modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
connectivity/bert_ft_qqp-68
d37e8e6bb16b99780723d84337483bd680bec84c
2022-05-21T16:36:14.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
connectivity
null
connectivity/bert_ft_qqp-68
4
null
transformers
19,900
Entry not found
connectivity/bert_ft_qqp-69
69ae44f0a6045a008d0408812da21aae62af916f
2022-05-21T16:36:19.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
connectivity
null
connectivity/bert_ft_qqp-69
4
null
transformers
19,901
Entry not found
connectivity/bert_ft_qqp-71
707140f2abb70c1570785550cd5cd3d024a0fd25
2022-05-21T16:36:27.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
connectivity
null
connectivity/bert_ft_qqp-71
4
null
transformers
19,902
Entry not found
connectivity/bert_ft_qqp-72
632ae0bbd486baf765faa29200993d5d0b3d725d
2022-05-21T16:36:31.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
connectivity
null
connectivity/bert_ft_qqp-72
4
null
transformers
19,903
Entry not found
connectivity/bert_ft_qqp-73
5ea448df9522b83438f9ef1bd018b5ded296a2a1
2022-05-21T16:36:35.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
connectivity
null
connectivity/bert_ft_qqp-73
4
null
transformers
19,904
Entry not found
connectivity/cola_6ep_ft-1
31349a7432f85589807b46d90510e5a68f99afaf
2022-05-21T16:43:32.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
connectivity
null
connectivity/cola_6ep_ft-1
4
null
transformers
19,905
Entry not found
connectivity/bert_ft_qqp-74
3bb894ac2f88ee1cb9f5a770fdf601d5717be4f8
2022-05-21T16:36:39.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
connectivity
null
connectivity/bert_ft_qqp-74
4
null
transformers
19,906
Entry not found
connectivity/cola_6ep_ft-2
98442596137833c6849aacdd82df4efe24da0363
2022-05-21T16:43:33.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
connectivity
null
connectivity/cola_6ep_ft-2
4
null
transformers
19,907
Entry not found
connectivity/cola_6ep_ft-3
c4508da4ff5159fa260ee15cd0c8ed899bb4240c
2022-05-21T16:43:33.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
connectivity
null
connectivity/cola_6ep_ft-3
4
null
transformers
19,908
Entry not found
connectivity/cola_6ep_ft-4
979373e908ec43c3b3d4c155e04fd74e3419cc68
2022-05-21T16:43:34.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
connectivity
null
connectivity/cola_6ep_ft-4
4
null
transformers
19,909
Entry not found
connectivity/bert_ft_qqp-75
b1ba916a216627dd29edbadf93d6246dc29e77a1
2022-05-21T16:36:43.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
connectivity
null
connectivity/bert_ft_qqp-75
4
null
transformers
19,910
Entry not found
connectivity/cola_6ep_ft-5
ece4be0f3c8d6a233841583654a8860f31aa70f9
2022-05-21T16:43:35.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
connectivity
null
connectivity/cola_6ep_ft-5
4
null
transformers
19,911
Entry not found
connectivity/cola_6ep_ft-6
0a8243f1a40daf664335e1261637fb09255c8f90
2022-05-21T16:43:35.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
connectivity
null
connectivity/cola_6ep_ft-6
4
null
transformers
19,912
Entry not found
connectivity/cola_6ep_ft-7
262cd8a60d76766626cf85ed927512461a7f89fa
2022-05-21T16:43:36.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
connectivity
null
connectivity/cola_6ep_ft-7
4
null
transformers
19,913
Entry not found
connectivity/bert_ft_qqp-76
b05217380a1032df2fcdc3225dfe1f50573676da
2022-05-21T16:36:48.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
connectivity
null
connectivity/bert_ft_qqp-76
4
null
transformers
19,914
Entry not found
connectivity/cola_6ep_ft-8
de3814defa93a41e9b4a8d7ed46d1bcd1d86b94c
2022-05-21T16:43:36.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
connectivity
null
connectivity/cola_6ep_ft-8
4
null
transformers
19,915
Entry not found
connectivity/cola_6ep_ft-9
95be824bd118dd89b0d73778aea6c5b258b36bda
2022-05-21T16:43:37.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
connectivity
null
connectivity/cola_6ep_ft-9
4
null
transformers
19,916
Entry not found
connectivity/cola_6ep_ft-10
03459c23bf46787327e666661c7448df8b2526e0
2022-05-21T16:43:38.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
connectivity
null
connectivity/cola_6ep_ft-10
4
null
transformers
19,917
Entry not found
connectivity/cola_6ep_ft-11
881a45d477cd283f71c624989c784cf898a93f34
2022-05-21T16:43:39.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
connectivity
null
connectivity/cola_6ep_ft-11
4
null
transformers
19,918
Entry not found
connectivity/cola_6ep_ft-12
4ffa69d9d4da3367f3935d998b1ae8f17ff69644
