modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
WarrenK-Design/DialoGPT-small-Rick
84ad795d6e5544687a3ecd23121b2a29b28e4783
2021-08-31T16:30:11.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
WarrenK-Design
null
WarrenK-Design/DialoGPT-small-Rick
3
null
transformers
21,000
--- tags: - conversational --- # Rick Sanchez DialoGPT Model
WikinewsSum/t5-base-multi-fr-wiki-news
0b828755a3b1274e7b8c122cc4ecc4c16df5b289
2021-06-23T11:50:37.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
WikinewsSum
null
WikinewsSum/t5-base-multi-fr-wiki-news
3
null
transformers
21,001
Entry not found
Wilson2021/bert_cn_finetuning_model01
36e3513d238e3f70319ffd808fc394ac9932ebb8
2021-11-05T05:52:43.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Wilson2021
null
Wilson2021/bert_cn_finetuning_model01
3
null
transformers
21,002
Entry not found
XSY/t5-small-finetuned-xsum
04fce666251f48a4c444c2e335a8f39bd745484c
2021-11-09T13:40:46.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:xsum", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
XSY
null
XSY/t5-small-finetuned-xsum
3
null
transformers
21,003
这个模型是根据这个一步一步完成的,如果想自己微调,请参考https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/summarization.ipynb This model is completed step by step according to this, if you want to fine-tune yourself, please refer to https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/summarization.ipynb --- license: apache-2.0 tags: - generated_from_trainer datasets: - xsum metrics: - rouge model-index: - name: t5-small-finetuned-xsum results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: xsum type: xsum args: default metrics: - name: Rouge1 type: rouge value: 28.6901 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xsum dataset. It achieves the following results on the evaluation set: - Loss: 2.4500 - Rouge1: 28.6901 - Rouge2: 8.0102 - Rougel: 22.6087 - Rougelsum: 22.6105 - Gen Len: 18.824 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 2.6799 | 1.0 | 25506 | 2.4500 | 28.6901 | 8.0102 | 22.6087 | 22.6105 | 18.824 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
XiaoqiJiao/TinyBERT_General_4L_312D
f42680cdc19ca7fe70e8a490843f7c80f0247fbb
2020-09-02T03:37:19.000Z
[ "pytorch", "transformers" ]
null
false
XiaoqiJiao
null
XiaoqiJiao/TinyBERT_General_4L_312D
3
null
transformers
21,004
Entry not found
XiaoqiJiao/TinyBERT_General_6L_768D
9b5f17d2421503291c9177c903fc27872a8079d7
2020-09-02T03:40:56.000Z
[ "pytorch", "transformers" ]
null
false
XiaoqiJiao
null
XiaoqiJiao/TinyBERT_General_6L_768D
3
null
transformers
21,005
Entry not found
YusufSahin99/IFIS_ZORK_AI_FANTASY
4e9c77b22c5ba06a7f59abd616ba7bb928e6e158
2021-07-14T13:18:10.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:mit" ]
text-generation
false
YusufSahin99
null
YusufSahin99/IFIS_ZORK_AI_FANTASY
3
null
transformers
21,006
--- license: mit tags: - generated_from_trainer model_index: - name: IFIS_ZORK_AI_FANTASY results: - task: name: Causal Language Modeling type: text-generation --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # IFIS_ZORK_AI_FANTASY This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unkown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.8.2 - Pytorch 1.9.0+cu102 - Tokenizers 0.10.3
Yves/wav2vec2-large-xlsr-53-swiss-german
bc71dc396ea481549d66c37ea4d6f310d5b52d54
2021-07-05T18:09:03.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "sg", "dataset:Yves/fhnw_swiss_parliament", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "PyTorch", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Yves
null
Yves/wav2vec2-large-xlsr-53-swiss-german
3
null
transformers
21,007
--- language: sg datasets: - Yves/fhnw_swiss_parliament metrics: - wer tags: - audio - speech - wav2vec2 - sg - automatic-speech-recognition - speech - xlsr-fine-tuning-week - PyTorch license: apache-2.0 model-index: - name: Yves XLSR Wav2Vec2 Large 53 Swiss German results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Yves/fhnw_swiss_parliament type: Yves/fhnw_swiss_parliament metrics: - name: Test WER type: wer value: NA% --- # wav2vec2-large-xlsr-53-swiss-german Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Swiss German trying to achieve satisfactory Swiss-German to German transcriptions ## Dataset Detailed information about the dataset that the model has been trained and validated with is available on [Yves/fhnw_swiss_parliament](https://huggingface.co/datasets/Yves/fhnw_swiss_parliament) ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("Yves/fhnw_swiss_parliament", data_dir="swiss_parliament", split="validation") processor = Wav2Vec2Processor.from_pretrained("Yves/wav2vec2-large-xlsr-53-swiss-german") model = Wav2Vec2ForCTC.from_pretrained("Yves/wav2vec2-large-xlsr-53-swiss-german").cuda() resampler = torchaudio.transforms.Resample(48_000, 16_000) def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.cuda(), attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"]) ``` ## Evaluation ```python import torchaudio from datasets import load_dataset, load_metric from transformers import ( Wav2Vec2ForCTC, Wav2Vec2Processor, ) import torch import re import sys import csv model_name = "Yves/wav2vec2-large-xlsr-53-swiss-german" device = "cuda" chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\_\²\…\˟\&\+\[\]\(\−\–\)\›\»\‹\@\«\*\ʼ\/\°\'\'\’\'̈]' completed_iterations = 0 eval_batch_size = 16 model = Wav2Vec2ForCTC.from_pretrained(model_name).to(device) processor = Wav2Vec2Processor.from_pretrained(model_name) ds = load_dataset("Yves/fhnw_swiss_parliament", data_dir="container_0/swiss_parliament_dryrun", split="validation") wer = load_metric("wer") cer = load_metric("cer") bleu = load_metric("sacrebleu") resampler = torchaudio.transforms.Resample(orig_freq=48_000, new_freq=16_000) def map_to_array(batch): speech, _ = torchaudio.load(batch["path"]) batch["speech"] = resampler.forward(speech.squeeze(0)).numpy() batch["sampling_rate"] = resampler.new_freq batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("’", "'") return batch ds = ds.map(map_to_array) out_file = open('output.tsv', 'w', encoding='utf-8') tsv_writer = csv.writer(out_file, delimiter='\t') tsv_writer.writerow(["client_id", "reference", "prediction", "wer", "cer", "bleu"]) def map_to_pred(batch,idx): features = processor(batch["speech"], sampling_rate=batch["sampling_rate"][0], padding=True, return_tensors="pt") input_values = features.input_values.to(device) attention_mask = features.attention_mask.to(device) with torch.no_grad(): logits = model(input_values, attention_mask=attention_mask).logits pred_ids = torch.argmax(logits, dim=-1) batch["predicted"] = processor.batch_decode(pred_ids) batch["target"] = batch["sentence"] if not (len(idx) <= 2 and idx[0] == 0): for x in range(0, len(idx)): temp_reference = [] temp_reference.append([batch["target"][x]]) tsv_writer.writerow([batch["client_id"][x], batch["target"][x], batch["predicted"][x], wer.compute(predictions=[batch["predicted"][x]], references=[batch["sentence"][x]]), cer.compute(predictions=[batch["predicted"][x]], references=[batch["sentence"][x]]), bleu.compute(predictions=[batch["predicted"][x]], references=temp_reference)["score"]]) return batch result = ds.map(map_to_pred, batched=True, batch_size=eval_batch_size, with_indices=True, remove_columns=list(ds.features.keys())) out_file.close() target_bleu = [] for x in result["target"]: target_bleu.append([x]) print(wer.compute(predictions=result["predicted"], references=result["target"])) print(cer.compute(predictions=result["predicted"], references=result["target"])) print(bleu.compute(predictions=result["predicted"], references=target_bleu)) ``` ## Scripts The script used for training can be found on Google Colab [TBD](https://huggingface.co/Yves/wav2vec2-large-xlsr-53-swiss-german)
ZYW/squad-en-de-es-model
f05cd78359183b3d04355081f6b5f13431d83e15
2021-05-29T16:53:56.000Z
[ "pytorch", "distilbert", "question-answering", "transformers", "model-index", "autotrain_compatible" ]
question-answering
false
ZYW
null
ZYW/squad-en-de-es-model
3
null
transformers
21,008
--- model-index: - name: squad-en-de-es-model --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # squad-en-de-es-model This model was trained from scratch on an unkown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.6.1 - Pytorch 1.8.1+cu101 - Datasets 1.7.0 - Tokenizers 0.10.3
Zayt/viRoberta-l6-h384-word-cased
aea7428572fd8c1347749ca01c8936a08d7f23bc
2021-11-10T09:54:45.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Zayt
null
Zayt/viRoberta-l6-h384-word-cased
3
null
transformers
21,009
More information: [github](https://github.com/TanHM-1211/viRoberta-l6-h384-cased) ```python from underthesea import word_tokenize from transformers import RobertaTokenizer, RobertaModel model_name = 'Zayt/viRoberta-l6-h384-word-cased' tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForMaskedLM.from_pretrained(model_name) text = word_tokenize("Xin chào, tôi không còn là sinh viên đại học Bách Khoa.", format='text') output = model(**tokenizer(text, return_tensors='pt)) output ```
Zeer0/DialoGPT-small-ZerO
3c600e4fd7e53336ad077e5682b8e1cddc06b82b
2021-09-17T05:35:04.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Zeer0
null
Zeer0/DialoGPT-small-ZerO
3
null
transformers
21,010
--- tags: - conversational --- # ZerO DialoGTP Model
ZhangCheng/T5P3
3509f125ebb2611bbb144f1421b4d64246d0f317
2022-02-16T22:56:41.000Z
[ "pytorch", "tf", "t5", "text2text-generation", "en", "dataset:squad", "transformers", "Question Generation", "autotrain_compatible" ]
text2text-generation
false
ZhangCheng
null
ZhangCheng/T5P3
3
1
transformers
21,011
--- language: en datasets: - squad tags: - Question Generation widget: - text: "<answer> T5 <context> Cheng fine-tuned T5 on SQuAD for question generation." example_title: "Example 1" - text: "<answer> SQuAD <context> Cheng fine-tuned T5 on SQuAD dataset for question generation." example_title: "Example 2" - text: "<answer> thousands <context> Transformers provides thousands of pre-trained models to perform tasks on different modalities such as text, vision, and audio." example_title: "Example 3" --- # T5-Base Fine-Tuned on SQuAD for Question Generation ### Model in Action: ```python import torch from transformers import T5Tokenizer, T5ForConditionalGeneration trained_model_path = 'ZhangCheng/T5-Base-Fine-Tuned-for-Question-Generation' trained_tokenizer_path = 'ZhangCheng/T5-Base-Fine-Tuned-for-Question-Generation' class QuestionGeneration: def __init__(self, model_dir=None): self.model = T5ForConditionalGeneration.from_pretrained(trained_model_path) self.tokenizer = T5Tokenizer.from_pretrained(trained_tokenizer_path) self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') self.model = self.model.to(self.device) self.model.eval() def generate(self, answer: str, context: str): input_text = '<answer> %s <context> %s ' % (answer, context) encoding = self.tokenizer.encode_plus( input_text, return_tensors='pt' ) input_ids = encoding['input_ids'] attention_mask = encoding['attention_mask'] outputs = self.model.generate( input_ids=input_ids, attention_mask=attention_mask ) question = self.tokenizer.decode( outputs[0], skip_special_tokens=True, clean_up_tokenization_spaces=True ) return {'question': question, 'answer': answer, 'context': context} if __name__ == "__main__": context = 'ZhangCheng fine-tuned T5 on SQuAD dataset for question generation.' answer = 'ZhangCheng' QG = QuestionGeneration() qa = QG.generate(answer, context) print(qa['question']) # Output: # Who fine-tuned T5 on SQuAD dataset for question generation? ```
Zixtrauce/BDBot
60e53f54b64157332d2046067b6f4011f4496a71
2022-01-01T07:02:34.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Zixtrauce
null
Zixtrauce/BDBot
3
null
transformers
21,012
--- tags: - conversational --- #BDBot2
aapot/wav2vec2-xlsr-1b-finnish-lm
a13f7fa3234c5fbabcc14b837fff65ba8d9ed62c
2022-03-28T17:31:03.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "fi", "dataset:mozilla-foundation/common_voice_7_0", "arxiv:2111.09296", "transformers", "finnish", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
aapot
null
aapot/wav2vec2-xlsr-1b-finnish-lm
3
null
transformers
21,013
