modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
Jeevesh8/std_pnt_04_feather_berts-0
2d8e99398331cc3fa50d4e647b5c5d8d7ac421ee
2022-06-12T06:03:35.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_pnt_04_feather_berts-0
4
null
transformers
20,200
Entry not found
Jeevesh8/std_pnt_04_feather_berts-59
48510f06a64876cb61f69280a426419b76d99486
2022-06-12T06:03:18.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_pnt_04_feather_berts-59
4
null
transformers
20,201
Entry not found
Jeevesh8/std_pnt_04_feather_berts-3
4ccce9ae3c36341246e162444578fad9537f0771
2022-06-12T06:03:30.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_pnt_04_feather_berts-3
4
null
transformers
20,202
Entry not found
Jeevesh8/std_pnt_04_feather_berts-1
cd5ed0ce15d6a8cc1ae6a9ba076f4bb68e35f910
2022-06-12T06:03:31.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_pnt_04_feather_berts-1
4
null
transformers
20,203
Entry not found
Jeevesh8/std_pnt_04_feather_berts-2
b1da8814de7cb8a7eafd318df74d18c08af19459
2022-06-12T06:05:32.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_pnt_04_feather_berts-2
4
null
transformers
20,204
Entry not found
Jeevesh8/std_pnt_04_feather_berts-12
41e85a5bd47e05af10bcc7b46f5c983476e85dc6
2022-06-12T06:05:22.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_pnt_04_feather_berts-12
4
null
transformers
20,205
Entry not found
Jeevesh8/std_pnt_04_feather_berts-87
c39f79f72c3e00ce5242228932f4194ec4f9e8ee
2022-06-12T06:03:13.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_pnt_04_feather_berts-87
4
null
transformers
20,206
Entry not found
Jeevesh8/std_pnt_04_feather_berts-31
c549e70cc14ff60fbbb7397e9bd44ff6452a5cab
2022-06-12T06:03:11.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_pnt_04_feather_berts-31
4
null
transformers
20,207
Entry not found
Jeevesh8/std_pnt_04_feather_berts-6
03e15f7894044cff57fb5a3d8f675b2c2cd8fb90
2022-06-12T06:03:59.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_pnt_04_feather_berts-6
4
null
transformers
20,208
Entry not found
Jeevesh8/std_pnt_04_feather_berts-88
c4135ce6938af05ff9b8dddf0c25463f21fea187
2022-06-12T06:03:14.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_pnt_04_feather_berts-88
4
null
transformers
20,209
Entry not found
Jeevesh8/std_pnt_04_feather_berts-8
1dc3e92d8808b9ff17835bf4ab89ec09095b0a89
2022-06-12T06:03:49.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_pnt_04_feather_berts-8
4
null
transformers
20,210
Entry not found
Jeevesh8/std_pnt_04_feather_berts-4
33b7db1629a3d959e2b74254072ccdc162ef9fc7
2022-06-12T06:03:52.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_pnt_04_feather_berts-4
4
null
transformers
20,211
Entry not found
Jeevesh8/std_pnt_04_feather_berts-7
3444caae306d23344a89090017ae602613042f12
2022-06-12T06:05:59.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_pnt_04_feather_berts-7
4
null
transformers
20,212
Entry not found
Jeevesh8/std_pnt_04_feather_berts-5
34a36bf6ce1567f3671578118d61ccd277173c31
2022-06-12T06:06:00.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_pnt_04_feather_berts-5
4
null
transformers
20,213
Entry not found
Jeevesh8/std_pnt_04_feather_berts-96
fc3d0efbc821a02016cecda13629378a26803921
2022-06-12T06:05:50.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_pnt_04_feather_berts-96
4
null
transformers
20,214
Entry not found
Jeevesh8/std_pnt_04_feather_berts-99
a00946afea9b1d39edabb65a7fc0f33f05491516
2022-06-12T06:05:51.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_pnt_04_feather_berts-99
4
null
transformers
20,215
Entry not found
Jeevesh8/std_pnt_04_feather_berts-94
0b4fdbb3989f6c29bb4fd7989d91be6262485f92
2022-06-12T06:06:05.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_pnt_04_feather_berts-94
4
null
transformers
20,216
Entry not found
Jeevesh8/std_pnt_04_feather_berts-93
10d2936266a8b93a024a509ada621867a3a74bc3
2022-06-12T06:06:04.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_pnt_04_feather_berts-93
4
null
transformers
20,217
Entry not found
Jeevesh8/std_pnt_04_feather_berts-97
4b88409e8780db8003af54d4e3ac01afad00e665
2022-06-12T06:05:53.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_pnt_04_feather_berts-97
4
null
transformers
20,218
Entry not found
Jeevesh8/std_pnt_04_feather_berts-95
c9338dc17d4279255549f0af00908de573d8d0ce
2022-06-12T06:06:05.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_pnt_04_feather_berts-95
4
null
transformers
20,219
Entry not found
kravchenko/uk-mt5-small
c6e5202f2d489ce2603b51dbe58fb7f1b9f1e332
2022-06-12T14:56:53.000Z
[ "pytorch", "mt5", "text2text-generation", "uk", "en", "transformers", "autotrain_compatible" ]
text2text-generation
false
kravchenko
null
kravchenko/uk-mt5-small
4
null
transformers
20,220
--- language: - uk - en tags: - mt5 --- The aim is to compress the mT5-small model to leave only the Ukrainian language and some basic English. Reproduced the similar result (but with another language) from [this](https://towardsdatascience.com/how-to-adapt-a-multilingual-t5-model-for-a-single-language-b9f94f3d9c90) medium article. Results: - 300M params -> 75M params (75%) - 250K tokens -> 8900 tokens - 1.1GB size model -> 0.3GB size model
nlokam99/ada_sample_3
640e74100fefdae6466e69e785cf762845dd48e6
2022-06-12T17:43:04.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational", "license:mit" ]
conversational
false
nlokam99
null
nlokam99/ada_sample_3
4
null
transformers
20,221
--- thumbnail: https://huggingface.co/front/thumbnails/dialogpt.png tags: - conversational license: mit ---
course5i/SEAD-L-6_H-384_A-12-rte
53947eed4f2df58b74feb189da7af85ec8cba2c9
2022-06-12T21:06:01.000Z
[ "pytorch", "tf", "jax", "bert", "text-classification", "en", "dataset:glue", "dataset:rte", "arxiv:1910.01108", "arxiv:1909.10351", "arxiv:2002.10957", "arxiv:1810.04805", "arxiv:1804.07461", "arxiv:1905.00537", "transformers", "SEAD", "license:apache-2.0" ]
text-classification
false
course5i
null
course5i/SEAD-L-6_H-384_A-12-rte
4
null
transformers
20,222
--- language: - en license: apache-2.0 tags: - SEAD datasets: - glue - rte --- ## Paper ## [SEAD: SIMPLE ENSEMBLE AND KNOWLEDGE DISTILLATION FRAMEWORK FOR NATURAL LANGUAGE UNDERSTANDING](https://www.adasci.org/journals/lattice-35309407/?volumes=true&open=621a3b18edc4364e8a96cb63) Aurthors: *Moyan Mei*, *Rohit Sroch* ## Abstract With the widespread use of pre-trained language models (PLM), there has been increased research on how to make them applicable, especially in limited-resource or low latency high throughput scenarios. One of the dominant approaches is knowledge distillation (KD), where a smaller model is trained by receiving guidance from a large PLM. While there are many successful designs for learning knowledge from teachers, it remains unclear how students can learn better. Inspired by real university teaching processes, in this work we further explore knowledge distillation and propose a very simple yet effective framework, SEAD, to further improve task-specific generalization by utilizing multiple teachers. Our experiments show that SEAD leads to better performance compared to other popular KD methods [[1](https://arxiv.org/abs/1910.01108)] [[2](https://arxiv.org/abs/1909.10351)] [[3](https://arxiv.org/abs/2002.10957)] and achieves comparable or superior performance to its teacher model such as BERT [[4](https://arxiv.org/abs/1810.04805)] on total 13 tasks for the GLUE [[5](https://arxiv.org/abs/1804.07461)] and SuperGLUE [[6](https://arxiv.org/abs/1905.00537)] benchmarks. *Moyan Mei and Rohit Sroch. 2022. [SEAD: Simple ensemble and knowledge distillation framework for natural language understanding](https://www.adasci.org/journals/lattice-35309407/?volumes=true&open=621a3b18edc4364e8a96cb63). Lattice, THE MACHINE LEARNING JOURNAL by Association of Data Scientists, 3(1).