modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
DanielCano/spanish_news_classification_headlines_untrained
953b1817f717fe1716b19c600d55c11fccbbadf1
2022-05-30T10:27:23.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
DanielCano
null
DanielCano/spanish_news_classification_headlines_untrained
4
null
transformers
20,000
Entry not found
huggingtweets/ultrafungi
b3402604e745662a3803b4c76ed2ed8a54bcc9f0
2022-05-30T11:46:18.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/ultrafungi
4
null
transformers
20,001
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1522479920714240001/wi1LPddl_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">sydney</div> <div style="text-align: center; font-size: 14px;">@ultrafungi</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from sydney. | Data | sydney | | --- | --- | | Tweets downloaded | 125 | | Retweets | 35 | | Short tweets | 9 | | Tweets kept | 81 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/wk3rd28k/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ultrafungi's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3cil1w2p) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3cil1w2p/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/ultrafungi') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
apugachev/bert-langdetect
c68a5ac80504f6c798debe99716fb3fae712aed4
2022-05-30T20:10:16.000Z
[ "pytorch", "tf", "bert", "text-classification", "transformers" ]
text-classification
false
apugachev
null
apugachev/bert-langdetect
4
null
transformers
20,002
Entry not found
YeRyeongLee/xlm-roberta-base-finetuned-removed-0530
c3277d5e2e2ad60f29695c20eee064ed1c28eb6c
2022-05-31T08:31:07.000Z
[ "pytorch", "xlm-roberta", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
YeRyeongLee
null
YeRyeongLee/xlm-roberta-base-finetuned-removed-0530
4
null
transformers
20,003
--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: xlm-roberta-base-finetuned-removed-0530 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-removed-0530 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9944 - Accuracy: 0.8717 - F1: 0.8719 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:| | No log | 1.0 | 3180 | 0.6390 | 0.7899 | 0.7852 | | No log | 2.0 | 6360 | 0.5597 | 0.8223 | 0.8230 | | No log | 3.0 | 9540 | 0.5177 | 0.8462 | 0.8471 | | No log | 4.0 | 12720 | 0.5813 | 0.8642 | 0.8647 | | No log | 5.0 | 15900 | 0.7324 | 0.8557 | 0.8568 | | No log | 6.0 | 19080 | 0.7589 | 0.8626 | 0.8634 | | No log | 7.0 | 22260 | 0.7958 | 0.8752 | 0.8751 | | 0.3923 | 8.0 | 25440 | 0.9177 | 0.8651 | 0.8653 | | 0.3923 | 9.0 | 28620 | 1.0188 | 0.8673 | 0.8671 | | 0.3923 | 10.0 | 31800 | 0.9944 | 0.8717 | 0.8719 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.9.0 - Datasets 1.16.1 - Tokenizers 0.12.1
huggingtweets/skeptikons
36dda3f6bf58a1d2ebb67d104b746300071eb861
2022-07-10T09:36:04.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/skeptikons
4
null
transformers
20,004
--- language: en thumbnail: http://www.huggingtweets.com/skeptikons/1657445759728/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1369269405411139584/B6xOW78i_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Eddie</div> <div style="text-align: center; font-size: 14px;">@skeptikons</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Eddie. | Data | Eddie | | --- | --- | | Tweets downloaded | 3249 | | Retweets | 150 | | Short tweets | 489 | | Tweets kept | 2610 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2v2w1ly8/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @skeptikons's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/31cyn37j) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/31cyn37j/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/skeptikons') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
theojolliffe/bart-cnn-science-v3-e6
43dd92cea58f406ea4d8056c98c2a5f8bf3e0fd9
2022-05-31T12:32:01.000Z
[ "pytorch", "tensorboard", "bart", "text2text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
text2text-generation
false
theojolliffe
null
theojolliffe/bart-cnn-science-v3-e6
4
null
transformers
20,005
