modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
Yarn/finetuned
9aef62b1c0f666203209fbc394e8407ab6cec7fd
2022-06-24T09:09:51.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers" ]
text-classification
false
Yarn
null
Yarn/finetuned
4
null
transformers
20,300
Entry not found
domenicrosati/BioM-ALBERT-xxlarge-finetuned-DAGPap22
b9c069fa5f6b5b6c3c8d469de931807239fa7cb8
2022-06-24T19:54:01.000Z
[ "pytorch", "tensorboard", "albert", "text-classification", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
domenicrosati
null
domenicrosati/BioM-ALBERT-xxlarge-finetuned-DAGPap22
4
null
transformers
20,301
--- tags: - text-classification - generated_from_trainer model-index: - name: BioM-ALBERT-xxlarge-finetuned-DAGPap22 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BioM-ALBERT-xxlarge-finetuned-DAGPap22 This model is a fine-tuned version of [sultan/BioM-ALBERT-xxlarge](https://huggingface.co/sultan/BioM-ALBERT-xxlarge) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
deepesh0x/autotrain-bert_wikipedia_sst_2-1034235509
1b27fed95d1885253cb841cbaa55ef771dec18dd
2022-06-24T17:25:50.000Z
[ "pytorch", "bert", "text-classification", "unk", "dataset:deepesh0x/autotrain-data-bert_wikipedia_sst_2", "transformers", "autotrain", "co2_eq_emissions" ]
text-classification
false
deepesh0x
null
deepesh0x/autotrain-bert_wikipedia_sst_2-1034235509
4
null
transformers
20,302
--- tags: autotrain language: unk widget: - text: "I love AutoTrain 🤗" datasets: - deepesh0x/autotrain-data-bert_wikipedia_sst_2 co2_eq_emissions: 17.051424016530056 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 1034235509 - CO2 Emissions (in grams): 17.051424016530056 ## Validation Metrics - Loss: 0.14414940774440765 - Accuracy: 0.954046028210839 - Precision: 0.9583831937242387 - Recall: 0.9592760180995475 - AUC: 0.9872623710421541 - F1: 0.9588293980711673 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/deepesh0x/autotrain-bert_wikipedia_sst_2-1034235509 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("deepesh0x/autotrain-bert_wikipedia_sst_2-1034235509", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("deepesh0x/autotrain-bert_wikipedia_sst_2-1034235509", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
deepesh0x/autotrain-bert_wikipedia_sst_2-1034235513
5a5090f6edb3710eed1a5482cb3c10ee28cf4157
2022-06-24T17:25:28.000Z
[ "pytorch", "bert", "text-classification", "unk", "dataset:deepesh0x/autotrain-data-bert_wikipedia_sst_2", "transformers", "autotrain", "co2_eq_emissions" ]
text-classification
false
deepesh0x
null
deepesh0x/autotrain-bert_wikipedia_sst_2-1034235513
4
null
transformers
20,303
--- tags: autotrain language: unk widget: - text: "I love AutoTrain 🤗" datasets: - deepesh0x/autotrain-data-bert_wikipedia_sst_2 co2_eq_emissions: 16.686945384446037 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 1034235513 - CO2 Emissions (in grams): 16.686945384446037 ## Validation Metrics - Loss: 0.14450643956661224 - Accuracy: 0.9527839643652561 - Precision: 0.9565852363250132 - Recall: 0.9588767633750332 - AUC: 0.9872179498202862 - F1: 0.9577296291373122 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/deepesh0x/autotrain-bert_wikipedia_sst_2-1034235513 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("deepesh0x/autotrain-bert_wikipedia_sst_2-1034235513", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("deepesh0x/autotrain-bert_wikipedia_sst_2-1034235513", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
deepesh0x/autotrain-finetunedmodelbert-1034335535
4b1235dd4479ab9c3afe79d6fa78b73447afa171
2022-06-24T18:00:54.000Z
[ "pytorch", "distilbert", "text-classification", "en", "dataset:deepesh0x/autotrain-data-finetunedmodelbert", "transformers", "autotrain", "co2_eq_emissions" ]
text-classification
false
deepesh0x
null
deepesh0x/autotrain-finetunedmodelbert-1034335535
4
null
transformers
20,304
--- tags: autotrain language: en widget: - text: "I love AutoTrain 🤗" datasets: - deepesh0x/autotrain-data-finetunedmodelbert co2_eq_emissions: 7.1805069109958835 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 1034335535 - CO2 Emissions (in grams): 7.1805069109958835 ## Validation Metrics - Loss: 0.05866553634405136 - Accuracy: 0.9793615441722346 - Precision: 0.9811170212765957 - Recall: 0.9819004524886877 - AUC: 0.9976735725727466 - F1: 0.9815085805507516 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/deepesh0x/autotrain-finetunedmodelbert-1034335535 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("deepesh0x/autotrain-finetunedmodelbert-1034335535", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("deepesh0x/autotrain-finetunedmodelbert-1034335535", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
deepesh0x/autotrain-finetunedmodel1-1034535555
18a419b24858c2ce8550c4809b95c0756cd56942
2022-06-24T18:57:34.000Z
[ "pytorch", "distilbert", "text-classification", "unk", "dataset:deepesh0x/autotrain-data-finetunedmodel1", "transformers", "autotrain", "co2_eq_emissions" ]
text-classification
false
deepesh0x
null
deepesh0x/autotrain-finetunedmodel1-1034535555
4
null
transformers
20,305
--- tags: autotrain language: unk widget: - text: "I love AutoTrain 🤗" datasets: - deepesh0x/autotrain-data-finetunedmodel1 co2_eq_emissions: 29.194903746653306 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 1034535555 - CO2 Emissions (in grams): 29.194903746653306 ## Validation Metrics - Loss: 0.16423887014389038 - Accuracy: 0.9402375649591685 - Precision: 0.94876254180602 - Recall: 0.9438381687516636 - AUC: 0.9843968335444757 - F1: 0.9462939488958569 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/deepesh0x/autotrain-finetunedmodel1-1034535555 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("deepesh0x/autotrain-finetunedmodel1-1034535555", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("deepesh0x/autotrain-finetunedmodel1-1034535555", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
domenicrosati/deberta-v3-xsmall-finetuned-DAGPap22
87c52edc4beeeee10f2d6ee77e18b69ff0b16fba
2022-06-25T00:13:38.000Z
[ "pytorch", "tensorboard", "deberta-v2", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
domenicrosati
null
domenicrosati/deberta-v3-xsmall-finetuned-DAGPap22
4
null
transformers
20,306
--- license: mit tags: - text-classification - generated_from_trainer metrics: - accuracy - f1 model-index: - name: deberta-v3-xsmall-finetuned-DAGPap22 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-xsmall-finetuned-DAGPap22 This model is a fine-tuned version of [microsoft/deberta-v3-xsmall](https://huggingface.co/microsoft/deberta-v3-xsmall) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0798 - Accuracy: 0.9907 - F1: 0.9934 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4.5e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 402 | 0.1626 | 0.9477 | 0.9616 | | 0.4003 | 2.0 | 804 | 0.0586 | 0.9794 | 0.9853 | | 0.1075 | 3.0 | 1206 | 0.0342 | 0.9907 | 0.9933 | | 0.0581 | 4.0 | 1608 | 0.1140 | 0.9776 | 0.9838 | | 0.0245 | 5.0 | 2010 | 0.1409 | 0.9776 | 0.9842 | | 0.0245 | 6.0 | 2412 | 0.0732 | 0.9832 | 0.9881 | | 0.0167 | 7.0 | 2814 | 0.1996 | 0.9682 | 0.9778 | | 0.0139 | 8.0 | 3216 | 0.1219 | 0.9850 | 0.9894 | | 0.006 | 9.0 | 3618 | 0.0670 | 0.9907 | 0.9934 | | 0.0067 | 10.0 | 4020 | 0.1036 | 0.9869 | 0.9907 | | 0.0067 | 11.0 | 4422 | 0.1220 | 0.9776 | 0.9838 | | 0.0041 | 12.0 | 4824 | 0.1768 | 0.9776 | 0.9839 | | 0.0007 | 13.0 | 5226 | 0.0943 | 0.9888 | 0.9920 | | 0.0 | 14.0 | 5628 | 0.0959 | 0.9907 | 0.9934 | | 0.0054 | 15.0 | 6030 | 0.0915 | 0.9888 | 0.9921 | | 0.0054 | 16.0 | 6432 | 0.1618 | 0.9794 | 0.9855 | | 0.0019 | 17.0 | 6834 | 0.0794 | 0.9907 | 0.9934 | | 0.0 | 18.0 | 7236 | 0.0799 | 0.9907 | 0.9934 | | 0.0 | 19.0 | 7638 | 0.0797 | 0.9907 | 0.9934 | | 0.0 | 20.0 | 8040 | 0.0798 | 0.9907 | 0.9934 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
abhishek/convnext-tiny-finetuned-dogfood
b16339411e0dc86d6fb28d08e070f7d75d50fa6e
2022-06-27T11:01:31.000Z
[ "pytorch", "tensorboard", "convnext", "image-classification", "dataset:imagefolder", "dataset:lewtun/dog_food", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
image-classification
false
abhishek
null
abhishek/convnext-tiny-finetuned-dogfood
4
null
transformers
20,307
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder - lewtun/dog_food metrics: - accuracy model-index: - name: convnext-tiny-finetuned-dogfood results: - task: name: Image Classification type: image-classification dataset: name: lewtun/dog_food type: lewtun/dog_food args: lewtun--dog_food metrics: - name: Accuracy type: accuracy value: 0.7253333333333334 - task: type: image-classification name: Image Classification dataset: name: lewtun/dog_food type: lewtun/dog_food config: lewtun--dog_food split: test metrics: - name: Accuracy type: accuracy value: 0.6866666666666666 verified: true - name: Precision Macro type: precision value: 0.7181484576740136 verified: true - name: Precision Micro type: precision value: 0.6866666666666666 verified: true - name: Precision Weighted type: precision value: 0.7235392474854474 verified: true - name: Recall Macro type: recall value: 0.7006250320552644 verified: true - name: Recall Micro type: recall value: 0.6866666666666666 verified: true - name: Recall Weighted type: recall value: 0.6866666666666666 verified: true - name: F1 Macro type: f1 value: 0.6690027379410202 verified: true - name: F1 Micro type: f1 value: 0.6866666666666666 verified: true - name: F1 Weighted type: f1 value: 0.6647526870157503 verified: true - name: loss type: loss value: 0.9549381732940674 verified: true - name: matthews_correlation type: matthews_correlation value: 0.5737269361889515 verified: true --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # convnext-tiny-finetuned-dogfood This model is a fine-tuned version of [facebook/convnext-tiny-224](https://huggingface.co/facebook/convnext-tiny-224) on the lewtun/dog_food dataset. It achieves the following results on the evaluation set: - Loss: 0.9277 - Accuracy: 0.7253 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0681 | 1.0 | 16 | 0.9125 | 0.7422 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
asahi417/lmqg-mbart-large-cc25-esquad
48607a7985d30c2436644a5d8f4b6c515b446f3a
2022-06-26T14:11:13.000Z
[ "pytorch", "mbart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
asahi417
null
asahi417/lmqg-mbart-large-cc25-esquad
4
null
transformers
20,308
Entry not found
dasolj/wav2vec2-base-timit-demo-google-colab
314eaddc13d531c5549da3c80b133b732d082752
2022-06-27T08:50:22.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
dasolj
null
dasolj/wav2vec2-base-timit-demo-google-colab
4
null
transformers
20,309
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-google-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-google-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5501 - Wer: 0.3424 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.5448 | 1.0 | 500 | 2.5044 | 1.0 | | 1.0167 | 2.01 | 1000 | 0.5435 | 0.5278 | | 0.4453 | 3.01 | 1500 | 0.4450 | 0.4534 | | 0.3 | 4.02 | 2000 | 0.4401 | 0.4245 | | 0.2304 | 5.02 | 2500 | 0.4146 | 0.4022 | | 0.1889 | 6.02 | 3000 | 0.4241 | 0.3927 | | 0.1573 | 7.03 | 3500 | 0.4545 | 0.3878 | | 0.1363 | 8.03 | 4000 | 0.4936 | 0.3940 | | 0.1213 | 9.04 | 4500 | 0.4964 | 0.3806 | | 0.108 | 10.04 | 5000 | 0.4931 | 0.3826 | | 0.0982 | 11.04 | 5500 | 0.5373 | 0.3778 | | 0.0883 | 12.05 | 6000 | 0.4978 | 0.3733 | | 0.0835 | 13.05 | 6500 | 0.5189 | 0.3728 | | 0.0748 | 14.06 | 7000 | 0.4608 | 0.3692 | | 0.068 | 15.06 | 7500 | 0.4827 | 0.3608 | | 0.0596 | 16.06 | 8000 | 0.5022 | 0.3661 | | 0.056 | 17.07 | 8500 | 0.5482 | 0.3646 | | 0.0565 | 18.07 | 9000 | 0.5158 | 0.3573 | | 0.0487 | 19.08 | 9500 | 0.4910 | 0.3513 | | 0.0444 | 20.08 | 10000 | 0.5771 | 0.3580 | | 0.045 | 21.08 | 10500 | 0.5160 | 0.3539 | | 0.0363 | 22.09 | 11000 | 0.5367 | 0.3503 | | 0.0313 | 23.09 | 11500 | 0.5773 | 0.3500 | | 0.0329 | 24.1 | 12000 | 0.5683 | 0.3508 | | 0.0297 | 25.1 | 12500 | 0.5355 | 0.3464 | | 0.0272 | 26.1 | 13000 | 0.5317 | 0.3450 | | 0.0256 | 27.11 | 13500 | 0.5602 | 0.3443 | | 0.0242 | 28.11 | 14000 | 0.5586 | 0.3419 | | 0.0239 | 29.12 | 14500 | 0.5501 | 0.3424 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
hidude562/gpt2-discordgpt2
0f165f6cebc299e3396170f76161988c9444937c
2022-06-27T20:52:25.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-generation
false
hidude562
null
hidude562/gpt2-discordgpt2
4
null
transformers
20,310
--- license: mit tags: - generated_from_trainer model-index: - name: gpt2-discordgpt2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-discordgpt2 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 5.3032 - eval_runtime: 59.2004 - eval_samples_per_second: 274.542 - eval_steps_per_second: 34.324 - epoch: 0.26 - step: 25500 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
deepesh0x/autotrain-glue1-1046836019
135e2ddd7d319c950b55cc9daa9ec449662fd7a4
2022-06-27T23:59:33.000Z
[ "pytorch", "bert", "text-classification", "unk", "dataset:deepesh0x/autotrain-data-glue1", "transformers", "autotrain", "co2_eq_emissions" ]
text-classification
false
deepesh0x
null
deepesh0x/autotrain-glue1-1046836019
4
null
transformers
20,311
--- tags: autotrain language: unk widget: - text: "I love AutoTrain 🤗" datasets: - deepesh0x/autotrain-data-glue1 co2_eq_emissions: 3.869994913020229 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 1046836019 - CO2 Emissions (in grams): 3.869994913020229 ## Validation Metrics - Loss: 0.626447856426239 - Accuracy: 0.6606574761399788 - Precision: 0.6925845932325414 - Recall: 0.8187234042553192 - AUC: 0.656404823892031 - F1: 0.750390015600624 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/deepesh0x/autotrain-glue1-1046836019 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("deepesh0x/autotrain-glue1-1046836019", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("deepesh0x/autotrain-glue1-1046836019", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
profoz/covid
ed3b277cf1aea7c00274d3b846b89148db7d8530
2022-07-10T08:48:46.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
profoz
null
profoz/covid
4
null
transformers
20,312
Entry not found
gary109/ai-light-dance_singing2_ft_wav2vec2-large-xlsr-53-5gram-v4-1