* ## SEAD-L-6_H-384_A-12-rte This is a student model distilled from [**BERT base**](https://huggingface.co/bert-base-uncased) as teacher by using SEAD framework on **rte** task. For weights initialization, we used [microsoft/xtremedistil-l6-h384-uncased](https://huggingface.co/microsoft/xtremedistil-l6-h384-uncased) ## All SEAD Checkpoints Other Community Checkpoints: [here](https://huggingface.co/models?search=SEAD) ## Intended uses & limitations More information needed ### Training hyperparameters Please take a look at the `training_args.bin` file ```python $ import torch $ hyperparameters = torch.load(os.path.join('training_args.bin')) ``` ### Evaluation results | eval_accuracy | eval_runtime | eval_samples_per_second | eval_steps_per_second | eval_loss | eval_samples | |:-------------:|:------------:|:-----------------------:|:---------------------:|:---------:|:------------:| | 0.8231 | 1.7325 | 159.884 | 5.195 | 0.6150 | 277 | ### Framework versions - Transformers >=4.8.0 - Pytorch >=1.6.0 - TensorFlow >=2.5.0 - Flax >=0.3.5 - Datasets >=1.10.2 - Tokenizers >=0.11.6 If you use these models, please cite the following paper: ``` @article{article, author={Mei, Moyan and Sroch, Rohit}, title={SEAD: Simple Ensemble and Knowledge Distillation Framework for Natural Language Understanding}, volume={3}, number={1}, journal={Lattice, The Machine Learning Journal by Association of Data Scientists}, day={26}, year={2022}, month={Feb}, url = {www.adasci.org/journals/lattice-35309407/?volumes=true&open=621a3b18edc4364e8a96cb63} } ```
course5i/SEAD-L-6_H-384_A-12-stsb
fa713818553d7cde2eb3008481426124fd787f32
2022-06-12T21:15:54.000Z
[ "pytorch", "tf", "jax", "bert", "text-classification", "en", "dataset:glue", "dataset:stsb", "arxiv:1910.01108", "arxiv:1909.10351", "arxiv:2002.10957", "arxiv:1810.04805", "arxiv:1804.07461", "arxiv:1905.00537", "transformers", "SEAD", "license:apache-2.0" ]
text-classification
false
course5i
null
course5i/SEAD-L-6_H-384_A-12-stsb
4
null
transformers
20,223
--- language: - en license: apache-2.0 tags: - SEAD datasets: - glue - stsb --- ## Paper ## [SEAD: SIMPLE ENSEMBLE AND KNOWLEDGE DISTILLATION FRAMEWORK FOR NATURAL LANGUAGE UNDERSTANDING](https://www.adasci.org/journals/lattice-35309407/?volumes=true&open=621a3b18edc4364e8a96cb63) Aurthors: *Moyan Mei*, *Rohit Sroch* ## Abstract With the widespread use of pre-trained language models (PLM), there has been increased research on how to make them applicable, especially in limited-resource or low latency high throughput scenarios. One of the dominant approaches is knowledge distillation (KD), where a smaller model is trained by receiving guidance from a large PLM. While there are many successful designs for learning knowledge from teachers, it remains unclear how students can learn better. Inspired by real university teaching processes, in this work we further explore knowledge distillation and propose a very simple yet effective framework, SEAD, to further improve task-specific generalization by utilizing multiple teachers. Our experiments show that SEAD leads to better performance compared to other popular KD methods [[1](https://arxiv.org/abs/1910.01108)] [[2](https://arxiv.org/abs/1909.10351)] [[3](https://arxiv.org/abs/2002.10957)] and achieves comparable or superior performance to its teacher model such as BERT [[4](https://arxiv.org/abs/1810.04805)] on total 13 tasks for the GLUE [[5](https://arxiv.org/abs/1804.07461)] and SuperGLUE [[6](https://arxiv.org/abs/1905.00537)] benchmarks. *Moyan Mei and Rohit Sroch. 2022. [SEAD: Simple ensemble and knowledge distillation framework for natural language understanding](https://www.adasci.org/journals/lattice-35309407/?volumes=true&open=621a3b18edc4364e8a96cb63). Lattice, THE MACHINE LEARNING JOURNAL by Association of Data Scientists, 3(1).* ## SEAD-L-6_H-384_A-12-stsb This is a student model distilled from [**BERT base**](https://huggingface.co/bert-base-uncased) as teacher by using SEAD framework on **stsb** task. For weights initialization, we used [microsoft/xtremedistil-l6-h384-uncased](https://huggingface.co/microsoft/xtremedistil-l6-h384-uncased) ## All SEAD Checkpoints Other Community Checkpoints: [here](https://huggingface.co/models?search=SEAD) ## Intended uses & limitations More information needed ### Training hyperparameters Please take a look at the `training_args.bin` file ```python $ import torch $ hyperparameters = torch.load(os.path.join('training_args.bin')) ``` ### Evaluation results | eval_pearson | eval_spearmanr | eval_runtime | eval_samples_per_second | eval_steps_per_second | eval_loss | eval_samples | |:------------:|:--------------:|:------------:|:-----------------------:|:---------------------:|:---------:|:------------:| | 0.9058 | 0.9032 | 2.0911 | 717.342 | 22.477 | 0.5057 | 1500 | ### Framework versions - Transformers >=4.8.0 - Pytorch >=1.6.0 - TensorFlow >=2.5.0 - Flax >=0.3.5 - Datasets >=1.10.2 - Tokenizers >=0.11.6 If you use these models, please cite the following paper: ``` @article{article, author={Mei, Moyan and Sroch, Rohit}, title={SEAD: Simple Ensemble and Knowledge Distillation Framework for Natural Language Understanding}, volume={3}, number={1}, journal={Lattice, The Machine Learning Journal by Association of Data Scientists}, day={26}, year={2022}, month={Feb}, url = {www.adasci.org/journals/lattice-35309407/?volumes=true&open=621a3b18edc4364e8a96cb63} } ```
course5i/SEAD-L-6_H-384_A-12-qnli
f7b54a3bb5d8c21d49b45511b4aa7b5f4bf5c0a7
2022-06-12T21:34:41.000Z
[ "pytorch", "tf", "jax", "bert", "text-classification", "en", "dataset:glue", "dataset:qnli", "arxiv:1910.01108", "arxiv:1909.10351", "arxiv:2002.10957", "arxiv:1810.04805", "arxiv:1804.07461", "arxiv:1905.00537", "transformers", "SEAD", "license:apache-2.0" ]
text-classification
false
course5i
null
course5i/SEAD-L-6_H-384_A-12-qnli
4
null
transformers
20,224
--- language: - en license: apache-2.0 tags: - SEAD datasets: - glue - qnli --- ## Paper ## [SEAD: SIMPLE ENSEMBLE AND KNOWLEDGE DISTILLATION FRAMEWORK FOR NATURAL LANGUAGE UNDERSTANDING](https://www.adasci.org/journals/lattice-35309407/?volumes=true&open=621a3b18edc4364e8a96cb63) Aurthors: *Moyan Mei*, *Rohit Sroch* ## Abstract With the widespread use of pre-trained language models (PLM), there has been increased research on how to make them applicable, especially in limited-resource or low latency high throughput scenarios. One of the dominant approaches is knowledge distillation (KD), where a smaller model is trained by receiving guidance from a large PLM. While there are many successful designs for learning knowledge from teachers, it remains unclear how students can learn better. Inspired by real university teaching processes, in this work we further explore knowledge distillation and propose a very simple yet effective framework, SEAD, to further improve task-specific generalization by utilizing multiple teachers. Our experiments show that SEAD leads to better performance compared to other popular KD methods [[1](https://arxiv.org/abs/1910.01108)] [[2](https://arxiv.org/abs/1909.10351)] [[3](https://arxiv.org/abs/2002.10957)] and achieves comparable or superior performance to its teacher model such as BERT [[4](https://arxiv.org/abs/1810.04805)] on total 13 tasks for the GLUE [[5](https://arxiv.org/abs/1804.07461)] and SuperGLUE [[6](https://arxiv.org/abs/1905.00537)] benchmarks. *Moyan Mei and Rohit Sroch. 2022. [SEAD: Simple ensemble and knowledge distillation framework for natural language understanding](https://www.adasci.org/journals/lattice-35309407/?volumes=true&open=621a3b18edc4364e8a96cb63). Lattice, THE MACHINE LEARNING JOURNAL by Association of Data Scientists, 3(1).