modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
โŒ€
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
โŒ€
likes
float64
0
712
โŒ€
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
phjhk/hklegal-xlm-r-base-t
ea62e879cda44004b4b335b9d9b15debcd8d4d09
2022-07-29T14:53:09.000Z
[ "pytorch", "xlm-roberta", "fill-mask", "multilingual", "af", "am", "ar", "as", "az", "be", "bg", "bn", "br", "bs", "ca", "cs", "cy", "da", "de", "el", "en", "eo", "es", "et", "eu", "fa", "fi", "fr", "fy", "ga", "gd", "gl", "gu", "ha", "he", "hi", "hr", "hu", "hy", "id", "is", "it", "ja", "jv", "ka", "kk", "km", "kn", "ko", "ku", "ky", "la", "lo", "lt", "lv", "mg", "mk", "ml", "mn", "mr", "ms", "my", "ne", "nl", "no", "om", "or", "pa", "pl", "ps", "pt", "ro", "ru", "sa", "sd", "si", "sk", "sl", "so", "sq", "sr", "su", "sv", "sw", "ta", "te", "th", "tl", "tr", "ug", "uk", "ur", "uz", "vi", "xh", "yi", "zh", "arxiv:1911.02116", "transformers", "autotrain_compatible" ]
fill-mask
false
phjhk
null
phjhk/hklegal-xlm-r-base-t
4
null
transformers
20,500
--- language: - multilingual - af - am - ar - as - az - be - bg - bn - br - bs - ca - cs - cy - da - de - el - en - eo - es - et - eu - fa - fi - fr - fy - ga - gd - gl - gu - ha - he - hi - hr - hu - hy - id - is - it - ja - jv - ka - kk - km - kn - ko - ku - ky - la - lo - lt - lv - mg - mk - ml - mn - mr - ms - my - ne - nl - no - om - or - pa - pl - ps - pt - ro - ru - sa - sd - si - sk - sl - so - sq - sr - su - sv - sw - ta - te - th - tl - tr - ug - uk - ur - uz - vi - xh - yi - zh --- # Model Description The XLM-RoBERTa model was proposed in [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) by Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmรกn, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov. It is based on Facebook's RoBERTa model released in 2019. It is a large multi-lingual language model, trained on 2.5TB of filtered CommonCrawl data. This model is [XLM-RoBERTa-large](https://huggingface.co/xlm-roberta-large) fine-tuned with the [conll2003](https://huggingface.co/datasets/conll2003) dataset in English. - **Developed by:** See [associated paper](https://arxiv.org/abs/1911.02116) - **Model type:** Multi-lingual language model - **Language(s) (NLP) or Countries (images):** XLM-RoBERTa is a multilingual model trained on 100 different languages; see [GitHub Repo](https://github.com/facebookresearch/fairseq/tree/main/examples/xlmr) for full list; model is fine-tuned on a dataset in English - **Related Models:** [RoBERTa](https://huggingface.co/roberta-base), [XLM](https://huggingface.co/docs/transformers/model_doc/xlm) - **Parent Model:** [XLM-RoBERTa-large](https://huggingface.co/xlm-roberta-large) Hong Kong Legal Information Institute [HKILL](https://www.hklii.hk/eng/) is a free, independent, non-profit document database providing the public with legal information relating to Hong Kong. We finetune the XLM-RoBERTa on the HKILL datasets. It contains docments # Uses The model is a pretrained-finetuned language model. The model can be used for document classification, Named Entity Recognition (NER), especially on legal domain. ```python >>> from transformers import pipeline,AutoTokenizer,AutoModelForTokenClassification >>> tokenizer = AutoTokenizer.from_pretrained("hklegal-xlm-r-base-t") >>> model = AutoModelForTokenClassification.from_pretrained("hklegal-xlm-r-base-t") >>> classifier = pipeline("ner", model=model, tokenizer=tokenizer) >>> classifier("Alya told Jasmine that Andrew could pay with cash..") ``` # Citation **BibTeX:** ```bibtex @article{conneau2019unsupervised, title={Unsupervised Cross-lingual Representation Learning at Scale}, author={Conneau, Alexis and Khandelwal, Kartikay and Goyal, Naman and Chaudhary, Vishrav and Wenzek, Guillaume and Guzm{\'a}n, Francisco and Grave, Edouard and Ott, Myle and Zettlemoyer, Luke and Stoyanov, Veselin}, journal={arXiv preprint arXiv:1911.02116}, year={2019} } ```
jhonparra18/distilbert-base-uncased-cv-studio_name-pooler
afd19b012fd770b2da65b0c941bd26e9ae5c693f
2022-07-26T22:10:58.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
jhonparra18
null
jhonparra18/distilbert-base-uncased-cv-studio_name-pooler
4
null
transformers
20,501
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased-cv-studio_name-pooler results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-cv-studio_name-pooler This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.2209 - Accuracy: 0.6957 - F1 Micro: 0.6957 - F1 Macro: 0.4760 - Precision Micro: 0.6957 - Recall Micro: 0.6957 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 20 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Micro | F1 Macro | Precision Micro | Recall Micro | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:|:--------:|:---------------:|:------------:| | 1.6809 | 1.19 | 1000 | 1.4366 | 0.5676 | 0.5676 | 0.2308 | 0.5676 | 0.5676 | | 1.0632 | 2.39 | 2000 | 1.1178 | 0.6925 | 0.6925 | 0.3878 | 0.6925 | 0.6925 | | 0.7931 | 3.58 | 3000 | 1.0779 | 0.7072 | 0.7072 | 0.4395 | 0.7072 | 0.7072 | | 0.6308 | 4.77 | 4000 | 1.0938 | 0.7180 | 0.7180 | 0.4593 | 0.7180 | 0.7180 | | 0.523 | 5.97 | 5000 | 1.1659 | 0.7192 | 0.7192 | 0.4622 | 0.7192 | 0.7192 | | 0.3739 | 7.16 | 6000 | 1.2831 | 0.7132 | 0.7132 | 0.4559 | 0.7132 | 0.7132 | | 0.2687 | 8.35 | 7000 | 1.4216 | 0.7160 | 0.7160 | 0.4662 | 0.7160 | 0.7160 | | 0.1893 | 9.55 | 8000 | 1.5747 | 0.7096 | 0.7096 | 0.4712 | 0.7096 | 0.7096 | | 0.1375 | 10.74 | 9000 | 1.7016 | 0.7045 | 0.7045 | 0.4801 | 0.7045 | 0.7045 | | 0.123 | 11.93 | 10000 | 1.8164 | 0.7001 | 0.7001 | 0.4792 | 0.7001 | 0.7001 | | 0.0952 | 13.13 | 11000 | 1.9634 | 0.6949 | 0.6949 | 0.4772 | 0.6949 | 0.6949 | | 0.071 | 14.32 | 12000 | 2.0327 | 0.6981 | 0.6981 | 0.4781 | 0.6981 | 0.6981 | | 0.0494 | 15.51 | 13000 | 2.0931 | 0.6989 | 0.6989 | 0.4814 | 0.6989 | 0.6989 | | 0.0417 | 16.71 | 14000 | 2.1644 | 0.6965 | 0.6965 | 0.4771 | 0.6965 | 0.6965 | | 0.0444 | 17.9 | 15000 | 2.2030 | 0.6953 | 0.6953 | 0.4756 | 0.6953 | 0.6953 | | 0.0368 | 19.09 | 16000 | 2.2209 | 0.6957 | 0.6957 | 0.4760 | 0.6957 | 0.6957 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.8.1+cu111 - Datasets 1.6.2 - Tokenizers 0.12.1
AustinCarthy/distilbert-base-uncased-finetuned-emotion
646d2254861c94b438f9d343964ac8ca6b028d91
2022-07-26T21:35:40.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers" ]
text-classification
false
AustinCarthy
null
AustinCarthy/distilbert-base-uncased-finetuned-emotion
4
null
transformers
20,502
Entry not found
jhonparra18/roberta-base-cv-studio_name-pooler
ff93646754f412095ccfdedc112de3db680a6cc6
2022-07-27T00:19:33.000Z
[ "pytorch", "roberta", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
jhonparra18
null
jhonparra18/roberta-base-cv-studio_name-pooler
4
null
transformers
20,503
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: roberta-base-cv-studio_name-pooler results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-cv-studio_name-pooler This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2635 - Accuracy: 0.6997 - F1 Micro: 0.6997 - F1 Macro: 0.4350 - Precision Micro: 0.6997 - Recall Micro: 0.6997 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 20 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Micro | F1 Macro | Precision Micro | Recall Micro | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:|:--------:|:---------------:|:------------:| | 2.3756 | 1.19 | 1000 | 2.3336 | 0.2379 | 0.2379 | 0.0183 | 0.2379 | 0.2379 | | 1.9046 | 2.39 | 2000 | 1.7667 | 0.4240 | 0.4240 | 0.1103 | 0.4240 | 0.4240 | | 1.4765 | 3.58 | 3000 | 1.4257 | 0.5764 | 0.5764 | 0.2429 | 0.5764 | 0.5764 | | 1.282 | 4.77 | 4000 | 1.2953 | 0.6412 | 0.6412 | 0.3192 | 0.6412 | 0.6412 | | 1.1767 | 5.97 | 5000 | 1.2349 | 0.6551 | 0.6551 | 0.3443 | 0.6551 | 0.6551 | | 1.0694 | 7.16 | 6000 | 1.1885 | 0.6746 | 0.6746 | 0.3730 | 0.6746 | 0.6746 | | 0.9443 | 8.35 | 7000 | 1.1674 | 0.6822 | 0.6822 | 0.3921 | 0.6822 | 0.6822 | | 0.9065 | 9.55 | 8000 | 1.1788 | 0.6854 | 0.6854 | 0.4026 | 0.6854 | 0.6854 | | 0.845 | 10.74 | 9000 | 1.1722 | 0.6929 | 0.6929 | 0.4174 | 0.6929 | 0.6929 | | 0.828 | 11.93 | 10000 | 1.1918 | 0.6925 | 0.6925 | 0.4167 | 0.6925 | 0.6925 | | 0.769 | 13.13 | 11000 | 1.2059 | 0.6953 | 0.6953 | 0.4233 | 0.6953 | 0.6953 | | 0.7482 | 14.32 | 12000 | 1.2178 | 0.6965 | 0.6965 | 0.4260 | 0.6965 | 0.6965 | | 0.6897 | 15.51 | 13000 | 1.2290 | 0.7013 | 0.7013 | 0.4338 | 0.7013 | 0.7013 | | 0.6675 | 16.71 | 14000 | 1.2460 | 0.7013 | 0.7013 | 0.4369 | 0.7013 | 0.7013 | | 0.6454 | 17.9 | 15000 | 1.2498 | 0.6969 | 0.6969 | 0.4348 | 0.6969 | 0.6969 | | 0.6279 | 19.09 | 16000 | 1.2635 | 0.6997 | 0.6997 | 0.4350 | 0.6997 | 0.6997 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.8.1+cu111 - Datasets 1.6.2 - Tokenizers 0.12.1
helliun/multapro-beta-1
8d959f81b825de786d62307902d74562308265fd
2022-07-27T03:11:11.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
helliun
null
helliun/multapro-beta-1
4
null
transformers
20,504
Entry not found
Evelyn18/roberta-base-spanish-squades-becasIncentivos2
62e5527ae21f61733d377aba7aae0645f3ac3c6c
2022-07-27T04:02:27.000Z
[ "pytorch", "tensorboard", "roberta", "question-answering", "dataset:becasv2", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