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-cnn-science-v3-e6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-cnn-science-v3-e6 This model is a fine-tuned version of [theojolliffe/bart-cnn-science](https://huggingface.co/theojolliffe/bart-cnn-science) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8057 - Rouge1: 53.7462 - Rouge2: 34.9622 - Rougel: 37.5676 - Rougelsum: 51.0619 - Gen Len: 142.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:| | No log | 1.0 | 398 | 0.9961 | 52.632 | 32.8104 | 35.0789 | 50.3747 | 142.0 | | 1.174 | 2.0 | 796 | 0.8565 | 52.8308 | 32.7064 | 34.6605 | 50.3348 | 142.0 | | 0.7073 | 3.0 | 1194 | 0.8322 | 52.2418 | 32.8677 | 36.1806 | 49.6297 | 141.5556 | | 0.4867 | 4.0 | 1592 | 0.8137 | 53.5537 | 34.5404 | 36.7194 | 50.8394 | 142.0 | | 0.4867 | 5.0 | 1990 | 0.7996 | 53.4959 | 35.1017 | 37.5143 | 50.9972 | 141.8704 | | 0.3529 | 6.0 | 2388 | 0.8057 | 53.7462 | 34.9622 | 37.5676 | 51.0619 | 142.0 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
dexay/reDs3
dc5429e72b99e166f418ba7c43b140706114f290
2022-05-31T13:01:50.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
dexay
null
dexay/reDs3
4
null
transformers
20,006
Entry not found
PontifexMaximus/opus-mt-ur-en-finetuned-fa-to-en
fd8ed0e426372c9b46605c75906a5617cd7a4ca5
2022-06-01T16:30:17.000Z
[ "pytorch", "tensorboard", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PontifexMaximus
null
PontifexMaximus/opus-mt-ur-en-finetuned-fa-to-en
4
null
transformers
20,007
Entry not found
YeRyeongLee/bert-base-uncased-finetuned-filtered-0601
9dbf9d817e3db925b381721a7b43f86285579920
2022-06-01T13:29:32.000Z
[ "pytorch", "bert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
YeRyeongLee
null
YeRyeongLee/bert-base-uncased-finetuned-filtered-0601
4
null
transformers
20,008
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: bert-base-uncased-finetuned-filtered-0601 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-filtered-0601 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1152 - Accuracy: 0.9814 - F1: 0.9815 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:| | No log | 1.0 | 3180 | 0.1346 | 0.9664 | 0.9665 | | No log | 2.0 | 6360 | 0.1352 | 0.9748 | 0.9749 | | No log | 3.0 | 9540 | 0.1038 | 0.9808 | 0.9808 | | No log | 4.0 | 12720 | 0.1152 | 0.9814 | 0.9815 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.9.0 - Datasets 1.16.1 - Tokenizers 0.12.1
YeRyeongLee/bert-base-uncased-finetuned-filtered-0602
bea7f86af00431d7f5ce9e5a7034534158351416
2022-06-01T16:16:58.000Z
[ "pytorch", "bert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
YeRyeongLee
null
YeRyeongLee/bert-base-uncased-finetuned-filtered-0602
4
null
transformers
20,009
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: bert-base-uncased-finetuned-filtered-0602 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-filtered-0602 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1959 - Accuracy: 0.9783 - F1: 0.9783 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:| | 0.1777 | 1.0 | 3180 | 0.2118 | 0.9563 | 0.9566 | | 0.1409 | 2.0 | 6360 | 0.1417 | 0.9736 | 0.9736 | | 0.1035 | 3.0 | 9540 | 0.1454 | 0.9739 | 0.9739 | | 0.0921 | 4.0 | 12720 | 0.1399 | 0.9755 | 0.9755 | | 0.0607 | 5.0 | 15900 | 0.1150 | 0.9792 | 0.9792 | | 0.0331 | 6.0 | 19080 | 0.1770 | 0.9758 | 0.9758 | | 0.0289 | 7.0 | 22260 | 0.1782 | 0.9767 | 0.9767 | | 0.0058 | 8.0 | 25440 | 0.1877 | 0.9796 | 0.9796 | | 0.008 | 9.0 | 28620 | 0.2034 | 0.9764 | 0.9764 | | 0.0017 | 10.0 | 31800 | 0.1959 | 0.9783 | 0.9783 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.9.0 - Datasets 1.16.1 - Tokenizers 0.12.1
creynier/wav2vec2-base-swbd-turn-eos-long_short1-8s_utt_removed_4percent
e9e021bd37991766424b6917d69d19742f5a5521
2022-06-02T10:20:18.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
creynier
null
creynier/wav2vec2-base-swbd-turn-eos-long_short1-8s_utt_removed_4percent
4
null
transformers
20,010
hello
bbelgodere/codeparrot
51b05975c1604f2561e5313f26307ffcae541b15
2022-06-02T00:34:04.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
bbelgodere
null
bbelgodere/codeparrot
4
null
transformers
20,011
Entry not found
chrisvinsen/wav2vec2-final-1-lm-3
ea28ad47e2375f19afb004a73a7041937f0c37c0
2022-06-02T11:11:11.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
chrisvinsen
null
chrisvinsen/wav2vec2-final-1-lm-3
4
null
transformers
20,012
