modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
anton-l/wav2vec2-large-xlsr-53-slovenian
9801c0c603f87bd0f2ad0504ba16966f2984571e
2021-07-05T20:36:02.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "sl", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
anton-l
null
anton-l/wav2vec2-large-xlsr-53-slovenian
3
0
transformers
21,100
--- language: sl datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: Slovenian XLSR Wav2Vec2 Large 53 by Anton Lozhkov results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice sl type: common_voice args: sl metrics: - name: Test WER type: wer value: 36.04 --- # Wav2Vec2-Large-XLSR-53-Slovenian Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Slovenian using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "sl", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-slovenian") model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-slovenian") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Slovenian test data of Common Voice. ```python import torch import torchaudio import urllib.request import tarfile import pandas as pd from tqdm.auto import tqdm from datasets import load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor # Download the raw data instead of using HF datasets to save disk space data_url = "https://voice-prod-bundler-ee1969a6ce8178826482b88e843c335139bd3fb4.s3.amazonaws.com/cv-corpus-6.1-2020-12-11/sl.tar.gz" filestream = urllib.request.urlopen(data_url) data_file = tarfile.open(fileobj=filestream, mode="r|gz") data_file.extractall() wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-slovenian") model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-slovenian") model.to("cuda") cv_test = pd.read_csv("cv-corpus-6.1-2020-12-11/sl/test.tsv", sep='\t') clips_path = "cv-corpus-6.1-2020-12-11/sl/clips/" def clean_sentence(sent): sent = sent.lower() # replace non-alpha characters with space sent = "".join(ch if ch.isalpha() else " " for ch in sent) # remove repeated spaces sent = " ".join(sent.split()) return sent targets = [] preds = [] for i, row in tqdm(cv_test.iterrows(), total=cv_test.shape[0]): row["sentence"] = clean_sentence(row["sentence"]) speech_array, sampling_rate = torchaudio.load(clips_path + row["path"]) resampler = torchaudio.transforms.Resample(sampling_rate, 16_000) row["speech"] = resampler(speech_array).squeeze().numpy() inputs = processor(row["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) targets.append(row["sentence"]) preds.append(processor.batch_decode(pred_ids)[0]) print("WER: {:2f}".format(100 * wer.compute(predictions=preds, references=targets))) ``` **Test Result**: 36.04 % ## Training The Common Voice `train` and `validation` datasets were used for training.
anuragshas/wav2vec2-large-xls-r-300m-ha-cv8
9ffa6b7518b7b96b14c22f6290d733cfd83f0bed
2022-03-24T11:57:39.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "ha", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
anuragshas
null
anuragshas/wav2vec2-large-xls-r-300m-ha-cv8
3
null
transformers
21,101
--- language: - ha license: apache-2.0 tags: - generated_from_trainer - robust-speech-event - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 metrics: - wer model-index: - name: XLS-R-300M - Hausa results: - task: type: automatic-speech-recognition name: Speech Recognition dataset: type: mozilla-foundation/common_voice_8_0 name: Common Voice 8 args: ha metrics: - type: wer value: 36.295 name: Test WER - name: Test CER type: cer value: 11.073 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # XLS-R-300M - Hausa This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.6094 - Wer: 0.5234 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 13 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 1000 - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.9599 | 6.56 | 400 | 2.8650 | 1.0 | | 2.7357 | 13.11 | 800 | 2.7377 | 0.9951 | | 1.3012 | 19.67 | 1200 | 0.6686 | 0.7111 | | 1.0454 | 26.23 | 1600 | 0.5686 | 0.6137 | | 0.9069 | 32.79 | 2000 | 0.5576 | 0.5815 | | 0.82 | 39.34 | 2400 | 0.5502 | 0.5591 | | 0.7413 | 45.9 | 2800 | 0.5970 | 0.5586 | | 0.6872 | 52.46 | 3200 | 0.5817 | 0.5428 | | 0.634 | 59.02 | 3600 | 0.5636 | 0.5314 | | 0.6022 | 65.57 | 4000 | 0.5780 | 0.5229 | | 0.5705 | 72.13 | 4400 | 0.6036 | 0.5323 | | 0.5408 | 78.69 | 4800 | 0.6119 | 0.5336 | | 0.5225 | 85.25 | 5200 | 0.6105 | 0.5270 | | 0.5265 | 91.8 | 5600 | 0.6034 | 0.5231 | | 0.5154 | 98.36 | 6000 | 0.6094 | 0.5234 | ### Framework versions - Transformers 4.16.1 - Pytorch 1.10.0+cu111 - Datasets 1.18.2 - Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id anuragshas/wav2vec2-large-xls-r-300m-ha-cv8 --dataset mozilla-foundation/common_voice_8_0 --config ha --split test ``` ### Inference With LM ```python import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F model_id = "anuragshas/wav2vec2-large-xls-r-300m-ha-cv8" sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "ha", split="test", streaming=True, use_auth_token=True)) sample = next(sample_iter) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() model = AutoModelForCTC.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) input_values = processor(resampled_audio, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values).logits transcription = processor.batch_decode(logits.numpy()).text # => "kakin hade ya ke da kyautar" ``` ### Eval results on Common Voice 8 "test" (WER): | Without LM | With LM (run `./eval.py`) | |---|---| | 47.821 | 36.295 |
anuragshas/wav2vec2-large-xls-r-300m-mr
32bb148770cac0f6f7e94a3a192906a4fe33de8e
2022-03-24T11:55:19.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "mr", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
anuragshas
null
anuragshas/wav2vec2-large-xls-r-300m-mr
3
1
transformers
21,102
--- language: - mr license: apache-2.0 tags: - generated_from_trainer - robust-speech-event - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 metrics: - wer model-index: - name: wav2vec2-large-xls-r-300m-mr results: - task: type: automatic-speech-recognition name: Speech Recognition dataset: type: mozilla-foundation/common_voice_8_0 name: Common Voice 8 args: mr metrics: - type: wer value: 32.811 name: Test WER - name: Test CER type: cer value: 7.692 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-mr This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.5479 - Wer: 0.5740 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 3.7378 | 18.18 | 400 | 3.5047 | 1.0 | | 3.1707 | 36.36 | 800 | 2.6166 | 0.9912 | | 1.4942 | 54.55 | 1200 | 0.5778 | 0.6927 | | 1.2058 | 72.73 | 1600 | 0.5168 | 0.6362 | | 1.0558 | 90.91 | 2000 | 0.5105 | 0.6069 | | 0.9488 | 109.09 | 2400 | 0.5151 | 0.6089 | | 0.8588 | 127.27 | 2800 | 0.5157 | 0.5989 | | 0.7991 | 145.45 | 3200 | 0.5179 | 0.5740 | | 0.7545 | 163.64 | 3600 | 0.5348 | 0.5740 | | 0.7144 | 181.82 | 4000 | 0.5518 | 0.5724 | | 0.7041 | 200.0 | 4400 | 0.5479 | 0.5740 | ### Framework versions - Transformers 4.16.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.1 - Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id anuragshas/wav2vec2-large-xls-r-300m-mr --dataset mozilla-foundation/common_voice_8_0 --config mr --split test ``` ### Inference With LM ```python import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F model_id = "anuragshas/wav2vec2-large-xls-r-300m-mr" sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "mr", split="test", streaming=True, use_auth_token=True)) sample = next(sample_iter) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() model = AutoModelForCTC.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) input_values = processor(resampled_audio, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values).logits transcription = processor.batch_decode(logits.numpy()).text # => "या पानास लेखाचे स्वरूप यायला हावे" ``` ### Eval results on Common Voice 8 "test" (WER): | Without LM | With LM (run `./eval.py`) | |---|---| | 49.177 | 32.811 |
anuragshas/wav2vec2-large-xlsr-53-dv
bfceeb41ed692550d1a1ab4d17b0a1402598631a
2021-07-05T20:50:49.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "dv", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
anuragshas
null
anuragshas/wav2vec2-large-xlsr-53-dv
3
null
transformers
21,103
--- language: dv datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: Anurag Singh XLSR Wav2Vec2 Large 53 Dhivehi results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice dv type: common_voice args: dv metrics: - name: Test WER type: wer value: 55.68 --- # Wav2Vec2-Large-XLSR-53-Dhivehi Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Dhivehi using the [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "dv", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-dv") model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-dv") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Dhivehi test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "dv", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-dv") model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-dv") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\،\.\؟\–\'\’]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 55.68 % ## Training The Common Voice `train` and `validation` datasets were used for training.
anuragshas/wav2vec2-large-xlsr-53-rm-sursilv
cce58d37f62cf09c0b31edb3063aafa8c22c5cbd
2021-07-05T21:14:18.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "rm-sursilv", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
anuragshas
null
anuragshas/wav2vec2-large-xlsr-53-rm-sursilv
3
null
transformers
21,104
--- language: rm-sursilv datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: Anurag Singh XLSR Wav2Vec2 Large 53 Romansh Sursilv results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice rm-sursilv type: common_voice args: rm-sursilv metrics: - name: Test WER type: wer value: 25.78 --- # Wav2Vec2-Large-XLSR-53-Romansh Sursilv Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Romansh Sursilv using the [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "rm-sursilv", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-rm-sursilv") model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-rm-sursilv") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Romansh Sursilv test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "rm-sursilv", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-rm-sursilv") model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-rm-sursilv") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\”\„\–\…\«\»]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 25.78 % ## Training The Common Voice `train` and `validation` datasets were used for training.
anuragshas/wav2vec2-large-xlsr-53-sah
a101728e836e51c8ef2443787f2f07e9489877e6
2021-07-05T21:26:28.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "sah", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
anuragshas
null
anuragshas/wav2vec2-large-xlsr-53-sah
3
null
transformers
21,105
--- language: sah datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: Anurag Singh XLSR Wav2Vec2 Large 53 Sakha results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice sah type: common_voice args: sah metrics: - name: Test WER type: wer value: 38.04 --- # Wav2Vec2-Large-XLSR-53-Sakha Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Sakha using the [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "sah", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-sah") model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-sah") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Sakha test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "sah", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-sah") model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-sah") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\”\„\–\…\«\»]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 38.04 % ## Training The Common Voice `train` and `validation` datasets were used for training.
anusha/t5-base-finetuned-wikiSQL-sql-to-en_1
99ee9dcb8d645823442a89d81fbb000b9f7cf572
2021-06-23T11:23:41.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
anusha
null
anusha/t5-base-finetuned-wikiSQL-sql-to-en_1
3
null
transformers
21,106
Entry not found
anusha/t5-base-finetuned-wikiSQL-sql-to-en_15i
59167c7aa38261cd85af8bfb98fbdd2a54eec652
2021-06-23T11:25:27.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
anusha
null
anusha/t5-base-finetuned-wikiSQL-sql-to-en_15i
3
null
transformers
21,107
Entry not found
aodiniz/bert_uncased_L-10_H-512_A-8_squad2
53c1ce069bbf57dc556729453e742e6ee58346ff
2021-05-18T23:46:31.000Z
[ "pytorch", "jax", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
aodiniz
null
aodiniz/bert_uncased_L-10_H-512_A-8_squad2
3
null
transformers
21,108
Entry not found
aodiniz/bert_uncased_L-2_H-128_A-2_squad2_covid-qna
15cd77bc2a0245900ce8f6c1fb52ba4373d60c20
2021-05-18T23:48:37.000Z
[ "pytorch", "jax", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
aodiniz
null
aodiniz/bert_uncased_L-2_H-128_A-2_squad2_covid-qna
3
null
transformers
21,109
Entry not found
aodiniz/bert_uncased_L-4_H-256_A-4_cord19-200616
bbb574bf4d0d4494e35f4fa2eef427f3b709f6d9
2021-05-18T23:50:55.000Z
[ "pytorch", "jax", "bert", "fill-mask", "arxiv:1908.08962", "transformers", "autotrain_compatible" ]
fill-mask
false
aodiniz
null
aodiniz/bert_uncased_L-4_H-256_A-4_cord19-200616
3
null
transformers
21,110
# BERT L-4 H-256 fine-tuned on MLM (CORD-19 2020/06/16) BERT model with [4 Transformer layers and hidden embedding of size 256](https://huggingface.co/google/bert_uncased_L-4_H-256_A-4), referenced in [Well-Read Students Learn Better: On the Importance of Pre-training Compact Models](https://arxiv.org/abs/1908.08962), fine-tuned for MLM on CORD-19 dataset (as released on 2020/06/16). ## Training the model ```bash python run_language_modeling.py --model_type bert --model_name_or_path google/bert_uncased_L-4_H-256_A-4 --do_train --train_data_file {cord19-200616-dataset} --mlm --mlm_probability 0.2 --line_by_line --block_size 256 --per_device_train_batch_size 20 --learning_rate 3e-5 --num_train_epochs 2 --output_dir bert_uncased_L-4_H-256_A-4_cord19-200616
aodiniz/bert_uncased_L-4_H-256_A-4_cord19-200616_squad2_covid-qna
51f727c0d10f38ea04055f0eca5d3d33d32b5270
2021-05-18T23:52:07.000Z
[ "pytorch", "jax", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
aodiniz
null
aodiniz/bert_uncased_L-4_H-256_A-4_cord19-200616_squad2_covid-qna
3
null
transformers
21,111
Entry not found
aodiniz/bert_uncased_L-4_H-512_A-8_cord19-200616_squad2
9c13ec92c6571bbecf98bfbc0416af37a3b95409
2021-05-18T23:53:41.000Z
[ "pytorch", "jax", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
aodiniz
null
aodiniz/bert_uncased_L-4_H-512_A-8_cord19-200616_squad2
3
null
transformers
21,112
Entry not found
aodiniz/bert_uncased_L-4_H-768_A-12_cord19-200616_squad2_covid-qna
2a08daeb321b10ac4697a0ef40e6a9f045221e02
2021-05-18T23:56:52.000Z
[ "pytorch", "jax", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
aodiniz
null
aodiniz/bert_uncased_L-4_H-768_A-12_cord19-200616_squad2_covid-qna
3
null
transformers
21,113
Entry not found
aodiniz/bert_uncased_L-4_H-768_A-12_squad2_covid-qna
715a74fcd4576874767a5434212d9ef0d8a55810
2021-05-18T23:58:27.000Z
[ "pytorch", "jax", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
aodiniz
null
aodiniz/bert_uncased_L-4_H-768_A-12_squad2_covid-qna
3
null
transformers
21,114
Entry not found
arampacha/wav2vec2-large-xlsr-czech
6059f5148736ef059c8394c60cb280e93d7bdd06
2021-07-05T21:59:41.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "cs", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
arampacha
null
arampacha/wav2vec2-large-xlsr-czech
3
null
transformers
21,115
--- language: cs dataset: common_voice metrics: wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: Czech XLSR Wav2Vec2 Large 53 results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice cs type: common_voice args: cs metrics: - name: Test WER type: wer value: 24.56 --- # Wav2Vec2-Large-XLSR-53-Chech Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Czech using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "cs", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("arampacha/wav2vec2-large-xlsr-czech") model = Wav2Vec2ForCTC.from_pretrained("arampacha/wav2vec2-large-xlsr-czech") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Czech test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "cs", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("arampacha/wav2vec2-large-xlsr-czech") model = Wav2Vec2ForCTC.from_pretrained("arampacha/wav2vec2-large-xlsr-czech") model.to("cuda") chars_to_ignore = [",", "?", ".", "!", "-", ";", ":", '""', "%", "'", '"', "�", '«', '»', '—', '…', '(', ')', '*', '”', '“'] chars_to_ignore_regex = f'[{"".join(chars_to_ignore)}]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays # Note: this models is trained ignoring accents on letters as below def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().strip() batch["sentence"] = re.sub(re.compile('[äá]'), 'a', batch['sentence']) batch["sentence"] = re.sub(re.compile('[öó]'), 'o', batch['sentence']) batch["sentence"] = re.sub(re.compile('[èé]'), 'e', batch['sentence']) batch["sentence"] = re.sub(re.compile("[ïí]"), 'i', batch['sentence']) batch["sentence"] = re.sub(re.compile("[üů]"), 'u', batch['sentence']) batch['sentence'] = re.sub(' ', ' ', batch['sentence']) speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 24.56 ## Training The Common Voice `train`, `validation`. The script used for training will be available [here](https://github.com/arampacha/hf-sprint-xlsr) soon.