* ## SEAD-L-6_H-384_A-12-qnli This is a student model distilled from [**BERT base**](https://huggingface.co/bert-base-uncased) as teacher by using SEAD framework on **qnli** task. For weights initialization, we used [microsoft/xtremedistil-l6-h384-uncased](https://huggingface.co/microsoft/xtremedistil-l6-h384-uncased) ## All SEAD Checkpoints Other Community Checkpoints: [here](https://huggingface.co/models?search=SEAD) ## Intended uses & limitations More information needed ### Training hyperparameters Please take a look at the `training_args.bin` file ```python $ import torch $ hyperparameters = torch.load(os.path.join('training_args.bin')) ``` ### Evaluation results | eval_accuracy | eval_runtime | eval_samples_per_second | eval_steps_per_second | eval_loss | eval_samples | |:-------------:|:------------:|:-----------------------:|:---------------------:|:---------:|:------------:| | 0.9098 | 3.9867 | 1370.297 | 42.892 | 0.2570 | 5463 | ### Framework versions - Transformers >=4.8.0 - Pytorch >=1.6.0 - TensorFlow >=2.5.0 - Flax >=0.3.5 - Datasets >=1.10.2 - Tokenizers >=0.11.6 If you use these models, please cite the following paper: ``` @article{article, author={Mei, Moyan and Sroch, Rohit}, title={SEAD: Simple Ensemble and Knowledge Distillation Framework for Natural Language Understanding}, volume={3}, number={1}, journal={Lattice, The Machine Learning Journal by Association of Data Scientists}, day={26}, year={2022}, month={Feb}, url = {www.adasci.org/journals/lattice-35309407/?volumes=true&open=621a3b18edc4364e8a96cb63} } ```
course5i/SEAD-L-6_H-384_A-12-qqp
b4453a323880198bba10ca9707fdc066e034e461
2022-06-12T22:24:04.000Z
[ "pytorch", "tf", "jax", "bert", "text-classification", "en", "dataset:glue", "dataset:qqp", "arxiv:1910.01108", "arxiv:1909.10351", "arxiv:2002.10957", "arxiv:1810.04805", "arxiv:1804.07461", "arxiv:1905.00537", "transformers", "SEAD", "license:apache-2.0" ]
text-classification
false
course5i
null
course5i/SEAD-L-6_H-384_A-12-qqp
4
null
transformers
20,225
--- language: - en license: apache-2.0 tags: - SEAD datasets: - glue - qqp --- ## Paper ## [SEAD: SIMPLE ENSEMBLE AND KNOWLEDGE DISTILLATION FRAMEWORK FOR NATURAL LANGUAGE UNDERSTANDING](https://www.adasci.org/journals/lattice-35309407/?volumes=true&open=621a3b18edc4364e8a96cb63) Aurthors: *Moyan Mei*, *Rohit Sroch* ## Abstract With the widespread use of pre-trained language models (PLM), there has been increased research on how to make them applicable, especially in limited-resource or low latency high throughput scenarios. One of the dominant approaches is knowledge distillation (KD), where a smaller model is trained by receiving guidance from a large PLM. While there are many successful designs for learning knowledge from teachers, it remains unclear how students can learn better. Inspired by real university teaching processes, in this work we further explore knowledge distillation and propose a very simple yet effective framework, SEAD, to further improve task-specific generalization by utilizing multiple teachers. Our experiments show that SEAD leads to better performance compared to other popular KD methods [[1](https://arxiv.org/abs/1910.01108)] [[2](https://arxiv.org/abs/1909.10351)] [[3](https://arxiv.org/abs/2002.10957)] and achieves comparable or superior performance to its teacher model such as BERT [[4](https://arxiv.org/abs/1810.04805)] on total 13 tasks for the GLUE [[5](https://arxiv.org/abs/1804.07461)] and SuperGLUE [[6](https://arxiv.org/abs/1905.00537)] benchmarks. *Moyan Mei and Rohit Sroch. 2022. [SEAD: Simple ensemble and knowledge distillation framework for natural language understanding](https://www.adasci.org/journals/lattice-35309407/?volumes=true&open=621a3b18edc4364e8a96cb63). Lattice, THE MACHINE LEARNING JOURNAL by Association of Data Scientists, 3(1).* ## SEAD-L-6_H-384_A-12-qqp This is a student model distilled from [**BERT base**](https://huggingface.co/bert-base-uncased) as teacher by using SEAD framework on **qqp** task. For weights initialization, we used [microsoft/xtremedistil-l6-h384-uncased](https://huggingface.co/microsoft/xtremedistil-l6-h384-uncased) ## All SEAD Checkpoints Other Community Checkpoints: [here](https://huggingface.co/models?search=SEAD) ## Intended uses & limitations More information needed ### Training hyperparameters Please take a look at the `training_args.bin` file ```python $ import torch $ hyperparameters = torch.load(os.path.join('training_args.bin')) ``` ### Evaluation results | eval_accuracy | eval_f1 | eval_runtime | eval_samples_per_second | eval_steps_per_second | eval_loss | eval_samples | |:-------------:|:-------:|:------------:|:-----------------------:|:---------------------:|:---------:|:------------:| | 0.9126 | 0.8822 | 23.0122 | 1756.896 | 54.927 | 0.3389 | 40430 | ### Framework versions - Transformers >=4.8.0 - Pytorch >=1.6.0 - TensorFlow >=2.5.0 - Flax >=0.3.5 - Datasets >=1.10.2 - Tokenizers >=0.11.6 If you use these models, please cite the following paper: ``` @article{article, author={Mei, Moyan and Sroch, Rohit}, title={SEAD: Simple Ensemble and Knowledge Distillation Framework for Natural Language Understanding}, volume={3}, number={1}, journal={Lattice, The Machine Learning Journal by Association of Data Scientists}, day={26}, year={2022}, month={Feb}, url = {www.adasci.org/journals/lattice-35309407/?volumes=true&open=621a3b18edc4364e8a96cb63} } ```
enoriega/kw_pubmed_keyword_sentence_10000_0.0003
440a23ea674111997b7a9c6e028cb99cfae2b8da
2022-06-13T10:43:04.000Z
[ "pytorch", "tensorboard", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
enoriega
null
enoriega/kw_pubmed_keyword_sentence_10000_0.0003
4
null
transformers
20,226
Entry not found
QuentinKemperino/ECHR_test_Merged
9bcdf48251d8df18edf7f2a68056321911da8a98
2022-06-13T19:29:46.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "dataset:lex_glue", "transformers", "generated_from_trainer", "license:cc-by-sa-4.0", "model-index" ]
text-classification
false
QuentinKemperino
null
QuentinKemperino/ECHR_test_Merged
4
null
transformers
20,227
--- license: cc-by-sa-4.0 tags: - generated_from_trainer datasets: - lex_glue model-index: - name: ECHR_test_Merged results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ECHR_test_Merged This model is a fine-tuned version of [nlpaueb/legal-bert-base-uncased](https://huggingface.co/nlpaueb/legal-bert-base-uncased) on the lex_glue dataset. It achieves the following results on the evaluation set: - Loss: 0.2162 - Macro-f1: 0.5607 - Micro-f1: 0.6726 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Macro-f1 | Micro-f1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:| | 0.2278 | 0.44 | 500 | 0.3196 | 0.2394 | 0.4569 | | 0.1891 | 0.89 | 1000 | 0.2827 | 0.3255 | 0.5112 | | 0.1803 | 1.33 | 1500 | 0.2603 | 0.3961 | 0.5698 | | 0.1676 | 1.78 | 2000 | 0.2590 | 0.4251 | 0.6003 | | 0.1635 | 2.22 | 2500 | 0.2489 | 0.4186 | 0.6030 | | 0.1784 | 2.67 | 3000 | 0.2445 | 0.4627 | 0.6159 | | 0.1556 | 3.11 | 3500 | 0.2398 | 0.4757 | 0.6170 | | 0.151 | 3.56 | 4000 | 0.2489 | 0.4725 | 0.6163 | | 0.1564 | 4.0 | 4500 | 0.2289 | 0.5019 | 0.6416 | | 0.1544 | 4.44 | 5000 | 0.2406 | 0.5013 | 0.6408 | | 0.1516 | 4.89 | 5500 | 0.2351 | 0.5145 | 0.6510 | | 0.1487 | 5.33 | 6000 | 0.2354 | 0.5164 | 0.6394 | | 0.1385 | 5.78 | 6500 | 0.2385 | 0.5205 | 0.6486 | | 0.145 | 6.22 | 7000 | 0.2337 | 0.5197 | 0.6529 | | 0.1332 | 6.67 | 7500 | 0.2294 | 0.5421 | 0.6526 | | 0.1293 | 7.11 | 8000 | 0.2167 | 0.5576 | 0.6652 | | 0.1475 | 7.56 | 8500 | 0.2218 | 0.5676 | 0.6649 | | 0.1376 | 8.0 | 9000 | 0.2203 | 0.5565 | 0.6709 | | 0.1408 | 8.44 | 9500 | 0.2178 | 0.5541 | 0.6716 | | 0.133 | 8.89 | 10000 | 0.2212 | 0.5692 | 0.6640 | | 0.1363 | 9.33 | 10500 | 0.2148 | 0.5642 | 0.6736 | | 0.1344 | 9.78 | 11000 | 0.2162 | 0.5607 | 0.6726 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
microsoft/swinv2-tiny-patch4-window16-256
a7cfb0684bc557bf524cc5cfa1bba1e661a22ab5
2022-07-08T12:53:17.000Z
[ "pytorch", "swinv2", "transformers" ]
null
false
microsoft
null
microsoft/swinv2-tiny-patch4-window16-256
4
null
transformers
20,228
Entry not found
Alireza1044/mobilebert_mrpc
0327be564e514145549324189dbeb380ee1fded3