2022-05-21T16:43:39.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
connectivity
null
connectivity/cola_6ep_ft-12
4
null
transformers
19,919
Entry not found
connectivity/cola_6ep_ft-13
6db54919791c2a3c385df69f5ee76b6f99dcc3da
2022-05-21T16:43:40.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
connectivity
null
connectivity/cola_6ep_ft-13
4
null
transformers
19,920
Entry not found
connectivity/cola_6ep_ft-14
7f21aeef7fcaec780e0a878fec03cc386948f071
2022-05-21T16:43:40.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
connectivity
null
connectivity/cola_6ep_ft-14
4
null
transformers
19,921
Entry not found
connectivity/cola_6ep_ft-15
3f6f3cbea5927dd03337c461d7a6b9e4a8ba152a
2022-05-21T16:43:41.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
connectivity
null
connectivity/cola_6ep_ft-15
4
null
transformers
19,922
Entry not found
connectivity/bert_ft_qqp-77
b77b5b44a957d94c5d4705eb2e08ac01fa8c63f0
2022-05-21T16:36:52.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
connectivity
null
connectivity/bert_ft_qqp-77
4
null
transformers
19,923
Entry not found
connectivity/cola_6ep_ft-16
4b977ac88df3254ccae2be13235a110516245461
2022-05-21T16:43:41.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
connectivity
null
connectivity/cola_6ep_ft-16
4
null
transformers
19,924
Entry not found
connectivity/cola_6ep_ft-17
e4f45bec04a9feaa35007a8828b6b34edef2f3d1
2022-05-21T16:43:42.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
connectivity
null
connectivity/cola_6ep_ft-17
4
null
transformers
19,925
Entry not found
connectivity/cola_6ep_ft-18
ab9d16fddb7e2734f2dcb3833c7f2e0cb544bf37
2022-05-21T16:43:43.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
connectivity
null
connectivity/cola_6ep_ft-18
4
null
transformers
19,926
Entry not found
connectivity/cola_6ep_ft-19
fb35e587400d9a0db28c0b6dbcd76a0de718825b
2022-05-21T16:43:43.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
connectivity
null
connectivity/cola_6ep_ft-19
4
null
transformers
19,927
Entry not found
connectivity/cola_6ep_ft-20
4bcd65862a371a67e34c62d77c2cab8acc4a6588
2022-05-21T16:43:44.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
connectivity
null
connectivity/cola_6ep_ft-20
4
null
transformers
19,928
Entry not found
connectivity/cola_6ep_ft-21
3ddb842dc4cd4706ffdf75447bcea8b493c3d661
2022-05-21T16:43:44.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
connectivity
null
connectivity/cola_6ep_ft-21
4
null
transformers
19,929
Entry not found
connectivity/cola_6ep_ft-22
292e76fed3f93a18e1b051edc5dafabc5a6c6af9
2022-05-21T16:43:45.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
connectivity
null
connectivity/cola_6ep_ft-22
4
null
transformers
19,930
Entry not found
connectivity/cola_6ep_ft-23
bdea85c7220d3fa93520cec4400b7f75c142d210
2022-05-21T16:43:45.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
connectivity
null
connectivity/cola_6ep_ft-23
4
null
transformers
19,931
Entry not found
connectivity/bert_ft_qqp-78
4a454f4fa7f1705a87f19b116459c539db9c8cb3
2022-05-21T16:36:57.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
connectivity
null
connectivity/bert_ft_qqp-78
4
null
transformers
19,932
Entry not found
connectivity/cola_6ep_ft-24
b42a75b3d57fad3f7594aa266ff95338359d8aed
2022-05-21T16:43:46.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
connectivity
null
connectivity/cola_6ep_ft-24
4
null
transformers
19,933
Entry not found
connectivity/cola_6ep_ft-25
177a6cad0477b2aaa6adeac03c60e2e7e8710a2f
2022-05-21T16:43:47.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
connectivity
null
connectivity/cola_6ep_ft-25
4
null
transformers
19,934
Entry not found
connectivity/cola_6ep_ft-26
dd52fb97ae208a4ff1d5525e7fd00c4ffba20f93
2022-05-21T16:43:47.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
connectivity
null
connectivity/cola_6ep_ft-26
4
null
transformers
19,935
Entry not found
connectivity/cola_6ep_ft-27
7ab29204f644e011c37aba96f8e44d5aafe12323
2022-05-21T16:43:48.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
connectivity
null
connectivity/cola_6ep_ft-27
4
null
transformers
19,936
Entry not found
connectivity/cola_6ep_ft-28
23ad89853315e85578d1b4d9b1b86283daf8798b
2022-05-21T16:43:48.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
connectivity
null
connectivity/cola_6ep_ft-28
4
null
transformers
19,937
Entry not found
connectivity/cola_6ep_ft-29
6e794d5400fec939e15d523cef4f602174a1ab97
2022-05-21T16:43:49.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
connectivity
null
connectivity/cola_6ep_ft-29
4
null
transformers
19,938
Entry not found
connectivity/cola_6ep_ft-30