Evelyn18
null
Evelyn18/roberta-base-spanish-squades-becasIncentivos2
4
null
transformers
20,505
--- tags: - generated_from_trainer datasets: - becasv2 model-index: - name: roberta-base-spanish-squades-becasIncentivos2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-spanish-squades-becasIncentivos2 This model is a fine-tuned version of [IIC/roberta-base-spanish-squades](https://huggingface.co/IIC/roberta-base-spanish-squades) on the becasv2 dataset. It achieves the following results on the evaluation set: - Loss: 1.7033 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 7 | 1.6939 | | No log | 2.0 | 14 | 1.7033 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Evelyn18/roberta-base-spanish-squades-becasIncentivos3
0437f65d1cac3ba827217453c3a8b94b6bf34af9
2022-07-27T04:22:25.000Z
[ "pytorch", "tensorboard", "roberta", "question-answering", "dataset:becasv2", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
Evelyn18
null
Evelyn18/roberta-base-spanish-squades-becasIncentivos3
4
null
transformers
20,506
--- tags: - generated_from_trainer datasets: - becasv2 model-index: - name: roberta-base-spanish-squades-becasIncentivos3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-spanish-squades-becasIncentivos3 This model is a fine-tuned version of [IIC/roberta-base-spanish-squades](https://huggingface.co/IIC/roberta-base-spanish-squades) on the becasv2 dataset. It achieves the following results on the evaluation set: - Loss: 1.7701 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 9 | 1.7346 | | No log | 2.0 | 18 | 1.7701 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
huggingtweets/interiordesign
f478f3ebe2db06856e3f114d2312d5f6208ac1b9
2022-07-27T15:30:24.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/interiordesign
4
null
transformers
20,507
--- language: en thumbnail: http://www.huggingtweets.com/interiordesign/1658935819881/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1544346507578589184/x9URB7Yy_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">๐Ÿค– AI BOT ๐Ÿค–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Interior Design</div> <div style="text-align: center; font-size: 14px;">@interiordesign</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Interior Design. | Data | Interior Design | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 97 | | Short tweets | 2 | | Tweets kept | 3151 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/vl5m9w7s/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @interiordesign's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/36lgkxh5) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/36lgkxh5/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/interiordesign') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
cjdentra/distilbert-base-uncased-finetuned-emotion
852cc79bd0e09a62095e7be18c2411fd0ceb45a2
2022-07-27T20:38:01.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
cjdentra
null
cjdentra/distilbert-base-uncased-finetuned-emotion
4
null
transformers
20,508
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion model-index: - name: distilbert-base-uncased-finetuned-emotion results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.13.0 - Pytorch 1.12.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
Jenwvwmabskvwh/DialoGPT-small-josh445
4528ae0c008eb3ff2de237b86319525670787e4c
2022-07-28T00:49:57.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Jenwvwmabskvwh
null
Jenwvwmabskvwh/DialoGPT-small-josh445
4
null
transformers
20,509
--- tags: - conversational --- # Josh DialoGPT Model
mesolitica/t5-small-finetuned-noisy-en-ms
b9043ceec5433824b7f0480bab02964167cd30bf
2022-07-28T18:49:38.000Z
[ "pytorch", "tf", "tensorboard", "t5", "text2text-generation", "transformers", "generated_from_keras_callback", "model-index", "autotrain_compatible" ]
text2text-generation
false
mesolitica
null
mesolitica/t5-small-finetuned-noisy-en-ms
4
null
transformers
20,510
--- tags: - generated_from_keras_callback model-index: - name: t5-small-finetuned-noisy-en-ms results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-noisy-en-ms This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.21.0.dev0 - TensorFlow 2.6.0 - Datasets 2.1.0 - Tokenizers 0.12.1
Lvxue/finetuned-mt5-small
e787c219f81dfc25d2db6b00ac4d7984c792b5a5
2022-07-29T11:08:43.000Z
[ "pytorch", "mt5", "text2text-generation", "en", "ro", "dataset:wmt16", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
Lvxue
null
Lvxue/finetuned-mt5-small
4
null
transformers
20,511
--- language: - en - ro license: apache-2.0 tags: - generated_from_trainer datasets: - wmt16 metrics: - bleu model-index: - name: finetuned-mt5-small results: - task: name: Translation type: translation dataset: name: wmt16 ro-en type: wmt16 args: ro-en metrics: - name: Bleu type: bleu value: 23.6759 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned-mt5-small This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the wmt16 ro-en dataset. It achieves the following results on the evaluation set: - Loss: 1.6328 - Bleu: 23.6759 - Gen Len: 43.6993 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
oMateos2020/pegasus-newsroom-cnn1_50k
203ad0e9a757e4c2709439dc041b287639639912
2022-07-29T04:30:35.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
oMateos2020
null
oMateos2020/pegasus-newsroom-cnn1_50k
4
null
transformers
20,512
--- tags: - generated_from_trainer metrics: - rouge model-index: - name: pegasus-newsroom-cnn1_50k results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-newsroom-cnn1_50k This model is a fine-tuned version of [oMateos2020/pegasus-newsroom-cnn1_50k](https://huggingface.co/oMateos2020/pegasus-newsroom-cnn1_50k) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.1267 - Rouge1: 38.0081 - Rouge2: 16.5536 - Rougel: 26.4916 - Rougelsum: 35.1349 - Gen Len: 59.4912 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 - mixed_precision_training: Native AMP - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 3.144 | 0.26 | 100 | 3.0323 | 38.3168 | 16.7528 | 26.2646 | 35.2447 | 66.2372 | | 3.0556 | 0.51 | 200 | 3.0351 | 38.39 | 16.8027 | 26.3412 | 35.37 | 67.4676 | | 3.0701 | 0.77 | 300 | 3.0345 | 38.5742 | 16.922 | 26.3568 | 35.51 | 68.662 | | 3.1679 | 1.03 | 400 | 3.0321 | 38.5319 | 16.8049 | 26.4933 | 35.4775 | 65.976 | | 3.1041 | 1.28 | 500 | 3.0246 | 38.1381 | 16.63 | 26.2484 | 35.0999 | 64.6896 | | 3.0352 | 1.54 | 600 | 3.0206 | 38.9063 | 17.0281 | 27.0288 | 35.9175 | 59.0668 | | 3.0894 | 1.79 | 700 | 3.0251 | 38.4461 | 16.7732 | 26.4394 | 35.4807 | 63.2792 | | 3.0529 | 2.05 | 800 | 3.0400 | 38.5088 | 16.8921 | 26.5526 | 35.5236 | 64.294 | | 3.0002 | 2.31 | 900 | 3.0394 | 38.6899 | 16.8703 | 26.6771 | 35.6207 | 62.8004 | | 3.0167 | 2.56 | 1000 | 3.0394 | 38.3532 | 16.6176 | 26.5433 | 35.3282 | 61.63 | | 3.0168 | 2.82 | 1100 | 3.0421 | 38.7613 | 17.0107 | 26.8424 | 35.7508 | 62.67 | | 3.0412 | 3.08 | 1200 | 3.0491 | 38.6132 | 16.8046 | 26.61 | 35.6002 | 61.7924 | | 3.1273 | 3.33 | 1300 | 3.0823 | 38.5498 | 16.795 | 26.5569 | 35.613 | 60.6872 | | 3.0634 | 3.59 | 1400 | 3.1010 | 38.0927 | 16.4367 | 26.2315 | 35.1311 | 59.252 | | 3.097 | 3.84 | 1500 | 3.1147 | 37.7644 | 16.3156 | 26.2674 | 34.8315 | 59.7592 | | 3.1287 | 4.1 | 1600 | 3.1267 | 38.0081 | 16.5536 | 26.4916 | 35.1349 | 59.4912 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
HMHMlee/biobert-base-cased-v1.2-finetuned-ner
54c9cd95511ed81bd647528dcbabd2e7dc925c17
2022-07-28T07:15:45.000Z
[ "pytorch", "bert", "token-classification", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
token-classification
false
HMHMlee
null
HMHMlee/biobert-base-cased-v1.2-finetuned-ner
4
null
transformers
20,513
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: biobert-base-cased-v1.2-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # biobert-base-cased-v1.2-finetuned-ner This model is a fine-tuned version of [dmis-lab/biobert-base-cased-v1.2](https://huggingface.co/dmis-lab/biobert-base-cased-v1.2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1495 - Precision: 0.8561 - Recall: 0.9063 - F1: 0.8805 - Accuracy: 0.9585 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.043 | 1.0 | 201 | 0.1611 | 0.8050 | 0.8799 | 0.8408 | 0.9470 | | 0.175 | 2.0 | 402 | 0.1442 | 0.8244 | 0.8869 | 0.8545 | 0.9530 | | 0.1655 | 3.0 | 603 | 0.1439 | 0.8379 | 0.9030 | 0.8692 | 0.9563 | | 0.0797 | 4.0 | 804 | 0.1443 | 0.8520 | 0.8938 | 0.8724 | 0.9580 | | 0.026 | 5.0 | 1005 | 0.1495 | 0.8561 | 0.9063 | 0.8805 | 0.9585 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
victorcosta/bert-finetuned-ner-accelerate
ed5f284f836da5c468bf1c9343888675c3c3b642
2022-07-28T11:40:45.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
victorcosta
null
victorcosta/bert-finetuned-ner-accelerate
4
null
transformers
20,514
Entry not found
asparius/even-mixed
5ed12799aa123016c5cfd80e9d6a5809b27712ea
2022-07-28T14:20:00.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
asparius
null
asparius/even-mixed
4
null
transformers
20,515