e42421a44aa7d6070c3abf1909cd316befa88c29
2022-06-29T01:00:45.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "gary109/AI_Light_Dance", "generated_from_trainer", "model-index" ]
automatic-speech-recognition
false
gary109
null
gary109/ai-light-dance_singing2_ft_wav2vec2-large-xlsr-53-5gram-v4-1
4
1
transformers
20,313
--- tags: - automatic-speech-recognition - gary109/AI_Light_Dance - generated_from_trainer model-index: - name: ai-light-dance_singing2_ft_wav2vec2-large-xlsr-53-5gram-v4-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ai-light-dance_singing2_ft_wav2vec2-large-xlsr-53-5gram-v4-1 This model is a fine-tuned version of [gary109/ai-light-dance_singing_ft_wav2vec2-large-xlsr-53-5gram-v4](https://huggingface.co/gary109/ai-light-dance_singing_ft_wav2vec2-large-xlsr-53-5gram-v4) on the GARY109/AI_LIGHT_DANCE - ONSET-SINGING2 dataset. It achieves the following results on the evaluation set: - Loss: 0.2143 - Wer: 0.1211 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2609 | 1.0 | 280 | 0.2313 | 0.1376 | | 0.2297 | 2.0 | 560 | 0.2240 | 0.1397 | | 0.1951 | 3.0 | 840 | 0.2280 | 0.1361 | | 0.1816 | 4.0 | 1120 | 0.2215 | 0.1282 | | 0.1634 | 5.0 | 1400 | 0.2180 | 0.1240 | | 0.1338 | 6.0 | 1680 | 0.2226 | 0.1241 | | 0.1411 | 7.0 | 1960 | 0.2143 | 0.1211 | | 0.1143 | 8.0 | 2240 | 0.2181 | 0.1174 | | 0.1127 | 9.0 | 2520 | 0.2215 | 0.1167 | | 0.105 | 10.0 | 2800 | 0.2196 | 0.1160 | ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.9.1+cu102 - Datasets 2.3.3.dev0 - Tokenizers 0.12.1
RodrigoGuerra/bert-base-spanish-wwm-uncased-finetuned-clinical
6259856a8c216613efa38d5e2e8d2b3706b0fee7
2022-06-29T05:26:54.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
token-classification
false
RodrigoGuerra
null
RodrigoGuerra/bert-base-spanish-wwm-uncased-finetuned-clinical
4
null
transformers
20,314
--- tags: - generated_from_trainer metrics: - f1 model-index: - name: bert-base-spanish-wwm-uncased-finetuned-clinical results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-spanish-wwm-uncased-finetuned-clinical This model is a fine-tuned version of [dccuchile/bert-base-spanish-wwm-uncased](https://huggingface.co/dccuchile/bert-base-spanish-wwm-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7962 - F1: 0.1081 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 80 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:------:|:---------------:|:------:| | 1.1202 | 1.0 | 2007 | 1.0018 | 0.0062 | | 1.0153 | 2.0 | 4014 | 0.9376 | 0.0166 | | 0.9779 | 3.0 | 6021 | 0.9026 | 0.0342 | | 0.9598 | 4.0 | 8028 | 0.8879 | 0.0337 | | 0.9454 | 5.0 | 10035 | 0.8699 | 0.0598 | | 0.9334 | 6.0 | 12042 | 0.8546 | 0.0682 | | 0.9263 | 7.0 | 14049 | 0.8533 | 0.0551 | | 0.9279 | 8.0 | 16056 | 0.8538 | 0.0715 | | 0.9184 | 9.0 | 18063 | 0.8512 | 0.0652 | | 0.9151 | 10.0 | 20070 | 0.8313 | 0.0789 | | 0.9092 | 11.0 | 22077 | 0.8299 | 0.0838 | | 0.9083 | 12.0 | 24084 | 0.8331 | 0.0718 | | 0.9057 | 13.0 | 26091 | 0.8319 | 0.0719 | | 0.9018 | 14.0 | 28098 | 0.8133 | 0.0969 | | 0.9068 | 15.0 | 30105 | 0.8234 | 0.0816 | | 0.9034 | 16.0 | 32112 | 0.8151 | 0.0899 | | 0.9008 | 17.0 | 34119 | 0.8145 | 0.0967 | | 0.8977 | 18.0 | 36126 | 0.8168 | 0.0891 | | 0.898 | 19.0 | 38133 | 0.8167 | 0.0818 | | 0.8956 | 20.0 | 40140 | 0.8076 | 0.1030 | | 0.8983 | 21.0 | 42147 | 0.8129 | 0.0867 | | 0.896 | 22.0 | 44154 | 0.8118 | 0.0892 | | 0.8962 | 23.0 | 46161 | 0.8066 | 0.1017 | | 0.8917 | 24.0 | 48168 | 0.8154 | 0.0908 | | 0.8923 | 25.0 | 50175 | 0.8154 | 0.0897 | | 0.8976 | 26.0 | 52182 | 0.8089 | 0.0910 | | 0.8926 | 27.0 | 54189 | 0.8069 | 0.0947 | | 0.8911 | 28.0 | 56196 | 0.8170 | 0.0882 | | 0.8901 | 29.0 | 58203 | 0.7991 | 0.1112 | | 0.8934 | 30.0 | 60210 | 0.7996 | 0.1112 | | 0.8903 | 31.0 | 62217 | 0.8049 | 0.0950 | | 0.8924 | 32.0 | 64224 | 0.8116 | 0.0951 | | 0.8887 | 33.0 | 66231 | 0.7982 | 0.1075 | | 0.8922 | 34.0 | 68238 | 0.8013 | 0.1025 | | 0.8871 | 35.0 | 70245 | 0.8064 | 0.0979 | | 0.8913 | 36.0 | 72252 | 0.8108 | 0.0909 | | 0.8924 | 37.0 | 74259 | 0.8081 | 0.0889 | | 0.8848 | 38.0 | 76266 | 0.7923 | 0.1228 | | 0.8892 | 39.0 | 78273 | 0.8025 | 0.0959 | | 0.8886 | 40.0 | 80280 | 0.7954 | 0.1148 | | 0.8938 | 41.0 | 82287 | 0.8017 | 0.1058 | | 0.8897 | 42.0 | 84294 | 0.7946 | 0.1146 | | 0.8906 | 43.0 | 86301 | 0.7983 | 0.1102 | | 0.889 | 44.0 | 88308 | 0.8068 | 0.0950 | | 0.8872 | 45.0 | 90315 | 0.7999 | 0.1089 | | 0.8902 | 46.0 | 92322 | 0.7992 | 0.0999 | | 0.8912 | 47.0 | 94329 | 0.7981 | 0.1048 | | 0.886 | 48.0 | 96336 | 0.8024 | 0.0991 | | 0.8848 | 49.0 | 98343 | 0.8026 | 0.0984 | | 0.8866 | 50.0 | 100350 | 0.7965 | 0.1135 | | 0.8848 | 51.0 | 102357 | 0.8054 | 0.0926 | | 0.8863 | 52.0 | 104364 | 0.8068 | 0.0917 | | 0.8866 | 53.0 | 106371 | 0.7993 | 0.0964 | | 0.8823 | 54.0 | 108378 | 0.7929 | 0.1126 | | 0.8911 | 55.0 | 110385 | 0.7938 | 0.1132 | | 0.8911 | 56.0 | 112392 | 0.7932 | 0.1144 | | 0.8866 | 57.0 | 114399 | 0.8018 | 0.0957 | | 0.8841 | 58.0 | 116406 | 0.7976 | 0.1015 | | 0.8874 | 59.0 | 118413 | 0.8035 | 0.0966 | | 0.887 | 60.0 | 120420 | 0.7954 | 0.1112 | | 0.888 | 61.0 | 122427 | 0.7927 | 0.1164 | | 0.8845 | 62.0 | 124434 | 0.7982 | 0.1012 | | 0.8848 | 63.0 | 126441 | 0.7978 | 0.1034 | | 0.8857 | 64.0 | 128448 | 0.8036 | 0.0969 | | 0.8827 | 65.0 | 130455 | 0.7958 | 0.1036 | | 0.8878 | 66.0 | 132462 | 0.7983 | 0.1030 | | 0.885 | 67.0 | 134469 | 0.7956 | 0.1055 | | 0.8859 | 68.0 | 136476 | 0.7964 | 0.1058 | | 0.8872 | 69.0 | 138483 | 0.7989 | 0.1005 | | 0.8841 | 70.0 | 140490 | 0.7949 | 0.1138 | | 0.8846 | 71.0 | 142497 | 0.7960 | 0.1062 | | 0.8867 | 72.0 | 144504 | 0.7965 | 0.1058 | | 0.8856 | 73.0 | 146511 | 0.7980 | 0.1007 | | 0.8852 | 74.0 | 148518 | 0.7971 | 0.1012 | | 0.8841 | 75.0 | 150525 | 0.7975 | 0.1049 | | 0.8865 | 76.0 | 152532 | 0.7981 | 0.1010 | | 0.8887 | 77.0 | 154539 | 0.7945 | 0.1095 | | 0.8853 | 78.0 | 156546 | 0.7965 | 0.1053 | | 0.8843 | 79.0 | 158553 | 0.7966 | 0.1062 | | 0.8858 | 80.0 | 160560 | 0.7962 | 0.1081 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.9.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
Gunulhona/tbecmodel_v2
97ce7e76018e1ab7c2ebf2e5884dddbdc84ac145
2022-06-29T06:59:52.000Z
[ "pytorch", "bart", "text-classification", "transformers" ]
text-classification
false
Gunulhona
null
Gunulhona/tbecmodel_v2
4
null
transformers
20,315
Entry not found
ambekarsameer/distilbert-base-uncased-finetuned-cola
2e470a0fa5a373b4f2a383abc15e17803e7e78f2
2022-06-29T08:26:13.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
ambekarsameer
null
ambekarsameer/distilbert-base-uncased-finetuned-cola
4
null
transformers
20,316
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5337700382788287 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8051 - Matthews Correlation: 0.5338 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5233 | 1.0 | 535 | 0.5324 | 0.4151 | | 0.3489 | 2.0 | 1070 | 0.5132 | 0.4836 | | 0.2392 | 3.0 | 1605 | 0.5852 | 0.5177 | | 0.1822 | 4.0 | 2140 | 0.7485 | 0.5256 | | 0.1382 | 5.0 | 2675 | 0.8051 | 0.5338 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
anahitapld/electra-base-dbd
5a2a5788a9d906ae6f71a40fac609d39096db660
2022-06-29T08:58:58.000Z
[ "pytorch", "electra", "text-classification", "transformers", "license:apache-2.0" ]
text-classification
false
anahitapld
null
anahitapld/electra-base-dbd
4
null
transformers
20,317
--- license: apache-2.0 ---
ghadeermobasher/BioRed-Dis-Modified-PubMedBERT-512
0822156de4c6970ee65bfbf524adbfc558b62f62
2022-06-29T17:53:54.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/BioRed-Dis-Modified-PubMedBERT-512
4
null
transformers
20,318
Entry not found
SivilTaram/poet-sql-roberta
6279a62ce3269ec6f63e5274a906cf269cdbb081
2022-06-30T07:32:18.000Z
[ "pytorch", "roberta", "transformers", "license:mit" ]
null
false
SivilTaram
null
SivilTaram/poet-sql-roberta
4
null
transformers
20,319
--- license: mit ---
SivilTaram/tapex-t5-large-lm-adapt
79611ba0781501978e27821b6cbf105a2bde958e
2022-06-30T08:40:00.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "license:mit", "autotrain_compatible" ]
text2text-generation
false
SivilTaram
null
SivilTaram/tapex-t5-large-lm-adapt
4
null
transformers
20,320
--- license: mit ---
huggingtweets/orangebook_
41b22a198c0b2dc38db2fccd5214e99ece0f25ec
2022-06-30T15:06:32.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/orangebook_
4
null
transformers
20,321
--- language: en thumbnail: http://www.huggingtweets.com/orangebook_/1656601586971/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1211957929915629569/5woqqbsM_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Orange Book 🍊📖</div> <div style="text-align: center; font-size: 14px;">@orangebook_</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Orange Book 🍊📖. | Data | Orange Book 🍊📖 | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 4 | | Short tweets | 1 | | Tweets kept | 3245 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1fgnauay/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @orangebook_'s tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/18larep5) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/18larep5/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/orangebook_') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
asahi417/lmqg-mbart-large-cc25-dequad
f269a6c0744d07a492a6637d3ea7e151bd3761bf
2022-07-01T00:39:35.000Z
[ "pytorch", "mbart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
asahi417
null
asahi417/lmqg-mbart-large-cc25-dequad
4
null
transformers
20,322
Entry not found
huggingtweets/tacticalmaid
ba1dfd37c3618bea5a0c056e436e506a597073d4
2022-07-01T11:50:31.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/tacticalmaid
4
null
transformers
20,323
--- language: en thumbnail: http://www.huggingtweets.com/tacticalmaid/1656676226544/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1498996796093509632/Z7VwFzOJ_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Maid POLadin 🎪 💙💛</div> <div style="text-align: center; font-size: 14px;">@tacticalmaid</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Maid POLadin 🎪 💙💛. | Data | Maid POLadin 🎪 💙💛 | | --- | --- | | Tweets downloaded | 3225 | | Retweets | 2084 | | Short tweets | 291 | | Tweets kept | 850 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/fitf7s7t/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @tacticalmaid's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1swgks0j) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1swgks0j/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/tacticalmaid') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
srcocotero/bert-qa-en
ef4523f8fa338c121f18c1515f8beb4a2d93260f
2022-07-02T15:30:23.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
srcocotero
null
srcocotero/bert-qa-en
4
null
transformers
20,324
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-qa-en results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-qa-en This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Neha2608/xlm-roberta-base-finetuned-panx-de
e42814b37f12952098272f197b606f17f546aad7
2022-07-02T11:11:20.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
Neha2608
null
Neha2608/xlm-roberta-base-finetuned-panx-de
4
null
transformers
20,325
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8627004891366169 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1363 - F1: 0.8627 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2539 | 1.0 | 525 | 0.1697 | 0.8179 | | 0.1317 | 2.0 | 1050 | 0.1327 | 0.8516 | | 0.0819 | 3.0 | 1575 | 0.1363 | 0.8627 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
Neha2608/xlm-roberta-base-finetuned-panx-it
2c57e067ca5c568dd680bd2157a4d1b3b4000a5e
2022-07-02T12:17:06.000Z
[ "pytorch", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
Neha2608
null
Neha2608/xlm-roberta-base-finetuned-panx-it
4
null
transformers
20,326
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-it results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.it metrics: - name: F1 type: f1 value: 0.8247845711940912 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-it This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2421 - F1: 0.8248 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.809 | 1.0 | 70 | 0.3380 | 0.7183 | | 0.2939 | 2.0 | 140 | 0.2582 | 0.7977 | | 0.1813 | 3.0 | 210 | 0.2421 | 0.8248 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
tner/roberta-large-tweetner-2020-2021-continuous
c95db0a6f982b86169df79e0ced943fe1446729a
2022-07-11T23:32:07.000Z
[ "pytorch", "roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
tner
null
tner/roberta-large-tweetner-2020-2021-continuous
4
null
transformers
20,327
Entry not found
erickfm/zesty-sweep-2
b3e841cc58d7deb37b4644fd6e1549a21461043b
2022-07-03T09:54:28.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
erickfm
null
erickfm/zesty-sweep-2
4
null
transformers
20,328
Entry not found
anuj55/bert-large-uncased-whole-word-masking-finetuned-squad-finetuned-polifact
750df87ce1730d2d716320275bdc104058d18af2
2022-07-04T15:39:56.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
anuj55
null
anuj55/bert-large-uncased-whole-word-masking-finetuned-squad-finetuned-polifact
4
null
transformers
20,329
Entry not found
LACAI/roberta-base-PFG-progression
5b7659832bebceb78da7be206bc6eb0188377c09
2022-07-04T18:48:17.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "transformers", "license:mit" ]
text-classification
false
LACAI
null
LACAI/roberta-base-PFG-progression
4
null
transformers
20,330
--- license: mit --- Base model: [roberta-base](https://huggingface.co/roberta-base) Fine tuned as a progression model (to predict the acceptability of a dialogue) on the [Persuasion For Good Dataset](https://gitlab.com/ucdavisnlp/persuasionforgood) (Wang et al., 2019): Given a complete dialogue from (or in the style of) Persuasion For Good, the task is to predict a numeric score typically in the range (-3, 3) where a higher score means a more acceptable dialogue in context of the donation solicitation task. **Example input**: `How are you?</s>Good! how about yourself?</s>Great. Would you like to donate today to help the children?</s>` For more context and usage information see [https://github.rpi.edu/LACAI/dialogue-progression](https://github.rpi.edu/LACAI/dialogue-progression).