arawat/pegasus-custom-xsum
8ab7f250e6f8c6b754c48c48dee794780a790be6
2021-11-26T10:26:28.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
arawat
null
arawat/pegasus-custom-xsum
3
null
transformers
21,116
--- tags: - generated_from_trainer model-index: - name: results results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # results This model is a fine-tuned version of [google/pegasus-large](https://huggingface.co/google/pegasus-large) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0 - Datasets 1.15.1 - Tokenizers 0.10.3
ardatasc/miniMe-version1
07f19af2adb3ed2d12acf539c26db9c60c052a87
2021-09-09T11:01:10.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
ardatasc
null
ardatasc/miniMe-version1
3
null
transformers
21,117
--- tags: - conversational --- #Mini-Me
aretw0/t5-small-finetuned-en-to-ro-epoch.04375
4403b05b7b0f42c8f6a0ccf81c96b7d43669e1a4
2021-12-01T21:21:30.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:wmt16", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
aretw0
null
aretw0/t5-small-finetuned-en-to-ro-epoch.04375
3
null
transformers
21,118
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wmt16 metrics: - bleu model-index: - name: t5-small-finetuned-en-to-ro-epoch.04375 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: wmt16 type: wmt16 args: ro-en metrics: - name: Bleu type: bleu value: 7.3292 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-en-to-ro-epoch.04375 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wmt16 dataset. It achieves the following results on the evaluation set: - Loss: 1.4137 - Bleu: 7.3292 - Gen Len: 18.2541 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 0.04375 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | 0.6211 | 0.04 | 1669 | 1.4137 | 7.3292 | 18.2541 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
arjun3816/autonlp-sam_summarization1-15492651
bba03676211c84b9c8a00d12a6e5c9b8bdc2d4bc
2021-10-07T02:28:05.000Z
[ "pytorch", "pegasus", "text2text-generation", "unk", "dataset:arjun3816/autonlp-data-sam_summarization1", "transformers", "autonlp", "autotrain_compatible" ]
text2text-generation
false
arjun3816
null
arjun3816/autonlp-sam_summarization1-15492651
3
null
transformers
21,119
--- tags: autonlp language: unk widget: - text: "I love AutoNLP 🤗" datasets: - arjun3816/autonlp-data-sam_summarization1 --- # Model Trained Using AutoNLP - Problem type: Summarization - Model ID: 15492651 ## Validation Metrics - Loss: 1.4060134887695312 - Rouge1: 50.9953 - Rouge2: 35.9204 - RougeL: 43.5673 - RougeLsum: 46.445 - Gen Len: 58.0193 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/arjun3816/autonlp-sam_summarization1-15492651 ```
artemis13fowl/distilbert-base-uncased-finetuned-imdb
32e5839ad021b10a500dd1fd07e2f3927973a5b7
2022-01-23T14:10:31.000Z
[ "pytorch", "tensorboard", "distilbert", "fill-mask", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
artemis13fowl
null
artemis13fowl/distilbert-base-uncased-finetuned-imdb
3
null
transformers
21,120
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.4725 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7086 | 1.0 | 157 | 2.4897 | | 2.5756 | 2.0 | 314 | 2.4230 | | 2.5395 | 3.0 | 471 | 2.4358 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.0 - Tokenizers 0.10.3
lmqg/t5-small-squad-no-paragraph
03516fa3f74b35f3274801e1237fc28a22779821
2022-06-01T00:25:29.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
lmqg
null
lmqg/t5-small-squad-no-paragraph
3
null
transformers
21,121
Entry not found
asahi417/tner-roberta-large-multiconer-en
f5bc585a8bff437983ddfd7f82e4574fea9b15ec
2022-01-26T23:00:39.000Z
[ "pytorch", "roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
asahi417
null
asahi417/tner-roberta-large-multiconer-en
3
null
transformers
21,122
Entry not found
asahi417/tner-xlm-roberta-large-multiconer-mix
74c57743180cf4fe74091d33984ffd43f5fb66ba
2022-01-26T22:59:43.000Z
[ "pytorch", "xlm-roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
asahi417
null
asahi417/tner-xlm-roberta-large-multiconer-mix
3
null
transformers
21,123
Entry not found
tner/xlm-roberta-large-panx-dataset-ar
cd55be3ae95b7d0ec00bacaf70c712fee1d8ba99
2021-02-13T00:04:41.000Z
[ "pytorch", "xlm-roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
tner
null
tner/xlm-roberta-large-panx-dataset-ar
3
null
transformers
21,124
# XLM-RoBERTa for NER XLM-RoBERTa finetuned on NER. Check more detail at [TNER repository](https://github.com/asahi417/tner). ## Usage ``` from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("asahi417/tner-xlm-roberta-large-panx-dataset-ar") model = AutoModelForTokenClassification.from_pretrained("asahi417/tner-xlm-roberta-large-panx-dataset-ar") ```
aseifert/distilbert-base-german-cased-comma-derstandard
b4e91c19d3f4815178cc3641c824fb9b98ac2218
2021-04-07T19:18:06.000Z
[ "pytorch", "distilbert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
aseifert
null
aseifert/distilbert-base-german-cased-comma-derstandard
3
1
transformers
21,125
Entry not found
ashwinchandran13/DialoGPT-small-harrypotter
a392d90d3e6a90605ed02fcfa5bfba2039f4edcb
2021-09-19T08:22:14.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
ashwinchandran13
null
ashwinchandran13/DialoGPT-small-harrypotter
3
null
transformers
21,126
--- tags: - conversational --- # Harry Potter DialoGPT Model
aviator-neural/mbart_jokes
c47c759b107b94b009d74d386cfbc3b333cc5a71
2022-01-20T14:31:08.000Z
[ "pytorch", "tensorboard", "bart", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
aviator-neural
null
aviator-neural/mbart_jokes
3
null
transformers
21,127
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: mbart_jokes results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mbart_jokes This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.0282 ## Model description This model is trained of jokes dataset , where you can ask a question and the model gives funny answer. ## Intended uses & limitations ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.3455 | 1.0 | 1914 | 3.0282 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
avioo1/roberta-base-squad2-finetuned-squad
1649f2b179fa314e0249fe276f59fe1ed4f6f43c
2021-09-29T11:55:18.000Z
[ "pytorch", "tensorboard", "roberta", "question-answering", "transformers", "generated_from_trainer", "license:cc-by-4.0", "model-index", "autotrain_compatible" ]
question-answering
false
avioo1
null
avioo1/roberta-base-squad2-finetuned-squad
3
null
transformers
21,128
--- license: cc-by-4.0 tags: - generated_from_trainer model-index: - name: roberta-base-squad2-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-squad2-finetuned-squad This model is a fine-tuned version of [deepset/roberta-base-squad2](https://huggingface.co/deepset/roberta-base-squad2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 5.0220 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 74 | 1.7148 | | No log | 2.0 | 148 | 1.6994 | | No log | 3.0 | 222 | 1.7922 | | No log | 4.0 | 296 | 1.9947 | | No log | 5.0 | 370 | 2.0753 | | No log | 6.0 | 444 | 2.2096 | | 0.9547 | 7.0 | 518 | 2.3070 | | 0.9547 | 8.0 | 592 | 2.6947 | | 0.9547 | 9.0 | 666 | 2.7169 | | 0.9547 | 10.0 | 740 | 2.8503 | | 0.9547 | 11.0 | 814 | 3.1990 | | 0.9547 | 12.0 | 888 | 3.4931 | | 0.9547 | 13.0 | 962 | 3.6575 | | 0.3191 | 14.0 | 1036 | 3.1863 | | 0.3191 | 15.0 | 1110 | 3.7922 | | 0.3191 | 16.0 | 1184 | 3.6336 | | 0.3191 | 17.0 | 1258 | 4.1156 | | 0.3191 | 18.0 | 1332 | 4.1353 | | 0.3191 | 19.0 | 1406 | 3.9888 | | 0.3191 | 20.0 | 1480 | 4.4290 | | 0.1904 | 21.0 | 1554 | 4.0473 | | 0.1904 | 22.0 | 1628 | 4.5048 | | 0.1904 | 23.0 | 1702 | 4.4026 | | 0.1904 | 24.0 | 1776 | 4.2864 | | 0.1904 | 25.0 | 1850 | 4.3941 | | 0.1904 | 26.0 | 1924 | 4.4921 | | 0.1904 | 27.0 | 1998 | 4.9139 | | 0.1342 | 28.0 | 2072 | 4.8914 | | 0.1342 | 29.0 | 2146 | 5.0148 | | 0.1342 | 30.0 | 2220 | 5.0220 | ### Framework versions - Transformers 4.11.0 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
awvik360/DialoGPT-medium-plemons
4e8ddf4cf19ed6d609985ce914b85f81e29e2cae
2021-06-22T23:35:44.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
awvik360
null
awvik360/DialoGPT-medium-plemons
3
null
transformers
21,129
--- tags: - conversational --- # My Awesome Model
ayameRushia/wav2vec2-large-xls-r-300m-ar
9f94b88e943412f0b9f11eb4ef412c93bdb027fc
2022-02-07T09:03:17.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
ayameRushia
null
ayameRushia/wav2vec2-large-xls-r-300m-ar
3
null
transformers
21,130
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-ar results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-ar This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.4819 - Wer: 0.4244 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 400 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 11.0435 | 0.67 | 400 | 4.3104 | 1.0 | | 3.4451 | 1.34 | 800 | 3.1566 | 1.0 | | 3.1399 | 2.01 | 1200 | 3.0532 | 0.9990 | | 2.8538 | 2.68 | 1600 | 1.6994 | 0.9238 | | 1.7195 | 3.35 | 2000 | 0.8867 | 0.6727 | | 1.326 | 4.02 | 2400 | 0.6603 | 0.5834 | | 1.1561 | 4.69 | 2800 | 0.5809 | 0.5479 | | 1.0764 | 5.36 | 3200 | 0.5943 | 0.5495 | | 1.0144 | 6.03 | 3600 | 0.5344 | 0.5251 | | 0.965 | 6.7 | 4000 | 0.4844 | 0.4936 | | 0.927 | 7.37 | 4400 | 0.5048 | 0.5019 | | 0.8985 | 8.04 | 4800 | 0.5809 | 0.5267 | | 0.8684 | 8.71 | 5200 | 0.4740 | 0.4753 | | 0.8581 | 9.38 | 5600 | 0.4813 | 0.4834 | | 0.8334 | 10.05 | 6000 | 0.4515 | 0.4545 | | 0.8134 | 10.72 | 6400 | 0.4370 | 0.4543 | | 0.8002 | 11.39 | 6800 | 0.4225 | 0.4384 | | 0.7884 | 12.06 | 7200 | 0.4593 | 0.4565 | | 0.7675 | 12.73 | 7600 | 0.4752 | 0.4680 | | 0.7607 | 13.4 | 8000 | 0.4950 | 0.4771 | | 0.7475 | 14.07 | 8400 | 0.4373 | 0.4391 | | 0.7397 | 14.74 | 8800 | 0.4506 | 0.4541 | | 0.7289 | 15.41 | 9200 | 0.4840 | 0.4691 | | 0.722 | 16.08 | 9600 | 0.4701 | 0.4571 | | 0.7067 | 16.75 | 10000 | 0.4561 | 0.4461 | | 0.7033 | 17.42 | 10400 | 0.4384 | 0.4347 | | 0.6915 | 18.09 | 10800 | 0.4424 | 0.4290 | | 0.6854 | 18.76 | 11200 | 0.4635 | 0.4360 | | 0.6813 | 19.43 | 11600 | 0.4280 | 0.4147 | | 0.6776 | 20.1 | 12000 | 0.4610 | 0.4344 | | 0.67 | 20.77 | 12400 | 0.4540 | 0.4367 | | 0.6653 | 21.44 | 12800 | 0.4509 | 0.4234 | | 0.6609 | 22.11 | 13200 | 0.4874 | 0.4444 | | 0.6541 | 22.78 | 13600 | 0.4542 | 0.4230 | | 0.6528 | 23.45 | 14000 | 0.4732 | 0.4373 | | 0.6463 | 24.12 | 14400 | 0.4483 | 0.4188 | | 0.6399 | 24.79 | 14800 | 0.4731 | 0.4341 | | 0.6353 | 25.46 | 15200 | 0.5031 | 0.4412 | | 0.6358 | 26.13 | 15600 | 0.4986 | 0.4397 | | 0.6317 | 26.8 | 16000 | 0.5000 | 0.4360 | | 0.6262 | 27.47 | 16400 | 0.4958 | 0.4318 | | 0.6317 | 28.14 | 16800 | 0.4738 | 0.4234 | | 0.6205 | 28.81 | 17200 | 0.4853 | 0.4262 | | 0.6205 | 29.48 | 17600 | 0.4819 | 0.4244 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
ayameRushia/wav2vec2-large-xls-r-300m-mn
f28abd3f40fe3d73577ebd87b8733b24d93a604b
2022-05-09T01:57:33.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "mn", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
ayameRushia
null
ayameRushia/wav2vec2-large-xls-r-300m-mn
3
null
transformers
21,131
--- language: - mn license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-large-xls-r-300m-mn results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: mn metrics: - name: Test WER using LM type: wer value: 31.3919 - name: Test CER using LM type: cer value: 10.2565 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: mn metrics: - name: Test WER type: wer value: 65.26 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: mn metrics: - name: Test WER type: wer value: 63.09 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - MN dataset. It achieves the following results on the evaluation set: - Loss: 0.5502 - Wer: 0.4042 ## Training and evaluation data Evaluation is conducted in Notebook, you can see within the repo "notebook_evaluation_wav2vec2_mn.ipynb" Test WER without LM wer = 58.2171 % cer = 16.0670 % Test WER using wer = 31.3919 % cer = 10.2565 % How to use eval.py ``` huggingface-cli login #login to huggingface for getting auth token to access the common voice v8 #running with LM python eval.py --model_id ayameRushia/wav2vec2-large-xls-r-300m-mn --dataset mozilla-foundation/common_voice_8_0 --config mn --split test # running without LM python eval.py --model_id ayameRushia/wav2vec2-large-xls-r-300m-mn --dataset mozilla-foundation/common_voice_8_0 --config mn --split test --greedy ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 40.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 6.35 | 400 | 0.9380 | 0.7902 | | 3.2674 | 12.7 | 800 | 0.5794 | 0.5309 | | 0.7531 | 19.05 | 1200 | 0.5749 | 0.4815 | | 0.5382 | 25.4 | 1600 | 0.5530 | 0.4447 | | 0.4293 | 31.75 | 2000 | 0.5709 | 0.4237 | | 0.4293 | 38.1 | 2400 | 0.5476 | 0.4059 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
baaastien/xls-r-ab-test
79d43b5b1f8b4d73ddc125dbf8977cee05f603b5
2022-01-19T12:03:47.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "ab", "dataset:common_voice", "transformers", "common_voice", "generated_from_trainer", "model-index" ]
automatic-speech-recognition
false
baaastien
null
baaastien/xls-r-ab-test
3
null
transformers
21,132
--- language: - ab tags: - automatic-speech-recognition - common_voice - generated_from_trainer datasets: - common_voice model-index: - name: '' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [hf-test/xls-r-dummy](https://huggingface.co/hf-test/xls-r-dummy) on the COMMON_VOICE - AB dataset. It achieves the following results on the evaluation set: - Loss: 133.5167 - Wer: 18.9286 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 2.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
banalyst/wonder-egg
bb3ee0e5016d6ddd8c6a7b21a954df133285c626
2021-07-20T03:39:05.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
banalyst
null
banalyst/wonder-egg
3
null
transformers
21,133
TRIGGER WARNING --------------- This model was created by training GPT2-medium on a custom dataset containing tens of thousands of blog posts about people's experiences living with mental illnesses. As such, the texts that this model generates may be triggering and/or NSFW. Please explore at your own discretion. The blog posts that were compiled were specifically about 6 different mental health conditions: depression, ptsd, cptsd, borderline personality disorder, bipolar (non-specific), and dissociation. These are very serious illnesses so please treat this with respect, and I encourage everyone to learn more about these conditions. Thank you, and enjoy!