--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: even-mixed results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # even-mixed This model is a fine-tuned version of [dbmdz/bert-base-turkish-cased](https://huggingface.co/dbmdz/bert-base-turkish-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2145 - Accuracy: 0.9534 - F1: 0.9534 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
espejelomar/vit-base-beans
5989392ce9e863268aebcf60a8d9f724c1ea09c0
2022-07-28T17:23:53.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "dataset:beans", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
image-classification
false
espejelomar
null
espejelomar/vit-base-beans
4
null
transformers
20,516
--- license: apache-2.0 tags: - image-classification - generated_from_trainer datasets: - beans metrics: - accuracy model-index: - name: vit-base-beans results: - task: name: Image Classification type: image-classification dataset: name: beans type: beans config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9849624060150376 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-beans This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 0.0637 - Accuracy: 0.9850 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1387 | 3.85 | 500 | 0.0637 | 0.9850 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
carblacac/xlm-roberta-base-finetuned-panx-de
d0d717585dc7792dcfbdf96f72754c189e8cf39a
2022-07-28T18:47:01.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
carblacac
null
carblacac/xlm-roberta-base-finetuned-panx-de
4
null
transformers
20,517
--- license: mit tags: - generated_from_trainer datasets: - xtreme model-index: - name: xlm-roberta-base-finetuned-panx-de results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
yanaiela/roberta-base-epoch_0
5ed4a3cedd6be79ee0866f202b188b114b3508f5
2022-07-29T22:38:30.000Z
[ "pytorch", "roberta", "fill-mask", "en", "dataset:wikipedia", "dataset:bookcorpus", "arxiv:1907.11692", "arxiv:2207.14251", "transformers", "roberta-base", "roberta-base-epoch_0", "license:mit", "autotrain_compatible" ]
fill-mask
false
yanaiela
null
yanaiela/roberta-base-epoch_0
4
null
transformers
20,518
--- language: en tags: - roberta-base - roberta-base-epoch_0 license: mit datasets: - wikipedia - bookcorpus --- # RoBERTa, Intermediate Checkpoint - Epoch 0 This model is part of our reimplementation of the [RoBERTa model](https://arxiv.org/abs/1907.11692), trained on Wikipedia and the Book Corpus only. We train this model for almost 100K steps, corresponding to 83 epochs. We provide the 84 checkpoints (including the randomly initialized weights before the training) to provide the ability to study the training dynamics of such models, and other possible use-cases. These models were trained in part of a work that studies how simple statistics from data, such as co-occurrences affects model predictions, which are described in the paper [Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions](https://arxiv.org/abs/2207.14251). This is RoBERTa-base epoch_0. ## Model Description This model was captured during a reproduction of [RoBERTa-base](https://huggingface.co/roberta-base), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM). The intended uses, limitations, training data and training procedure for the fully trained model are similar to [RoBERTa-base](https://huggingface.co/roberta-base). Two major differences with the original model: * We trained our model for 100K steps, instead of 500K * We only use Wikipedia and the Book Corpus, as corpora which are publicly available. ### How to use Using code from [RoBERTa-base](https://huggingface.co/roberta-base), here is an example based on PyTorch: ``` from transformers import pipeline model = pipeline("fill-mask", model='yanaiela/roberta-base-epoch_83', device=-1, top_k=10) model("Hello, I'm the <mask> RoBERTa-base language model") ``` ## Citation info ```bibtex @article{2207.14251, Author = {Yanai Elazar and Nora Kassner and Shauli Ravfogel and Amir Feder and Abhilasha Ravichander and Marius Mosbach and Yonatan Belinkov and Hinrich Schรผtze and Yoav Goldberg}, Title = {Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions}, Year = {2022}, Eprint = {arXiv:2207.14251}, } ```
liujxing/distilbert-base-uncased-finetuned-emotion
b22ae65a88b6229a45d8793f1f7c1411bfed6fbd
2022-07-28T20:51:40.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
liujxing
null
liujxing/distilbert-base-uncased-finetuned-emotion
4
null
transformers
20,519
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9355 - name: F1 type: f1 value: 0.93589910332286 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1484 - Accuracy: 0.9355 - F1: 0.9359 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.1386 | 1.0 | 250 | 0.1705 | 0.9355 | 0.9353 | | 0.0928 | 2.0 | 500 | 0.1484 | 0.9355 | 0.9359 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.11.0 - Datasets 2.4.0 - Tokenizers 0.12.1
domenicrosati/deberta-v3-large-finetuned-DAGPap22-synthetic-all-overfit
e33cf3cb1612960a5cbc9a1cb2c3c91c2d6a0a1e
2022-07-30T09:31:40.000Z
[ "pytorch", "tensorboard", "deberta-v2", "text-classification", "transformers" ]
text-classification
false
domenicrosati
null
domenicrosati/deberta-v3-large-finetuned-DAGPap22-synthetic-all-overfit
4
null
transformers
20,520
Entry not found
affahrizain/roberta-base-finetuned-jigsaw-toxic
14694879319f6b36fa788d6cad244984b890a265
2022-07-29T07:45:51.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
affahrizain
null
affahrizain/roberta-base-finetuned-jigsaw-toxic
4
null
transformers
20,521
--- license: mit tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: roberta-base-finetuned-jigsaw-toxic results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-finetuned-jigsaw-toxic This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0412 - F1: 0.7908 - Roc Auc: 0.9048 - Accuracy: 0.9257 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | 0.0524 | 1.0 | 2774 | 0.0432 | 0.7805 | 0.8940 | 0.9254 | | 0.0348 | 2.0 | 5548 | 0.0412 | 0.7908 | 0.9048 | 0.9257 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
mariolinml/roberta_large-chunking_0728_v2
328a8d34b9278340fff2caaa06117130c60ea62d
2022-07-29T05:10:42.000Z
[ "pytorch", "tensorboard", "roberta", "token-classification", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
mariolinml
null
mariolinml/roberta_large-chunking_0728_v2
4
null
transformers
20,522
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: roberta_large-chunking_0728_v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta_large-chunking_0728_v2 This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5270 - Precision: 0.6228 - Recall: 0.6467 - F1: 0.6345 - Accuracy: 0.8153 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 125 | 0.5667 | 0.4931 | 0.5415 | 0.5162 | 0.7397 | | No log | 2.0 | 250 | 0.4839 | 0.5484 | 0.5894 | 0.5682 | 0.7874 | | No log | 3.0 | 375 | 0.4822 | 0.5997 | 0.6341 | 0.6164 | 0.8085 | | 0.4673 | 4.0 | 500 | 0.5117 | 0.6023 | 0.6373 | 0.6193 | 0.8120 | | 0.4673 | 5.0 | 625 | 0.5270 | 0.6228 | 0.6467 | 0.6345 | 0.8153 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
commanderstrife/distilBERT_bio_pv_superset
ac587c27354431c837fd439d3ab67e7a1a72ef22
2022-07-29T08:36:40.000Z
[ "pytorch", "tensorboard", "distilbert", "token-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
commanderstrife
null
commanderstrife/distilBERT_bio_pv_superset
4
null
transformers
20,523
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: distilBERT_bio_pv_superset results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilBERT_bio_pv_superset This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2328 - Precision: 0.5462 - Recall: 0.5325 - F1: 0.5393 - Accuracy: 0.9495 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0964 | 1.0 | 5467 | 0.1593 | 0.4625 | 0.3682 | 0.4100 | 0.9416 | | 0.1918 | 2.0 | 10934 | 0.1541 | 0.4796 | 0.4658 | 0.4726 | 0.9436 | | 0.0394 | 3.0 | 16401 | 0.1508 | 0.5349 | 0.4744 | 0.5028 | 0.9482 | | 0.1207 | 4.0 | 21868 | 0.1615 | 0.5422 | 0.4953 | 0.5177 | 0.9490 | | 0.0221 | 5.0 | 27335 | 0.1827 | 0.5377 | 0.5018 | 0.5191 | 0.9487 | | 0.0629 | 6.0 | 32802 | 0.1874 | 0.5479 | 0.5130 | 0.5299 | 0.9493 | | 0.0173 | 7.0 | 38269 | 0.2025 | 0.5388 | 0.5323 | 0.5356 | 0.9488 | | 0.2603 | 8.0 | 43736 | 0.2148 | 0.5437 | 0.5397 | 0.5417 | 0.9493 | | 0.0378 | 9.0 | 49203 | 0.2323 | 0.5430 | 0.5194 | 0.5310 | 0.9489 | | 0.031 | 10.0 | 54670 | 0.2328 | 0.5462 | 0.5325 | 0.5393 | 0.9495 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
SummerChiam/pond_image_classification_5
3c8fc7d61ec95fda512d0acb92fbf77b717778ac
2022-07-29T07:41:30.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "huggingpics", "model-index" ]
image-classification
false
SummerChiam
null
SummerChiam/pond_image_classification_5
4
null
transformers
20,524
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: pond_image_classification_5 results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9477040767669678 --- # pond_image_classification_5 Autogenerated by HuggingPics๐Ÿค—๐Ÿ–ผ๏ธ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### Algae ![Algae](images/Algae.png) #### Boiling ![Boiling](images/Boiling.png) #### BoilingNight ![BoilingNight](images/BoilingNight.png) #### Normal ![Normal](images/Normal.png) #### NormalCement ![NormalCement](images/NormalCement.png) #### NormalNight ![NormalNight](images/NormalNight.png) #### NormalRain ![NormalRain](images/NormalRain.png)
