [1] JO L 270 du 21.10.2003, p. 78. [2] JO L 270 du 21.10.2003, p. 96. [3] JO L 172 du 5.7.2005, p. 24. [4] JO L 275 du 29.9.1987, p. 36. [5] JO L 159 du 1.7.1993, p. 112. Règlement modifié en dernier lieu par le règlement (CE) no 1584/2004 (JO L 280 du 31.8.2004, p. 11). -------------------------------------------------- ANNEXE Taux des restitutions applicables à compter du 23 septembre 2005 à certains produits des secteurs des céréales et du riz exportés sous forme de marchandises ne relevant pas de l'annexe I du traité [1] (en EUR/100 kg) | Code NC | Désignation des marchandises | Taux de la restitution par 100 kg du produit de base | En cas de fixation à l'avance des restitutions | Autres | 10011000 | Froment (blé) dur: | | | – en cas d'exportation de marchandises relevant des codes NC 190211 et 190219 vers les États-Unis d'Amérique | — | — | – dans les autres cas | — | — | 10019099 | Froment (blé) tendre et méteil: | | | – en cas d'exportation de marchandises relevant des codes NC 190211 et 190219 vers les États-Unis d'Amérique | — | — | – dans les autres cas: | | | – – en cas d'application de l'article 15, paragraphe 3, du règlement (CE) no 1043/2005 | — | — | – – en cas d'exportation de marchandises relevant du sous-chapitre 2208 | — | — | – – dans les autres cas | — | — | 10020000 | Seigle | — | — | 10030090 | Orge | | | – en cas d'exportation de marchandises relevant du sous-chapitre 2208 | — | — | – dans les autres cas | — | — | 10040000 | Avoine | — | — | 10059000 | Maïs, mis en œuvre sous forme de: | | | – amidon: | | | – – en cas d'application de l'article 15, paragraphe 3, du règlement (CE) no 1043/2005 | 2,994 | 3,150 | – – en cas d'exportation de marchandises relevant du sous-chapitre 2208 | 2,368 | 2,368 | – – dans les autres cas | 4,615 | 4,615 | – glucose, sirop de glucose, maltodextrine, sirop de maltodextrine des codes NC 17023051, 17023059, 17023091, 17023099, 17024090, 17029050, 17029075, 17029079, 21069055: | | | – – en cas d'application de l'article 15, paragraphe 3, du règlement (CE) no 1043/2005 | 1,840 | 1,996 | – – en cas d'exportation de marchandises relevant du sous-chapitre 2208 | 1,776 | 1,776 | – – dans les autres cas | 3,461 | 3,461 | – en cas d'exportation de marchandises relevant du sous-chapitre 2208 | 2,368 | 2,368 | – autres (y compris en l'état) | 4,615 | 4,615 | Fécule de pommes de terre du code NC 11081300 assimilée à un produit issu de la transformation du maïs: | | | – en cas d'application de l'article 15, paragraphe 3, du règlement (CE) no 1043/2005 | 2,435 | 2,585 | – en cas d'exportation de marchandises relevant du sous-chapitre 2208 | 2,368 | 2,368 | – dans les autres cas | 4,615 | 4,615 | ex100630 | Riz blanchi: | | | – à grains ronds | — | — | – à grains moyens | — | — | – à grains longs | — | — | 10064000 | Riz en brisures | — | — | 10070090 | Sorgho à grains (à l'excl. du sorgho à grains, hybride, destiné à l'ensemencement) | — | — | [1] Les taux prévus à la présente annexe ne s’appliquent pas avec effet au 1er octobre 2004 aux exportations vers la Bulgarie et avec effet au 1er février 2005 aux marchandises visées aux tableaux I et II du Protocole no 2 de l’Accord entre la Communauté économique européenne et la Confédération suisse du 22 juillet 1972 qui sont exportées vers la Confédération suisse ou la principauté de Liechtenstein. [2] En ce qui concerne les produits agricoles obtenus par transformation d’un produit de base et/ou de produits assimilés, les coefficients fixés à l’annexe V du règlement (CE) no 1043/2005 de la Commission s’appliquent. [3] La marchandise concernée relève du code NC 35051050. [4] Marchandises reprises à l'annexe III du règlement (CE) no 1784/2003 ou visées à l'article 2 du règlement (CEE) no 2825/93 (JO L 258 du 16.10.1993, p. 6). [5] Pour les sirops des codes NC 17023099, 17024090 et 17026090, obtenus par mélange de sirops de glucose et fructose, seul le sirop de glucose a droit à la restitution à l'exportation. -------------------------------------------------- " --- # legal_t5_small_summ_fr model Model for Summarization of legal text written in French. It was first released in [this repository](https://github.com/agemagician/LegalTrans). This model is trained on three parallel corpus from jrc-acquis. ## Model description legal_t5_small_summ_fr is based on the `t5-small` model and was trained on a large corpus of parallel text. This is a smaller model, which scales the baseline model of t5 down by using `dmodel = 512`, `dff = 2,048`, 8-headed attention, and only 6 layers each in the encoder and decoder. This variant has about 60 million parameters. ## Intended uses & limitations The model could be used for summarization of legal texts written in French. ### How to use Here is how to use this model to summarize legal text written in French in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_summ_fr"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_summ_fr", do_lower_case=False, skip_special_tokens=True), device=0 ) fr_text = "LA COMMISSION DES COMMUNAUTÉS EUROPÉENNES, vu le traité instituant la Communauté européenne, vu le règlement (CE) no 1784/2003 du Conseil du 29 septembre 2003 portant organisation commune des marchés dans le secteur des céréales [1], et notamment son article 13, paragraphe 3, vu le règlement (CE) no 1785/2003 du Conseil du 29 septembre 2003 portant organisation commune du marché du riz [2], et notamment son article 14, paragraphe 3, considérant ce qui suit: (1) Conformément à l'article 13, paragraphe 1, du règlement (CE) no 1784/2003 et à l'article 14, paragraphe 1, du règlement (CE) no 1785/2003, la différence entre les cours ou les prix sur le marché mondial des produits visés à l'article 1er de chacun de ces deux règlements et les prix dans la Communauté peut être couverte par une restitution à l'exportation. (2) Le règlement (CE) no 1043/2005 de la Commission du 30 juin 2005 portant application du règlement (CE) no 3448/93 du Conseil en ce qui concerne le système d’octroi des restitutions à l'exportation pour certains produits agricoles exportés sous forme de marchandises ne relevant pas de l'annexe I du traité ainsi que les critères de fixation de leurs montants [3] a spécifié ceux de ces produits pour lesquels il y a lieu de fixer un taux de restitution applicable lors de leur exportation sous forme de marchandises reprises, selon le cas, à l'annexe III du règlement (CE) no 1784/2003 ou à l'annexe IV du règlement (CE) no 1785/2003. (3) Conformément à l'article 14, paragraphe 1, du règlement (CE) no 1043/2005, le taux de la restitution par 100 kilogrammes de chacun des produits de base considérés doit être fixé chaque mois. (4) Les engagements pris en matière de restitutions pouvant être octroyées à l'exportation de produits agricoles incorporés dans des marchandises ne relevant pas de l'annexe I du traité peuvent être mis en péril par la fixation à l'avance de taux de restitution élevés. Il convient, dès lors, de prendre des mesures de sauvegarde dans ces situations sans empêcher pour autant la conclusion de contrats à long terme. La fixation d'un taux de restitution spécifique pour la fixation à l'avance des restitutions est une mesure permettant de rencontrer ces différents objectifs. (5) À la suite de l'arrangement entre la Communauté européenne et les États-Unis d'Amérique concernant les exportations de pâtes alimentaires de la Communauté aux États-Unis approuvé par la décision 87/482/CEE du Conseil [4], il est nécessaire de différencier la restitution pour les marchandises relevant des codes NC 19021100 et 190219 selon leur destination. (6) Conformément à l'article 15, paragraphes 2 et 3, du règlement (CE) no 1043/2005, il y a lieu de fixer un taux de restitution à l'exportation réduit, compte tenu du montant de la restitution à la production applicable, en vertu du règlement (CEE) no 1722/93 de la Commission [5], au produit de base mis en œuvre, valable au cours de la période présumée de fabrication des marchandises. (7) Les boissons spiritueuses sont considérées comme moins sensibles au prix des céréales mises en œuvre pour leur fabrication. Toutefois, le protocole 19 du traité d'adhésion du Royaume-Uni, de l'Irlande et du Danemark prévoit que des mesures nécessaires doivent être arrêtées afin de faciliter l'utilisation des céréales communautaires pour la fabrication de boissons spiritueuses obtenues à partir de céréales. Il convient donc d'adapter le taux de restitution applicable aux céréales exportées sous forme de boissons spiritueuses. (8) Le comité de gestion des céréales n'a pas émis d'avis dans le délai imparti par son président, A ARRÊTÉ LE PRÉSENT RÈGLEMENT: Article premier Les taux des restitutions applicables aux produits de base figurant à l'annexe I du règlement (CE) no 1043/2005 et à l'article 1er du règlement (CE) no 1784/2003 ou à l'article 1er du règlement (CE) no 1785/2003 modifié, qui sont exportés sous forme de marchandises reprises respectivement à l'annexe III du règlement (CE) no 1784/2003 ou à l'annexe IV du règlement (CE) no 1785/2003, sont fixés comme indiqué à l'annexe du présent règlement. Article 2 Le présent règlement entre en vigueur le 23 septembre 2005. Le présent règlement est obligatoire dans tous ses éléments et directement applicable dans tout État membre. Fait à Bruxelles, le 22 septembre 2005. Par la Commission Günter Verheugen Vice-président [1] JO L 270 du 21.10.2003, p. 78. [2] JO L 270 du 21.10.2003, p. 96. [3] JO L 172 du 5.7.2005, p. 24. [4] JO L 275 du 29.9.1987, p. 36. [5] JO L 159 du 1.7.1993, p. 112. Règlement modifié en dernier lieu par le règlement (CE) no 1584/2004 (JO L 280 du 31.8.2004, p. 11). -------------------------------------------------- ANNEXE Taux des restitutions applicables à compter du 23 septembre 2005 à certains produits des secteurs des céréales et du riz exportés sous forme de marchandises ne relevant pas de l'annexe I du traité [1] (en EUR/100 kg) | Code NC | Désignation des marchandises | Taux de la restitution par 100 kg du produit de base | En cas de fixation à l'avance des restitutions | Autres | 10011000 | Froment (blé) dur: | | | – en cas d'exportation de marchandises relevant des codes NC 190211 et 190219 vers les États-Unis d'Amérique | — | — | – dans les autres cas | — | — | 10019099 | Froment (blé) tendre et méteil: | | | – en cas d'exportation de marchandises relevant des codes NC 190211 et 190219 vers les États-Unis d'Amérique | — | — | – dans les autres cas: | | | – – en cas d'application de l'article 15, paragraphe 3, du règlement (CE) no 1043/2005 | — | — | – – en cas d'exportation de marchandises relevant du sous-chapitre 2208 | — | — | – – dans les autres cas | — | — | 10020000 | Seigle | — | — | 10030090 | Orge | | | – en cas d'exportation de marchandises relevant du sous-chapitre 2208 | — | — | – dans les autres cas | — | — | 10040000 | Avoine | — | — | 10059000 | Maïs, mis en œuvre sous forme de: | | | – amidon: | | | – – en cas d'application de l'article 15, paragraphe 3, du règlement (CE) no 1043/2005 | 2,994 | 3,150 | – – en cas d'exportation de marchandises relevant du sous-chapitre 2208 | 2,368 | 2,368 | – – dans les autres cas | 4,615 | 4,615 | – glucose, sirop de glucose, maltodextrine, sirop de maltodextrine des codes NC 17023051, 17023059, 17023091, 17023099, 17024090, 17029050, 17029075, 17029079, 21069055: | | | – – en cas d'application de l'article 15, paragraphe 3, du règlement (CE) no 1043/2005 | 1,840 | 1,996 | – – en cas d'exportation de marchandises relevant du sous-chapitre 2208 | 1,776 | 1,776 | – – dans les autres cas | 3,461 | 3,461 | – en cas d'exportation de marchandises relevant du sous-chapitre 2208 | 2,368 | 2,368 | – autres (y compris en l'état) | 4,615 | 4,615 | Fécule de pommes de terre du code NC 11081300 assimilée à un produit issu de la transformation du maïs: | | | – en cas d'application de l'article 15, paragraphe 3, du règlement (CE) no 1043/2005 | 2,435 | 2,585 | – en cas d'exportation de marchandises relevant du sous-chapitre 2208 | 2,368 | 2,368 | – dans les autres cas | 4,615 | 4,615 | ex100630 | Riz blanchi: | | | – à grains ronds | — | — | – à grains moyens | — | — | – à grains longs | — | — | 10064000 | Riz en brisures | — | — | 10070090 | Sorgho à grains (à l'excl. du sorgho à grains, hybride, destiné à l'ensemencement) | — | — | [1] Les taux prévus à la présente annexe ne s’appliquent pas avec effet au 1er octobre 2004 aux exportations vers la Bulgarie et avec effet au 1er février 2005 aux marchandises visées aux tableaux I et II du Protocole no 2 de l’Accord entre la Communauté économique européenne et la Confédération suisse du 22 juillet 1972 qui sont exportées vers la Confédération suisse ou la principauté de Liechtenstein. [2] En ce qui concerne les produits agricoles obtenus par transformation d’un produit de base et/ou de produits assimilés, les coefficients fixés à l’annexe V du règlement (CE) no 1043/2005 de la Commission s’appliquent. [3] La marchandise concernée relève du code NC 35051050. [4] Marchandises reprises à l'annexe III du règlement (CE) no 1784/2003 ou visées à l'article 2 du règlement (CEE) no 2825/93 (JO L 258 du 16.10.1993, p. 6). [5] Pour les sirops des codes NC 17023099, 17024090 et 17026090, obtenus par mélange de sirops de glucose et fructose, seul le sirop de glucose a droit à la restitution à l'exportation. -------------------------------------------------- " pipeline([fr_text], max_length=512) ``` ## Training data The legal_t5_small_summ_fr model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html) dataset consisting of 23 Thousand texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 64). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining ## Evaluation results When the model is used for classification test dataset, achieves the following results: Test results : | Model | Rouge1 | Rouge2 | Rouge Lsum | |:-----:|:-----:|:-----:|:-----:| | legal_t5_small_summ_fr | 77.1|67.97 |75.74| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SEBIS/legal_t5_small_trans_cs_fr_small_finetuned
16e8712ad5428ecc3215d5374168d8bbcf52f6ae
2021-06-23T11:34:20.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "Cszech French", "dataset:dcep europarl jrc-acquis", "transformers", "translation Cszech French model", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_trans_cs_fr_small_finetuned
3
null
transformers
20,909