--- license: apache-2.0 language: fi metrics: - wer - cer tags: - automatic-speech-recognition - fi - finnish - generated_from_trainer - hf-asr-leaderboard - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: wav2vec2-xlsr-1b-finnish-lm results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: fi metrics: - name: Test WER type: wer value: 5.65 - name: Test CER type: cer value: 1.2 --- # Wav2Vec2 XLS-R for Finnish ASR This acoustic model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) for Finnish ASR. The model has been fine-tuned with 259.57 hours of Finnish transcribed speech data. Wav2Vec2 XLS-R was introduced in [this paper](https://arxiv.org/abs/2111.09296) and first released at [this page](https://github.com/pytorch/fairseq/tree/main/examples/wav2vec#wav2vec-20). This repository also includes Finnish KenLM language model used in the decoding phase with the acoustic model. **Note**: this model is exactly the same as the [Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm](https://huggingface.co/Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm) model so this model has just been copied/moved to the `Finnish-NLP` Hugging Face organization. **Note**: there is a better V2 version of this model which has been fine-tuned longer with 16 hours of more data: [Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm-v2](https://huggingface.co/Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm-v2) ## Model description Wav2Vec2 XLS-R is Facebook AI's large-scale multilingual pretrained model for speech. It is pretrained on 436k hours of unlabeled speech, including VoxPopuli, MLS, CommonVoice, BABEL, and VoxLingua107. It uses the wav2vec 2.0 objective, in 128 languages. You can read more about the pretrained model from [this blog](https://ai.facebook.com/blog/xls-r-self-supervised-speech-processing-for-128-languages) and [this paper](https://arxiv.org/abs/2111.09296). This model is fine-tuned version of the pretrained model (1 billion parameter variant) for Finnish ASR. ## Intended uses & limitations You can use this model for Finnish ASR (speech-to-text) task. ### How to use Check the [run-finnish-asr-models.ipynb](https://huggingface.co/aapot/wav2vec2-xlsr-1b-finnish-lm/blob/main/run-finnish-asr-models.ipynb) notebook in this repository for an detailed example on how to use this model. ### Limitations and bias This model was fine-tuned with audio samples which maximum length was 20 seconds so this model most likely works the best for quite short audios of similar length. However, you can try this model with a lot longer audios too and see how it works. If you encounter out of memory errors with very long audio files you can use the audio chunking method introduced in [this blog post](https://huggingface.co/blog/asr-chunking). A vast majority of the data used for fine-tuning was from the Finnish Parliament dataset so this model may not generalize so well to very different domains like common daily spoken Finnish with dialects etc. In addition, audios of the datasets tend to be adult male dominated so this model may not work as well for speeches of children and women, for example. The Finnish KenLM language model used in the decoding phase has been trained with text data from the audio transcriptions. Thus, the decoder's language model may not generalize to very different language, for example to spoken daily language with dialects. It may be beneficial to train your own KenLM language model for your domain language and use that in the decoding. ## Training data This model was fine-tuned with 259.57 hours of Finnish transcribed speech data from following datasets: | Dataset | Hours | % of total hours | |:----------------------------------------------------------------------------------------------------------------------------------|:--------:|:----------------:| | [Common Voice 7.0 Finnish train + evaluation + other splits](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0) | 9.70 h | 3.74 % | | [Finnish parliament session 2](https://b2share.eudat.eu/records/4df422d631544ce682d6af1d4714b2d4) | 0.24 h | 0.09 % | | [VoxPopuli Finnish](https://github.com/facebookresearch/voxpopuli) | 5.94 h | 2.29 % | | [CSS10 Finnish](https://github.com/kyubyong/css10) | 10.32 h | 3.98 % | | [Aalto Finnish Parliament ASR Corpus](http://urn.fi/urn:nbn:fi:lb-2021051903) | 228.00 h | 87.84 % | | [Finnish Broadcast Corpus](http://urn.fi/urn:nbn:fi:lb-2016042502) | 5.37 h | 2.07 % | Datasets were filtered to include maximum length of 20 seconds long audio samples. ## Training procedure This model was trained during [Robust Speech Challenge Event](https://discuss.huggingface.co/t/open-to-the-community-robust-speech-recognition-challenge/13614) organized by Hugging Face. Training was done on a Tesla V100 GPU, sponsored by OVHcloud. Training script was provided by Hugging Face and it is available [here](https://github.com/huggingface/transformers/blob/main/examples/research_projects/robust-speech-event/run_speech_recognition_ctc_bnb.py). We only modified its data loading for our custom datasets. For the KenLM language model training, we followed the [blog post tutorial](https://huggingface.co/blog/wav2vec2-with-ngram) provided by Hugging Face. Training data for the 5-gram KenLM were text transcriptions of the audio training data. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: [8-bit Adam](https://github.com/facebookresearch/bitsandbytes) with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 - mixed_precision_training: Native AMP The pretrained `facebook/wav2vec2-xls-r-1b` model was initialized with following hyperparameters: - attention_dropout: 0.094 - hidden_dropout: 0.047 - feat_proj_dropout: 0.04 - mask_time_prob: 0.082 - layerdrop: 0.041 - activation_dropout: 0.055 - ctc_loss_reduction: "mean" ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.968 | 0.18 | 500 | 0.4870 | 0.4720 | | 0.6557 | 0.36 | 1000 | 0.2450 | 0.2931 | | 0.647 | 0.54 | 1500 | 0.1818 | 0.2255 | | 0.5297 | 0.72 | 2000 | 0.1698 | 0.2354 | | 0.5802 | 0.9 | 2500 | 0.1581 | 0.2355 | | 0.6351 | 1.07 | 3000 | 0.1689 | 0.2336 | | 0.4626 | 1.25 | 3500 | 0.1719 | 0.3099 | | 0.4526 | 1.43 | 4000 | 0.1434 | 0.2069 | | 0.4692 | 1.61 | 4500 | 0.1645 | 0.2192 | | 0.4584 | 1.79 | 5000 | 0.1483 | 0.1987 | | 0.4234 | 1.97 | 5500 | 0.1499 | 0.2178 | | 0.4243 | 2.15 | 6000 | 0.1345 | 0.2070 | | 0.4108 | 2.33 | 6500 | 0.1383 | 0.1850 | | 0.4048 | 2.51 | 7000 | 0.1338 | 0.1811 | | 0.4085 | 2.69 | 7500 | 0.1290 | 0.1780 | | 0.4026 | 2.87 | 8000 | 0.1239 | 0.1650 | | 0.4033 | 3.04 | 8500 | 0.1346 | 0.1657 | | 0.3986 | 3.22 | 9000 | 0.1310 | 0.1850 | | 0.3867 | 3.4 | 9500 | 0.1273 | 0.1741 | | 0.3658 | 3.58 | 10000 | 0.1219 | 0.1672 | | 0.382 | 3.76 | 10500 | 0.1306 | 0.1698 | | 0.3847 | 3.94 | 11000 | 0.1230 | 0.1577 | | 0.3691 | 4.12 | 11500 | 0.1310 | 0.1615 | | 0.3593 | 4.3 | 12000 | 0.1296 | 0.1622 | | 0.3619 | 4.48 | 12500 | 0.1285 | 0.1601 | | 0.3361 | 4.66 | 13000 | 0.1261 | 0.1569 | | 0.3603 | 4.84 | 13500 | 0.1235 | 0.1533 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0 ## Evaluation results Evaluation was done with the [Common Voice 7.0 Finnish test split](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). To evaluate this model, run the `eval.py` script in this repository: ```bash python3 eval.py --model_id aapot/wav2vec2-xlsr-1b-finnish-lm --dataset mozilla-foundation/common_voice_7_0 --config fi --split test ``` This model (the second row of the table) achieves the following WER (Word Error Rate) and CER (Character Error Rate) results compared to our other models: | | WER (with LM) | WER (without LM) | CER (with LM) | CER (without LM) | |-----------------------------------------|---------------|------------------|---------------|------------------| |aapot/wav2vec2-xlsr-1b-finnish-lm-v2 |**4.09** |**9.73** |**0.88** |**1.65** | |aapot/wav2vec2-xlsr-1b-finnish-lm |5.65 |13.11 |1.20 |2.23 | |aapot/wav2vec2-xlsr-300m-finnish-lm |8.16 |17.92 |1.97 |3.36 | ## Team Members - Aapo Tanskanen, [Hugging Face profile](https://huggingface.co/aapot), [LinkedIn profile](https://www.linkedin.com/in/aapotanskanen/) - Rasmus Toivanen, [Hugging Face profile](https://huggingface.co/RASMUS), [LinkedIn profile](https://www.linkedin.com/in/rasmustoivanen/) Feel free to contact us for more details 🤗
aapot/wav2vec2-xlsr-300m-finnish
c2724bb2f2bd71f9b270598031b88f2354ecdadd
2022-03-28T17:45:21.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "fi", "dataset:mozilla-foundation/common_voice_7_0", "arxiv:2111.09296", "transformers", "finnish", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
aapot
null
aapot/wav2vec2-xlsr-300m-finnish
3
null
transformers
21,014
--- license: apache-2.0 language: fi metrics: - wer - cer tags: - automatic-speech-recognition - fi - finnish - generated_from_trainer - hf-asr-leaderboard - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: wav2vec2-xlsr-300m-finnish results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: fi metrics: - name: Test WER type: wer value: 17.92 - name: Test CER type: cer value: 3.36 --- # Wav2Vec2 XLS-R for Finnish ASR This acoustic model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) for Finnish ASR. The model has been fine-tuned with 275.6 hours of Finnish transcribed speech data. Wav2Vec2 XLS-R was introduced in [this paper](https://arxiv.org/abs/2111.09296) and first released at [this page](https://github.com/pytorch/fairseq/tree/main/examples/wav2vec#wav2vec-20). **Note**: there is a version with KenLM language model used in the decoding phase producing better transcriptions: [Finnish-NLP/wav2vec2-xlsr-300m-finnish-lm](https://huggingface.co/Finnish-NLP/wav2vec2-xlsr-300m-finnish-lm) ## Model description Wav2Vec2 XLS-R is Facebook AI's large-scale multilingual pretrained model for speech. It is pretrained on 436k hours of unlabeled speech, including VoxPopuli, MLS, CommonVoice, BABEL, and VoxLingua107. It uses the wav2vec 2.0 objective, in 128 languages. You can read more about the pretrained model from [this blog](https://ai.facebook.com/blog/xls-r-self-supervised-speech-processing-for-128-languages) and [this paper](https://arxiv.org/abs/2111.09296). This model is fine-tuned version of the pretrained model (300 million parameter variant) for Finnish ASR. ## Intended uses & limitations You can use this model for Finnish ASR (speech-to-text) task. ### How to use Check the [run-finnish-asr-models.ipynb](https://huggingface.co/aapot/wav2vec2-xlsr-300m-finnish/blob/main/run-finnish-asr-models.ipynb) notebook in this repository for an detailed example on how to use this model. ### Limitations and bias This model was fine-tuned with audio samples which maximum length was 20 seconds so this model most likely works the best for quite short audios of similar length. However, you can try this model with a lot longer audios too and see how it works. If you encounter out of memory errors with very long audio files you can use the audio chunking method introduced in [this blog post](https://huggingface.co/blog/asr-chunking). A vast majority of the data used for fine-tuning was from the Finnish Parliament dataset so this model may not generalize so well to very different domains like common daily spoken Finnish with dialects etc. In addition, audios of the datasets tend to be adult male dominated so this model may not work as well for speeches of children and women, for example. ## Training data This model was fine-tuned with 275.6 hours of Finnish transcribed speech data from following datasets: | Dataset | Hours | % of total hours | |:------------------------------------------------------------------------------------------------------------------------------ |:--------:|:----------------:| | [Common Voice 7.0 Finnish train + evaluation + other splits](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0) | 9.70 h | 3.52 % | | [Finnish parliament session 2](https://b2share.eudat.eu/records/4df422d631544ce682d6af1d4714b2d4) | 0.24 h | 0.09 % | | [VoxPopuli Finnish](https://github.com/facebookresearch/voxpopuli) | 21.97 h | 7.97 % | | [CSS10 Finnish](https://github.com/kyubyong/css10) | 10.32 h | 3.74 % | | [Aalto Finnish Parliament ASR Corpus](http://urn.fi/urn:nbn:fi:lb-2021051903) | 228.00 h | 82.73 % | | [Finnish Broadcast Corpus](http://urn.fi/urn:nbn:fi:lb-2016042502) | 5.37 h | 1.95 % | Datasets were filtered to include maximum length of 20 seconds long audio samples. ## Training procedure This model was trained during [Robust Speech Challenge Event](https://discuss.huggingface.co/t/open-to-the-community-robust-speech-recognition-challenge/13614) organized by Hugging Face. Training was done on a Tesla V100 GPU, sponsored by OVHcloud. Training script was provided by Hugging Face and it is available [here](https://github.com/huggingface/transformers/blob/main/examples/research_projects/robust-speech-event/run_speech_recognition_ctc_bnb.py). We only modified its data loading for our custom datasets. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-04 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: [8-bit Adam](https://github.com/facebookresearch/bitsandbytes) with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP The pretrained `facebook/wav2vec2-xls-r-300m` model was initialized with following hyperparameters: - attention_dropout: 0.094 - hidden_dropout: 0.047 - feat_proj_dropout: 0.04 - mask_time_prob: 0.082 - layerdrop: 0.041 - activation_dropout: 0.055 - ctc_loss_reduction: "mean" ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.973 | 0.17 | 500 | 0.5750 | 0.6844 | | 0.713 | 0.34 | 1000 | 0.3356 | 0.4518 | | 0.6563 | 0.5 | 1500 | 0.3007 | 0.4039 | | 0.642 | 0.67 | 2000 | 0.2619 | 0.3674 | | 0.6203 | 0.84 | 2500 | 0.2488 | 0.3558 | | 0.6016 | 1.01 | 3000 | 0.2795 | 0.3835 | | 0.5423 | 1.17 | 3500 | 0.2652 | 0.3310 | | 0.5639 | 1.34 | 4000 | 0.2479 | 0.3462 | | 0.586 | 1.51 | 4500 | 0.2409 | 0.3295 | | 0.5169 | 1.68 | 5000 | 0.2728 | 0.3352 | | 0.5176 | 1.84 | 5500 | 0.2254 | 0.3149 | | 0.4983 | 2.01 | 6000 | 0.2169 | 0.3009 | | 0.4982 | 2.18 | 6500 | 0.2215 | 0.3079 | | 0.4898 | 2.35 | 7000 | 0.2174 | 0.3023 | | 0.4922 | 2.51 | 7500 | 0.2217 | 0.3081 | | 0.5025 | 2.68 | 8000 | 0.2002 | 0.2710 | | 0.4745 | 2.85 | 8500 | 0.1935 | 0.2783 | | 0.4377 | 3.02 | 9000 | 0.1859 | 0.2742 | | 0.4511 | 3.18 | 9500 | 0.2038 | 0.2786 | | 0.4411 | 3.35 | 10000 | 0.1863 | 0.2651 | | 0.4501 | 3.52 | 10500 | 0.1948 | 0.2605 | | 0.4557 | 3.69 | 11000 | 0.1872 | 0.2695 | | 0.4493 | 3.85 | 11500 | 0.1888 | 0.2632 | | 0.4047 | 4.02 | 12000 | 0.1818 | 0.2559 | | 0.4319 | 4.19 | 12500 | 0.1896 | 0.2648 | | 0.4162 | 4.36 | 13000 | 0.1953 | 0.2595 | | 0.4046 | 4.52 | 13500 | 0.1864 | 0.2606 | | 0.4195 | 4.69 | 14000 | 0.1843 | 0.2467 | | 0.4146 | 4.86 | 14500 | 0.1686 | 0.2450 | | 0.378 | 5.03 | 15000 | 0.1731 | 0.2401 | | 0.3792 | 5.19 | 15500 | 0.1676 | 0.2325 | | 0.3855 | 5.36 | 16000 | 0.1740 | 0.2326 | | 0.4029 | 5.53 | 16500 | 0.1674 | 0.2345 | | 0.386 | 5.7 | 17000 | 0.1735 | 0.2280 | | 0.3811 | 5.86 | 17500 | 0.1692 | 0.2258 | | 0.3607 | 6.03 | 18000 | 0.1797 | 0.2279 | | 0.3604 | 6.2 | 18500 | 0.1651 | 0.2206 | | 0.3362 | 6.37 | 19000 | 0.1627 | 0.2199 | | 0.3611 | 6.53 | 19500 | 0.1652 | 0.2172 | | 0.3671 | 6.7 | 20000 | 0.1564 | 0.2140 | | 0.3769 | 6.87 | 20500 | 0.1525 | 0.2101 | | 0.3539 | 7.04 | 21000 | 0.1639 | 0.2096 | | 0.3225 | 7.21 | 21500 | 0.1611 | 0.2087 | | 0.3323 | 7.37 | 22000 | 0.1633 | 0.2008 | | 0.3327 | 7.54 | 22500 | 0.1692 | 0.1975 | | 0.3456 | 7.71 | 23000 | 0.1555 | 0.1991 | | 0.3058 | 7.88 | 23500 | 0.1590 | 0.1959 | | 0.3034 | 8.04 | 24000 | 0.1531 | 0.1973 | | 0.2925 | 8.21 | 24500 | 0.1583 | 0.1978 | | 0.2967 | 8.38 | 25000 | 0.1546 | 0.1906 | | 0.2974 | 8.55 | 25500 | 0.1540 | 0.1869 | | 0.3131 | 8.71 | 26000 | 0.1534 | 0.1850 | | 0.3306 | 8.88 | 26500 | 0.1482 | 0.1844 | | 0.2842 | 9.05 | 27000 | 0.1490 | 0.1854 | | 0.2879 | 9.22 | 27500 | 0.1463 | 0.1799 | | 0.27 | 9.38 | 28000 | 0.1454 | 0.1798 | | 0.2874 | 9.55 | 28500 | 0.1504 | 0.1787 | | 0.2757 | 9.72 | 29000 | 0.1512 | 0.1784 | | 0.3017 | 9.89 | 29500 | 0.1484 | 0.1800 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0 ## Evaluation results Evaluation was done with the [Common Voice 7.0 Finnish test split](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). To evaluate this model, run the `eval.py` script in this repository: ```bash python3 eval.py --model_id aapot/wav2vec2-xlsr-300m-finnish --dataset mozilla-foundation/common_voice_7_0 --config fi --split test ``` This model (the third row of the table) achieves the following WER (Word Error Rate) and CER (Character Error Rate) results compared to our other models: | | WER (with LM) | WER (without LM) | CER (with LM) | CER (without LM) | |-----------------------------------------|---------------|------------------|---------------|------------------| |aapot/wav2vec2-xlsr-1b-finnish-lm-v2 |**4.09** |**9.73** |**0.88** |**1.65** | |aapot/wav2vec2-xlsr-1b-finnish-lm |5.65 |13.11 |1.20 |2.23 | |aapot/wav2vec2-xlsr-300m-finnish-lm |8.16 |17.92 |1.97 |3.36 | ## Team Members - Aapo Tanskanen, [Hugging Face profile](https://huggingface.co/aapot), [LinkedIn profile](https://www.linkedin.com/in/aapotanskanen/) - Rasmus Toivanen, [Hugging Face profile](https://huggingface.co/RASMUS), [LinkedIn profile](https://www.linkedin.com/in/rasmustoivanen/) Feel free to contact us for more details 🤗
abhi1nandy2/Craft-bionlp-roberta-base
1c0d05762ffe6a951b0c1f05e6507da8b61627ae
2022-05-23T20:09:19.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "English", "dataset:CRAFT BioNLP Corpus", "transformers", "CRAFT", "autotrain_compatible" ]
fill-mask
false
abhi1nandy2
null
abhi1nandy2/Craft-bionlp-roberta-base
3
null
transformers
21,015
--- language: - English tags: - CRAFT - roberta datasets: - CRAFT BioNLP Corpus --- Refer to https://aclanthology.org/2021.semeval-1.87/ ## Citation If you use this model in your work, please add the following citation - ``` @inproceedings{nandy-etal-2021-cs60075, title = "cs60075{\_}team2 at {S}em{E}val-2021 Task 1 : Lexical Complexity Prediction using Transformer-based Language Models pre-trained on various text corpora", author = "Nandy, Abhilash and Adak, Sayantan and Halder, Tanurima and Pokala, Sai Mahesh", booktitle = "Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)", month = aug, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.semeval-1.87", doi = "10.18653/v1/2021.semeval-1.87", pages = "678--682", abstract = "The main contribution of this paper is to fine-tune transformer-based language models pre-trained on several text corpora, some being general (E.g., Wikipedia, BooksCorpus), some being the corpora from which the CompLex Dataset was extracted, and others being from other specific domains such as Finance, Law, etc. We perform ablation studies on selecting the transformer models and how their individual complexity scores are aggregated to get the resulting complexity scores. Our method achieves a best Pearson Correlation of 0.784 in sub-task 1 (single word) and 0.836 in sub-task 2 (multiple word expressions).", } ```
abhilash1910/distilbert-squadv1
5572964ed9a2148f52739cd52807dc4c38eb5091
2021-09-14T07:25:33.000Z
[ "pytorch", "distilbert", "question-answering", "en", "dataset:squad_v1", "transformers", "license:apache-2.0", "autotrain_compatible" ]
question-answering
false
abhilash1910
null
abhilash1910/distilbert-squadv1
3
null
transformers
21,016
# DistilBERT--SQuAD-v1 Training is done on the [SQuAD](https://huggingface.co/datasets/squad) dataset. The model can be accessed via [HuggingFace](https://huggingface.co/abhilash1910/distilbert-squadv1): ## Model Specifications We have used the following parameters: - Training Batch Size : 512 - Learning Rate : 3e-5 - Training Epochs : 0.75 - Sequence Length : 384 - Stride : 128 ## Usage Specifications ```python from transformers import AutoModelForQuestionAnswering,AutoTokenizer,pipeline model=AutoModelForQuestionAnswering.from_pretrained('abhilash1910/distilbert-squadv1') tokenizer=AutoTokenizer.from_pretrained('abhilash1910/distilbert-squadv1') nlp_QA=pipeline('question-answering',model=model,tokenizer=tokenizer) QA_inp={ 'question': 'What is the fund price of Huggingface in NYSE?', 'context': 'Huggingface Co. has a total fund price of $19.6 million dollars' } result=nlp_QA(QA_inp) result ``` The result is: ```bash {'score': 0.38547369837760925, 'start': 42, 'end': 55, 'answer': '$19.6 million'} ``` --- language: - en license: apache-2.0 datasets: - squad_v1 ---
abhinavkulkarni/distilbert-base-uncased-finetuned-squad
0625c3e5eedd1fc7b0091a9f36f6b8e7aa7bb577
2022-02-06T18:39:49.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
abhinavkulkarni
null
abhinavkulkarni/distilbert-base-uncased-finetuned-squad
3
null
transformers
21,017
Entry not found
adalbertojunior/test-deberta
6e48279f72398e6116a590cf0c5a915693444f59
2022-03-10T14:39:06.000Z
[ "pytorch", "deberta-v2", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
adalbertojunior
null
adalbertojunior/test-deberta
3
null
transformers
21,018
Entry not found
adamlin/ClinicalBert_all_notes
33e9ee2da7f113daf1301dcc121005bfc3703d96
2019-12-25T17:08:00.000Z
[ "pytorch", "transformers" ]
null
false
adamlin
null
adamlin/ClinicalBert_all_notes
3
null
transformers
21,019
Entry not found
adamlin/ClinicalBert_disch
a3ca1268a732befca64e43b415b60636ffba3f6e
2019-12-25T17:08:32.000Z
[ "pytorch", "transformers" ]
null
false
adamlin
null
adamlin/ClinicalBert_disch
3
null
transformers
21,020
Entry not found
adamlin/filter-mlsum-pretrained
e8757ad413eeafcaf8e71b9126c0024198d1586b
2021-07-10T07:51:42.000Z
[ "pytorch", "mbart", "text2text-generation", "zh_CN", "transformers", "generated_from_trainer", "license:mit", "autotrain_compatible" ]
text2text-generation
false
adamlin
null
adamlin/filter-mlsum-pretrained
3
null
transformers
21,021
--- language: - zh_CN - zh_CN license: mit tags: - generated_from_trainer metrics: - rouge model_index: - name: filter-mlsum-pretrained results: - task: name: Translation type: translation metric: name: Rouge1 type: rouge value: 42.1802 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # filter-mlsum-pretrained This model is a fine-tuned version of [lincoln/mbart-mlsum-automatic-summarization](https://huggingface.co/lincoln/mbart-mlsum-automatic-summarization) on an unkown dataset. It achieves the following results on the evaluation set: - Loss: 2.1258 - Rouge1: 42.1802 - Rouge2: 28.8282 - Rougel: 38.353 - Rougelsum: 38.4497 - Gen Len: 15.7048 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 13 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Bleu | Gen Len | Validation Loss | Rouge-1 | Rouge-2 | Rouge-3 | Rouge-4 | |:-------------:|:-----:|:-----:|:------:|:-------:|:---------------:|:-------:|:-------:|:-------:|:-------:| | 3.2488 | 0.02 | 600 | 1.0077 | 16.5021 | 2.9137 | 0.3472 | 0.2187 | 0.129 | 0.0831 | | 2.8602 | 0.04 | 1200 | 1.0448 | 15.5959 | 2.7929 | 0.3555 | 0.231 | 0.1425 | 0.0948 | | 2.7612 | 0.06 | 1800 | 0.9912 | 15.9283 | 2.7275 | 0.3634 | 0.2327 | 0.139 | 0.0892 | | 2.71 | 0.08 | 2400 | 1.1238 | 16.029 | 2.6673 | 0.3705 | 0.2393 | 0.1448 | 0.0937 | | 2.6029 | 0.11 | 3000 | 1.091 | 15.8317 | 2.6153 | 0.3705 | 0.2382 | 0.1443 | 0.0943 | | 2.5834 | 0.13 | 3600 | 1.0894 | 15.9131 | 2.5937 | 0.3793 | 0.246 | 0.1517 | 0.1013 | | 2.5339 | 0.15 | 4200 | 1.1034 | 15.8331 | 2.5716 | 0.3758 | 0.2441 | 0.146 | 0.0948 | | 2.5176 | 0.17 | 4800 | 1.1365 | 16.2552 | 2.5338 | 0.3695 | 0.2385 | 0.1454 | 0.0942 | | 2.4962 | 0.19 | 5400 | 1.1237 | 16.0041 | 2.5145 | 0.3773 | 0.2462 | 0.1533 | 0.1017 | | 2.4573 | 0.21 | 6000 | 0.9416 | 16.1241 | 2.5056 | 0.3753 | 0.2457 | 0.1541 | 0.1012 | | 2.4324 | 0.23 | 6600 | 1.122 | 15.3448 | 2.4891 | 0.3824 | 0.2531 | 0.157 | 0.1033 | | 2.4343 | 0.25 | 7200 | 1.8299 | 15.5959 | 2.4728 | 0.384 | 0.2512 | 0.1556 | 0.1026 | | 2.4089 | 0.28 | 7800 | 1.7741 | 16.3421 | 2.4608 | 0.3818 | 0.2501 | 0.1556 | 0.102 | | 2.376 | 0.3 | 8400 | 1.1575 | 15.3834 | 2.4402 | 0.3887 | 0.2582 | 0.1611 | 0.1058 | | 2.3739 | 0.32 | 9000 | 1.7924 | 15.6455 | 2.4331 | 0.3902 | 0.2561 | 0.1587 | 0.1042 | | 2.3485 | 0.34 | 9600 | 2.2605 | 15.5407 | 2.4215 | 0.3712 | 0.2423 | 0.1493 | 0.0984 | | 2.3535 | 0.36 | 10200 | 1.2569 | 16.2538 | 2.4047 | 0.3837 | 0.2524 | 0.1572 | 0.1045 | | 2.3359 | 0.38 | 10800 | 1.2334 | 15.4607 | 2.4025 | 0.3808 | 0.2488 | 0.1531 | 0.0994 | | 2.3265 | 0.4 | 11400 | 1.116 | 16.2703 | 2.3926 | 0.3909 | 0.2574 | 0.159 | 0.1049 | | 2.3024 | 0.42 | 12000 | 1.0944 | 15.3807 | 2.3964 | 0.3883 | 0.2554 | 0.158 | 0.1043 | | 2.2988 | 0.45 | 12600 | 1.6318 | 15.5062 | 2.3616 | 0.3889 | 0.259 | 0.1617 | 0.107 | | 2.2966 | 0.47 | 13200 | 1.1887 | 15.8041 | 2.3728 | 0.3835 | 0.2556 | 0.1633 | 0.1111 | | 2.2823 | 0.49 | 13800 | 1.1252 | 15.9972 | 2.3591 | 0.3805 | 0.249 | 0.1571 | 0.1052 | | 2.2748 | 0.51 | 14400 | 1.0418 | 15.3021 | 2.3619 | 0.3862 | 0.2569 | 0.161 | 0.1072 | | 2.2624 | 0.53 | 15000 | 1.0299 | 15.8634 | 2.3415 | 0.3909 | 0.2575 | 0.1608 | 0.1072 | | 2.2585 | 0.55 | 15600 | 1.0671 | 15.5503 | 2.3557 | 0.3899 | 0.2586 | 0.1622 | 0.1077 | | 2.2586 | 0.57 | 16200 | 1.6521 | 15.4345 | 2.3431 | 0.389 | 0.2593 | 0.1642 | 