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-19 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-19 WER 0.283 WER 0.126 with 4-Gram This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6305 - Wer: 0.4499 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 800 - num_epochs: 60 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.4816 | 2.74 | 400 | 1.0717 | 0.8927 | | 0.751 | 5.48 | 800 | 0.7155 | 0.7533 | | 0.517 | 8.22 | 1200 | 0.7039 | 0.6675 | | 0.3988 | 10.96 | 1600 | 0.5935 | 0.6149 | | 0.3179 | 13.7 | 2000 | 0.6477 | 0.5999 | | 0.2755 | 16.44 | 2400 | 0.5549 | 0.5798 | | 0.2343 | 19.18 | 2800 | 0.6626 | 0.5798 | | 0.2103 | 21.92 | 3200 | 0.6488 | 0.5674 | | 0.1877 | 24.66 | 3600 | 0.5874 | 0.5339 | | 0.1719 | 27.4 | 4000 | 0.6354 | 0.5389 | | 0.1603 | 30.14 | 4400 | 0.6612 | 0.5210 | | 0.1401 | 32.88 | 4800 | 0.6676 | 0.5131 | | 0.1286 | 35.62 | 5200 | 0.6366 | 0.5075 | | 0.1159 | 38.36 | 5600 | 0.6064 | 0.4977 | | 0.1084 | 41.1 | 6000 | 0.6530 | 0.4835 | | 0.0974 | 43.84 | 6400 | 0.6118 | 0.4853 | | 0.0879 | 46.58 | 6800 | 0.6316 | 0.4770 | | 0.0815 | 49.32 | 7200 | 0.6125 | 0.4664 | | 0.0708 | 52.05 | 7600 | 0.6449 | 0.4683 | | 0.0651 | 54.79 | 8000 | 0.6068 | 0.4571 | | 0.0555 | 57.53 | 8400 | 0.6305 | 0.4499 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
Fulccrum/distilbert-base-uncased-finetuned-sst2
d9a2ce86a714451d4ec02f0f998e9aa4bccf13b1
2022-06-02T10:28:03.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Fulccrum
null
Fulccrum/distilbert-base-uncased-finetuned-sst2
4
null
transformers
20,013
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-sst2 results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: sst2 metrics: - name: Accuracy type: accuracy value: 0.9128440366972477 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-sst2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.3739 - Accuracy: 0.9128 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.1885 | 1.0 | 4210 | 0.3092 | 0.9083 | | 0.1311 | 2.0 | 8420 | 0.3809 | 0.9071 | | 0.1036 | 3.0 | 12630 | 0.3739 | 0.9128 | | 0.0629 | 4.0 | 16840 | 0.4623 | 0.9083 | | 0.036 | 5.0 | 21050 | 0.5198 | 0.9048 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
YeRyeongLee/electra-base-discriminator-finetuned-filtered-0602
3ef5cdd8874a2ff54b9747a8c13b15953cd432c0
2022-06-02T14:29:58.000Z
[ "pytorch", "electra", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
YeRyeongLee
null
YeRyeongLee/electra-base-discriminator-finetuned-filtered-0602
4
null
transformers
20,014
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: electra-base-discriminator-finetuned-filtered-0602 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # electra-base-discriminator-finetuned-filtered-0602 This model is a fine-tuned version of [google/electra-base-discriminator](https://huggingface.co/google/electra-base-discriminator) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1685 - Accuracy: 0.9720 - F1: 0.9721 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 10 ### Training results ### Framework versions - Transformers 4.19.2 - Pytorch 1.9.0 - Datasets 1.16.1 - Tokenizers 0.12.1
huggingtweets/caballerogaudes
a64dea378bac1e724b7c088609a6226837fd2e38
2022-06-02T13:25:40.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/caballerogaudes
4
null
transformers
20,015
--- language: en thumbnail: http://www.huggingtweets.com/caballerogaudes/1654176335515/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1011998779061559297/5gOeFvds_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">CesarCaballeroGaudes</div> <div style="text-align: center; font-size: 14px;">@caballerogaudes</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from CesarCaballeroGaudes. | Data | CesarCaballeroGaudes | | --- | --- | | Tweets downloaded | 1724 | | Retweets | 808 | | Short tweets | 36 | | Tweets kept | 880 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2d76b6yf/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @caballerogaudes's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/i6nt6oo6) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/i6nt6oo6/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/caballerogaudes') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
AnonymousSub/fpdm_models_scibert_hybrid_epochs_4
9f13b2ddbc3baad5d8f470f8600ba750608d311a
2022-06-02T15:19:05.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/fpdm_models_scibert_hybrid_epochs_4
4
null
transformers
20,016
Entry not found
Zaafir/urdu-asr
2808c96838bef1c9ba8ae85122e15b97314ab8e6
2022-06-02T18:21:06.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Zaafir
null
Zaafir/urdu-asr
4
null
transformers
20,017