jdang/distilbert-base-uncased-finetuned-clinc
0582422bbb3c1f6747af68c22d89b0d31162f81c
2022-07-05T14:14:23.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:clinc_oos", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
jdang
null
jdang/distilbert-base-uncased-finetuned-clinc
4
null
transformers
20,331
--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos args: plus metrics: - name: Accuracy type: accuracy value: 0.9183870967741935 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.7720 - Accuracy: 0.9184 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 4.2896 | 1.0 | 318 | 3.2891 | 0.7429 | | 2.6283 | 2.0 | 636 | 1.8755 | 0.8374 | | 1.5481 | 3.0 | 954 | 1.1570 | 0.8961 | | 1.0149 | 4.0 | 1272 | 0.8573 | 0.9132 | | 0.7952 | 5.0 | 1590 | 0.7720 | 0.9184 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.12.0 - Datasets 1.16.1 - Tokenizers 0.10.3
ryo0634/luke-base-embedding_predictor-concat-20181220
c862d5ff170f6a5856dbbf4118e247306d41f088
2022-07-05T12:34:55.000Z
[ "pytorch", "luke", "transformers" ]
null
false
ryo0634
null
ryo0634/luke-base-embedding_predictor-concat-20181220
4
null
transformers
20,332
Entry not found
chiranthans23/distilbert-base-uncased-finetuned-clinc
4ecded5d6e38c3b2e42a4f63da6fde2e16caf3ce
2022-07-05T17:24:46.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
chiranthans23
null
chiranthans23/distilbert-base-uncased-finetuned-clinc
4
null
transformers
20,333
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-clinc results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7721 - Accuracy: 0.9184 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 318 | 3.2890 | 0.7429 | | 3.7868 | 2.0 | 636 | 1.8756 | 0.8374 | | 3.7868 | 3.0 | 954 | 1.1571 | 0.8961 | | 1.6929 | 4.0 | 1272 | 0.8574 | 0.9132 | | 0.9057 | 5.0 | 1590 | 0.7721 | 0.9184 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Tokenizers 0.12.1
Krisna/finetuning-sentiment-model-3000-samples
850e384df8fa21474ac0d6822d0683599e6c9b20
2022-07-05T20:14:31.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Krisna
null
Krisna/finetuning-sentiment-model-3000-samples
4
null
transformers
20,334
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3366 - Accuracy: 0.86 - F1: 0.8636 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Tokenizers 0.12.1
jdang/distilbert-base-uncased-distilled-clinc
7dc4e811771fbd186b5523c57751b2a12ad12dbb
2022-07-05T16:23:55.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:clinc_oos", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
jdang
null
jdang/distilbert-base-uncased-distilled-clinc
4
null
transformers
20,335
--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-distilled-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos args: plus metrics: - name: Accuracy type: accuracy value: 0.9351612903225807 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-distilled-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.0562 - Accuracy: 0.9352 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 9 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5802 | 1.0 | 318 | 0.3269 | 0.6658 | | 0.264 | 2.0 | 636 | 0.1590 | 0.8616 | | 0.1571 | 3.0 | 954 | 0.1035 | 0.9113 | | 0.1155 | 4.0 | 1272 | 0.0799 | 0.9223 | | 0.0947 | 5.0 | 1590 | 0.0686 | 0.9268 | | 0.0839 | 6.0 | 1908 | 0.0624 | 0.9310 | | 0.0772 | 7.0 | 2226 | 0.0589 | 0.9323 | | 0.0733 | 8.0 | 2544 | 0.0569 | 0.9355 | | 0.0713 | 9.0 | 2862 | 0.0562 | 0.9352 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.12.0 - Datasets 1.16.1 - Tokenizers 0.10.3
annahaz/xlm-roberta-base-finetuned-misogyny-en-it
48923e71382d84780e73abf234f348134eba26d5
2022-07-05T23:46:13.000Z
[ "pytorch", "xlm-roberta", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
annahaz
null
annahaz/xlm-roberta-base-finetuned-misogyny-en-it
4
null
transformers
20,336
--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: xlm-roberta-base-finetuned-misogyny-en-it results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-misogyny-en-it This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0275 - Accuracy: 0.9949 - F1: 0.9948 - Precision: 0.9906 - Recall: 0.9989 - Mae: 0.0051 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Mae | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:|:------:| | 0.3412 | 1.0 | 1006 | 0.4817 | 0.7744 | 0.8023 | 0.6930 | 0.9526 | 0.2256 | | 0.2633 | 2.0 | 2012 | 0.5045 | 0.7709 | 0.8048 | 0.6813 | 0.9832 | 0.2291 | | 0.2286 | 3.0 | 3018 | 0.2252 | 0.9256 | 0.9253 | 0.8940 | 0.9589 | 0.0744 | | 0.2189 | 4.0 | 4024 | 0.1373 | 0.9565 | 0.9546 | 0.9576 | 0.9516 | 0.0435 | | 0.1424 | 5.0 | 5030 | 0.1143 | 0.9742 | 0.9735 | 0.9620 | 0.9853 | 0.0258 | | 0.1655 | 6.0 | 6036 | 0.0787 | 0.9818 | 0.9813 | 0.9711 | 0.9916 | 0.0182 | | 0.0843 | 7.0 | 7042 | 0.0739 | 0.9833 | 0.9829 | 0.9683 | 0.9979 | 0.0167 | | 0.081 | 8.0 | 8048 | 0.0468 | 0.9894 | 0.9891 | 0.9794 | 0.9989 | 0.0106 | | 0.047 | 9.0 | 9054 | 0.0390 | 0.9914 | 0.9911 | 0.9834 | 0.9989 | 0.0086 | | 0.0198 | 10.0 | 10060 | 0.0275 | 0.9949 | 0.9948 | 0.9906 | 0.9989 | 0.0051 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.9.0+cu111 - Datasets 2.3.2 - Tokenizers 0.12.1
annahaz/distilbert-base-multilingual-cased-finetuned-misogyny-en-it
0fbc11e4d1f088cf43df2abedb5cf14e99496e65
2022-07-06T00:52:48.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
annahaz
null
annahaz/distilbert-base-multilingual-cased-finetuned-misogyny-en-it
4
null
transformers
20,337
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: distilbert-base-multilingual-cased-finetuned-misogyny-en-it results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-multilingual-cased-finetuned-misogyny-en-it This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0096 - Accuracy: 0.9985 - F1: 0.9984 - Precision: 0.9969 - Recall: 1.0 - Mae: 0.0015 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Mae | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:|:------:| | 0.3169 | 1.0 | 1006 | 0.3924 | 0.8154 | 0.8322 | 0.7388 | 0.9526 | 0.1846 | | 0.2567 | 2.0 | 2012 | 0.3045 | 0.8700 | 0.8779 | 0.8 | 0.9726 | 0.1300 | | 0.1829 | 3.0 | 3018 | 0.1385 | 0.9525 | 0.9524 | 0.9172 | 0.9905 | 0.0475 | | 0.1465 | 4.0 | 4024 | 0.0465 | 0.9863 | 0.9858 | 0.9822 | 0.9895 | 0.0137 | | 0.0683 | 5.0 | 5030 | 0.0290 | 0.9939 | 0.9937 | 0.9885 | 0.9989 | 0.0061 | | 0.06 | 6.0 | 6036 | 0.0232 | 0.9949 | 0.9948 | 0.9916 | 0.9979 | 0.0051 | | 0.0195 | 7.0 | 7042 | 0.0189 | 0.9965 | 0.9963 | 0.9927 | 1.0 | 0.0035 | | 0.0172 | 8.0 | 8048 | 0.0105 | 0.9980 | 0.9979 | 0.9958 | 1.0 | 0.0020 | | 0.0248 | 9.0 | 9054 | 0.0099 | 0.9980 | 0.9979 | 0.9958 | 1.0 | 0.0020 | | 0.0058 | 10.0 | 10060 | 0.0096 | 0.9985 | 0.9984 | 0.9969 | 1.0 | 0.0015 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.9.0+cu111 - Datasets 2.3.2 - Tokenizers 0.12.1
DongHyoungLee/bluebert-sitesentence-diagnosis-classification
5998b47480a1cd37301ba73cceb47022a3bf9eac
2022-07-06T09:09:03.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
DongHyoungLee
null
DongHyoungLee/bluebert-sitesentence-diagnosis-classification
4
null
transformers
20,338
Entry not found
SiddharthaM/beit-base-patch16-224-pt22k-ft22k-rim_one-new
1dbf3c79c9b3904d0d4074b3c8a4c77b3048c570
2022-07-06T11:17:32.000Z
[ "pytorch", "tensorboard", "beit", "image-classification", "dataset:imagefolder", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
image-classification
false
SiddharthaM
null
SiddharthaM/beit-base-patch16-224-pt22k-ft22k-rim_one-new
4
null
transformers
20,339
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: beit-base-patch16-224-pt22k-ft22k-rim_one-new results: - task: type: image-classification name: Image Classification dataset: type: rimonedl name: RIM ONE DL split: test metrics: - type: f1 value: 0.9197860962566845 name: F1 - task: type: image-classification name: Image Classification dataset: type: rim one name: RIMONEDL split: test metrics: - type: precision value: 0.9247311827956989 name: precision - type: recall value: 0.9148936170212766 name: Recall - type: accuracy value: 0.8972602739726028 name: Accuracy - type: roc_auc value: 0.8901391162029461 name: AUC --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # beit-base-patch16-224-pt22k-ft22k-rim_one-new This model is a fine-tuned version of [microsoft/beit-base-patch16-224-pt22k-ft22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k-ft22k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.4550 - Accuracy: 0.8767 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.73 | 2 | 0.2411 | 0.9178 | | No log | 1.73 | 4 | 0.2182 | 0.8973 | | No log | 2.73 | 6 | 0.3085 | 0.8973 | | No log | 3.73 | 8 | 0.2794 | 0.8973 | | 0.1392 | 4.73 | 10 | 0.2398 | 0.9110 | | 0.1392 | 5.73 | 12 | 0.2925 | 0.8973 | | 0.1392 | 6.73 | 14 | 0.2798 | 0.9110 | | 0.1392 | 7.73 | 16 | 0.2184 | 0.9178 | | 0.1392 | 8.73 | 18 | 0.3007 | 0.9110 | | 0.0416 | 9.73 | 20 | 0.3344 | 0.9041 | | 0.0416 | 10.73 | 22 | 0.3626 | 0.9110 | | 0.0416 | 11.73 | 24 | 0.4842 | 0.8904 | | 0.0416 | 12.73 | 26 | 0.3664 | 0.8973 | | 0.0416 | 13.73 | 28 | 0.3458 | 0.9110 | | 0.0263 | 14.73 | 30 | 0.2810 | 0.9110 | | 0.0263 | 15.73 | 32 | 0.4695 | 0.8699 | | 0.0263 | 16.73 | 34 | 0.3723 | 0.9041 | | 0.0263 | 17.73 | 36 | 0.3447 | 0.9041 | | 0.0263 | 18.73 | 38 | 0.3708 | 0.8904 | | 0.0264 | 19.73 | 40 | 0.4052 | 0.9110 | | 0.0264 | 20.73 | 42 | 0.4492 | 0.9041 | | 0.0264 | 21.73 | 44 | 0.4649 | 0.8904 | | 0.0264 | 22.73 | 46 | 0.4061 | 0.9178 | | 0.0264 | 23.73 | 48 | 0.4136 | 0.9110 | | 0.0139 | 24.73 | 50 | 0.4183 | 0.8973 | | 0.0139 | 25.73 | 52 | 0.4504 | 0.8904 | | 0.0139 | 26.73 | 54 | 0.4368 | 0.8973 | | 0.0139 | 27.73 | 56 | 0.4711 | 0.9110 | | 0.0139 | 28.73 | 58 | 0.3928 | 0.9110 | | 0.005 | 29.73 | 60 | 0.4550 | 0.8767 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Shenghao1993/distilbert-base-uncased-finetuned-clinc
e2d1274aa1a1d67e2c7792c637b01eab6ba2319f
2022-07-08T08:22:36.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:clinc_oos", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Shenghao1993
null
Shenghao1993/distilbert-base-uncased-finetuned-clinc
4
null
transformers
20,340
--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos args: plus metrics: - name: Accuracy type: accuracy value: 0.9174193548387096 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.7711 - Accuracy: 0.9174 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 318 | 3.2830 | 0.7426 | | 3.785 | 2.0 | 636 | 1.8728 | 0.8410 | | 3.785 | 3.0 | 954 | 1.1555 | 0.8913 | | 1.6902 | 4.0 | 1272 | 0.8530 | 0.9126 | | 0.901 | 5.0 | 1590 | 0.7711 | 0.9174 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
anuj55/TSDAE-askubuntu2nli_stsb-finetuned-polifact
49bafa53577533dc170382f05234263e11ba3acc
2022-07-06T20:55:49.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
anuj55
null
anuj55/TSDAE-askubuntu2nli_stsb-finetuned-polifact
4
null
transformers
20,341
Entry not found
domenicrosati/deberta-v3-xsmall-with-biblio-context-finetuned-review_classifier_testing
b21d155bd76e9208524ab7ec3928dc08b8fd8dd9
2022-07-06T21:12:29.000Z
[ "pytorch", "tensorboard", "deberta-v2", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
domenicrosati
null
domenicrosati/deberta-v3-xsmall-with-biblio-context-finetuned-review_classifier_testing
4
null
transformers
20,342
--- license: mit tags: - text-classification - generated_from_trainer model-index: - name: deberta-v3-xsmall-with-biblio-context-finetuned-review_classifier_testing results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-xsmall-with-biblio-context-finetuned-review_classifier_testing This model is a fine-tuned version of [domenicrosati/deberta-v3-xsmall-finetuned-review_classifier](https://huggingface.co/domenicrosati/deberta-v3-xsmall-finetuned-review_classifier) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4.5e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 2 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu116 - Datasets 2.3.2 - Tokenizers 0.12.1
samayl24/vit-base-beans-demo-v5
fe177c8924af3d6ee8d8ee2fdb46391473979dda
2022-07-21T19:00:19.000Z
[ "pytorch", "vit", "image-classification", "dataset:beans", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
image-classification
false
samayl24
null
samayl24/vit-base-beans-demo-v5
4
null
transformers
20,343
--- license: apache-2.0 tags: - image-classification - generated_from_trainer datasets: - beans metrics: - accuracy model-index: - name: vit-base-beans-demo-v5 results: - task: name: Image Classification type: image-classification dataset: name: beans type: beans args: default metrics: - name: Accuracy type: accuracy value: 0.9924812030075187 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-beans-demo-v5 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 0.0427 - Accuracy: 0.9925 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1378 | 1.54 | 100 | 0.1444 | 0.9549 | | 0.0334 | 3.08 | 200 | 0.0427 | 0.9925 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Evelyn18/distilbert-base-uncased-becasv2-1
2bc0b0813b14524a46712627ce928c8c9d98799a
2022-07-07T03:38:53.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "dataset:becasv2", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
Evelyn18
null
Evelyn18/distilbert-base-uncased-becasv2-1
4
null
transformers
20,344