0.1105 | | 2.2464 | 0.59 | 16800 | 1.2836 | 15.6124 | 2.3609 | 0.3934 | 0.2591 | 0.1593 | 0.1041 | | 2.2523 | 0.62 | 17400 | 1.7653 | 15.8648 | 2.3339 | 0.3958 | 0.2653 | 0.1683 | 0.1133 | | 2.2287 | 0.64 | 18000 | 1.3186 | 16.4455 | 2.3188 | 0.3911 | 0.2617 | 0.1678 | 0.1143 | | 2.2068 | 0.66 | 18600 | 1.6488 | 15.9062 | 2.3109 | 0.3919 | 0.262 | 0.1657 | 0.1115 | | 2.2195 | 0.68 | 19200 | 1.8291 | 15.5269 | 2.3271 | 0.3859 | 0.2575 | 0.1631 | 0.1081 | | 2.2128 | 0.7 | 19800 | 2.2759 | 15.8703 | 2.3113 | 0.3962 | 0.2655 | 0.1691 | 0.1123 | | 2.2071 | 0.72 | 20400 | 2.4205 | 15.9738 | 2.3036 | 0.3907 | 0.2608 | 0.1637 | 0.1081 | | 2.1975 | 0.74 | 21000 | 1.9886 | 15.8234 | 2.2919 | 0.3906 | 0.2632 | 0.169 | 0.1157 | | 2.1965 | 0.76 | 21600 | 1.8754 | 15.3434 | 2.2957 | 0.39 | 0.2608 | 0.1665 | 0.1114 | | 2.1886 | 0.78 | 22200 | 1.5683 | 15.3407 | 2.2835 | 0.3968 | 0.2658 | 0.168 | 0.1117 | | 2.185 | 0.81 | 22800 | 2.127 | 16.0566 | 2.2685 | 0.3913 | 0.2624 | 0.1691 | 0.114 | | 2.1697 | 0.83 | 23400 | 1.2554 | 15.7021 | 2.2888 | 0.3983 | 0.2676 | 0.1704 | 0.1148 | | 2.1637 | 0.85 | 24000 | 2.0099 | 16.2607 | 2.2767 | 0.3979 | 0.2681 | 0.1719 | 0.1181 | | 2.1559 | 0.87 | 24600 | 2.2632 | 15.2179 | 2.2840 | 0.3996 | 0.269 | 0.1714 | 0.1152 | | 2.1666 | 0.89 | 25200 | 1.2354 | 15.6828 | 2.2744 | 0.397 | 0.2655 | 0.1677 | 0.1108 | | 2.1388 | 0.91 | 25800 | 1.2576 | 15.7959 | 2.2661 | 0.3982 | 0.2655 | 0.1687 | 0.1128 | | 2.1458 | 0.93 | 26400 | 1.334 | 15.6428 | 2.2582 | 0.3976 | 0.2682 | 0.1711 | 0.1142 | | 2.1337 | 0.95 | 27000 | 1.287 | 16.1379 | 2.2474 | 0.4001 | 0.2654 | 0.1682 | 0.1119 | | 2.1324 | 0.98 | 27600 | 1.1739 | 16.0552 | 2.2487 | 0.4003 | 0.2664 | 0.168 | 0.1113 | | 2.1318 | 1.0 | 28200 | 2.1267 | 15.931 | 2.2553 | 0.4037 | 0.27 | 0.1714 | 0.1163 | | 2.0379 | 1.02 | 28800 | 1.1489 | 15.3421 | 2.2787 | 0.3962 | 0.263 | 0.1674 | 0.114 | | 1.9044 | 1.04 | 29400 | 1.6737 | 15.6 | 2.2538 | 0.4003 | 0.2693 | 0.1729 | 0.1161 | | 1.9149 | 1.06 | 30000 | 1.1077 | 15.771 | 2.2487 | 0.4062 | 0.274 | 0.1774 | 0.1209 | | 1.9211 | 1.08 | 30600 | 1.2744 | 15.0566 | 2.2708 | 0.4075 | 0.2742 | 0.1744 | 0.1172 | | 1.9285 | 1.1 | 31200 | 1.1875 | 16.1021 | 2.2443 | 0.3983 | 0.2652 | 0.1671 | 0.1124 | | 1.9106 | 1.12 | 31800 | 1.2422 | 15.36 | 2.2562 | 0.4079 | 0.2751 | 0.1762 | 0.119 | | 1.9313 | 1.15 | 32400 | 1.3036 | 15.8317 | 2.2515 | 0.4027 | 0.2717 | 0.1748 | 0.1196 | | 1.931 | 1.17 | 33000 | 1.138 | 16.1917 | 2.2415 | 0.4016 | 0.2701 | 0.1724 | 0.1179 | | 1.9232 | 1.19 | 33600 | 1.2741 | 15.6814 | 2.2511 | 0.4074 | 0.2757 | 0.1782 | 0.1222 | | 1.9233 | 1.21 | 34200 | 1.4101 | 15.8345 | 2.2388 | 0.4027 | 0.2712 | 0.1727 | 0.1174 | | 1.9172 | 1.23 | 34800 | 1.252 | 15.6124 | 2.2434 | 0.4046 | 0.2747 | 0.1783 | 0.1215 | | 1.9258 | 1.25 | 35400 | 1.2459 | 15.5062 | 2.2342 | 0.4107 | 0.2801 | 0.1814 | 0.1236 | | 1.9184 | 1.27 | 36000 | 1.2943 | 15.6083 | 2.2393 | 0.4119 | 0.2817 | 0.1839 | 0.1244 | | 1.9195 | 1.29 | 36600 | 1.1197 | 15.8359 | 2.2237 | 0.4014 | 0.2695 | 0.1699 | 0.1132 | | 1.932 | 1.31 | 37200 | 1.2212 | 15.9752 | 2.2202 | 0.4027 | 0.2708 | 0.1723 | 0.1168 | | 1.9161 | 1.34 | 37800 | 1.2541 | 15.5779 | 2.2236 | 0.4091 | 0.2783 | 0.1804 | 0.1244 | | 1.9115 | 1.36 | 38400 | 1.4237 | 15.8276 | 2.1993 | 0.4122 | 0.2813 | 0.1832 | 0.1258 | | 1.9108 | 1.38 | 39000 | 1.8321 | 16.0386 | 2.2079 | 0.412 | 0.2794 | 0.1806 | 0.1226 | | 1.921 | 1.4 | 39600 | 1.8388 | 15.5076 | 2.2158 | 0.411 | 0.2799 | 0.1804 | 0.1226 | | 1.9124 | 1.42 | 40200 | 1.915 | 16.0 | 2.2071 | 0.4032 | 0.2726 | 0.1742 | 0.1185 | | 1.9134 | 1.44 | 40800 | 2.1237 | 16.0372 | 2.1980 | 0.4036 | 0.2702 | 0.1689 | 0.1122 | | 1.9124 | 1.46 | 41400 | 2.4274 | 15.3421 | 2.2111 | 0.4037 | 0.274 | 0.1754 | 0.1203 | | 1.9149 | 1.48 | 42000 | 1.8393 | 15.5683 | 2.2105 | 0.4057 | 0.2748 | 0.1762 | 0.119 | | 1.9147 | 1.51 | 42600 | 1.2703 | 16.3048 | 2.1874 | 0.4084 | 0.2767 | 0.179 | 0.1233 | | 1.9075 | 1.53 | 43200 | 1.7775 | 15.9545 | 2.1946 | 0.4109 | 0.2807 | 0.1857 | 0.1286 | | 1.8996 | 1.55 | 43800 | 1.2485 | 15.6648 | 2.1924 | 0.4082 | 0.2749 | 0.1764 | 0.1196 | | 1.9003 | 1.57 | 44400 | 1.1624 | 15.8041 | 2.1895 | 0.4093 | 0.2758 | 0.1766 | 0.1194 | | 1.9048 | 1.59 | 45000 | 1.8167 | 16.2938 | 2.1843 | 0.407 | 0.2741 | 0.1779 | 0.1203 | | 1.9017 | 1.61 | 45600 | 2.0689 | 15.3931 | 2.2073 | 0.4111 | 0.2795 | 0.1811 | 0.1246 | | 1.8946 | 1.63 | 46200 | 1.7099 | 15.9917 | 2.1839 | 0.4095 | 0.2797 | 0.1826 | 0.1258 | | 1.886 | 1.65 | 46800 | 1.8287 | 15.8276 | 2.1945 | 0.4051 | 0.2761 | 0.1799 | 0.1237 | | 1.9068 | 1.68 | 47400 | 1.9476 | 15.3503 | 2.1926 | 0.4132 | 0.2819 | 0.1836 | 0.1262 | | 1.9008 | 1.7 | 48000 | 1.3086 | 15.5931 | 2.1857 | 0.4167 | 0.2868 | 0.1893 | 0.1303 | | 1.8965 | 1.72 | 48600 | 2.1687 | 15.8317 | 2.1781 | 0.402 | 0.2715 | 0.175 | 0.1197 | | 1.8907 | 1.74 | 49200 | 2.3316 | 15.8952 | 2.1661 | 0.4035 | 0.2717 | 0.1746 | 0.1193 | | 1.8938 | 1.76 | 49800 | 1.6839 | 15.6028 | 2.1736 | 0.4008 | 0.2693 | 0.1741 | 0.1184 | | 1.8769 | 1.78 | 50400 | 1.1867 | 15.9393 | 2.1723 | 0.403 | 0.272 | 0.1761 | 0.1201 | | 1.8813 | 1.8 | 51000 | 1.8509 | 16.2538 | 2.1454 | 0.4085 | 0.2773 | 0.1801 | 0.1227 | | 1.8913 | 1.82 | 51600 | 1.9677 | 15.7503 | 2.1691 | 0.4052 | 0.2786 | 0.1836 | 0.1274 | | 1.8785 | 1.85 | 52200 | 1.7 | 15.7559 | 2.1683 | 0.4132 | 0.2793 | 0.1796 | 0.1216 | | 1.881 | 1.87 | 52800 | 1.2867 | 16.0345 | 2.1372 | 0.416 | 0.2824 | 0.1837 | 0.1264 | | 1.8833 | 1.89 | 53400 | 1.761 | 16.0966 | 2.1501 | 0.4126 | 0.2808 | 0.1825 | 0.1253 | | 1.8727 | 1.91 | 54000 | 1.9868 | 15.8221 | 2.1504 | 0.4165 | 0.2828 | 0.1826 | 0.1233 | | 1.8901 | 1.93 | 54600 | 1.801 | 14.9393 | 2.2104 | 0.4151 | 0.2846 | 0.1848 | 0.1258 | | 1.8802 | 1.95 | 55200 | 2.0887 | 15.8069 | 2.1555 | 0.407 | 0.2766 | 0.1794 | 0.1214 | | 1.8827 | 1.97 | 55800 | 1.8323 | 15.8524 | 2.1510 | 0.4221 | 0.291 | 0.193 | 0.135 | | 1.8673 | 1.99 | 56400 | 1.2667 | 15.4262 | 2.1620 | 0.4092 | 0.2795 | 0.1836 | 0.1275 | | 1.6735 | 2.01 | 57000 | 1.821 | 15.8538 | 2.1836 | 0.4193 | 0.2875 | 0.189 | 0.1317 | | 1.6367 | 2.04 | 57600 | 2.5547 | 15.8055 | 2.1941 | 0.415 | 0.2831 | 0.1849 | 0.1284 | | 1.6326 | 2.06 | 58200 | 2.0999 | 15.9352 | 2.1743 | 0.4157 | 0.2829 | 0.1842 | 0.1267 | | 1.6354 | 2.08 | 58800 | 2.3907 | 15.68 | 2.1879 | 0.4233 | 0.2921 | 0.1936 | 0.1361 | | 1.6352 | 2.1 | 59400 | 1.979 | 16.1807 | 2.1735 | 0.4236 | 0.2907 | 0.193 | 0.1346 | | 1.6428 | 2.12 | 60000 | 2.2266 | 15.8759 | 2.1858 | 0.4204 | 0.2881 | 0.1896 | 0.1308 | | 1.6483 | 2.14 | 60600 | 1.9294 | 15.8469 | 2.1878 | 0.4237 | 0.2892 | 0.1901 | 0.1317 | | 1.6502 | 2.16 | 61200 | 1.7967 | 15.7131 | 2.1814 | 0.4164 | 0.2835 | 0.1852 | 0.1275 | | 1.6585 | 2.18 | 61800 | 1.1843 | 16.0579 | 2.1620 | 0.413 | 0.2828 | 0.1852 | 0.128 | | 1.6457 | 2.21 | 62400 | 1.7951 | 15.9862 | 2.1873 | 0.4194 | 0.2885 | 0.1908 | 0.1341 | | 1.6433 | 2.23 | 63000 | 1.6297 | 16.1324 | 2.1770 | 0.4039 | 0.2741 | 0.1773 | 0.1209 | | 1.6493 | 2.25 | 63600 | 1.8762 | 15.5131 | 2.1702 | 0.414 | 0.2851 | 0.1883 | 0.1292 | | 1.672 | 2.27 | 64200 | 2.1811 | 16.1945 | 2.1433 | 0.4198 | 0.2852 | 0.1854 | 0.1272 | | 1.6411 | 2.29 | 64800 | 2.0637 | 16.1434 | 2.1661 | 0.4103 | 0.2809 | 0.1848 | 0.1275 | | 1.6561 | 2.31 | 65400 | 2.452 | 15.5724 | 2.1761 | 0.4204 | 0.292 | 0.1935 | 0.135 | | 1.6516 | 2.33 | 66000 | 2.216 | 15.7048 | 2.1836 | 0.4186 | 0.2887 | 0.1909 | 0.1326 | | 1.6738 | 2.35 | 66600 | 1.7496 | 15.731 | 2.1452 | 0.4186 | 0.2904 | 0.1944 | 0.1364 | | 1.672 | 2.38 | 67200 | 1.3179 | 15.7697 | 2.1412 | 0.4206 | 0.2898 | 0.1936 | 0.1358 | | 1.6625 | 2.4 | 67800 | 2.3606 | 15.76 | 2.1412 | 0.4134 | 0.285 | 0.189 | 0.1315 | | 1.6725 | 2.42 | 68400 | 2.3687 | 15.4745 | 2.1825 | 0.4165 | 0.2874 | 0.1883 | 0.1303 | | 1.6588 | 2.44 | 69000 | 2.2056 | 15.8841 | 2.1307 | 0.4259 | 0.2952 | 0.1974 | 0.139 | | 1.6629 | 2.46 | 69600 | 1.7605 | 15.469 | 2.1523 | 0.4149 | 0.2861 | 0.1901 | 0.1327 | | 1.6716 | 2.48 | 70200 | 1.3733 | 15.3683 | 2.1546 | 0.4202 | 0.2889 | 0.1897 | 0.1314 | | 1.6708 | 2.5 | 70800 | 2.6313 | 15.7214 | 2.1408 | 0.4236 | 0.2937 | 0.1972 | 0.1395 | | 1.6637 | 2.52 | 71400 | 2.5112 | 15.909 | 2.1252 | 0.4203 | 0.2903 | 0.1935 | 0.1361 | | 1.6743 | 2.55 | 72000 | 2.2902 | 15.749 | 2.1326 | 0.426 | 0.297 | 0.1989 | 0.1404 | | 1.6681 | 2.57 | 72600 | 2.1003 | 16.3338 | 2.1120 | 0.4185 | 0.2876 | 0.1904 | 0.1342 | | 1.6791 | 2.59 | 73200 | 1.7082 | 15.7283 | 2.1269 | 0.4268 | 0.2968 | 0.1988 | 0.1392 | | 1.6643 | 2.61 | 73800 | 1.9914 | 16.0552 | 2.1166 | 0.4177 | 0.2886 | 0.1939 | 0.1369 | | 1.6666 | 2.63 | 74400 | 1.8012 | 16.0276 | 2.1242 | 0.4174 | 0.2875 | 0.19 | 0.1328 | | 1.67 | 2.65 | 75000 | 1.696 | 15.5559 | 2.1619 | 0.4196 | 0.2919 | 0.1939 | 0.136 | | 1.6794 | 2.67 | 75600 | 2.0322 | 15.6221 | 2.1425 | 0.4166 | 0.2871 | 0.1891 | 0.1328 | | 1.6753 | 2.69 | 76200 | 2.5736 | 15.7407 | 2.1432 | 0.4215 | 0.2928 | 0.1958 | 0.1388 | | 1.6807 | 2.71 | 76800 | 2.3404 | 15.7186 | 2.1240 | 0.4181 | 0.2885 | 0.1917 | 0.1346 | | 1.6707 | 2.74 | 77400 | 2.4439 | 15.5724 | 2.1246 | 0.4191 | 0.2906 | 0.1936 | 0.1359 | | 1.6736 | 2.76 | 78000 | 2.0595 | 16.2731 | 2.1053 | 0.4158 | 0.2869 | 0.1902 | 0.1324 | | 1.6651 | 2.78 | 78600 | 1.6489 | 15.6772 | 2.1365 | 0.4242 | 0.2924 | 0.1938 | 0.1346 | | 1.6746 | 2.8 | 79200 | 1.1565 | 15.9062 | 2.1232 | 0.4161 | 0.2848 | 0.1872 | 0.1308 | | 1.6666 | 2.82 | 79800 | 1.7445 | 15.9407 | 2.1417 | 0.414 | 0.2807 | 0.1817 | 0.1249 | | 1.6687 | 2.84 | 80400 | 1.9425 | 15.8676 | 2.1240 | 0.4088 | 0.2786 | 0.1821 | 0.1269 | | 1.6678 | 2.86 | 81000 | 1.6419 | 15.9214 | 2.1125 | 0.417 | 0.2873 | 0.188 | 0.1303 | | 1.6609 | 2.88 | 81600 | 1.8123 | 15.8579 | 2.1227 | 0.4199 | 0.2904 | 0.1916 | 0.1323 | ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.9.0 - Tokenizers 0.10.3
adamlin/topicalchat-multiturn
c2ba752e071961714c0df373bb45964c0a84309b
2021-07-02T16:00:15.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:mit" ]
text-generation
false
adamlin
null
adamlin/topicalchat-multiturn
3
null
transformers
21,022
--- license: mit tags: - generated_from_trainer datasets: - null model_index: - name: topicalchat-multiturn results: - task: name: Causal Language Modeling type: text-generation --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # topicalchat-multiturn This model is a fine-tuned version of [microsoft/DialoGPT-small](https://huggingface.co/microsoft/DialoGPT-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.5260 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 73 | 4.2992 | | No log | 2.0 | 146 | 3.4433 | | No log | 3.0 | 219 | 3.1606 | | No log | 4.0 | 292 | 3.0366 | | No log | 5.0 | 365 | 2.9679 | | No log | 6.0 | 438 | 2.9131 | | 4.1401 | 7.0 | 511 | 2.8752 | | 4.1401 | 8.0 | 584 | 2.8391 | | 4.1401 | 9.0 | 657 | 2.8118 | | 4.1401 | 10.0 | 730 | 2.7871 | | 4.1401 | 11.0 | 803 | 2.7659 | | 4.1401 | 12.0 | 876 | 2.7489 | | 4.1401 | 13.0 | 949 | 2.7331 | | 2.9768 | 14.0 | 1022 | 2.7196 | | 2.9768 | 15.0 | 1095 | 2.7071 | | 2.9768 | 16.0 | 1168 | 2.6940 | | 2.9768 | 17.0 | 1241 | 2.6854 | | 2.9768 | 18.0 | 1314 | 2.6728 | | 2.9768 | 19.0 | 1387 | 2.6647 | | 2.9768 | 20.0 | 1460 | 2.6562 | | 2.7864 | 21.0 | 1533 | 2.6482 | | 2.7864 | 22.0 | 1606 | 2.6439 | | 2.7864 | 23.0 | 1679 | 2.6326 | | 2.7864 | 24.0 | 1752 | 2.6107 | | 2.7864 | 25.0 | 1825 | 2.6043 | | 2.7864 | 26.0 | 1898 | 2.5970 | | 2.7864 | 27.0 | 1971 | 2.5908 | | 2.6568 | 28.0 | 2044 | 2.5862 | | 2.6568 | 29.0 | 2117 | 2.5828 | | 2.6568 | 30.0 | 2190 | 2.5765 | | 2.6568 | 31.0 | 2263 | 2.5742 | | 2.6568 | 32.0 | 2336 | 2.5682 | | 2.6568 | 33.0 | 2409 | 2.5656 | | 2.6568 | 34.0 | 2482 | 2.5614 | | 2.5489 | 35.0 | 2555 | 2.5605 | | 2.5489 | 36.0 | 2628 | 2.5552 | | 2.5489 | 37.0 | 2701 | 2.5541 | | 2.5489 | 38.0 | 2774 | 2.5494 | | 2.5489 | 39.0 | 2847 | 2.5491 | | 2.5489 | 40.0 | 2920 | 2.5455 | | 2.5489 | 41.0 | 2993 | 2.5452 | | 2.475 | 42.0 | 3066 | 2.5433 | | 2.475 | 43.0 | 3139 | 2.5397 | | 2.475 | 44.0 | 3212 | 2.5386 | | 2.475 | 45.0 | 3285 | 2.5400 | | 2.475 | 46.0 | 3358 | 2.5339 | | 2.475 | 47.0 | 3431 | 2.5327 | | 2.4144 | 48.0 | 3504 | 2.5327 | | 2.4144 | 49.0 | 3577 | 2.5312 | | 2.4144 | 50.0 | 3650 | 2.5338 | | 2.4144 | 51.0 | 3723 | 2.5314 | | 2.4144 | 52.0 | 3796 | 2.5309 | | 2.4144 | 53.0 | 3869 | 2.5289 | | 2.4144 | 54.0 | 3942 | 2.5290 | | 2.3642 | 55.0 | 4015 | 2.5270 | | 2.3642 | 56.0 | 4088 | 2.5270 | | 2.3642 | 57.0 | 4161 | 2.5263 | | 2.3642 | 58.0 | 4234 | 2.5267 | | 2.3642 | 59.0 | 4307 | 2.5273 | | 2.3642 | 60.0 | 4380 | 2.5258 | | 2.3642 | 61.0 | 4453 | 2.5253 | | 2.3216 | 62.0 | 4526 | 2.5244 | | 2.3216 | 63.0 | 4599 | 2.5256 | | 2.3216 | 64.0 | 4672 | 2.5227 | | 2.3216 | 65.0 | 4745 | 2.5241 | | 2.3216 | 66.0 | 4818 | 2.5244 | | 2.3216 | 67.0 | 4891 | 2.5236 | | 2.3216 | 68.0 | 4964 | 2.5251 | | 2.2879 | 69.0 | 5037 | 2.5231 | | 2.2879 | 70.0 | 5110 | 2.5254 | | 2.2879 | 71.0 | 5183 | 2.5242 | | 2.2879 | 72.0 | 5256 | 2.5254 | | 2.2879 | 73.0 | 5329 | 2.5253 | | 2.2879 | 74.0 | 5402 | 2.5228 | | 2.2879 | 75.0 | 5475 | 2.5247 | | 2.261 | 76.0 | 5548 | 2.5243 | | 2.261 | 77.0 | 5621 | 2.5247 | | 2.261 | 78.0 | 5694 | 2.5250 | | 2.261 | 79.0 | 5767 | 2.5248 | | 2.261 | 80.0 | 5840 | 2.5236 | | 2.261 | 81.0 | 5913 | 2.5264 | | 2.261 | 82.0 | 5986 | 2.5249 | | 2.2396 | 83.0 | 6059 | 2.5256 | | 2.2396 | 84.0 | 6132 | 2.5267 | | 2.2396 | 85.0 | 6205 | 2.5258 | | 2.2396 | 86.0 | 6278 | 2.5242 | | 2.2396 | 87.0 | 6351 | 2.5233 | | 2.2396 | 88.0 | 6424 | 2.5249 | | 2.2396 | 89.0 | 6497 | 2.5253 | | 2.2238 | 90.0 | 6570 | 2.5252 | | 2.2238 | 91.0 | 6643 | 2.5255 | | 2.2238 | 92.0 | 6716 | 2.5263 | | 2.2238 | 93.0 | 6789 | 2.5261 | | 2.2238 | 94.0 | 6862 | 2.5257 | | 2.2238 | 95.0 | 6935 | 2.5253 | | 2.213 | 96.0 | 7008 | 2.5267 | | 2.213 | 97.0 | 7081 | 2.5258 | | 2.213 | 98.0 | 7154 | 2.5258 | | 2.213 | 99.0 | 7227 | 2.5259 | | 2.213 | 100.0 | 7300 | 2.5260 | ### Framework versions - Transformers 4.8.1 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3