HCKLab/BiBert-linear
62d87d230aec1254a1c6d9320e12f8acedcee5ef
2022-07-29T08:59:39.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
HCKLab
null
HCKLab/BiBert-linear
4
null
transformers
20,525
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: BiBert-linear results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BiBert-linear This model is a fine-tuned version of [nlptown/bert-base-multilingual-uncased-sentiment](https://huggingface.co/nlptown/bert-base-multilingual-uncased-sentiment) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6267 - Mse: 1.6267 - Mae: 0.9824 - R2: 0.3044 - Accuracy: 0.3076 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mse | Mae | R2 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:--------:| | 0.9353 | 1.0 | 625 | 0.7304 | 0.7304 | 0.6695 | 0.3590 | 0.466 | | 0.6766 | 2.0 | 1250 | 0.7746 | 0.7746 | 0.6779 | 0.3202 | 0.472 | | 0.5886 | 3.0 | 1875 | 0.7745 | 0.7745 | 0.6712 | 0.3202 | 0.478 | | 0.377 | 4.0 | 2500 | 0.7687 | 0.7687 | 0.6700 | 0.3254 | 0.472 | | 0.3075 | 5.0 | 3125 | 0.7973 | 0.7973 | 0.6836 | 0.3003 | 0.467 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
IlyaGusev/roberta-base-informal-tagger
83664ce01bc1c950956c982ec1ef398cbac2834e
2022-07-29T13:23:24.000Z
[ "pytorch", "roberta", "token-classification", "transformers", "license:apache-2.0", "autotrain_compatible" ]
token-classification
false
IlyaGusev
null
IlyaGusev/roberta-base-informal-tagger
4
null
transformers
20,526
--- license: apache-2.0 ---
catasaurus/bart_paraphraser
407aa958d2804273a14aad1d4b711b14ddc1611d
2022-07-29T21:17:54.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
catasaurus
null
catasaurus/bart_paraphraser
4
null
transformers
20,527
--- license: apache-2.0 ---
1757968399/tinybert_4_312_1200
a096076c46d4781f03ec1d6c1ec2c37e88091648
2020-07-27T07:25:03.000Z
[ "pytorch", "transformers" ]
null
false
1757968399
null
1757968399/tinybert_4_312_1200
3
null
transformers
20,528
Entry not found
ATGdev/DialoGPT-small-harrypotter
2657935d4bb1c929ea53121b50b35786e10e610c
2021-10-23T04:38:29.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
ATGdev
null
ATGdev/DialoGPT-small-harrypotter
3
null
transformers
20,529
--- tags: - conversational --- #Harry Potter DialoGPT Model
AVeryRealHuman/DialoGPT-small-TonyStark
58f3a7114d51dfc283d71221fff75563d8eb7444
2021-10-08T08:27:15.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
AVeryRealHuman
null
AVeryRealHuman/DialoGPT-small-TonyStark
3
null
transformers
20,530
--- tags: - conversational --- #Tony Stark DialoGPT model
Aero/Tsubomi-Haruno
4addf3eff55db676e4d299df43ffed770d60bf4d
2021-06-14T22:21:24.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational", "license:mit" ]
conversational
false
Aero
null
Aero/Tsubomi-Haruno
3
null
transformers
20,531
--- thumbnail: https://huggingface.co/front/thumbnails/dialogpt.png tags: - conversational license: mit --- # DialoGPT Trained on the Speech of a Game Character ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("r3dhummingbird/DialoGPT-medium-joshua") model = AutoModelWithLMHead.from_pretrained("r3dhummingbird/DialoGPT-medium-joshua") # Let's chat for 4 lines for step in range(4): # encode the new user input, add the eos_token and return a tensor in Pytorch new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt') # print(new_user_input_ids) # append the new user input tokens to the chat history bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids # generated a response while limiting the total chat history to 1000 tokens, chat_history_ids = model.generate( bot_input_ids, max_length=200, pad_token_id=tokenizer.eos_token_id, no_repeat_ngram_size=3, do_sample=True, top_k=100, top_p=0.7, temperature=0.8 ) # pretty print last ouput tokens from bot print("Tsubomi: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True))) ```
AethiQs-Max/aethiqs-base_bertje-data_rotterdam-epochs_10
4e6166bbb295df51cfb2103d78d62cc591499c6e
2021-08-04T21:27:39.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
AethiQs-Max
null
AethiQs-Max/aethiqs-base_bertje-data_rotterdam-epochs_10
3
null
transformers
20,532
Entry not found
Akashpb13/Kabyle_xlsr
2f17ea3f466eada406e3c5e6d1cedce59bf71162
2022-03-24T11:54:25.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "kab", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "sw", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Akashpb13
null
Akashpb13/Kabyle_xlsr
3
null
transformers
20,533
--- language: - kab license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - sw - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: Akashpb13/Kabyle_xlsr results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: kab metrics: - name: Test WER type: wer value: 0.3188425282720088 - name: Test CER type: cer value: 0.09443079928558358 --- # Akashpb13/Kabyle_xlsr This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - hu dataset. It achieves the following results on the evaluation set (which is 10 percent of train data set merged with dev datasets): - Loss: 0.159032 - Wer: 0.187934 ## Model description "facebook/wav2vec2-xls-r-300m" was finetuned. ## Intended uses & limitations More information needed ## Training and evaluation data Training data - Common voice Kabyle train.tsv. Only 50,000 records were sampled randomly and trained due to huge size of dataset. Only those points were considered where upvotes were greater than downvotes and duplicates were removed after concatenation of all the datasets given in common voice 7.0 ## Training procedure For creating the training dataset, all possible datasets were appended and 90-10 split was used. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000096 - train_batch_size: 8 - seed: 13 - gradient_accumulation_steps: 4 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Step | Training Loss | Validation Loss | Wer | |-------|---------------|-----------------|----------| | 500 | 7.199800 | 3.130564 | 1.000000 | | 1000 | 1.570200 | 0.718097 | 0.734682 | | 1500 | 0.850800 | 0.524227 | 0.640532 | | 2000 | 0.712200 | 0.468694 | 0.603454 | | 2500 | 0.651200 | 0.413833 | 0.573025 | | 3000 | 0.603100 | 0.403680 | 0.552847 | | 3500 | 0.553300 | 0.372638 | 0.541719 | | 4000 | 0.537200 | 0.353759 | 0.531191 | | 4500 | 0.506300 | 0.359109 | 0.519601 | | 5000 | 0.479600 | 0.343937 | 0.511336 | | 5500 | 0.479800 | 0.338214 | 0.503948 | | 6000 | 0.449500 | 0.332600 | 0.495221 | | 6500 | 0.439200 | 0.323905 | 0.492635 | | 7000 | 0.434900 | 0.310417 | 0.484555 | | 7500 | 0.403200 | 0.311247 | 0.483262 | | 8000 | 0.401500 | 0.295637 | 0.476566 | | 8500 | 0.397000 | 0.301321 | 0.471672 | | 9000 | 0.371600 | 0.295639 | 0.468440 | | 9500 | 0.370700 | 0.294039 | 0.468902 | | 10000 | 0.364900 | 0.291195 | 0.468440 | | 10500 | 0.348300 | 0.284898 | 0.461098 | | 11000 | 0.350100 | 0.281764 | 0.459805 | | 11500 | 0.336900 | 0.291022 | 0.461606 | | 12000 | 0.330700 | 0.280467 | 0.455234 | | 12500 | 0.322500 | 0.271714 | 0.452694 | | 13000 | 0.307400 | 0.289519 | 0.455465 | | 13500 | 0.309300 | 0.281922 | 0.451217 | | 14000 | 0.304800 | 0.271514 | 0.452186 | | 14500 | 0.288100 | 0.286801 | 0.446830 | | 15000 | 0.293200 | 0.276309 | 0.445399 | | 15500 | 0.289800 | 0.287188 | 0.446230 | | 16000 | 0.274800 | 0.286406 | 0.441243 | | 16500 | 0.271700 | 0.284754 | 0.441520 | | 17000 | 0.262500 | 0.275431 | 0.442167 | | 17500 | 0.255500 | 0.276575 | 0.439858 | | 18000 | 0.260200 | 0.269911 | 0.435425 | | 18500 | 0.250600 | 0.270519 | 0.434686 | | 19000 | 0.243300 | 0.267655 | 0.437826 | | 19500 | 0.240600 | 0.277109 | 0.431731 | | 20000 | 0.237200 | 0.266622 | 0.433994 | | 20500 | 0.231300 | 0.273015 | 0.428868 | | 21000 | 0.227200 | 0.263024 | 0.430161 | | 21500 | 0.220400 | 0.272880 | 0.429607 | | 22000 | 0.218600 | 0.272340 | 0.426883 | | 22500 | 0.213100 | 0.277066 | 0.428407 | | 23000 | 0.205000 | 0.278404 | 0.424020 | | 23500 | 0.200900 | 0.270877 | 0.418987 | | 24000 | 0.199000 | 0.289120 | 0.425821 | | 24500 | 0.196100 | 0.275831 | 0.424066 | | 25000 | 0.191100 | 0.282822 | 0.421850 | | 25500 | 0.190100 | 0.275820 | 0.418248 | | 26000 | 0.178800 | 0.279208 | 0.419125 | | 26500 | 0.183100 | 0.271464 | 0.419218 | | 27000 | 0.177400 | 0.280869 | 0.419680 | | 27500 | 0.171800 | 0.279593 | 0.414924 | | 28000 | 0.172900 | 0.276949 | 0.417648 | | 28500 | 0.164900 | 0.283491 | 0.417786 | | 29000 | 0.164800 | 0.283122 | 0.416078 | | 29500 | 0.165500 | 0.281969 | 0.415801 | | 30000 | 0.163800 | 0.283319 | 0.412753 | | 30500 | 0.153500 | 0.285702 | 0.414046 | | 31000 | 0.156500 | 0.285041 | 0.412615 | | 31500 | 0.150900 | 0.284336 | 0.413723 | | 32000 | 0.151800 | 0.285922 | 0.412292 | | 32500 | 0.149200 | 0.289461 | 0.412153 | | 33000 | 0.145400 | 0.291322 | 0.409567 | | 33500 | 0.145600 | 0.294361 | 0.409614 | | 34000 | 0.144200 | 0.290686 | 0.409059 | | 34500 | 0.143400 | 0.289474 | 0.409844 | | 35000 | 0.143500 | 0.290340 | 0.408367 | | 35500 | 0.143200 | 0.289581 | 0.407351 | | 36000 | 0.138400 | 0.292782 | 0.408736 | | 36500 | 0.137900 | 0.289108 | 0.408044 | | 37000 | 0.138200 | 0.292127 | 0.407166 | | 37500 | 0.134600 | 0.291797 | 0.408413 | | 38000 | 0.139800 | 0.290056 | 0.408090 | | 38500 | 0.136500 | 0.291198 | 0.408090 | | 39000 | 0.137700 | 0.289696 | 0.408044 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.18.3 - Tokenizers 0.10.3 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id Akashpb13/Kabyle_xlsr --dataset mozilla-foundation/common_voice_8_0 --config kab --split test ```