45fdd87ec23d926d6cf35d1dbb0c3a1bdf637a33
2022-05-21T16:43:49.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
connectivity
null
connectivity/cola_6ep_ft-30
4
null
transformers
19,939
Entry not found
connectivity/cola_6ep_ft-31
84b542808b342b9da42d9a822eeda686afb6e1f0
2022-05-21T16:43:50.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
connectivity
null
connectivity/cola_6ep_ft-31
4
null
transformers
19,940
Entry not found
connectivity/bert_ft_qqp-79
f2397ebe0e50b1269bcf851fe99de7dfab5c0162
2022-05-21T16:37:07.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
connectivity
null
connectivity/bert_ft_qqp-79
4
null
transformers
19,941
Entry not found
connectivity/cola_6ep_ft-32
66ffb4febac9afce847a74544e80de31ef9680a8
2022-05-21T16:43:51.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
connectivity
null
connectivity/cola_6ep_ft-32
4
null
transformers
19,942
Entry not found
connectivity/cola_6ep_ft-33
652ab62e39faa7573c66e0eed67c32a9e7d8fdff
2022-05-21T16:43:51.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
connectivity
null
connectivity/cola_6ep_ft-33
4
null
transformers
19,943
Entry not found
connectivity/cola_6ep_ft-34
825ed41b6fe0b417f02877863699cc109f048ceb
2022-05-21T16:43:52.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
connectivity
null
connectivity/cola_6ep_ft-34
4
null
transformers
19,944
Entry not found
connectivity/cola_6ep_ft-35
c04d2f627a4cb708ed0c8f7dfd6bc4d25b8a7192
2022-05-21T16:43:52.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
connectivity
null
connectivity/cola_6ep_ft-35
4
null
transformers
19,945
Entry not found
connectivity/cola_6ep_ft-36
4ea15fa120e9dc4d4e36effd04326198969770ab
2022-05-21T16:43:53.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
connectivity
null
connectivity/cola_6ep_ft-36
4
null
transformers
19,946
Entry not found
connectivity/cola_6ep_ft-37
7faafcc6c7c3ff0307542ce8585a30586c93e241
2022-05-21T16:43:53.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
connectivity
null
connectivity/cola_6ep_ft-37
4
null
transformers
19,947
Entry not found
connectivity/bert_ft_qqp-82
346c15284ff0cb769f3ce78fcfa21d6b27b24c57
2022-05-21T16:37:24.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
connectivity
null
connectivity/bert_ft_qqp-82
4
null
transformers
19,948
Entry not found
connectivity/bert_ft_qqp-84
1aaa1167e3f5404418c42a543f6fefb65e5d4019
2022-05-21T16:37:31.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
connectivity
null
connectivity/bert_ft_qqp-84
4
null
transformers
19,949
Entry not found
connectivity/bert_ft_qqp-87
42ae00e9c194b9264cdc5acf39e8248cb070527a
2022-05-21T16:37:42.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
connectivity
null
connectivity/bert_ft_qqp-87
4
null
transformers
19,950
Entry not found
connectivity/bert_ft_qqp-88
387c2268033c48d2584e923ff641e9fd23044c24
2022-05-21T16:37:45.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
connectivity
null
connectivity/bert_ft_qqp-88
4
null
transformers
19,951
Entry not found
connectivity/bert_ft_qqp-89
a6fe58bf040cb0b933af2b9224e6c2644d518f48
2022-05-21T16:37:49.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
connectivity
null
connectivity/bert_ft_qqp-89
4
null
transformers
19,952
Entry not found
connectivity/bert_ft_qqp-91
1a0ad1c6b61368a290aedb8e4940f024dbb15cb2
2022-05-21T16:37:56.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
connectivity
null
connectivity/bert_ft_qqp-91
4
null
transformers
19,953
Entry not found
connectivity/bert_ft_qqp-92
feed54822c9efc5c08b8561ce68467bed9c35fb4
2022-05-21T16:38:01.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
connectivity
null
connectivity/bert_ft_qqp-92
4
null
transformers
19,954
Entry not found
connectivity/bert_ft_qqp-93
025a9dff8ac16ee714601f5d85d769805cec6e49
2022-05-21T16:38:08.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
connectivity
null
connectivity/bert_ft_qqp-93
4
null
transformers
19,955
Entry not found
connectivity/bert_ft_qqp-94
f99c09f684912695b59b882cabbef21afe25fb4b
2022-05-21T16:38:14.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
connectivity
null
connectivity/bert_ft_qqp-94
4
null
transformers
19,956
Entry not found
connectivity/bert_ft_qqp-95
a57489a428a6db08c3e8109753eca8d95a8bb1c7
2022-05-21T16:38:18.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
connectivity
null
connectivity/bert_ft_qqp-95
4
null
transformers
19,957
Entry not found
connectivity/bert_ft_qqp-99
63e80d8b70cb6d574cc7ca84c1b774e1728ee090
2022-05-21T16:38:33.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
connectivity
null