bdwjaya/t5-small-finetuned-xsum
c68e1a039bed25bc2137da6b99945c7665a0d292
2021-10-19T03:34:18.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:xsum", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
bdwjaya
null
bdwjaya/t5-small-finetuned-xsum
3
null
transformers
21,134
--- license: apache-2.0 tags: - generated_from_trainer datasets: - xsum model-index: - name: t5-small-finetuned-xsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xsum dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
beomi/kcbert-base-dev
f8c7abd6ca165c9fa7e00048384acefc39edcb93
2021-05-19T12:28:53.000Z
[ "pytorch", "jax", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
beomi
null
beomi/kcbert-base-dev
3
null
transformers
21,135
Entry not found
beta13/dummy-bert-base-cased
88da3f35d94d9b5e34454928a0e62d29fbdf0785
2021-06-24T11:46:32.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
beta13
null
beta13/dummy-bert-base-cased
3
null
transformers
21,136
Entry not found
bettertextapp/bart_large_teaser_de_v2
259602562f8fb01a05ef06ab3417beb1a538e023
2022-02-23T10:17:34.000Z
[ "pytorch", "tensorboard", "mbart", "text2text-generation", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
bettertextapp
null
bettertextapp/bart_large_teaser_de_v2
3
null
transformers
21,137
--- tags: - generated_from_trainer model-index: - name: bart_large_teaser_de_v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart_large_teaser_de_v2 This model was trained from scratch on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data {'eval_loss': 0.2028738558292389, 'eval_score': 80.750962016922, 'eval_counts': [342359, 316072, 304925, 294258], 'eval_totals': [376475, 371475, 366475, 361475], 'eval_precisions': [90.93804369480046, 85.08567198330978, 83.20485708438503, 81.40479977868456], 'eval_bp': 0.9490684186878129, 'eval_sys_len': 376475, 'eval_ref_len': 396155, 'eval_runtime': 431.9447, 'eval_samples_per_second': 11.576, 'eval_steps_per_second': 0.363} ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.16.2 - Pytorch 1.11.0a0+bfe5ad2 - Datasets 1.18.3 - Tokenizers 0.11.0
bhavikardeshna/multilingual-bert-base-cased-hindi
6a7d67f3d60c57c5de6ed36de54db1c8d09486c8
2021-12-21T11:43:34.000Z
[ "pytorch", "bert", "question-answering", "arxiv:2112.09866", "transformers", "autotrain_compatible" ]
question-answering
false
bhavikardeshna
null
bhavikardeshna/multilingual-bert-base-cased-hindi
3
null
transformers
21,138
# BibTeX entry and citation info ``` @misc{pandya2021cascading, title={Cascading Adaptors to Leverage English Data to Improve Performance of Question Answering for Low-Resource Languages}, author={Hariom A. Pandya and Bhavik Ardeshna and Dr. Brijesh S. Bhatt}, year={2021}, eprint={2112.09866}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
bhuvaneswari/t5-small-finetuned-xsum
e61406b0b95b32ad930834be7c1b1cf5a1f0d8f7
2021-11-15T02:02:40.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
bhuvaneswari
null
bhuvaneswari/t5-small-finetuned-xsum
3
null
transformers
21,139
Entry not found
bigjoedata/rockchatbot
53d0d93c2834f8961d73556bdbcecaa4dc743f88
2021-05-21T14:20:07.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
bigjoedata
null
bigjoedata/rockchatbot
3
null
transformers
21,140
Entry not found
bigscience/T0_original_task_only
f8dd30cb3ade71c77b7bb56a49c3ec39b41d6942
2022-06-21T01:29:23.000Z
[ "pytorch", "t5", "text2text-generation", "en", "dataset:bigscience/P3", "arxiv:2110.08207", "transformers", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
bigscience
null
bigscience/T0_original_task_only
3
null
transformers
21,141
--- datasets: - bigscience/P3 language: en license: apache-2.0 widget: - text: "A is the son's of B's uncle. What is the family relationship between A and B?" - text: "Reorder the words in this sentence: justin and name bieber years is my am I 27 old." - text: "Task: copy but say the opposite.\n PSG won its match against Barca." - text: "Is this review positive or negative? Review: Best cast iron skillet you will every buy." example_title: "Sentiment analysis" - text: "Question A: How is air traffic controlled? \nQuestion B: How do you become an air traffic controller?\nPick one: these questions are duplicates or not duplicates." - text: "Barack Obama nominated Hilary Clinton as his secretary of state on Monday. He chose her because she had foreign affairs experience as a former First Lady. \nIn the previous sentence, decide who 'her' is referring to." example_title: "Coreference resolution" - text: "Last week I upgraded my iOS version and ever since then my phone has been overheating whenever I use your app.\n Select the category for the above sentence from: mobile, website, billing, account access." - text: "Sentence 1: Gyorgy Heizler, head of the local disaster unit, said the coach was carrying 38 passengers.\n Sentence 2: The head of the local disaster unit, Gyorgy Heizler, said the bus was full except for 38 empty seats.\n\n Do sentences 1 and 2 have the same meaning?" example_title: "Paraphrase identification" - text: "Here's the beginning of an article, choose a tag that best describes the topic of the article: business, cinema, politics, health, travel, sports.\n\n The best and worst fo 007 as 'No time to die' marks Daniel Craig's exit.\n (CNN) Some 007 math: 60 years, 25 movies (with a small asterisk) and six James Bonds. For a Cold War creation, Ian Fleming's suave spy has certainly gotten around, but despite different guises in the tuxedo and occasional scuba gear, when it comes to Bond ratings, there really shouldn't be much argument about who wore it best." - text: "Max: Know any good websites to buy clothes from?\n Payton: Sure :) LINK 1, LINK 2, LINK 3\n Max: That's a lot of them!\n Payton: Yeah, but they have different things so I usually buy things from 2 or 3 of them.\n Max: I'll check them out. Thanks.\n\n Who or what are Payton and Max referring to when they say 'them'?" - text: "Is the word 'table' used in the same meaning in the two following sentences?\n\n Sentence A: you can leave the books on the table over there.\n Sentence B: the tables in this book are very hard to read." - text: "On a shelf, there are five books: a gray book, a red book, a purple book, a blue book, and a black book.\n The red book is to the right of the gray book. The black book is to the left of the blue book. The blue book is to the left of the gray book. The purple book is the second from the right.\n\n Which book is the leftmost book?" example_title: "Logic puzzles" - text: "The two men running to become New York City's next mayor will face off in their first debate Wednesday night.\n\n Democrat Eric Adams, the Brooklyn Borough president and a former New York City police captain, is widely expected to win the Nov. 2 election against Republican Curtis Sliwa, the founder of the 1970s-era Guardian Angels anti-crime patril.\n\n Who are the men running for mayor?" example_title: "Reading comprehension" - text: "The word 'binne' means any animal that is furry and has four legs, and the word 'bam' means a simple sort of dwelling.\n\n Which of the following best characterizes binne bams?\n - Sentence 1: Binne bams are for pets.\n - Sentence 2: Binne bams are typically furnished with sofas and televisions.\n - Sentence 3: Binne bams are luxurious apartments.\n - Sentence 4: Binne bams are places where people live." --- **How do I pronounce the name of the model?** T0 should be pronounced "T Zero" (like in "T5 for zero-shot") and any "p" stands for "Plus", so "T0pp" should be pronounced "T Zero Plus Plus"! **Official repository**: [bigscience-workshop/t-zero](https://github.com/bigscience-workshop/t-zero) # Model Description T0* shows zero-shot task generalization on English natural language prompts, outperforming GPT-3 on many tasks, while being 16x smaller. It is a series of encoder-decoder models trained on a large set of different tasks specified in natural language prompts. We convert numerous English supervised datasets into prompts, each with multiple templates using varying formulations. These prompted datasets allow for benchmarking the ability of a model to perform completely unseen tasks specified in natural language. To obtain T0*, we fine-tune a pretrained language model on this multitask mixture covering many different NLP tasks. # Intended uses You can use the models to perform inference on tasks by specifying your query in natural language, and the models will generate a prediction. For instance, you can ask *"Is this review positive or negative? Review: this is the best cast iron skillet you will ever buy"*, and the model will hopefully generate *"Positive"*. A few other examples that you can try: - *A is the son's of B's uncle. What is the family relationship between A and B?* - *Question A: How is air traffic controlled?<br> Question B: How do you become an air traffic controller?<br> Pick one: these questions are duplicates or not duplicates.* - *Is the word 'table' used in the same meaning in the two following sentences?<br><br> Sentence A: you can leave the books on the table over there.<br> Sentence B: the tables in this book are very hard to read.* - *Max: Know any good websites to buy clothes from?<br> Payton: Sure :) LINK 1, LINK 2, LINK 3<br> Max: That's a lot of them!<br> Payton: Yeah, but they have different things so I usually buy things from 2 or 3 of them.<br> Max: I'll check them out. Thanks.<br><br> Who or what are Payton and Max referring to when they say 'them'?* - *On a shelf, there are five books: a gray book, a red book, a purple book, a blue book, and a black book.<br> The red book is to the right of the gray book. The black book is to the left of the blue book. The blue book is to the left of the gray book. The purple book is the second from the right.<br><br> Which book is the leftmost book?* - *Reorder the words in this sentence: justin and name bieber years is my am I 27 old.* # How to use We make available the models presented in our [paper](https://arxiv.org/abs/2110.08207) along with the ablation models. We recommend using the [T0pp](https://huggingface.co/bigscience/T0pp) (pronounce "T Zero Plus Plus") checkpoint as it leads (on average) to the best performances on a variety of NLP tasks. |Model|Number of parameters| |-|-| |[T0](https://huggingface.co/bigscience/T0)|11 billion| |[T0p](https://huggingface.co/bigscience/T0p)|11 billion| |[T0pp](https://huggingface.co/bigscience/T0pp)|11 billion| |[T0_single_prompt](https://huggingface.co/bigscience/T0_single_prompt)|11 billion| |[T0_original_task_only](https://huggingface.co/bigscience/T0_original_task_only)|11 billion| |[T0_3B](https://huggingface.co/bigscience/T0_3B)|3 billion| Here is how to use the model in PyTorch: ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("bigscience/T0pp") model = AutoModelForSeq2SeqLM.from_pretrained("bigscience/T0pp") inputs = tokenizer.encode("Is this review positive or negative? Review: this is the best cast iron skillet you will ever buy", return_tensors="pt") outputs = model.generate(inputs) print(tokenizer.decode(outputs[0])) ``` If you want to use another checkpoint, please replace the path in `AutoTokenizer` and `AutoModelForSeq2SeqLM`. **Note: the model was trained with bf16 activations. As such, we highly discourage running inference with fp16. fp32 or bf16 should be preferred.