AkshaySg/langid
a7f26a4d95b41d12803f508fe61cee92d5b691b6
2021-11-04T12:38:18.000Z
[ "multilingual", "dataset:VoxLingua107", "speechbrain", "audio-classification", "embeddings", "Language", "Identification", "pytorch", "ECAPA-TDNN", "TDNN", "VoxLingua107", "license:apache-2.0" ]
audio-classification
false
AkshaySg
null
AkshaySg/langid
3
1
speechbrain
20,534
--- language: multilingual thumbnail: tags: - audio-classification - speechbrain - embeddings - Language - Identification - pytorch - ECAPA-TDNN - TDNN - VoxLingua107 license: "apache-2.0" datasets: - VoxLingua107 metrics: - Accuracy widget: - example_title: English Sample src: https://cdn-media.huggingface.co/speech_samples/LibriSpeech_61-70968-0000.flac --- # VoxLingua107 ECAPA-TDNN Spoken Language Identification Model ## Model description This is a spoken language recognition model trained on the VoxLingua107 dataset using SpeechBrain. The model uses the ECAPA-TDNN architecture that has previously been used for speaker recognition. The model can classify a speech utterance according to the language spoken. It covers 107 different languages ( Abkhazian, Afrikaans, Amharic, Arabic, Assamese, Azerbaijani, Bashkir, Belarusian, Bulgarian, Bengali, Tibetan, Breton, Bosnian, Catalan, Cebuano, Czech, Welsh, Danish, German, Greek, English, Esperanto, Spanish, Estonian, Basque, Persian, Finnish, Faroese, French, Galician, Guarani, Gujarati, Manx, Hausa, Hawaiian, Hindi, Croatian, Haitian, Hungarian, Armenian, Interlingua, Indonesian, Icelandic, Italian, Hebrew, Japanese, Javanese, Georgian, Kazakh, Central Khmer, Kannada, Korean, Latin, Luxembourgish, Lingala, Lao, Lithuanian, Latvian, Malagasy, Maori, Macedonian, Malayalam, Mongolian, Marathi, Malay, Maltese, Burmese, Nepali, Dutch, Norwegian Nynorsk, Norwegian, Occitan, Panjabi, Polish, Pushto, Portuguese, Romanian, Russian, Sanskrit, Scots, Sindhi, Sinhala, Slovak, Slovenian, Shona, Somali, Albanian, Serbian, Sundanese, Swedish, Swahili, Tamil, Telugu, Tajik, Thai, Turkmen, Tagalog, Turkish, Tatar, Ukrainian, Urdu, Uzbek, Vietnamese, Waray, Yiddish, Yoruba, Mandarin Chinese). ## Intended uses & limitations The model has two uses: - use 'as is' for spoken language recognition - use as an utterance-level feature (embedding) extractor, for creating a dedicated language ID model on your own data The model is trained on automatically collected YouTube data. For more information about the dataset, see [here](http://bark.phon.ioc.ee/voxlingua107/). #### How to use ```python import torchaudio from speechbrain.pretrained import EncoderClassifier language_id = EncoderClassifier.from_hparams(source="TalTechNLP/voxlingua107-epaca-tdnn", savedir="tmp") # Download Thai language sample from Omniglot and cvert to suitable form signal = language_id.load_audio("https://omniglot.com/soundfiles/udhr/udhr_th.mp3") prediction = language_id.classify_batch(signal) print(prediction) (tensor([[0.3210, 0.3751, 0.3680, 0.3939, 0.4026, 0.3644, 0.3689, 0.3597, 0.3508, 0.3666, 0.3895, 0.3978, 0.3848, 0.3957, 0.3949, 0.3586, 0.4360, 0.3997, 0.4106, 0.3886, 0.4177, 0.3870, 0.3764, 0.3763, 0.3672, 0.4000, 0.4256, 0.4091, 0.3563, 0.3695, 0.3320, 0.3838, 0.3850, 0.3867, 0.3878, 0.3944, 0.3924, 0.4063, 0.3803, 0.3830, 0.2996, 0.4187, 0.3976, 0.3651, 0.3950, 0.3744, 0.4295, 0.3807, 0.3613, 0.4710, 0.3530, 0.4156, 0.3651, 0.3777, 0.3813, 0.6063, 0.3708, 0.3886, 0.3766, 0.4023, 0.3785, 0.3612, 0.4193, 0.3720, 0.4406, 0.3243, 0.3866, 0.3866, 0.4104, 0.4294, 0.4175, 0.3364, 0.3595, 0.3443, 0.3565, 0.3776, 0.3985, 0.3778, 0.2382, 0.4115, 0.4017, 0.4070, 0.3266, 0.3648, 0.3888, 0.3907, 0.3755, 0.3631, 0.4460, 0.3464, 0.3898, 0.3661, 0.3883, 0.3772, 0.9289, 0.3687, 0.4298, 0.4211, 0.3838, 0.3521, 0.3515, 0.3465, 0.4772, 0.4043, 0.3844, 0.3973, 0.4343]]), tensor([0.9289]), tensor([94]), ['th']) # The scores in the prediction[0] tensor can be interpreted as cosine scores between # the languages and the given utterance (i.e., the larger the better) # The identified language ISO code is given in prediction[3] print(prediction[3]) ['th'] # Alternatively, use the utterance embedding extractor: emb = language_id.encode_batch(signal) print(emb.shape) torch.Size([1, 1, 256]) ``` #### Limitations and bias Since the model is trained on VoxLingua107, it has many limitations and biases, some of which are: - Probably it's accuracy on smaller languages is quite limited - Probably it works worse on female speech than male speech (because YouTube data includes much more male speech) - Based on subjective experiments, it doesn't work well on speech with a foreign accent - Probably it doesn't work well on children's speech and on persons with speech disorders ## Training data The model is trained on [VoxLingua107](http://bark.phon.ioc.ee/voxlingua107/). VoxLingua107 is a speech dataset for training spoken language identification models. The dataset consists of short speech segments automatically extracted from YouTube videos and labeled according the language of the video title and description, with some post-processing steps to filter out false positives. VoxLingua107 contains data for 107 languages. The total amount of speech in the training set is 6628 hours. The average amount of data per language is 62 hours. However, the real amount per language varies a lot. There is also a seperate development set containing 1609 speech segments from 33 languages, validated by at least two volunteers to really contain the given language. ## Training procedure We used [SpeechBrain](https://github.com/speechbrain/speechbrain) to train the model. Training recipe will be published soon. ## Evaluation results Error rate: 7% on the development dataset ### BibTeX entry and citation info ```bibtex @inproceedings{valk2021slt, title={{VoxLingua107}: a Dataset for Spoken Language Recognition}, author={J{\"o}rgen Valk and Tanel Alum{\"a}e}, booktitle={Proc. IEEE SLT Workshop}, year={2021}, } ```
AlekseyKorshuk/comedy-scripts
a3d83cd48b9651ae224485387c09b32f1baa8277
2022-02-11T14:58:22.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
AlekseyKorshuk
null
AlekseyKorshuk/comedy-scripts
3
null
transformers
20,535
Entry not found
AlekseyKorshuk/horror-scripts
d81e1c0202fead6525d986f41c86e3802cf42027
2022-02-11T16:31:02.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
AlekseyKorshuk
null
AlekseyKorshuk/horror-scripts
3
null
transformers
20,536
Entry not found
AlexN/xls-r-300m-pt
f787452db83cfb074e70189ce068f493ec970692
2022-03-24T11:56:29.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "pt", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "robust-speech-event", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
AlexN
null
AlexN/xls-r-300m-pt
3
null
transformers
20,537
--- language: - pt license: apache-2.0 tags: - automatic-speech-recognition - robust-speech-event - mozilla-foundation/common_voice_8_0 - generated_from_trainer - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: xls-r-300m-pt results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8.0 fr type: mozilla-foundation/common_voice_8_0 args: fr metrics: - name: Test WER type: wer value: 19.361 - name: Test CER type: cer value: 5.533 - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: fr metrics: - name: Validation WER type: wer value: 47.812 - name: Validation CER type: cer value: 18.805 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8.0 type: mozilla-foundation/common_voice_8_0 args: pt metrics: - name: Test WER type: wer value: 19.36 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: pt metrics: - name: Test WER type: wer value: 48.01 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: pt metrics: - name: Test WER type: wer value: 49.21 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - PT dataset. It achieves the following results on the evaluation set: - Loss: 0.2290 - Wer: 0.2382 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1500 - num_epochs: 15.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.0952 | 0.64 | 500 | 3.0982 | 1.0 | | 1.7975 | 1.29 | 1000 | 0.7887 | 0.5651 | | 1.4138 | 1.93 | 1500 | 0.5238 | 0.4389 | | 1.344 | 2.57 | 2000 | 0.4775 | 0.4318 | | 1.2737 | 3.21 | 2500 | 0.4648 | 0.4075 | | 1.2554 | 3.86 | 3000 | 0.4069 | 0.3678 | | 1.1996 | 4.5 | 3500 | 0.3914 | 0.3668 | | 1.1427 | 5.14 | 4000 | 0.3694 | 0.3572 | | 1.1372 | 5.78 | 4500 | 0.3568 | 0.3501 | | 1.0831 | 6.43 | 5000 | 0.3331 | 0.3253 | | 1.1074 | 7.07 | 5500 | 0.3332 | 0.3352 | | 1.0536 | 7.71 | 6000 | 0.3131 | 0.3152 | | 1.0248 | 8.35 | 6500 | 0.3024 | 0.3023 | | 1.0075 | 9.0 | 7000 | 0.2948 | 0.3028 | | 0.979 | 9.64 | 7500 | 0.2796 | 0.2853 | | 0.9594 | 10.28 | 8000 | 0.2719 | 0.2789 | | 0.9172 | 10.93 | 8500 | 0.2620 | 0.2695 | | 0.9047 | 11.57 | 9000 | 0.2537 | 0.2596 | | 0.8777 | 12.21 | 9500 | 0.2438 | 0.2525 | | 0.8629 | 12.85 | 10000 | 0.2409 | 0.2493 | | 0.8575 | 13.5 | 10500 | 0.2366 | 0.2440 | | 0.8361 | 14.14 | 11000 | 0.2317 | 0.2385 | | 0.8126 | 14.78 | 11500 | 0.2290 | 0.2382 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