2022-06-14T08:16:32.000Z
[ "pytorch", "tensorboard", "mobilebert", "text-classification", "en", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Alireza1044
null
Alireza1044/mobilebert_mrpc
4
null
transformers
20,229
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: mrpc results: - task: name: Text Classification type: text-classification dataset: name: GLUE MRPC type: glue args: mrpc metrics: - name: Accuracy type: accuracy value: 0.8382352941176471 - name: F1 type: f1 value: 0.8888888888888888 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mrpc This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.3672 - Accuracy: 0.8382 - F1: 0.8889 - Combined Score: 0.8636 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0 - Datasets 2.2.2 - Tokenizers 0.12.1
Alireza1044/mobilebert_mnli
17d50a149c9e472c9ae6e79005ef0ea0f81c8f7e
2022-06-14T11:22:34.000Z
[ "pytorch", "tensorboard", "mobilebert", "text-classification", "en", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Alireza1044
null
Alireza1044/mobilebert_mnli
4
null
transformers
20,230
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: mnli results: - task: name: Text Classification type: text-classification dataset: name: GLUE MNLI type: glue args: mnli metrics: - name: Accuracy type: accuracy value: 0.8230268510984541 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mnli This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE MNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.4595 - Accuracy: 0.8230 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 48 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.3 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0 - Datasets 2.2.2 - Tokenizers 0.12.1
Alireza1044/mobilebert_qqp
29fd236aa5fc2dbd115d9eb6226f9556719bbd05
2022-06-14T14:57:04.000Z
[ "pytorch", "tensorboard", "mobilebert", "text-classification", "en", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Alireza1044
null
Alireza1044/mobilebert_qqp
4
null
transformers
20,231
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: qqp results: - task: name: Text Classification type: text-classification dataset: name: GLUE QQP type: glue args: qqp metrics: - name: Accuracy type: accuracy value: 0.8988869651249073 - name: F1 type: f1 value: 0.8670050100852366 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # qqp This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE QQP dataset. It achieves the following results on the evaluation set: - Loss: 0.2458 - Accuracy: 0.8989 - F1: 0.8670 - Combined Score: 0.8829 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.5 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0 - Datasets 2.2.2 - Tokenizers 0.12.1
Alireza1044/mobilebert_QNLI
e168cb085114a21c905f9399ef3e56070b2cafba
2022-06-14T19:54:02.000Z
[ "pytorch", "tensorboard", "mobilebert", "text-classification", "en", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Alireza1044
null
Alireza1044/mobilebert_QNLI
4
null
transformers
20,232
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: qnli results: - task: name: Text Classification type: text-classification dataset: name: GLUE QNLI type: glue args: qnli metrics: - name: Accuracy type: accuracy value: 0.9068277503203368 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # qnli This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE QNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.3731 - Accuracy: 0.9068 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0 - Datasets 2.2.2 - Tokenizers 0.12.1
voidful/phoneme-mt5
20ec7f09c21278cebef185419f9dfbacec7e17a9
2022-06-14T17:02:49.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
voidful
null
voidful/phoneme-mt5
4
null
transformers
20,233
Entry not found
totoro4007/cryptodeberta-base-all-finetuned
de08541cefb506b62199f1fb009baec865481fef
2022-06-15T03:48:00.000Z
[ "pytorch", "deberta", "text-classification", "transformers" ]
text-classification
false
totoro4007
null
totoro4007/cryptodeberta-base-all-finetuned
4
null
transformers
20,234
Entry not found
mesolitica/pretrained-wav2vec2-small-mixed
b073daacdb00890ccf1848de66d7f4deaa6b9c62
2022-06-15T14:55:28.000Z
[ "pytorch", "tensorboard", "wav2vec2", "pretraining", "transformers", "generated_from_keras_callback", "model-index" ]
null
false
mesolitica
null
mesolitica/pretrained-wav2vec2-small-mixed
4
null
transformers
20,235
--- tags: - generated_from_keras_callback model-index: - name: pretrained-wav2vec2-base-mixed results: [] --- # pretrained-wav2vec2-small-mixed Pretrained Wav2Vec2 SMALL size on https://github.com/huseinzol05/malaya-speech/tree/master/data/mixed-stt, also included Tensorboard files in this repository. This model was pretrained on 3 languages, 1. Malay 2. Singlish 3. Mandarin **This model trained on a single RTX 3090 Ti 24GB VRAM, provided by https://mesolitica.com/**.
Hermite/DialoGPT-large-hermite2
ff461379d8a5770aa336a2916ed150b65a6409ec
2022-06-15T11:26:38.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Hermite
null
Hermite/DialoGPT-large-hermite2
4
null
transformers
20,236
--- tags: conversational --- #Hermite DialoGPT Model
microsoft/swinv2-small-patch4-window8-256
38c74174021843ac2fe182459ab05d05c04ab2a7
2022-07-09T05:55:47.000Z
[ "pytorch", "swinv2", "transformers" ]
null
false
microsoft
null
microsoft/swinv2-small-patch4-window8-256
4
null
transformers
20,237
Entry not found
microsoft/swinv2-small-patch4-window16-256
7ea09131e9bf33a267f169342693665503879b0f
2022-07-08T12:59:04.000Z
[ "pytorch", "swinv2", "transformers" ]
null
false
microsoft
null
microsoft/swinv2-small-patch4-window16-256
4
null
transformers
20,238
Entry not found
microsoft/swinv2-base-patch4-window8-256
f5f9e816fea166fed7db39a64f9dc8e65a02ce1c
2022-07-08T13:13:16.000Z
[ "pytorch", "swinv2", "transformers" ]
null
false
microsoft
null
microsoft/swinv2-base-patch4-window8-256
4
null
transformers
20,239
Entry not found
microsoft/swinv2-base-patch4-window16-256
99308a4df870415a5c37834aa6fef756b0cb6b50
2022-07-08T13:19:09.000Z
[ "pytorch", "swinv2", "transformers" ]
null
false
microsoft
null
microsoft/swinv2-base-patch4-window16-256
4
null
transformers
20,240
Entry not found
microsoft/swinv2-base-patch4-window12-192-22k
6ffc911ad2f241da866f6d1e4acdb1a329f70660
2022-07-08T13:16:05.000Z
[ "pytorch", "swinv2", "transformers" ]
null
false
microsoft
null
microsoft/swinv2-base-patch4-window12-192-22k
4
null
transformers
20,241
Entry not found
ouiame/bert2gpt2Summy
a753104c50cba46faad84825466f23b22a58ae9b
2022-06-15T19:31:08.000Z
[ "pytorch", "mt5", "text2text-generation", "fr", "dataset:ouiame/autotrain-data-trainproject", "transformers", "autotrain", "co2_eq_emissions", "autotrain_compatible" ]
text2text-generation
false
ouiame
null
ouiame/bert2gpt2Summy
4
null
transformers
20,242
--- tags: autotrain language: fr widget: - text: "I love AutoTrain 🤗" datasets: - ouiame/autotrain-data-trainproject co2_eq_emissions: 894.9753853627794 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 985232782 - CO2 Emissions (in grams): 894.9753853627794 ## Validation Metrics - Loss: 1.9692628383636475 - Rouge1: 19.3642 - Rouge2: 7.3644 - RougeL: 16.148 - RougeLsum: 16.4988 - Gen Len: 18.9975 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/ouiame/autotrain-trainproject-985232782 ```
Alireza1044/mobilebert_rte
b03cd8d1bf780c38c0e21b6c4194f8e63db3c7bf
2022-06-15T16:24:42.000Z
[ "pytorch", "tensorboard", "mobilebert", "text-classification", "en", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Alireza1044
null
Alireza1044/mobilebert_rte
4
null
transformers
20,243
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: rte results: - task: name: Text Classification type: text-classification dataset: name: GLUE RTE type: glue args: rte metrics: - name: Accuracy type: accuracy value: 0.6678700361010831 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # rte This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE RTE dataset. It achieves the following results on the evaluation set: - Loss: 0.8396 - Accuracy: 0.6679 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0 - Datasets 2.2.2 - Tokenizers 0.12.1