--- license: apache-2.0 tags: - generated_from_trainer datasets: - becasv2 model-index: - name: distilbert-base-uncased-becasv2-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-becasv2-1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the becasv2 dataset. It achieves the following results on the evaluation set: - Loss: 2.9472 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 9 | 4.6722 | | No log | 2.0 | 18 | 3.9450 | | No log | 3.0 | 27 | 3.4890 | | No log | 4.0 | 36 | 3.2251 | | No log | 5.0 | 45 | 2.9906 | | No log | 6.0 | 54 | 3.0790 | | No log | 7.0 | 63 | 2.8791 | | No log | 8.0 | 72 | 2.9654 | | No log | 9.0 | 81 | 2.9460 | | No log | 10.0 | 90 | 2.9472 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Evelyn18/distilbert-base-uncased-becasv2-5
335f62a76aeff9dc5b1f1ee9c89f5adc2083cb45
2022-07-07T04:25:27.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "dataset:becasv2", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
Evelyn18
null
Evelyn18/distilbert-base-uncased-becasv2-5
4
null
transformers
20,345
--- license: apache-2.0 tags: - generated_from_trainer datasets: - becasv2 model-index: - name: distilbert-base-uncased-becasv2-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-becasv2-5 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the becasv2 dataset. It achieves the following results on the evaluation set: - Loss: 3.0409 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 6 | 5.3475 | | No log | 2.0 | 12 | 4.6045 | | No log | 3.0 | 18 | 4.1832 | | No log | 4.0 | 24 | 3.8223 | | No log | 5.0 | 30 | 3.4798 | | No log | 6.0 | 36 | 3.2615 | | No log | 7.0 | 42 | 3.1414 | | No log | 8.0 | 48 | 3.1067 | | No log | 9.0 | 54 | 2.9950 | | No log | 10.0 | 60 | 2.9482 | | No log | 11.0 | 66 | 2.9536 | | No log | 12.0 | 72 | 3.0180 | | No log | 13.0 | 78 | 3.0515 | | No log | 14.0 | 84 | 3.0444 | | No log | 15.0 | 90 | 3.0409 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Sebabrata/lmv2-g-w9-2018-148-doc-07-07_1
6dc567a0f2cf295aa7532911db2b559566ffb1a9
2022-07-07T08:52:38.000Z
[ "pytorch", "tensorboard", "layoutlmv2", "token-classification", "transformers", "generated_from_trainer", "license:cc-by-nc-sa-4.0", "model-index", "autotrain_compatible" ]
token-classification
false
Sebabrata
null
Sebabrata/lmv2-g-w9-2018-148-doc-07-07_1
4
null
transformers
20,346
--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer model-index: - name: lmv2-g-w9-2018-148-doc-07-07_1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # lmv2-g-w9-2018-148-doc-07-07_1 This model is a fine-tuned version of [microsoft/layoutlmv2-base-uncased](https://huggingface.co/microsoft/layoutlmv2-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0160 - Address Precision: 0.9667 - Address Recall: 0.9667 - Address F1: 0.9667 - Address Number: 30 - Business Name Precision: 1.0 - Business Name Recall: 1.0 - Business Name F1: 1.0 - Business Name Number: 29 - City State Zip Code Precision: 1.0 - City State Zip Code Recall: 1.0 - City State Zip Code F1: 1.0 - City State Zip Code Number: 30 - Ein Precision: 0.0 - Ein Recall: 0.0 - Ein F1: 0.0 - Ein Number: 1 - List Account Number Precision: 1.0 - List Account Number Recall: 1.0 - List Account Number F1: 1.0 - List Account Number Number: 11 - Name Precision: 1.0 - Name Recall: 1.0 - Name F1: 1.0 - Name Number: 30 - Ssn Precision: 0.8333 - Ssn Recall: 1.0 - Ssn F1: 0.9091 - Ssn Number: 10 - Overall Precision: 0.9789 - Overall Recall: 0.9858 - Overall F1: 0.9823 - Overall Accuracy: 0.9995 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Address Precision | Address Recall | Address F1 | Address Number | Business Name Precision | Business Name Recall | Business Name F1 | Business Name Number | City State Zip Code Precision | City State Zip Code Recall | City State Zip Code F1 | City State Zip Code Number | Ein Precision | Ein Recall | Ein F1 | Ein Number | List Account Number Precision | List Account Number Recall | List Account Number F1 | List Account Number Number | Name Precision | Name Recall | Name F1 | Name Number | Ssn Precision | Ssn Recall | Ssn F1 | Ssn Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-------------:|:-----:|:----:|:---------------:|:-----------------:|:--------------:|:----------:|:--------------:|:-----------------------:|:--------------------:|:----------------:|:--------------------:|:-----------------------------:|:--------------------------:|:----------------------:|:--------------------------:|:-------------:|:----------:|:------:|:----------:|:-----------------------------:|:--------------------------:|:----------------------:|:--------------------------:|:--------------:|:-----------:|:-------:|:-----------:|:-------------:|:----------:|:------:|:----------:|:-----------------:|:--------------:|:----------:|:----------------:| | 1.5672 | 1.0 | 118 | 1.1527 | 0.0 | 0.0 | 0.0 | 30 | 0.0 | 0.0 | 0.0 | 29 | 0.0 | 0.0 | 0.0 | 30 | 0.0 | 0.0 | 0.0 | 1 | 0.0 | 0.0 | 0.0 | 11 | 0.0 | 0.0 | 0.0 | 30 | 0.0 | 0.0 | 0.0 | 10 | 0.0 | 0.0 | 0.0 | 0.9642 | | 0.8804 | 2.0 | 236 | 0.5661 | 0.2095 | 0.7333 | 0.3259 | 30 | 0.0 | 0.0 | 0.0 | 29 | 0.0 | 0.0 | 0.0 | 30 | 0.0 | 0.0 | 0.0 | 1 | 0.0 | 0.0 | 0.0 | 11 | 0.0 | 0.0 | 0.0 | 30 | 0.0 | 0.0 | 0.0 | 10 | 0.2095 | 0.1560 | 0.1789 | 0.9704 | | 0.3739 | 3.0 | 354 | 0.2118 | 0.9375 | 1.0 | 0.9677 | 30 | 0.7143 | 0.1724 | 0.2778 | 29 | 0.9375 | 1.0 | 0.9677 | 30 | 0.0 | 0.0 | 0.0 | 1 | 0.8182 | 0.8182 | 0.8182 | 11 | 0.5 | 1.0 | 0.6667 | 30 | 0.75 | 0.9 | 0.8182 | 10 | 0.7338 | 0.8014 | 0.7661 | 0.9932 | | 0.1626 | 4.0 | 472 | 0.1155 | 0.9375 | 1.0 | 0.9677 | 30 | 0.8710 | 0.9310 | 0.9 | 29 | 1.0 | 1.0 | 1.0 | 30 | 0.0 | 0.0 | 0.0 | 1 | 0.6923 | 0.8182 | 0.7500 | 11 | 1.0 | 1.0 | 1.0 | 30 | 0.7 | 0.7 | 0.7 | 10 | 0.9110 | 0.9433 | 0.9268 | 0.9976 | | 0.1031 | 5.0 | 590 | 0.0817 | 0.9355 | 0.9667 | 0.9508 | 30 | 0.8125 | 0.8966 | 0.8525 | 29 | 1.0 | 1.0 | 1.0 | 30 | 0.0 | 0.0 | 0.0 | 1 | 0.6923 | 0.8182 | 0.7500 | 11 | 1.0 | 1.0 | 1.0 | 30 | 0.8182 | 0.9 | 0.8571 | 10 | 0.9048 | 0.9433 | 0.9236 | 0.9981 | | 0.0769 | 6.0 | 708 | 0.0634 | 0.9355 | 0.9667 | 0.9508 | 30 | 0.9333 | 0.9655 | 0.9492 | 29 | 1.0 | 1.0 | 1.0 | 30 | 0.0 | 0.0 | 0.0 | 1 | 0.6923 | 0.8182 | 0.7500 | 11 | 1.0 | 1.0 | 1.0 | 30 | 0.8182 | 0.9 | 0.8571 | 10 | 0.9310 | 0.9574 | 0.9441 | 0.9984 | | 0.0614 | 7.0 | 826 | 0.0518 | 0.9667 | 0.9667 | 0.9667 | 30 | 1.0 | 1.0 | 1.0 | 29 | 1.0 | 1.0 | 1.0 | 30 | 0.0 | 0.0 | 0.0 | 1 | 0.6923 | 0.8182 | 0.7500 | 11 | 1.0 | 1.0 | 1.0 | 30 | 0.8182 | 0.9 | 0.8571 | 10 | 0.9510 | 0.9645 | 0.9577 | 0.9991 | | 0.0509 | 8.0 | 944 | 0.0432 | 0.9667 | 0.9667 | 0.9667 | 30 | 1.0 | 1.0 | 1.0 | 29 | 1.0 | 1.0 | 1.0 | 30 | 0.0 | 0.0 | 0.0 | 1 | 0.8333 | 0.9091 | 0.8696 | 11 | 1.0 | 1.0 | 1.0 | 30 | 0.8182 | 0.9 | 0.8571 | 10 | 0.9648 | 0.9716 | 0.9682 | 0.9994 | | 0.0431 | 9.0 | 1062 | 0.0369 | 0.9667 | 0.9667 | 0.9667 | 30 | 1.0 | 1.0 | 1.0 | 29 | 1.0 | 1.0 | 1.0 | 30 | 0.0 | 0.0 | 0.0 | 1 | 1.0 | 1.0 | 1.0 | 11 | 1.0 | 1.0 | 1.0 | 30 | 0.8182 | 0.9 | 0.8571 | 10 | 0.9787 | 0.9787 | 0.9787 | 0.9994 | | 0.037 | 10.0 | 1180 | 0.0313 | 0.9667 | 0.9667 | 0.9667 | 30 | 1.0 | 1.0 | 1.0 | 29 | 1.0 | 1.0 | 1.0 | 30 | 0.0 | 0.0 | 0.0 | 1 | 1.0 | 1.0 | 1.0 | 11 | 1.0 | 1.0 | 1.0 | 30 | 0.8182 | 0.9 | 0.8571 | 10 | 0.9787 | 0.9787 | 0.9787 | 0.9994 | | 0.0328 | 11.0 | 1298 | 0.0281 | 0.9667 | 0.9667 | 0.9667 | 30 | 1.0 | 1.0 | 1.0 | 29 | 1.0 | 1.0 | 1.0 | 30 | 0.0 | 0.0 | 0.0 | 1 | 1.0 | 1.0 | 1.0 | 11 | 1.0 | 1.0 | 1.0 | 30 | 0.7143 | 1.0 | 0.8333 | 10 | 0.9653 | 0.9858 | 0.9754 | 0.9994 | | 0.0295 | 12.0 | 1416 | 0.0246 | 0.7429 | 0.8667 | 0.8 | 30 | 1.0 | 1.0 | 1.0 | 29 | 1.0 | 1.0 | 1.0 | 30 | 0.0 | 0.0 | 0.0 | 1 | 1.0 | 1.0 | 1.0 | 11 | 1.0 | 1.0 | 1.0 | 30 | 0.6667 | 0.8 | 0.7273 | 10 | 0.9116 | 0.9504 | 0.9306 | 0.9991 | | 0.0251 | 13.0 | 1534 | 0.0207 | 0.9677 | 1.0 | 0.9836 | 30 | 0.9333 | 0.9655 | 0.9492 | 29 | 1.0 | 1.0 | 1.0 | 30 | 0.0 | 0.0 | 0.0 | 1 | 1.0 | 1.0 | 1.0 | 11 | 1.0 | 1.0 | 1.0 | 30 | 0.8333 | 1.0 | 0.9091 | 10 | 0.9653 | 0.9858 | 0.9754 | 0.9994 | | 0.0231 | 14.0 | 1652 | 0.0210 | 0.9667 | 0.9667 | 0.9667 | 30 | 1.0 | 0.9655 | 0.9825 | 29 | 1.0 | 1.0 | 1.0 | 30 | 0.0 | 0.0 | 0.0 | 1 | 1.0 | 1.0 | 1.0 | 11 | 1.0 | 1.0 | 1.0 | 30 | 0.8333 | 1.0 | 0.9091 | 10 | 0.9787 | 0.9787 | 0.9787 | 0.9991 | | 0.0184 | 15.0 | 1770 | 0.0160 | 0.9667 | 0.9667 | 0.9667 | 30 | 1.0 | 1.0 | 1.0 | 29 | 1.0 | 1.0 | 1.0 | 30 | 0.0 | 0.0 | 0.0 | 1 | 1.0 | 1.0 | 1.0 | 11 | 1.0 | 1.0 | 1.0 | 30 | 0.8333 | 1.0 | 0.9091 | 10 | 0.9789 | 0.9858 | 0.9823 | 0.9995 | | 0.0162 | 16.0 | 1888 | 0.0142 | 0.9667 | 0.9667 | 0.9667 | 30 | 1.0 | 1.0 | 1.0 | 29 | 1.0 | 1.0 | 1.0 | 30 | 0.0 | 0.0 | 0.0 | 1 | 1.0 | 1.0 | 1.0 | 11 | 1.0 | 1.0 | 1.0 | 30 | 0.8333 | 1.0 | 0.9091 | 10 | 0.9789 | 0.9858 | 0.9823 | 0.9995 | | 0.0142 | 17.0 | 2006 | 0.0127 | 0.9667 | 0.9667 | 0.9667 | 30 | 1.0 | 1.0 | 1.0 | 29 | 1.0 | 1.0 | 1.0 | 30 | 0.0 | 0.0 | 0.0 | 1 | 1.0 | 1.0 | 1.0 | 11 | 1.0 | 1.0 | 1.0 | 30 | 0.8333 | 1.0 | 0.9091 | 10 | 0.9789 | 0.9858 | 0.9823 | 0.9995 | | 0.0123 | 18.0 | 2124 | 0.0114 | 0.9667 | 0.9667 | 0.9667 | 30 | 1.0 | 1.0 | 1.0 | 29 | 1.0 | 1.0 | 1.0 | 30 | 0.0 | 0.0 | 0.0 | 1 | 1.0 | 1.0 | 1.0 | 11 | 1.0 | 1.0 | 1.0 | 30 | 0.8333 | 1.0 | 0.9091 | 10 | 0.9789 | 0.9858 | 0.9823 | 0.9995 | | 0.0118 | 19.0 | 2242 | 0.0152 | 0.9677 | 1.0 | 0.9836 | 30 | 0.6765 | 0.7931 | 0.7302 | 29 | 1.0 | 1.0 | 1.0 | 30 | 0.0 | 0.0 | 0.0 | 1 | 0.8333 | 0.9091 | 0.8696 | 11 | 1.0 | 1.0 | 1.0 | 30 | 0.8182 | 0.9 | 0.8571 | 10 | 0.8859 | 0.9362 | 0.9103 | 0.9986 | | 0.0104 | 20.0 | 2360 | 0.0125 | 0.9677 | 1.0 | 0.9836 | 30 | 1.0 | 0.9655 | 0.9825 | 29 | 1.0 | 1.0 | 1.0 | 30 | 0.0 | 0.0 | 0.0 | 1 | 1.0 | 1.0 | 1.0 | 11 | 1.0 | 1.0 | 1.0 | 30 | 0.9091 | 1.0 | 0.9524 | 10 | 0.9789 | 0.9858 | 0.9823 | 0.9992 | | 0.0092 | 21.0 | 2478 | 0.0113 | 0.9677 | 1.0 | 0.9836 | 30 | 1.0 | 0.9655 | 0.9825 | 29 | 1.0 | 1.0 | 1.0 | 30 | 0.0 | 0.0 | 0.0 | 1 | 1.0 | 1.0 | 1.0 | 11 | 1.0 | 1.0 | 1.0 | 30 | 0.8333 | 1.0 | 0.9091 | 10 | 0.9653 | 0.9858 | 0.9754 | 0.9993 | | 0.0089 | 22.0 | 2596 | 0.0111 | 0.9677 | 1.0 | 0.9836 | 30 | 1.0 | 0.9655 | 0.9825 | 29 | 1.0 | 1.0 | 1.0 | 30 | 0.0 | 0.0 | 0.0 | 1 | 1.0 | 1.0 | 1.0 | 11 | 1.0 | 1.0 | 1.0 | 30 | 0.8333 | 1.0 | 0.9091 | 10 | 0.9789 | 0.9858 | 0.9823 | 0.9992 | | 0.0076 | 23.0 | 2714 | 0.0107 | 0.9677 | 1.0 | 0.9836 | 30 | 0.9310 | 0.9310 | 0.9310 | 29 | 1.0 | 1.0 | 1.0 | 30 | 0.0 | 0.0 | 0.0 | 1 | 1.0 | 1.0 | 1.0 | 11 | 1.0 | 1.0 | 1.0 | 30 | 0.8333 | 1.0 | 0.9091 | 10 | 0.9650 | 0.9787 | 0.9718 | 0.9991 | | 0.0074 | 24.0 | 2832 | 0.0105 | 0.9677 | 1.0 | 0.9836 | 30 | 0.9310 | 0.9310 | 0.9310 | 29 | 1.0 | 1.0 | 1.0 | 30 | 0.0 | 0.0 | 0.0 | 1 | 1.0 | 1.0 | 1.0 | 11 | 1.0 | 1.0 | 1.0 | 30 | 0.8182 | 0.9 | 0.8571 | 10 | 0.9514 | 0.9716 | 0.9614 | 0.9990 | | 0.007 | 25.0 | 2950 | 0.0092 | 0.9677 | 1.0 | 0.9836 | 30 | 1.0 | 0.9655 | 0.9825 | 29 | 1.0 | 1.0 | 1.0 | 30 | 0.0 | 0.0 | 0.0 | 1 | 1.0 | 1.0 | 1.0 | 11 | 1.0 | 1.0 | 1.0 | 30 | 0.7692 | 1.0 | 0.8696 | 10 | 0.9720 | 0.9858 | 0.9789 | 0.9991 | | 0.0062 | 26.0 | 3068 | 0.0061 | 0.9677 | 1.0 | 0.9836 | 30 | 1.0 | 1.0 | 1.0 | 29 | 1.0 | 1.0 | 1.0 | 30 | 0.0 | 0.0 | 0.0 | 1 | 1.0 | 1.0 | 1.0 | 11 | 1.0 | 1.0 | 1.0 | 30 | 0.7143 | 1.0 | 0.8333 | 10 | 0.9655 | 0.9929 | 0.9790 | 0.9994 | | 0.0057 | 27.0 | 3186 | 0.0056 | 0.9677 | 1.0 | 0.9836 | 30 | 1.0 | 1.0 | 1.0 | 29 | 1.0 | 1.0 | 1.0 | 30 | 0.0 | 0.0 | 0.0 | 1 | 1.0 | 1.0 | 1.0 | 11 | 1.0 | 1.0 | 1.0 | 30 | 0.8182 | 0.9 | 0.8571 | 10 | 0.9720 | 0.9858 | 0.9789 | 0.9995 | | 0.0047 | 28.0 | 3304 | 0.0054 | 0.9677 | 1.0 | 0.9836 | 30 | 1.0 | 1.0 | 1.0 | 29 | 1.0 | 1.0 | 1.0 | 30 | 0.0 | 0.0 | 0.0 | 1 | 1.0 | 1.0 | 1.0 | 11 | 1.0 | 1.0 | 1.0 | 30 | 0.7143 | 1.0 | 0.8333 | 10 | 0.9655 | 0.9929 | 0.9790 | 0.9994 | | 0.0042 | 29.0 | 3422 | 0.0052 | 0.9677 | 1.0 | 0.9836 | 30 | 1.0 | 1.0 | 1.0 | 29 | 1.0 | 1.0 | 1.0 | 30 | 0.0 | 0.0 | 0.0 | 1 | 1.0 | 1.0 | 1.0 | 11 | 1.0 | 1.0 | 1.0 | 30 | 0.7143 | 1.0 | 0.8333 | 10 | 0.9655 | 0.9929 | 0.9790 | 0.9994 | | 0.0039 | 30.0 | 3540 | 0.0049 | 0.9677 | 1.0 | 0.9836 | 30 | 1.0 | 1.0 | 1.0 | 29 | 1.0 | 1.0 | 1.0 | 30 | 0.0 | 0.0 | 0.0 | 1 | 1.0 | 1.0 | 1.0 | 11 | 1.0 | 1.0 | 1.0 | 30 | 0.7143 | 1.0 | 0.8333 | 10 | 0.9655 | 0.9929 | 0.9790 | 0.9994 | ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
annahaz/xlm-roberta-base-misogyny-en-out-of-sample-test
a7fe577c689f098cb959ce87e80969dda9ba35a4
2022-07-07T19:43:58.000Z
[ "pytorch", "xlm-roberta", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
annahaz
null
annahaz/xlm-roberta-base-misogyny-en-out-of-sample-test
4
null
transformers
20,347
--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: xlm-roberta-base-misogyny-en-out-of-sample-test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-misogyny-en-out-of-sample-test This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.2143 - Accuracy: 0.5868 - F1: 0.5033 - Precision: 0.5570 - Recall: 0.4591 - Mae: 0.4132 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Mae | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:|:------:| | 0.2704 | 1.0 | 1138 | 1.0169 | 0.5924 | 0.4022 | 0.6071 | 0.3007 | 0.4076 | | 0.2552 | 2.0 | 2276 | 1.0994 | 0.5845 | 0.5141 | 0.5508 | 0.4820 | 0.4155 | | 0.2082 | 3.0 | 3414 | 1.6637 | 0.5853 | 0.4815 | 0.5601 | 0.4222 | 0.4147 | | 0.1824 | 4.0 | 4552 | 1.9495 | 0.5606 | 0.4482 | 0.5244 | 0.3914 | 0.4394 | | 0.1645 | 5.0 | 5690 | 1.8441 | 0.5792 | 0.4997 | 0.5457 | 0.4608 | 0.4208 | | 0.113 | 6.0 | 6828 | 2.3997 | 0.5928 | 0.4766 | 0.5758 | 0.4066 | 0.4072 | | 0.0755 | 7.0 | 7966 | 2.9149 | 0.5633 | 0.5223 | 0.5211 | 0.5235 | 0.4367 | | 0.0763 | 8.0 | 9104 | 2.8218 | 0.5762 | 0.5159 | 0.5384 | 0.4953 | 0.4238 | | 0.0657 | 9.0 | 10242 | 2.9956 | 0.5903 | 0.5068 | 0.5619 | 0.4615 | 0.4097 | | 0.0498 | 10.0 | 11380 | 3.2143 | 0.5868 | 0.5033 | 0.5570 | 0.4591 | 0.4132 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.9.0+cu111 - Datasets 2.3.2 - Tokenizers 0.12.1