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: urdu-asr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # urdu-asr This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.5640 - Wer: 0.8546 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.5377 | 15.98 | 400 | 1.5640 | 0.8546 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 2.2.2 - Tokenizers 0.10.3
zoha/wav2vec2-base-common-voice-50p-persian-colab
a01925df7e44b23e48c41839e19df3be45182cbd
2022-06-24T10:30:56.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
zoha
null
zoha/wav2vec2-base-common-voice-50p-persian-colab
4
null
transformers
20,018
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-common-voice-50p-persian-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-common-voice-50p-persian-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0939 - Wer: 0.6537 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 16 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 40 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.0437 | 2.52 | 600 | 3.0170 | 1.0 | | 2.3667 | 5.04 | 1200 | 2.1575 | 0.9988 | | 0.9565 | 7.56 | 1800 | 1.0801 | 0.8410 | | 0.603 | 10.08 | 2400 | 0.9680 | 0.7678 | | 0.507 | 12.61 | 3000 | 0.9554 | 0.7470 | | 0.3754 | 15.13 | 3600 | 0.9524 | 0.7157 | | 0.4267 | 17.65 | 4200 | 0.9290 | 0.6980 | | 0.3308 | 20.17 | 4800 | 0.9557 | 0.7061 | | 0.2259 | 22.69 | 5400 | 0.9864 | 0.6830 | | 0.2486 | 25.21 | 6000 | 1.1086 | 0.6812 | | 0.1956 | 27.73 | 6600 | 1.0497 | 0.6805 | | 0.1835 | 30.25 | 7200 | 1.0660 | 0.6596 | | 0.1926 | 32.77 | 7800 | 1.1274 | 0.6600 | | 0.2765 | 35.29 | 8400 | 1.0882 | 0.6603 | | 0.2397 | 37.82 | 9000 | 1.0939 | 0.6537 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
Lorenzo1708/TC01_Trabalho01
b55107bc249424794272ca6c3ce7441dd9ec6f9a
2022-06-03T00:46:25.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Lorenzo1708
null
Lorenzo1708/TC01_Trabalho01
4
null
transformers
20,019
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: TC01_Trabalho01 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # TC01_Trabalho01 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2714 - Accuracy: 0.8979 - F1: 0.8972 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
clhuang/t5-hotel-review-sentiment
5892ceea906706254ca95d23dcd6b7d07362df25
2022-06-07T09:17:03.000Z
[ "pytorch", "t5", "text2text-generation", "tw", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
clhuang
null
clhuang/t5-hotel-review-sentiment
4
null
transformers
20,020
--- language: - tw tags: - t5 license: afl-3.0 --- # Hotel review multi-aspect sentiment classification using T5 We fine tune a T5 pretrained model to generate multi-aspect sentiment classes. The outputs are whole sentiment, aspect, and aspect+sentiment. T5情緒面向分類多任務,依據中文簡體孟子T5預訓練模型微調,訓練資料集只有3萬筆,做NLP研究與課程的範例模型用途。 # 如何測試 在右側測試區輸入不同的任務文字 範例1: 面向::早餐可以吃的饱,但是东西没了,不一定会补 範例2: 面向情绪::房间空调系统有烟味,可考虑做调整 範例3: 整体情绪::位置离逢甲很近 資料集: 資料集蒐集自線上訂房網站的顧客留言10050筆,整理成3項任務,總筆數變成為3倍,共有30150筆(資料由本實驗室成員YYChang蒐集)。 輸入與輸出格式:有三個種類任務分別為: '整体情绪::' '面向::', '面向情绪::' 舉例如下: 整体情绪::因为防疫期间早餐要在房内用餐,但房内电视下的平台有点窄,有点不方便,负面情绪 整体情绪::只是隔音有点不好,负面情绪 整体情绪::订的是豪华家庭房,空间还算大,正面情绪 整体情绪::床大,正面情绪 面向::房间有奇怪的味道,"整洁舒适面向,设施面向" 面向::干净、舒适、亲切,价钱好~,"整洁舒适面向,性价比面向" 面向::位置便利,可以在附近悠闲散步,至市区也不远,又临近大海,住得十分舒服。,"整洁舒适面向,地点面向" 面向情绪::反应无效,服务面向的负面情绪 面向情绪::床其实还蛮好睡,枕头床被还算干净,至少不会让皮肤痒。离火车站市场闹区近。,"整洁舒适面向的正面情绪,设施面向的正面情绪,地点面向的正面情绪" 面向情绪::设备真的太旧了,灯光太暗了。,设施面向的负面情绪 面向情绪::住四天,没人打扫清洁,第一天有盥洗用品,其余就没补充,热水供应不正常,交通尚可。,"整洁舒适面向的负面情绪,设施面向的负面情绪,地点面向的正面情绪" 面向情绪::饭店太过老旧,房内桌子衣橱近乎溃烂,浴室有用过未清的毛巾,排水孔有近半垃圾未清,马桶肮脏,未提供浴巾,莲蓬头只能手持无法挂著墙上使用,空调无法控制,壁纸剥落,走道昏暗,近车站。,"整洁舒适面向的负面情绪,设施面向的负面情绪,地点面向的正面情绪" 預訓練模型: 目前初步先使用"Langboat/mengzi-t5-base"簡體中文預訓練模型加以微調。 由"Langboat/mengzi-t5-base"官網資訊得知是由簡體中文語料所訓練,因此我們將繁體中文留言先轉成簡體中文,再進行微調訓練。 訓練平台: 使用Google colab Tesla T4 GPU進行了3 epochs訓練,費時55分鐘,val_loss約為0.0315,初步實驗,仍有很大的改善空間。 未來改善工作:下一階段會進行數據增強(由於蒐集的語料是不平衡),以及使用Google的mt5繁體簡體中文預訓練模型加以微調,微調語料就可直接使用繁體中文。 使用範例:(輸入繁體中文需先將文字轉為簡體中文,再丟給模型產出輸出文字) # 載入模型(使用的是simplet5套件) #pip install simplet5 from simplet5 import SimpleT5 model = SimpleT5() model.load_model("t5","clhuang/t5-hotel-review-sentiment", use_gpu=False) # 整體情緒分類任務 text="整体情绪::位置离逢甲很近" model.predict(text) #['正面情绪'] # 面向分類任務 text="面向::早餐可以吃的饱,但是东西没了,不一定会补" model.predict(text) #['服务面向'] # 面向分類+情绪分類任務 text='面向情绪::房间空调系统有烟味,可考虑做调整' model.predict(text) #['设施面向的负面情绪'] # 輸入輸出改成是繁(正)體中文,輸出三項分類任務資訊 from opencc import OpenCC t2s = OpenCC('t2s') # convert from Traditional Chinese to Simplified Chinese s2t = OpenCC('s2t') # convert from Simplified Chinese to Traditional Chinese class_types = ['整体情绪::','面向::','面向情绪::'] def predict(text): text = t2s.convert(text) response=[] for prefix in class_types: response.append(s2t.convert(model.predict(prefix+text)[0])) return response text='位置近市區,人員親切,食物好吃' predict(text) #['正面情緒', '服務面向,地點面向', '服務面向的正面情緒,地點面向的正面情緒']