jhliu/ClinicalAdaptation-PubMedBERT-base-uncased-MIMIC-sentence
0deb81512b2967edd75b971b035abc8a400e8104
2022-06-16T06:27:07.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
jhliu
null
jhliu/ClinicalAdaptation-PubMedBERT-base-uncased-MIMIC-sentence
4
null
transformers
20,244
Entry not found
kcarnold/inquisitive-full
8caef729299c5f537d6a83beba2a5d771a0d0909
2022-06-16T20:49:45.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
kcarnold
null
kcarnold/inquisitive-full
4
null
transformers
20,245
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: inquisitive-full results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # inquisitive-full This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.5594 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15.0 ### Training results ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0 - Datasets 2.3.0 - Tokenizers 0.12.1
huggingtweets/tomhanks
fd5585aac273ab7fe4496d966e9d436fe8e6c764
2022-06-17T01:00:56.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/tomhanks
4
null
transformers
20,246
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1193951507026075648/Ot3GmqGK_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Tom Hanks</div> <div style="text-align: center; font-size: 14px;">@tomhanks</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Tom Hanks. | Data | Tom Hanks | | --- | --- | | Tweets downloaded | 948 | | Retweets | 9 | | Short tweets | 15 | | Tweets kept | 924 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3mkvpkso/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @tomhanks's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2tplh98q) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2tplh98q/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/tomhanks') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
S2312dal/M6_MLM
d7874e94876e6f623ce71a91479bef2231d2f70a
2022-06-17T08:38:50.000Z
[ "pytorch", "tensorboard", "bert", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
S2312dal
null
S2312dal/M6_MLM
4
null
transformers
20,247
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: M6_MLM results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # M6_MLM This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.0237 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.4015 | 1.0 | 25 | 2.1511 | | 2.2207 | 2.0 | 50 | 2.1268 | | 2.168 | 3.0 | 75 | 2.0796 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
janeel/bigbird-base-trivia-itc-finetuned-squad
34b730baa0c9a0292889621b4021eecdb25bba3b
2022-06-18T05:12:59.000Z
[ "pytorch", "tensorboard", "big_bird", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
janeel
null
janeel/bigbird-base-trivia-itc-finetuned-squad
4
null
transformers
20,248
Entry not found
Danastos/newsqa_bert_el_4
c2c3e1c2014af6a754a983adf07ef7bcf4431a0c
2022-06-19T11:37:22.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
Danastos
null
Danastos/newsqa_bert_el_4
4
null
transformers
20,249
Entry not found
wiselinjayajos/finetuned-bert-mrpc
76ef7cd6d972c03a76d7bc1fdcfa7d22ce0cdd97
2022-06-17T14:58:18.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
wiselinjayajos
null
wiselinjayajos/finetuned-bert-mrpc
4
null
transformers
20,250
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: finetuned-bert-mrpc results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: mrpc metrics: - name: Accuracy type: accuracy value: 0.8455882352941176 - name: F1 type: f1 value: 0.8908145580589255 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned-bert-mrpc This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.4755 - Accuracy: 0.8456 - F1: 0.8908 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure Trained on my local laptop and the training time took 3 hours. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.5331 | 1.0 | 230 | 0.3837 | 0.8505 | 0.8943 | | 0.3023 | 2.0 | 460 | 0.3934 | 0.8505 | 0.8954 | | 0.1472 | 3.0 | 690 | 0.4755 | 0.8456 | 0.8908 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
simecek/DNADeberta2
0239560f6d0df37e4a40195b687c2fc4bb18ba3f
2022-06-20T20:16:25.000Z
[ "pytorch", "deberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
simecek
null
simecek/DNADeberta2
4
null
transformers
20,251
Entry not found
S2312dal/M1_MLM_cross
be8563b03e38705e5a57103c2c40ddbfe94c59ba
2022-06-21T21:31:13.000Z
[ "pytorch", "tensorboard", "albert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
S2312dal
null
S2312dal/M1_MLM_cross
4
null
transformers
20,252
--- license: apache-2.0 tags: - generated_from_trainer metrics: - spearmanr model-index: - name: M1_MLM_cross results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # M1_MLM_cross This model is a fine-tuned version of [S2312dal/M1_MLM](https://huggingface.co/S2312dal/M1_MLM) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0106 - Pearson: 0.9723 - Spearmanr: 0.9112 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 25 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 8.0 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr | |:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:| | 0.0094 | 1.0 | 131 | 0.0342 | 0.9209 | 0.8739 | | 0.0091 | 2.0 | 262 | 0.0157 | 0.9585 | 0.9040 | | 0.0018 | 3.0 | 393 | 0.0106 | 0.9723 | 0.9112 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Javon/distilbert-base-uncased-finetuned-emotion
3eedfb6b70af51c393b4b717eb34eb4e3e0c74b3
2022-06-18T03:17:30.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
Javon
null
Javon/distilbert-base-uncased-finetuned-emotion
4
null
transformers
20,253
Entry not found
Willy/bert-base-spanish-wwm-cased-finetuned-NLP-IE-2
b8f6237a3d6b55be4097fd545ff77f3d3de19e92
2022-06-18T10:07:25.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
Willy
null
Willy/bert-base-spanish-wwm-cased-finetuned-NLP-IE-2
4
null
transformers
20,254
--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert-base-spanish-wwm-cased-finetuned-NLP-IE-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-spanish-wwm-cased-finetuned-NLP-IE-2 This model is a fine-tuned version of [dccuchile/bert-base-spanish-wwm-cased](https://huggingface.co/dccuchile/bert-base-spanish-wwm-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5279 - Accuracy: 0.7836 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6008 | 1.0 | 9 | 0.5243 | 0.7836 | | 0.6014 | 2.0 | 18 | 0.5279 | 0.7836 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
S2312dal/M4_MLM_cross
7c7e19feea42a41c11c08002254aafc0f6955abf
2022-06-18T08:48:02.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
S2312dal
null
S2312dal/M4_MLM_cross
4
null
transformers
20,255
--- license: apache-2.0 tags: - generated_from_trainer metrics: - spearmanr model-index: - name: M4_MLM_cross results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # M4_MLM_cross This model is a fine-tuned version of [S2312dal/M4_MLM](https://huggingface.co/S2312dal/M4_MLM) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0222 - Pearson: 0.9472 - Spearmanr: 0.8983 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 25 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 8.0 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr | |:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:| | 0.0353 | 1.0 | 131 | 0.0590 | 0.8326 | 0.8225 | | 0.0478 | 2.0 | 262 | 0.0368 | 0.9234 | 0.8894 | | 0.0256 | 3.0 | 393 | 0.0222 | 0.9472 | 0.8983 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Danastos/qacombined_bert_el_3
4de56fd8cef6d2473142c9d5f8cbed4f618b65c5
2022-06-19T13:14:19.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
Danastos
null
Danastos/qacombined_bert_el_3
4
null
transformers
20,256
Entry not found
raedinkhaled/swin-tiny-patch4-window7-224-finetuned-mri