connectivity/bert_ft_qqp-99
4
null
transformers
19,958
Entry not found
Dizzykong/gpt2-large-final
05d574a9153b4544ba85081041f538b41c87d65a
2022-05-23T06:39:14.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "model-index" ]
text-generation
false
Dizzykong
null
Dizzykong/gpt2-large-final
4
null
transformers
19,959
--- tags: - generated_from_trainer model-index: - name: gpt2-large-final results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-large-final This model is a fine-tuned version of [gpt2-large](https://huggingface.co/gpt2-large) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.5 ### Training results ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
brever/wav2vec2-base-demo-colab
b2be6d82e74320c3120cc72577a9943ee61218aa
2022-05-22T04:56:51.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
brever
null
brever/wav2vec2-base-demo-colab
4
null
transformers
19,960
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3944 - Wer: 0.3142 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.4086 | 3.45 | 500 | 1.1494 | 0.8509 | | 0.5968 | 6.9 | 1000 | 0.4306 | 0.4169 | | 0.2363 | 10.34 | 1500 | 0.3820 | 0.3669 | | 0.1365 | 13.79 | 2000 | 0.3863 | 0.3487 | | 0.0916 | 17.24 | 2500 | 0.3851 | 0.3391 | | 0.0704 | 20.69 | 3000 | 0.3759 | 0.3271 | | 0.0537 | 24.14 | 3500 | 0.3747 | 0.3222 | | 0.0413 | 27.59 | 4000 | 0.3944 | 0.3142 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.14.0 - Tokenizers 0.10.3
eslamxm/mt5-base-finetuned-arfa
d4c453a94d5b04352cffffc300d5796ffb0c3091
2022-05-23T01:44:07.000Z
[ "pytorch", "tensorboard", "mt5", "text2text-generation", "transformers", "summarization", "arabic", "ar", "fa", "persian", "Abstractive Summarization", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
summarization
false
eslamxm
null
eslamxm/mt5-base-finetuned-arfa
4
null
transformers
19,961
--- license: apache-2.0 tags: - summarization - arabic - ar - fa - persian - mt5 - Abstractive Summarization - generated_from_trainer model-index: - name: mt5-base-finetuned-arfa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-base-finetuned-arfa This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.1784 - Rouge-1: 25.68 - Rouge-2: 11.8 - Rouge-l: 22.99 - Gen Len: 18.99 - Bertscore: 71.78 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge-1 | Rouge-2 | Rouge-l | Gen Len | Bertscore | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:-------:|:---------:| | 3.9866 | 1.0 | 2649 | 3.3635 | 21.94 | 8.59 | 19.5 | 18.99 | 70.6 | | 3.5637 | 2.0 | 5298 | 3.2557 | 24.01 | 10.0 | 21.26 | 18.99 | 71.22 | | 3.4016 | 3.0 | 7947 | 3.2005 | 24.4 | 10.43 | 21.72 | 18.98 | 71.36 | | 3.2985 | 4.0 | 10596 | 3.1784 | 24.68 | 10.73 | 22.01 | 18.98 | 71.51 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
globuslabs/ScholarBERT_10_WB
0a74916473c7fc91cdf6a2ec3df5126ff24ff734
2022-05-24T03:16:44.000Z
[ "pytorch", "bert", "fill-mask", "en", "arxiv:2205.11342", "transformers", "science", "multi-displinary", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
globuslabs
null
globuslabs/ScholarBERT_10_WB
4
null
transformers
19,962
--- language: en tags: - science - multi-displinary license: apache-2.0 --- # ScholarBERT_10_WB Model This is the **ScholarBERT_10_WB** variant of the ScholarBERT model family. The model is pretrained on a large collection of scientific research articles (**22.1B tokens**). Additionally, the pretraining data also includes the Wikipedia+BookCorpus, which are used to pretrain the [BERT-base](https://huggingface.co/bert-base-cased) and [BERT-large](https://huggingface.co/bert-large-cased) models. This is a **cased** (case-sensitive) model. The tokenizer will not convert all inputs to lower-case by default. The model is based on the same architecture as [BERT-large](https://huggingface.co/bert-large-cased) and has a total of 340M parameters. # Model Architecture | Hyperparameter | Value | |-----------------|:-------:| | Layers | 24 | | Hidden Size | 1024 | | Attention Heads | 16 | | Total Parameters | 340M | # Training Dataset The vocab and the model are pertrained on **10% of the PRD** scientific literature dataset and Wikipedia+BookCorpus. The PRD dataset is provided by Public.Resource.Org, Inc. (“Public Resource”), a nonprofit organization based in California. This dataset was constructed from a corpus of journal article files, from which We successfully extracted text from 75,496,055 articles from 178,928 journals. The articles span across Arts & Humanities, Life Sciences & Biomedicine, Physical Sciences, Social Sciences, and Technology. The distribution of articles is shown below. ![corpus pie chart](https://huggingface.co/globuslabs/ScholarBERT/resolve/main/corpus_pie_chart.png) # BibTeX entry and citation info If using this model, please cite this paper: ``` @misc{hong2022scholarbert, doi = {10.48550/ARXIV.2205.11342}, url = {https://arxiv.org/abs/2205.11342}, author = {Hong, Zhi and Ajith, Aswathy and Pauloski, Gregory and Duede, Eamon and Malamud, Carl and Magoulas, Roger and Chard, Kyle and Foster, Ian}, title = {ScholarBERT: Bigger is Not Always Better}, publisher = {arXiv}, year = {2022} } ```