AlgoveraAI/dcgan
1388d6c35e73398e189b5eb5967022399e39804f
2022-03-31T18:31:10.000Z
[ "pytorch", "transformers" ]
null
false
AlgoveraAI
null
AlgoveraAI/dcgan
3
1
transformers
20,538
Alireza1044/michael_bert_lm
9711c0726453982106d91dbd5e8319e70b45fbd9
2021-07-08T16:48:19.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
Alireza1044
null
Alireza1044/michael_bert_lm
3
null
transformers
20,539
Entry not found
Aloka/mbart50-ft-si-en
1c9a9b49487da24bde843d634f8ad81409a8cc20
2021-08-29T13:11:14.000Z
[ "pytorch", "tensorboard", "mbart", "text2text-generation", "transformers", "generated_from_trainer", "autotrain_compatible" ]
text2text-generation
false
Aloka
null
Aloka/mbart50-ft-si-en
3
null
transformers
20,540
--- tags: - generated_from_trainer model_index: - name: mbart50-ft-si-en results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mbart50-ft-si-en This model was trained from scratch on an unkown dataset. It achieves the following results on the evaluation set: - Loss: 5.0476 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0.98 | 30 | 5.6367 | | No log | 1.98 | 60 | 4.1221 | | No log | 2.98 | 90 | 3.1880 | | No log | 3.98 | 120 | 3.1175 | | No log | 4.98 | 150 | 3.3575 | | No log | 5.98 | 180 | 3.7855 | | No log | 6.98 | 210 | 4.3530 | | No log | 7.98 | 240 | 4.7216 | | No log | 8.98 | 270 | 4.9202 | | No log | 9.98 | 300 | 5.0476 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.6.0 - Datasets 1.11.0 - Tokenizers 0.10.3
AndrewMcDowell/wav2vec2-xls-r-1B-german
6192b9cde45e2aac4ae91d8fba971ef0c94cdb47
2022-03-24T11:54:30.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "de", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
AndrewMcDowell
null
AndrewMcDowell/wav2vec2-xls-r-1B-german
3
null
transformers
20,541
--- language: - de license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - robust-speech-event - de - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: XLS-R-300M - German results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: de metrics: - name: Test WER type: wer value: 15.25 - name: Test CER type: cer value: 3.78 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: de metrics: - name: Test WER type: wer value: 35.29 - name: Test CER type: cer value: 13.83 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: de metrics: - name: Test WER type: wer value: 36.2 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - DE dataset. It achieves the following results on the evaluation set: - Loss: 0.1355 - Wer: 0.1532 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 2.5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.0826 | 0.07 | 1000 | 0.4637 | 0.4654 | | 1.118 | 0.15 | 2000 | 0.2595 | 0.2687 | | 1.1268 | 0.22 | 3000 | 0.2635 | 0.2661 | | 1.0919 | 0.29 | 4000 | 0.2417 | 0.2566 | | 1.1013 | 0.37 | 5000 | 0.2414 | 0.2567 | | 1.0898 | 0.44 | 6000 | 0.2546 | 0.2731 | | 1.0808 | 0.51 | 7000 | 0.2399 | 0.2535 | | 1.0719 | 0.59 | 8000 | 0.2353 | 0.2528 | | 1.0446 | 0.66 | 9000 | 0.2427 | 0.2545 | | 1.0347 | 0.73 | 10000 | 0.2266 | 0.2402 | | 1.0457 | 0.81 | 11000 | 0.2290 | 0.2448 | | 1.0124 | 0.88 | 12000 | 0.2295 | 0.2448 | | 1.025 | 0.95 | 13000 | 0.2138 | 0.2345 | | 1.0107 | 1.03 | 14000 | 0.2108 | 0.2294 | | 0.9758 | 1.1 | 15000 | 0.2019 | 0.2204 | | 0.9547 | 1.17 | 16000 | 0.2000 | 0.2178 | | 0.986 | 1.25 | 17000 | 0.2018 | 0.2200 | | 0.9588 | 1.32 | 18000 | 0.1992 | 0.2138 | | 0.9413 | 1.39 | 19000 | 0.1898 | 0.2049 | | 0.9339 | 1.47 | 20000 | 0.1874 | 0.2056 | | 0.9268 | 1.54 | 21000 | 0.1797 | 0.1976 | | 0.9194 | 1.61 | 22000 | 0.1743 | 0.1905 | | 0.8987 | 1.69 | 23000 | 0.1738 | 0.1932 | | 0.8884 | 1.76 | 24000 | 0.1703 | 0.1873 | | 0.8939 | 1.83 | 25000 | 0.1633 | 0.1831 | | 0.8629 | 1.91 | 26000 | 0.1549 | 0.1750 | | 0.8607 | 1.98 | 27000 | 0.1550 | 0.1738 | | 0.8316 | 2.05 | 28000 | 0.1512 | 0.1709 | | 0.8321 | 2.13 | 29000 | 0.1481 | 0.1657 | | 0.825 | 2.2 | 30000 | 0.1446 | 0.1627 | | 0.8115 | 2.27 | 31000 | 0.1396 | 0.1583 | | 0.7959 | 2.35 | 32000 | 0.1389 | 0.1569 | | 0.7835 | 2.42 | 33000 | 0.1362 | 0.1545 | | 0.7959 | 2.49 | 34000 | 0.1355 | 0.1531 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python ./eval.py --model_id AndrewMcDowell/wav2vec2-xls-r-1B-german --dataset mozilla-foundation/common_voice_8_0 --config de --split test --log_outputs ``` 2. To evaluate on test dev data ```bash python ./eval.py --model_id AndrewMcDowell/wav2vec2-xls-r-1B-german --dataset speech-recognition-community-v2/dev_data --config de --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ```
Andrija/SRoBERTa-L-NER
cca1159f1ff648df6a6ea209783336be7566e8d4
2021-08-10T11:33:31.000Z
[ "pytorch", "roberta", "token-classification", "hr", "sr", "dataset:hr500k", "transformers", "license:apache-2.0", "autotrain_compatible" ]
token-classification
false
Andrija
null
Andrija/SRoBERTa-L-NER
3
null
transformers
20,542
--- datasets: - hr500k language: - hr - sr widget: - text: "Moje ime je Aleksandar i zivim u Beogradu pored Vlade Republike Srbije" license: apache-2.0 --- Named Entity Recognition (Token Classification Head) for Serbian / Croatian languges. Abbreviation|Description -|- O|Outside of a named entity B-MIS |Beginning of a miscellaneous entity right after another miscellaneous entity I-MIS | Miscellaneous entity B-PER |Beginning of a personโ€™s name right after another personโ€™s name B-DERIV-PER| Begginning derivative that describes relation to a person I-PER |Personโ€™s name B-ORG |Beginning of an organization right after another organization I-ORG |organization B-LOC |Beginning of a location right after another location I-LOC |Location
Andrija/SRoBERTa-NER
b0c89a32ec26904ebf4f2d3c3b5b9ea2727927ac
2021-08-10T11:36:14.000Z
[ "pytorch", "roberta", "token-classification", "hr", "sr", "dataset:hr500k", "transformers", "license:apache-2.0", "autotrain_compatible" ]
token-classification
false
Andrija
null
Andrija/SRoBERTa-NER
3
null
transformers
20,543
--- datasets: - hr500k language: - hr - sr widget: - text: "Moje ime je Aleksandar i zivim u Beogradu pored Vlade Republike Srbije" license: apache-2.0 --- Named Entity Recognition (Token Classification Head) for Serbian / Croatian languges. Abbreviation|Description -|- O|Outside of a named entity B-MIS |Beginning of a miscellaneous entity right after another miscellaneous entity I-MIS | Miscellaneous entity B-PER |Beginning of a personโ€™s name right after another personโ€™s name B-DERIV-PER| Begginning derivative that describes relation to a person I-PER |Personโ€™s name B-ORG |Beginning of an organization right after another organization I-ORG |organization B-LOC |Beginning of a location right after another location I-LOC |Location
Andrija/SRoBERTa-XL-NER
1ac5a1da731f3da934df007bdc3d403e883f973c
2021-10-02T20:06:53.000Z
[ "pytorch", "roberta", "token-classification", "hr", "sr", "dataset:hr500k", "transformers", "license:apache-2.0", "autotrain_compatible" ]
token-classification
false
Andrija
null
Andrija/SRoBERTa-XL-NER
3
null
transformers
20,544
--- datasets: - hr500k language: - hr - sr widget: - text: "Moje ime je Aleksandar i zivim u Beogradu pored Vlade Republike Srbije" license: apache-2.0 --- Named Entity Recognition (Token Classification Head) for Serbian / Croatian languges. Abbreviation|Description -|- O|Outside of a named entity B-MIS |Beginning of a miscellaneous entity right after another miscellaneous entity I-MIS | Miscellaneous entity B-PER |Beginning of a person's name right after another person's name B-DERIV-PER| Begginning derivative that describes relation to a person I-PER |Person's name B-ORG |Beginning of an organization right after another organization I-ORG |organization B-LOC |Beginning of a location right after another location I-LOC |Location
Andrija/SRoBERTa-base-NER
a94450b3d1b9ed8d4fcc9083e51bd40c106cebfe
2021-08-10T11:34:53.000Z
[ "pytorch", "roberta", "token-classification", "hr", "sr", "dataset:hr500k", "transformers", "license:apache-2.0", "autotrain_compatible" ]
token-classification
false
Andrija
null
Andrija/SRoBERTa-base-NER
3
null
transformers
20,545
--- datasets: - hr500k language: - hr - sr widget: - text: "Moje ime je Aleksandar i zivim u Beogradu pored Vlade Republike Srbije" license: apache-2.0 --- Named Entity Recognition (Token Classification Head) for Serbian / Croatian languges. Abbreviation|Description -|- O|Outside of a named entity B-MIS |Beginning of a miscellaneous entity right after another miscellaneous entity I-MIS | Miscellaneous entity B-PER |Beginning of a personโ€™s name right after another personโ€™s name B-DERIV-PER| Begginning derivative that describes relation to a person I-PER |Personโ€™s name B-ORG |Beginning of an organization right after another organization I-ORG |organization B-LOC |Beginning of a location right after another location I-LOC |Location
AndyJ/clinicalBERT
c58a66c0c4c0de193fb4deabebc3f86a4e641d90
2022-01-30T10:10:47.000Z
[ "pytorch", "transformers" ]