NorrisPau/my-finetuned-bert
0ea11901f08fe59388287577fa7a22847040c517
2022-06-03T16:59:09.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
NorrisPau
null
NorrisPau/my-finetuned-bert
4
null
transformers
20,021
Entry not found
VictorZhu/results
011abb0b63d4535f80db189d67b54d015c8be547
2022-06-03T17:17:57.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
VictorZhu
null
VictorZhu/results
4
null
transformers
20,022
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: results results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # results This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1194 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.1428 | 1.0 | 510 | 0.1347 | | 0.0985 | 2.0 | 1020 | 0.1189 | | 0.0763 | 3.0 | 1530 | 0.1172 | | 0.0646 | 4.0 | 2040 | 0.1194 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu102 - Datasets 2.2.2 - Tokenizers 0.12.1
juancavallotti/t5-grammar-corruption
a3b74b9863dd51e5cb19f8b547363126971b2b67
2022-06-05T00:08:55.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
juancavallotti
null
juancavallotti/t5-grammar-corruption
4
null
transformers
20,023
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: t5-grammar-corruption results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-grammar-corruption This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 12 ### Training results ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
Jeevesh8/lecun_feather_berts-1
1e219793772f71bf8648913119440519cc57c036
2022-06-04T06:44:25.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/lecun_feather_berts-1
4
null
transformers
20,024
Entry not found
Jeevesh8/lecun_feather_berts-0
5a6ae9c7331ddfd222f501d9fb640abc84ab4a55
2022-06-04T06:44:21.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/lecun_feather_berts-0
4
null
transformers
20,025
Entry not found
Jeevesh8/lecun_feather_berts-66
1e0e6ec2f83ef98496037556143f756891b3eb79
2022-06-04T06:50:50.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/lecun_feather_berts-66
4
null
transformers
20,026
Entry not found
Jeevesh8/lecun_feather_berts-64
2581ea852f2673577a0c494116397d66418b3cce
2022-06-04T06:52:51.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/lecun_feather_berts-64
4
null
transformers
20,027
Entry not found
Jeevesh8/lecun_feather_berts-45
f20899576837998ccf4fdbfe3708ffc5ff601829
2022-06-04T06:50:49.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/lecun_feather_berts-45
4
null
transformers
20,028
Entry not found
Jeevesh8/lecun_feather_berts-42
8da1ce22470129be5a4bc3be979d769497a56038
2022-06-04T06:51:12.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/lecun_feather_berts-42
4
null
transformers
20,029
Entry not found
Jeevesh8/lecun_feather_berts-51
e5cbbb0cd566b185c9c008d5ff4545f67e369418
2022-06-04T06:50:50.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/lecun_feather_berts-51
4
null
transformers
20,030
Entry not found
Jeevesh8/lecun_feather_berts-44
ddc725aa0f2335fa35e9f616b5a3587320b28bc3
2022-06-04T06:50:49.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/lecun_feather_berts-44
4
null
transformers
20,031
Entry not found
Jeevesh8/lecun_feather_berts-40
e2eb73a54c8c72764d5cc83dab3f6fdcb57c117e
2022-06-04T06:50:50.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/lecun_feather_berts-40
4
null
transformers
20,032
Entry not found
Jeevesh8/lecun_feather_berts-54
b87ff72b2714c84870fbca1157337498bbce5e07
2022-06-04T06:50:48.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/lecun_feather_berts-54
4
null
transformers
20,033
Entry not found
Jeevesh8/lecun_feather_berts-46
b4fbc0e3c7b6fe929ff0ed8202bdf352265b8eb7
2022-06-04T06:50:53.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/lecun_feather_berts-46
4
null
transformers
20,034
Entry not found
Jeevesh8/lecun_feather_berts-36
c3abe51606499cb1ae938f50ac4d520f7a80b96f
2022-06-04T06:50:48.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/lecun_feather_berts-36
4
null
transformers
20,035
Entry not found
Jeevesh8/lecun_feather_berts-35
ec73a7e88f0a51e470514f4a7f087833f95aaf89
2022-06-04T06:50:51.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/lecun_feather_berts-35
4
null
transformers
20,036
Entry not found
Jeevesh8/lecun_feather_berts-48
aca369fc1dc6708ad0bf8dbe7d08e2709e3c3d52