--- language: Cszech French tags: - translation Cszech French model datasets: - dcep europarl jrc-acquis widget: - text: "9:00 - 10:50 Komise (včetně odpovědí)" --- # legal_t5_small_trans_cs_fr_small_finetuned model Model on translating legal text from Cszech to French. It was first released in [this repository](https://github.com/agemagician/LegalTrans). This model is first pretrained all the translation data over some unsupervised task. Then the model is trained on three parallel corpus from jrc-acquis, europarl and dcep. ## Model description legal_t5_small_trans_cs_fr_small_finetuned is initially pretrained on unsupervised task with the all of the data of the training set. The unsupervised task was "masked language modelling". legal_t5_small_trans_cs_fr_small_finetuned is based on the `t5-small` model and was trained on a large corpus of parallel text. This is a smaller model, which scales the baseline model of t5 down by using `dmodel = 512`, `dff = 2,048`, 8-headed attention, and only 6 layers each in the encoder and decoder. This variant has about 60 million parameters. ## Intended uses & limitations The model could be used for translation of legal texts from Cszech to French. ### How to use Here is how to use this model to translate legal text from Cszech to French in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_trans_cs_fr_small_finetuned"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_trans_cs_fr", do_lower_case=False, skip_special_tokens=True), device=0 ) cs_text = "9:00 - 10:50 Komise (včetně odpovědí)" pipeline([cs_text], max_length=512) ``` ## Training data The legal_t5_small_trans_cs_fr_small_finetuned (the supervised task which involved only the corresponding langauge pair and as well as unsupervised task where all of the data of all language pairs were available) model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 5 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining The pre-training data was the combined data from all the 42 language pairs. The task for the model was to predict the portions of a sentence which were masked randomly. ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_trans_cs_fr_small_finetuned | 50.717| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SEBIS/legal_t5_small_trans_de_cs
96c2d47ce9a8feb16d5be3594b665273f6c5b28f
2021-06-23T11:37:25.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "Deustch Cszech", "dataset:dcep europarl jrc-acquis", "transformers", "translation Deustch Cszech model", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_trans_de_cs
3
null
transformers
20,910
--- language: Deustch Cszech tags: - translation Deustch Cszech model datasets: - dcep europarl jrc-acquis widget: - text: "17. empfiehlt die Einführung einer spezifischen Strategie zur Unterstützung neuer und demokratisch gewählter Parlamente im Hinblick auf eine dauerhafte Verankerung von Demokratie, Rechtsstaatlichkeit und guter Staatsführung;" --- # legal_t5_small_trans_de_cs model Model on translating legal text from Deustch to Cszech. It was first released in [this repository](https://github.com/agemagician/LegalTrans). This model is trained on three parallel corpus from jrc-acquis, europarl and dcep. ## Model description legal_t5_small_trans_de_cs is based on the `t5-small` model and was trained on a large corpus of parallel text. This is a smaller model, which scales the baseline model of t5 down by using `dmodel = 512`, `dff = 2,048`, 8-headed attention, and only 6 layers each in the encoder and decoder. This variant has about 60 million parameters. ## Intended uses & limitations The model could be used for translation of legal texts from Deustch to Cszech. ### How to use Here is how to use this model to translate legal text from Deustch to Cszech in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_trans_de_cs"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_trans_de_cs", do_lower_case=False, skip_special_tokens=True), device=0 ) de_text = "17. empfiehlt die Einführung einer spezifischen Strategie zur Unterstützung neuer und demokratisch gewählter Parlamente im Hinblick auf eine dauerhafte Verankerung von Demokratie, Rechtsstaatlichkeit und guter Staatsführung;" pipeline([de_text], max_length=512) ``` ## Training data The legal_t5_small_trans_de_cs model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 5 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_trans_de_cs | 44.07| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SEBIS/legal_t5_small_trans_de_cs_small_finetuned
0e7e619ff88a24f6e08b2460b6dbb9e38953da93
2021-06-23T09:27:15.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "Deustch Cszech", "dataset:dcep europarl jrc-acquis", "transformers", "translation Deustch Cszech model", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_trans_de_cs_small_finetuned
3
null
transformers
20,911
--- language: Deustch Cszech tags: - translation Deustch Cszech model datasets: - dcep europarl jrc-acquis widget: - text: "Der Rahmenbeschluss sieht ein beschleunigtes Verfahren für die Anerkennung und Vollstreckung von freiheitsentziehenden Maßnahmen oder Maßnahmen der Sicherung (bei Unzurechnungsfähigkeit oder verminderter Schuldfähigkeit), die von einem Gericht eines anderen Mitgliedstaats gegen eine Person verhängt wurden, durch einen Mitgliedstaat vor, dessen Staatsangehörigkeit die Person besitzt, in dem sie ihren rechtmäßigen Aufenthalt hat oder zu dem sie enge Verbindungen hat." --- # legal_t5_small_trans_de_cs_small_finetuned model Model on translating legal text from Deustch to Cszech. It was first released in [this repository](https://github.com/agemagician/LegalTrans). This model is first pretrained all the translation data over some unsupervised task. Then the model is trained on three parallel corpus from jrc-acquis, europarl and dcep. ## Model description legal_t5_small_trans_de_cs_small_finetuned is initially pretrained on unsupervised task with the all of the data of the training set. The unsupervised task was "masked language modelling". legal_t5_small_trans_de_cs_small_finetuned is based on the `t5-small` model and was trained on a large corpus of parallel text. This is a smaller model, which scales the baseline model of t5 down by using `dmodel = 512`, `dff = 2,048`, 8-headed attention, and only 6 layers each in the encoder and decoder. This variant has about 60 million parameters. ## Intended uses & limitations The model could be used for translation of legal texts from Deustch to Cszech. ### How to use Here is how to use this model to translate legal text from Deustch to Cszech in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_trans_de_cs_small_finetuned"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_trans_de_cs", do_lower_case=False, skip_special_tokens=True), device=0 ) de_text = "Der Rahmenbeschluss sieht ein beschleunigtes Verfahren für die Anerkennung und Vollstreckung von freiheitsentziehenden Maßnahmen oder Maßnahmen der Sicherung (bei Unzurechnungsfähigkeit oder verminderter Schuldfähigkeit), die von einem Gericht eines anderen Mitgliedstaats gegen eine Person verhängt wurden, durch einen Mitgliedstaat vor, dessen Staatsangehörigkeit die Person besitzt, in dem sie ihren rechtmäßigen Aufenthalt hat oder zu dem sie enge Verbindungen hat." pipeline([de_text], max_length=512) ``` ## Training data The legal_t5_small_trans_de_cs_small_finetuned (the supervised task which involved only the corresponding langauge pair and as well as unsupervised task where all of the data of all language pairs were available) model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 5 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining The pre-training data was the combined data from all the 42 language pairs. The task for the model was to predict the portions of a sentence which were masked randomly. ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_trans_de_cs_small_finetuned | 43.750| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SEBIS/legal_t5_small_trans_de_es_small_finetuned
83d0afbd5092fc1f505f96d4c8f6bd26c3f3281d
2021-06-23T09:29:41.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "Deustch Spanish", "dataset:dcep europarl jrc-acquis", "transformers", "translation Deustch Spanish model", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_trans_de_es_small_finetuned
3
null
transformers
20,912
--- language: Deustch Spanish tags: - translation Deustch Spanish model datasets: - dcep europarl jrc-acquis widget: - text: "Bei einer Kombination von Artikel 124 Absatz 14 mit Artikel 136 AEUV scheint die in den Artikeln 121 und 126 AEUV" --- # legal_t5_small_trans_de_es_small_finetuned model Model on translating legal text from Deustch to Spanish. It was first released in [this repository](https://github.com/agemagician/LegalTrans). This model is first pretrained all the translation data over some unsupervised task. Then the model is trained on three parallel corpus from jrc-acquis, europarl and dcep. ## Model description legal_t5_small_trans_de_es_small_finetuned is initially pretrained on unsupervised task with the all of the data of the training set. The unsupervised task was "masked language modelling". legal_t5_small_trans_de_es_small_finetuned is based on the `t5-small` model and was trained on a large corpus of parallel text. This is a smaller model, which scales the baseline model of t5 down by using `dmodel = 512`, `dff = 2,048`, 8-headed attention, and only 6 layers each in the encoder and decoder. This variant has about 60 million parameters. ## Intended uses & limitations The model could be used for translation of legal texts from Deustch to Spanish. ### How to use Here is how to use this model to translate legal text from Deustch to Spanish in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_trans_de_es_small_finetuned"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_trans_de_es", do_lower_case=False, skip_special_tokens=True), device=0 ) de_text = "Bei einer Kombination von Artikel 124 Absatz 14 mit Artikel 136 AEUV scheint die in den Artikeln 121 und 126 AEUV" pipeline([de_text], max_length=512) ``` ## Training data The legal_t5_small_trans_de_es_small_finetuned (the supervised task which involved only the corresponding langauge pair and as well as unsupervised task where all of the data of all language pairs were available) model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 8 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining The pre-training data was the combined data from all the 42 language pairs. The task for the model was to predict the portions of a sentence which were masked randomly. ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_trans_de_es_small_finetuned | 47.006| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SEBIS/legal_t5_small_trans_de_sv_small_finetuned
f7aed217e30da1ee40403bfc6e06859e51b3aef1
2021-06-23T09:33:24.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "Deustch Swedish", "dataset:dcep europarl jrc-acquis", "transformers", "translation Deustch Swedish model", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_trans_de_sv_small_finetuned
3
null
transformers
20,913
--- language: Deustch Swedish tags: - translation Deustch Swedish model datasets: - dcep europarl jrc-acquis widget: - text: "Die Finanzkrise hat schonungslos offenbart, wo die Mängel in den Überwachungsverfahren der EU liegen, die eine wirksame Vorbeugung von Verstößen gegen die Haushaltsdisziplin, ausufernden Haushaltsdefiziten der Mitgliedstaaten, Ungleichgewichten im Handel und Unterschieden in der Wettbewerbsfähigkeit gewährleisten sollen." --- # legal_t5_small_trans_de_sv_small_finetuned model Model on translating legal text from Deustch to Swedish. It was first released in [this repository](https://github.com/agemagician/LegalTrans). This model is first pretrained all the translation data over some unsupervised task. Then the model is trained on three parallel corpus from jrc-acquis, europarl and dcep. ## Model description legal_t5_small_trans_de_sv_small_finetuned is initially pretrained on unsupervised task with the all of the data of the training set. The unsupervised task was "masked language modelling". legal_t5_small_trans_de_sv_small_finetuned is based on the `t5-small` model and was trained on a large corpus of parallel text. This is a smaller model, which scales the baseline model of t5 down by using `dmodel = 512`, `dff = 2,048`, 8-headed attention, and only 6 layers each in the encoder and decoder. This variant has about 60 million parameters. ## Intended uses & limitations The model could be used for translation of legal texts from Deustch to Swedish. ### How to use Here is how to use this model to translate legal text from Deustch to Swedish in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_trans_de_sv_small_finetuned"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_trans_de_sv", do_lower_case=False, skip_special_tokens=True), device=0 ) de_text = "Die Finanzkrise hat schonungslos offenbart, wo die Mängel in den Überwachungsverfahren der EU liegen, die eine wirksame Vorbeugung von Verstößen gegen die Haushaltsdisziplin, ausufernden Haushaltsdefiziten der Mitgliedstaaten, Ungleichgewichten im Handel und Unterschieden in der Wettbewerbsfähigkeit gewährleisten sollen." pipeline([de_text], max_length=512) ``` ## Training data The legal_t5_small_trans_de_sv_small_finetuned (the supervised task which involved only the corresponding langauge pair and as well as unsupervised task where all of the data of all language pairs were available) model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 8 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining The pre-training data was the combined data from all the 42 language pairs. The task for the model was to predict the portions of a sentence which were masked randomly. ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_trans_de_sv_small_finetuned | 41.365| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SEBIS/legal_t5_small_trans_en_sv
fee5381d21b2f542bfdd7a3adfec40b9dc7909a8
2021-06-23T09:39:52.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_trans_en_sv
3
null
transformers
20,914
Entry not found
SEBIS/legal_t5_small_trans_es_cs_small_finetuned
c5ca957bd313d34979ebdb8ba86d239c14fbf6ed
2021-06-23T09:42:41.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "Spanish Cszech", "dataset:dcep europarl jrc-acquis", "transformers", "translation Spanish Cszech model", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_trans_es_cs_small_finetuned
3
null
transformers
20,915
--- language: Spanish Cszech tags: - translation Spanish Cszech model datasets: - dcep europarl jrc-acquis widget: - text: "Comisión (incluidas las réplicas)" --- # legal_t5_small_trans_es_cs_small_finetuned model Model on translating legal text from Spanish to Cszech. It was first released in [this repository](https://github.com/agemagician/LegalTrans). This model is first pretrained all the translation data over some unsupervised task. Then the model is trained on three parallel corpus from jrc-acquis, europarl and dcep. ## Model description legal_t5_small_trans_es_cs_small_finetuned is initially pretrained on unsupervised task with the all of the data of the training set. The unsupervised task was "masked language modelling". legal_t5_small_trans_es_cs_small_finetuned is based on the `t5-small` model and was trained on a large corpus of parallel text. This is a smaller model, which scales the baseline model of t5 down by using `dmodel = 512`, `dff = 2,048`, 8-headed attention, and only 6 layers each in the encoder and decoder. This variant has about 60 million parameters. ## Intended uses & limitations The model could be used for translation of legal texts from Spanish to Cszech. ### How to use Here is how to use this model to translate legal text from Spanish to Cszech in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_trans_es_cs_small_finetuned"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_trans_es_cs", do_lower_case=False, skip_special_tokens=True), device=0 ) es_text = "Comisión (incluidas las réplicas)" pipeline([es_text], max_length=512) ``` ## Training data The legal_t5_small_trans_es_cs_small_finetuned (the supervised task which involved only the corresponding langauge pair and as well as unsupervised task where all of the data of all language pairs were available) model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 5 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining The pre-training data was the combined data from all the 42 language pairs. The task for the model was to predict the portions of a sentence which were masked randomly. ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_trans_es_cs_small_finetuned | 45.094| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SEBIS/legal_t5_small_trans_es_de_small_finetuned