** # Training procedure T0* models are based on [T5](https://huggingface.co/google/t5-v1_1-large), a Transformer-based encoder-decoder language model pre-trained with a masked language modeling-style objective on [C4](https://huggingface.co/datasets/c4). We use the publicly available [language model-adapted T5 checkpoints](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#lm-adapted-t511lm100k) which were produced by training T5 for 100'000 additional steps with a standard language modeling objective. At a high level, the input text is fed to the encoder and the target text is produced by the decoder. The model is fine-tuned to autoregressively generate the target through standard maximum likelihood training. It is never trained to generate the input. We detail our training data in the next section. Training details: - Fine-tuning steps: 12'200 - Input sequence length: 1024 - Target sequence length: 256 - Batch size: 1'024 sequences - Optimizer: Adafactor - Learning rate: 1e-3 - Dropout: 0.1 - Sampling strategy: proportional to the number of examples in each dataset (we treated any dataset with over 500'000 examples as having 500'000/`num_templates` examples) - Example grouping: We use packing to combine multiple training examples into a single sequence to reach the maximum sequence length # Training data We trained different variants T0 with different mixtures of datasets. |Model|Training datasets| |--|--| |T0|- Multiple-Choice QA: CommonsenseQA, DREAM, QUAIL, QuaRTz, Social IQA, WiQA, Cosmos, QASC, Quarel, SciQ, Wiki Hop<br>- Extractive QA: Adversarial QA, Quoref, DuoRC, ROPES<br>- Closed-Book QA: Hotpot QA*, Wiki QA<br>- Structure-To-Text: Common Gen, Wiki Bio<br>- Sentiment: Amazon, App Reviews, IMDB, Rotten Tomatoes, Yelp<br>- Summarization: CNN Daily Mail, Gigaword, MultiNews, SamSum, XSum<br>- Topic Classification: AG News, DBPedia, TREC<br>- Paraphrase Identification: MRPC, PAWS, QQP| |T0p|Same as T0 with additional datasets from GPT-3's evaluation suite:<br>- Multiple-Choice QA: ARC, OpenBook QA, PiQA, RACE, HellaSwag<br>- Extractive QA: SQuAD v2<br>- Closed-Book QA: Trivia QA, Web Questions| |T0pp|Same as T0p with a few additional datasets from SuperGLUE (excluding NLI sets):<br>- BoolQ<br>- COPA<br>- MultiRC<br>- ReCoRD<br>- WiC<br>- WSC| |T0_single_prompt|Same as T0 but only one prompt per training dataset| |T0_original_task_only|Same as T0 but only original tasks templates| |T0_3B|Same as T0 but starting from a T5-LM XL (3B parameters) pre-trained model| For reproducibility, we release the data we used for training (and evaluation) in the [P3 dataset](https://huggingface.co/datasets/bigscience/P3). Prompts examples can be found on the dataset page. *: We recast Hotpot QA as closed-book QA due to long input sequence length. # Evaluation data We evaluate our models on a suite of held-out tasks: |Task category|Datasets| |-|-| |Natural language inference|ANLI, CB, RTE| |Coreference resolution|WSC, Winogrande| |Word sense disambiguation|WiC| |Sentence completion|COPA, HellaSwag, Story Cloze| We also evaluate T0, T0p and T0pp on the a subset of the [BIG-bench benchmark](https://github.com/google/BIG-bench): - Code description task - Conceptual combinations - Hindu knowledge json - Known unknowns - Language identification - Logic grid puzzle task - Logical deduction - Common misconceptions - Movie dialog same or different - Novel concepts - Strategyqa - Formal fallacies syllogisms negation - VitaminC - Winowhy multiple choice # Limitations - The models of the T0* series are quite large (3B or 11B parameters). Loading them and performing inference requires non-trivial computational resources. When using multiple GPUs, it is possible to use [.parallelize()](https://huggingface.co/transformers/parallelism.html). - We have observed that different prompts can lead to varying performances. We believe that further research is required to explore the effectiveness of different prompts for a language model. - Due to design choices in the tokenization, the models are unable to perform inference for tasks involving code or non English text. # Bias and fairness Even if we took deliberate decisions to exclude datasets with potentially harmful content from the fine-tuning, the models trained are not bias-free. Based on a few experimentations, T0++ can generate answers that could be categorized as conspiracist, biased, offensive or over-emphasizing sexual topics: - Input: `Is the earth flat?` - Prediction: `yes` - Input: `Do vaccines cause autism?` - Prediction: `yes` - Input: `Complete this sentence: This man works as a` - Prediction: `Architect` - Input: `Complete this sentence: This woman works as a` - Prediction: `Nanny` - Input: `what do you have dreams of innovating?` - Prediction: `a new type of sex` - Input: `what's something this generation normalized that shouldn't be normalized at all?` - Prediction: `sexual assault` - Input: `what is something everyone hates, but you like?` - Prediction: `sex` - Input: `What is socially unacceptable but really shouldn't be?` - Prediction: `sex` - Input: `What is your favorite "your mom" joke?` - Prediction: `Your mom is a slut` - Input: `if you could invent anything useless but useful at the same time, what would it be?` - Prediction: `sex toy` Language models can reproduce undesirable social biases represented in the large corpus they are pre-trained on. We evaluate our models in two ways: first in their ability to recognize or label gender biases and second in the extent to which they reproduce those biases. To measure the ability of our model to recognize gender biases, we evaluate our models using the WinoGender Schemas (also called AX-g under SuperGLUE) and CrowS-Pairs. WinoGender Schemas are minimal pairs of sentences that differ only by the gender of one pronoun in the sentence, designed to test for the presence of gender bias. We use the *Diverse Natural Language Inference Collection* ([Poliak et al., 2018](https://aclanthology.org/D18-1007/)) version that casts WinoGender as a textual entailment task and report accuracy. CrowS-Pairs is a challenge dataset for measuring the degree to which U.S. stereotypical biases present in the masked language models using minimal pairs of sentences. We re-formulate the task by predicting which of two sentences is stereotypical (or anti-stereotypical) and report accuracy. For each dataset, we evaluate between 5 and 10 prompts. <table> <tr> <td>Dataset</td> <td>Model</td> <td>Average (Acc.)</td> <td>Median (Acc.)</td> </tr> <tr> <td rowspan="10">CrowS-Pairs</td><td>T0</td><td>59.2</td><td>83.8</td> </tr> <td>T0p</td><td>57.6</td><td>83.8</td> <tr> </tr> <td>T0pp</td><td>62.7</td><td>64.4</td> <tr> </tr> <td>T0_single_prompt</td><td>57.6</td><td>69.5</td> <tr> </tr> <td>T0_original_task_only</td><td>47.1</td><td>37.8</td> <tr> </tr> <td>T0_3B</td><td>56.9</td><td>82.6</td> </tr> <tr> <td rowspan="10">WinoGender</td><td>T0</td><td>84.2</td><td>84.3</td> </tr> <td>T0p</td><td>80.1</td><td>80.6</td> <tr> </tr> <td>T0pp</td><td>89.2</td><td>90.0</td> <tr> </tr> <td>T0_single_prompt</td><td>81.6</td><td>84.6</td> <tr> </tr> <td>T0_original_task_only</td><td>83.7</td><td>83.8</td> <tr> </tr> <td>T0_3B</td><td>69.7</td><td>69.4</td> </tr> </table> To measure the extent to which our model reproduces gender biases, we evaluate our models using the WinoBias Schemas. WinoBias Schemas are pronoun coreference resolution tasks that have the potential to be influenced by gender bias. WinoBias Schemas has two schemas (type1 and type2) which are partitioned into pro-stereotype and anti-stereotype subsets. A "pro-stereotype" example is one where the correct answer conforms to stereotypes, while an "anti-stereotype" example is one where it opposes stereotypes. All examples have an unambiguously correct answer, and so the difference in scores between the "pro-" and "anti-" subset measures the extent to which stereotypes can lead the model astray. We report accuracies by considering a prediction correct if the target noun is present in the model's prediction. We evaluate on 6 prompts. <table> <tr> <td rowspan="2">Model</td> <td rowspan="2">Subset</td> <td colspan="3">Average (Acc.)</td> <td colspan="3">Median (Acc.)</td> </tr> <tr> <td>Pro</td> <td>Anti</td> <td>Pro - Anti</td> <td>Pro</td> <td>Anti</td> <td>Pro - Anti</td> </tr> <tr> <td rowspan="2">T0</td><td>Type 1</td> <td>68.0</td><td>61.9</td><td>6.0</td><td>71.7</td><td>61.9</td><td>9.8</td> </tr> <td>Type 2</td> <td>79.3</td><td>76.4</td><td>2.8</td><td>79.3</td><td>75.0</td><td>4.3</td> </tr> </tr> <td rowspan="2">T0p</td> <td>Type 1</td> <td>66.6</td><td>57.2</td><td>9.4</td><td>71.5</td><td>62.6</td><td>8.8</td> </tr> </tr> <td>Type 2</td> <td>77.7</td><td>73.4</td><td>4.3</td><td>86.1</td><td>81.3</td><td>4.8</td> </tr> </tr> <td rowspan="2">T0pp</td> <td>Type 1</td> <td>63.8</td><td>55.9</td><td>7.9</td><td>72.7</td><td>63.4</td><td>9.3</td> </tr> </tr> <td>Type 2</td> <td>66.8</td><td>63.0</td><td>3.9</td><td>79.3</td><td>74.0</td><td>5.3</td> </tr> </tr> <td rowspan="2">T0_single_prompt</td> <td>Type 1</td> <td>73.7</td><td>60.5</td><td>13.2</td><td>79.3</td><td>60.6</td><td>18.7</td> </tr> </tr> <td>Type 2</td> <td>77.7</td><td>69.6</td><td>8.0</td><td>80.8</td><td>69.7</td><td>11.1</td> </tr> </tr> <td rowspan="2">T0_original_task_only</td> <td>Type 1</td> <td>78.1</td><td>67.7</td><td>10.4</td><td>81.8</td><td>67.2</td><td>14.6</td> </tr> </tr> <td> Type 2</td> <td>85.2</td><td>82.3</td><td>2.9</td><td>89.6</td><td>85.4</td><td>4.3</td> </tr> </tr> <td rowspan="2">T0_3B</td> <td>Type 1</td> <td>82.3</td><td>70.1</td><td>12.2</td><td>83.6</td><td>62.9</td><td>20.7</td> </tr> </tr> <td> Type 2</td> <td>83.8</td><td>76.5</td><td>7.3</td><td>85.9</td><td>75</td><td>10.9</td> </tr> </table> # BibTeX entry and citation info ```bibtex @misc{sanh2021multitask, title={Multitask Prompted Training Enables Zero-Shot Task Generalization}, author={Victor Sanh and Albert Webson and Colin Raffel and Stephen H. Bach and Lintang Sutawika and Zaid Alyafeai and Antoine Chaffin and Arnaud Stiegler and Teven Le Scao and Arun Raja and Manan Dey and M Saiful Bari and Canwen Xu and Urmish Thakker and Shanya Sharma Sharma and Eliza Szczechla and Taewoon Kim and Gunjan Chhablani and Nihal Nayak and Debajyoti Datta and Jonathan Chang and Mike Tian-Jian Jiang and Han Wang and Matteo Manica and Sheng Shen and Zheng Xin Yong and Harshit Pandey and Rachel Bawden and Thomas Wang and Trishala Neeraj and Jos Rozen and Abheesht Sharma and Andrea Santilli and Thibault Fevry and Jason Alan Fries and Ryan Teehan and Stella Biderman and Leo Gao and Tali Bers and Thomas Wolf and Alexander M. Rush}, year={2021}, eprint={2110.08207}, archivePrefix={arXiv}, primaryClass={cs.LG} } ```
bitmorse/kickstarter-distilbert-model
9eaa8bfe6d32465cc5a47dc05919b10dc27a3177
2022-02-10T06:31:50.000Z
[ "pytorch", "tf", "distilbert", "feature-extraction", "transformers", "generated_from_keras_callback", "model-index" ]
feature-extraction
false
bitmorse
null
bitmorse/kickstarter-distilbert-model
3
null
transformers
21,142
--- tags: - generated_from_keras_callback model-index: - name: kickstarter-distilbert-model results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # kickstarter-distilbert-model This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.16.2 - TensorFlow 2.7.0 - Datasets 1.18.2 - Tokenizers 0.11.0
bob80333/speechbrain_ja2en_st_63M_yt600h
2bcc79f2c66e107dc33ae0adeaea07b1f33e9348
2022-01-14T00:45:47.000Z
[ "en", "speechbrain", "speech-translation", "CTC", "Attention", "Transformer", "pytorch", "automatic-speech-recognition" ]
automatic-speech-recognition
false
bob80333
null
bob80333/speechbrain_ja2en_st_63M_yt600h
3
1
speechbrain
21,143
--- language: "en" thumbnail: tags: - speech-translation - CTC - Attention - Transformer - pytorch - speechbrain - automatic-speech-recognition metrics: - BLEU --- # Conformer Encoder/Decoder for Speech Translation This model was trained with [SpeechBrain](https://speechbrain.github.io), and is based on the Fisher Callhome recipie. The performance of the model is the following: | Release | CoVoSTv2 JA->EN Test BLEU | Custom Dataset Validation BLEU | Custom Dataset Test BLEU | GPUs | |:-------------:|:--------------:|:--------------:|:--------------:|:--------:| | 01-13-21 | 9.73 | 8.38 | 12.01 | 1xRTX 3090 | This model was trained on subtitled audio downloaded from YouTube, and was not fine-tuned on the CoVoSTv2 training set. When calculating the BLEU score for CoVoSTv2, the utterances were first preprocessed by the same pipeline that preprocessed the original data for the model, which includes removing all punctuation outside of apostrophes, and removing capitalization, similar to the data preprocessing done for the Fisher Callhome dataset in the speechbrain recipe. ## Pipeline description The system is trained with recordings sampled at 16kHz (single channel). The code will automatically normalize your audio (i.e., resampling + mono channel selection) when calling *transcribe_file* if needed. ## Install SpeechBrain First of all, install SpeechBrain with the following command: ``` pip install speechbrain ``` ### Transcribing your own audio files (Spoken Japanese, to written English) ```python from speechbrain.pretrained import EncoderDecoderASR st_model = EncoderDecoderASR.from_hparams(source="bob80333/speechbrain_ja2en_st_63M_yt600h") st_model.transcribe_file("your_file_here.wav") ``` ### Inference on GPU To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method. ### Limitations: The model is likely to get caught in repetitions. The model is not very good at translation, which is reflected by its low BLEU scores. The outputs of this model are unlikely to be correct, do not rely on it for any serious purpose. This model was trained on data from Youtube, and has inherited whatever biases can be found in Youtube audio/subtitles. The creator of this model doesn't actually know Japanese.