adamlin/usr-topicalchat-ctx
c445e5b06f6c63ee12925f86f63aa38ff52db3c7
2021-06-28T12:54:23.000Z
[ "pytorch", "transformers" ]
null
false
adamlin
null
adamlin/usr-topicalchat-ctx
3
null
transformers
21,023
Entry not found
addy88/t5-base-finetuned-sn-to-en
c2c37741bcb516c7c2fa8b5991e31e47e7bbb0bf
2022-01-02T15:49:39.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:itihasa", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
addy88
null
addy88/t5-base-finetuned-sn-to-en
3
null
transformers
21,024
--- license: apache-2.0 tags: - generated_from_trainer datasets: - itihasa model-index: - name: t5-base-finetuned-sn-to-en results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-finetuned-sn-to-en This model is a fine-tuned version of [google/t5-v1_1-base](https://huggingface.co/google/t5-v1_1-base) on the itihasa dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
addy88/wav2vec2-malayalam-stt
f63c0adbba3885e78078bc87d4cb2ba517345f5b
2021-12-19T16:36:31.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
addy88
null
addy88/wav2vec2-malayalam-stt
3
null
transformers
21,025
## Usage The model can be used directly (without a language model) as follows: ```python import soundfile as sf import torch from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import argparse def parse_transcription(wav_file): # load pretrained model processor = Wav2Vec2Processor.from_pretrained("addy88/wav2vec2-malayalam-stt") model = Wav2Vec2ForCTC.from_pretrained("addy88/wav2vec2-malayalam-stt") # load audio audio_input, sample_rate = sf.read(wav_file) # pad input values and return pt tensor input_values = processor(audio_input, sampling_rate=sample_rate, return_tensors="pt").input_values # INFERENCE # retrieve logits & take argmax logits = model(input_values).logits predicted_ids = torch.argmax(logits, dim=-1) # transcribe transcription = processor.decode(predicted_ids[0], skip_special_tokens=True) print(transcription) ```
addy88/wav2vec2-rajsthani-stt
71c4573cad5b2410fed2dce248f0ce4b1511bdf6
2021-12-19T15:52:16.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
addy88
null
addy88/wav2vec2-rajsthani-stt
3
null
transformers
21,026
## Usage The model can be used directly (without a language model) as follows: ```python import soundfile as sf import torch from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import argparse def parse_transcription(wav_file): # load pretrained model processor = Wav2Vec2Processor.from_pretrained("addy88/wav2vec2-rajsthani-stt") model = Wav2Vec2ForCTC.from_pretrained("addy88/wav2vec2-rajsthani-stt") # load audio audio_input, sample_rate = sf.read(wav_file) # pad input values and return pt tensor input_values = processor(audio_input, sampling_rate=sample_rate, return_tensors="pt").input_values # INFERENCE # retrieve logits & take argmax logits = model(input_values).logits predicted_ids = torch.argmax(logits, dim=-1) # transcribe transcription = processor.decode(predicted_ids[0], skip_special_tokens=True) print(transcription) ```
addy88/wav2vec2-tamil-stt
4b1ba455ea88fbe9240cf2076e552e78b07c9d60
2021-12-19T15:43:45.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
addy88
null
addy88/wav2vec2-tamil-stt
3
null
transformers
21,027
## Usage The model can be used directly (without a language model) as follows: ```python import soundfile as sf import torch from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import argparse def parse_transcription(wav_file): # load pretrained model processor = Wav2Vec2Processor.from_pretrained("addy88/wav2vec2-tamil-stt") model = Wav2Vec2ForCTC.from_pretrained("addy88/wav2vec2-tamil-stt") # load audio audio_input, sample_rate = sf.read(wav_file) # pad input values and return pt tensor input_values = processor(audio_input, sampling_rate=sample_rate, return_tensors="pt").input_values # INFERENCE # retrieve logits & take argmax logits = model(input_values).logits predicted_ids = torch.argmax(logits, dim=-1) # transcribe transcription = processor.decode(predicted_ids[0], skip_special_tokens=True) print(transcription) ```
adeiMousa/dummy-model
0ca4caa44cbe6743bf4ccca6d1e4bddc4c3511c8
2022-01-29T18:50:06.000Z
[ "pytorch", "camembert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
adeiMousa
null
adeiMousa/dummy-model
3
null
transformers
21,028
Entry not found
aditeyabaral/additionalpretrained-distilbert-base-cased
bfd207041c63f4f29b61746d3a22035ea88a9e81
2021-10-21T22:30:15.000Z
[ "pytorch", "distilbert", "feature-extraction", "transformers" ]
feature-extraction
false
aditeyabaral
null
aditeyabaral/additionalpretrained-distilbert-base-cased
3
null
transformers
21,029
Entry not found
aditeyabaral/additionalpretrained-roberta-hinglish-small
9842006c3da1a56887cb4cbba3c2d340c9bf5642
2021-10-20T18:29:44.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
aditeyabaral
null
aditeyabaral/additionalpretrained-roberta-hinglish-small
3
null
transformers
21,030
Entry not found
aditeyabaral/bert-hinglish-big
d32d01f7f4593f29f2727fb80e5b1ebf755a9fa9
2021-09-26T05:36:20.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
aditeyabaral
null
aditeyabaral/bert-hinglish-big
3
null
transformers
21,031
Entry not found
aditeyabaral/roberta-hinglish-small
fcf98659bdc0f547c700b38ac2b22dcad224ed20
2021-09-25T09:26:29.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
aditeyabaral
null
aditeyabaral/roberta-hinglish-small
3
null
transformers
21,032
Entry not found
aditeyabaral/sentencetransformer-contrastive-roberta-base
59a1adc92ceb9d352310d9adf3254a41c16550a2
2021-11-13T13:29:45.000Z
[ "pytorch", "roberta", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
aditeyabaral
null
aditeyabaral/sentencetransformer-contrastive-roberta-base
3
null
sentence-transformers
21,033
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # aditeyabaral/sentencetransformer-contrastive-roberta-base This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('aditeyabaral/sentencetransformer-contrastive-roberta-base') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('aditeyabaral/sentencetransformer-contrastive-roberta-base') model = AutoModel.from_pretrained('aditeyabaral/sentencetransformer-contrastive-roberta-base') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=aditeyabaral/sentencetransformer-contrastive-roberta-base) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 9234 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.ContrastiveLoss.ContrastiveLoss` with parameters: ``` {'distance_metric': 'SiameseDistanceMetric.COSINE_DISTANCE', 'margin': 0.5, 'size_average': True} ``` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 100, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
aditya140/longformerNER_kaggle
349cea49e9b3485914ddbabe97cda1d6ede8c86f
2022-02-07T21:22:11.000Z
[ "pytorch", "longformer", "feature-extraction", "transformers" ]
feature-extraction
false
aditya140
null
aditya140/longformerNER_kaggle
3
null
transformers
21,034
Entry not found
ainize/GPT2-futurama-script
7456f78b7d125727e78c42ef5a8a0b520ca1af67
2021-05-21T11:58:18.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
ainize
null
ainize/GPT2-futurama-script
3
null
transformers
21,035
Entry not found
airKlizz/bart-large-multi-combine-wiki-news
9dd218a5836908f7be731ec5e2deb65a89a436a5
2020-06-11T10:57:33.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
airKlizz
null
airKlizz/bart-large-multi-combine-wiki-news
3
null
transformers
21,036
Entry not found
airKlizz/bart-large-multi-en-wiki-news
5d06d568e25bc7bf85de94122824663379c1b41b
2020-06-09T14:41:16.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
airKlizz
null
airKlizz/bart-large-multi-en-wiki-news
3
null
transformers
21,037
Entry not found
airKlizz/bert2bert-multi-de-wiki-news
bfe144348ccba967681de115b78115a5834b1a26
2020-06-10T08:36:47.000Z
[ "pytorch", "encoder-decoder", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
airKlizz
null
airKlizz/bert2bert-multi-de-wiki-news
3
null
transformers
21,038
Entry not found
airKlizz/distilbart-6-12-multi-combine-wiki-news
a1ee9285e4d194ca919d055c1bcce461c3972ea1
2020-08-22T07:50:42.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
airKlizz
null
airKlizz/distilbart-6-12-multi-combine-wiki-news
3
null
transformers
21,039
Entry not found
airKlizz/distilbart-6-6-multi-combine-wiki-news
a749497a1cff1c8f9854e4d5dbe6a98f07bef028
2020-08-22T07:53:04.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
airKlizz
null
airKlizz/distilbart-6-6-multi-combine-wiki-news
3
null
transformers
21,040
Entry not found
airKlizz/mt5-base-germeval21-toxic-with-data-augmentation
fd8e0edd6e6504aec9954ec351bd97d5e897bf28
2021-07-12T15:47:09.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
airKlizz
null
airKlizz/mt5-base-germeval21-toxic-with-data-augmentation
3
null
transformers
21,041
Entry not found
airKlizz/mt5-base-wikinewssum-all-languages
2e7134e501a5db76ea0a0cd9c7884ee378f2a2b3
2021-12-23T12:56:06.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "summarization", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
summarization
false
airKlizz
null
airKlizz/mt5-base-wikinewssum-all-languages
3
null
transformers
21,042
--- license: apache-2.0 tags: - summarization - generated_from_trainer metrics: - rouge model-index: - name: mt5-base-wikinewssum-all-languages results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-base-wikinewssum-all-languages This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.2454 - Rouge1: 8.3826 - Rouge2: 3.5524 - Rougel: 6.8656 - Rougelsum: 7.8362 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:| | No log | 1.0 | 3467 | 2.4034 | 8.0363 | 3.2484 | 6.5409 | 7.477 | | No log | 2.0 | 6934 | 2.3276 | 8.1054 | 3.2905 | 6.5765 | 7.5687 | | No log | 3.0 | 10401 | 2.2976 | 8.169 | 3.4272 | 6.6597 | 7.6435 | | No log | 4.0 | 13868 | 2.2795 | 8.2941 | 3.5353 | 6.7881 | 7.7664 | | 2.8057 | 5.0 | 17335 | 2.2621 | 8.3302 | 3.5599 | 6.8238 | 7.7928 | | 2.8057 | 6.0 | 20802 | 2.2547 | 8.3818 | 3.5886 | 6.8672 | 7.844 | | 2.8057 | 7.0 | 24269 | 2.2472 | 8.3809 | 3.5696 | 6.8575 | 7.8327 | | 2.8057 | 8.0 | 27736 | 2.2454 | 8.3826 | 3.5524 | 6.8656 | 7.8362 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.10.1 - Datasets 1.16.1 - Tokenizers 0.10.3
airKlizz/mt5-base-wikinewssum-english-100
a0b77cd355f5a215061698ca44a0b01ab394a715
2021-12-31T12:02:27.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "summarization", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
summarization
false
airKlizz
null
airKlizz/mt5-base-wikinewssum-english-100
3
null
transformers
21,043