PrimeQA/squad-v1-roberta-large
a44a009b18b23ce03ccaf505f6a6b2fe43c5a7a3
2022-07-07T20:27:51.000Z
[ "pytorch", "roberta", "English", "arxiv:1606.05250", "arxiv:1907.11692", "transformers", "MRC", "SQuAD 1.1", "roberta-large", "license:apache-2.0" ]
null
false
PrimeQA
null
PrimeQA/squad-v1-roberta-large
4
null
transformers
20,348
--- tags: - MRC - SQuAD 1.1 - roberta-large language: - English license: apache-2.0 --- # Model description An RoBERTa reading comprehension model for [SQuAD 1.1](https://aclanthology.org/D16-1264/). The model is initialized with [roberta-large](https://huggingface.co/roberta-large/) and fine-tuned on the [SQuAD 1.1 train data](https://huggingface.co/datasets/squad). ## Intended uses & limitations You can use the raw model for the reading comprehension task. Biases associated with the pre-existing language model, roberta-large, that we used may be present in our fine-tuned model, squad-v1-roberta-large. ## Usage You can use this model directly with the [PrimeQA](https://github.com/primeqa/primeqa) pipeline for reading comprehension [squad.ipynb](https://github.com/primeqa/primeqa/blob/main/notebooks/mrc/squad.ipynb). ```bibtex @article{2016arXiv160605250R, author = {{Rajpurkar}, Pranav and {Zhang}, Jian and {Lopyrev}, Konstantin and {Liang}, Percy}, title = "{SQuAD: 100,000+ Questions for Machine Comprehension of Text}", journal = {arXiv e-prints}, year = 2016, eid = {arXiv:1606.05250}, pages = {arXiv:1606.05250}, archivePrefix = {arXiv}, eprint = {1606.05250}, } ``` ```bibtex @article{DBLP:journals/corr/abs-1907-11692, author = {Yinhan Liu and Myle Ott and Naman Goyal and Jingfei Du and Mandar Joshi and Danqi Chen and Omer Levy and Mike Lewis and Luke Zettlemoyer and Veselin Stoyanov}, title = {RoBERTa: {A} Robustly Optimized {BERT} Pretraining Approach}, journal = {CoRR}, volume = {abs/1907.11692}, year = {2019}, url = {http://arxiv.org/abs/1907.11692}, archivePrefix = {arXiv}, eprint = {1907.11692}, timestamp = {Thu, 01 Aug 2019 08:59:33 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-1907-11692.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
tfshaman/distilbert-base-uncased-finetuned-clinc
785d763a52d43c99582ea9116b2a7387defb2068
2022-07-07T22:15:13.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:clinc_oos", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
tfshaman
null
tfshaman/distilbert-base-uncased-finetuned-clinc
4
null
transformers
20,349
--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos args: plus metrics: - name: Accuracy type: accuracy value: 0.9158064516129032 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.7786 - Accuracy: 0.9158 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 4.2838 | 1.0 | 318 | 3.2787 | 0.7455 | | 2.622 | 2.0 | 636 | 1.8706 | 0.8332 | | 1.5466 | 3.0 | 954 | 1.1623 | 0.8939 | | 1.0135 | 4.0 | 1272 | 0.8619 | 0.91 | | 0.7985 | 5.0 | 1590 | 0.7786 | 0.9158 | ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.12.0 - Datasets 2.3.2 - Tokenizers 0.12.1
Shenghao1993/distilbert-base-uncased-distilled-clinc
71e8784b97731dac7e7799031eb19966f5f3e608
2022-07-08T09:49:02.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:clinc_oos", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Shenghao1993
null
Shenghao1993/distilbert-base-uncased-distilled-clinc
4
null
transformers
20,350
--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-distilled-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos args: plus metrics: - name: Accuracy type: accuracy value: 0.9454838709677419 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-distilled-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.3120 - Accuracy: 0.9455 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 9 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 318 | 1.8803 | 0.7426 | | 2.2488 | 2.0 | 636 | 0.9662 | 0.8626 | | 2.2488 | 3.0 | 954 | 0.5640 | 0.9103 | | 0.8679 | 4.0 | 1272 | 0.4093 | 0.9332 | | 0.4101 | 5.0 | 1590 | 0.3554 | 0.9435 | | 0.4101 | 6.0 | 1908 | 0.3312 | 0.9445 | | 0.2894 | 7.0 | 2226 | 0.3179 | 0.9452 | | 0.2496 | 8.0 | 2544 | 0.3137 | 0.9448 | | 0.2496 | 9.0 | 2862 | 0.3120 | 0.9455 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Aktsvigun/bart-base_xsum_42
ad14cda7663dcc428f507cb50794567ed72a3fd1
2022-07-08T04:45:49.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_xsum_42
4
null
transformers
20,351
Entry not found
jonatasgrosman/exp_w2v2t_en_unispeech_s809
7f0dea29fc32e02758f9427c0020d6fb2b16a195
2022-07-08T05:41:57.000Z
[ "pytorch", "unispeech", "automatic-speech-recognition", "en", "dataset:mozilla-foundation/common_voice_7_0", "transformers", "license:apache-2.0" ]
automatic-speech-recognition
false
jonatasgrosman
null
jonatasgrosman/exp_w2v2t_en_unispeech_s809
4
null
transformers
20,352
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - en datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_en_unispeech_s809 Fine-tuned [microsoft/unispeech-large-1500h-cv](https://huggingface.co/microsoft/unispeech-large-1500h-cv) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
Nonzerophilip/bert-finetuned-ner_swedish_small_set_health_and_prices
3bb826b29ee2c3cfb2342f89a4f4f337dd610668
2022-07-08T14:01:49.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
token-classification
false
Nonzerophilip
null
Nonzerophilip/bert-finetuned-ner_swedish_small_set_health_and_prices
4
null
transformers
20,353
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner_swedish_small_set_health_and_prices results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner_swedish_small_set_health_and_prices This model is a fine-tuned version of [KBLab/bert-base-swedish-cased-ner](https://huggingface.co/KBLab/bert-base-swedish-cased-ner) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0942 - Precision: 0.7709 - Recall: 0.8118 - F1: 0.7908 - Accuracy: 0.9741 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 250 | 0.1310 | 0.6116 | 0.7471 | 0.6726 | 0.9578 | | 0.1583 | 2.0 | 500 | 0.0939 | 0.7560 | 0.8020 | 0.7783 | 0.9737 | | 0.1583 | 3.0 | 750 | 0.0942 | 0.7709 | 0.8118 | 0.7908 | 0.9741 | ### Framework versions - Transformers 4.19.3 - Pytorch 1.7.1 - Datasets 2.2.2 - Tokenizers 0.12.1
domenicrosati/deberta-v3-xsmall-with-biblio-context-frozenlm-finetuned-review_classifier
30bde22b5fb71c1362ccf4c7d919e0db0dfe60e2
2022-07-08T13:26:07.000Z
[ "pytorch", "deberta-v2", "transformers", "text-classification", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
domenicrosati
null
domenicrosati/deberta-v3-xsmall-with-biblio-context-frozenlm-finetuned-review_classifier
4
null
transformers
20,354
--- license: mit tags: - text-classification - generated_from_trainer metrics: - accuracy - f1 - recall - precision model-index: - name: deberta-v3-xsmall-with-biblio-context-frozenlm-finetuned-review_classifier results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-xsmall-with-biblio-context-frozenlm-finetuned-review_classifier This model is a fine-tuned version of [microsoft/deberta-v3-xsmall](https://huggingface.co/microsoft/deberta-v3-xsmall) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3109 - Accuracy: 0.9066 - F1: 0.0090 - Recall: 0.0045 - Precision: 0.8293 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4.5e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:------:|:---------:| | 0.2938 | 1.0 | 6667 | 0.3103 | 0.9070 | 0.0221 | 0.0112 | 0.7636 | | 0.2851 | 2.0 | 13334 | 0.3109 | 0.9066 | 0.0090 | 0.0045 | 0.8293 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
tfshaman/distilbert-base-uncased-distilled-clinc
b514a4c1ff8873279de3677ec99c97efb82fa8ed
2022-07-08T15:19:17.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:clinc_oos", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
tfshaman
null
tfshaman/distilbert-base-uncased-distilled-clinc
4
null
transformers
20,355
--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-distilled-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos args: plus metrics: - name: Accuracy type: accuracy value: 0.8264516129032258 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-distilled-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 1.5565 - Accuracy: 0.8265 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 3.2743 | 1.0 | 318 | 2.5809 | 0.7310 | | 2.2148 | 2.0 | 636 | 1.7909 | 0.8071 | | 1.7065 | 3.0 | 954 | 1.5565 | 0.8265 | ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.12.0 - Datasets 2.3.2 - Tokenizers 0.12.1
domenicrosati/SPECTER-finetuned-review_classifier
bd88fb5048b43166f23ba4d889e5d44f64622664
2022-07-08T20:32:48.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
domenicrosati
null
domenicrosati/SPECTER-finetuned-review_classifier
4
null
transformers
20,356
--- license: apache-2.0 tags: - text-classification - generated_from_trainer metrics: - accuracy - f1 - recall - precision model-index: - name: SPECTER-finetuned-review_classifier results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SPECTER-finetuned-review_classifier This model is a fine-tuned version of [allenai/specter](https://huggingface.co/allenai/specter) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0645 - Accuracy: 0.9801 - F1: 0.8964 - Recall: 0.8814 - Precision: 0.9118 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4.5e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| | 0.2013 | 1.0 | 1667 | 0.1327 | 0.9592 | 0.7827 | 0.7546 | 0.8131 | | 0.1227 | 2.0 | 3334 | 0.0645 | 0.9801 | 0.8964 | 0.8814 | 0.9118 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
domenicrosati/SPECTER-frozen-with-biblio-context-finetuned-review_classifier
8e8ce04b5dcedc3aab7d569bf71c857ef51160df
2022-07-08T20:05:02.000Z
[ "pytorch", "tensorboard", "bert", "transformers", "text-classification", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
domenicrosati
null
domenicrosati/SPECTER-frozen-with-biblio-context-finetuned-review_classifier
4
null
transformers
20,357
--- license: apache-2.0 tags: - text-classification - generated_from_trainer model-index: - name: SPECTER-frozen-with-biblio-context-finetuned-review_classifier results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SPECTER-frozen-with-biblio-context-finetuned-review_classifier This model is a fine-tuned version of [allenai/specter](https://huggingface.co/allenai/specter) on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 0.2606 - eval_accuracy: 0.91 - eval_f1: 0.0925 - eval_recall: 0.0490 - eval_precision: 0.8379 - eval_runtime: 1030.2818 - eval_samples_per_second: 77.649 - eval_steps_per_second: 6.471 - epoch: 1.0 - step: 6667 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4.5e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 2 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
annahaz/xlm-roberta-base-misogyny-sexism-out-of-sample-test
2e2ed71b461ca233cfa9c7cd298a1d47bd7f96d4
2022-07-08T19:38:13.000Z
[ "pytorch", "xlm-roberta", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
annahaz
null
annahaz/xlm-roberta-base-misogyny-sexism-out-of-sample-test
4
null
transformers
20,358
--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: xlm-roberta-base-misogyny-sexism-out-of-sample-test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-misogyny-sexism-out-of-sample-test This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.4319 - Accuracy: 0.6329 - F1: 0.5384 - Precision: 0.6311 - Recall: 0.4694 - Mae: 0.3671 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Mae | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:|:------:| | 0.3447 | 1.0 | 2157 | 0.8407 | 0.6264 | 0.4817 | 0.6555 | 0.3808 | 0.3736 | | 0.3105 | 2.0 | 4314 | 0.9660 | 0.6244 | 0.4840 | 0.6480 | 0.3863 | 0.3756 | | 0.3036 | 3.0 | 6471 | 1.0797 | 0.6218 | 0.5499 | 0.6014 | 0.5065 | 0.3782 | | 0.2643 | 4.0 | 8628 | 1.6355 | 0.6301 | 0.4790 | 0.6696 | 0.3728 | 0.3699 | | 0.2591 | 5.0 | 10785 | 1.4902 | 0.6173 | 0.5308 | 0.6020 | 0.4747 | 0.3827 | | 0.2052 | 6.0 | 12942 | 1.6884 | 0.6236 | 0.5166 | 0.6235 | 0.4410 | 0.3764 | | 0.2017 | 7.0 | 15099 | 2.1026 | 0.6323 | 0.5341 | 0.6325 | 0.4622 | 0.3677 | | 0.1715 | 8.0 | 17256 | 2.3440 | 0.6292 | 0.5381 | 0.6229 | 0.4736 | 0.3708 | | 0.1543 | 9.0 | 19413 | 2.2136 | 0.6301 | 0.5411 | 0.6230 | 0.4783 | 0.3699 | | 0.1456 | 10.0 | 21570 | 2.4319 | 0.6329 | 0.5384 | 0.6311 | 0.4694 | 0.3671 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.9.0+cu111 - Datasets 2.3.2 - Tokenizers 0.12.1
jonatasgrosman/exp_w2v2t_fr_unispeech_s514
100e5382f6c5ec1367f51f4b378195b0182a9f8c
2022-07-08T23:35:45.000Z
[ "pytorch", "unispeech", "automatic-speech-recognition", "fr", "dataset:mozilla-foundation/common_voice_7_0", "transformers", "license:apache-2.0" ]
automatic-speech-recognition
false
jonatasgrosman
null
jonatasgrosman/exp_w2v2t_fr_unispeech_s514
4
null
transformers
20,359
--- language: - fr license: apache-2.0 tags: - automatic-speech-recognition - fr datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_fr_unispeech_s514 Fine-tuned [microsoft/unispeech-large-1500h-cv](https://huggingface.co/microsoft/unispeech-large-1500h-cv) for speech recognition using the train split of [Common Voice 7.0 (fr)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_fr_unispeech_s833
4a27be2efda86fd9a132925ed8b4eef7789725f0
2022-07-08T23:39:06.000Z
[ "pytorch", "unispeech", "automatic-speech-recognition", "fr", "dataset:mozilla-foundation/common_voice_7_0", "transformers", "license:apache-2.0" ]