bookbot/gpt2-indo-medium-kids-stories
a838101d8bf3b5ffe524551ecf956aa19611b259
2021-10-02T14:53:26.000Z
[ "pytorch", "gpt2", "text-generation", "id", "transformers", "gpt2-indo-medium-kids-stories", "license:mit" ]
text-generation
false
bookbot
null
bookbot/gpt2-indo-medium-kids-stories
3
null
transformers
21,144
--- language: id tags: - gpt2-indo-medium-kids-stories license: mit widget: - text: "Archie sedang mengendarai roket ke planet Mars." --- ## GPT-2 Indonesian Medium Kids Stories GPT-2 Indonesian Medium Kids Stories is a causal language model based on the [OpenAI GPT-2](https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) model. The model was originally the pre-trained [GPT2 Medium Indonesian](https://huggingface.co/flax-community/gpt2-medium-indonesian) model, which was then fine-tuned on Indonesian kids' stories from [Room To Read](https://literacycloud.org/) and [Let's Read](https://reader.letsreadasia.org/). 10% of the dataset was kept for evaluation purposes. The pre-trained model was fine-tuned and achieved an evaluation loss of 3.579 and an evaluation perplexity of 35.84. Hugging Face's `Trainer` class from the [Transformers](https://huggingface.co/transformers) library was used to train the model. PyTorch was used as the backend framework during training, but the model remains compatible with other frameworks nonetheless. ## Model | Model | #params | Arch. | Training/Validation data (text) | | ------------------------------- | ------- | ----------- | --------------------------------- | | `gpt2-indo-medium-kids-stories` | 345M | GPT2 Medium | Indonesian Kids' Stories (860 KB) | ## Evaluation Results The model was fine-tuned for 3 epochs. | Epoch | Training Loss | Validation Loss | | ----- | ------------- | --------------- | | 1 | 3.909100 | 3.627678 | | 2 | 3.375300 | 3.562854 | | 3 | 3.113300 | 3.578999 | ## How to Use (PyTorch) ### As Causal Language Model ```python from transformers import pipeline pretrained_name = "bookbot/gpt2-indo-medium-kids-stories" nlp = pipeline( "text-generation", model=pretrained_name, tokenizer=pretrained_name ) nlp("Archie sedang mengendarai roket ke planet Mars.") ``` ### Feature Extraction in PyTorch ```python from transformers import GPT2LMHeadModel, GPT2TokenizerFast pretrained_name = "bookbot/gpt2-indo-medium-kids-stories" model = GPT2LMHeadModel.from_pretrained(pretrained_name) tokenizer = GPT2TokenizerFast.from_pretrained(pretrained_name) prompt = "Archie sedang mengendarai roket ke planet Mars." encoded_input = tokenizer(prompt, return_tensors='pt') output = model(**encoded_input) ``` ## Disclaimer Do consider the biases which come from both the pre-trained GPT-2 model and the Indonesian Kids' Stories dataset that may be carried over into the results of this model. ## Author GPT-2 Indonesian Medium Kids Stories was trained and evaluated by [Wilson Wongso](https://w11wo.github.io/). All computation and development are done on Google Colaboratory using their free GPU access.
briverse/vi-electra-base-uncased
b4f6f94893a9952008db4f4cc4f76b9b1eb16fa6
2021-02-04T14:12:16.000Z
[ "pytorch", "electra", "pretraining", "transformers" ]
null
false
briverse
null
briverse/vi-electra-base-uncased
3
null
transformers
21,145
Entry not found
briverse/vi-electra-large-cased-800
d8f3fb59517bfc921b75ce6abcea46f0b674322e
2021-02-04T15:25:38.000Z
[ "pytorch", "electra", "pretraining", "transformers" ]
null
false
briverse
null
briverse/vi-electra-large-cased-800
3
null
transformers
21,146
Entry not found
bs-modeling-metadata/html-metadata-exp1-subexp2-1929863
1bbb287cac8c9c5f1b745e16bfc460d174c788f4
2021-11-13T09:21:02.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
bs-modeling-metadata
null
bs-modeling-metadata/html-metadata-exp1-subexp2-1929863
3
null
transformers
21,147
# Work In Progress # How to use? This model can only generate regular text. # Training details We continued the pre-training of [gpt2](https://huggingface.co/gpt2). Dataset:[Natural_Questions_HTML_reduced_all](https://huggingface.co/datasets/SaulLu/Natural_Questions_HTML_reduced_all) 100% of the examples were just plain text. Training example: ``` start up firms to succeed.[4] Firms like power companies, cable television companies and wireless communication companies with large start up costs fall within this category. A company wishing to enter such industries must have the financial ability to spend millions of dollars before starting operations and generating any revenue.[5] Similarly established firms also have a competitive advantage over new firms. An established firm threatened by a new competitor can lower prices to drive out the competition. Microsoft is a firm that has substantial pricing or market power due to technological superiority in its design and production processes.[4] Finally government created barriers to entry can be a source of market power. A prime example are patents granted to pharmaceutical companies. These patents give the drug companies a virtual monopoly in the protected product for the term of the patent. Measurement[edit] Concentration ratios are the most common measures of market power.[6] The four-firm concentration ratio measures the percentage of total industry output attributable to the top four companies. For monopolies the four firm ratio is 100 per cent while the ratio is zero for perfect competition.[7] The four firm concentration domestic (U.S) ratios for cigarettes is 93%; for automobiles, 84% and for beer, 85%.[8] Another measure of concentration is the Herfindahl-Hirschman Index (HHI) which is calculated by "summing the squares of the percentage market shares of all participants in the market".[8] The HHI index for perfect competition is zero; for monopoly, 10,000. U.S. courts almost never consider a firm to possess market power if it has a market share of less than 50 percent.[9] Elasticity of demand[edit] Market power is the ability to raise price above marginal cost (MC) and earn a positive profit.[10] The degree to which a firm can raise price (P) above marginal cost depends on the shape of the demand curve at the profit maximizing output.[10] That is, elasticity is the critical factor in determining market power. The relationship between market power and the price elasticity of demand (PED) can be summarized by the equation: P M C = P E D 1 + P E D. {\displaystyle {\frac {P}{MC}}={\frac {PED}{1+PED}}.} Note that PED will be negative, so the ratio is always greater than one. The higher the P/MC ratio, the more market power the firm possesses. As PED increases in magnitude, the P/MC ratio approaches one, and market power approaches zero.[11] The equation is derived from the monopolist pricing rule: P − M C P = − 1 P E D. {\displaystyle {\frac {P-MC}{P}}=-{\frac {1}{PED}}.} Nobel Memorial Prize[edit] Jean Tirole was awarded the 2014 Nobel Memorial Prize in Economic Sciences for his analysis of market power and economic regulation. See also[edit] Bargaining power Imperfect competition Market concentration Natural monopoly Predatory pricing Price discrimination Dominance (economics) References[edit] Jump up ^ Vatiero Massimiliano (2010). "The Ordoliberal notion of market power: an institutionalist reassessment". European Competition Journal. 6 (3): 689–707. doi:10.5235/ecj.v6n3.689. Jump up ^ Vatiero M. (2009), "An Institutionalist Explanation of Market Dominances". World Competition. Law and Economics Review, 32(2):221–226. Jump up ^ If the power company raised rates the customer either pays the increase or does without power. ^ Jump up to: a b c d e Krugman & Wells, Microeconomics 2d ed. (Worth 2009) Jump up ^ Often such natural monopolies will also have the benefit of government granted monopolies. Jump up ^ Samuelson & Nordhaus, Microeconomics, 17th ed. (McGraw-Hill 2001) at 183–184. Jump up ^ Samuelson & Nordhaus, Microeconomics, 17th ed. (McGraw-Hill 2001) at 183. ^ Jump up to: a b Samuelson & Nordhaus, Microeconomics, 17th ed. (McGraw-Hill 2001) at 184. Jump up ^ J. Gregory Sidak & Hal J. Singer, Überregulation Without Economics: The World Trade Organization’s Decision in the U.S.-Mexico Arbitration on Telecommunications Services, General Agreement on Trade in Services, GATS, 57 FED. COMM. L.J. 1, 34 (2004), http://www.repository.law.indiana.edu/cgi/viewcontent.cgi?article=1388&context=fclj. ^ Jump up to: a b ```
bspans/DialoGPT-small-yoda
18c0cdefb4a9edf13667df48525f9d09924417ee
2021-09-02T09:35:47.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
bspans
null
bspans/DialoGPT-small-yoda
3
null
transformers
21,148
--- tags: - conversational --- # Yoda DialoGPT Model
bstad/bert-model
c79d212ae454488f7cc147dc4417c2f6b27b5edb
2021-12-28T01:56:15.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
bstad
null
bstad/bert-model
3
null
transformers
21,149
Entry not found
bstad/dummy-model
d13705e5ca4a24d4ea5415fb13dd4925d336021e
2021-12-28T01:40:23.000Z
[ "pytorch", "camembert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
bstad
null
bstad/dummy-model
3
null
transformers
21,150
Entry not found
btk/output_bert_uncased
f0ea8be6e63ce469060f5a5b43785202c4ac1ca8
2021-05-19T13:32:40.000Z
[ "pytorch", "jax", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
btk
null
btk/output_bert_uncased
3
null
transformers
21,151
Entry not found
byeongal/bart-large
aead9ca89abfd0f8786cd7ce72c1c54d905d7906
2021-06-14T08:22:06.000Z
[ "pytorch", "bart", "feature-extraction", "en", "transformers", "license:mit" ]
feature-extraction
false
byeongal
null
byeongal/bart-large
3
null
transformers
21,152
--- license: mit thumbnail: https://huggingface.co/front/thumbnails/facebook.png language: en tags: - bart --- # BART base model for Teachable NLP - This model forked from [bart-base](https://huggingface.co/facebook/bart-base) for fine tune [Teachable NLP](https://ainize.ai/teachable-nlp). The Bart model was proposed by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer on 29 Oct, 2019. According to the abstract, Bart uses a standard seq2seq/machine translation architecture with a bidirectional encoder (like BERT) and a left-to-right decoder (like GPT). The pretraining task involves randomly shuffling the order of the original sentences and a novel in-filling scheme, where spans of text are replaced with a single mask token. BART is particularly effective when fine tuned for text generation but also works well for comprehension tasks. It matches the performance of RoBERTa with comparable training resources on GLUE and SQuAD, achieves new state-of-the-art results on a range of abstractive dialogue, question answering, and summarization tasks, with gains of up to 6 ROUGE. The Authors’ code can be found here: https://github.com/pytorch/fairseq/tree/master/examples/bart
byeongal/gpt2-large
a9a954388b3fb3b582ee1f9ac5873ace559e7a1a
2021-06-22T03:08:13.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "license:mit" ]
text-generation
false
byeongal
null
byeongal/gpt2-large
3
null
transformers
21,153
--- language: en tags: - gpt2 license: mit --- # GPT-2 - This model forked from [gpt2](https://huggingface.co/gpt2-large) for fine tune [Teachable NLP](https://ainize.ai/teachable-nlp). Test the whole generation capabilities here: https://transformer.huggingface.co/doc/gpt2-large Pretrained model on English language using a causal language modeling (CLM) objective. It was introduced in [this paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) and first released at [this page](https://openai.com/blog/better-language-models/). Disclaimer: The team releasing GPT-2 also wrote a [model card](https://github.com/openai/gpt-2/blob/master/model_card.md) for their model. Content from this model card has been written by the Hugging Face team to complete the information they provided and give specific examples of bias. ## Model description GPT-2 is a transformers model pretrained on a very large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was trained to guess the next word in sentences. More precisely, inputs are sequences of continuous text of a certain length and the targets are the same sequence, shifted one token (word or piece of word) to the right. The model uses internally a mask-mechanism to make sure the predictions for the token `i` only uses the inputs from `1` to `i` but not the future tokens. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks. The model is best at what it was pretrained for however, which is generating texts from a prompt. ## Intended uses & limitations You can use the raw model for text generation or fine-tune it to a downstream task. See the [model hub](https://huggingface.co/models?filter=gpt2) to look for fine-tuned versions on a task that interests you. ### How to use You can use this model directly with a pipeline for text generation. Since the generation relies on some randomness, we set a seed for reproducibility: ```python >>> from transformers import pipeline, set_seed >>> generator = pipeline('text-generation', model='gpt2-large') >>> set_seed(42) >>> generator("Hello, I'm a language model,", max_length=30, num_return_sequences=5) [{'generated_text': "Hello, I'm a language model, a language for thinking, a language for expressing thoughts."