krotima1/mbart-at2h-cs
9a8788e1bf095afcd6a2f4c44c48a079c0387c3c
2022-05-23T20:34:40.000Z
[ "pytorch", "mbart", "text2text-generation", "cs", "dataset:private Czech News Center dataset news-based", "dataset:SumeCzech dataset news-based", "transformers", "abstractive summarization", "mbart-cc25", "Czech", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
krotima1
null
krotima1/mbart-at2h-cs
4
null
transformers
19,963
--- language: - cs - cs tags: - abstractive summarization - mbart-cc25 - Czech license: apache-2.0 datasets: - private Czech News Center dataset news-based - SumeCzech dataset news-based metrics: - rouge - rougeraw --- # mBART fine-tuned model for Czech abstractive summarization (AT2H-CS) This model is a fine-tuned checkpoint of [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25) on the Czech news dataset to produce Czech abstractive summaries. ## Task The model deals with the task ``Abstract + Text to Headline`` (AT2H) which consists in generating a one- or two-sentence summary considered as a headline from a Czech news text. ## Dataset The model has been trained on a large Czech news dataset developed by a concatenation of two datasets, the private CNC dataset provided by Czech News Center and [SumeCzech](https://ufal.mff.cuni.cz/sumeczech) dataset. The dataset includes around 1.75M Czech news-based documents consisting of a Headline, Abstract, and Full-text sections. Truncation and padding were set to 512 tokens for the encoder and 64 for the decoder. ## Training The model has been trained on 1x NVIDIA Tesla A100 40GB for 40 hours, 1x NVIDIA Tesla V100 32GB for 20 hours, and 4x NVIDIA Tesla A100 40GB for 20 hours. During training, the model has seen 7936K documents corresponding to roughly 5 epochs. # Use Assuming that you are using the provided Summarizer.ipynb file. ```python def summ_config(): cfg = OrderedDict([ # summarization model - checkpoint from website ("model_name", "krotima1/mbart-at2h-cs"), ("inference_cfg", OrderedDict([ ("num_beams", 4), ("top_k", 40), ("top_p", 0.92), ("do_sample", True), ("temperature", 0.89), ("repetition_penalty", 1.2), ("no_repeat_ngram_size", None), ("early_stopping", True), ("max_length", 64), ("min_length", 10), ])), #texts to summarize ("text", [ "Input your Czech text", ] ), ]) return cfg cfg = summ_config() #load model model = AutoModelForSeq2SeqLM.from_pretrained(cfg["model_name"]) tokenizer = AutoTokenizer.from_pretrained(cfg["model_name"]) # init summarizer summarize = Summarizer(model, tokenizer, cfg["inference_cfg"]) summarize(cfg["text"]) ```
juancavallotti/bert_sentence_classifier
6cf4f7eafeb370d2c88872065edf55c690e279c7
2022-05-23T08:40:19.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
juancavallotti
null
juancavallotti/bert_sentence_classifier
4
null
transformers
19,964
--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 - precision - recall model-index: - name: bert_sentence_classifier results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert_sentence_classifier This model is a fine-tuned version of [bert-large-cased](https://huggingface.co/bert-large-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.0040 - F1: 0.6123 - Precision: 0.6123 - Recall: 0.6123 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Precision | Recall | |:-------------:|:-----:|:------:|:---------------:|:------:|:---------:|:------:| | 2.0049 | 0.04 | 500 | 1.5854 | 0.5693 | 0.5693 | 0.5693 | | 1.552 | 0.07 | 1000 | 1.4428 | 0.6131 | 0.6131 | 0.6131 | | 1.502 | 0.11 | 1500 | 1.3977 | 0.6213 | 0.6213 | 0.6213 | | 1.4515 | 0.14 | 2000 | 1.3926 | 0.6200 | 0.6200 | 0.6200 | | 1.43 | 0.18 | 2500 | 1.3553 | 0.6350 | 0.6350 | 0.6350 | | 1.413 | 0.21 | 3000 | 1.3461 | 0.6346 | 0.6346 | 0.6346 | | 1.4109 | 0.25 | 3500 | 1.3199 | 0.6496 | 0.6496 | 0.6496 | | 1.3853 | 0.28 | 4000 | 1.3338 | 0.6406 | 0.6406 | 0.6406 | | 1.3788 | 0.32 | 4500 | 1.3306 | 0.6471 | 0.6471 | 0.6471 | | 1.3585 | 0.35 | 5000 | 1.3295 | 0.6410 | 0.6410 | 0.6410 | | 1.356 | 0.39 | 5500 | 1.3025 | 0.6441 | 0.6441 | 0.6441 | | 1.3534 | 0.42 | 6000 | 1.3197 | 0.6406 | 0.6406 | 0.6406 | | 1.3324 | 0.46 | 6500 | 1.2932 | 0.6436 | 0.6436 | 0.6436 | | 1.3563 | 0.49 | 7000 | 1.3202 | 0.6488 | 0.6488 | 0.6488 | | 1.3121 | 0.53 | 7500 | 1.3024 | 0.6428 | 0.6428 | 0.6428 | | 1.3092 | 0.56 | 8000 | 1.3142 | 0.6419 | 0.6419 | 0.6419 | | 1.3769 | 0.6 | 8500 | 1.2974 | 0.6441 | 0.6441 | 0.6441 | | 1.3487 | 0.63 | 9000 | 1.2882 | 0.6556 | 0.6556 | 0.6556 | | 1.3475 | 0.67 | 9500 | 1.2928 | 0.6441 | 0.6441 | 0.6441 | | 1.3038 | 0.7 | 10000 | 1.2846 | 0.6488 | 0.6488 | 0.6488 | | 1.3371 | 0.74 | 10500 | 1.2894 | 0.6591 | 0.6591 | 0.6591 | | 1.3222 | 0.77 | 11000 | 1.2745 | 0.6535 | 0.6535 | 0.6535 | | 1.2983 | 0.81 | 11500 | 1.2832 | 0.6526 | 0.6526 | 0.6526 | | 1.3505 | 0.84 | 12000 | 1.2812 | 0.6531 | 0.6531 | 0.6531 | | 1.2752 | 0.88 | 12500 | 1.2629 | 0.6578 | 0.6578 | 0.6578 | | 1.3115 | 0.91 | 13000 | 1.2787 | 0.6453 | 0.6453 | 0.6453 | | 1.3353 | 0.95 | 13500 | 1.2707 | 0.6539 | 0.6539 | 0.6539 | | 1.2982 | 0.98 | 14000 | 1.2618 | 0.6569 | 0.6569 | 0.6569 | | 1.1885 | 1.02 | 14500 | 1.2999 | 0.6544 | 0.6544 | 0.6544 | | 1.1339 | 1.05 | 15000 | 1.3086 | 0.6458 | 0.6458 | 0.6458 | | 1.0661 | 1.09 | 15500 | 1.2871 | 0.6582 | 0.6582 | 0.6582 | | 1.109 | 1.12 | 16000 | 1.2800 | 0.6608 | 0.6608 | 0.6608 | | 1.0305 | 1.16 | 16500 | 1.3098 | 0.6604 | 0.6604 | 0.6604 | | 1.0855 | 1.19 | 17000 | 1.2968 | 0.6587 | 0.6587 | 0.6587 | | 1.0933 | 1.23 | 17500 | 1.3075 | 0.6509 | 0.6509 | 0.6509 | | 1.1229 | 1.26 | 18000 | 1.3018 | 0.6496 | 0.6496 | 0.6496 | | 1.1043 | 1.3 | 18500 | 1.2832 | 0.6565 | 0.6565 | 0.6565 | | 1.1344 | 1.33 | 19000 | 1.2825 | 0.6591 | 0.6591 | 0.6591 | | 1.1467 | 1.37 | 19500 | 1.2797 | 0.6642 | 0.6642 | 0.6642 | | 1.0596 | 1.4 | 20000 | 1.2841 | 0.6522 | 0.6522 | 0.6522 | | 1.1286 | 1.44 | 20500 | 1.2912 | 0.6544 | 0.6544 | 0.6544 | | 1.1219 | 1.47 | 21000 | 1.3143 | 0.6509 | 0.6509 | 0.6509 | | 1.1339 | 1.51 | 21500 | 1.3021 | 0.6539 | 0.6539 | 0.6539 | | 1.1091 | 1.54 | 22000 | 1.2738 | 0.6625 | 0.6625 | 0.6625 | | 1.1403 | 1.58 | 22500 | 1.2822 | 0.6548 | 0.6548 | 0.6548 | | 1.146 | 1.61 | 23000 | 1.2724 | 0.6587 | 0.6587 | 0.6587 | | 1.1237 | 1.65 | 23500 | 1.2757 | 0.6569 | 0.6569 | 0.6569 | | 1.1453 | 1.68 | 24000 | 1.2985 | 0.6535 | 0.6535 | 0.6535 | | 1.1309 | 1.72 | 24500 | 1.2876 | 0.6578 | 0.6578 | 0.6578 | | 1.1494 | 1.75 | 25000 | 1.2892 | 0.6552 | 0.6552 | 0.6552 | | 1.1571 | 1.79 | 25500 | 1.2806 | 0.6548 | 0.6548 | 0.6548 | | 1.0766 | 1.82 | 26000 | 1.2889 | 0.6509 | 0.6509 | 0.6509 | | 1.1416 | 1.86 | 26500 | 1.2673 | 0.6599 | 0.6599 | 0.6599 | | 1.1179 | 1.89 | 27000 | 1.2919 | 0.6501 | 0.6501 | 0.6501 | | 1.0838 | 1.93 | 27500 | 1.3198 | 0.6488 | 0.6488 | 0.6488 | | 1.1426 | 1.96 | 28000 | 1.2766 | 0.6561 | 0.6561 | 0.6561 | | 1.1559 | 2.0 | 28500 | 1.2839 | 0.6561 | 0.6561 | 0.6561 | | 0.8783 | 2.03 | 29000 | 1.3377 | 0.6509 | 0.6509 | 0.6509 | | 0.8822 | 2.07 | 29500 | 1.3813 | 0.6501 | 0.6501 | 0.6501 | | 0.8823 | 2.1 | 30000 | 1.3738 | 0.6514 | 0.6514 | 0.6514 | | 0.9094 | 2.14 | 30500 | 1.3667 | 0.6522 | 0.6522 | 0.6522 | | 0.8828 | 2.17 | 31000 | 1.3654 | 0.6582 | 0.6582 | 0.6582 | | 0.8489 | 2.21 | 31500 | 1.3404 | 0.6556 | 0.6556 | 0.6556 | | 0.8719 | 2.24 | 32000 | 1.4173 | 0.6393 | 0.6393 | 0.6393 | | 0.8926 | 2.28 | 32500 | 1.4026 | 0.6535 | 0.6535 | 0.6535 | | 0.871 | 2.31 | 33000 | 1.4133 | 0.6428 | 0.6428 | 0.6428 | | 0.9047 | 2.35 | 33500 | 1.3915 | 0.6449 | 0.6449 | 0.6449 | | 0.8621 | 2.38 | 34000 | 1.4109 | 0.6483 | 0.6483 | 0.6483 | | 0.8978 | 2.42 | 34500 | 1.3675 | 0.6471 | 0.6471 | 0.6471 | | 0.8808 | 2.45 | 35000 | 1.3826 | 0.6522 | 0.6522 | 0.6522 | | 0.9299 | 2.49 | 35500 | 1.3673 | 0.6535 | 0.6535 | 0.6535 | | 0.8546 | 2.52 | 36000 | 1.4034 | 0.6518 | 0.6518 | 0.6518 | | 0.8855 | 2.56 | 36500 | 1.3763 | 0.6458 | 0.6458 | 0.6458 | | 0.8996 | 2.59 | 37000 | 1.3930 | 0.6539 | 0.6539 | 0.6539 | | 0.8889 | 2.63 | 37500 | 1.3966 | 0.6471 | 0.6471 | 0.6471 | | 0.8811 | 2.66 | 38000 | 1.4131 | 0.6475 | 0.6475 | 0.6475 | | 0.9129 | 2.7 | 38500 | 1.3816 | 0.6445 | 0.6445 | 0.6445 | | 0.8708 | 2.73 | 39000 | 1.4354 | 0.6492 | 0.6492 | 0.6492 | | 0.8667 | 2.77 | 39500 | 1.4076 | 0.6380 | 0.6380 | 0.6380 | | 0.9139 | 2.8 | 40000 | 1.4200 | 0.6423 | 0.6423 | 0.6423 | | 0.9035 | 2.84 | 40500 | 1.3913 | 0.6462 | 0.6462 | 0.6462 | | 0.9312 | 2.87 | 41000 | 1.3806 | 0.6449 | 0.6449 | 0.6449 | | 0.9382 | 2.91 | 41500 | 1.4064 | 0.6522 | 0.6522 | 0.6522 | | 0.8765 | 2.95 | 42000 | 1.4146 | 0.6380 | 0.6380 | 