automatic-speech-recognition
false
jonatasgrosman
null
jonatasgrosman/exp_w2v2t_fr_unispeech_s833
4
null
transformers
20,360
--- language: - fr license: apache-2.0 tags: - automatic-speech-recognition - fr datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_fr_unispeech_s833 Fine-tuned [microsoft/unispeech-large-1500h-cv](https://huggingface.co/microsoft/unispeech-large-1500h-cv) for speech recognition using the train split of [Common Voice 7.0 (fr)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_fr_unispeech_s42
3daaaa04711b524d18629a7cb925d71716b0bc80
2022-07-08T23:42:55.000Z
[ "pytorch", "unispeech", "automatic-speech-recognition", "fr", "dataset:mozilla-foundation/common_voice_7_0", "transformers", "license:apache-2.0" ]
automatic-speech-recognition
false
jonatasgrosman
null
jonatasgrosman/exp_w2v2t_fr_unispeech_s42
4
null
transformers
20,361
--- language: - fr license: apache-2.0 tags: - automatic-speech-recognition - fr datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_fr_unispeech_s42 Fine-tuned [microsoft/unispeech-large-1500h-cv](https://huggingface.co/microsoft/unispeech-large-1500h-cv) for speech recognition using the train split of [Common Voice 7.0 (fr)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_fr_hubert_s767
048be44ce6c4c9ef8d96833b577fe86440255e2d
2022-07-08T23:46:51.000Z
[ "pytorch", "hubert", "automatic-speech-recognition", "fr", "dataset:mozilla-foundation/common_voice_7_0", "transformers", "license:apache-2.0" ]
automatic-speech-recognition
false
jonatasgrosman
null
jonatasgrosman/exp_w2v2t_fr_hubert_s767
4
null
transformers
20,362
--- language: - fr license: apache-2.0 tags: - automatic-speech-recognition - fr datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_fr_hubert_s767 Fine-tuned [facebook/hubert-large-ll60k](https://huggingface.co/facebook/hubert-large-ll60k) for speech recognition using the train split of [Common Voice 7.0 (fr)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_fr_hubert_s990
67d835676c87f2d3ca237aee0fe804a040092365
2022-07-08T23:52:45.000Z
[ "pytorch", "hubert", "automatic-speech-recognition", "fr", "dataset:mozilla-foundation/common_voice_7_0", "transformers", "license:apache-2.0" ]
automatic-speech-recognition
false
jonatasgrosman
null
jonatasgrosman/exp_w2v2t_fr_hubert_s990
4
null
transformers
20,363
--- language: - fr license: apache-2.0 tags: - automatic-speech-recognition - fr datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_fr_hubert_s990 Fine-tuned [facebook/hubert-large-ll60k](https://huggingface.co/facebook/hubert-large-ll60k) for speech recognition using the train split of [Common Voice 7.0 (fr)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_fr_hubert_s461
e5a7f95830a886d3e1022d347728b99d127ed025
2022-07-08T23:58:26.000Z
[ "pytorch", "hubert", "automatic-speech-recognition", "fr", "dataset:mozilla-foundation/common_voice_7_0", "transformers", "license:apache-2.0" ]
automatic-speech-recognition
false
jonatasgrosman
null
jonatasgrosman/exp_w2v2t_fr_hubert_s461
4
null
transformers
20,364
--- language: - fr license: apache-2.0 tags: - automatic-speech-recognition - fr datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_fr_hubert_s461 Fine-tuned [facebook/hubert-large-ll60k](https://huggingface.co/facebook/hubert-large-ll60k) for speech recognition using the train split of [Common Voice 7.0 (fr)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_fr_wavlm_s929
db1218fe40db653c97ffa5aa9af0cc47264c02c8
2022-07-09T00:30:03.000Z
[ "pytorch", "wavlm", "automatic-speech-recognition", "fr", "dataset:mozilla-foundation/common_voice_7_0", "transformers", "license:apache-2.0" ]
automatic-speech-recognition
false
jonatasgrosman
null
jonatasgrosman/exp_w2v2t_fr_wavlm_s929
4
null
transformers
20,365
--- language: - fr license: apache-2.0 tags: - automatic-speech-recognition - fr datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_fr_wavlm_s929 Fine-tuned [microsoft/wavlm-large](https://huggingface.co/microsoft/wavlm-large) for speech recognition using the train split of [Common Voice 7.0 (fr)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
Bistolero/en_de_64_25k
8ec7a33eb9660e0784677983833de4cab6727a75
2022-07-09T00:53:32.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Bistolero
null
Bistolero/en_de_64_25k
4
null
transformers
20,366
Entry not found
jonatasgrosman/exp_w2v2t_fr_wavlm_s208
16ddc999cd5cbc1c680eb661ab6398abd630ffec
2022-07-09T00:45:25.000Z
[ "pytorch", "wavlm", "automatic-speech-recognition", "fr", "dataset:mozilla-foundation/common_voice_7_0", "transformers", "license:apache-2.0" ]
automatic-speech-recognition
false
jonatasgrosman
null
jonatasgrosman/exp_w2v2t_fr_wavlm_s208
4
null
transformers
20,367
--- language: - fr license: apache-2.0 tags: - automatic-speech-recognition - fr datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_fr_wavlm_s208 Fine-tuned [microsoft/wavlm-large](https://huggingface.co/microsoft/wavlm-large) for speech recognition using the train split of [Common Voice 7.0 (fr)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_fr_unispeech-ml_s51
d6be0927b56ffededf869074612b7f5bbdfa2347
2022-07-09T00:49:16.000Z
[ "pytorch", "unispeech", "automatic-speech-recognition", "fr", "dataset:mozilla-foundation/common_voice_7_0", "transformers", "license:apache-2.0" ]
automatic-speech-recognition
false
jonatasgrosman
null
jonatasgrosman/exp_w2v2t_fr_unispeech-ml_s51
4
null
transformers
20,368
--- language: - fr license: apache-2.0 tags: - automatic-speech-recognition - fr datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_fr_unispeech-ml_s51 Fine-tuned [microsoft/unispeech-large-multi-lingual-1500h-cv](https://huggingface.co/microsoft/unispeech-large-multi-lingual-1500h-cv) for speech recognition using the train split of [Common Voice 7.0 (fr)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_fr_unispeech-ml_s159
835d3c449f6bad7592eddc31c61adcd3edeaca53
2022-07-09T00:53:17.000Z
[ "pytorch", "unispeech", "automatic-speech-recognition", "fr", "dataset:mozilla-foundation/common_voice_7_0", "transformers", "license:apache-2.0" ]
automatic-speech-recognition
false
jonatasgrosman
null
jonatasgrosman/exp_w2v2t_fr_unispeech-ml_s159
4
null
transformers
20,369
--- language: - fr license: apache-2.0 tags: - automatic-speech-recognition - fr datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_fr_unispeech-ml_s159 Fine-tuned [microsoft/unispeech-large-multi-lingual-1500h-cv](https://huggingface.co/microsoft/unispeech-large-multi-lingual-1500h-cv) for speech recognition using the train split of [Common Voice 7.0 (fr)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_fr_unispeech-ml_s614
cc198f6eb4fd1632c42df2c77dd6d471e34b15a9
2022-07-09T00:57:02.000Z
[ "pytorch", "unispeech", "automatic-speech-recognition", "fr", "dataset:mozilla-foundation/common_voice_7_0", "transformers", "license:apache-2.0" ]
automatic-speech-recognition
false
jonatasgrosman
null
jonatasgrosman/exp_w2v2t_fr_unispeech-ml_s614
4
null
transformers
20,370
--- language: - fr license: apache-2.0 tags: - automatic-speech-recognition - fr datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_fr_unispeech-ml_s614 Fine-tuned [microsoft/unispeech-large-multi-lingual-1500h-cv](https://huggingface.co/microsoft/unispeech-large-multi-lingual-1500h-cv) for speech recognition using the train split of [Common Voice 7.0 (fr)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_fr_vp-fr_s320
8f6ead2b96238c3725216ce09965a782a6e53989
2022-07-09T01:00:25.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "fr", "dataset:mozilla-foundation/common_voice_7_0", "transformers", "license:apache-2.0" ]
automatic-speech-recognition
false
jonatasgrosman
null
jonatasgrosman/exp_w2v2t_fr_vp-fr_s320
4
null
transformers
20,371
--- language: - fr license: apache-2.0 tags: - automatic-speech-recognition - fr datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_fr_vp-fr_s320 Fine-tuned [facebook/wav2vec2-large-fr-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-fr-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (fr)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
Sebabrata/lmv2-g-w9-293-doc-07-09
2222d36e2ff1b394e7b80b5bf8d486b590a81e93
2022-07-09T19:02:58.000Z
[ "pytorch", "tensorboard", "layoutlmv2", "token-classification", "transformers", "generated_from_trainer", "license:cc-by-nc-sa-4.0", "model-index", "autotrain_compatible" ]
token-classification
false
Sebabrata
null
Sebabrata/lmv2-g-w9-293-doc-07-09
4
null
transformers
20,372
--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer model-index: - name: lmv2-g-w9-293-doc-07-09 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # lmv2-g-w9-293-doc-07-09 This model is a fine-tuned version of [microsoft/layoutlmv2-base-uncased](https://huggingface.co/microsoft/layoutlmv2-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0031 - Address Precision: 1.0 - Address Recall: 1.0 - Address F1: 1.0 - Address Number: 59 - Business Name Precision: 0.9737 - Business Name Recall: 0.9737 - Business Name F1: 0.9737 - Business Name Number: 38 - City State Zip Code Precision: 1.0 - City State Zip Code Recall: 1.0 - City State Zip Code F1: 1.0 - City State Zip Code Number: 59 - Ein Precision: 0.9474 - Ein Recall: 0.9 - Ein F1: 0.9231 - Ein Number: 20 - List Account Number Precision: 1.0 - List Account Number Recall: 1.0 - List Account Number F1: 1.0 - List Account Number Number: 59 - Name Precision: 1.0 - Name Recall: 1.0 - Name F1: 1.0 - Name Number: 59 - Ssn Precision: 0.9268 - Ssn Recall: 0.9744 - Ssn F1: 0.9500 - Ssn Number: 39 - Overall Precision: 0.9850 - Overall Recall: 0.9880 - Overall F1: 0.9865 - Overall Accuracy: 0.9995 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Address Precision | Address Recall | Address F1 | Address Number | Business Name Precision | Business Name Recall | Business Name F1 | Business Name Number | City State Zip Code Precision | City State Zip Code Recall | City State Zip Code F1 | City State Zip Code Number | Ein Precision | Ein Recall | Ein F1 | Ein Number | List Account Number Precision | List Account Number Recall | List Account Number F1 | List Account Number Number | Name Precision | Name Recall | Name F1 | Name Number | Ssn Precision | Ssn Recall | Ssn F1 | Ssn Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-------------:|:-----:|:----:|:---------------:|:-----------------:|:--------------:|:----------:|:--------------:|:-----------------------:|:--------------------:|:----------------:|:--------------------:|:-----------------------------:|:--------------------------:|:----------------------:|:--------------------------:|:-------------:|:----------:|:------:|:----------:|:-----------------------------:|:--------------------------:|:----------------------:|:--------------------------:|:--------------:|:-----------:|:-------:|:-----------:|:-------------:|:----------:|:------:|:----------:|:-----------------:|:--------------:|:----------:|:----------------:| | 1.3523 | 1.0 | 234 | 0.7065 | 0.0 | 0.0 | 0.0 | 59 | 0.0 | 0.0 | 0.0 | 38 | 0.0 | 0.0 | 0.0 | 59 | 0.0 | 0.0 | 0.0 | 20 | 0.0 | 0.0 | 0.0 | 59 | 0.0 | 0.0 | 0.0 | 59 | 0.0 | 0.0 | 0.0 | 39 | 0.0 | 0.0 | 0.0 | 0.9513 | | 0.3676 | 2.0 | 468 | 0.1605 | 0.9667 | 0.9831 | 0.9748 | 59 | 0.9091 | 0.7895 | 0.8451 | 38 | 1.0 | 1.0 | 1.0 | 59 | 0.0 | 0.0 | 0.0 | 20 | 0.6667 | 0.8475 | 0.7463 | 59 | 0.9077 | 1.0 | 0.9516 | 59 | 0.0 | 0.0 | 0.0 | 39 | 0.8767 | 0.7688 | 0.8192 | 0.9901 | | 0.1217 | 3.0 | 702 | 0.0852 | 0.9667 | 0.9831 | 0.9748 | 59 | 0.9722 | 0.9211 | 0.9459 | 38 | 1.0 | 1.0 | 1.0 | 59 | 0.0 | 0.0 | 0.0 | 20 | 0.7246 | 0.8475 | 0.7812 | 59 | 0.9833 | 1.0 | 0.9916 | 59 | 0.5574 | 0.8718 | 0.6800 | 39 | 0.8551 | 0.8859 | 0.8702 | 0.9953 | | 0.0783 | 4.0 | 936 | 0.0590 | 1.0 | 1.0 | 1.0 | 59 | 0.9737 | 0.9737 | 0.9737 | 38 | 1.0 | 1.0 | 1.0 | 59 | 0.0 | 0.0 | 0.0 | 20 | 0.9355 | 0.9831 | 0.9587 | 59 | 1.0 | 1.0 | 1.0 | 59 | 0.5161 | 0.8205 | 0.6337 | 39 | 0.8968 | 0.9129 | 0.9048 | 0.9959 | | 0.0548 | 5.0 | 1170 | 0.0432 | 1.0 | 1.0 | 1.0 | 59 | 0.9737 | 0.9737 | 0.9737 | 38 | 1.0 | 1.0 | 1.0 | 59 | 0.0 | 0.0 | 0.0 | 20 | 0.9667 | 0.9831 | 0.9748 | 59 | 1.0 | 1.0 | 1.0 | 59 | 0.55 | 0.8462 | 0.6667 | 39 | 0.9104 | 0.9159 | 0.9132 | 0.9963 | | 0.0405 | 6.0 | 1404 | 0.0333 | 1.0 | 1.0 | 1.0 | 59 | 0.925 | 0.9737 | 0.9487 | 38 | 1.0 | 1.0 | 1.0 | 59 | 0.0 | 0.0 | 0.0 | 20 | 0.9667 | 0.9831 | 0.9748 | 59 | 1.0 | 1.0 | 1.0 | 59 | 0.6066 | 0.9487 | 0.74 | 39 | 0.9142 | 0.9279 | 0.9210 | 0.9965 | | 0.0328 | 7.0 | 1638 | 0.0278 | 0.9667 | 0.9831 | 0.9748 | 59 | 0.9737 | 0.9737 | 0.9737 | 38 | 0.9833 | 1.0 | 0.9916 | 59 | 0.0 | 0.0 | 0.0 | 20 | 1.0 | 1.0 | 1.0 | 59 | 1.0 | 1.0 | 1.0 | 59 | 0.5441 | 0.9487 | 0.6916 | 39 | 0.8983 | 0.9279 | 0.9129 | 0.9959 | | 0.0245 | 8.0 | 1872 | 0.0212 | 1.0 | 1.0 | 1.0 | 59 | 0.9737 | 0.9737 | 0.9737 | 38 | 1.0 | 1.0 | 1.0 | 59 | 0.1538 | 0.1 | 0.1212 | 20 | 0.9672 | 1.0 | 0.9833 | 59 | 1.0 | 1.0 | 1.0 | 59 | 0.5862 | 0.8718 | 0.7010 | 39 | 0.8905 | 0.9279 | 0.9088 | 0.9969 | | 0.0192 | 9.0 | 2106 | 0.0164 | 1.0 | 1.0 | 1.0 | 59 | 0.9737 | 0.9737 | 0.9737 | 38 | 1.0 | 1.0 | 1.0 | 59 | 0.56 | 0.7 | 0.6222 | 20 | 1.0 | 1.0 | 1.0 | 59 | 1.0 | 1.0 | 1.0 | 59 | 0.7111 | 0.8205 | 0.7619 | 39 | 0.9273 | 0.9580 | 0.9424 | 0.9983 | | 0.0145 | 10.0 | 2340 | 0.0127 | 1.0 | 1.0 | 1.0 | 59 | 0.9737 | 0.9737 | 0.9737 | 38 | 1.0 | 1.0 | 1.0 | 59 | 0.8235 | 0.7 | 0.7568 | 20 | 1.0 | 1.0 | 1.0 | 59 | 