}, {'generated_text': "Hello, I'm a language model, a compiler, a compiler library, I just want to know how I build this kind of stuff. I don"}, {'generated_text': "Hello, I'm a language model, and also have more than a few of your own, but I understand that they're going to need some help"}, {'generated_text': "Hello, I'm a language model, a system model. I want to know my language so that it might be more interesting, more user-friendly"}, {'generated_text': 'Hello, I\'m a language model, not a language model"\n\nThe concept of "no-tricks" comes in handy later with new'}] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import GPT2Tokenizer, GPT2Model tokenizer = GPT2Tokenizer.from_pretrained('gpt2-large') model = GPT2Model.from_pretrained('gpt2-large') text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import GPT2Tokenizer, TFGPT2Model tokenizer = GPT2Tokenizer.from_pretrained('gpt2-large') model = TFGPT2Model.from_pretrained('gpt2-large') text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ### Limitations and bias The training data used for this model has not been released as a dataset one can browse. We know it contains a lot of unfiltered content from the internet, which is far from neutral. As the openAI team themselves point out in their [model card](https://github.com/openai/gpt-2/blob/master/model_card.md#out-of-scope-use-cases): > Because large-scale language models like GPT-2 do not distinguish fact from fiction, we don’t support use-cases > that require the generated text to be true. > > Additionally, language models like GPT-2 reflect the biases inherent to the systems they were trained on, so we do > not recommend that they be deployed into systems that interact with humans > unless the deployers first carry out a > study of biases relevant to the intended use-case. We found no statistically significant difference in gender, race, > and religious bias probes between 774M and 1.5B, implying all versions of GPT-2 should be approached with similar > levels of caution around use cases that are sensitive to biases around human attributes. Here's an example of how the model can have biased predictions: ```python >>> from transformers import pipeline, set_seed >>> generator = pipeline('text-generation', model='gpt2-large') >>> set_seed(42) >>> generator("The White man worked as a", max_length=10, num_return_sequences=5) [{'generated_text': 'The White man worked as a mannequin for'}, {'generated_text': 'The White man worked as a maniser of the'}, {'generated_text': 'The White man worked as a bus conductor by day'}, {'generated_text': 'The White man worked as a plumber at the'}, {'generated_text': 'The White man worked as a journalist. He had'}] >>> set_seed(42) >>> generator("The Black man worked as a", max_length=10, num_return_sequences=5) [{'generated_text': 'The Black man worked as a man at a restaurant'}, {'generated_text': 'The Black man worked as a car salesman in a'}, {'generated_text': 'The Black man worked as a police sergeant at the'}, {'generated_text': 'The Black man worked as a man-eating monster'}, {'generated_text': 'The Black man worked as a slave, and was'}] ``` This bias will also affect all fine-tuned versions of this model. ## Training data The OpenAI team wanted to train this model on a corpus as large as possible. To build it, they scraped all the web pages from outbound links on Reddit which received at least 3 karma. Note that all Wikipedia pages were removed from this dataset, so the model was not trained on any part of Wikipedia. The resulting dataset (called WebText) weights 40GB of texts but has not been publicly released. You can find a list of the top 1,000 domains present in WebText [here](https://github.com/openai/gpt-2/blob/master/domains.txt). ## Training procedure ### Preprocessing The texts are tokenized using a byte-level version of Byte Pair Encoding (BPE) (for unicode characters) and a vocabulary size of 50,257. The inputs are sequences of 1024 consecutive tokens. The larger model was trained on 256 cloud TPU v3 cores. The training duration was not disclosed, nor were the exact details of training. ## Evaluation results The model achieves the following results without any fine-tuning (zero-shot): | Dataset | LAMBADA | LAMBADA | CBT-CN | CBT-NE | WikiText2 | PTB | enwiki8 | text8 | WikiText103 | 1BW | |:--------:|:-------:|:-------:|:------:|:------:|:---------:|:------:|:-------:|:------:|:-----------:|:-----:| | (metric) | (PPL) | (ACC) | (ACC) | (ACC) | (PPL) | (PPL) | (BPB) | (BPC) | (PPL) | (PPL) | | | 35.13 | 45.99 | 87.65 | 83.4 | 29.41 | 65.85 | 1.16 | 1,17 | 37.50 | 75.20 | ### BibTeX entry and citation info ```bibtex @article{radford2019language, title={Language Models are Unsupervised Multitask Learners}, author={Radford, Alec and Wu, Jeff and Child, Rewon and Luan, David and Amodei, Dario and Sutskever, Ilya}, year={2019} } ``` <a href="https://huggingface.co/exbert/?model=gpt2"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
cahya/gpt2-small-indonesian-personachat
02dcae39fb913a7ee36cfd2391bb3f5769167264
2021-10-18T18:58:25.000Z
[ "pytorch", "gpt2", "transformers" ]
null
false
cahya
null
cahya/gpt2-small-indonesian-personachat
3
null
transformers
21,154
Entry not found
cahya/wav2vec2-base-30h-1980e
7181c8c911c2c71d7601b19511ba1f3f16ca6001
2021-07-05T23:37:13.000Z
[ "pytorch", "wav2vec2", "feature-extraction", "transformers" ]
feature-extraction
false
cahya
null
cahya/wav2vec2-base-30h-1980e
3
null
transformers
21,155
Entry not found
cahya/wav2vec2-base
1693c8d28e65afbbd8821eea30611a8d41ff4011
2021-07-05T23:39:28.000Z
[ "pytorch", "wav2vec2", "pretraining", "transformers" ]
null
false
cahya
null
cahya/wav2vec2-base
3
null
transformers
21,156
Entry not found
cahya/wav2vec2-large-xlsr-javanese
35e917e9b05f46ca373015ae6ab5c609dde85710
2021-07-05T23:57:54.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "jv", "dataset:openslr", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
cahya
null
cahya/wav2vec2-large-xlsr-javanese
3
null
transformers
21,157
--- language: jv datasets: - openslr metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Javanese by cahya results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: OpenSLR High quality TTS data for Javanese type: OpenSLR args: jv metrics: - name: Test WER type: wer value: 17.61 --- # Wav2Vec2-Large-XLSR-Javanese Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the [OpenSLR High quality TTS data for Javanese](https://openslr.org/41/). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset, load_metric, Dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor from datasets.utils.download_manager import DownloadManager from pathlib import Path import pandas as pd def load_dataset_javanese(): urls = [ "https://www.openslr.org/resources/41/jv_id_female.zip", "https://www.openslr.org/resources/41/jv_id_male.zip" ] dm = DownloadManager() download_dirs = dm.download_and_extract(urls) data_dirs = [ Path(download_dirs[0])/"jv_id_female/wavs", Path(download_dirs[1])/"jv_id_male/wavs", ] filenames = [ Path(download_dirs[0])/"jv_id_female/line_index.tsv", Path(download_dirs[1])/"jv_id_male/line_index.tsv", ] dfs = [] dfs.append(pd.read_csv(filenames[0], sep='\t', names=["path", "sentence"])) dfs.append(pd.read_csv(filenames[1], sep='\t', names=["path", "client_id", "sentence"])) dfs[1] = dfs[1].drop(["client_id"], axis=1) for i, dir in enumerate(data_dirs): dfs[i]["path"] = dfs[i].apply(lambda row: str(data_dirs[i]) + "/" + row + ".wav", axis=1) df = pd.concat(dfs) # df = df.sample(frac=1, random_state=1).reset_index(drop=True) dataset = Dataset.from_pandas(df) dataset = dataset.remove_columns('__index_level_0__') return dataset.train_test_split(test_size=0.1, seed=1) dataset = load_dataset_javanese() test_dataset = dataset['test'] processor = Wav2Vec2Processor.from_pretrained("cahya/wav2vec2-large-xlsr-javanese") model = Wav2Vec2ForCTC.from_pretrained("cahya/wav2vec2-large-xlsr-javanese") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset[:2]["sentence"]) ``` ## Evaluation The model can be evaluated as follows or using this [notebook](https://github.com/cahya-wirawan/indonesian-speech-recognition/blob/main/XLSR_Wav2Vec2_for_Indonesian_Evaluation-Javanese.ipynb) ```python import torch import torchaudio from datasets import load_dataset, load_metric, Dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re from datasets.utils.download_manager import DownloadManager from pathlib import Path import pandas as pd def load_dataset_javanese(): urls = [ "https://www.openslr.org/resources/41/jv_id_female.zip", "https://www.openslr.org/resources/41/jv_id_male.zip" ] dm = DownloadManager() download_dirs = dm.download_and_extract(urls) data_dirs = [ Path(download_dirs[0])/"jv_id_female/wavs", Path(download_dirs[1])/"jv_id_male/wavs", ] filenames = [ Path(download_dirs[0])/"jv_id_female/line_index.tsv", Path(download_dirs[1])/"jv_id_male/line_index.tsv", ] dfs = [] dfs.append(pd.read_csv(filenames[0], sep='\t', names=["path", "sentence"])) dfs.append(pd.read_csv(filenames[1], sep='\t', names=["path", "client_id", "sentence"])) dfs[1] = dfs[1].drop(["client_id"], axis=1) for i, dir in enumerate(data_dirs): dfs[i]["path"] = dfs[i].apply(lambda row: str(data_dirs[i]) + "/" + row + ".wav", axis=1) df = pd.concat(dfs) # df = df.sample(frac=1, random_state=1).reset_index(drop=True) dataset = Dataset.from_pandas(df) dataset = dataset.remove_columns('__index_level_0__') return dataset.train_test_split(test_size=0.1, seed=1) dataset = load_dataset_javanese() test_dataset = dataset['test'] wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("cahya/wav2vec2-large-xlsr-javanese") model = Wav2Vec2ForCTC.from_pretrained("cahya/wav2vec2-large-xlsr-javanese") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\'\”_\�]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 17.61 % ## Training [OpenSLR High quality TTS data for Javanese](https://openslr.org/41/) was used for training. The script used for training can be found [here](https://github.com/cahya-wirawan/indonesian-speech-recognition/blob/main/XLSR_Wav2Vec2_for_Indonesian_Evaluation-Javanese.ipynb) and to [evaluate it](https://github.com/cahya-wirawan/indonesian-speech-recognition/blob/main/XLSR_Wav2Vec2_for_Indonesian_Evaluation-Javanese.ipynb)
callmeJ/opus-mt-en-vi-finetuned-eng-to-vie
a41b6473dffe21743fdefb5410cd851a59a52325
2021-11-06T06:29:09.000Z
[ "pytorch", "tensorboard", "marian", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
callmeJ
null
callmeJ/opus-mt-en-vi-finetuned-eng-to-vie
3
null
transformers
21,158
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: opus-mt-en-vi-finetuned-eng-to-vie results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-en-vi-finetuned-eng-to-vie This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-vi](https://huggingface.co/Helsinki-NLP/opus-mt-en-vi) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | No log | 1.0 | 219 | 0.3771 | 73.2405 | 8.274 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
camille/bert-base-pruned-voc-esw0.5-40000-en-fr-cased
ff96678392d5e4165f733fec6c8e98ba28a42d55
2021-05-19T13:53:48.000Z
[ "pytorch", "jax", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
camille
null
camille/bert-base-pruned-voc-esw0.5-40000-en-fr-cased
3
null
transformers
21,159
Entry not found
camille/bert-base-pruned-voc-esw0.7-40000-en-de-cased
356c034afae3d126fd6b53c67057ea020208b6c5
2021-05-19T13:54:46.000Z
[ "pytorch", "jax", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
camille
null
camille/bert-base-pruned-voc-esw0.7-40000-en-de-cased
3
null
transformers
21,160
Entry not found
camille/bert-base-pruned-voc-esw0.9-40000-en-de-cased
d1c275522b95cc92007e416e14f0eb65825fe39a
2021-05-19T13:56:49.000Z
[ "pytorch", "jax", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
camille
null
camille/bert-base-pruned-voc-esw0.9-40000-en-de-cased
3
null
transformers
21,161
Entry not found
cammy/bart-large-cnn-finetuned-weaksup-1000-pad
2b0d0d96a2fd3d77ef197915d3a536cde265f30c
2022-02-22T09:29:33.000Z
[ "pytorch", "tensorboard", "bart", "text2text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
text2text-generation
false
cammy
null
cammy/bart-large-cnn-finetuned-weaksup-1000-pad
3
null
transformers
21,162
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-large-cnn-finetuned-weaksup-1000-pad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-cnn-finetuned-weaksup-1000-pad This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4168 - Rouge1: 26.2506 - Rouge2: 10.7802 - Rougel: 19.2236 - Rougelsum: 22.6883 - Gen Len: 68.74 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 0.1434 | 1.0 | 1000 | 0.4168 | 26.2506 | 10.7802 | 19.2236 | 22.6883 | 68.74 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
cammy/bart-large-cnn-finetuned-weaksup-10000
259fb27b91d082cadb1fcc0c8284af4ee4d49f37
2022-02-23T06:35:17.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
text2text-generation
false
cammy
null
cammy/bart-large-cnn-finetuned-weaksup-10000
3
null
transformers
21,163
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-large-cnn-finetuned-weaksup-10000 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-cnn-finetuned-weaksup-10000 This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.6031 - Rouge1: 28.3912 - Rouge2: 13.655 - Rougel: 22.287 - Rougelsum: 25.4794 - Gen Len: 67.995 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:------:|:---------:|:-------:| | 1.2991 | 1.0 | 10000 | 1.6031 | 28.3912 | 13.655 | 22.287 | 25.4794 | 67.995 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2 - Datasets 1.18.3 - Tokenizers 0.11.0
cammy/roberta-base-finetuned-weaksup-1000
fe7861012367d75e8b1fbe6afcdf5a8075da6f36
2022-02-24T08:51:48.000Z
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
cammy
null
cammy/roberta-base-finetuned-weaksup-1000
3
null
transformers
21,164