a51fae6a36832538720e94bd15c387fa9127522c
2022-06-19T00:13:22.000Z
[ "pytorch", "tensorboard", "swin", "image-classification", "dataset:imagefolder", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
image-classification
false
raedinkhaled
null
raedinkhaled/swin-tiny-patch4-window7-224-finetuned-mri
4
null
transformers
20,257
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-mri results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder args: default metrics: - name: Accuracy type: accuracy value: 0.9806603773584905 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-mri This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0608 - Accuracy: 0.9807 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0592 | 1.0 | 447 | 0.0823 | 0.9695 | | 0.0196 | 2.0 | 894 | 0.0761 | 0.9739 | | 0.0058 | 3.0 | 1341 | 0.0608 | 0.9807 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
dibsondivya/ernie-phmtweets-sutd
943d330608e2e06cb35bbd6cdfdef3daf86191d6
2022-06-19T11:38:29.000Z
[ "pytorch", "bert", "text-classification", "dataset:custom-phm-tweets", "arxiv:1802.09130", "transformers", "ernie", "health", "tweet", "model-index" ]
text-classification
false
dibsondivya
null
dibsondivya/ernie-phmtweets-sutd
4
null
transformers
20,258
--- tags: - ernie - health - tweet datasets: - custom-phm-tweets metrics: - accuracy model-index: - name: ernie-phmtweets-sutd results: - task: name: Text Classification type: text-classification dataset: name: custom-phm-tweets type: labelled metrics: - name: Accuracy type: accuracy value: 0.885 --- # ernie-phmtweets-sutd This model is a fine-tuned version of [ernie-2.0-en](https://huggingface.co/nghuyong/ernie-2.0-en) for text classification to identify public health events through tweets. The project was based on an [Emory University Study on Detection of Personal Health Mentions in Social Media paper](https://arxiv.org/pdf/1802.09130v2.pdf), that worked with this [custom dataset](https://github.com/emory-irlab/PHM2017). It achieves the following results on the evaluation set: - Accuracy: 0.885 ## Usage ```Python from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("dibsondivya/ernie-phmtweets-sutd") model = AutoModelForSequenceClassification.from_pretrained("dibsondivya/ernie-phmtweets-sutd") ``` ### Model Evaluation Results With Validation Set - Accuracy: 0.889763779527559 With Test Set - Accuracy: 0.884643644379133 ## References for ERNIE 2.0 Model ```bibtex @article{sun2019ernie20, title={ERNIE 2.0: A Continual Pre-training Framework for Language Understanding}, author={Sun, Yu and Wang, Shuohuan and Li, Yukun and Feng, Shikun and Tian, Hao and Wu, Hua and Wang, Haifeng}, journal={arXiv preprint arXiv:1907.12412}, year={2019} } ```
Alireza1044/MobileBERT_Theseus-mrpc
71df01bac045a96e49fd9c98bf51c748c306231f
2022-06-19T12:34:58.000Z
[ "pytorch", "mobilebert", "text-classification", "transformers" ]
text-classification
false
Alireza1044
null
Alireza1044/MobileBERT_Theseus-mrpc
4
null
transformers
20,259
Entry not found
Alireza1044/MobileBERT_Theseus-cola
189534054bc7a4827d7e330e14740b45728ec8e3
2022-06-19T12:59:51.000Z
[ "pytorch", "mobilebert", "text-classification", "transformers" ]
text-classification
false
Alireza1044
null
Alireza1044/MobileBERT_Theseus-cola
4
null
transformers
20,260
Entry not found
Alireza1044/MobileBERT_Theseus-sts-b
3497281f5d660ad5c905891aa6ddc40c9d7212b6
2022-06-19T13:50:37.000Z
[ "pytorch", "mobilebert", "text-classification", "transformers" ]
text-classification
false
Alireza1044
null
Alireza1044/MobileBERT_Theseus-sts-b
4
null
transformers
20,261
Entry not found
Mikune/text-sum-po1
9e104ddb90ec8413a4e7a430ed9b093c2d9fc2ec
2022-06-19T15:57:11.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Mikune
null
Mikune/text-sum-po1
4
1
transformers
20,262
Entry not found
amritpattnaik/mt5-small-amrit-finetuned-amazon-en
046f7b8170b15147a218ba51b3866a61cce6a871
2022-06-19T16:32:53.000Z
[ "pytorch", "tensorboard", "mt5", "text2text-generation", "dataset:amazon_reviews_multi", "transformers", "summarization", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
summarization
false
amritpattnaik
null
amritpattnaik/mt5-small-amrit-finetuned-amazon-en
4
null
transformers
20,263
--- license: apache-2.0 tags: - summarization - generated_from_trainer datasets: - amazon_reviews_multi metrics: - rouge model-index: - name: mt5-small-amrit-finetuned-amazon-en results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: amazon_reviews_multi type: amazon_reviews_multi args: en metrics: - name: Rouge1 type: rouge value: 15.4603 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-amrit-finetuned-amazon-en This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 3.3112 - Rouge1: 15.4603 - Rouge2: 7.1882 - Rougel: 15.2221 - Rougelsum: 15.1231 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:| | 8.7422 | 1.0 | 771 | 3.6517 | 12.9002 | 4.8601 | 12.6743 | 12.6561 | | 4.1322 | 2.0 | 1542 | 3.4937 | 14.1146 | 6.5433 | 14.0882 | 14.0484 | | 3.7426 | 3.0 | 2313 | 3.4070 | 14.4797 | 6.8527 | 14.1544 | 14.2753 | | 3.5743 | 4.0 | 3084 | 3.3439 | 15.9805 | 7.8873 | 15.4935 | 15.41 | | 3.4489 | 5.0 | 3855 | 3.3122 | 16.5749 | 7.9809 | 16.1922 | 16.1226 | | 3.3602 | 6.0 | 4626 | 3.3187 | 16.4809 | 7.7656 | 16.211 | 16.1185 | | 3.3215 | 7.0 | 5397 | 3.3180 | 15.4615 | 7.1361 | 15.1919 | 15.1144 | | 3.294 | 8.0 | 6168 | 3.3112 | 15.4603 | 7.1882 | 15.2221 | 15.1231 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Alireza1044/MobileBERT_Theseus-sst-2
e48439cd6447a90d4765cb661844870d05a47dff
2022-06-19T15:51:34.000Z
[ "pytorch", "mobilebert", "text-classification", "transformers" ]
text-classification
false
Alireza1044
null
Alireza1044/MobileBERT_Theseus-sst-2
4
null
transformers
20,264
Entry not found
mo7amed3ly/distilbert-base-uncased-finetuned-ner
899afb43d71a4fe0bf1037626791c859d0bdbd75
2022-06-19T16:47:48.000Z
[ "pytorch", "tensorboard", "distilbert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
mo7amed3ly
null
mo7amed3ly/distilbert-base-uncased-finetuned-ner
4
null
transformers
20,265
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9269638128861429 - name: Recall type: recall value: 0.9399261662378342 - name: F1 type: f1 value: 0.9333999888907405 - name: Accuracy type: accuracy value: 0.984367801483788 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0590 - Precision: 0.9270 - Recall: 0.9399 - F1: 0.9334 - Accuracy: 0.9844 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2483 | 1.0 | 878 | 0.0696 | 0.9143 | 0.9211 | 0.9177 | 0.9807 | | 0.0504 | 2.0 | 1756 | 0.0593 | 0.9206 | 0.9347 | 0.9276 | 0.9832 | | 0.0301 | 3.0 | 2634 | 0.0590 | 0.9270 | 0.9399 | 0.9334 | 0.9844 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
voidful/phone-led-base-16384
cbff3c2d1ba6990a75f9e11821f03f15a80efffe
2022-06-20T04:29:59.000Z
[ "pytorch", "led", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
voidful
null
voidful/phone-led-base-16384
4
null
transformers
20,266
Entry not found
ahujaniharika95/minilm-uncased-squad2-finetuned-squad
9474d29e54f52e04599d0db1e0a618f043be7ac7
2022-06-20T12:03:02.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
ahujaniharika95
null
ahujaniharika95/minilm-uncased-squad2-finetuned-squad
4
null
transformers
20,267
Entry not found
bradleyg223/deberta-v3-large-finetuned-abm
d79c1876ced3f39d61ee211f1b64644122633f7a
2022-06-21T18:34:12.000Z
[ "pytorch", "tensorboard", "deberta-v2", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
bradleyg223
null
bradleyg223/deberta-v3-large-finetuned-abm
4
null
transformers
20,268
Entry not found
romjansen/mbert-base-cased-NER-NL-legislation-refs
bb94610e95c74e0233b48fd65770f5e67b46bf6e
2022-06-24T19:13:16.000Z
[ "pytorch", "bert", "token-classification", "nl", "dataset:romjansen/mbert-base-cased-NER-NL-legislation-refs-data", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
romjansen
null