1.0 | 1.0 | 1.0 | 59 | 0.7391 | 0.8718 | 0.8000 | 39 | 0.9525 | 0.9640 | 0.9582 | 0.9989 | | 0.0116 | 11.0 | 2574 | 0.0103 | 1.0 | 1.0 | 1.0 | 59 | 0.9737 | 0.9737 | 0.9737 | 38 | 1.0 | 1.0 | 1.0 | 59 | 0.8571 | 0.9 | 0.8780 | 20 | 0.9672 | 1.0 | 0.9833 | 59 | 1.0 | 0.9661 | 0.9828 | 59 | 0.8537 | 0.8974 | 0.875 | 39 | 0.9643 | 0.9730 | 0.9686 | 0.9992 | | 0.0099 | 12.0 | 2808 | 0.0095 | 1.0 | 1.0 | 1.0 | 59 | 0.9737 | 0.9737 | 0.9737 | 38 | 1.0 | 1.0 | 1.0 | 59 | 0.9 | 0.9 | 0.9 | 20 | 1.0 | 1.0 | 1.0 | 59 | 1.0 | 1.0 | 1.0 | 59 | 0.8537 | 0.8974 | 0.875 | 39 | 0.9731 | 0.9790 | 0.9760 | 0.9992 | | 0.0083 | 13.0 | 3042 | 0.0083 | 0.9667 | 0.9831 | 0.9748 | 59 | 0.9231 | 0.9474 | 0.9351 | 38 | 1.0 | 1.0 | 1.0 | 59 | 0.8095 | 0.85 | 0.8293 | 20 | 0.9667 | 0.9831 | 0.9748 | 59 | 0.9667 | 0.9831 | 0.9748 | 59 | 0.875 | 0.8974 | 0.8861 | 39 | 0.9469 | 0.9640 | 0.9554 | 0.9990 | | 0.0096 | 14.0 | 3276 | 0.0066 | 1.0 | 1.0 | 1.0 | 59 | 0.9231 | 0.9474 | 0.9351 | 38 | 1.0 | 1.0 | 1.0 | 59 | 0.8571 | 0.9 | 0.8780 | 20 | 1.0 | 1.0 | 1.0 | 59 | 1.0 | 1.0 | 1.0 | 59 | 0.9024 | 0.9487 | 0.9250 | 39 | 0.9703 | 0.9820 | 0.9761 | 0.9993 | | 0.0116 | 15.0 | 3510 | 0.0060 | 1.0 | 1.0 | 1.0 | 59 | 0.9737 | 0.9737 | 0.9737 | 38 | 1.0 | 1.0 | 1.0 | 59 | 0.9048 | 0.95 | 0.9268 | 20 | 0.9667 | 0.9831 | 0.9748 | 59 | 1.0 | 1.0 | 1.0 | 59 | 0.8810 | 0.9487 | 0.9136 | 39 | 0.9704 | 0.9850 | 0.9776 | 0.9992 | | 0.0064 | 16.0 | 3744 | 0.0045 | 1.0 | 1.0 | 1.0 | 59 | 0.9737 | 0.9737 | 0.9737 | 38 | 1.0 | 1.0 | 1.0 | 59 | 0.8 | 0.8 | 0.8000 | 20 | 0.9833 | 1.0 | 0.9916 | 59 | 1.0 | 0.9831 | 0.9915 | 59 | 0.8837 | 0.9744 | 0.9268 | 39 | 0.9674 | 0.9790 | 0.9731 | 0.9995 | | 0.0039 | 17.0 | 3978 | 0.0068 | 1.0 | 1.0 | 1.0 | 59 | 0.9737 | 0.9737 | 0.9737 | 38 | 1.0 | 1.0 | 1.0 | 59 | 1.0 | 0.9 | 0.9474 | 20 | 0.9667 | 0.9831 | 0.9748 | 59 | 1.0 | 0.9661 | 0.9828 | 59 | 0.825 | 0.8462 | 0.8354 | 39 | 0.9698 | 0.9640 | 0.9669 | 0.9991 | | 0.0036 | 18.0 | 4212 | 0.0098 | 1.0 | 1.0 | 1.0 | 59 | 0.9737 | 0.9737 | 0.9737 | 38 | 1.0 | 1.0 | 1.0 | 59 | 0.5714 | 0.6 | 0.5854 | 20 | 0.9831 | 0.9831 | 0.9831 | 59 | 1.0 | 0.9831 | 0.9915 | 59 | 0.5424 | 0.8205 | 0.6531 | 39 | 0.8924 | 0.9459 | 0.9184 | 0.9981 | | 0.0037 | 19.0 | 4446 | 0.0054 | 1.0 | 1.0 | 1.0 | 59 | 0.925 | 0.9737 | 0.9487 | 38 | 1.0 | 1.0 | 1.0 | 59 | 0.9048 | 0.95 | 0.9268 | 20 | 0.9672 | 1.0 | 0.9833 | 59 | 0.9821 | 0.9322 | 0.9565 | 59 | 0.9231 | 0.9231 | 0.9231 | 39 | 0.9672 | 0.9730 | 0.9701 | 0.9991 | | 0.0033 | 20.0 | 4680 | 0.0043 | 1.0 | 1.0 | 1.0 | 59 | 0.9737 | 0.9737 | 0.9737 | 38 | 1.0 | 1.0 | 1.0 | 59 | 0.8182 | 0.9 | 0.8571 | 20 | 0.9672 | 1.0 | 0.9833 | 59 | 1.0 | 0.9661 | 0.9828 | 59 | 0.8810 | 0.9487 | 0.9136 | 39 | 0.9645 | 0.9790 | 0.9717 | 0.9992 | | 0.0022 | 21.0 | 4914 | 0.0031 | 1.0 | 1.0 | 1.0 | 59 | 0.9737 | 0.9737 | 0.9737 | 38 | 1.0 | 1.0 | 1.0 | 59 | 0.8571 | 0.9 | 0.8780 | 20 | 0.9833 | 1.0 | 0.9916 | 59 | 1.0 | 0.9831 | 0.9915 | 59 | 0.9048 | 0.9744 | 0.9383 | 39 | 0.9733 | 0.9850 | 0.9791 | 0.9995 | | 0.0026 | 22.0 | 5148 | 0.0039 | 1.0 | 1.0 | 1.0 | 59 | 0.9737 | 0.9737 | 0.9737 | 38 | 1.0 | 1.0 | 1.0 | 59 | 1.0 | 0.85 | 0.9189 | 20 | 1.0 | 1.0 | 1.0 | 59 | 1.0 | 1.0 | 1.0 | 59 | 0.8444 | 0.9744 | 0.9048 | 39 | 0.9762 | 0.9850 | 0.9806 | 0.9994 | | 0.0018 | 23.0 | 5382 | 0.0026 | 1.0 | 1.0 | 1.0 | 59 | 0.9737 | 0.9737 | 0.9737 | 38 | 1.0 | 1.0 | 1.0 | 59 | 0.8947 | 0.85 | 0.8718 | 20 | 1.0 | 1.0 | 1.0 | 59 | 1.0 | 1.0 | 1.0 | 59 | 0.9268 | 0.9744 | 0.9500 | 39 | 0.9820 | 0.9850 | 0.9835 | 0.9996 | | 0.002 | 24.0 | 5616 | 0.0032 | 1.0 | 1.0 | 1.0 | 59 | 0.9737 | 0.9737 | 0.9737 | 38 | 1.0 | 1.0 | 1.0 | 59 | 0.8571 | 0.9 | 0.8780 | 20 | 1.0 | 1.0 | 1.0 | 59 | 1.0 | 1.0 | 1.0 | 59 | 0.8605 | 0.9487 | 0.9024 | 39 | 0.9704 | 0.9850 | 0.9776 | 0.9995 | | 0.0026 | 25.0 | 5850 | 0.0033 | 1.0 | 1.0 | 1.0 | 59 | 0.9737 | 0.9737 | 0.9737 | 38 | 1.0 | 1.0 | 1.0 | 59 | 0.9048 | 0.95 | 0.9268 | 20 | 0.9672 | 1.0 | 0.9833 | 59 | 1.0 | 0.9661 | 0.9828 | 59 | 0.9048 | 0.9744 | 0.9383 | 39 | 0.9733 | 0.9850 | 0.9791 | 0.9994 | | 0.0015 | 26.0 | 6084 | 0.0025 | 1.0 | 1.0 | 1.0 | 59 | 0.9737 | 0.9737 | 0.9737 | 38 | 1.0 | 1.0 | 1.0 | 59 | 0.95 | 0.95 | 0.9500 | 20 | 0.9667 | 0.9831 | 0.9748 | 59 | 1.0 | 0.9831 | 0.9915 | 59 | 0.95 | 0.9744 | 0.9620 | 39 | 0.9820 | 0.9850 | 0.9835 | 0.9996 | | 0.0022 | 27.0 | 6318 | 0.0029 | 1.0 | 1.0 | 1.0 | 59 | 0.9024 | 0.9737 | 0.9367 | 38 | 1.0 | 1.0 | 1.0 | 59 | 0.8571 | 0.9 | 0.8780 | 20 | 1.0 | 1.0 | 1.0 | 59 | 1.0 | 1.0 | 1.0 | 59 | 0.9048 | 0.9744 | 0.9383 | 39 | 0.9676 | 0.9880 | 0.9777 | 0.9995 | | 0.0012 | 28.0 | 6552 | 0.0031 | 1.0 | 1.0 | 1.0 | 59 | 0.9737 | 0.9737 | 0.9737 | 38 | 1.0 | 1.0 | 1.0 | 59 | 0.9474 | 0.9 | 0.9231 | 20 | 1.0 | 1.0 | 1.0 | 59 | 1.0 | 1.0 | 1.0 | 59 | 0.9268 | 0.9744 | 0.9500 | 39 | 0.9850 | 0.9880 | 0.9865 | 0.9995 | | 0.001 | 29.0 | 6786 | 0.0029 | 1.0 | 1.0 | 1.0 | 59 | 0.9737 | 0.9737 | 0.9737 | 38 | 1.0 | 1.0 | 1.0 | 59 | 0.9444 | 0.85 | 0.8947 | 20 | 1.0 | 1.0 | 1.0 | 59 | 1.0 | 1.0 | 1.0 | 59 | 0.9048 | 0.9744 | 0.9383 | 39 | 0.9820 | 0.9850 | 0.9835 | 0.9995 | | 0.0029 | 30.0 | 7020 | 0.0033 | 1.0 | 1.0 | 1.0 | 59 | 0.9737 | 0.9737 | 0.9737 | 38 | 1.0 | 1.0 | 1.0 | 59 | 0.95 | 0.95 | 0.9500 | 20 | 0.9667 | 0.9831 | 0.9748 | 59 | 1.0 | 1.0 | 1.0 | 59 | 0.95 | 0.9744 | 0.9620 | 39 | 0.9821 | 0.9880 | 0.9850 | 0.9995 | ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
huggingtweets/dagsen
e6434008c0b7bcf6d4082aec5717fe2c64564f0e
2022-07-30T01:37:15.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/dagsen
4
null
transformers
20,373
--- language: en thumbnail: http://www.huggingtweets.com/dagsen/1659145030711/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1523836196425650176/LhtBL1Vb_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">dagsen</div> <div style="text-align: center; font-size: 14px;">@dagsen</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from dagsen. | Data | dagsen | | --- | --- | | Tweets downloaded | 192 | | Retweets | 20 | | Short tweets | 12 | | Tweets kept | 160 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1g1bf2no/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dagsen's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1hm84m5e) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1hm84m5e/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/dagsen') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
jonatasgrosman/exp_w2v2t_fa_wavlm_s527
a9dd7edea869bf01577169a4749f992d56bd3f16
2022-07-09T22:44:19.000Z
[ "pytorch", "wavlm", "automatic-speech-recognition", "fa", "dataset:mozilla-foundation/common_voice_7_0", "transformers", "license:apache-2.0" ]
automatic-speech-recognition
false
jonatasgrosman
null
jonatasgrosman/exp_w2v2t_fa_wavlm_s527
4
null
transformers
20,374
--- language: - fa license: apache-2.0 tags: - automatic-speech-recognition - fa datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_fa_wavlm_s527 Fine-tuned [microsoft/wavlm-large](https://huggingface.co/microsoft/wavlm-large) for speech recognition using the train split of [Common Voice 7.0 (fa)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_fa_unispeech-sat_s803
7f2687bcd761c4259dbde9ddef5d604bb92c1cf2
2022-07-09T23:30:53.000Z
[ "pytorch", "unispeech-sat", "automatic-speech-recognition", "fa", "dataset:mozilla-foundation/common_voice_7_0", "transformers", "license:apache-2.0" ]
automatic-speech-recognition
false
jonatasgrosman
null
jonatasgrosman/exp_w2v2t_fa_unispeech-sat_s803
4
null
transformers
20,375
--- language: - fa license: apache-2.0 tags: - automatic-speech-recognition - fa datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_fa_unispeech-sat_s803 Fine-tuned [microsoft/unispeech-sat-large](https://huggingface.co/microsoft/unispeech-sat-large) for speech recognition using the train split of [Common Voice 7.0 (fa)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
alanwang8/longformer-sparse
9819ebd5da2ba6d1fc580060578241c1f9186248
2022-07-10T04:54:37.000Z
[ "pytorch", "longformer", "text-classification", "transformers" ]
text-classification
false
alanwang8
null
alanwang8/longformer-sparse
4
null
transformers
20,376
Entry not found
hirohiroz/wav2vec2-base-timit-demo-google-colab
1945f2aeae3a63064b30731f7b0f72035482408d
2022-07-10T16:28:09.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
hirohiroz
null
hirohiroz/wav2vec2-base-timit-demo-google-colab
4
null
transformers
20,377
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-google-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-google-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5173 - Wer: 0.3399 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.5684 | 1.0 | 500 | 2.1662 | 1.0068 | | 0.9143 | 2.01 | 1000 | 0.5820 | 0.5399 | | 0.439 | 3.01 | 1500 | 0.4596 | 0.4586 | | 0.3122 | 4.02 | 2000 | 0.4623 | 0.4181 | | 0.2391 | 5.02 | 2500 | 0.4243 | 0.3938 | | 0.1977 | 6.02 | 3000 | 0.4421 | 0.3964 | | 0.1635 | 7.03 | 3500 | 0.5076 | 0.3977 | | 0.145 | 8.03 | 4000 | 0.4639 | 0.3754 | | 0.1315 | 9.04 | 4500 | 0.5181 | 0.3652 | | 0.1131 | 10.04 | 5000 | 0.4496 | 0.3778 | | 0.1005 | 11.04 | 5500 | 0.4438 | 0.3664 | | 0.0919 | 12.05 | 6000 | 0.4868 | 0.3865 | | 0.0934 | 13.05 | 6500 | 0.5163 | 0.3694 | | 0.076 | 14.06 | 7000 | 0.4543 | 0.3719 | | 0.0727 | 15.06 | 7500 | 0.5296 | 0.3807 | | 0.0657 | 16.06 | 8000 | 0.4715 | 0.3699 | | 0.0578 | 17.07 | 8500 | 0.4927 | 0.3699 | | 0.057 | 18.07 | 9000 | 0.4767 | 0.3660 | | 0.0493 | 19.08 | 9500 | 0.5306 | 0.3623 | | 0.0425 | 20.08 | 10000 | 0.4828 | 0.3561 | | 0.0431 | 21.08 | 10500 | 0.4875 | 0.3620 | | 0.0366 | 22.09 | 11000 | 0.4984 | 0.3482 | | 0.0332 | 23.09 | 11500 | 0.5375 | 0.3477 | | 0.0348 | 24.1 | 12000 | 0.5406 | 0.3361 | | 0.0301 | 25.1 | 12500 | 0.4954 | 0.3381 | | 0.0294 | 26.1 | 13000 | 0.5033 | 0.3424 | | 0.026 | 27.11 | 13500 | 0.5254 | 0.3384 | | 0.0243 | 28.11 | 14000 | 0.5189 | 0.3402 | | 0.0221 | 29.12 | 14500 | 0.5173 | 0.3399 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
Manishkalra/discourse_classification_using_robrta_base
9f98902b1b04d21264c798e8580a15c4515b4fed
2022-07-10T12:41:59.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
Manishkalra
null
Manishkalra/discourse_classification_using_robrta_base
4
null
transformers
20,378
--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: discourse_classification_using_robrta_base results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # discourse_classification_using_robrta_base This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0832 - Accuracy: 0.6592 - F1: 0.6592 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
tner/bert-base-tweetner-2020-2021-continuous
fcd0a53c02826322f067beb004dc88405adb5a5b
2022-07-11T22:21:27.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
tner
null
tner/bert-base-tweetner-2020-2021-continuous
4
null
transformers
20,379
Entry not found
malinoori/wav2vec2-base-2
c1f7bceb0e769d14cf85584f7f4cecc652afd1f9
2022-07-10T22:33:08.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
malinoori
null
malinoori/wav2vec2-base-2
4
null
transformers
20,380
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-2 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 0.5953 - eval_wer: 0.3621 - eval_runtime: 54.4895 - eval_samples_per_second: 30.832 - eval_steps_per_second: 3.854 - epoch: 22.61 - step: 22500 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
malinoori/wav2vec2-base-superb-demo-google-colab
c7ee22140b6da20b7d6a9b90ad3c33badf58b5d5
2022-07-10T22:23:31.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
malinoori
null
malinoori/wav2vec2-base-superb-demo-google-colab
4
null
transformers
20,381
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-superb-demo-google-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-superb-demo-google-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 0.3795 - eval_wer: 0.3148 - eval_runtime: 26.4914 - eval_samples_per_second: 10.23 - eval_steps_per_second: 1.283 - epoch: 2.47 - step: 1500 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
jonatasgrosman/exp_w2v2t_et_xlsr-53_s952
166e0ea4c7ae9c9a29f0c827e8270a8030f521c5
2022-07-10T22:14:42.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "et", "dataset:mozilla-foundation/common_voice_7_0", "transformers", "license:apache-2.0" ]
automatic-speech-recognition
false
jonatasgrosman
null
jonatasgrosman/exp_w2v2t_et_xlsr-53_s952
4
null
transformers
20,382
--- language: - et license: apache-2.0 tags: - automatic-speech-recognition - et datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_et_xlsr-53_s952 Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) for speech recognition using the train split of [Common Voice 7.0 (et)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
NimaBoscarino/STPushToHub-test
dfda97f2448d4048a9ffe8bd4c7ce8b4b701720c
2022-07-10T22:48:43.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
NimaBoscarino
null
NimaBoscarino/STPushToHub-test
4
null
sentence-transformers
20,383
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # NimaBoscarino/STPushToHub-test This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('NimaBoscarino/STPushToHub-test') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('NimaBoscarino/STPushToHub-test') model = AutoModel.from_pretrained('NimaBoscarino/STPushToHub-test') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=NimaBoscarino/STPushToHub-test) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 360 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 4, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 144, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