--- tags: - generated_from_trainer model-index: - name: roberta-base-finetuned-weaksup-1000 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-finetuned-weaksup-1000 This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
candra/headline-small-gpt2
5ccb6995c38b6f77b9f85ef75209112e6f08d248
2021-12-16T05:46:13.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
candra
null
candra/headline-small-gpt2
3
null
transformers
21,165
small gpt2 headline
cariai/meds
1ad1e008e20ea52fcae94322a6ec77e5efb4781e
2021-05-20T15:14:34.000Z
[ "pytorch", "jax", "roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
cariai
null
cariai/meds
3
null
transformers
21,166
Entry not found
carlosejimenez/wiki103_bert_small_visual_context_e27
31e58217df69c4eaebaa66d3eaf6a63a5bb85e9d
2021-12-14T17:06:48.000Z
[ "pytorch", "bert", "transformers" ]
null
false
carlosejimenez
null
carlosejimenez/wiki103_bert_small_visual_context_e27
3
null
transformers
21,167
Entry not found
carlosserquen/electrafp
8f1614d1530ebe9547acf054f1057e9fbdbc179d
2021-12-07T04:06:46.000Z
[ "pytorch", "electra", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
carlosserquen
null
carlosserquen/electrafp
3
null
transformers
21,168
Entry not found
castorini/azbert-base
f5b3bba39e97ba585843169b0d9e37a7743e7a09
2021-11-05T00:11:29.000Z
[ "pytorch", "tensorboard", "bert", "pretraining", "en", "transformers", "azbert", "fill-mask", "license:mit" ]
fill-mask
false
castorini
null
castorini/azbert-base
3
null
transformers
21,169
--- language: en tags: - azbert - pretraining - fill-mask widget: - text: "$f$ $($ $x$ [MASK] $y$ $)$" example_title: "mathy" - text: "$x$ [MASK] $x$ $equal$ $2$ $x$" example_title: "mathy" - text: "Proof by [MASK] that $n$ $fact$ $gt$ $3$ $n$ for $n$ $gt$ $6$" example_title: "mathy" - text: "Proof by induction that $n$ [MASK] $gt$ $3$ $n$ for $n$ $gt$ $6$" example_title: "mathy" - text: "The goal of life is [MASK]." example_title: "philosophical" license: mit --- ## About Here we share a pretrained BERT model that is aware of math tokens. The math tokens are treated specially and tokenized using [pya0](https://github.com/approach0/pya0), which adds very limited new tokens for latex markup (total vocabulary is just 31,061). This model is trained on 4 x 2 Tesla V100 with a total batch size of 64, using Math StackExchange data with 2.7 million sentence pairs trained for 7 epochs. ### Usage Download and try it out ```sh pip install pya0==0.3.2 wget https://vault.cs.uwaterloo.ca/s/gqstFZmWHCLGXe3/download -O ckpt.tar.gz mkdir -p ckpt tar xzf ckpt.tar.gz -C ckpt --strip-components=1 python test.py --test_file test.txt ``` ### Test file format Modify the test examples in `test.txt` to play with it. The test file is tab-separated, the first column is additional positions you want to mask for the right-side sentence (useful for masking tokens in math markups). A zero means no additional mask positions. ### Example output ![](https://i.imgur.com/xpl87KO.png) ### Upload to huggingface This repo is hosted on [Github](https://github.com/approach0/azbert), and only mirrored at [huggingface](https://huggingface.co/castorini/azbert-base). To upload to huggingface, use the `upload2hgf.sh` script. Before runnig this script, be sure to check: * check points for model and tokenizer are created under `./ckpt` folder * model contains all the files needed: `config.json` and `pytorch_model.bin` * tokenizer contains all the files needed: `added_tokens.json`, `special_tokens_map.json`, `tokenizer_config.json`, `vocab.txt` and `tokenizer.json` * no `tokenizer_file` field in `tokenizer_config.json` (sometimes it is located locally at `~/.cache`) * `git-lfs` is installed * having git-remote named `hgf` reference to `https://huggingface.co/castorini/azbert-base`
castorini/dkrr-dpr-tqa-retriever
1000ac32dcca2a464232493cded5b54b604951ab
2022-02-13T17:57:26.000Z
[ "pytorch", "bert", "arxiv:2012.04584", "transformers" ]
null
false
castorini
null
castorini/dkrr-dpr-tqa-retriever
3
null
transformers
21,170
This model is converted from the original DKRR [repo](https://github.com/facebookresearch/FiD) and ported into Pyserini: ``` @misc{izacard2020distilling, title={Distilling Knowledge from Reader to Retriever for Question Answering}, author={Gautier Izacard and Edouard Grave}, year={2020}, eprint={2012.04584}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
castorini/unicoil-noexp-msmarco-passage
5e81be56f0ab665168ca8a5fbbedf27888989028
2021-07-13T22:31:12.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
castorini
null
castorini/unicoil-noexp-msmarco-passage
3
null
transformers
21,171
Entry not found
celtics1863/env-bert-chinese
657e49b80321a680489b5975f32118f745e54f77
2022-01-10T07:16:25.000Z
[ "pytorch", "bert", "fill-mask", "zh", "transformers", "pretrain", "environment", "autotrain_compatible" ]
fill-mask
false
celtics1863
null
celtics1863/env-bert-chinese
3
null
transformers
21,172
--- language: zh widget: - text: "总[MASK]是水环境中的重要污染物。" - text: "气[MASK]变化是重要的全球环境问题。" tags: - pretrain - pytorch - environment --- 环境领域的中文预训练Bert模型,在hlf/chinese-bert-wwm-ext的基础上进行训练,旨在学习到中文表达后进一步学习到环境领域的专业知识。 1.5G的预训练语料包括水环境、大气环境、土壤环境、气候变化、中文期刊、国家政策等内容。 项目正在进行中,后续会陆续更新相关内容。 清华大学环境学院课题组 有相关需求、建议,联系[email protected]
centon21/DialoGPT-small-harrypotter
2f8f3e554993f3be8a83a85243a7a869e34036f3
2021-08-28T17:03:26.000Z
[ "pytorch", "conversational" ]
conversational
false
centon21
null
centon21/DialoGPT-small-harrypotter
3
null
null
21,173
--- tags: - conversational --- #Harry Potter DialoGPT Model
cestwc/roberta-base-unigram-quaternary
b47fadd806a32d9e21a6dd4d3101f3accf9082ca
2021-12-06T17:12:50.000Z
[ "pytorch", "roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
cestwc
null
cestwc/roberta-base-unigram-quaternary
3
null
transformers
21,174
Entry not found
chamodkarunasena/DialoGPT-medium-sokka
b0ad5a64bae93e3fc41d37bf521485444c094052
2021-09-02T10:56:02.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
chamodkarunasena
null
chamodkarunasena/DialoGPT-medium-sokka
3
null
transformers
21,175
--- tags: - conversational --- # Sokka DialoGPT Model
cimm-kzn/rudr-bert
78a40d4b4fcea00406a72d33ee80cefbeeb4e83f
2020-12-14T14:50:15.000Z
[ "pytorch", "arxiv:2004.03659", "transformers" ]
null
false
cimm-kzn
null
cimm-kzn/rudr-bert
3
2
transformers
21,176
## RuDR-BERT RuDR-BERT - Multilingual, Cased, which pretrained on the raw part of the RuDReC corpus (1.4M reviews). Pre-training was based on the [original BERT code](https://github.com/google-research/bert) provided by Google. In particular, Multi-BERT was for used for initialization; vocabulary of Russian subtokens and parameters are the same as in Multi-BERT. Training details are described in our paper. \ link: https://yadi.sk/d/-PTn0xhk1PqvgQ ## Citing & Authors If you find this repository helpful, feel free to cite our publication: [1] Tutubalina E, Alimova I, Miftahutdinov Z, et al. The Russian Drug Reaction Corpus and Neural Models for Drug Reactions and Effectiveness Detection in User Reviews. preprint: https://arxiv.org/abs/2004.03659 ``` @article{10.1093/bioinformatics/btaa675, author = {Tutubalina, Elena and Alimova, Ilseyar and Miftahutdinov, Zulfat and Sakhovskiy, Andrey and Malykh, Valentin and Nikolenko, Sergey}, title = "{The Russian Drug Reaction Corpus and Neural Models for Drug Reactions and Effectiveness Detection in User Reviews}", journal = {Bioinformatics}, year = {2020}, month = {07}, issn = {1367-4803}, doi = {10.1093/bioinformatics/btaa675}, url = {https://doi.org/10.1093/bioinformatics/btaa675}, note = {btaa675}, eprint = {https://academic.oup.com/bioinformatics/advance-article-pdf/doi/10.1093/bioinformatics/btaa675/33539752/btaa675.pdf}, } ``` [2] Tutubalina, EV and Miftahutdinov, Z Sh and Nugmanov, RI and Madzhidov, TI and Nikolenko, SI and Alimova, IS and Tropsha, AE Using semantic analysis of texts for the identification of drugs with similar therapeutic effects. [link to paper](https://www.researchgate.net/profile/Elena_Tutubalina/publication/323751823_Using_semantic_analysis_of_texts_for_the_identification_of_drugs_with_similar_therapeutic_effects/links/5bf7cfc3299bf1a0202cbc1f/Using-semantic-analysis-of-texts-for-the-identification-of-drugs-with-similar-therapeutic-effects.pdf) ``` @article{tutubalina2017using, title={Using semantic analysis of texts for the identification of drugs with similar therapeutic effects}, author={Tutubalina, EV and Miftahutdinov, Z Sh and Nugmanov, RI and Madzhidov, TI and Nikolenko, SI and Alimova, IS and Tropsha, AE}, journal={Russian Chemical Bulletin}, volume={66}, number={11}, pages={2180--2189}, year={2017}, publisher={Springer} } ```
ck46/t5-small-hotpot-qa-qg
f426fd5c7e70e90c30d31c903c8ef7f45cb14c86
2021-12-24T15:03:58.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
ck46
null
ck46/t5-small-hotpot-qa-qg
3
null
transformers
21,177
Entry not found
ck46/t5-small-squad-qa-qg
7335da7220825393777ff1b0149deb5476e4d8f3
2021-12-24T15:05:26.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
ck46
null
ck46/t5-small-squad-qa-qg
3
null
transformers
21,178
Entry not found
cl-nagoya/defsent-bert-base-uncased-cls
b62d0ec5a3049e9a9cb0131b53514cc29cf05c08
2021-08-02T16:48:52.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
cl-nagoya
null
cl-nagoya/defsent-bert-base-uncased-cls
3
null
transformers
21,179
Entry not found
cl-nagoya/defsent-roberta-base-cls
6b1c0d30b8a3cb5aba423ebf6b76912a261a911b
2021-08-05T05:47:35.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
cl-nagoya
null
cl-nagoya/defsent-roberta-base-cls
3
null
transformers
21,180
Entry not found
cl-nagoya/defsent-roberta-base-max
a7488ee4e3325d768d100d7af7fb033a76fb1779
2021-08-05T05:47:55.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
cl-nagoya
null
cl-nagoya/defsent-roberta-base-max
3
null
transformers
21,181
Entry not found
clapika2010/test-model
cf451eeaa6ce3ed106e35dfb66c09b432b38076f
2022-02-14T08:51:23.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
clapika2010
null
clapika2010/test-model
3
null
transformers
21,182
Entry not found
clarin-pl/herbert-kgr10
14b918d4dcb2c0a5ae1d45b067b58a82c56fb965
2021-08-09T22:52:40.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
clarin-pl
null
clarin-pl/herbert-kgr10
3
null
transformers
21,183
Entry not found
claudelkros/T5_french_wiki_summarizer
f4051cb4ef8970eb43007f589a2b56978fbf80a5
2021-06-23T12:00:16.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
claudelkros
null
claudelkros/T5_french_wiki_summarizer
3
null
transformers
21,184
��heelo
codealtgeek/DiabloGPT-medium-rickmorty
9800188b78cacd6919cc612418fc0c516f52ec21
2021-11-16T23:24:24.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
codealtgeek
null
codealtgeek/DiabloGPT-medium-rickmorty
3
null
transformers
21,185
--- tags: - conversational --- # Rick Morty DialoGPT Model
codingJacob/dummy-model
388dc4fdfeb6c292c16cd0d75d653db0c7e4ea02
2021-07-21T05:18:47.000Z
[ "pytorch", "camembert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
codingJacob
null
codingJacob/dummy-model
3
null
transformers
21,186
Entry not found
coldfir3/bert-base-uncased-issues-128
4a8ead57c1c910a294d71428e546a5114479b08f
2022-01-03T20:38:45.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
coldfir3
null
coldfir3/bert-base-uncased-issues-128
3
null
transformers
21,187
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-base-uncased-issues-128 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-issues-128 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2500 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 16 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.0975 | 1.0 | 291 | 1.7060 | | 1.648 | 2.0 | 582 | 1.4280 | | 1.4837 | 3.0 | 873 | 1.3980 | | 1.3978 | 4.0 | 1164 | 1.4040 | | 1.3314 | 5.0 | 1455 | 1.2032 | | 1.2954 | 6.0 | 1746 | 1.2814 | | 1.2448 | 7.0 | 2037 | 1.2635 | | 1.1983 | 8.0 | 2328 | 1.2071 | | 1.1849 | 9.0 | 2619 | 1.1675 | | 1.1414 | 10.0 | 2910 | 1.2095 | | 1.1314 | 11.0 | 3201 | 1.1858 | | 1.0943 | 12.0 | 3492 | 1.1658 | | 1.0838 | 13.0 | 3783 | 1.2336 | | 1.0733 | 14.0 | 4074 | 1.1606 | | 1.0627 | 15.0 | 4365 | 1.1188 | | 1.055 | 16.0 | 4656 | 1.2500 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
comacrae/roberta-unaugmentedv3
c381a58522c6d3d5a659b90caccba3bb5c82202a
2022-02-23T00:03:59.000Z
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
comacrae
null
comacrae/roberta-unaugmentedv3
3
null
transformers
21,188
Entry not found
comodoro/wav2vec2-xls-r-300m-cs-cv8
000061100df97ec1bb3f46ca7e7fe0782fe7c836
2022-03-24T11:52:03.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "cs", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "xlsr-fine-tuning-week", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
comodoro
null
comodoro/wav2vec2-xls-r-300m-cs-cv8
3
null
transformers
21,189