7e4905de62f69ff0f2f47c0b50d0066bef687c75
2021-06-23T09:43:57.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "Spanish Deustch", "dataset:dcep europarl jrc-acquis", "transformers", "translation Spanish Deustch model", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_trans_es_de_small_finetuned
3
null
transformers
20,916
--- language: Spanish Deustch tags: - translation Spanish Deustch model datasets: - dcep europarl jrc-acquis widget: - text: "Manfred Weber , en nombre del Grupo PPE , al Consejo:" --- # legal_t5_small_trans_es_de_small_finetuned model Model on translating legal text from Spanish to Deustch. It was first released in [this repository](https://github.com/agemagician/LegalTrans). This model is first pretrained all the translation data over some unsupervised task. Then the model is trained on three parallel corpus from jrc-acquis, europarl and dcep. ## Model description legal_t5_small_trans_es_de_small_finetuned is initially pretrained on unsupervised task with the all of the data of the training set. The unsupervised task was "masked language modelling". legal_t5_small_trans_es_de_small_finetuned is based on the `t5-small` model and was trained on a large corpus of parallel text. This is a smaller model, which scales the baseline model of t5 down by using `dmodel = 512`, `dff = 2,048`, 8-headed attention, and only 6 layers each in the encoder and decoder. This variant has about 60 million parameters. ## Intended uses & limitations The model could be used for translation of legal texts from Spanish to Deustch. ### How to use Here is how to use this model to translate legal text from Spanish to Deustch in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_trans_es_de_small_finetuned"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_trans_es_de", do_lower_case=False, skip_special_tokens=True), device=0 ) es_text = "Manfred Weber , en nombre del Grupo PPE , al Consejo:" pipeline([es_text], max_length=512) ``` ## Training data The legal_t5_small_trans_es_de_small_finetuned (the supervised task which involved only the corresponding langauge pair and as well as unsupervised task where all of the data of all language pairs were available) model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 8 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining The pre-training data was the combined data from all the 42 language pairs. The task for the model was to predict the portions of a sentence which were masked randomly. ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_trans_es_de_small_finetuned | 42.063| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SEBIS/legal_t5_small_trans_es_it_small_finetuned
86749bc4aaf906eaedad2af8cd16cb1751922550
2021-06-23T09:48:02.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "Spanish Italian", "dataset:dcep europarl jrc-acquis", "transformers", "translation Spanish Italian model", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_trans_es_it_small_finetuned
3
null
transformers
20,917
--- language: Spanish Italian tags: - translation Spanish Italian model datasets: - dcep europarl jrc-acquis widget: - text: "El acceso a las pruebas de densitometría ósea es totalmente inadecuado." --- # legal_t5_small_trans_es_it_small_finetuned model Model on translating legal text from Spanish to Italian. It was first released in [this repository](https://github.com/agemagician/LegalTrans). This model is first pretrained all the translation data over some unsupervised task. Then the model is trained on three parallel corpus from jrc-acquis, europarl and dcep. ## Model description legal_t5_small_trans_es_it_small_finetuned is initially pretrained on unsupervised task with the all of the data of the training set. The unsupervised task was "masked language modelling". legal_t5_small_trans_es_it_small_finetuned is based on the `t5-small` model and was trained on a large corpus of parallel text. This is a smaller model, which scales the baseline model of t5 down by using `dmodel = 512`, `dff = 2,048`, 8-headed attention, and only 6 layers each in the encoder and decoder. This variant has about 60 million parameters. ## Intended uses & limitations The model could be used for translation of legal texts from Spanish to Italian. ### How to use Here is how to use this model to translate legal text from Spanish to Italian in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_trans_es_it_small_finetuned"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_trans_es_it", do_lower_case=False, skip_special_tokens=True), device=0 ) es_text = "El acceso a las pruebas de densitometría ósea es totalmente inadecuado." pipeline([es_text], max_length=512) ``` ## Training data The legal_t5_small_trans_es_it_small_finetuned (the supervised task which involved only the corresponding langauge pair and as well as unsupervised task where all of the data of all language pairs were available) model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 9 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining The pre-training data was the combined data from all the 42 language pairs. The task for the model was to predict the portions of a sentence which were masked randomly. ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_trans_es_it_small_finetuned | 46.422| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SEBIS/legal_t5_small_trans_es_sv
eb196185c1949dee9b7337f1c894b393c4a6128b
2021-06-23T09:48:40.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_trans_es_sv
3
null
transformers
20,918
Entry not found
SEBIS/legal_t5_small_trans_fr_de
55116970b03619d7ff16cdd58fdf30ee060271c6
2021-06-23T09:51:36.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "French Deustch", "dataset:dcep europarl jrc-acquis", "transformers", "translation French Deustch model", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_trans_fr_de
3
null
transformers
20,919
--- language: French Deustch tags: - translation French Deustch model datasets: - dcep europarl jrc-acquis widget: - text: "Les États membres notifient ces dispositions à la Commission au plus tard à la date mentionnée à l'article 15 et toute modification ultérieure les concernant dans les meilleurs délais." --- # legal_t5_small_trans_fr_de model Model on translating legal text from French to Deustch. It was first released in [this repository](https://github.com/agemagician/LegalTrans). This model is trained on three parallel corpus from jrc-acquis, europarl and dcep. ## Model description legal_t5_small_trans_fr_de is based on the `t5-small` model and was trained on a large corpus of parallel text. This is a smaller model, which scales the baseline model of t5 down by using `dmodel = 512`, `dff = 2,048`, 8-headed attention, and only 6 layers each in the encoder and decoder. This variant has about 60 million parameters. ## Intended uses & limitations The model could be used for translation of legal texts from French to Deustch. ### How to use Here is how to use this model to translate legal text from French to Deustch in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_trans_fr_de"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_trans_fr_de", do_lower_case=False, skip_special_tokens=True), device=0 ) fr_text = "Les États membres notifient ces dispositions à la Commission au plus tard à la date mentionnée à l'article 15 et toute modification ultérieure les concernant dans les meilleurs délais." pipeline([fr_text], max_length=512) ``` ## Training data The legal_t5_small_trans_fr_de model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 5 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_trans_fr_de | 41.33| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SEBIS/legal_t5_small_trans_fr_de_small_finetuned
cffbffb815c9c827a715193f8af71830d97ea074
2021-06-23T09:52:23.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "French Deustch", "dataset:dcep europarl jrc-acquis", "transformers", "translation French Deustch model", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_trans_fr_de_small_finetuned
3
null
transformers
20,920
--- language: French Deustch tags: - translation French Deustch model datasets: - dcep europarl jrc-acquis widget: - text: "7. demande instamment à la Commission de veiller à ce que l'objectif d'une part de 20% d'énergie renouvelable soit rendue contraignante pour les États membres par des dispositions législatives à cet effet et soit mis en œuvre d'une manière conséquente, et à ce que les États membres qui n'honorent pas leurs engagements soient frappés de lourdes sanctions; souligne la nécessité de plans d'action nationaux dans le cadre desquels chaque État membre se fixe un objectif contraignant pour chaque secteur en fonction de ses possibilités spécifiques météorologiques, géographiques et géologiques et de ses réalisations dans le passé; demande instamment à la Commission de procéder à une évaluation préalable puis intermédiaire de ces plans d'action;" --- # legal_t5_small_trans_fr_de_small_finetuned model Model on translating legal text from French to Deustch. It was first released in [this repository](https://github.com/agemagician/LegalTrans). This model is first pretrained all the translation data over some unsupervised task. Then the model is trained on three parallel corpus from jrc-acquis, europarl and dcep. ## Model description legal_t5_small_trans_fr_de_small_finetuned is initially pretrained on unsupervised task with the all of the data of the training set. The unsupervised task was "masked language modelling". legal_t5_small_trans_fr_de_small_finetuned is based on the `t5-small` model and was trained on a large corpus of parallel text. This is a smaller model, which scales the baseline model of t5 down by using `dmodel = 512`, `dff = 2,048`, 8-headed attention, and only 6 layers each in the encoder and decoder. This variant has about 60 million parameters. ## Intended uses & limitations The model could be used for translation of legal texts from French to Deustch. ### How to use Here is how to use this model to translate legal text from French to Deustch in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_trans_fr_de_small_finetuned"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_trans_fr_de", do_lower_case=False, skip_special_tokens=True), device=0 ) fr_text = "7. demande instamment à la Commission de veiller à ce que l'objectif d'une part de 20% d'énergie renouvelable soit rendue contraignante pour les États membres par des dispositions législatives à cet effet et soit mis en œuvre d'une manière conséquente, et à ce que les États membres qui n'honorent pas leurs engagements soient frappés de lourdes sanctions; souligne la nécessité de plans d'action nationaux dans le cadre desquels chaque État membre se fixe un objectif contraignant pour chaque secteur en fonction de ses possibilités spécifiques météorologiques, géographiques et géologiques et de ses réalisations dans le passé; demande instamment à la Commission de procéder à une évaluation préalable puis intermédiaire de ces plans d'action;" pipeline([fr_text], max_length=512) ``` ## Training data The legal_t5_small_trans_fr_de_small_finetuned (the supervised task which involved only the corresponding langauge pair and as well as unsupervised task where all of the data of all language pairs were available) model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 8 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining The pre-training data was the combined data from all the 42 language pairs. The task for the model was to predict the portions of a sentence which were masked randomly. ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_trans_fr_de_small_finetuned | 41.085| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SEBIS/legal_t5_small_trans_fr_en_small_finetuned
ed9c5a16b78534f1d69bf316ae37d294bb8bb265
2021-06-23T11:38:04.000Z
[ "pytorch", "t5", "text2text-generation", "French English", "dataset:dcep europarl jrc-acquis", "transformers", "translation French English model", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_trans_fr_en_small_finetuned
3
null
transformers
20,921
--- language: French English tags: - translation French English model datasets: - dcep europarl jrc-acquis widget: - text: "RÉSULTAT DU VOTE FINAL EN COMMISSION" --- # legal_t5_small_trans_fr_en_small_finetuned model Model on translating legal text from French to English. It was first released in [this repository](https://github.com/agemagician/LegalTrans). This model is first pretrained all the translation data over some unsupervised task. Then the model is trained on three parallel corpus from jrc-acquis, europarl and dcep. ## Model description legal_t5_small_trans_fr_en_small_finetuned is initially pretrained on unsupervised task with the all of the data of the training set. The unsupervised task was "masked language modelling". legal_t5_small_trans_fr_en_small_finetuned is based on the `t5-small` model and was trained on a large corpus of parallel text. This is a smaller model, which scales the baseline model of t5 down by using `dmodel = 512`, `dff = 2,048`, 8-headed attention, and only 6 layers each in the encoder and decoder. This variant has about 60 million parameters. ## Intended uses & limitations The model could be used for translation of legal texts from French to English. ### How to use Here is how to use this model to translate legal text from French to English in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_trans_fr_en_small_finetuned"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_trans_fr_en", do_lower_case=False, skip_special_tokens=True), device=0 ) fr_text = "RÉSULTAT DU VOTE FINAL EN COMMISSION" pipeline([fr_text], max_length=512) ``` ## Training data The legal_t5_small_trans_fr_en_small_finetuned (the supervised task which involved only the corresponding langauge pair and as well as unsupervised task where all of the data of all language pairs were available) model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 9 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining The pre-training data was the combined data from all the 42 language pairs. The task for the model was to predict the portions of a sentence which were masked randomly. ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_trans_fr_en_small_finetuned | 51.351| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SEBIS/legal_t5_small_trans_fr_es_small_finetuned