romjansen/mbert-base-cased-NER-NL-legislation-refs
4
null
transformers
20,269
sasha/dog-food-vit-base-patch16-224-in21k
2205441a2c46a2520a14a2deb1ce6deced927d8d
2022-06-22T13:50:47.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "dataset:sasha/dog-food", "transformers", "huggingpics", "model-index" ]
image-classification
false
sasha
null
sasha/dog-food-vit-base-patch16-224-in21k
4
null
transformers
20,270
--- tags: - image-classification - pytorch - huggingpics datasets: - sasha/dog-food metrics: - accuracy - f1 model-index: - name: dog-food-vit-base-patch16-224-in21k results: - task: name: Image Classification type: image-classification dataset: name: Dog Food type: sasha/dog-food metrics: - name: Accuracy type: accuracy value: 0.9988889098167419 - task: type: image-classification name: Image Classification dataset: name: sasha/dog-food type: sasha/dog-food config: sasha--dog-food split: test metrics: - name: Accuracy type: accuracy value: 0.9977777777777778 verified: true - name: Precision type: precision value: 0.9966777408637874 verified: true - name: Recall type: recall value: 1.0 verified: true - name: AUC type: auc value: 0.9999777777777779 verified: true - name: F1 type: f1 value: 0.9983361064891847 verified: true - name: loss type: loss value: 0.009058385156095028 verified: true --- # dog-food-vit-base-patch16-224-in21k This model was trained on the `train` split of the [Dogs vs Food](https://huggingface.co/datasets/sasha/dog-food) dataset -- try training your own using the [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb)! ## Example Images #### dog ![dog](images/dog.jpg) #### food ![food](images/food.jpg)
deepesh0x/autotrain-GlueModels-1010733562
22a85ec4b6fcd3a9cec2f160b8b26c3e21d716dd
2022-06-21T01:48:26.000Z
[ "pytorch", "bert", "text-classification", "en", "dataset:deepesh0x/autotrain-data-GlueModels", "transformers", "autotrain", "co2_eq_emissions" ]
text-classification
false
deepesh0x
null
deepesh0x/autotrain-GlueModels-1010733562
4
null
transformers
20,271
--- tags: autotrain language: en widget: - text: "I love AutoTrain 🤗" datasets: - deepesh0x/autotrain-data-GlueModels co2_eq_emissions: 60.24263131580023 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 1010733562 - CO2 Emissions (in grams): 60.24263131580023 ## Validation Metrics - Loss: 0.1812974065542221 - Accuracy: 0.9252564102564103 - Precision: 0.9409888357256778 - Recall: 0.9074596257369905 - AUC: 0.9809618001947271 - F1: 0.923920135717082 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/deepesh0x/autotrain-GlueModels-1010733562 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("deepesh0x/autotrain-GlueModels-1010733562", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("deepesh0x/autotrain-GlueModels-1010733562", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
Jeevesh8/std_0pnt2_bert_ft_cola-46
461a7f0027685a7163286baa6097c70f13b0fa2f
2022-06-21T13:33:41.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_0pnt2_bert_ft_cola-46
4
null
transformers
20,272
Entry not found
Jeevesh8/std_0pnt2_bert_ft_cola-78
51c652a552d6f3003a49cfce8c761eee7763a17d
2022-06-21T13:27:56.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_0pnt2_bert_ft_cola-78
4
null
transformers
20,273
Entry not found
Jeevesh8/std_0pnt2_bert_ft_cola-67
7381b9a8fcb943a8fad64fb08fedc2329856f2d1
2022-06-21T13:28:41.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_0pnt2_bert_ft_cola-67
4
null
transformers
20,274
Entry not found
Jeevesh8/std_0pnt2_bert_ft_cola-62
daaf98e4443a236505cd503705cab78fc240ce83
2022-06-21T13:30:20.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_0pnt2_bert_ft_cola-62
4
null
transformers
20,275
Entry not found
Jeevesh8/std_0pnt2_bert_ft_cola-76
b43a5bb564b0d2193c9ebc71d89789e8144b2d4f
2022-06-21T13:27:59.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_0pnt2_bert_ft_cola-76
4
null
transformers
20,276
Entry not found
Jeevesh8/std_0pnt2_bert_ft_cola-65
96c29c218efa3eedec10b5a8ec981da3733ad940
2022-06-21T13:30:42.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_0pnt2_bert_ft_cola-65
4
null
transformers
20,277
Entry not found
Jeevesh8/std_0pnt2_bert_ft_cola-79
e1d4f22fe9a1a10382db405ef768370c4da3d425
2022-06-21T13:28:11.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_0pnt2_bert_ft_cola-79
4
null
transformers
20,278
Entry not found
Jeevesh8/std_0pnt2_bert_ft_cola-73
189569371f4e545e3671cbed23d4accc27945fb3
2022-06-21T13:28:43.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_0pnt2_bert_ft_cola-73
4
null
transformers
20,279
Entry not found
Jeevesh8/std_0pnt2_bert_ft_cola-75
c17e8655c02f4b980ca5bf7e69906666713c0458
2022-06-21T13:28:47.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_0pnt2_bert_ft_cola-75
4
null
transformers
20,280
Entry not found
Jeevesh8/std_0pnt2_bert_ft_cola-74
860f754723d74f9e85b1a0042adbc88e738ff2b5
2022-06-21T13:28:48.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_0pnt2_bert_ft_cola-74
4
null
transformers
20,281
Entry not found
Alireza1044/MobileBERT_Theseus-mnli
69ac2e0b05a673b18a7d38d2a4079c87ed5c2aaf
2022-06-21T13:20:40.000Z
[ "pytorch", "mobilebert", "text-classification", "transformers" ]
text-classification
false
Alireza1044
null
Alireza1044/MobileBERT_Theseus-mnli
4
null
transformers
20,282
Entry not found
Mascariddu8/test-masca
e9e5ebc08d5b5f6cac14be7f1160e034cf4b9778
2022-06-21T16:57:29.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Mascariddu8
null
Mascariddu8/test-masca
4
null
transformers
20,283
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue model-index: - name: test-masca results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test-masca This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the glue dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
deepesh0x/autotrain-mlsec-1013333734
911b363dcb77b8b956bf370b18ba2b13a9a20539
2022-06-21T19:12:28.000Z
[ "pytorch", "roberta", "text-classification", "en", "dataset:deepesh0x/autotrain-data-mlsec", "transformers", "autotrain", "co2_eq_emissions" ]
text-classification
false
deepesh0x
null
deepesh0x/autotrain-mlsec-1013333734
4
null
transformers
20,284
--- tags: autotrain language: en widget: - text: "I love AutoTrain 🤗" datasets: - deepesh0x/autotrain-data-mlsec co2_eq_emissions: 308.7012650779217 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 1013333734 - CO2 Emissions (in grams): 308.7012650779217 ## Validation Metrics - Loss: 0.20877738296985626 - Accuracy: 0.9396153846153846 - Precision: 0.9291791791791791 - Recall: 0.9518072289156626 - AUC: 0.9671522989580735 - F1: 0.9403570976320121 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/deepesh0x/autotrain-mlsec-1013333734 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("deepesh0x/autotrain-mlsec-1013333734", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("deepesh0x/autotrain-mlsec-1013333734", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
QuentinKemperino/ECHR_test_2_task_B
5fc3a212dc589e2907a8d65c5f193fc213fbd7d6
2022-06-22T05:03:34.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "dataset:lex_glue", "transformers", "generated_from_trainer", "license:cc-by-sa-4.0", "model-index" ]
text-classification
false
QuentinKemperino
null
QuentinKemperino/ECHR_test_2_task_B
4
null
transformers
20,285