0.6380 | | 0.8801 | 2.98 | 42500 | 1.3898 | 0.6445 | 0.6445 | 0.6445 | | 0.7988 | 3.02 | 43000 | 1.4740 | 0.6436 | 0.6436 | 0.6436 | | 0.6752 | 3.05 | 43500 | 1.5622 | 0.6372 | 0.6372 | 0.6372 | | 0.649 | 3.09 | 44000 | 1.6055 | 0.6359 | 0.6359 | 0.6359 | | 0.669 | 3.12 | 44500 | 1.5736 | 0.6380 | 0.6380 | 0.6380 | | 0.7189 | 3.16 | 45000 | 1.5832 | 0.6346 | 0.6346 | 0.6346 | | 0.6724 | 3.19 | 45500 | 1.6194 | 0.6260 | 0.6260 | 0.6260 | | 0.7139 | 3.23 | 46000 | 1.5966 | 0.6359 | 0.6359 | 0.6359 | | 0.6985 | 3.26 | 46500 | 1.5803 | 0.6342 | 0.6342 | 0.6342 | | 0.6503 | 3.3 | 47000 | 1.6485 | 0.6376 | 0.6376 | 0.6376 | | 0.6879 | 3.33 | 47500 | 1.5959 | 0.6325 | 0.6325 | 0.6325 | | 0.7342 | 3.37 | 48000 | 1.5534 | 0.6389 | 0.6389 | 0.6389 | | 0.6838 | 3.4 | 48500 | 1.5807 | 0.6337 | 0.6337 | 0.6337 | | 0.7295 | 3.44 | 49000 | 1.6192 | 0.6372 | 0.6372 | 0.6372 | | 0.7044 | 3.47 | 49500 | 1.6618 | 0.6346 | 0.6346 | 0.6346 | | 0.7071 | 3.51 | 50000 | 1.6255 | 0.6342 | 0.6342 | 0.6342 | | 0.7055 | 3.54 | 50500 | 1.5584 | 0.6363 | 0.6363 | 0.6363 | | 0.6781 | 3.58 | 51000 | 1.5948 | 0.6376 | 0.6376 | 0.6376 | | 0.7004 | 3.61 | 51500 | 1.6311 | 0.6320 | 0.6320 | 0.6320 | | 0.715 | 3.65 | 52000 | 1.5972 | 0.6423 | 0.6423 | 0.6423 | | 0.7399 | 3.68 | 52500 | 1.6402 | 0.6325 | 0.6325 | 0.6325 | | 0.6972 | 3.72 | 53000 | 1.6186 | 0.6406 | 0.6406 | 0.6406 | | 0.7219 | 3.75 | 53500 | 1.5945 | 0.6359 | 0.6359 | 0.6359 | | 0.763 | 3.79 | 54000 | 1.5900 | 0.6380 | 0.6380 | 0.6380 | | 0.7196 | 3.82 | 54500 | 1.6218 | 0.6320 | 0.6320 | 0.6320 | | 0.7682 | 3.86 | 55000 | 1.5538 | 0.6372 | 0.6372 | 0.6372 | | 0.6949 | 3.89 | 55500 | 1.6209 | 0.6295 | 0.6295 | 0.6295 | | 0.7461 | 3.93 | 56000 | 1.6237 | 0.6316 | 0.6316 | 0.6316 | | 0.7295 | 3.96 | 56500 | 1.6011 | 0.6333 | 0.6333 | 0.6333 | | 0.6846 | 4.0 | 57000 | 1.6899 | 0.6312 | 0.6312 | 0.6312 | | 0.556 | 4.03 | 57500 | 1.7783 | 0.6303 | 0.6303 | 0.6303 | | 0.5276 | 4.07 | 58000 | 1.8985 | 0.6260 | 0.6260 | 0.6260 | | 0.5576 | 4.1 | 58500 | 1.8263 | 0.6264 | 0.6264 | 0.6264 | | 0.5303 | 4.14 | 59000 | 1.8411 | 0.6316 | 0.6316 | 0.6316 | | 0.5574 | 4.17 | 59500 | 1.8353 | 0.6286 | 0.6286 | 0.6286 | | 0.5468 | 4.21 | 60000 | 1.9252 | 0.6286 | 0.6286 | 0.6286 | | 0.532 | 4.24 | 60500 | 1.8903 | 0.6295 | 0.6295 | 0.6295 | | 0.5329 | 4.28 | 61000 | 1.9416 | 0.6252 | 0.6252 | 0.6252 | | 0.5539 | 4.31 | 61500 | 1.9149 | 0.6260 | 0.6260 | 0.6260 | | 0.5661 | 4.35 | 62000 | 1.9074 | 0.6286 | 0.6286 | 0.6286 | | 0.5502 | 4.38 | 62500 | 2.0259 | 0.6316 | 0.6316 | 0.6316 | | 0.5658 | 4.42 | 63000 | 1.9049 | 0.6256 | 0.6256 | 0.6256 | | 0.5958 | 4.45 | 63500 | 1.9252 | 0.6166 | 0.6166 | 0.6166 | | 0.5972 | 4.49 | 64000 | 1.8518 | 0.6286 | 0.6286 | 0.6286 | | 0.5964 | 4.52 | 64500 | 1.8793 | 0.6234 | 0.6234 | 0.6234 | | 0.5506 | 4.56 | 65000 | 1.9218 | 0.6346 | 0.6346 | 0.6346 | | 0.5516 | 4.59 | 65500 | 1.8957 | 0.6389 | 0.6389 | 0.6389 | | 0.5777 | 4.63 | 66000 | 1.9603 | 0.6295 | 0.6295 | 0.6295 | | 0.5953 | 4.66 | 66500 | 1.8605 | 0.6252 | 0.6252 | 0.6252 | | 0.5797 | 4.7 | 67000 | 1.8797 | 0.6320 | 0.6320 | 0.6320 | | 0.5836 | 4.73 | 67500 | 1.9320 | 0.6260 | 0.6260 | 0.6260 | | 0.6019 | 4.77 | 68000 | 1.8465 | 0.6239 | 0.6239 | 0.6239 | | 0.6099 | 4.8 | 68500 | 1.9481 | 0.6299 | 0.6299 | 0.6299 | | 0.6064 | 4.84 | 69000 | 1.9033 | 0.6307 | 0.6307 | 0.6307 | | 0.5836 | 4.87 | 69500 | 1.8878 | 0.6234 | 0.6234 | 0.6234 | | 0.5766 | 4.91 | 70000 | 1.8860 | 0.6277 | 0.6277 | 0.6277 | | 0.623 | 4.94 | 70500 | 1.8033 | 0.6303 | 0.6303 | 0.6303 | | 0.596 | 4.98 | 71000 | 1.9038 | 0.6333 | 0.6333 | 0.6333 | | 0.537 | 5.01 | 71500 | 2.0795 | 0.6234 | 0.6234 | 0.6234 | | 0.4663 | 5.05 | 72000 | 2.0325 | 0.6217 | 0.6217 | 0.6217 | | 0.4173 | 5.08 | 72500 | 2.2377 | 0.6273 | 0.6273 | 0.6273 | | 0.4521 | 5.12 | 73000 | 2.1218 | 0.6217 | 0.6217 | 0.6217 | | 0.4243 | 5.15 | 73500 | 2.2731 | 0.6204 | 0.6204 | 0.6204 | | 0.4672 | 5.19 | 74000 | 2.2111 | 0.6247 | 0.6247 | 0.6247 | | 0.4884 | 5.22 | 74500 | 2.1027 | 0.6226 | 0.6226 | 0.6226 | | 0.4314 | 5.26 | 75000 | 2.2218 | 0.6230 | 0.6230 | 0.6230 | | 0.4581 | 5.29 | 75500 | 2.2036 | 0.6264 | 0.6264 | 0.6264 | | 0.4245 | 5.33 | 76000 | 2.2419 | 0.6200 | 0.6200 | 0.6200 | | 0.4391 | 5.36 | 76500 | 2.1762 | 0.6187 | 0.6187 | 0.6187 | | 0.4672 | 5.4 | 77000 | 2.2779 | 0.6179 | 0.6179 | 0.6179 | | 0.4821 | 5.43 | 77500 | 2.2881 | 0.6187 | 0.6187 | 0.6187 | | 0.4872 | 5.47 | 78000 | 2.2406 | 0.6119 | 0.6119 | 0.6119 | | 0.4584 | 5.5 | 78500 | 2.3521 | 0.6209 | 0.6209 | 0.6209 | | 0.4774 | 5.54 | 79000 | 2.2522 | 