--- license: apache-2.0 tags: - summarization - generated_from_trainer metrics: - rouge model-index: - name: mt5-base-wikinewssum-english-100 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-base-wikinewssum-english-100 This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 6.6225 - Rouge1: 3.909 - Rouge2: 0.9312 - Rougel: 3.3835 - Rougelsum: 3.7786 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| | No log | 0.96 | 12 | 14.4949 | 2.7398 | 0.7181 | 2.491 | 2.6561 | | No log | 1.96 | 24 | 10.5056 | 4.4428 | 1.4293 | 3.8469 | 4.2869 | | No log | 2.96 | 36 | 8.9856 | 4.1179 | 1.229 | 3.5726 | 3.9693 | | No log | 3.96 | 48 | 7.7950 | 3.9217 | 1.1339 | 3.4256 | 3.7905 | | No log | 4.96 | 60 | 7.0734 | 3.8004 | 1.0326 | 3.3246 | 3.6766 | | No log | 5.96 | 72 | 6.7897 | 3.6351 | 0.9162 | 3.1839 | 3.5149 | | No log | 6.96 | 84 | 6.6610 | 3.7486 | 0.8829 | 3.2583 | 3.6193 | | No log | 7.96 | 96 | 6.6225 | 3.909 | 0.9312 | 3.3835 | 3.7786 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.10.1 - Datasets 1.16.1 - Tokenizers 0.10.3
airKlizz/t5-base-multi-combine-wiki-news
c4e499f32627f5c1eeded16eb8a8020dc6afce76
2021-06-23T10:50:02.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
airKlizz
null
airKlizz/t5-base-multi-combine-wiki-news
3
null
transformers
21,044
Entry not found
airKlizz/t5-base-multi-en-wiki-news
ab66f89adfcfbf4237b4531f1a76107a7ae12711
2021-06-23T11:53:07.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
airKlizz
null
airKlizz/t5-base-multi-en-wiki-news
3
null
transformers
21,045
Entry not found
airKlizz/t5-base-with-title-multi-fr-wiki-news
4d539af1764660deb26c373804e7702cf40008a5
2021-10-17T20:20:45.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "fr", "transformers", "license:mit", "autotrain_compatible" ]
text2text-generation
false
airKlizz
null
airKlizz/t5-base-with-title-multi-fr-wiki-news
3
null
transformers
21,046
--- language: fr license: mit ---
akadriu/wav2vec2-large-xlsr-53-demo-colab
01befea49814c4d3126f92733434904cf7495ec8
2022-01-18T22:07:57.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
akadriu
null
akadriu/wav2vec2-large-xlsr-53-demo-colab
3
1
transformers
21,047
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-large-xlsr-53-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-53-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4170 - Wer: 0.4282 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 6.7049 | 0.8 | 200 | 3.0234 | 0.9683 | | 2.9496 | 1.6 | 400 | 2.9348 | 0.9683 | | 2.6582 | 2.4 | 600 | 1.2843 | 0.9818 | | 1.0417 | 3.2 | 800 | 0.6061 | 0.5853 | | 0.7853 | 4.0 | 1000 | 0.5113 | 0.5013 | | 0.681 | 4.8 | 1200 | 0.4723 | 0.4695 | | 0.6074 | 5.6 | 1400 | 0.4528 | 0.4491 | | 0.5539 | 6.4 | 1600 | 0.4818 | 0.4555 | | 0.5257 | 7.2 | 1800 | 0.4439 | 0.4298 | | 0.5038 | 8.0 | 2000 | 0.4495 | 0.4398 | | 0.4868 | 8.8 | 2200 | 0.4467 | 0.4392 | | 0.4727 | 9.6 | 2400 | 0.4076 | 0.4045 | | 0.4493 | 10.4 | 2600 | 0.4559 | 0.4452 | | 0.4452 | 11.2 | 2800 | 0.4174 | 0.4124 | | 0.4407 | 12.0 | 3000 | 0.4188 | 0.4098 | | 0.4385 | 12.8 | 3200 | 0.4123 | 0.4098 | | 0.4192 | 13.6 | 3400 | 0.4090 | 0.4199 | | 0.4061 | 14.4 | 3600 | 0.4170 | 0.4282 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
akahana/gpt2-indonesia
ac358da3046380ff3db173f0e0d56ce97b95e025
2021-11-30T07:06:10.000Z
[ "pytorch", "tf", "gpt2", "text-generation", "id", "transformers" ]
text-generation
false
akahana
null
akahana/gpt2-indonesia
3
null
transformers
21,048
--- language: "id" widget: - text: "dahulu kala ada sebuah" --- ## how to use ```python from transformers import pipeline, set_seed path = "akahana/gpt2-indonesia" generator = pipeline('text-generation', model=path) set_seed(42) kalimat = "dahulu kala ada sebuah" preds = generator(kalimat, max_length=64, num_return_sequences=3) for data in preds: print(data) {'generated_text': 'dahulu kala ada sebuah perkampungan yang bernama pomere. namun kini kawasan ini sudah tidak dikembangkan lagi sebagai kawasan industri seperti perusahaan pupuk. sumber-sumber lain sudah sulit ditemukan karena belum adanya kilang pupuk milik indonesia yang sering di kembangkan sehingga belum ada satupun yang masih tersisa yang tersisa. kawasan ini juga memproduksi gula aren milik pt graha bina sarana'} {'generated_text': 'dahulu kala ada sebuah desa kecil bernama desa. desa yang terkenal seperti halnya kota terdekat lainnya adalah desa tetangga yang bernama sama."\n"sebuah masjid merupakan suatu tempat suci yang digunakan umat islam untuk beribadah. beberapa masjid yang didaftarkan berikut memiliki suatu kehormatan tersendiri bagi masing-masing denominasi islam di dunia. sebuah masjid selain memiliki fungsi sebagai tempat'} {'generated_text': 'dahulu kala ada sebuah peradaban yang dibangun di sebelah barat sungai mississippi di sekitar desa kecil desa yang bernama sama. penduduk asli di desa ini berasal dari etnis teweh yang berpindah agama menjadi kristen, namun kemudian pindah agama menjadi kristen. desa arawak mempunyai beberapa desa lain seperti adibei, deti, riuhut dan sa'} ```
akahana/wav2vec2-base-indonesia
db3f55c2111bd26f6a0a9716255a0bc5b02bfe99
2021-11-22T13:03:49.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
akahana
null
akahana/wav2vec2-base-indonesia
3
null
transformers
21,049
Entry not found
akashsivanandan/wav2vec2-large-xls-r-300m-tamil-colab
330883842b9abd6a11e8521e74194eea0b332965
2021-12-21T18:26:28.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
akashsivanandan
null
akashsivanandan/wav2vec2-large-xls-r-300m-tamil-colab
3
null
transformers
21,050
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-tamil-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-tamil-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.8072 - Wer: 0.6531 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 11.0967 | 1.0 | 118 | 4.6437 | 1.0 | | 3.4973 | 2.0 | 236 | 3.2588 | 1.0 | | 3.1305 | 3.0 | 354 | 2.6566 | 1.0 | | 1.2931 | 4.0 | 472 | 0.9156 | 0.9944 | | 0.6851 | 5.0 | 590 | 0.7474 | 0.8598 | | 0.525 | 6.0 | 708 | 0.6649 | 0.7995 | | 0.4325 | 7.0 | 826 | 0.6740 | 0.7752 | | 0.3766 | 8.0 | 944 | 0.6220 | 0.7628 | | 0.3256 | 9.0 | 1062 | 0.6316 | 0.7322 | | 0.2802 | 10.0 | 1180 | 0.6442 | 0.7305 | | 0.2575 | 11.0 | 1298 | 0.6885 | 0.7280 | | 0.2248 | 12.0 | 1416 | 0.6702 | 0.7197 | | 0.2089 | 13.0 | 1534 | 0.6781 | 0.7173 | | 0.1893 | 14.0 | 1652 | 0.6981 | 0.7049 | | 0.1652 | 15.0 | 1770 | 0.7154 | 0.7436 | | 0.1643 | 16.0 | 1888 | 0.6798 | 0.7023 | | 0.1472 | 17.0 | 2006 | 0.7381 | 0.6947 | | 0.1372 | 18.0 | 2124 | 0.7240 | 0.7065 | | 0.1318 | 19.0 | 2242 | 0.7305 | 0.6714 | | 0.1211 | 20.0 | 2360 | 0.7288 | 0.6597 | | 0.1178 | 21.0 | 2478 | 0.7417 | 0.6699 | | 0.1118 | 22.0 | 2596 | 0.7476 | 0.6753 | | 0.1016 | 23.0 | 2714 | 0.7973 | 0.6647 | | 0.0998 | 24.0 | 2832 | 0.8027 | 0.6633 | | 0.0917 | 25.0 | 2950 | 0.8045 | 0.6680 | | 0.0907 | 26.0 | 3068 | 0.7884 | 0.6565 | | 0.0835 | 27.0 | 3186 | 0.8009 | 0.6622 | | 0.0749 | 28.0 | 3304 | 0.8123 | 0.6536 | | 0.0755 | 29.0 | 3422 | 0.8006 | 0.6555 | | 0.074 | 30.0 | 3540 | 0.8072 | 0.6531 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
akozlo/conserv_fulltext_1_18_22
3ee91e7f082f2e009a836fd723c41d778394ef0c
2022-01-18T13:42:59.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-generation
false
akozlo
null
akozlo/conserv_fulltext_1_18_22
3
null
transformers
21,051
--- license: mit tags: - generated_from_trainer model-index: - name: conserv_fulltext_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # conserv_fulltext_model This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3 unbalanced_texts gpt2
akrathi007/akk213text
e224031a07f3933804049c8837391b5cdeafb8ce
2022-02-08T06:59:58.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
akrathi007
null
akrathi007/akk213text
3
null
transformers
21,052
Entry not found
alangganggang/transformer_exercise_01
7c7870ba71dc5ca28e9f25f143a1f2349aa1fdc7
2021-11-02T14:41:44.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
alangganggang
null
alangganggang/transformer_exercise_01
3
null
transformers
21,053
Entry not found
algolet/bert-large-chinese
cde4a45bb97c3cc68f1e31120ad00ef48d415834
2021-12-14T10:00:38.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
algolet
null
algolet/bert-large-chinese
3
null
transformers
21,054
<p>Chinese Bert Large Model</p> <p>bert large中文预训练模型</p> #### 训练语料 中文wiki, 2018-2020海量新闻语料
ali2066/finetuned_token_2e-05_16_02_2022-14_37_42
dc81b06d45ef12a49f3183d1fc9c53b1a1a53d26
2022-02-16T13:40:00.000Z
[ "pytorch", "tensorboard", "distilbert", "token-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
ali2066
null
ali2066/finetuned_token_2e-05_16_02_2022-14_37_42
3
null
transformers
21,055
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: finetuned_token_2e-05_16_02_2022-14_37_42 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_token_2e-05_16_02_2022-14_37_42 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1722 - Precision: 0.3378 - Recall: 0.3615 - F1: 0.3492 - Accuracy: 0.9448 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 38 | 0.3781 | 0.1512 | 0.2671 | 0.1931 | 0.8216 | | No log | 2.0 | 76 | 0.3020 | 0.1748 | 0.2938 | 0.2192 | 0.8551 | | No log | 3.0 | 114 | 0.2723 | 0.1938 | 0.3339 | 0.2452 | 0.8663 | | No log | 4.0 | 152 | 0.2574 | 0.2119 | 0.3506 | 0.2642 | 0.8727 | | No log | 5.0 | 190 | 0.2521 | 0.2121 | 0.3623 | 0.2676 | 0.8756 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
ali2066/finetuned_token_itr0_2e-05_all_16_02_2022-21_08_55
3ca859220c60e4555dad2bd744ec8b31515cc6e8
2022-02-16T20:11:04.000Z
[ "pytorch", "tensorboard", "distilbert", "token-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
ali2066
null
ali2066/finetuned_token_itr0_2e-05_all_16_02_2022-21_08_55
3
null
transformers
21,056
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: finetuned_token_itr0_2e-05_all_16_02_2022-21_08_55 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_token_itr0_2e-05_all_16_02_2022-21_08_55 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2853 - Precision: 0.1677 - Recall: 0.3106 - F1: 0.2178 - Accuracy: 0.8755 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 30 | 0.3452 | 0.0526 | 0.1055 | 0.0702 | 0.8507 | | No log | 2.0 | 60 | 0.2598 | 0.1575 | 0.2680 | 0.1984 | 0.8909 | | No log | 3.0 | 90 | 0.2398 | 0.1866 | 0.2982 | 0.2295 | 0.9007 | | No log | 4.0 | 120 | 0.2354 | 0.1949 | 0.3049 | 0.2378 | 0.9002 | | No log | 5.0 | 150 | 0.2314 | 0.2026 | 0.3166 | 0.2471 | 0.9004 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
alireza7/ARMAN-MSR-persian-base-parsinlu-multiple-choice
ad2f4f1a207e799375d3d501606a2111923a750c
2021-09-29T19:15:05.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
alireza7
null
alireza7/ARMAN-MSR-persian-base-parsinlu-multiple-choice
3
null
transformers
21,057
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
alireza7/ARMAN-MSR-persian-base-parsinlu-qqp
e5be71bc0f1e130e10056924feb40000c1a3bb3d
2021-09-29T19:15:19.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
alireza7
null
alireza7/ARMAN-MSR-persian-base-parsinlu-qqp
3
null
transformers
21,058
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
alireza7/ARMAN-MSR-persian-base-parsinlu-textual-entailment
d2adba01c6334166bbdefa9364e48c31fcff3e8f
2021-09-29T19:16:04.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
alireza7
null
alireza7/ARMAN-MSR-persian-base-parsinlu-textual-entailment
3
null
transformers
21,059
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
alireza7/ARMAN-MSR-persian-base-perkey-title
cd4344566fe4841b1082d28ad4b308b1f5fd2bdb
2021-09-29T19:16:50.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
alireza7
null
alireza7/ARMAN-MSR-persian-base-perkey-title
3
null
transformers
21,060
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
alireza7/ARMAN-MSR-persian-base-voa-title
53e2867acdfe47431c50b8883c54e5e987935cda
2021-09-29T19:17:05.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
alireza7
null
alireza7/ARMAN-MSR-persian-base-voa-title
3
null
transformers
21,061
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
alireza7/ARMAN-SH-persian-base-parsinlu-multiple-choice
64dfd84cb9f9bc31fe29c5044150c8011886fc6f
2021-09-29T19:18:05.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
alireza7
null
alireza7/ARMAN-SH-persian-base-parsinlu-multiple-choice
3
null
transformers
21,062
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
alireza7/ARMAN-SH-persian-base-perkey-summary
e3953b2aa589f30248dba6830d2206c031726800
2021-09-29T19:19:10.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
alireza7
null
alireza7/ARMAN-SH-persian-base-perkey-summary
3
null
transformers
21,063
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
alireza7/ARMAN-SH-persian-base-voa-title
7c4e50bfd079609eb1245d970330e6316c1cbdb0
2021-09-29T19:19:31.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
alireza7
null
alireza7/ARMAN-SH-persian-base-voa-title
3
null
transformers
21,064