2022-06-04T06:50:52.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/lecun_feather_berts-48
4
null
transformers
20,037
Entry not found
Jeevesh8/lecun_feather_berts-70
9f9d7f5bc2857ab276d961f523f995ce63bca90b
2022-06-04T06:50:47.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/lecun_feather_berts-70
4
null
transformers
20,038
Entry not found
Jeevesh8/lecun_feather_berts-65
82217de3249515ccbb3258c0a8595fd8511f11ef
2022-06-04T06:50:51.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/lecun_feather_berts-65
4
null
transformers
20,039
Entry not found
Jeevesh8/lecun_feather_berts-53
dfa48df77c6024a9522692a860b1c4650b68e691
2022-06-04T06:50:54.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/lecun_feather_berts-53
4
null
transformers
20,040
Entry not found
Jeevesh8/lecun_feather_berts-37
47deb889eeb6181a871d560a7eaad1d449fe9bdc
2022-06-04T06:50:49.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/lecun_feather_berts-37
4
null
transformers
20,041
Entry not found
Jeevesh8/lecun_feather_berts-49
ae2b7e0379edba7ec28eb303bd63920ff8281439
2022-06-04T06:50:52.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/lecun_feather_berts-49
4
null
transformers
20,042
Entry not found
Jeevesh8/lecun_feather_berts-71
cbf8d6baf5bdb0f386803bd68993bdcd4a2b0afb
2022-06-04T06:50:48.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/lecun_feather_berts-71
4
null
transformers
20,043
Entry not found
Jeevesh8/lecun_feather_berts-52
e2d8326e7e05324692f82285263363e138fad8cf
2022-06-04T06:50:51.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/lecun_feather_berts-52
4
null
transformers
20,044
Entry not found
Jeevesh8/lecun_feather_berts-38
7fa1d8488ffb01fc867505505aded66930911ab7
2022-06-04T06:50:51.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/lecun_feather_berts-38
4
null
transformers
20,045
Entry not found
Jeevesh8/lecun_feather_berts-43
48750428ecf3042944b4f65705ecd783ff0befc2
2022-06-04T06:53:18.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/lecun_feather_berts-43
4
null
transformers
20,046
Entry not found
Jeevesh8/lecun_feather_berts-41
2d8e194c925bd3f00f24f3ff479894e127e23f38
2022-06-04T06:51:12.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/lecun_feather_berts-41
4
null
transformers
20,047
Entry not found
Jeevesh8/lecun_feather_berts-47
92356704ef24fa94b3b837160e29c916424feeab
2022-06-04T06:50:53.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/lecun_feather_berts-47
4
null
transformers
20,048
Entry not found
Jeevesh8/lecun_feather_berts-39
d5975fa1ebe10f00c96b43109e51979548f603aa
2022-06-04T06:50:52.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/lecun_feather_berts-39
4
null
transformers
20,049
Entry not found
Jeevesh8/lecun_feather_berts-72
3cc0751db6e89cbe66daf9884998ff52354db83b
2022-06-04T06:53:02.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/lecun_feather_berts-72
4
null
transformers
20,050
Entry not found
Jeevesh8/lecun_feather_berts-50
d9b35edaa429c73968e20a2ca5db842948af129a
2022-06-04T06:51:06.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/lecun_feather_berts-50
4
null
transformers
20,051
Entry not found
Jeevesh8/lecun_feather_berts-56
8998a522e45a6833f4721c795470a1af739c3b7b
2022-06-04T06:50:57.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/lecun_feather_berts-56
4
null
transformers
20,052
Entry not found
Jeevesh8/lecun_feather_berts-61
56cb651d769b6718e4c75c904d3c739f8beb378b
2022-06-04T06:50:59.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/lecun_feather_berts-61
4
null
transformers
20,053
Entry not found
Jeevesh8/lecun_feather_berts-58
fd4957fa22bdaed3630178110a261f4b4eb7f348
2022-06-04T06:50:57.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/lecun_feather_berts-58
4
null
transformers
20,054
Entry not found
Jeevesh8/lecun_feather_berts-62
8ac8bea3aa244cef6d5aa66dc685e9c831449941
2022-06-04T06:53:06.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/lecun_feather_berts-62
4
null
transformers
20,055
Entry not found
Jeevesh8/lecun_feather_berts-30
d25bec7b687e79df52e5a20622a86cc3961d9360
2022-06-04T06:51:46.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/lecun_feather_berts-30
4
null
transformers
20,056
Entry not found
Jeevesh8/lecun_feather_berts-22
7509afb9727099e34bd6244277ae329ac5479440
2022-06-04T06:51:50.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/lecun_feather_berts-22
4
null
transformers
20,057
Entry not found
Jeevesh8/lecun_feather_berts-26