null
false
AndyJ
null
AndyJ/clinicalBERT
3
null
transformers
20,546
Entry not found
AnonymousNLP/pretrained-model-1
1e6c5d46ad6b582ec5721cfc9c7d1aa82863ca12
2021-05-21T09:27:54.000Z
[ "pytorch", "gpt2", "transformers" ]
null
false
AnonymousNLP
null
AnonymousNLP/pretrained-model-1
3
null
transformers
20,547
Entry not found
AnonymousNLP/pretrained-model-2
9283e412d04f72d598dbf5d976dbe8c75108d74c
2021-05-21T09:28:24.000Z
[ "pytorch", "gpt2", "transformers" ]
null
false
AnonymousNLP
null
AnonymousNLP/pretrained-model-2
3
null
transformers
20,548
Entry not found
AnonymousSub/AR_rule_based_only_classfn_epochs_1_shard_1
b724746a40834c06050f53a7c659453551e14192
2022-01-11T00:40:06.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/AR_rule_based_only_classfn_epochs_1_shard_1
3
null
transformers
20,549
Entry not found
AnonymousSub/AR_rule_based_roberta_bert_triplet_epochs_1_shard_10
0a5c959b893e48529075c34f23c37233f219dcfc
2022-01-06T09:43:21.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/AR_rule_based_roberta_bert_triplet_epochs_1_shard_10
3
null
transformers
20,550
Entry not found
AnonymousSub/AR_rule_based_roberta_hier_triplet_epochs_1_shard_10
026d9359bfe0301a77025082b4c0cbfdfe8e4b49
2022-01-06T20:49:11.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/AR_rule_based_roberta_hier_triplet_epochs_1_shard_10
3
null
transformers
20,551
Entry not found
AnonymousSub/AR_rule_based_twostage_quadruplet_epochs_1_shard_1
f18032e8cef903f3f2ea424825423a30fe5e48db
2022-01-11T01:15:40.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/AR_rule_based_twostage_quadruplet_epochs_1_shard_1
3
null
transformers
20,552
Entry not found
AnonymousSub/SR_bert-base-uncased
e4f2dfbbbd87d8809e71e410fded1d51b6fd3390
2022-01-12T11:16:10.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/SR_bert-base-uncased
3
null
transformers
20,553
Entry not found
AnonymousSub/SR_rule_based_bert_quadruplet_epochs_1_shard_1
7a2744a5d90cd71e7c4309a5e34d44f18ff058ba
2022-01-10T22:50:22.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/SR_rule_based_bert_quadruplet_epochs_1_shard_1
3
null
transformers
20,554
Entry not found
AnonymousSub/SR_rule_based_roberta_bert_triplet_epochs_1_shard_10
43536dd0619444526619db17c7659f05c295c5a7
2022-01-06T08:38:38.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/SR_rule_based_roberta_bert_triplet_epochs_1_shard_10
3
null
transformers
20,555
Entry not found
AnonymousSub/SR_rule_based_roberta_hier_quadruplet_epochs_1_shard_1
d99e3ad881452861c2f68f4d4f7719e59443672a
2022-01-12T08:52:23.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/SR_rule_based_roberta_hier_quadruplet_epochs_1_shard_1
3
null
transformers
20,556
Entry not found
AnonymousSub/SR_rule_based_roberta_hier_triplet_epochs_1_shard_1
356e4f56161ba16b94ad86e59a8b7c569d503667
2022-01-06T06:29:56.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/SR_rule_based_roberta_hier_triplet_epochs_1_shard_1
3
null
transformers
20,557
Entry not found
AnonymousSub/SR_rule_based_roberta_twostage_quadruplet_epochs_1_shard_10
bfd85dcf2de24d9ecfc316e06a63de31272f45f4
2022-01-06T05:19:50.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/SR_rule_based_roberta_twostage_quadruplet_epochs_1_shard_10
3
null
transformers
20,558
Entry not found
AnonymousSub/SR_rule_based_roberta_twostagetriplet_epochs_1_shard_1
5dc51cfafdd1ca0b2caa7000d597197856d3cded
2022-01-06T08:23:38.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/SR_rule_based_roberta_twostagetriplet_epochs_1_shard_1
3
null
transformers
20,559
Entry not found
AnonymousSub/SR_rule_based_twostagequadruplet_hier_epochs_1_shard_1
3c863e43f9d95cb710a50e9246a621bde6c89be9
2022-01-11T02:09:01.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/SR_rule_based_twostagequadruplet_hier_epochs_1_shard_1
3
null
transformers
20,560
Entry not found
AnonymousSub/bert_hier_diff_equal_wts_epochs_1_shard_10
6822165cdff217e646689f63884e6a9a7033c95e
2022-01-04T08:13:26.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/bert_hier_diff_equal_wts_epochs_1_shard_10
3
null
transformers
20,561
Entry not found
AnonymousSub/bert_triplet_epochs_1_shard_1
c7effc08a352fd832c9412cd54565aef2bb2601c
2021-12-22T16:55:05.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/bert_triplet_epochs_1_shard_1
3
null
transformers
20,562
Entry not found
AnonymousSub/cline-emanuals-techqa
9422325cc785f432d42ae654a91b4d5fcd7cae26
2021-09-30T18:59:08.000Z
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
AnonymousSub
null
AnonymousSub/cline-emanuals-techqa
3
null
transformers
20,563
Entry not found
AnonymousSub/cline_squad2.0
0043ed62e5c685293b40341f6abffe3d7ca617a1
2022-01-17T20:36:27.000Z
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
AnonymousSub
null
AnonymousSub/cline_squad2.0
3
null
transformers
20,564
Entry not found
AnonymousSub/declutr-techqa
7f79f661cd6a931cb45653914e8fb580b0362bef
2021-09-30T06:26:37.000Z
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
AnonymousSub
null
AnonymousSub/declutr-techqa
3
null
transformers
20,565
Entry not found
AnonymousSub/rule_based_bert_triplet_epochs_1_shard_1_wikiqa_copy
e8b69e9eb168792ed316faa4815ec9725679b9d2
2022-01-23T17:35:02.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/rule_based_bert_triplet_epochs_1_shard_1_wikiqa_copy
3
null
transformers
20,566
Entry not found
AnonymousSub/rule_based_hier_quadruplet_epochs_1_shard_10
9e4d1186bae21d972ef79dcf572e05c1edf3a940
2022-01-04T08:19:43.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/rule_based_hier_quadruplet_epochs_1_shard_10
3
null
transformers
20,567
Entry not found
AnonymousSub/rule_based_hier_triplet_0.1_epochs_1_shard_1_squad2.0
e66aef1b80f2177866c26ec95b44c41fbc092693
2022-01-19T00:05:51.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
AnonymousSub
null
AnonymousSub/rule_based_hier_triplet_0.1_epochs_1_shard_1_squad2.0
3
null
transformers
20,568
Entry not found
AnonymousSub/rule_based_only_classfn_twostage_epochs_1_shard_1
275595713d71dd1bd88bb36a4bb40959cd3a5ab5
2022-01-10T21:09:04.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/rule_based_only_classfn_twostage_epochs_1_shard_1
3
null
transformers
20,569
Entry not found
AnonymousSub/rule_based_roberta_bert_triplet_epochs_1_shard_1
d2f2d0b923ff2f413759715e8b0b80d47343fbc4
2022-01-04T22:04:59.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/rule_based_roberta_bert_triplet_epochs_1_shard_1
3
null
transformers
20,570
Entry not found
AnonymousSub/rule_based_roberta_twostagequadruplet_hier_epochs_1_shard_1_squad2.0
ae4bde01d4c7ee4d660cbe98288861aaf78d8252
2022-01-18T05:22:51.000Z
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
AnonymousSub
null
AnonymousSub/rule_based_roberta_twostagequadruplet_hier_epochs_1_shard_1_squad2.0
3
null
transformers
20,571
Entry not found
AnonymousSub/rule_based_roberta_twostagetriplet_hier_epochs_1_shard_1
db135e350545eae658cb3c03386f609393954335
2022-01-05T10:18:46.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/rule_based_roberta_twostagetriplet_hier_epochs_1_shard_1
3
null
transformers
20,572
Entry not found
AnonymousSub/rule_based_twostage_quadruplet_epochs_1_shard_1
3dbb4a5ea0d111541008d74dac3a18056e150f4c
2022-01-10T21:11:03.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/rule_based_twostage_quadruplet_epochs_1_shard_1
3
null
transformers
20,573
Entry not found
AnonymousSub/rule_based_twostagequadruplet_hier_epochs_1_shard_1
0c5538f8f8663e51012e93aa656a8c48e5723454
2022-01-10T21:09:40.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/rule_based_twostagequadruplet_hier_epochs_1_shard_1
3
null
transformers
20,574
Entry not found
AnonymousSub/specter-emanuals-model
4a738fb45f8e337b7e3c26bcf1ef230cf2c34430
2021-11-05T10:43:52.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/specter-emanuals-model
3
null
transformers
20,575
Entry not found
AnonymousSub/unsup-consert-emanuals
100c5ff5a40b9a0b815b022fc9762a55fb8241ff
2021-10-14T11:46:45.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/unsup-consert-emanuals
3
null
transformers
20,576
Entry not found
AnonymousSub/unsup-consert-papers-bert
7b474ccc8b9ae9af94fb10e389f6672779375680
2021-10-24T20:46:22.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/unsup-consert-papers-bert
3
null
transformers
20,577
Entry not found
AriakimTaiyo/DialoGPT-small-Kumiko
11dd5bb922a6946ecf0296b5e52759bd5ea43bb0
2022-02-02T23:09:37.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
AriakimTaiyo
null
AriakimTaiyo/DialoGPT-small-Kumiko
3
null
transformers
20,578
--- tags: - conversational --- # Kumiko DialoGPT Model
Aspect11/DialoGPT-Medium-LiSBot
83aef079efcd1411dc551533c834e42d28d615e0
2021-07-24T11:44:37.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Aspect11
null
Aspect11/DialoGPT-Medium-LiSBot
3
null
transformers
20,579
--- tags: - conversational --- A discord chatbot trained on the whole LiS script to simulate character speech
Atampy26/GPT-Glacier
075c5fd3d4e61b4aa5d381de76bbffa3efd1c3f4
2021-06-26T02:35:30.000Z
[ "pytorch", "gpt_neo", "text-generation", "transformers" ]
text-generation
false
Atampy26
null
Atampy26/GPT-Glacier
3
null
transformers
20,580
GPT-Glacier, a GPT-Neo 125M model finetuned on the Glacier2 Modding Discord server.