6af7cde8f68ea1936273c8a51c388e27b773040f
2021-06-23T09:55:17.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "French Spanish", "dataset:dcep europarl jrc-acquis", "transformers", "translation French Spanish model", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_trans_fr_es_small_finetuned
3
null
transformers
20,922
--- language: French Spanish tags: - translation French Spanish model datasets: - dcep europarl jrc-acquis widget: - text: "A‑t‑elle déjà engagé, ou compte-t-elle engager, la réalisation d'une étude visant, comme préconisé ci‑dessus, à recenser les principaux problèmes et les besoins spécifiques des régions ultrapériphériques en matière de transport maritime, compte tenu des caractéristiques et des besoins propres à ce secteur, dans la perspective de la réalisation des projets d'autoroutes de la mer dans lesdites régions? 2." --- # legal_t5_small_trans_fr_es_small_finetuned model Model on translating legal text from French to Spanish. It was first released in [this repository](https://github.com/agemagician/LegalTrans). This model is first pretrained all the translation data over some unsupervised task. Then the model is trained on three parallel corpus from jrc-acquis, europarl and dcep. ## Model description legal_t5_small_trans_fr_es_small_finetuned is initially pretrained on unsupervised task with the all of the data of the training set. The unsupervised task was "masked language modelling". legal_t5_small_trans_fr_es_small_finetuned is based on the `t5-small` model and was trained on a large corpus of parallel text. This is a smaller model, which scales the baseline model of t5 down by using `dmodel = 512`, `dff = 2,048`, 8-headed attention, and only 6 layers each in the encoder and decoder. This variant has about 60 million parameters. ## Intended uses & limitations The model could be used for translation of legal texts from French to Spanish. ### How to use Here is how to use this model to translate legal text from French to Spanish in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_trans_fr_es_small_finetuned"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_trans_fr_es", do_lower_case=False, skip_special_tokens=True), device=0 ) fr_text = "A‑t‑elle déjà engagé, ou compte-t-elle engager, la réalisation d'une étude visant, comme préconisé ci‑dessus, à recenser les principaux problèmes et les besoins spécifiques des régions ultrapériphériques en matière de transport maritime, compte tenu des caractéristiques et des besoins propres à ce secteur, dans la perspective de la réalisation des projets d'autoroutes de la mer dans lesdites régions? 2." pipeline([fr_text], max_length=512) ``` ## Training data The legal_t5_small_trans_fr_es_small_finetuned (the supervised task which involved only the corresponding langauge pair and as well as unsupervised task where all of the data of all language pairs were available) model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 9 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining The pre-training data was the combined data from all the 42 language pairs. The task for the model was to predict the portions of a sentence which were masked randomly. ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_trans_fr_es_small_finetuned | 51.202| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SEBIS/legal_t5_small_trans_it_cs
a3a4528dd4cae73e66629effa51abfc41831a397
2021-06-23T09:58:17.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "Italian Cszech", "dataset:dcep europarl jrc-acquis", "transformers", "translation Italian Cszech model", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_trans_it_cs
3
null
transformers
20,923
--- language: Italian Cszech tags: - translation Italian Cszech model datasets: - dcep europarl jrc-acquis widget: - text: "sull'aumento dei prezzi dei prodotti alimentari" --- # legal_t5_small_trans_it_cs model Model on translating legal text from Italian to Cszech. It was first released in [this repository](https://github.com/agemagician/LegalTrans). This model is trained on three parallel corpus from jrc-acquis, europarl and dcep. ## Model description legal_t5_small_trans_it_cs is based on the `t5-small` model and was trained on a large corpus of parallel text. This is a smaller model, which scales the baseline model of t5 down by using `dmodel = 512`, `dff = 2,048`, 8-headed attention, and only 6 layers each in the encoder and decoder. This variant has about 60 million parameters. ## Intended uses & limitations The model could be used for translation of legal texts from Italian to Cszech. ### How to use Here is how to use this model to translate legal text from Italian to Cszech in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_trans_it_cs"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_trans_it_cs", do_lower_case=False, skip_special_tokens=True), device=0 ) it_text = "sull'aumento dei prezzi dei prodotti alimentari" pipeline([it_text], max_length=512) ``` ## Training data The legal_t5_small_trans_it_cs model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 5 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_trans_it_cs | 43.302| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SEBIS/legal_t5_small_trans_it_de_small_finetuned
4cfacefaaf3193011ef34b1d6ba42c74ad9ee168
2021-06-23T10:00:06.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "Italian Deustch", "dataset:dcep europarl jrc-acquis", "transformers", "translation Italian Deustch model", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_trans_it_de_small_finetuned
3
null
transformers
20,924
--- language: Italian Deustch tags: - translation Italian Deustch model datasets: - dcep europarl jrc-acquis widget: - text: "Interventi sulla votazione:" --- # legal_t5_small_trans_it_de_small_finetuned model Model on translating legal text from Italian to Deustch. It was first released in [this repository](https://github.com/agemagician/LegalTrans). This model is first pretrained all the translation data over some unsupervised task. Then the model is trained on three parallel corpus from jrc-acquis, europarl and dcep. ## Model description legal_t5_small_trans_it_de_small_finetuned is initially pretrained on unsupervised task with the all of the data of the training set. The unsupervised task was "masked language modelling". legal_t5_small_trans_it_de_small_finetuned is based on the `t5-small` model and was trained on a large corpus of parallel text. This is a smaller model, which scales the baseline model of t5 down by using `dmodel = 512`, `dff = 2,048`, 8-headed attention, and only 6 layers each in the encoder and decoder. This variant has about 60 million parameters. ## Intended uses & limitations The model could be used for translation of legal texts from Italian to Deustch. ### How to use Here is how to use this model to translate legal text from Italian to Deustch in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_trans_it_de_small_finetuned"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_trans_it_de", do_lower_case=False, skip_special_tokens=True), device=0 ) it_text = "Interventi sulla votazione:" pipeline([it_text], max_length=512) ``` ## Training data The legal_t5_small_trans_it_de_small_finetuned (the supervised task which involved only the corresponding langauge pair and as well as unsupervised task where all of the data of all language pairs were available) model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 8 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining The pre-training data was the combined data from all the 42 language pairs. The task for the model was to predict the portions of a sentence which were masked randomly. ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_trans_it_de_small_finetuned | 40.524| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SEBIS/legal_t5_small_trans_it_fr_small_finetuned
46378cd0ba56bb43df8db8fde0d84b886d5938f9
2021-06-23T10:03:39.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "Italian French", "dataset:dcep europarl jrc-acquis", "transformers", "translation Italian French model", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_trans_it_fr_small_finetuned
3
null
transformers
20,925
--- language: Italian French tags: - translation Italian French model datasets: - dcep europarl jrc-acquis widget: - text: "Dichiarazioni del Consiglio e della Commissione" --- # legal_t5_small_trans_it_fr_small_finetuned model Model on translating legal text from Italian to French. It was first released in [this repository](https://github.com/agemagician/LegalTrans). This model is first pretrained all the translation data over some unsupervised task. Then the model is trained on three parallel corpus from jrc-acquis, europarl and dcep. ## Model description legal_t5_small_trans_it_fr_small_finetuned is initially pretrained on unsupervised task with the all of the data of the training set. The unsupervised task was "masked language modelling". legal_t5_small_trans_it_fr_small_finetuned is based on the `t5-small` model and was trained on a large corpus of parallel text. This is a smaller model, which scales the baseline model of t5 down by using `dmodel = 512`, `dff = 2,048`, 8-headed attention, and only 6 layers each in the encoder and decoder. This variant has about 60 million parameters. ## Intended uses & limitations The model could be used for translation of legal texts from Italian to French. ### How to use Here is how to use this model to translate legal text from Italian to French in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_trans_it_fr_small_finetuned"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_trans_it_fr", do_lower_case=False, skip_special_tokens=True), device=0 ) it_text = "Dichiarazioni del Consiglio e della Commissione" pipeline([it_text], max_length=512) ``` ## Training data The legal_t5_small_trans_it_fr_small_finetuned (the supervised task which involved only the corresponding langauge pair and as well as unsupervised task where all of the data of all language pairs were available) model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 9 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining The pre-training data was the combined data from all the 42 language pairs. The task for the model was to predict the portions of a sentence which were masked randomly. ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_trans_it_fr_small_finetuned | 50.557| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SEBIS/legal_t5_small_trans_sv_de
b1f004a8b75dba1bb08b438d81aded348d0b4435
2021-06-23T10:06:54.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "Swedish Deustch", "dataset:dcep europarl jrc-acquis", "transformers", "translation Swedish Deustch model", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_trans_sv_de
3
null
transformers
20,926
--- language: Swedish Deustch tags: - translation Swedish Deustch model datasets: - dcep europarl jrc-acquis widget: - text: "b) Bekämpning av skadegörare inom skogsbruket." --- # legal_t5_small_trans_sv_de model Model on translating legal text from Swedish to Deustch. It was first released in [this repository](https://github.com/agemagician/LegalTrans). This model is trained on three parallel corpus from jrc-acquis, europarl and dcep. ## Model description legal_t5_small_trans_sv_de is based on the `t5-small` model and was trained on a large corpus of parallel text. This is a smaller model, which scales the baseline model of t5 down by using `dmodel = 512`, `dff = 2,048`, 8-headed attention, and only 6 layers each in the encoder and decoder. This variant has about 60 million parameters. ## Intended uses & limitations The model could be used for translation of legal texts from Swedish to Deustch. ### How to use Here is how to use this model to translate legal text from Swedish to Deustch in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_trans_sv_de"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_trans_sv_de", do_lower_case=False, skip_special_tokens=True), device=0 ) sv_text = "b) Bekämpning av skadegörare inom skogsbruket." pipeline([sv_text], max_length=512) ``` ## Training data The legal_t5_small_trans_sv_de model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 5 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_trans_sv_de | 40.264| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SEBIS/legal_t5_small_trans_sv_de_small_finetuned
c072c4956c71e7d8c6baeed4faacbf3ab5a1d84e
2021-06-23T10:07:30.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "Swedish Deustch", "dataset:dcep europarl jrc-acquis", "transformers", "translation Swedish Deustch model", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_trans_sv_de_small_finetuned
3
null
transformers
20,927
--- language: Swedish Deustch tags: - translation Swedish Deustch model datasets: - dcep europarl jrc-acquis widget: - text: "G. Mäns och kvinnors förmåga att delta på lika villkor i det politiska livet och i beslutsfattandet är en grundläggande förutsättning för en verklig demokrati." --- # legal_t5_small_trans_sv_de_small_finetuned model Model on translating legal text from Swedish to Deustch. It was first released in [this repository](https://github.com/agemagician/LegalTrans). This model is first pretrained all the translation data over some unsupervised task. Then the model is trained on three parallel corpus from jrc-acquis, europarl and dcep. ## Model description legal_t5_small_trans_sv_de_small_finetuned is initially pretrained on unsupervised task with the all of the data of the training set. The unsupervised task was "masked language modelling". legal_t5_small_trans_sv_de_small_finetuned is based on the `t5-small` model and was trained on a large corpus of parallel text. This is a smaller model, which scales the baseline model of t5 down by using `dmodel = 512`, `dff = 2,048`, 8-headed attention, and only 6 layers each in the encoder and decoder. This variant has about 60 million parameters. ## Intended uses & limitations The model could be used for translation of legal texts from Swedish to Deustch. ### How to use Here is how to use this model to translate legal text from Swedish to Deustch in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_trans_sv_de_small_finetuned"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_trans_sv_de", do_lower_case=False, skip_special_tokens=True), device=0 ) sv_text = "G. Mäns och kvinnors förmåga att delta på lika villkor i det politiska livet och i beslutsfattandet är en grundläggande förutsättning för en verklig demokrati." pipeline([sv_text], max_length=512) ``` ## Training data The legal_t5_small_trans_sv_de_small_finetuned (the supervised task which involved only the corresponding langauge pair and as well as unsupervised task where all of the data of all language pairs were available) model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 8 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining The pre-training data was the combined data from all the 42 language pairs. The task for the model was to predict the portions of a sentence which were masked randomly. ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_trans_sv_de_small_finetuned | 40.240| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SEBIS/legal_t5_small_trans_sv_fr