faed0d218759edbfb9d8691f7402affce98abb8e
2022-06-04T06:51:50.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/lecun_feather_berts-26
4
null
transformers
20,058
Entry not found
Jeevesh8/lecun_feather_berts-24
abccea36ba9e4cbfc1f0743f580ee064722dcadd
2022-06-04T06:51:44.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/lecun_feather_berts-24
4
null
transformers
20,059
Entry not found
Jeevesh8/lecun_feather_berts-29
4c6144d5f7b2b768ef3b999a168676b89950ce44
2022-06-04T06:51:39.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/lecun_feather_berts-29
4
null
transformers
20,060
Entry not found
Jeevesh8/lecun_feather_berts-33
53a59aa1a286d0bd84c429cd3d347f8f996d88cf
2022-06-04T06:51:13.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/lecun_feather_berts-33
4
null
transformers
20,061
Entry not found
Jeevesh8/lecun_feather_berts-27
a7aaa51fea5ef2089922fda8914ffbc46e837001
2022-06-04T06:51:47.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/lecun_feather_berts-27
4
null
transformers
20,062
Entry not found
Jeevesh8/lecun_feather_berts-31
2db1f557d2e5286e3da1c52033cd7635b3ace297
2022-06-04T06:51:24.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/lecun_feather_berts-31
4
null
transformers
20,063
Entry not found
Jeevesh8/lecun_feather_berts-67
d60131bd43e913a3b389588cb30f6ac31803d7ab
2022-06-04T06:50:50.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/lecun_feather_berts-67
4
null
transformers
20,064
Entry not found
Jeevesh8/lecun_feather_berts-68
a7a8465258375cbab5feee61ea3cbf53c729772d
2022-06-04T06:50:50.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/lecun_feather_berts-68
4
null
transformers
20,065
Entry not found
Jeevesh8/lecun_feather_berts-20
dcedb1bd2cd6b81c03651576011bf729a110d85a
2022-06-04T06:51:47.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/lecun_feather_berts-20
4
null
transformers
20,066
Entry not found
Jeevesh8/lecun_feather_berts-19
32ba7b85a731a52995b85899b1e52eeb19bbedf2
2022-06-04T06:52:09.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/lecun_feather_berts-19
4
null
transformers
20,067
Entry not found
Jeevesh8/lecun_feather_berts-18
8fa87c086ddab584c406e722a040d4a61074659e
2022-06-04T06:52:09.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/lecun_feather_berts-18
4
null
transformers
20,068
Entry not found
Jeevesh8/lecun_feather_berts-11
60aed57782fda88d279cc591d886a4f3e1c0d4e8
2022-06-04T06:52:11.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/lecun_feather_berts-11
4
null
transformers
20,069
Entry not found
Jeevesh8/lecun_feather_berts-2
b400a59459b7aee7909b9a1f5c2413d1df3e1703
2022-06-04T06:52:15.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/lecun_feather_berts-2
4
null
transformers
20,070
Entry not found
Jeevesh8/lecun_feather_berts-10
8d83b0e51765ac9779637c4d7d2868e88cfd4494
2022-06-04T06:52:10.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/lecun_feather_berts-10
4
null
transformers
20,071
Entry not found
Jeevesh8/lecun_feather_berts-3
3d7fc23796c0fbbbc87e71bd8576442f7d267768
2022-06-04T06:52:16.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/lecun_feather_berts-3
4
null
transformers
20,072
Entry not found
Jeevesh8/lecun_feather_berts-14
ce0309bfd371c88c84e7e0f35bcb65c814a2b94f
2022-06-04T06:52:04.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/lecun_feather_berts-14
4
null
transformers
20,073
Entry not found
Jeevesh8/lecun_feather_berts-5
a4dd1c53ac33687bb1508e965d423532195324d0
2022-06-04T06:52:19.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/lecun_feather_berts-5
4
null
transformers
20,074
Entry not found
Jeevesh8/lecun_feather_berts-4
d63981ad857b7940906aac7bdd8e2bb40c73673a
2022-06-04T06:52:17.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/lecun_feather_berts-4
4
null
transformers
20,075
Entry not found
Jeevesh8/lecun_feather_berts-8
2f63a88b39f55c7bc55c2ad546cf86d8958512b6
2022-06-04T06:52:15.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/lecun_feather_berts-8
4
null
transformers
20,076
Entry not found
Jeevesh8/lecun_feather_berts-93
76189737f2e22936a6e1ca4e81c641dcf598a3ca
2022-06-04T06:50:54.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/lecun_feather_berts-93
4
null
transformers
20,077
Entry not found
Jeevesh8/lecun_feather_berts-92
30da68d868c0878808ea6575a471e0bd4341845d
2022-06-04T06:50:55.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/lecun_feather_berts-92
4
null
transformers
20,078
Entry not found
Jeevesh8/lecun_feather_berts-91