--- language: - cs license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - robust-speech-event - xlsr-fine-tuning-week - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: Czech comodoro Wav2Vec2 XLSR 300M CV8 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: cs metrics: - name: Test WER type: wer value: 10.3 - name: Test CER type: cer value: 2.6 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: cs metrics: - name: Test WER type: wer value: 54.29 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: cs metrics: - name: Test WER type: wer value: 44.55 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-cs-cv8 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice 8.0 dataset. It achieves the following results on the evaluation set while training: - Loss: 0.2327 - Wer: 0.1608 - Cer: 0.0376 The `eval.py` script results using a LM are: WER: 0.10281503199350225 CER: 0.02622802241689026 ## Model description Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Czech using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. When using this model, make sure that your speech input is sampled at 16kHz. The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("mozilla-foundation/common_voice_8_0", "cs", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("comodoro/wav2vec2-xls-r-300m-cs-cv8") model = Wav2Vec2ForCTC.from_pretrained("comodoro/wav2vec2-xls-r-300m-cs-cv8") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset[:2]["sentence"]) ``` ## Evaluation The model can be evaluated using the attached `eval.py` script: ``` python eval.py --model_id comodoro/wav2vec2-xls-r-300m-cs-cv8 --dataset mozilla-foundation/common-voice_8_0 --split test --config cs ``` ## Training and evaluation data The Common Voice 8.0 `train` and `validation` datasets were used for training ## Training procedure ### Training hyperparameters The following hyperparameters were used during first stage of training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 20 - total_train_batch_size: 640 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 150 - mixed_precision_training: Native AMP The following hyperparameters were used during second stage of training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 20 - total_train_batch_size: 640 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:------:|:----:|:---------------:|:------:|:------:| | 7.2926 | 8.06 | 250 | 3.8497 | 1.0 | 1.0 | | 3.417 | 16.13 | 500 | 3.2852 | 1.0 | 0.9857 | | 2.0264 | 24.19 | 750 | 0.7099 | 0.7342 | 0.1768 | | 0.4018 | 32.25 | 1000 | 0.6188 | 0.6415 | 0.1551 | | 0.2444 | 40.32 | 1250 | 0.6632 | 0.6362 | 0.1600 | | 0.1882 | 48.38 | 1500 | 0.6070 | 0.5783 | 0.1388 | | 0.153 | 56.44 | 1750 | 0.6425 | 0.5720 | 0.1377 | | 0.1214 | 64.51 | 2000 | 0.6363 | 0.5546 | 0.1337 | | 0.1011 | 72.57 | 2250 | 0.6310 | 0.5222 | 0.1224 | | 0.0879 | 80.63 | 2500 | 0.6353 | 0.5258 | 0.1253 | | 0.0782 | 88.7 | 2750 | 0.6078 | 0.4904 | 0.1127 | | 0.0709 | 96.76 | 3000 | 0.6465 | 0.4960 | 0.1154 | | 0.0661 | 104.82 | 3250 | 0.6622 | 0.4945 | 0.1166 | | 0.0616 | 112.89 | 3500 | 0.6440 | 0.4786 | 0.1104 | | 0.0579 | 120.95 | 3750 | 0.6815 | 0.4887 | 0.1144 | | 0.0549 | 129.03 | 4000 | 0.6603 | 0.4780 | 0.1105 | | 0.0527 | 137.09 | 4250 | 0.6652 | 0.4749 | 0.1090 | | 0.0506 | 145.16 | 4500 | 0.6958 | 0.4846 | 0.1133 | Further fine-tuning with slightly different architecture and higher learning rate: | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 0.576 | 8.06 | 250 | 0.2411 | 0.2340 | 0.0502 | | 0.2564 | 16.13 | 500 | 0.2305 | 0.2097 | 0.0492 | | 0.2018 | 24.19 | 750 | 0.2371 | 0.2059 | 0.0494 | | 0.1549 | 32.25 | 1000 | 0.2298 | 0.1844 | 0.0435 | | 0.1224 | 40.32 | 1250 | 0.2288 | 0.1725 | 0.0407 | | 0.1004 | 48.38 | 1500 | 0.2327 | 0.1608 | 0.0376 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
cooelf/limitbert
ab9655960a805efe3e2b98363d7e89e9ecde4bd6
2020-12-11T21:36:18.000Z
[ "pytorch", "arxiv:1910.14296", "transformers" ]
null
false
cooelf
null
cooelf/limitbert
3
null
transformers
21,190
# LIMIT-BERT Code and model for the *EMNLP 2020 Findings* paper: [LIMIT-BERT: Linguistic Informed Multi-task BERT](https://arxiv.org/abs/1910.14296)) ## Contents 1. [Requirements](#Requirements) 2. [Training](#Training) ## Requirements * Python 3.6 or higher. * Cython 0.25.2 or any compatible version. * [PyTorch](http://pytorch.org/) 1.0.0+. * [EVALB](http://nlp.cs.nyu.edu/evalb/). Before starting, run `make` inside the `EVALB/` directory to compile an `evalb` executable. This will be called from Python for evaluation. * [pytorch-transformers](https://github.com/huggingface/pytorch-transformers) PyTorch 1.0.0+ or any compatible version. #### Pre-trained Models (PyTorch) The following pre-trained models are available for download from Google Drive: * [`LIMIT-BERT`](https://drive.google.com/open?id=1fm0cK2A91iLG3lCpwowCCQSALnWS2X4i): PyTorch version, same setting with BERT-Large-WWM,loading model with [pytorch-transformers](https://github.com/huggingface/pytorch-transformers). ## How to use ``` from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("cooelf/limitbert") model = AutoModel.from_pretrained("cooelf/limitbert") ``` Please see our original repo for the training scripts. https://github.com/cooelf/LIMIT-BERT ## Training To train LIMIT-BERT, simply run: ``` sh run_limitbert.sh ``` ### Evaluation Instructions To test after setting model path: ``` sh test_bert.sh ``` ## Citation ``` @article{zhou2019limit, title={{LIMIT-BERT}: Linguistic informed multi-task {BERT}}, author={Zhou, Junru and Zhang, Zhuosheng and Zhao, Hai}, journal={arXiv preprint arXiv:1910.14296}, year={2019} } ```
copq1/roberta_klue_v0.1
bcfaf0c3a9635361b6cdbe1478cba221c2b13bea
2021-10-31T08:31:02.000Z
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
copq1
null
copq1/roberta_klue_v0.1
3
null
transformers
21,191
Entry not found
cosmicray001/small-harry
1228debd698f566d3a5b0acd876e9d89d75c8047
2021-08-28T12:18:55.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
cosmicray001
null
cosmicray001/small-harry
3
null
transformers
21,192
--- tags: - conversational --- # Harry Potter DialoGPT Model
cowTodd/adalm-bio-base
6de6a55a4b5f9004acc6e2d2bf3bf79bfb5e7004
2021-09-18T05:47:33.000Z
[ "pytorch", "transformers" ]
null
false
cowTodd
null
cowTodd/adalm-bio-base
3
null
transformers
21,193
Entry not found
crabz/bertoslav-limited-ner
7e050ecb277fa7e8539b622032353655ba5946ef
2022-03-06T12:29:42.000Z
[ "pytorch", "distilbert", "token-classification", "sk", "dataset:wikiann", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
token-classification
false
crabz
null
crabz/bertoslav-limited-ner
3
null
transformers
21,194
--- tags: - generated_from_trainer datasets: - wikiann metrics: - precision - recall - f1 - accuracy inference: false language: - sk model-index: - name: bertoslav-limited-ner results: - task: name: Token Classification type: token-classification dataset: name: wikiann sk type: wikiann args: sk metrics: - name: Precision type: precision value: 0.8985571260306242 - name: Recall type: recall value: 0.9173994738819993 - name: F1 type: f1 value: 0.9078805459481573 - name: Accuracy type: accuracy value: 0.9700235061239639 --- # Named Entity Recognition based on bertoslav-limited This model is a fine-tuned version of [crabz/bertoslav-limited](https://huggingface.co/crabz/bertoslav-limited) on the Slovak wikiann dataset. It achieves the following results on the evaluation set: - Loss: 0.2119 - Precision: 0.8986 - Recall: 0.9174 - F1: 0.9079 - Accuracy: 0.9700 ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2953 | 1.0 | 834 | 0.1516 | 0.8413 | 0.8647 | 0.8529 | 0.9549 | | 0.0975 | 2.0 | 1668 | 0.1304 | 0.8787 | 0.9056 | 0.8920 | 0.9658 | | 0.0487 | 3.0 | 2502 | 0.1405 | 0.8916 | 0.8958 | 0.8937 | 0.9660 | | 0.025 | 4.0 | 3336 | 0.1658 | 0.8850 | 0.9116 | 0.8981 | 0.9669 | | 0.0161 | 5.0 | 4170 | 0.1739 | 0.8974 | 0.9127 | 0.9050 | 0.9693 | | 0.0074 | 6.0 | 5004 | 0.1888 | 0.8900 | 0.9144 | 0.9020 | 0.9687 | | 0.0051 | 7.0 | 5838 | 0.1996 | 0.8946 | 0.9145 | 0.9044 | 0.9693 | | 0.0039 | 8.0 | 6672 | 0.2052 | 0.8993 | 0.9158 | 0.9075 | 0.9697 | | 0.0024 | 9.0 | 7506 | 0.2112 | 0.8946 | 0.9171 | 0.9057 | 0.9696 | | 0.0018 | 10.0 | 8340 | 0.2119 | 0.8986 | 0.9174 | 0.9079 | 0.9700 | ### Framework versions - Transformers 4.14.0.dev0 - Pytorch 1.10.0 - Datasets 1.16.1 - Tokenizers 0.10.3
cristinakuo/wav2vec2-latino40
adc48cae0aa637a8518cb6ed933334e42d1152fd
2022-06-01T15:53:47.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
cristinakuo
null
cristinakuo/wav2vec2-latino40
3
null
transformers
21,195
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-latino40 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-latino40 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.8795 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 5.6846 | 0.83 | 100 | 2.9086 | 1.0 | | 2.8686 | 1.67 | 200 | 2.8922 | 1.0 | | 2.8805 | 2.5 | 300 | 2.9326 | 1.0 | | 2.8613 | 3.33 | 400 | 2.8698 | 1.0 | | 2.8643 | 4.17 | 500 | 2.9027 | 1.0 | | 2.8688 | 5.0 | 600 | 2.9544 | 1.0 | | 2.8689 | 5.83 | 700 | 2.8914 | 1.0 | | 2.8558 | 6.67 | 800 | 2.8762 | 1.0 | | 2.8537 | 7.5 | 900 | 2.8982 | 1.0 | | 2.8522 | 8.33 | 1000 | 2.8820 | 1.0 | | 2.8468 | 9.17 | 1100 | 2.8760 | 1.0 | | 2.8454 | 10.0 | 1200 | 2.8795 | 1.0 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
cstorm125/wangchan-deberta_v1-base-wiki-20210520-news-spm-finetune-qa
5e68aab09218d6c9b066d889a0d67c0862c23a61
2021-07-14T07:45:06.000Z
[ "pytorch", "deberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
cstorm125
null
cstorm125/wangchan-deberta_v1-base-wiki-20210520-news-spm-finetune-qa
3
null
transformers
21,196
--- widget: - text: "สวนกุหลาบเป็นโรงเรียนอะไร" context: "โรงเรียนสวนกุหลาบวิทยาลัย (Suankularb Wittayalai School) (อักษรย่อ : ส.ก. / S.K.) เป็นโรงเรียนชายล้วน ระดับชั้นมัธยมศึกษาขนาดใหญ่พิเศษ สังกัดสำนักงานเขตพื้นที่การศึกษามัธยมศึกษาเขต 1 สำนักงานคณะกรรมการการศึกษาขั้นพื้นฐาน (ชื่อเดิม: กรมสามัญศึกษา) กระทรวงศึกษาธิการ ก่อตั้งโดย พระบาทสมเด็จพระจุลจอมเกล้าเจ้าอยู่หัว ได้รับการสถาปนาขึ้นในวันที่ 8 มีนาคม พ.ศ. 2424 (ขณะนั้นนับวันที่ 1 เมษายน เป็นวันขึ้นปีใหม่ เมื่อนับอย่างสากลถือเป็น พ.ศ. 2425) โดยเป็นโรงเรียนรัฐบาลแห่งแรกของประเทศไทย" --- # wangchan-deberta_v1-base-wiki-20210520-news-spm-finetune-qa Finetuning `airesearch/wangchan-deberta_v1-base-wiki-20210520-news-spm` with the training set of `iapp_wiki_qa_squad`, `thaiqa_squad`, and `nsc_qa` (removed examples which have cosine similarity with validation and test examples over 0.8; contexts of the latter two are trimmed to be around 300 `newmm` words). Benchmarks shared on [wandb](https://wandb.ai/cstorm125/wangchanberta-qa) using validation and test sets of `iapp_wiki_qa_squad`. Trained with [thai2transformers](https://github.com/vistec-AI/thai2transformers/blob/dev/scripts/downstream/train_question_answering_lm_finetuning.py). Run with: ``` export MODEL_NAME=wangchan-deberta_v1-base-wiki-20210520-news-spm CUDA_LAUNCH_BLOCKING=1 python train_question_answering_lm_finetuning.py \ --model_name $MODEL_NAME \ --dataset_name chimera_qa \ --revision mlm@ckp-41100 \ --output_dir $MODEL_NAME-finetune-chimera_qa-model \ --log_dir $MODEL_NAME-finetune-chimera_qa-log \ --model_max_length 400 \ --pad_on_right \ --fp16 \ --use_auth_token ```
cvcio/roberta-el-uncased-twitter-v1
060762ce901ff4ea596179e0f29e9e28668588d1
2021-06-09T17:16:27.000Z
[ "pytorch", "roberta", "fill-mask", "el", "transformers", "twitter", "Greek", "autotrain_compatible" ]
fill-mask
false
cvcio
null
cvcio/roberta-el-uncased-twitter-v1
3
null
transformers
21,197
--- language: el tags: - roberta - twitter - Greek widget: - text: "<mask>: μεγαλη υποχωρηση του ιικου φορτιου σε αττικη και θεσσαλονικη" --- # Greek RoBERTa Uncased (v1) Pretrained model on Greek language using a masked language modeling (MLM) objective using [Hugging Face's](https://huggingface.co/) [Transformers](https://github.com/huggingface/transformers) library. This model is case-sensitive and has no Greek diacritics (uncased, no-accents). ### Training data This model was pretrained on almost 18M unique tweets, all Greek, collected between 2008-2021, from almost 450K distinct users. ### Preprocessing The texts are tokenized using a byte version of Byte-Pair Encoding (BPE) and a vocabulary size of 50256. For the tokenizer we splited strings containing any numbers (ex. EU2019 ==> EU 2019). The tweet normalization logic described in the example listed bellow. ```python import unicodedata from transformers import pipeline def normalize_tweet(tweet, do_lower = True, do_strip_accents = True, do_split_word_numbers = False, user_fill = '', url_fill = ''): # your tweet pre-processing logic goes here # example... # remove extra spaces, escape HTML, replace non-standard punctuation # replace any @user with blank # replace any link with blank # explode hashtags to strings (ex. #EU2019 ==> EU 2019) # remove all emojis # if do_split_word_numbers: # splited strings containing any numbers # standardize punctuation # remove unicode symbols if do_lower: tweet = tweet.lower() if do_strip_accents: tweet = strip_accents(tweet) return tweet.strip() def strip_accents(s): return ''.join(c for c in unicodedata.normalize('NFD', s) if unicodedata.category(c) != 'Mn') nlp = pipeline('fill-mask', model = 'cvcio/roberta-el-uncased-twitter-v1') print( nlp( normalize_tweet( '<mask>: Μεγάλη υποχώρηση του ιικού φορτίου σε Αττική και Θεσσαλονίκη' ) ) ) ``` ### Pretraining The model was pretrained on a T4 GPU for 1.2M steps with a batch size of 96 and a sequence length of 96. The optimizer used is Adam with a learning rate of 1e-5, gradient accumulation steps of 8, learning rate warmup for 50000 steps and linear decay of the learning rate after. ### Authors Dimitris Papaevagelou - [@andefined](https://github.com/andefined) ### About Us [Civic Information Office](https://cvcio.org/) is a Non Profit Organization based in Athens, Greece focusing on creating technology and research products for the public interest.
cwh/gpt2-medium-finetuned-wikitext2
0001362312a61408437ef574afe2ea082f56e298
2021-10-28T11:39:40.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers" ]
text-generation
false
cwh
null
cwh/gpt2-medium-finetuned-wikitext2
3
null
transformers
21,198
Entry not found
cyl/adapter_t5-3b_sst2
45f77ce72a2e047679ee65c68094f0a8e1d721b0
2022-02-23T05:55:39.000Z
[ "pytorch", "transformers" ]
null
false
cyl
null
cyl/adapter_t5-3b_sst2
3
null
transformers
21,199
Entry not found