297f1cc7013bc3ebc54a8d4e047abcb9df3f4bc3
2021-06-23T10:10:34.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "Swedish French", "dataset:dcep europarl jrc-acquis", "transformers", "translation Swedish French model", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_trans_sv_fr
3
null
transformers
20,928
--- language: Swedish French tags: - translation Swedish French model datasets: - dcep europarl jrc-acquis widget: - text: "Kunden måste ha rätt att avsäga sig information i skriftlig form." --- # legal_t5_small_trans_sv_fr model Model on translating legal text from Swedish to French. It was first released in [this repository](https://github.com/agemagician/LegalTrans). This model is trained on three parallel corpus from jrc-acquis, europarl and dcep. ## Model description legal_t5_small_trans_sv_fr is based on the `t5-small` model and was trained on a large corpus of parallel text. This is a smaller model, which scales the baseline model of t5 down by using `dmodel = 512`, `dff = 2,048`, 8-headed attention, and only 6 layers each in the encoder and decoder. This variant has about 60 million parameters. ## Intended uses & limitations The model could be used for translation of legal texts from Swedish to French. ### How to use Here is how to use this model to translate legal text from Swedish to French in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_trans_sv_fr"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_trans_sv_fr", do_lower_case=False, skip_special_tokens=True), device=0 ) sv_text = "Kunden måste ha rätt att avsäga sig information i skriftlig form." pipeline([sv_text], max_length=512) ``` ## Training data The legal_t5_small_trans_sv_fr model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 5 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_trans_sv_fr | 47.623| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SEBIS/legal_t5_small_trans_sv_it_small_finetuned
8bba44e37a085371f4cc15c497799e56228f391b
2021-06-23T11:38:41.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "Swedish Italian", "dataset:dcep europarl jrc-acquis", "transformers", "translation Swedish Italian model", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_trans_sv_it_small_finetuned
3
null
transformers
20,929
--- language: Swedish Italian tags: - translation Swedish Italian model datasets: - dcep europarl jrc-acquis widget: - text: "– med beaktande av rådet beslut om Syrien av den 12 april, 9 och 23 maj, 20 och 25 juni samt den 2 september 2011 och av uttalandena från unionens höga representant av den 9, 23 och 29 april, 9 maj, 6, 9 och 11 juni, 9 och 31 juli, 1, 4, 18 och 30 augusti samt den 2 september 2011 om en utvidgning av de restriktiva åtgärderna mot den syriska regimen," --- # legal_t5_small_trans_sv_it_small_finetuned model Model on translating legal text from Swedish to Italian. It was first released in [this repository](https://github.com/agemagician/LegalTrans). This model is first pretrained all the translation data over some unsupervised task. Then the model is trained on three parallel corpus from jrc-acquis, europarl and dcep. ## Model description legal_t5_small_trans_sv_it_small_finetuned is initially pretrained on unsupervised task with the all of the data of the training set. The unsupervised task was "masked language modelling". legal_t5_small_trans_sv_it_small_finetuned is based on the `t5-small` model and was trained on a large corpus of parallel text. This is a smaller model, which scales the baseline model of t5 down by using `dmodel = 512`, `dff = 2,048`, 8-headed attention, and only 6 layers each in the encoder and decoder. This variant has about 60 million parameters. ## Intended uses & limitations The model could be used for translation of legal texts from Swedish to Italian. ### How to use Here is how to use this model to translate legal text from Swedish to Italian in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_trans_sv_it_small_finetuned"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_trans_sv_it", do_lower_case=False, skip_special_tokens=True), device=0 ) sv_text = "– med beaktande av rådet beslut om Syrien av den 12 april, 9 och 23 maj, 20 och 25 juni samt den 2 september 2011 och av uttalandena från unionens höga representant av den 9, 23 och 29 april, 9 maj, 6, 9 och 11 juni, 9 och 31 juli, 1, 4, 18 och 30 augusti samt den 2 september 2011 om en utvidgning av de restriktiva åtgärderna mot den syriska regimen," pipeline([sv_text], max_length=512) ``` ## Training data The legal_t5_small_trans_sv_it_small_finetuned (the supervised task which involved only the corresponding langauge pair and as well as unsupervised task where all of the data of all language pairs were available) model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 8 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining The pre-training data was the combined data from all the 42 language pairs. The task for the model was to predict the portions of a sentence which were masked randomly. ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_trans_sv_it_small_finetuned | 42.575| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
Sabokou/squad-qg-gen
a24ad059a9529473de57943144b9811550f60482
2022-01-04T09:21:45.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Sabokou
null
Sabokou/squad-qg-gen
3
null
transformers
20,930
Entry not found
SaulLu/clip-vit-base-patch32
774a92e60dd54a3ae178cd128687c4080ea06709
2022-01-07T17:53:14.000Z
[ "pytorch", "tf", "jax", "clip", "feature-extraction", "arxiv:2103.00020", "arxiv:1908.04913", "transformers", "vision" ]
feature-extraction
false
SaulLu
null
SaulLu/clip-vit-base-patch32
3
null
transformers
20,931
--- tags: - vision --- # Model Card: CLIP Disclaimer: The model card is taken and modified from the official CLIP repository, it can be found [here](https://github.com/openai/CLIP/blob/main/model-card.md). ## Model Details The CLIP model was developed by researchers at OpenAI to learn about what contributes to robustness in computer vision tasks. The model was also developed to test the ability of models to generalize to arbitrary image classification tasks in a zero-shot manner. It was not developed for general model deployment - to deploy models like CLIP, researchers will first need to carefully study their capabilities in relation to the specific context they’re being deployed within. ### Model Date January 2021 ### Model Type The base model uses a ViT-B/32 Transformer architecture as an image encoder and uses a masked self-attention Transformer as a text encoder. These encoders are trained to maximize the similarity of (image, text) pairs via a contrastive loss. There is also a variant of the model where the ResNet image encoder is replaced with a Vision Transformer. ### Model Version Initially, we’ve released one CLIP model based on the Vision Transformer architecture equivalent to ViT-B/32, along with the RN50 model, using the architecture equivalent to ResNet-50. *This port does not include the ResNet model.* Please see the paper linked below for further details about their specification. ### Documents - [Blog Post](https://openai.com/blog/clip/) - [CLIP Paper](https://arxiv.org/abs/2103.00020) ### Use with Transformers ```python3 from PIL import Image import requests from transformers import CLIPProcessor, CLIPModel model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32") processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32") url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) inputs = processor(text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True) outputs = model(**inputs) logits_per_image = outputs.logits_per_image # this is the image-text similarity score probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities ``` ## Model Use ### Intended Use The model is intended as a research output for research communities. We hope that this model will enable researchers to better understand and explore zero-shot, arbitrary image classification. We also hope it can be used for interdisciplinary studies of the potential impact of such models - the CLIP paper includes a discussion of potential downstream impacts to provide an example for this sort of analysis. #### Primary intended uses The primary intended users of these models are AI researchers. We primarily imagine the model will be used by researchers to better understand robustness, generalization, and other capabilities, biases, and constraints of computer vision models. ### Out-of-Scope Use Cases **Any** deployed use case of the model - whether commercial or not - is currently out of scope. Non-deployed use cases such as image search in a constrained environment, are also not recommended unless there is thorough in-domain testing of the model with a specific, fixed class taxonomy. This is because our safety assessment demonstrated a high need for task specific testing especially given the variability of CLIP’s performance with different class taxonomies. This makes untested and unconstrained deployment of the model in any use case currently potentially harmful. Certain use cases which would fall under the domain of surveillance and facial recognition are always out-of-scope regardless of performance of the model. This is because the use of artificial intelligence for tasks such as these can be premature currently given the lack of testing norms and checks to ensure its fair use. Since the model has not been purposefully trained in or evaluated on any languages other than English, its use should be limited to English language use cases. ## Data The model was trained on publicly available image-caption data. This was done through a combination of crawling a handful of websites and using commonly-used pre-existing image datasets such as [YFCC100M](http://projects.dfki.uni-kl.de/yfcc100m/). A large portion of the data comes from our crawling of the internet. This means that the data is more representative of people and societies most connected to the internet which tend to skew towards more developed nations, and younger, male users. ### Data Mission Statement Our goal with building this dataset was to test out robustness and generalizability in computer vision tasks. As a result, the focus was on gathering large quantities of data from different publicly-available internet data sources. The data was gathered in a mostly non-interventionist manner. However, we only crawled websites that had policies against excessively violent and adult images and allowed us to filter out such content. We do not intend for this dataset to be used as the basis for any commercial or deployed model and will not be releasing the dataset. ## Performance and Limitations ### Performance We have evaluated the performance of CLIP on a wide range of benchmarks across a variety of computer vision datasets such as OCR to texture recognition to fine-grained classification. The paper describes model performance on the following datasets: - Food101 - CIFAR10 - CIFAR100 - Birdsnap - SUN397 - Stanford Cars - FGVC Aircraft - VOC2007 - DTD - Oxford-IIIT Pet dataset - Caltech101 - Flowers102 - MNIST - SVHN - IIIT5K - Hateful Memes - SST-2 - UCF101 - Kinetics700 - Country211 - CLEVR Counting - KITTI Distance - STL-10 - RareAct - Flickr30 - MSCOCO - ImageNet - ImageNet-A - ImageNet-R - ImageNet Sketch - ObjectNet (ImageNet Overlap) - Youtube-BB - ImageNet-Vid ## Limitations CLIP and our analysis of it have a number of limitations. CLIP currently struggles with respect to certain tasks such as fine grained classification and counting objects. CLIP also poses issues with regards to fairness and bias which we discuss in the paper and briefly in the next section. Additionally, our approach to testing CLIP also has an important limitation- in many cases we have used linear probes to evaluate the performance of CLIP and there is evidence suggesting that linear probes can underestimate model performance. ### Bias and Fairness We find that the performance of CLIP - and the specific biases it exhibits - can depend significantly on class design and the choices one makes for categories to include and exclude. We tested the risk of certain kinds of denigration with CLIP by classifying images of people from [Fairface](https://arxiv.org/abs/1908.04913) into crime-related and non-human animal categories. We found significant disparities with respect to race and gender. Additionally, we found that these disparities could shift based on how the classes were constructed. (Details captured in the Broader Impacts Section in the paper). We also tested the performance of CLIP on gender, race and age classification using the Fairface dataset (We default to using race categories as they are constructed in the Fairface dataset.) in order to assess quality of performance across different demographics. We found accuracy >96% across all races for gender classification with ‘Middle Eastern’ having the highest accuracy (98.4%) and ‘White’ having the lowest (96.5%). Additionally, CLIP averaged ~93% for racial classification and ~63% for age classification. Our use of evaluations to test for gender, race and age classification as well as denigration harms is simply to evaluate performance of the model across people and surface potential risks and not to demonstrate an endorsement/enthusiasm for such tasks. ## Feedback ### Where to send questions or comments about the model Please use [this Google Form](https://forms.gle/Uv7afRH5dvY34ZEs9)
SaulLu/test-model
55d26e0d133614cea32eedffe8857cee9c702a1e
2021-05-28T12:28:31.000Z
[ "pytorch", "albert", "pretraining", "transformers" ]
null
false
SaulLu
null
SaulLu/test-model
3
null
transformers
20,932
--- language: - - thumbnail: tags: - - - license: datasets: - - metrics: - - --- # sahajBERT News Category Classification ## Model description You can embed local or remote images using `![](...)` ## Intended uses & limitations #### How to use ```python # You can include sample code which will be formatted ``` #### Limitations and bias Provide examples of latent issues and potential remediations. ## Training data Describe the data you used to train the model. If you initialized it with pre-trained weights, add a link to the pre-trained model card or repository with description of the pre-training data. ## Training procedure ### Collaborative training procedure [here](https://huggingface.co/albertvillanova) ### Preprocessing, hardware used, hyperparameters... ## Eval results ### BibTeX entry and citation info ```bibtex @inproceedings{..., year={2020} } ```
SauravMaheshkar/bert-large-uncased-whole-word-masking-chaii
6a88e232e544a824a2c615a33d8c4e9964916b8d
2021-10-14T14:29:25.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
SauravMaheshkar
null
SauravMaheshkar/bert-large-uncased-whole-word-masking-chaii