df6a7b0d330289ce9d95cc48905aa363ab41014a
2022-06-04T06:51:04.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/lecun_feather_berts-91
4
null
transformers
20,079
Entry not found
Jeevesh8/lecun_feather_berts-90
dfcfb29ec58b01d1e68d9a0a2949a1ae93321e46
2022-06-04T06:50:59.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/lecun_feather_berts-90
4
null
transformers
20,080
Entry not found
Jeevesh8/lecun_feather_berts-84
e9be863cfe3179733ffbf4771fd9d4b0e391362e
2022-06-04T06:51:05.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/lecun_feather_berts-84
4
null
transformers
20,081
Entry not found
Jeevesh8/lecun_feather_berts-85
bd9ad60bef88594428cf7b764e57911660a025fb
2022-06-04T06:51:12.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/lecun_feather_berts-85
4
null
transformers
20,082
Entry not found
Jeevesh8/lecun_feather_berts-88
7d4302feb02b1166948568ab5a0840644ee946e1
2022-06-04T06:51:04.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/lecun_feather_berts-88
4
null
transformers
20,083
Entry not found
Jeevesh8/lecun_feather_berts-75
aa273e04b72f19ec6b959077409a6c7a491f0130
2022-06-04T06:51:09.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/lecun_feather_berts-75
4
null
transformers
20,084
Entry not found
Jeevesh8/lecun_feather_berts-89
08da7588c05d95da35fe6d3d7339ac1b8558c9a0
2022-06-04T06:51:03.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/lecun_feather_berts-89
4
null
transformers
20,085
Entry not found
Jeevesh8/lecun_feather_berts-86
880773762b414e194ef6aff265e6771a24a2aea0
2022-06-04T06:50:59.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/lecun_feather_berts-86
4
null
transformers
20,086
Entry not found
Jeevesh8/lecun_feather_berts-80
f864ccb95486e4104bb6ee150fbed5af4fcc075a
2022-06-04T06:51:11.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/lecun_feather_berts-80
4
null
transformers
20,087
Entry not found
Jeevesh8/lecun_feather_berts-82
d2a38c080dd9665fa6f7cf7fc049da10308da8b7
2022-06-04T06:51:43.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/lecun_feather_berts-82
4
null
transformers
20,088
Entry not found
Jeevesh8/lecun_feather_berts-81
1e81abb6b8ac9055c5bc07d7d852b361348232bd
2022-06-04T06:51:10.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/lecun_feather_berts-81
4
null
transformers
20,089
Entry not found
Jeevesh8/lecun_feather_berts-83
78fbd3f4ed2ce5cc74aa82f3d65699f41462fa38
2022-06-04T06:51:11.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/lecun_feather_berts-83
4
null
transformers
20,090
Entry not found
Jeevesh8/lecun_feather_berts-77
74c16ee260e4bbfe03dc43a19ff4c17a5bd09d07
2022-06-04T06:51:07.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/lecun_feather_berts-77
4
null
transformers
20,091
Entry not found
Jeevesh8/lecun_feather_berts-76
5580cc9dda7ba5fd90445c07e04ef0cb66a11fea
2022-06-04T06:51:09.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/lecun_feather_berts-76
4
null
transformers
20,092
Entry not found
Jeevesh8/lecun_feather_berts-79
685cf4896cd7b108811fd5582ff7e0223418b19a
2022-06-04T06:51:10.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/lecun_feather_berts-79
4
null
transformers
20,093
Entry not found
Jeevesh8/lecun_feather_berts-78
099b8542949d37f1ab37314e2d7145ba312fbbb4
2022-06-04T06:51:12.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/lecun_feather_berts-78
4
null
transformers
20,094
Entry not found
Jeevesh8/lecun_feather_berts-98
a425c04238e1415f9364bc3e2a9167f0e6a95478
2022-06-04T06:53:29.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/lecun_feather_berts-98
4
null
transformers
20,095
Entry not found
Jeevesh8/lecun_feather_berts-97
a2f9c3b6d5a86745a669d82843345891a88b722e
2022-06-04T06:53:35.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/lecun_feather_berts-97
4
null
transformers
20,096
Entry not found
Jeevesh8/lecun_feather_berts-99
7e15b2d8bacc6fc179b3f5577441e49d5122d8f9
2022-06-04T06:53:31.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/lecun_feather_berts-99
4
null
transformers
20,097
Entry not found
Jeevesh8/lecun_feather_berts-96
7d5809840329f98ca03b09a6f406e7c1d30ba51d
2022-06-04T06:53:30.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/lecun_feather_berts-96
4
null
transformers
20,098
Entry not found
Jeevesh8/lecun_feather_berts-95
38a5f89b6d08d90363163ad9b80fbb8d6e39d136
2022-06-04T06:53:24.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/lecun_feather_berts-95
4
null
transformers
20,099
Entry not found