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
alireza7/ARMAN-SH-persian-base-wiki-summary
39d6ba44e554f4962582abdf933aaeb9fde2b910
2021-09-29T19:19:39.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
alireza7
null
alireza7/ARMAN-SH-persian-base-wiki-summary
3
null
transformers
21,065
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
alireza7/ARMAN-SS-100-persian-base-parsinlu-qqp
b97597ab06205d3670dbfbfdf51dc4f9ef011448
2021-09-29T19:20:44.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
alireza7
null
alireza7/ARMAN-SS-100-persian-base-parsinlu-qqp
3
null
transformers
21,066
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
alireza7/ARMAN-SS-100-persian-base-parsinlu-textual-entailment
f8724cc83164885223da6101d9af822745389fa9
2021-09-29T19:21:04.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
alireza7
null
alireza7/ARMAN-SS-100-persian-base-parsinlu-textual-entailment
3
null
transformers
21,067
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
alireza7/ARMAN-SS-100-persian-base
0da6458949655383098fd1efde957f0979dbe4a6
2021-09-29T19:22:36.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
alireza7
null
alireza7/ARMAN-SS-100-persian-base
3
null
transformers
21,068
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
alireza7/ARMAN-SS-80-persian-base-parsinlu-qqp
3b6f35168d9dfa6a1a7df37780dfe6c37b3802a6
2021-09-29T19:22:58.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
alireza7
null
alireza7/ARMAN-SS-80-persian-base-parsinlu-qqp
3
null
transformers
21,069
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
alireza7/ARMAN-SS-80-persian-base-parsinlu-sentiment-food
867a782fae0da09f6f4f3d6ce694c717e004374e
2021-09-29T19:23:05.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
alireza7
null
alireza7/ARMAN-SS-80-persian-base-parsinlu-sentiment-food
3
null
transformers
21,070
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
alireza7/ARMAN-SS-80-persian-base-parsinlu-sentiment-movie
262c5fac7f908bf0075a675eedb01f28fd6b7b2e
2021-09-29T19:23:12.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
alireza7
null
alireza7/ARMAN-SS-80-persian-base-parsinlu-sentiment-movie
3
null
transformers
21,071
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
alireza7/ARMAN-SS-80-persian-base-perkey-summary
3a52f16158a7394a1357eb27b1806e02a7ac4aab
2021-09-29T19:23:27.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
alireza7
null
alireza7/ARMAN-SS-80-persian-base-perkey-summary
3
null
transformers
21,072
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
alireza7/ARMAN-SS-80-persian-base-voa-title
0fe1aeb103ed8a647ec2f2b1f420a3268628e7c5
2021-09-29T19:23:47.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
alireza7
null
alireza7/ARMAN-SS-80-persian-base-voa-title
3
null
transformers
21,073
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
alireza7/PEGASUS-persian-base-parsinlu-multiple-choice
37943905030d55ff050768ea56e0d0b0c0cfc021
2021-09-29T19:25:09.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
alireza7
null
alireza7/PEGASUS-persian-base-parsinlu-multiple-choice
3
null
transformers
21,074
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
alireza7/PEGASUS-persian-base-parsinlu-sentiment-movie
b490dce9c57397b176eac90ec9f907d4155576e6
2021-09-29T19:25:31.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
alireza7
null
alireza7/PEGASUS-persian-base-parsinlu-sentiment-movie
3
null
transformers
21,075
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
allenai/t5-small-squad11
66e747ceac285ed6caf5c80dcea0b5de677c60af
2021-06-23T11:14:57.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
allenai
null
allenai/t5-small-squad11
3
1
transformers
21,076
SQuAD 1.1 question-answering based on T5-small. Example use: ```python from transformers import T5Config, T5ForConditionalGeneration, T5Tokenizer model_name = "allenai/t5-small-next-word-generator-qoogle" tokenizer = T5Tokenizer.from_pretrained(model_name) model = T5ForConditionalGeneration.from_pretrained(model_name) def run_model(input_string, **generator_args): input_ids = tokenizer.encode(input_string, return_tensors="pt") res = model.generate(input_ids, **generator_args) output = tokenizer.batch_decode(res, skip_special_tokens=True) print(output) return output run_model("Who is the winner of 2009 olympics? \n Jack and Jill participated, but James won the games.")``` which should result in the following: ``` ['James'] ```
alvinwatner/pegasus-large-qg-squad-alpha-interro
891d4dcbf1dea5dca1ec9b30b7c094ad17eb5c73
2022-01-04T09:49:48.000Z
[ "pytorch", "jax", "tensorboard", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
alvinwatner
null
alvinwatner/pegasus-large-qg-squad-alpha-interro
3
null
transformers
21,077
Entry not found
am-shb/bert-base-multilingual-cased-finetuned
ce90a79d85de9ca706444eaded6ea2eb99fd7d81
2022-02-03T21:59:27.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
fill-mask
false
am-shb
null
am-shb/bert-base-multilingual-cased-finetuned
3
null
transformers
21,078
--- tags: - generated_from_trainer model-index: - name: '57426955' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 57426955 This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4779 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 12 - eval_batch_size: 16 - seed: 1337 - gradient_accumulation_steps: 2 - total_train_batch_size: 24 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.11.2 - Pytorch 1.10.0 - Datasets 1.8.0 - Tokenizers 0.10.3
ami-wav2vec2/wav2vec2-base-ami_multi-nithin0
ee49e2b0ecf320c73b0a58061bb6f0dc407f1da1
2021-10-16T05:08:37.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "en", "transformers", "ami", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
ami-wav2vec2
null
ami-wav2vec2/wav2vec2-base-ami_multi-nithin0
3
null
transformers
21,079
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - ami - generated_from_trainer model-index: - name: wav2vec2-base-ami_multi-nithin0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-ami_multi-nithin0 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the AMI-IHM dataset. It achieves the following results on the evaluation set: - Loss: 11.0605 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:---:| | 3.1566 | 1.07 | 5000 | 9.5587 | 1.0 | | 3.149 | 2.13 | 10000 | 9.0950 | 1.0 | | 3.1518 | 3.2 | 15000 | 9.7352 | 1.0 | | 3.1716 | 4.27 | 20000 | 9.0866 | 1.0 | | 3.1611 | 5.33 | 25000 | 9.6718 | 1.0 | | 3.1308 | 6.4 | 30000 | 9.6227 | 1.0 | | 3.1762 | 7.46 | 35000 | 9.4326 | 1.0 | | 3.1503 | 8.53 | 40000 | 9.7609 | 1.0 | | 3.1591 | 9.6 | 45000 | 9.3503 | 1.0 | ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.9.1 - Datasets 1.12.2.dev0 - Tokenizers 0.10.3
ami-wav2vec2/wav2vec2-base-ami_multi-nithin6
cc5a7880d74b53f5101cf3a152113c1fed3b8f83
2021-11-10T05:47:06.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "en", "transformers", "ami", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
ami-wav2vec2
null
ami-wav2vec2/wav2vec2-base-ami_multi-nithin6
3
null
transformers
21,080
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - ami - generated_from_trainer model-index: - name: wav2vec2-base-ami_multi-nithin6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-ami_multi-nithin6 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the AMI-IHM dataset. It achieves the following results on the evaluation set: - Loss: 1.7654 - Wer: 0.4952 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 40.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.3222 | 4.31 | 2500 | 1.4875 | 0.5021 | | 1.164 | 8.62 | 5000 | 1.4255 | 0.4816 | | 1.0753 | 12.93 | 7500 | 1.4086 | 0.4717 | | 0.9196 | 17.24 | 10000 | 1.4163 | 0.4695 | | 0.8326 | 21.55 | 12500 | 1.5326 | 0.4650 | | 0.7306 | 25.86 | 15000 | 1.5793 | 0.4670 | | 0.5763 | 30.17 | 17500 | 1.7485 | 0.4728 | | 0.4869 | 34.48 | 20000 | 1.9050 | 0.4797 | | 0.4183 | 38.79 | 22500 | 2.1386 | 0.4835 | ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.9.1 - Datasets 1.12.2.dev0 - Tokenizers 0.10.3
ami-wav2vec2/wav2vec2-base-ami_single-vumichien
05143c5f62d1b815852173119e6c2293791892df
2021-10-21T08:43:49.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "en", "dataset:ami", "transformers", "ami", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
ami-wav2vec2
null
ami-wav2vec2/wav2vec2-base-ami_single-vumichien
3
null
transformers
21,081
--- language: - en license: apache-2.0 datasets: - ami metrics: - wer tags: - automatic-speech-recognition - ami - generated_from_trainer model-index: - name: wav2vec2-base-ami_single-vumichien results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-ami_single-vumichien This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the AMI-IHM dataset. It achieves the following results on the evaluation set: - Loss: nan - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:---:| | 0.0 | 1.06 | 2500 | nan | 1.0 | | 0.0 | 2.12 | 5000 | nan | 1.0 | | 0.0 | 3.17 | 7500 | nan | 1.0 | | 0.0 | 4.23 | 10000 | nan | 1.0 | | 0.0 | 5.29 | 12500 | nan | 1.0 | | 0.0 | 6.35 | 15000 | nan | 1.0 | | 0.0 | 7.4 | 17500 | nan | 1.0 | | 0.0 | 8.46 | 20000 | nan | 1.0 | | 0.0 | 9.52 | 22500 | nan | 1.0 | | 0.0 | 10.58 | 25000 | nan | 1.0 | | 0.0 | 11.63 | 27500 | nan | 1.0 | | 0.0 | 12.69 | 30000 | nan | 1.0 | | 0.0 | 13.75 | 32500 | nan | 1.0 | | 0.0 | 14.81 | 35000 | nan | 1.0 | | 0.0 | 15.86 | 37500 | nan | 1.0 | | 0.0 | 16.92 | 40000 | nan | 1.0 | | 0.0 | 17.98 | 42500 | nan | 1.0 | | 0.0 | 19.04 | 45000 | nan | 1.0 | | 0.0 | 20.09 | 47500 | nan | 1.0 | | 0.0 | 21.15 | 50000 | nan | 1.0 | | 0.0 | 22.21 | 52500 | nan | 1.0 | | 0.0 | 23.27 | 55000 | nan | 1.0 | | 0.0 | 24.32 | 57500 | nan | 1.0 | | 0.0 | 25.38 | 60000 | nan | 1.0 | | 0.0 | 26.44 | 62500 | nan | 1.0 | | 0.0 | 27.5 | 65000 | nan | 1.0 | | 0.0 | 28.55 | 67500 | nan | 1.0 | | 0.0 | 29.61 | 70000 | nan | 1.0 | ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.9.1 - Datasets 1.13.3 - Tokenizers 0.10.3
ami-wav2vec2/wav2vec2-large-robust-ami_multi-nithin9
7771d7b0a90e21d8a4de8ad76c40c7779f4ed91a
2021-12-03T08:22:05.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "en", "transformers", "ami", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
ami-wav2vec2
null
ami-wav2vec2/wav2vec2-large-robust-ami_multi-nithin9
3
1
transformers
21,082
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - ami - generated_from_trainer model-index: - name: wav2vec2-large-robust-ami_multi-nithin9 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-robust-ami_multi-nithin9 This model is a fine-tuned version of [facebook/wav2vec2-large-robust](https://huggingface.co/facebook/wav2vec2-large-robust) on the AMI-IHM dataset. It achieves the following results on the evaluation set: - Loss: 1.4380 - Wer: 0.4318 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 40.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.3421 | 2.16 | 2500 | 1.2730 | 0.4097 | | 1.229 | 4.31 | 5000 | 1.2522 | 0.3908 | | 1.1494 | 6.47 | 7500 | 1.1937 | 0.3857 | | 1.0801 | 8.62 | 10000 | 1.1936 | 0.3838 | | 1.0366 | 10.78 | 12500 | 1.1860 | 0.3936 | | 1.0292 | 12.93 | 15000 | 1.2014 | 0.3819 | | 0.9217 | 15.09 | 17500 | 1.2313 | 0.3857 | | 0.9182 | 17.24 | 20000 | 1.2617 | 0.3923 | | 0.8731 | 19.4 | 22500 | 1.2850 | 0.3940 | | 0.8471 | 21.55 | 25000 | 1.3432 | 0.3912 | | 0.8372 | 23.71 | 27500 | 1.3238 | 0.3888 | | 0.7905 | 25.86 | 30000 | 1.3911 | 0.3962 | | 0.7553 | 28.02 | 32500 | 1.4314 | 0.3974 | | 0.7448 | 30.17 | 35000 | 1.4246 | 0.4007 | | 0.7228 | 32.33 | 37500 | 1.4303 | 0.4006 | | 0.6941 | 34.48 | 40000 | 1.5059 | 0.4006 | | 0.6804 | 36.64 | 42500 | 1.5281 | 0.4008 | | 0.6652 | 38.79 | 45000 | 1.5382 | 0.4004 | ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.9.1 - Datasets 1.12.2.dev0 - Tokenizers 0.10.3
anas-awadalla/bert-base-uncased-few-shot-k-16-finetuned-squad-seed-42
4c044a008229d8ef85c6b0b388d2d402e9ad2f4a
2022-02-21T18:31:23.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
anas-awadalla
null
anas-awadalla/bert-base-uncased-few-shot-k-16-finetuned-squad-seed-42
3
null
transformers
21,083
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-base-uncased-few-shot-k-16-finetuned-squad-seed-42 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-few-shot-k-16-finetuned-squad-seed-42 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results {'exact_match': 3.207190160832545, 'f1': 6.680463956037787} ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
anas-awadalla/roberta-base-few-shot-k-16-finetuned-squad-seed-42
16b28ddaf4b2a1b33d39128b12e55acf2c3e25ec