Ayran/DialoGPT-small-harry-potter-1-through-3
975baef39279c5f9762cf53532ae76f25708fec5
2021-10-12T12:14:44.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Ayran
null
Ayran/DialoGPT-small-harry-potter-1-through-3
3
null
transformers
20,581
--- tags: - conversational --- # Harry Potter DialoGPT small Model (Movies 1 through 3)
AyushPJ/ai-club-inductions-21-nlp-XLNet
d9026ad0159253bbc2d95378009e6a629a007960
2021-10-20T23:09:21.000Z
[ "pytorch", "xlnet", "question-answering", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
AyushPJ
null
AyushPJ/ai-club-inductions-21-nlp-XLNet
3
null
transformers
20,582
--- tags: - generated_from_trainer model-index: - name: ai-club-inductions-21-nlp-XLNet results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ai-club-inductions-21-nlp-XLNet This model was trained from scratch on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Framework versions - Transformers 4.11.3 - Pytorch 1.7.1+cpu - Datasets 1.14.0 - Tokenizers 0.10.3
Azaghast/GPT2-SCP-Miscellaneous
e6c1d52af5b7207a1dfa94a8c800f478ee158a80
2021-08-25T08:59:59.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
Azaghast
null
Azaghast/GPT2-SCP-Miscellaneous
3
null
transformers
20,583
Entry not found
BSen/wav2vec2-large-xls-r-300m-turkish-colab
adfce08108c85fa24dc978dfba32d2c2c5085303
2021-12-01T10:18:53.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
BSen
null
BSen/wav2vec2-large-xls-r-300m-turkish-colab
3
null
transformers
20,584
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-turkish-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-turkish-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
Baybars/wav2vec2-xls-r-1b-turkish
c05579f443d94ba1a0e0b03e202fdaba3ab83eb8
2022-02-03T10:09:31.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "tr", "dataset:common_voice", "transformers", "common_voice", "generated_from_trainer", "model-index" ]
automatic-speech-recognition
false
Baybars
null
Baybars/wav2vec2-xls-r-1b-turkish
3
null
transformers
20,585
--- language: - tr tags: - automatic-speech-recognition - common_voice - generated_from_trainer datasets: - common_voice model-index: - name: '' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [./checkpoint-10500](https://huggingface.co/./checkpoint-10500) on the COMMON_VOICE - TR dataset. It achieves the following results on the evaluation set: - Loss: 0.7540 - Wer: 0.4647 - Cer: 0.1318 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.999,0.9999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 120.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Cer | Validation Loss | Wer | |:-------------:|:------:|:-----:|:------:|:---------------:|:------:| | 1.0779 | 4.59 | 500 | 0.2354 | 0.8260 | 0.7395 | | 0.7573 | 9.17 | 1000 | 0.2100 | 0.7544 | 0.6960 | | 0.8225 | 13.76 | 1500 | 0.2021 | 0.6867 | 0.6672 | | 0.621 | 18.35 | 2000 | 0.1874 | 0.6824 | 0.6209 | | 0.6362 | 22.94 | 2500 | 0.1904 | 0.6712 | 0.6286 | | 0.624 | 27.52 | 3000 | 0.1820 | 0.6940 | 0.6116 | | 0.4781 | 32.11 | 3500 | 0.1735 | 0.6966 | 0.5989 | | 0.5685 | 36.7 | 4000 | 0.1769 | 0.6742 | 0.5971 | | 0.4384 | 41.28 | 4500 | 0.1767 | 0.6904 | 0.5999 | | 0.5509 | 45.87 | 5000 | 0.1692 | 0.6734 | 0.5641 | | 0.3665 | 50.46 | 5500 | 0.1680 | 0.7018 | 0.5662 | | 0.3914 | 55.05 | 6000 | 0.1631 | 0.7121 | 0.5552 | | 0.2467 | 59.63 | 6500 | 0.1563 | 0.6657 | 0.5374 | | 0.2576 | 64.22 | 7000 | 0.1554 | 0.6920 | 0.5316 | | 0.2711 | 68.81 | 7500 | 0.1495 | 0.6900 | 0.5176 | | 0.2626 | 73.39 | 8000 | 0.1454 | 0.6843 | 0.5043 | | 0.1377 | 77.98 | 8500 | 0.1470 | 0.7383 | 0.5101 | | 0.2005 | 82.57 | 9000 | 0.1430 | 0.7228 | 0.5045 | | 0.1355 | 87.16 | 9500 | 0.1375 | 0.7231 | 0.4869 | | 0.0431 | 91.74 | 10000 | 0.1350 | 0.7397 | 0.4749 | | 0.0586 | 96.33 | 10500 | 0.1339 | 0.7360 | 0.4754 | | 0.0896 | 100.92 | 11000 | 0.7187 | 0.4885 | 0.1398 | | 0.183 | 105.5 | 11500 | 0.7310 | 0.4838 | 0.1392 | | 0.0963 | 110.09 | 12000 | 0.7643 | 0.4759 | 0.1362 | | 0.0437 | 114.68 | 12500 | 0.7525 | 0.4641 | 0.1328 | | 0.1122 | 119.27 | 13000 | 0.7535 | 0.4651 | 0.1317 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
BigSalmon/DaBlank
c3027c5e580c2f2fc8c336212e2e392f82ea781d
2021-06-23T02:17:21.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
BigSalmon
null
BigSalmon/DaBlank
3
null
transformers
20,586
Entry not found
BigSalmon/TS3
21b813aec1e3e4755c4fbe314732ebe6c906b52f
2021-11-18T04:32:04.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
BigSalmon
null
BigSalmon/TS3
3
null
transformers
20,587
Entry not found
Bimal/my_bot_model
a6137380fd825721c4187a8201a0e03a1cf0c8d2
2021-08-28T08:42:57.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Bimal
null
Bimal/my_bot_model
3
null
transformers
20,588
--- tags: - conversational --- # Neku from Twewy
Biniam/en_ti_translate
c32905b9fa1a9cd96735dcd1c6cf48656be5d45b
2021-08-27T18:25:31.000Z
[ "pytorch", "marian", "text2text-generation", "transformers", "translation", "autotrain_compatible" ]
translation
false
Biniam
null
Biniam/en_ti_translate
3
2
transformers
20,589
--- tags: - translation --- ### en_ti_translate * source languages: en * target languages: ti * model: hugging face transformer seq2seq * base model : opus-mt-en-ti * pre-processing: normalization + SentencePiece ### documentation https://tigrinyanlp.github.io/
CenIA/albert-tiny-spanish-finetuned-pos
1e497720e9bbaff9567ccbe2973d16dd5ff54f8d
2021-12-17T17:56:55.000Z
[ "pytorch", "albert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
CenIA
null
CenIA/albert-tiny-spanish-finetuned-pos
3
null
transformers
20,590
Entry not found
CenIA/albert-large-spanish
8740aef10a23ff833c36ed311068bd03adf9ef28
2022-04-28T19:55:20.000Z
[ "pytorch", "tf", "albert", "pretraining", "es", "dataset:large_spanish_corpus", "transformers", "spanish", "OpenCENIA" ]
null
false
CenIA
null
CenIA/albert-large-spanish
3
null
transformers
20,591
--- language: - es tags: - albert - spanish - OpenCENIA datasets: - large_spanish_corpus --- # ALBERT Large Spanish This is an [ALBERT](https://github.com/google-research/albert) model trained on a [big spanish corpora](https://github.com/josecannete/spanish-corpora). The model was trained on a single TPU v3-8 with the following hyperparameters and steps/time: - LR: 0.000625 - Batch Size: 512 - Warmup ratio: 0.003125 - Warmup steps: 12500 - Goal steps: 4000000 - Total steps: 1450000 - Total training time (aprox): 42 days. ## Training loss ![https://drive.google.com/uc?export=view&id=10EiI0Yge3U3CnGrqoMs1yJY020pPz_Io](https://drive.google.com/uc?export=view&id=10EiI0Yge3U3CnGrqoMs1yJY020pPz_Io)
CenIA/albert-xxlarge-spanish
65c3d0fcea1a779c827af41032ba1af696ad4a4f
2022-04-28T19:56:15.000Z
[ "pytorch", "tf", "albert", "pretraining", "es", "dataset:large_spanish_corpus", "transformers", "spanish", "OpenCENIA" ]
null
false
CenIA
null
CenIA/albert-xxlarge-spanish
3
null
transformers
20,592
--- language: - es tags: - albert - spanish - OpenCENIA datasets: - large_spanish_corpus --- # ALBERT XXLarge Spanish This is an [ALBERT](https://github.com/google-research/albert) model trained on a [big spanish corpora](https://github.com/josecannete/spanish-corpora). The model was trained on a single TPU v3-8 with the following hyperparameters and steps/time: - LR: 0.0003125 - Batch Size: 128 - Warmup ratio: 0.00078125 - Warmup steps: 3125 - Goal steps: 4000000 - Total steps: 1650000 - Total training time (aprox): 70.7 days. ## Training loss ![https://drive.google.com/uc?export=view&id=1a9MHsk-QwBuCMtyDyRvZ5mv9Mzl2dWCn](https://drive.google.com/uc?export=view&id=1a9MHsk-QwBuCMtyDyRvZ5mv9Mzl2dWCn)
CenIA/bert-base-spanish-wwm-uncased-finetuned-qa-mlqa
343a6918c168f2c79e2e792717ded1880fad310e
2022-01-21T03:16:45.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
CenIA
null
CenIA/bert-base-spanish-wwm-uncased-finetuned-qa-mlqa
3
null
transformers
20,593
Entry not found
CennetOguz/distilbert-base-uncased-finetuned-recipe
0eaaf2ddd5253543fb8495fb1ebb4f260bb45c95
2022-02-17T21:17:44.000Z
[ "pytorch", "tensorboard", "distilbert", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
CennetOguz
null
CennetOguz/distilbert-base-uncased-finetuned-recipe
3
null
transformers
20,594
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-recipe results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-recipe This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.9488 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 3 | 3.2689 | | No log | 2.0 | 6 | 3.0913 | | No log | 3.0 | 9 | 3.0641 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
Chaewon/mmnt_decoder_en
5ddfb421c5c654eee2eaa6b19c030f073824ee6f
2021-12-10T14:41:40.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
Chaewon
null
Chaewon/mmnt_decoder_en
3
null
transformers
20,595
Entry not found
Chakita/KROBERT
f625f449a193f80d4c5fc0863b1a012cfc472481
2021-09-18T07:55:38.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "masked-lm", "fill-in-the-blanks", "autotrain_compatible" ]
fill-mask
false
Chakita
null
Chakita/KROBERT
3
null
transformers
20,596
--- tags: - masked-lm - fill-in-the-blanks --- RoBERTa model trained on Kannada news corpus.
ComCom/gpt2-medium
30a7125c51ff3872369d7c0fd06815830d8bd4fa
2021-11-15T07:08:26.000Z
[ "pytorch", "gpt2", "feature-extraction", "transformers" ]
feature-extraction
false
ComCom
null
ComCom/gpt2-medium
3
null
transformers
20,597
ํ•ด๋‹น ๋ชจ๋ธ์€ [ํ•ด๋‹น ์‚ฌ์ดํŠธ](https://huggingface.co/gpt2-medium)์—์„œ ๊ฐ€์ ธ์˜จ ๋ชจ๋ธ์ž…๋‹ˆ๋‹ค. ํ•ด๋‹น ๋ชจ๋ธ์€ [Teachable NLP](https://ainize.ai/teachable-nlp) ์„œ๋น„์Šค์—์„œ ์‚ฌ์šฉ๋ฉ๋‹ˆ๋‹ค.
Contrastive-Tension/BERT-Base-NLI-CT
643434b3007f7b101bf30e353dacd939daa58a0c
2021-05-18T17:50:20.000Z
[ "pytorch", "tf", "jax", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Contrastive-Tension
null
Contrastive-Tension/BERT-Base-NLI-CT
3
null
transformers
20,598
Entry not found
Contrastive-Tension/BERT-Distil-CT
b7e385b9af9f1814a16f1c616864ae2bb2d626ec
2021-02-10T19:01:42.000Z
[ "pytorch", "tf", "distilbert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Contrastive-Tension
null
Contrastive-Tension/BERT-Distil-CT
3
null
transformers
20,599
Entry not found