3
null
transformers
20,933
Entry not found
SauravMaheshkar/clr-finetuned-xlm-roberta-base
b967aaa565ab786b014c9d1a1570acd005c21dff
2021-09-23T15:57:48.000Z
[ "pytorch", "xlm-roberta", "fill-mask", "dataset:Commonlit-Readibility", "transformers", "kaggle", "license:cc0-1.0", "autotrain_compatible" ]
fill-mask
false
SauravMaheshkar
null
SauravMaheshkar/clr-finetuned-xlm-roberta-base
3
null
transformers
20,934
--- thumbnail: https://github.com/SauravMaheshkar/CommonLit-Readibility/blob/main/assets/CommonLit%20-%20Big%20Banner.png?raw=true tags: - kaggle license: cc0-1.0 datasets: - Commonlit-Readibility --- ![](https://github.com/SauravMaheshkar/CommonLit-Readibility/blob/main/assets/CommonLit%20-%20Big%20Banner.png?raw=true) # FineTuning | **Architecture** | **Weights** | **Training Loss** | **Validation Loss** | |:-----------------------:|:---------------:|:----------------:|:----------------------:| | roberta-base | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-finetuned-roberta-base) | **0.641** | **0.4728** | | bert-base-uncased | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-finetuned-bert-base-uncased) | 0.6781 | 0.4977 | | albert-base | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-finetuned-albert-base) | 0.7119 | 0.5155 | | xlm-roberta-base | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-finetuned-xlm-roberta-base) | 0.7225 | 0.525 | | bert-large-uncased | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-finetuned-bert-large-uncased) | 0.7482 | 0.5161 | | albert-large | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-finetuned-albert-large) | 1.075 | 0.9921 | | roberta-large | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-finetuned-roberta-large) | 2.749 | 1.075 |
SauravMaheshkar/clr-pretrained-electra-base
542a5a7509e14499ff0333aaba9663a31f03c5ce
2021-09-23T15:57:58.000Z
[ "pytorch", "electra", "pretraining", "dataset:Commonlit-Readibility", "transformers", "kaggle", "license:cc0-1.0" ]
null
false
SauravMaheshkar
null
SauravMaheshkar/clr-pretrained-electra-base
3
null
transformers
20,935
--- thumbnail: https://github.com/SauravMaheshkar/CommonLit-Readibility/blob/main/assets/CommonLit%20-%20Big%20Banner.png?raw=true tags: - kaggle license: cc0-1.0 datasets: - Commonlit-Readibility metrics: - Perplexity --- ![](https://github.com/SauravMaheshkar/CommonLit-Readibility/blob/main/assets/CommonLit%20-%20Big%20Banner.png?raw=true) # PreTraining | **Architecture** | **Weights** | **PreTraining Loss** | **PreTraining Perplexity** | |:-----------------------:|:---------------:|:----------------:|:----------------------:| | roberta-base | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-pretrained-roberta-base) | **0.3488** | **3.992** | | bert-base-uncased | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-pretrained-bert-base-uncased) | 0.3909 | 6.122 | | electra-large | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-pretrained-electra-large) | 0.723 | 6.394 | | albert-base | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-pretrained-albert-base) | 0.7343 | 7.76 | | electra-small | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-pretrained-electra-small) | 0.9226 | 11.098 | | electra-base | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-pretrained-electra-base) | 0.9468 | 8.783 | | distilbert-base-uncased | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-pretrained-distilbert-base-uncased) | 1.082 | 7.963 |
SauravMaheshkar/distilbert-base-uncased-distilled-chaii
15f7be7d75493b00fd884e5953cbf6bbf7ac26c4
2021-10-14T12:53:25.000Z
[ "pytorch", "distilbert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
SauravMaheshkar
null
SauravMaheshkar/distilbert-base-uncased-distilled-chaii
3
null
transformers
20,936
Entry not found
SauravMaheshkar/roberta-base-chaii
ef1e6573dbb6be73c66ae1bfb1204d10d746773d
2021-10-14T12:35:50.000Z
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
SauravMaheshkar
null
SauravMaheshkar/roberta-base-chaii
3
null
transformers
20,937
Entry not found
SauravMaheshkar/xlm-multi-roberta-large-chaii
9b30328adb52ef090fc40310f2c43ee1ba0df935
2021-10-13T16:53:05.000Z
[ "pytorch", "xlm-roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
SauravMaheshkar
null
SauravMaheshkar/xlm-multi-roberta-large-chaii
3
null
transformers
20,938
Entry not found
SauravMaheshkar/xlm-roberta-large-chaii
8b185df2539988447b68dd93589b7003ffdb4d79
2021-10-14T06:15:38.000Z
[ "pytorch", "xlm-roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
SauravMaheshkar
null
SauravMaheshkar/xlm-roberta-large-chaii
3
null
transformers
20,939
Entry not found
Science-geek32/DialoGPT-small-doctor2.0
a89100ff07209031feffef9caf9e5f471c33925d
2021-10-19T23:18:32.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Science-geek32
null
Science-geek32/DialoGPT-small-doctor2.0
3
null
transformers
20,940
--- tags: - conversational --- 13th doctor model DialoGPT-small
ScottaStrong/DialogGPT-small-joshua
e69536475aeff7777bf7a0268e2f72c3d9c4e645
2021-06-16T21:40:45.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational", "license:mit" ]
conversational
false
ScottaStrong
null
ScottaStrong/DialogGPT-small-joshua
3
null
transformers
20,941
--- thumbnail: https://huggingface.co/front/thumbnails/dialogpt.png tags: - conversational license: mit --- # DialoGPT Trained on the Speech of a Game Character This is an instance of [microsoft/DialoGPT-medium](https://huggingface.co/microsoft/DialoGPT-medium) trained on a game character, Joshua from [The World Ends With You](https://en.wikipedia.org/wiki/The_World_Ends_with_You). The data comes from [a Kaggle game script dataset](https://www.kaggle.com/ruolinzheng/twewy-game-script). I built a Discord AI chatbot based on this model. [Check out my GitHub repo.](https://github.com/RuolinZheng08/twewy-discord-chatbot) Chat with the model: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("scottastrong/DialogGPT-small-joshua") model = AutoModelWithLMHead.from_pretrained("scottastrong/DialogGPT-small-joshua") # Let's chat for 4 lines for step in range(4): # encode the new user input, add the eos_token and return a tensor in Pytorch new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt') # print(new_user_input_ids) # append the new user input tokens to the chat history bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids # generated a response while limiting the total chat history to 1000 tokens, chat_history_ids = model.generate( bot_input_ids, max_length=200, pad_token_id=tokenizer.eos_token_id, no_repeat_ngram_size=3, do_sample=True, top_k=100, top_p=0.7, temperature=0.8 ) # pretty print last ouput tokens from bot print("JoshuaBot: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True))) ```
SebastianS/dummy-model
a27a33a00757c968f4a78cbfb14cd3fd009e3d82
2021-12-24T16:44:54.000Z
[ "pytorch", "camembert", "fill-mask", "fr", "dataset:oscar", "transformers", "license:mit", "autotrain_compatible" ]
fill-mask
false
SebastianS
null
SebastianS/dummy-model
3
null
transformers
20,942
--- language: fr license: mit datasets: - oscar --- # dummy this is only a dummy model originally based on RoBERT model ## intended uses and limitations not intended to be used, same limitations as camembert-base model ## how to use it cant be used (lol) ## training data French subcorpus of the newly available multilingual corpus OSCAR ## training procedure evaluated on multiple downstream tasks ## variable and metrics not explicitly stated ## evaluation metrics maybe OSCAR ## evaluation results not explicitly stated
Sebu/dummy-model
c90b1a5be9650ff6b530f761e3c3092d35ddb4aa
2022-01-05T13:10:04.000Z
[ "pytorch", "camembert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Sebu
null
Sebu/dummy-model
3
null
transformers
20,943
Entry not found
Seongkyu/bert-base-cased-finetuned-squad
d373d005871586c090254b955a1a03b7ce0f225d
2021-12-07T09:52:54.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
Seongkyu
null
Seongkyu/bert-base-cased-finetuned-squad
3
null
transformers
20,944
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-base-cased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.0458 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.0179 | 1.0 | 6194 | 0.9548 | | 0.7277 | 2.0 | 12388 | 0.9717 | | 0.507 | 3.0 | 18582 | 1.0458 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
ShengdingHu/bitfit_t5-base_cola
5a9acee8a6121d379b50eaf78586e8edb1ad2afb
2022-02-23T14:03:47.000Z
[ "pytorch", "transformers" ]
null
false
ShengdingHu
null
ShengdingHu/bitfit_t5-base_cola
3
null
transformers
20,945
Entry not found
ShengdingHu/lora_t5-base_superglue-wsc.fixed
8eb18d7e30b6f05fc14a519b1d8d8cd19422091f
2022-02-02T10:34:47.000Z
[ "pytorch", "transformers" ]
null
false
ShengdingHu
null
ShengdingHu/lora_t5-base_superglue-wsc.fixed
3
null
transformers
20,946
Entry not found
ShengdingHu/superglue-boolq
619a41680e9b2d69818e3edb9476769f8a9934a9
2022-05-13T09:37:09.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
ShengdingHu
null
ShengdingHu/superglue-boolq
3
null
transformers
20,947
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: superglue-boolq results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # superglue-boolq This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2098 - Accuracy: 76.7584 - Average Metrics: 76.7584 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Average Metrics | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------------:| | No log | 0.34 | 100 | 0.2293 | 73.2722 | 73.2722 | | No log | 0.68 | 200 | 0.2098 | 76.7584 | 76.7584 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.2+cu111 - Datasets 1.17.0 - Tokenizers 0.12.1
ShengdingHu/superglue-wic
f6f92c9df309199d81798af821de0ce57a0ad8c8
2022-02-02T10:30:20.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
ShengdingHu
null
ShengdingHu/superglue-wic
3
null
transformers
20,948
Entry not found
Shushant/ContaminationQuestionAnswering
0922b2a2d2dabc5fab30480e126f43cb0e8ba8d4
2022-01-14T15:21:51.000Z
[ "pytorch", "distilbert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
Shushant
null
Shushant/ContaminationQuestionAnswering
3
null
transformers
20,949
Entry not found
Sid51/Chan
0569544608d8a801c85ff8f08dbf94f816224764
2021-06-10T20:30:33.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
Sid51
null
Sid51/Chan
3
null
transformers
20,950
Entry not found
Simovod/simRU
4c6efb22fdfcabdc7383d560c148b37d219795ba
2021-08-06T13:45:07.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
Simovod
null
Simovod/simRU
3
null
transformers
20,951
Entry not found
Siyris/DialoGPT-medium-SIY
8b960785c1d14bc04857c70b991ea140ce5d0d03
2021-07-05T06:55:37.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational", "license:mit" ]
conversational
false
Siyris
null
Siyris/DialoGPT-medium-SIY
3
null
transformers
20,952
--- thumbnail: https://huggingface.co/front/thumbnails/dialogpt.png tags: - conversational license: mit --- # DialoGPT Trained on a customized various spiritual texts and mixed with various different character personalities. This is an instance of [microsoft/DialoGPT-medium](https://huggingface.co/microsoft/DialoGPT-medium) trained on the energy complex known as Ra. Some text has been changed from the original with the intention of making it fit our discord server better. I've also trained it on various channeling experiences. I'm testing mixing this dataset with character from popular shows with the intention of creating a more diverse dialogue. I built a Discord AI chatbot based on this model for internal use within Siyris, Inc. Chat with the model: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("Siyris/DialoGPT-medium-SIY") model = AutoModelWithLMHead.from_pretrained("Siyris/DialoGPT-medium-SIY") # Let's chat for 4 lines for step in range(4): # encode the new user input, add the eos_token and return a tensor in Pytorch new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt') # print(new_user_input_ids) # append the new user input tokens to the chat history bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids # generated a response while limiting the total chat history to 1000 tokens, chat_history_ids = model.generate( bot_input_ids, max_length=200, pad_token_id=tokenizer.eos_token_id, no_repeat_ngram_size=3, do_sample=True, top_k=100, top_p=0.7, temperature=0.8 ) # pretty print last ouput tokens from bot print("SIY: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True))) ```
Siyris/SIY
f7fc21dc57868be62bf370d4a9fca88dc66d4005
2021-06-28T08:25:52.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational", "license:mit" ]
conversational
false
Siyris
null
Siyris/SIY
3
null
transformers
20,953
--- thumbnail: https://huggingface.co/front/thumbnails/dialogpt.png tags: - conversational license: mit --- # DialoGPT Trained on a customized version of The Law of One. This is an instance of [microsoft/DialoGPT-medium](https://huggingface.co/microsoft/DialoGPT-medium) trained on the energy complex known as Ra. Some text has been changed from the original with the intention of making it fit our discord server better. I built a Discord AI chatbot based on this model for internal use within Siyris, Inc. Chat with the model: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("Siyris/SIY") model = AutoModelWithLMHead.from_pretrained("Siyris/SIY") # Let's chat for 4 lines for step in range(4): # encode the new user input, add the eos_token and return a tensor in Pytorch new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt') # print(new_user_input_ids) # append the new user input tokens to the chat history bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids # generated a response while limiting the total chat history to 1000 tokens, chat_history_ids = model.generate( bot_input_ids, max_length=200, pad_token_id=tokenizer.eos_token_id, no_repeat_ngram_size=3, do_sample=True, top_k=100, top_p=0.7, temperature=0.8 ) # pretty print last ouput tokens from bot print("SIY: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True))) ```
SmokeAndAsh/DialoGPT-small-sokka
c7ff38553fc27e5ca13d58fdb83ecdcbbf00dde9
2022-02-16T01:23:43.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
SmokeAndAsh
null
SmokeAndAsh/DialoGPT-small-sokka
3
null
transformers
20,954
--- tags: - conversational --- # Sokka DialoGPT Model
Souranil/VAE
abc07b4b0021d2c1805a6d099a82af670ffa668a
2022-02-18T11:32:27.000Z
[ "pytorch", "transformers", "license:apache-2.0" ]
null
false
Souranil
null
Souranil/VAE
3
null
transformers
20,955
--- license: apache-2.0 --- ### VAE with Pytorch-Lightning This is inspired from vae-playground. This is an example where we test out vae and conv_vae models with multiple datasets like MNIST, celeb-a and MNIST-Fashion datasets. This also comes with an example streamlit app & deployed at huggingface. ## Model Training You can train the VAE models by using `train.py` and editing the `config.yaml` file. \ Hyperparameters to change are: - model_type [vae|conv_vae] - alpha - hidden_dim - dataset [celeba|mnist|fashion-mnist] There are other configurations that can be changed if required like height, width, channels etc. It also contains the pytorch-lightning configs as well.