2022-02-21T20:54:21.000Z
[ "pytorch", "tensorboard", "roberta", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
question-answering
false
anas-awadalla
null
anas-awadalla/roberta-base-few-shot-k-16-finetuned-squad-seed-42
3
null
transformers
21,084
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: roberta-base-few-shot-k-16-finetuned-squad-seed-42 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-few-shot-k-16-finetuned-squad-seed-42 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results {'exact_match': 8.618732261116367, 'f1': 14.074017518582023} ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
anas-awadalla/spanbert-base-cased-few-shot-k-128-finetuned-squad-seed-42
0a2ead2c74be2de1013a4ba7489e2a2bcc48a32d
2022-02-21T23:04:33.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
anas-awadalla
null
anas-awadalla/spanbert-base-cased-few-shot-k-128-finetuned-squad-seed-42
3
null
transformers
21,085
--- tags: - generated_from_trainer datasets: - squad model-index: - name: spanbert-base-cased-few-shot-k-128-finetuned-squad-seed-42 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-few-shot-k-128-finetuned-squad-seed-42 This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results {'exact_match': 12.573320719016083, 'f1': 22.855895753681814} ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
anas-awadalla/spanbert-base-cased-few-shot-k-16-finetuned-squad-seed-42
2f4e5ab10f026427cd4556ae1762f066f768fafa
2022-02-21T22:04:32.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
anas-awadalla
null
anas-awadalla/spanbert-base-cased-few-shot-k-16-finetuned-squad-seed-42
3
null
transformers
21,086
--- tags: - generated_from_trainer datasets: - squad model-index: - name: spanbert-base-cased-few-shot-k-16-finetuned-squad-seed-42 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-few-shot-k-16-finetuned-squad-seed-42 This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results {'exact_match': 4.541154210028382, 'f1': 10.04181288563879} ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
andi611/bert-large-uncased-whole-word-masking-squad2-with-ner-Pistherea-conll2003-with-neg-with-repeat
6a0488e722a821e9003858e1dd661fef072d00db
2021-10-02T16:53:01.000Z
[ "pytorch", "bert", "question-answering", "en", "dataset:squad_v2", "dataset:conll2003", "transformers", "generated_from_trainer", "license:cc-by-4.0", "autotrain_compatible" ]
question-answering
false
andi611
null
andi611/bert-large-uncased-whole-word-masking-squad2-with-ner-Pistherea-conll2003-with-neg-with-repeat
3
null
transformers
21,087
--- language: - en license: cc-by-4.0 tags: - generated_from_trainer datasets: - squad_v2 - conll2003 model_index: - name: bert-large-uncased-whole-word-masking-squad2-with-ner-Pistherea-conll2003-with-neg-with-repeat results: - task: name: Token Classification type: token-classification dataset: name: squad_v2 type: squad_v2 args: conll2003 - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-large-uncased-whole-word-masking-squad2-with-ner-Pistherea-conll2003-with-neg-with-repeat This model is a fine-tuned version of [deepset/bert-large-uncased-whole-word-masking-squad2](https://huggingface.co/deepset/bert-large-uncased-whole-word-masking-squad2) on the squad_v2 and the conll2003 datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3
andi611/bert-large-uncased-whole-word-masking-squad2-with-ner-Pwhatisthe-conll2003-with-neg-with-repeat
a4736176372d5ea532e34a33a2df07f3d1d1d1a7
2021-10-02T10:20:06.000Z
[ "pytorch", "bert", "question-answering", "en", "dataset:squad_v2", "dataset:conll2003", "transformers", "generated_from_trainer", "license:cc-by-4.0", "autotrain_compatible" ]
question-answering
false
andi611
null
andi611/bert-large-uncased-whole-word-masking-squad2-with-ner-Pwhatisthe-conll2003-with-neg-with-repeat
3
null
transformers
21,088
--- language: - en license: cc-by-4.0 tags: - generated_from_trainer datasets: - squad_v2 - conll2003 model_index: - name: bert-large-uncased-whole-word-masking-squad2-with-ner-Pwhatisthe-conll2003-with-neg-with-repeat results: - task: name: Token Classification type: token-classification dataset: name: squad_v2 type: squad_v2 args: conll2003 - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-large-uncased-whole-word-masking-squad2-with-ner-Pwhatisthe-conll2003-with-neg-with-repeat This model is a fine-tuned version of [deepset/bert-large-uncased-whole-word-masking-squad2](https://huggingface.co/deepset/bert-large-uncased-whole-word-masking-squad2) on the squad_v2 and the conll2003 datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3
andi611/distilbert-base-uncased-qa-with-ner
7f5d3d397c179cf76822c1ceea8748e82f8618da
2021-07-19T01:20:54.000Z
[ "pytorch", "distilbert", "question-answering", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible" ]
question-answering
false
andi611
null
andi611/distilbert-base-uncased-qa-with-ner
3
null
transformers
21,089
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 model_index: - name: distilbert-base-uncased-qa-with-ner results: - task: name: Question Answering type: question-answering dataset: name: conll2003 type: conll2003 args: conll2003 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-qa-with-ner This model is a fine-tuned version of [andi611/distilbert-base-uncased-qa](https://huggingface.co/andi611/distilbert-base-uncased-qa) on the conll2003 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3
andi611/distilbert-base-uncased-squad2-with-ner
d5c2739d1cd793e29b0a3fc03101a57699961480
2021-07-25T14:29:48.000Z
[ "pytorch", "distilbert", "question-answering", "dataset:conll2003", "transformers", "generated_from_trainer", "autotrain_compatible" ]
question-answering
false
andi611
null
andi611/distilbert-base-uncased-squad2-with-ner
3
null
transformers
21,090
--- tags: - generated_from_trainer datasets: - conll2003 model_index: - name: distilbert-base-uncased-squad2-with-ner results: - task: name: Question Answering type: question-answering dataset: name: conll2003 type: conll2003 args: conll2003 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-squad2-with-ner This model is a fine-tuned version of [twmkn9/distilbert-base-uncased-squad2](https://huggingface.co/twmkn9/distilbert-base-uncased-squad2) on the conll2003 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 ### Training results ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3
andrejmiscic/simcls-scorer-xsum
baf069137b9c604979671e234f423a382040238b
2021-10-16T21:06:24.000Z
[ "pytorch", "roberta", "feature-extraction", "en", "dataset:xsum", "arxiv:2106.01890", "arxiv:1808.08745", "transformers", "simcls" ]
feature-extraction
false
andrejmiscic
null
andrejmiscic/simcls-scorer-xsum
3
null
transformers
21,091
--- language: - en tags: - simcls datasets: - xsum --- # SimCLS SimCLS is a framework for abstractive summarization presented in [SimCLS: A Simple Framework for Contrastive Learning of Abstractive Summarization](https://arxiv.org/abs/2106.01890). It is a two-stage approach consisting of a *generator* and a *scorer*. In the first stage, a large pre-trained model for abstractive summarization (the *generator*) is used to generate candidate summaries, whereas, in the second stage, the *scorer* assigns a score to each candidate given the source document. The final summary is the highest-scoring candidate. This model is the *scorer* trained for summarization of XSum ([paper](https://arxiv.org/abs/1808.08745), [datasets](https://huggingface.co/datasets/xsum)). It should be used in conjunction with [google/pegasus-xsum](https://huggingface.co/google/pegasus-xsum). See [our Github repository](https://github.com/andrejmiscic/simcls-pytorch) for details on training, evaluation, and usage. ## Usage ```bash git clone https://github.com/andrejmiscic/simcls-pytorch.git cd simcls-pytorch pip3 install torch torchvision torchaudio transformers sentencepiece ``` ```python from src.model import SimCLS, GeneratorType summarizer = SimCLS(generator_type=GeneratorType.Pegasus, generator_path="google/pegasus-xsum", scorer_path="andrejmiscic/simcls-scorer-xsum") article = "This is a news article." summary = summarizer(article) print(summary) ``` ### Results All of our results are reported together with 95% confidence intervals computed using 10000 iterations of bootstrap. See [SimCLS paper](https://arxiv.org/abs/2106.01890) for a description of baselines. | System | Rouge-1 | Rouge-2 | Rouge-L | |------------------|----------------------:|----------------------:|----------------------:| | Pegasus | 47.21 | 24.56 | 39.25 | | **SimCLS paper** | --- | --- | --- | | Origin | 47.10 | 24.53 | 39.23 | | Min | 40.97 | 19.18 | 33.68 | | Max | 52.45 | 28.28 | 43.36 | | Random | 46.72 | 23.64 | 38.55 | | **SimCLS** | 47.61 | 24.57 | 39.44 | | **Our results** | --- | --- | --- | | Origin | 47.16, [46.85, 47.48] | 24.59, [24.25, 24.92] | 39.30, [38.96, 39.62] | | Min | 41.06, [40.76, 41.34] | 18.30, [18.03, 18.56] | 32.70, [32.42, 32.97] | | Max | 51.83, [51.53, 52.14] | 28.92, [28.57, 29.26] | 44.02, [43.69, 44.36] | | Random | 46.47, [46.17, 46.78] | 23.45, [23.13, 23.77] | 38.28, [37.96, 38.60] | | **SimCLS** | 47.17, [46.87, 47.46] | 23.90, [23.59, 24.23] | 38.96, [38.64, 39.29] | ### Citation of the original work ```bibtex @inproceedings{liu-liu-2021-simcls, title = "{S}im{CLS}: A Simple Framework for Contrastive Learning of Abstractive Summarization", author = "Liu, Yixin and Liu, Pengfei", booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)", month = aug, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.acl-short.135", doi = "10.18653/v1/2021.acl-short.135", pages = "1065--1072", } ```
andrek/LAT2NOB
f86a78e4802757975e5e9a0ce098c4b1c87bb615
2021-09-23T13:06:22.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "no", "transformers", "translation", "license:cc-by-4.0", "autotrain_compatible" ]
translation
false
andrek
null
andrek/LAT2NOB
3
null
transformers
21,092
--- language: no license: cc-by-4.0 tags: - translation widget: - text: Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. ---
andresestevez/bert-base-cased-finetuned-squad
d822ad6e875db38d03f0fd6cb00c1b37eea22cd7
2022-02-23T19:12:49.000Z
[ "pytorch", "bert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
andresestevez
null
andresestevez/bert-base-cased-finetuned-squad
3
null
transformers
21,093
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-base-cased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.2 - Datasets 1.13.3 - Tokenizers 0.10.3
angiquer/twitterko-cha-electra-base-generator
bb46d12a1386423bd50532ba7ac4aef76c8fd9ee
2020-07-07T04:41:55.000Z
[ "pytorch", "electra", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
angiquer
null
angiquer/twitterko-cha-electra-base-generator
3
null
transformers
21,094
Entry not found
angiquer/twitterko-electra-base-discriminator
bf1011d6fc00f0fb48ca63c39e962caef8a88a9d
2020-07-10T01:39:01.000Z
[ "pytorch", "electra", "pretraining", "transformers" ]
null
false
angiquer
null
angiquer/twitterko-electra-base-discriminator
3
null
transformers
21,095
Entry not found
ann101020/le2sbot-hp
8c0bd616ad148729d9f8c7e030ccecb15bde4d24
2021-06-04T11:59:14.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
ann101020
null
ann101020/le2sbot-hp
3
null
transformers
21,096
--- tags: - conversational --- # My Awesome Model
annadmitrieva/old-church-slavonic-pos
169ef25bc86330a98aecc4913bb7040a9ba402e3
2021-11-28T15:51:41.000Z
[ "pytorch", "distilbert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
annadmitrieva
null
annadmitrieva/old-church-slavonic-pos
3
null
transformers
21,097
A POS-tagger for Old Church Slavonic trained on the Old Church Slavonic UD treebank (https://github.com/UniversalDependencies/UD_Old_Church_Slavonic-PROIEL). GitHub with api: https://github.com/annadmitrieva/chu-api
anon-submission-mk/distilbert-base-macedonian-cased
958821afc6bb8b43ea2221b304ead4641df21156
2021-05-19T11:46:47.000Z
[ "pytorch", "tf", "jax", "bert", "transformers" ]
null
false
anon-submission-mk
null
anon-submission-mk/distilbert-base-macedonian-cased
3
null
transformers
21,098
Entry not found
anon-submission-mk/electra-base-macedonian-bulgarian-cased-discriminator
7db4a03ffca652467a97f1b8c805dd933932e9f5
2020-06-17T21:40:34.000Z
[ "pytorch", "tf", "electra", "pretraining", "transformers" ]
null
false
anon-submission-mk
null
anon-submission-mk/electra-base-macedonian-bulgarian-cased-discriminator
3
null
transformers
21,099
Entry not found