aws-ai/dse-roberta-base
bdb4005e439cd26d3736a7a45f56737d7f7cd47c
2022-07-11T05:47:10.000Z
[ "pytorch", "roberta", "transformers" ]
null
false
aws-ai
null
aws-ai/dse-roberta-base
4
null
transformers
20,384
Entry not found
jonatasgrosman/exp_w2v2t_ru_wav2vec2_s904
8ae16fdbe38113bbbf40be608c26ce18a0a270f8
2022-07-11T07:32:24.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "ru", "dataset:mozilla-foundation/common_voice_7_0", "transformers", "license:apache-2.0" ]
automatic-speech-recognition
false
jonatasgrosman
null
jonatasgrosman/exp_w2v2t_ru_wav2vec2_s904
4
null
transformers
20,385
--- language: - ru license: apache-2.0 tags: - automatic-speech-recognition - ru datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_ru_wav2vec2_s904 Fine-tuned [facebook/wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60) for speech recognition using the train split of [Common Voice 7.0 (ru)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_ru_xlsr-53_s911
8f1ece1c12eb4ac023aaf249eb3350cf6a4cdb76
2022-07-11T07:52:25.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "ru", "dataset:mozilla-foundation/common_voice_7_0", "transformers", "license:apache-2.0" ]
automatic-speech-recognition
false
jonatasgrosman
null
jonatasgrosman/exp_w2v2t_ru_xlsr-53_s911
4
null
transformers
20,386
--- language: - ru license: apache-2.0 tags: - automatic-speech-recognition - ru datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_ru_xlsr-53_s911 Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) for speech recognition using the train split of [Common Voice 7.0 (ru)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_ru_no-pretraining_s895
7d46cf3d715507ed47c17c62af0382109f53cce2
2022-07-11T08:30:17.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "ru", "dataset:mozilla-foundation/common_voice_7_0", "transformers", "license:apache-2.0" ]
automatic-speech-recognition
false
jonatasgrosman
null
jonatasgrosman/exp_w2v2t_ru_no-pretraining_s895
4
null
transformers
20,387
--- language: - ru license: apache-2.0 tags: - automatic-speech-recognition - ru datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_ru_no-pretraining_s895 Fine-tuned randomly initialized wav2vec2 model for speech recognition using the train split of [Common Voice 7.0 (ru)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_ru_unispeech-ml_s947
85a58a08cfd7fc25fb81129062e28d19b8c4ce15
2022-07-11T08:45:37.000Z
[ "pytorch", "unispeech", "automatic-speech-recognition", "ru", "dataset:mozilla-foundation/common_voice_7_0", "transformers", "license:apache-2.0" ]
automatic-speech-recognition
false
jonatasgrosman
null
jonatasgrosman/exp_w2v2t_ru_unispeech-ml_s947
4
null
transformers
20,388
--- language: - ru license: apache-2.0 tags: - automatic-speech-recognition - ru datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_ru_unispeech-ml_s947 Fine-tuned [microsoft/unispeech-large-multi-lingual-1500h-cv](https://huggingface.co/microsoft/unispeech-large-multi-lingual-1500h-cv) for speech recognition using the train split of [Common Voice 7.0 (ru)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
paola-md/recipe-roberta-upper-Is
e85b20ce102f7d313648bdb82fcda6a22e759e90
2022-07-11T12:57:29.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
fill-mask
false
paola-md
null
paola-md/recipe-roberta-upper-Is
4
null
transformers
20,389
--- license: mit tags: - generated_from_trainer model-index: - name: recipe-roberta-upper-Is results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # recipe-roberta-upper-Is This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7757 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2455 | 1.0 | 1228 | 1.0420 | | 1.0812 | 2.0 | 2456 | 0.9641 | | 1.018 | 3.0 | 3684 | 0.9220 | | 0.977 | 4.0 | 4912 | 0.8943 | | 0.9451 | 5.0 | 6140 | 0.8726 | | 0.9254 | 6.0 | 7368 | 0.8574 | | 0.9074 | 7.0 | 8596 | 0.8404 | | 0.8944 | 8.0 | 9824 | 0.8290 | | 0.8797 | 9.0 | 11052 | 0.8258 | | 0.869 | 10.0 | 12280 | 0.8115 | | 0.8609 | 11.0 | 13508 | 0.8085 | | 0.8522 | 12.0 | 14736 | 0.7995 | | 0.8462 | 13.0 | 15964 | 0.7958 | | 0.8414 | 14.0 | 17192 | 0.7891 | | 0.8374 | 15.0 | 18420 | 0.7856 | | 0.8327 | 16.0 | 19648 | 0.7850 | | 0.8268 | 17.0 | 20876 | 0.7784 | | 0.8256 | 18.0 | 22104 | 0.7802 | | 0.822 | 19.0 | 23332 | 0.7789 | | 0.8219 | 20.0 | 24560 | 0.7757 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
SkolkovoInstitute/t5-informal
589e8a9f9768fa730f907b96bd6670ed85ec15f0
2022-07-11T12:32:15.000Z
[ "pytorch", "t5", "text2text-generation", "en", "dataset:GYAFC", "transformers", "formality transfer", "text style transfer", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
SkolkovoInstitute
null
SkolkovoInstitute/t5-informal
4
null
transformers
20,390
--- language: en tags: - t5 - formality transfer - text style transfer datasets: - GYAFC license: apache-2.0 --- This is [T5-base Parapharasing model](https://huggingface.co/ceshine/t5-paraphrase-paws-msrp-opinosis) fine-tuned on [GYAFC formality dataset](https://aclanthology.org/N18-1012/) in __from formal to informal direction__. So you may use this model to make your English text more informal.
tner/twitter-roberta-base-dec2020-tweetner-random
463fd8278d8c0f1cc843c7990e885150c8d223c0
2022-07-11T18:49:36.000Z
[ "pytorch", "roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
tner
null
tner/twitter-roberta-base-dec2020-tweetner-random
4
null
transformers
20,391
Entry not found
asahi417/lmqg-mt5_base-esquad
40392e83e7fbb48b54e95a36e81a3717c17f9d9d
2022-07-11T22:15:14.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
asahi417
null
asahi417/lmqg-mt5_base-esquad
4
null
transformers
20,392
Entry not found
Evelyn18/legalectra-small-spanish-becasv3-3
f617a01b40c1836bd5cf3df47234fde8e0feea88
2022-07-12T04:30:27.000Z
[ "pytorch", "tensorboard", "electra", "question-answering", "dataset:becasv2", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
Evelyn18
null
Evelyn18/legalectra-small-spanish-becasv3-3
4
null
transformers
20,393
--- tags: - generated_from_trainer datasets: - becasv2 model-index: - name: legalectra-small-spanish-becasv3-3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # legalectra-small-spanish-becasv3-3 This model is a fine-tuned version of [mrm8488/legalectra-small-spanish](https://huggingface.co/mrm8488/legalectra-small-spanish) on the becasv2 dataset. It achieves the following results on the evaluation set: - Loss: 4.4873 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 5 | 5.7608 | | No log | 2.0 | 10 | 5.5991 | | No log | 3.0 | 15 | 5.5162 | | No log | 4.0 | 20 | 5.4370 | | No log | 5.0 | 25 | 5.3521 | | No log | 6.0 | 30 | 5.2657 | | No log | 7.0 | 35 | 5.1771 | | No log | 8.0 | 40 | 5.1024 | | No log | 9.0 | 45 | 5.0248 | | No log | 10.0 | 50 | 4.9609 | | No log | 11.0 | 55 | 4.9167 | | No log | 12.0 | 60 | 4.8487 | | No log | 13.0 | 65 | 4.8175 | | No log | 14.0 | 70 | 4.7646 | | No log | 15.0 | 75 | 4.7276 | | No log | 16.0 | 80 | 4.7003 | | No log | 17.0 | 85 | 4.6518 | | No log | 18.0 | 90 | 4.6240 | | No log | 19.0 | 95 | 4.6033 | | No log | 20.0 | 100 | 4.5601 | | No log | 21.0 | 105 | 4.5433 | | No log | 22.0 | 110 | 4.5279 | | No log | 23.0 | 115 | 4.4981 | | No log | 24.0 | 120 | 4.4831 | | No log | 25.0 | 125 | 4.4745 | | No log | 26.0 | 130 | 4.4607 | | No log | 27.0 | 135 | 4.4528 | | No log | 28.0 | 140 | 4.4348 | | No log | 29.0 | 145 | 4.4418 | | No log | 30.0 | 150 | 4.4380 | | No log | 31.0 | 155 | 4.4205 | | No log | 32.0 | 160 | 4.4373 | | No log | 33.0 | 165 | 4.4302 | | No log | 34.0 | 170 | 4.4468 | | No log | 35.0 | 175 | 4.4512 | | No log | 36.0 | 180 | 4.4225 | | No log | 37.0 | 185 | 4.4303 | | No log | 38.0 | 190 | 4.4562 | | No log | 39.0 | 195 | 4.4671 | | No log | 40.0 | 200 | 4.4869 | | No log | 41.0 | 205 | 4.5046 | | No log | 42.0 | 210 | 4.4990 | | No log | 43.0 | 215 | 4.4847 | | No log | 44.0 | 220 | 4.4770 | | No log | 45.0 | 225 | 4.4786 | | No log | 46.0 | 230 | 4.4741 | | No log | 47.0 | 235 | 4.4797 | | No log | 48.0 | 240 | 4.4830 | | No log | 49.0 | 245 | 4.4845 | | No log | 50.0 | 250 | 4.4873 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Evelyn18/legalectra-small-spanish-becasv3-4
795762f3cd1e310252d59a3f9985c5a60b41a42e
2022-07-12T04:38:19.000Z
[ "pytorch", "tensorboard", "electra", "question-answering", "dataset:becasv2", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
Evelyn18
null
Evelyn18/legalectra-small-spanish-becasv3-4
4
null
transformers
20,394
--- tags: - generated_from_trainer datasets: - becasv2 model-index: - name: legalectra-small-spanish-becasv3-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # legalectra-small-spanish-becasv3-4 This model is a fine-tuned version of [mrm8488/legalectra-small-spanish](https://huggingface.co/mrm8488/legalectra-small-spanish) on the becasv2 dataset. It achieves the following results on the evaluation set: - Loss: 4.1290 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 5 | 5.6625 | | No log | 2.0 | 10 | 5.4940 | | No log | 3.0 | 15 | 5.3886 | | No log | 4.0 | 20 | 5.3004 | | No log | 5.0 | 25 | 5.2210 | | No log | 6.0 | 30 | 5.1434 | | No log | 7.0 | 35 | 5.0546 | | No log | 8.0 | 40 | 4.9726 | | No log | 9.0 | 45 | 4.9227 | | No log | 10.0 | 50 | 4.8344 | | No log | 11.0 | 55 | 4.7749 | | No log | 12.0 | 60 | 4.7381 | | No log | 13.0 | 65 | 4.7016 | | No log | 14.0 | 70 | 4.6581 | | No log | 15.0 | 75 | 4.6231 | | No log | 16.0 | 80 | 4.5900 | | No log | 17.0 | 85 | 4.5446 | | No log | 18.0 | 90 | 4.5041 | | No log | 19.0 | 95 | 4.4635 | | No log | 20.0 | 100 | 4.4356 | | No log | 21.0 | 105 | 4.3985 | | No log | 22.0 | 110 | 4.3650 | | No log | 23.0 | 115 | 4.3540 | | No log | 24.0 | 120 | 4.3270 | | No log | 25.0 | 125 | 4.2873 | | No log | 26.0 | 130 | 4.2808 | | No log | 27.0 | 135 | 4.2623 | | No log | 28.0 | 140 | 4.2466 | | No log | 29.0 | 145 | 4.2488 | | No log | 30.0 | 150 | 4.2410 | | No log | 31.0 | 155 | 4.2187 | | No log | 32.0 | 160 | 4.2000 | | No log | 33.0 | 165 | 4.1883 | | No log | 34.0 | 170 | 4.1803 | | No log | 35.0 | 175 | 4.1773 | | No log | 36.0 | 180 | 4.1652 | | No log | 37.0 | 185 | 4.1614 | | No log | 38.0 | 190 | 4.1609 | | No log | 39.0 | 195 | 4.1652 | | No log | 40.0 | 200 | 4.1560 | | No log | 41.0 | 205 | 4.1435 | | No log | 42.0 | 210 | 4.1463 | | No log | 43.0 | 215 | 4.1434 | | No log | 44.0 | 220 | 4.1340 | | No log | 45.0 | 225 | 4.1259 | | No log | 46.0 | 230 | 4.1212 | | No log | 47.0 | 235 | 4.1224 | | No log | 48.0 | 240 | 4.1257 | | No log | 49.0 | 245 | 4.1284 | | No log | 50.0 | 250 | 4.1290 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
ShihTing/KaggleAI4Code
8ba68786289d76446ef1b2eaffe7bc4d618d80c7
2022-07-12T07:53:27.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
ShihTing
null
ShihTing/KaggleAI4Code
4
null
transformers
20,395
Entry not found
moonzi/distilbert-base-uncased-finetuned-cola
7988dc2b68d1590fcdcba91c72e21a7e695b3bbf
2022-07-12T09:35:36.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
moonzi
null
moonzi/distilbert-base-uncased-finetuned-cola
4
null
transformers
20,396
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5383825234212567 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.5608 - Matthews Correlation: 0.5384 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5217 | 1.0 | 535 | 0.5248 | 0.4152 | | 0.3479 | 2.0 | 1070 | 0.5000 | 0.4855 | | 0.2345 | 3.0 | 1605 | 0.5608 | 0.5384 | | 0.1843 | 4.0 | 2140 | 0.7651 | 0.5224 | | 0.1304 | 5.0 | 2675 | 0.8071 | 0.5370 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
suc155/distilbert-base-uncased-finetuned-sst2
d615fac774af8323e6a6c7e7aec4d2d49f05a8c9
2022-07-12T12:43:16.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
suc155
null
suc155/distilbert-base-uncased-finetuned-sst2
4
null
transformers
20,397
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-sst2 results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: sst2 metrics: - name: Accuracy type: accuracy value: 0.9151376146788991 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-sst2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.3056 - Accuracy: 0.9151 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.1827 | 1.0 | 4210 | 0.3056 | 0.9151 | | 0.1235 | 2.0 | 8420 | 0.3575 | 0.9071 | | 0.1009 | 3.0 | 12630 | 0.3896 | 0.9071 | | 0.0561 | 4.0 | 16840 | 0.4810 | 0.9060 | | 0.0406 | 5.0 | 21050 | 0.5375 | 0.9048 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
xuantsh/distilroberta-base-Mark_example
37bdaa73b647a21fe40c249d1ca1c3b3d929c46c
2022-07-12T13:13:45.000Z
[ "pytorch", "tensorboard", "roberta", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
xuantsh
null
xuantsh/distilroberta-base-Mark_example
4
null
transformers
20,398
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilroberta-base-Mark_example results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-Mark_example This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.6043 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.8299 | 1.0 | 744 | 2.6322 | | 2.7034 | 2.0 | 1488 | 2.6514 | | 2.5616 | 3.0 | 2232 | 2.6596 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
anuj55/bert-base-nli-mean-tokens-finetuned-polifact
0b905b689c6ec35614a0034aed4d015f39dcaaf5
2022-07-12T17:21:26.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
anuj55
null
anuj55/bert-base-nli-mean-tokens-finetuned-polifact
4
null
transformers
20,399
Entry not found