Spectrox/emmybot
f34931a9b74f61d76afda71f888fde451a8f19f2
2021-12-29T02:21:53.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Spectrox
null
Spectrox/emmybot
3
null
transformers
20,956
--- tags: - conversational --- #EmmyBot
Stabley/DialoGPT-small-evelynn
984c0a78572ab7afda0918d761d51679395df35f
2021-08-27T21:50:34.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Stabley
null
Stabley/DialoGPT-small-evelynn
3
null
transformers
20,957
--- tags: - conversational --- # Evelynn DialoGPT Model
StephennFernandes/XLS-R-300m-marathi
e211ad503bd78fda2eb24f669233ef9ba911ff8d
2022-02-11T04:09:56.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
StephennFernandes
null
StephennFernandes/XLS-R-300m-marathi
3
null
transformers
20,958
Entry not found
Sunbird/sunbird-en-mul
0d156d1bfe552f72643241c16484b061cbd29327
2022-03-30T13:30:30.000Z
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Sunbird
null
Sunbird/sunbird-en-mul
3
null
transformers
20,959
Entry not found
SvyatoslavA/model_awara_text
07310895936b13f5257b4cd004acec2333f3f61d
2022-01-20T10:58:16.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
SvyatoslavA
null
SvyatoslavA/model_awara_text
3
null
transformers
20,960
Entry not found
T-Systems-onsite/cross-de-ru-roberta-sentence-transformer
3b8059fb109c1825f2ee6ed0e8c2d0c2a6a76a62
2022-06-28T19:56:26.000Z
[ "pytorch", "tf", "xlm-roberta", "feature-extraction", "transformers" ]
feature-extraction
false
T-Systems-onsite
null
T-Systems-onsite/cross-de-ru-roberta-sentence-transformer
3
null
transformers
20,961
Entry not found
T-Systems-onsite/cross-en-de-it-roberta-sentence-transformer
f544fa4d18680d91c5bc1e48ccb706f4777274b0
2022-06-28T19:56:54.000Z
[ "pytorch", "tf", "xlm-roberta", "feature-extraction", "transformers" ]
feature-extraction
false
T-Systems-onsite
null
T-Systems-onsite/cross-en-de-it-roberta-sentence-transformer
3
null
transformers
20,962
Entry not found
T-Systems-onsite/cross-en-pl-it-roberta-sentence-transformer
206c666c8a686962de41fc13fb1dad7373825860
2020-12-29T07:30:25.000Z
[ "pytorch", "xlm-roberta", "feature-extraction", "transformers" ]
feature-extraction
false
T-Systems-onsite
null
T-Systems-onsite/cross-en-pl-it-roberta-sentence-transformer
3
null
transformers
20,963
Entry not found
T-Systems-onsite/cross-en-pl-roberta-sentence-transformer
68eedc16086a239b743ffd64821a6facc35abbc8
2022-06-28T19:42:03.000Z
[ "pytorch", "tf", "xlm-roberta", "feature-extraction", "transformers" ]
feature-extraction
false
T-Systems-onsite
null
T-Systems-onsite/cross-en-pl-roberta-sentence-transformer
3
null
transformers
20,964
Entry not found
T-Systems-onsite/cross-en-pt-roberta-sentence-transformer
5186195ca2fb7aaf26f29ee82d44218bb40347b4
2021-04-06T19:11:51.000Z
[ "pytorch", "xlm-roberta", "feature-extraction", "transformers" ]
feature-extraction
false
T-Systems-onsite
null
T-Systems-onsite/cross-en-pt-roberta-sentence-transformer
3
null
transformers
20,965
Entry not found
Taekyoon/dpr_context
2e7c191f434760ca8228ed333e252a5b9c070f44
2022-02-06T13:03:59.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
Taekyoon
null
Taekyoon/dpr_context
3
null
transformers
20,966
Entry not found
Taekyoon/dpr_question
3da06bc6ead697241e5e50e45e06a6ee5f7c028f
2022-02-06T13:02:29.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
Taekyoon
null
Taekyoon/dpr_question
3
null
transformers
20,967
Entry not found
TalTechNLP/xls-r-300m-et
a1a327b54c3ecbb4750ce8c75aa7ee996030753f
2022-05-18T09:57:20.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "et", "transformers", "audio", "hf-asr-leaderboard", "license:cc-by-4.0", "model-index" ]
automatic-speech-recognition
false
TalTechNLP
null
TalTechNLP/xls-r-300m-et
3
1
transformers
20,968
--- license: cc-by-4.0 tags: - audio - automatic-speech-recognition - hf-asr-leaderboard language: et model-index: - name: xls-r-300m-et results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice type: common_voice args: et metrics: - name: Test WER type: wer value: 12.520395591222402 - name: Test CER type: cer value: 2.7091152438624897 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: et metrics: - name: Test WER type: wer value: 13.38447882323104 - name: Test CER type: cer value: 2.9816686199500255 --- # XLS-R-300m-ET This is a XLS-R-300M model [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) finetuned on around 800 hours of diverse Estonian data. ## Model description This is a general-purpose Estonian ASR model trained in the Lab of Language Technology at TalTech. It consists of only the CTC-based end-to-end model, no language model is currently provided. ## Intended uses & limitations This model is intended for general-purpose speech recognition, such as broadcast conversations, interviews, talks, etc. ## How to use TODO #### Limitations and bias Since this model was trained on mostly broadcast speech and texts from the web, it might have problems correctly decoding the following: * Speech containing technical and other domain-specific terms * Children's speech * Non-native speech * Speech recorded under very noisy conditions or with a microphone far from the speaker * Very spontaneous and overlapping speech ## Training data Acoustic training data: | Type | Amount (h) | |-----------------------|:------:| | Broadcast speech | 591 | | Spontaneous speech | 53 | | Elderly speech corpus | 53 | | Talks, lectures | 49 | | Parliament speeches | 31 | | *Total* | *761* | ## Training procedure Finetuned using Fairseq. ## Evaluation results ### WER |Dataset | WER | |---|---| | jutusaated.devset | 7.9 | | jutusaated.testset | 6.1 | | Common Voice 6.1 | 12.5 | | Common Voice 8.0 | 13.4 |
Tarang1998/autonlp-pegasus-21664560
d58ee350774d83fe985d567c84e4a04e850db564
2021-10-19T05:22:41.000Z
[ "pytorch", "pegasus", "text2text-generation", "unk", "dataset:Tarang1998/autonlp-data-pegasus", "transformers", "autonlp", "co2_eq_emissions", "autotrain_compatible" ]
text2text-generation
false
Tarang1998
null
Tarang1998/autonlp-pegasus-21664560
3
null
transformers
20,969
--- tags: autonlp language: unk widget: - text: "I love AutoNLP 🤗" datasets: - Tarang1998/autonlp-data-pegasus co2_eq_emissions: 5.680803958729511 --- # Model Trained Using AutoNLP - Problem type: Summarization - Model ID: 21664560 - CO2 Emissions (in grams): 5.680803958729511 ## Validation Metrics - Loss: 1.7488420009613037 - Rouge1: 38.1491 - Rouge2: 18.6257 - RougeL: 26.8448 - RougeLsum: 32.2433 - Gen Len: 49.0 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/Tarang1998/autonlp-pegasus-21664560 ```
TeamAlerito/gti-coco-en
5319378f7035b722c785764e1eaaf9af7941945c
2021-11-17T14:44:54.000Z
[ "pytorch", "tf", "jax", "tensorboard", "vision-encoder-decoder", "generic", "image-classification" ]
image-classification
false
TeamAlerito
null
TeamAlerito/gti-coco-en
3
null
generic
20,970
--- tags: - image-classification library_name: generic --- ## Example The model is by no means a state-of-the-art model, but nevertheless produces reasonable image captioning results. It was mainly fine-tuned as a proof-of-concept for the 🤗 FlaxVisionEncoderDecoder Framework. The model can be used as follows: **In PyTorch** ```python import torch import requests from PIL import Image from transformers import ViTFeatureExtractor, AutoTokenizer, VisionEncoderDecoderModel loc = "ydshieh/vit-gpt2-coco-en" feature_extractor = ViTFeatureExtractor.from_pretrained(loc) tokenizer = AutoTokenizer.from_pretrained(loc) model = VisionEncoderDecoderModel.from_pretrained(loc) model.eval() def predict(image): pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values with torch.no_grad(): output_ids = model.generate(pixel_values, max_length=16, num_beams=4, return_dict_in_generate=True).sequences preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True) preds = [pred.strip() for pred in preds] return preds # We will verify our results on an image of cute cats url = "http://images.cocodataset.org/val2017/000000039769.jpg" with Image.open(requests.get(url, stream=True).raw) as image: preds = predict(image) print(preds) # should produce # ['a cat laying on top of a couch next to another cat'] ``` **In Flax** ```python import jax import requests from PIL import Image from transformers import ViTFeatureExtractor, AutoTokenizer, FlaxVisionEncoderDecoderModel loc = "ydshieh/vit-gpt2-coco-en" feature_extractor = ViTFeatureExtractor.from_pretrained(loc) tokenizer = AutoTokenizer.from_pretrained(loc) model = FlaxVisionEncoderDecoderModel.from_pretrained(loc) gen_kwargs = {"max_length": 16, "num_beams": 4} # This takes sometime when compiling the first time, but the subsequent inference will be much faster @jax.jit def generate(pixel_values): output_ids = model.generate(pixel_values, **gen_kwargs).sequences return output_ids def predict(image): pixel_values = feature_extractor(images=image, return_tensors="np").pixel_values output_ids = generate(pixel_values) preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True) preds = [pred.strip() for pred in preds] return preds # We will verify our results on an image of cute cats url = "http://images.cocodataset.org/val2017/000000039769.jpg" with Image.open(requests.get(url, stream=True).raw) as image: preds = predict(image) print(preds) # should produce # ['a cat laying on top of a couch next to another cat'] ```
TheLongSentance/t5_mimic_final_chkpnt15000
eeb985dffbefedf790c93f1d4ed05f300701c2f8
2021-09-16T11:10:41.000Z
[ "pytorch", "t5", "feature-extraction", "transformers" ]
feature-extraction
false
TheLongSentance
null
TheLongSentance/t5_mimic_final_chkpnt15000
3
null
transformers
20,971
Entry not found
ThePixOne/retBERT
bcd505e5f1c64d2e4ffd2017e9f15f94091b409f
2022-01-11T18:24:24.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
ThePixOne
null
ThePixOne/retBERT
3
1
transformers
20,972
BERT finetuned on wallstreetbets subreddit
Tito/T5small_model3_lr_2e-3-finetuned-en-to-de
82f7e4b6bdd58b6db90ea01a8d7010190c6ff096
2021-12-07T01:01:34.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Tito
null
Tito/T5small_model3_lr_2e-3-finetuned-en-to-de
3
null
transformers
20,973
Entry not found
Tommi/wav2vec2-large-xlsr-53-finnish
ce901966622ec09616429d502fe009328046761c
2021-07-05T17:57:47.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "fi", "dataset:common_voice", "dataset:CSS10", "dataset:Finnish parliament session 2", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Tommi
null
Tommi/wav2vec2-large-xlsr-53-finnish
3
null
transformers
20,974
--- language: fi datasets: - common_voice - CSS10 - Finnish parliament session 2 metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: Finnish XLSR Wav2Vec2 Large 53 results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice fi type: common_voice args: fi metrics: - name: Test WER type: wer value: 35.43 --- # Wav2Vec2-Large-XLSR-53-Finnish Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Finnish using the [Common Voice](https://huggingface.co/datasets/common_voice), [CSS10](https://www.kaggle.com/bryanpark/finnish-single-speaker-speech-dataset) and [Finnish parliament session 2](https://b2share.eudat.eu/records/4df422d631544ce682d6af1d4714b2d4) datasets. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import numpy as np import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "fi", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("Tommi/wav2vec2-large-xlsr-53-finnish") model = Wav2Vec2ForCTC.from_pretrained("Tommi/wav2vec2-large-xlsr-53-finnish") resampler = lambda sr, y: librosa.resample(y.squeeze(), sr, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(sampling_rate, speech_array.numpy()).squeeze() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Finnish test data of Common Voice. ```python import librosa import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "fi", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("Tommi/wav2vec2-large-xlsr-53-finnish") model = Wav2Vec2ForCTC.from_pretrained("Tommi/wav2vec2-large-xlsr-53-finnish") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\"\%\'\"\�\'\...\…\–\é]' resampler = lambda sr, y: librosa.resample(y.numpy().squeeze(), sr, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(sampling_rate, speech_array).squeeze() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the audio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 35.43 % ## Training The Common Voice `train`, `validation`, and `other` datasets were used for training as well as CSS10 and Finnish parliament session 2 The script used for training can be found [here](...) # TODO: fill in a link to your training script here. If you trained your model in a colab, simply fill in the link here. If you trained the model locally, it would be great if you could upload the training script on github and paste the link here.