--- license: cc-by-sa-4.0 tags: - generated_from_trainer datasets: - lex_glue model-index: - name: ECHR_test_2_task_B results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ECHR_test_2_task_B This model is a fine-tuned version of [nlpaueb/legal-bert-base-uncased](https://huggingface.co/nlpaueb/legal-bert-base-uncased) on the lex_glue dataset. It achieves the following results on the evaluation set: - Loss: 0.2092 - Macro-f1: 0.5250 - Micro-f1: 0.6190 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Macro-f1 | Micro-f1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:| | 0.2119 | 0.44 | 500 | 0.2945 | 0.2637 | 0.4453 | | 0.1702 | 0.89 | 1000 | 0.2734 | 0.3246 | 0.4843 | | 0.1736 | 1.33 | 1500 | 0.2633 | 0.3725 | 0.5133 | | 0.1571 | 1.78 | 2000 | 0.2549 | 0.3942 | 0.5417 | | 0.1476 | 2.22 | 2500 | 0.2348 | 0.4187 | 0.5649 | | 0.1599 | 2.67 | 3000 | 0.2427 | 0.4286 | 0.5606 | | 0.1481 | 3.11 | 3500 | 0.2210 | 0.4664 | 0.5780 | | 0.1412 | 3.56 | 4000 | 0.2542 | 0.4362 | 0.5617 | | 0.1505 | 4.0 | 4500 | 0.2249 | 0.4728 | 0.5863 | | 0.1425 | 4.44 | 5000 | 0.2311 | 0.4576 | 0.5845 | | 0.1461 | 4.89 | 5500 | 0.2261 | 0.4590 | 0.5832 | | 0.1451 | 5.33 | 6000 | 0.2248 | 0.4738 | 0.5901 | | 0.1281 | 5.78 | 6500 | 0.2317 | 0.4641 | 0.5896 | | 0.1354 | 6.22 | 7000 | 0.2366 | 0.4639 | 0.5946 | | 0.1204 | 6.67 | 7500 | 0.2311 | 0.4875 | 0.5877 | | 0.1229 | 7.11 | 8000 | 0.2083 | 0.4815 | 0.6020 | | 0.1368 | 7.56 | 8500 | 0.2170 | 0.5213 | 0.6021 | | 0.1288 | 8.0 | 9000 | 0.2136 | 0.5336 | 0.6176 | | 0.1275 | 8.44 | 9500 | 0.2180 | 0.5204 | 0.6082 | | 0.1232 | 8.89 | 10000 | 0.2147 | 0.5334 | 0.6083 | | 0.1319 | 9.33 | 10500 | 0.2121 | 0.5312 | 0.6186 | | 0.1267 | 9.78 | 11000 | 0.2092 | 0.5250 | 0.6190 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Gaborandi/Clinical-Longformer-MLM-pubmed
13fd3a5f0cd2dee8d25d9c42091c457cb4dd498c
2022-06-22T02:31:35.000Z
[ "pytorch", "tensorboard", "longformer", "fill-mask", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
fill-mask
false
Gaborandi
null
Gaborandi/Clinical-Longformer-MLM-pubmed
4
null
transformers
20,286
--- tags: - generated_from_trainer model-index: - name: Clinical-Longformer-MLM-pubmed results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Clinical-Longformer-MLM-pubmed This model is a fine-tuned version of [yikuan8/Clinical-Longformer](https://huggingface.co/yikuan8/Clinical-Longformer) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3126 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 471 | 1.3858 | | No log | 2.0 | 942 | 1.3160 | | No log | 3.0 | 1413 | 1.2951 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.8.0 - Datasets 2.2.2 - Tokenizers 0.11.6
MRF18/results
89f96a8652c282622edf254b06f9ba44042f6f0e
2022-06-23T07:18:42.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
MRF18
null
MRF18/results
4
null
transformers
20,287
--- license: mit tags: - generated_from_trainer model-index: - name: results results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # results This model is a fine-tuned version of [MRF18/results](https://huggingface.co/MRF18/results) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
davidcechak/DNADeberta_finedemo_human_or_worm
f82bde25909acbd88b6f882a065def63a07fa7c6
2022-06-22T08:31:26.000Z
[ "pytorch", "deberta", "text-classification", "transformers" ]
text-classification
false
davidcechak
null
davidcechak/DNADeberta_finedemo_human_or_worm
4
null
transformers
20,288
Entry not found
Elron/deberta-v3-large-irony
9a2f6f08f7301b6e62cabbb97b29090369e44e53
2022-06-22T09:46:26.000Z
[ "pytorch", "deberta-v2", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
Elron
null
Elron/deberta-v3-large-irony
4
null
transformers
20,289
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: deberta-v3-large results: [] --- # deberta-v3-large-irony This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on an [tweet_eval](https://huggingface.co/datasets/tweet_eval) dataset. ## Model description Test set results: | Model | Emotion | Hate | Irony | Offensive | Sentiment | | ------------- | ------------- | ------------- | ------------- | ------------- | ------------- | | deberta-v3-large | **86.3** | **61.3** | **87.1** | **86.4** | **73.9** | | BERTweet | 79.3 | - | 82.1 | 79.5 | 73.4 | | RoB-RT | 79.5 | 52.3 | 61.7 | 80.5 | 69.3 | [source:papers_with_code](https://paperswithcode.com/sota/sentiment-analysis-on-tweeteval) ## Intended uses & limitations Classifying attributes of interest on tweeter like data. ## Training and evaluation data [tweet_eval](https://huggingface.co/datasets/tweet_eval) dataset. ## Training procedure Fine tuned and evaluated with [run_glue.py]() ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 10.0 - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6478 | 1.12 | 100 | 0.5890 | 0.7529 | | 0.5013 | 2.25 | 200 | 0.5873 | 0.7707 | | 0.388 | 3.37 | 300 | 0.6993 | 0.7602 | | 0.3169 | 4.49 | 400 | 0.6773 | 0.7874 | | 0.2693 | 5.61 | 500 | 0.7172 | 0.7707 | | 0.2396 | 6.74 | 600 | 0.7397 | 0.7801 | | 0.2284 | 7.86 | 700 | 0.8096 | 0.7550 | | 0.2207 | 8.98 | 800 | 0.7827 | 0.7654 | ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.9.0 - Datasets 2.2.2 - Tokenizers 0.11.6
Smith123/tiny-bert-sst2-distilled
ba207715d2798caa0c8f4d2e92fdd4100cb9dc33
2022-06-29T09:07:34.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Smith123
null
Smith123/tiny-bert-sst2-distilled
4
null
transformers
20,290
Entry not found
lmqg/bart-base-subjqa-vanilla-movies
44bdbf90381705c6d965c19f18ffbb509b3f8338
2022-06-22T10:50:53.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
lmqg
null
lmqg/bart-base-subjqa-vanilla-movies
4
null
transformers
20,291
Entry not found
lmqg/bart-large-subjqa-vanilla-electronics
98e29064e81a2bd0a8579899f060ca22641ab211
2022-06-22T11:11:29.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
lmqg
null
lmqg/bart-large-subjqa-vanilla-electronics
4
null
transformers
20,292
Entry not found
epomponio/my-finetuned-bert
fd9b24904deaefa6b64b4d4ec8e421b2dd7e3eba
2022-06-23T07:38:27.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
epomponio
null
epomponio/my-finetuned-bert
4
null
transformers
20,293
Entry not found
lmqg/bart-large-subjqa-vanilla-movies
acad49d50b3acf1090a8800cb989b806848529af
2022-06-22T11:48:10.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
lmqg
null
lmqg/bart-large-subjqa-vanilla-movies
4
null
transformers
20,294
Entry not found
sasuke/distilbert-base-uncased-finetuned-squad1
e3ca85e71bc5e01e558c24ef68cdad65ed3e6267
2022-06-22T13:23:39.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
sasuke
null
sasuke/distilbert-base-uncased-finetuned-squad1
4
null
transformers
20,295
Entry not found
Jeevesh8/std_0pnt2_bert_ft_cola-45
11a7c7455f2a810b0479726f55ecab2c41ff15d5
2022-06-22T14:56:58.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_0pnt2_bert_ft_cola-45
4
null
transformers
20,296
Entry not found
amandaraeb/qs
7f7a44a05cdb52418385667d766675ff0c527f70
2022-06-23T00:11:12.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
amandaraeb
null
amandaraeb/qs
4
null
transformers
20,297
Entry not found
epomponio/finetuned-bert-model
1c38ee9e508c85dc1aa5daf53efe50085cb6429c
2022-06-23T09:11:26.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
epomponio
null
epomponio/finetuned-bert-model
4
null
transformers
20,298
Entry not found
enoriega/kw_pubmed_vanilla_sentence_10000_0.0003_2
421264abf8ebfd1e9b864fbb503b7b3e850c9135
2022-06-24T18:35:03.000Z
[ "pytorch", "tensorboard", "bert", "fill-mask", "dataset:enoriega/keyword_pubmed", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
fill-mask
false
enoriega
null
enoriega/kw_pubmed_vanilla_sentence_10000_0.0003_2
4
null
transformers
20,299
--- license: mit tags: - generated_from_trainer datasets: - enoriega/keyword_pubmed metrics: - accuracy model-index: - name: kw_pubmed_vanilla_sentence_10000_0.0003_2 results: - task: name: Masked Language Modeling type: fill-mask dataset: name: enoriega/keyword_pubmed sentence type: enoriega/keyword_pubmed args: sentence metrics: - name: Accuracy type: accuracy value: 0.6767448105720579 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # kw_pubmed_vanilla_sentence_10000_0.0003_2 This model is a fine-tuned version of [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) on the enoriega/keyword_pubmed sentence dataset. It achieves the following results on the evaluation set: - Loss: 1.5883 - Accuracy: 0.6767 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 500 - total_train_batch_size: 8000 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1