TransQuest/microtransquest-en_cs-it-smt
5efc48e7d615d654b9c2a566be669ee0f4b8cc04
2021-06-04T08:20:15.000Z
[ "pytorch", "xlm-roberta", "token-classification", "en-cs", "transformers", "Quality Estimation", "microtransquest", "license:apache-2.0", "autotrain_compatible" ]
token-classification
false
TransQuest
null
TransQuest/microtransquest-en_cs-it-smt
3
null
transformers
20,975
--- language: en-cs tags: - Quality Estimation - microtransquest license: apache-2.0 --- # TransQuest: Translation Quality Estimation with Cross-lingual Transformers The goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level. With TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in [WMT 2020](http://www.statmt.org/wmt20/quality-estimation-task.html). TransQuest outperforms current open-source quality estimation frameworks such as [OpenKiwi](https://github.com/Unbabel/OpenKiwi) and [DeepQuest](https://github.com/sheffieldnlp/deepQuest). ## Features - Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment. - Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps. - Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. - Pre-trained quality estimation models for fifteen language pairs are available in [HuggingFace.](https://huggingface.co/TransQuest) ## Installation ### From pip ```bash pip install transquest ``` ### From Source ```bash git clone https://github.com/TharinduDR/TransQuest.git cd TransQuest pip install -r requirements.txt ``` ## Using Pre-trained Models ```python from transquest.algo.word_level.microtransquest.run_model import MicroTransQuestModel import torch model = MicroTransQuestModel("xlmroberta", "TransQuest/microtransquest-en_cs-it-smt", labels=["OK", "BAD"], use_cuda=torch.cuda.is_available()) source_tags, target_tags = model.predict([["if not , you may not be protected against the diseases . ", "ja tā nav , Jūs varat nepasargāt no slimībām . "]]) ``` ## Documentation For more details follow the documentation. 1. **[Installation](https://tharindudr.github.io/TransQuest/install/)** - Install TransQuest locally using pip. 2. **Architectures** - Checkout the architectures implemented in TransQuest 1. [Sentence-level Architectures](https://tharindudr.github.io/TransQuest/architectures/sentence_level_architectures/) - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation. 2. [Word-level Architecture](https://tharindudr.github.io/TransQuest/architectures/word_level_architecture/) - We have released MicroTransQuest to perform word level quality estimation. 3. **Examples** - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks. 1. [Sentence-level Examples](https://tharindudr.github.io/TransQuest/examples/sentence_level_examples/) 2. [Word-level Examples](https://tharindudr.github.io/TransQuest/examples/word_level_examples/) 4. **Pre-trained Models** - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level 1. [Sentence-level Models](https://tharindudr.github.io/TransQuest/models/sentence_level_pretrained/) 2. [Word-level Models](https://tharindudr.github.io/TransQuest/models/word_level_pretrained/) 5. **[Contact](https://tharindudr.github.io/TransQuest/contact/)** - Contact us for any issues with TransQuest ## Citations If you are using the word-level architecture, please consider citing this paper which is accepted to [ACL 2021](https://2021.aclweb.org/). ```bash @InProceedings{ranasinghe2021, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {An Exploratory Analysis of Multilingual Word Level Quality Estimation with Cross-Lingual Transformers}, booktitle = {Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics}, year = {2021} } ``` If you are using the sentence-level architectures, please consider citing these papers which were presented in [COLING 2020](https://coling2020.org/) and in [WMT 2020](http://www.statmt.org/wmt20/) at EMNLP 2020. ```bash @InProceedings{transquest:2020a, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest: Translation Quality Estimation with Cross-lingual Transformers}, booktitle = {Proceedings of the 28th International Conference on Computational Linguistics}, year = {2020} } ``` ```bash @InProceedings{transquest:2020b, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest at WMT2020: Sentence-Level Direct Assessment}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, year = {2020} } ```
Transabrar/distilroberta-base-finetuned-abr
3e78d62994b639cd3caa47bcd7853812015a8cf3
2021-10-07T17:41:49.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Transabrar
null
Transabrar/distilroberta-base-finetuned-abr
3
null
transformers
20,976
Entry not found
Transabrar/scibert_scivocab_uncased-finetuned-scibero
f067206f3d34765781cc2be9b96ce57266dfd2be
2021-10-16T11:44:09.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Transabrar
null
Transabrar/scibert_scivocab_uncased-finetuned-scibero
3
null
transformers
20,977
Entry not found
TuhinColumbia/Creativity1
033dee531454e52b02e5daa1f88ab9862c77ba02
2021-11-02T16:51:54.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
TuhinColumbia
null
TuhinColumbia/Creativity1
3
1
transformers
20,978
Entry not found
TuhinColumbia/romancelanguagepoetry
2711ff6aff31687e62716331ef8589f93662639a
2021-09-10T14:42:44.000Z
[ "pytorch", "mbart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
TuhinColumbia
null
TuhinColumbia/romancelanguagepoetry
3
null
transformers
20,979
Entry not found
TurkuNLP/wikibert-base-ar-cased
0005da9e01c0d747f76546554d7f044e4214dd5c
2020-05-24T19:58:38.000Z
[ "pytorch", "transformers" ]
null
false
TurkuNLP
null
TurkuNLP/wikibert-base-ar-cased
3
null
transformers
20,980
Entry not found
TurkuNLP/wikibert-base-fa-cased
00e0171bc5965005c491b1ecd737bdc974e9b59f
2020-05-24T19:59:47.000Z
[ "pytorch", "transformers" ]
null
false
TurkuNLP
null
TurkuNLP/wikibert-base-fa-cased
3
null
transformers
20,981
Entry not found
TurkuNLP/wikibert-base-fr-cased
47307f3cc0c46085b9f6270d9dd4c09c1364ac18
2020-05-24T19:59:57.000Z
[ "pytorch", "transformers" ]
null
false
TurkuNLP
null
TurkuNLP/wikibert-base-fr-cased
3
null
transformers
20,982
Entry not found
TurkuNLP/wikibert-base-gl-cased
273929cd9f7ca50102fbc5efdbe9a2f4e3a5f4ac
2020-05-24T20:00:08.000Z
[ "pytorch", "transformers" ]
null
false
TurkuNLP
null
TurkuNLP/wikibert-base-gl-cased
3
null
transformers
20,983
Entry not found
TurkuNLP/wikibert-base-he-cased
6e5df214ec504a104cb63a7e51929d2fb69426b4
2020-05-24T20:00:13.000Z
[ "pytorch", "transformers" ]
null
false
TurkuNLP
null
TurkuNLP/wikibert-base-he-cased
3
null
transformers
20,984
Entry not found
TurkuNLP/wikibert-base-id-cased
3ce0232ddada3b45b41a925e7d9ebaad61419f05
2020-05-24T20:00:42.000Z
[ "pytorch", "transformers" ]
null
false
TurkuNLP
null
TurkuNLP/wikibert-base-id-cased
3
null
transformers
20,985
Entry not found
TurkuNLP/wikibert-base-lv-cased
78331b5aa67c5af36d93b78478ceb5c08a551bf0
2020-05-24T20:01:02.000Z
[ "pytorch", "transformers" ]
null
false
TurkuNLP
null
TurkuNLP/wikibert-base-lv-cased
3
null
transformers
20,986
Entry not found
TurkuNLP/wikibert-base-ru-cased
9aa8062f53695b5b3512cd52c11ca367c860397f
2020-05-24T20:01:32.000Z
[ "pytorch", "transformers" ]
null
false
TurkuNLP
null
TurkuNLP/wikibert-base-ru-cased
3
null
transformers
20,987
Entry not found
TurkuNLP/wikibert-base-sv-cased
e0983169149f4d3accf4983c6a6660ae0bbc28ee
2020-05-24T20:01:54.000Z
[ "pytorch", "transformers" ]
null
false
TurkuNLP
null
TurkuNLP/wikibert-base-sv-cased
3
null
transformers
20,988
Entry not found
TurkuNLP/wikibert-base-ta-cased
c70a68ba6e35a23db9d517373e39cc15a594b5e6
2020-05-24T20:02:00.000Z
[ "pytorch", "transformers" ]
null
false
TurkuNLP
null
TurkuNLP/wikibert-base-ta-cased
3
null
transformers
20,989
Entry not found
TypicaAI/magbert-lm
e51fa2a7aa942e9994560b3a1de772534e27df40
2020-10-01T23:18:10.000Z
[ "pytorch", "camembert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
TypicaAI
null
TypicaAI/magbert-lm
3
null
transformers
20,990
Entry not found
Unbabel/XLM-R-10L
23502d7d30acbb0ecb1d50dc5a2d9ef8a80714be
2022-01-05T19:49:00.000Z
[ "pytorch", "xlm-roberta", "feature-extraction", "transformers" ]
feature-extraction
false
Unbabel
null
Unbabel/XLM-R-10L
3
null
transformers
20,991
Entry not found
Unbabel/XLM-R-15L
b10807c8ddea27bb524283b0c226ae4270de1151
2022-01-05T20:25:41.000Z
[ "pytorch", "xlm-roberta", "feature-extraction", "transformers" ]
feature-extraction
false
Unbabel
null
Unbabel/XLM-R-15L
3
null
transformers
20,992
Entry not found
Unbabel/XLM-R-16L
ead530bb756405648ff0377db729b3c46f4a01fd
2022-01-05T20:33:46.000Z
[ "pytorch", "xlm-roberta", "feature-extraction", "transformers" ]
feature-extraction
false
Unbabel
null
Unbabel/XLM-R-16L
3
null
transformers
20,993
Entry not found
Unbabel/XLM-R-17L
9fbaed635f229d1a2a409b30b72bf080b6bfd9b8
2022-01-05T20:41:37.000Z
[ "pytorch", "xlm-roberta", "feature-extraction", "transformers" ]
feature-extraction
false
Unbabel
null
Unbabel/XLM-R-17L
3
null
transformers
20,994
Entry not found
Unbabel/XLM-R-19L
a6eecc174d0a520cd580537c8df54b8498b2f62e
2022-01-05T20:57:05.000Z
[ "pytorch", "xlm-roberta", "feature-extraction", "transformers" ]
feature-extraction
false
Unbabel
null
Unbabel/XLM-R-19L
3
null
transformers
20,995
Entry not found
Unbabel/XLM-R-2L
e17ec1c317c998dc63d95794efa4dcadeddffb59
2022-01-05T18:57:53.000Z
[ "pytorch", "xlm-roberta", "feature-extraction", "transformers" ]
feature-extraction
false
Unbabel
null
Unbabel/XLM-R-2L
3
null
transformers
20,996
Entry not found
Unbabel/XLM-R-3L
2bef21606b5c93183bf1bf67f9b059dcd018391f
2022-01-05T19:05:46.000Z
[ "pytorch", "xlm-roberta", "feature-extraction", "transformers" ]
feature-extraction
false
Unbabel
null
Unbabel/XLM-R-3L
3
null
transformers
20,997
Entry not found
Unbabel/XLM-R-7L
c5c15da0298f597114a09172dc9fdad8d9ef9275
2022-01-05T19:28:54.000Z
[ "pytorch", "xlm-roberta", "feature-extraction", "transformers" ]
feature-extraction
false
Unbabel
null
Unbabel/XLM-R-7L
3
null
transformers
20,998
Entry not found
Unbabel/XLM-R-8L
dcc4396ecaff0c35795f49792ee7368881268237
2022-01-05T19:35:20.000Z
[ "pytorch", "xlm-roberta", "feature-extraction", "transformers" ]
feature-extraction
false
Unbabel
null
Unbabel/XLM-R-8L
3
null
transformers
20,999
Entry not found