0.6174 | 0.6174 | 0.6174 | | 0.5151 | 5.57 | 79500 | 2.2233 | 0.6140 | 0.6140 | 0.6140 | | 0.493 | 5.61 | 80000 | 2.2333 | 0.6256 | 0.6256 | 0.6256 | | 0.4846 | 5.64 | 80500 | 2.1891 | 0.6200 | 0.6200 | 0.6200 | | 0.478 | 5.68 | 81000 | 2.3159 | 0.6196 | 0.6196 | 0.6196 | | 0.4851 | 5.71 | 81500 | 2.2356 | 0.6234 | 0.6234 | 0.6234 | | 0.4902 | 5.75 | 82000 | 2.3525 | 0.6222 | 0.6222 | 0.6222 | | 0.4992 | 5.79 | 82500 | 2.2111 | 0.6067 | 0.6067 | 0.6067 | | 0.4799 | 5.82 | 83000 | 2.2650 | 0.6131 | 0.6131 | 0.6131 | | 0.4849 | 5.86 | 83500 | 2.2628 | 0.6204 | 0.6204 | 0.6204 | | 0.4772 | 5.89 | 84000 | 2.2711 | 0.6174 | 0.6174 | 0.6174 | | 0.5465 | 5.93 | 84500 | 2.2793 | 0.6144 | 0.6144 | 0.6144 | | 0.4466 | 5.96 | 85000 | 2.2369 | 0.6166 | 0.6166 | 0.6166 | | 0.4885 | 6.0 | 85500 | 2.1963 | 0.6217 | 0.6217 | 0.6217 | | 0.3862 | 6.03 | 86000 | 2.4233 | 0.6174 | 0.6174 | 0.6174 | | 0.3738 | 6.07 | 86500 | 2.4405 | 0.6191 | 0.6191 | 0.6191 | | 0.349 | 6.1 | 87000 | 2.4512 | 0.6161 | 0.6161 | 0.6161 | | 0.3659 | 6.14 | 87500 | 2.5251 | 0.6226 | 0.6226 | 0.6226 | | 0.3365 | 6.17 | 88000 | 2.5326 | 0.6217 | 0.6217 | 0.6217 | | 0.3336 | 6.21 | 88500 | 2.4413 | 0.6179 | 0.6179 | 0.6179 | | 0.3632 | 6.24 | 89000 | 2.6415 | 0.6114 | 0.6114 | 0.6114 | | 0.3584 | 6.28 | 89500 | 2.5388 | 0.6179 | 0.6179 | 0.6179 | | 0.3891 | 6.31 | 90000 | 2.6418 | 0.6123 | 0.6123 | 0.6123 | | 0.3805 | 6.35 | 90500 | 2.6223 | 0.6127 | 0.6127 | 0.6127 | | 0.363 | 6.38 | 91000 | 2.5399 | 0.6131 | 0.6131 | 0.6131 | | 0.3723 | 6.42 | 91500 | 2.6033 | 0.6187 | 0.6187 | 0.6187 | | 0.3808 | 6.45 | 92000 | 2.5281 | 0.6243 | 0.6243 | 0.6243 | | 0.3921 | 6.49 | 92500 | 2.5814 | 0.6007 | 0.6007 | 0.6007 | | 0.3763 | 6.52 | 93000 | 2.6656 | 0.6058 | 0.6058 | 0.6058 | | 0.3921 | 6.56 | 93500 | 2.4935 | 0.6084 | 0.6084 | 0.6084 | | 0.3737 | 6.59 | 94000 | 2.7270 | 0.6166 | 0.6166 | 0.6166 | | 0.3766 | 6.63 | 94500 | 2.5289 | 0.6217 | 0.6217 | 0.6217 | | 0.4439 | 6.66 | 95000 | 2.6161 | 0.6222 | 0.6222 | 0.6222 | | 0.4166 | 6.7 | 95500 | 2.5298 | 0.6123 | 0.6123 | 0.6123 | | 0.4064 | 6.73 | 96000 | 2.5952 | 0.6183 | 0.6183 | 0.6183 | | 0.4253 | 6.77 | 96500 | 2.4567 | 0.6127 | 0.6127 | 0.6127 | | 0.3754 | 6.8 | 97000 | 2.5473 | 0.6131 | 0.6131 | 0.6131 | | 0.3993 | 6.84 | 97500 | 2.5563 | 0.6161 | 0.6161 | 0.6161 | | 0.3802 | 6.87 | 98000 | 2.6585 | 0.6076 | 0.6076 | 0.6076 | | 0.4504 | 6.91 | 98500 | 2.5700 | 0.6127 | 0.6127 | 0.6127 | | 0.3832 | 6.94 | 99000 | 2.5983 | 0.6174 | 0.6174 | 0.6174 | | 0.4212 | 6.98 | 99500 | 2.6137 | 0.6110 | 0.6110 | 0.6110 | | 0.3253 | 7.01 | 100000 | 2.8467 | 0.6024 | 0.6024 | 0.6024 | | 0.2553 | 7.05 | 100500 | 2.7412 | 0.6063 | 0.6063 | 0.6063 | | 0.2771 | 7.08 | 101000 | 2.8670 | 0.6101 | 0.6101 | 0.6101 | | 0.2733 | 7.12 | 101500 | 2.8536 | 0.6166 | 0.6166 | 0.6166 | | 0.2972 | 7.15 | 102000 | 2.8254 | 0.6161 | 0.6161 | 0.6161 | | 0.2893 | 7.19 | 102500 | 3.0228 | 0.6058 | 0.6058 | 0.6058 | | 0.3104 | 7.22 | 103000 | 2.8617 | 0.6011 | 0.6011 | 0.6011 | | 0.3019 | 7.26 | 103500 | 3.0106 | 0.6131 | 0.6131 | 0.6131 | | 0.3143 | 7.29 | 104000 | 3.0189 | 0.6088 | 0.6088 | 0.6088 | | 0.3054 | 7.33 | 104500 | 3.0291 | 0.6063 | 0.6063 | 0.6063 | | 0.3145 | 7.36 | 105000 | 3.0166 | 0.6106 | 0.6106 | 0.6106 | | 0.2913 | 7.4 | 105500 | 3.0480 | 0.6174 | 0.6174 | 0.6174 | | 0.3159 | 7.43 | 106000 | 2.9714 | 0.6084 | 0.6084 | 0.6084 | | 0.3216 | 7.47 | 106500 | 2.9359 | 0.6187 | 0.6187 | 0.6187 | | 0.2982 | 7.5 | 107000 | 3.0509 | 0.6084 | 0.6084 | 0.6084 | | 0.2952 | 7.54 | 107500 | 2.9428 | 0.6076 | 0.6076 | 0.6076 | | 0.304 | 7.57 | 108000 | 3.0155 | 0.6071 | 0.6071 | 0.6071 | | 0.2896 | 7.61 | 108500 | 3.0276 | 0.6196 | 0.6196 | 0.6196 | | 0.3226 | 7.64 | 109000 | 2.9331 | 0.6097 | 0.6097 | 0.6097 | | 0.299 | 7.68 | 109500 | 2.9671 | 0.6050 | 0.6050 | 0.6050 | | 0.3079 | 7.71 | 110000 | 2.9394 | 0.6093 | 0.6093 | 0.6093 | | 0.3064 | 7.75 | 110500 | 2.8690 | 0.6110 | 0.6110 | 0.6110 | | 0.3423 | 7.78 | 111000 | 2.9095 | 0.6183 | 0.6183 | 0.6183 | | 0.3085 | 7.82 | 111500 | 2.9967 | 0.6260 | 0.6260 | 0.6260 | | 0.3071 | 7.85 | 112000 | 2.9429 | 0.6127 | 0.6127 | 0.6127 | | 0.3197 | 7.89 | 112500 | 3.0123 | 0.6157 | 0.6157 | 0.6157 | | 0.3361 | 7.92 | 113000 | 2.9832 | 0.6170 | 0.6170 | 0.6170 | | 0.3252 | 7.96 | 113500 | 3.0174 | 0.6071 | 0.6071 | 0.6071 | | 0.2802 | 7.99 | 114000 | 3.0040 | 0.6123 | 0.6123 | 0.6123 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
KoichiYasuoka/deberta-small-japanese-aozora
689ba5aaf16947395ddb1bee1f50938b8001be15
2022-05-24T03:59:55.000Z
[ "pytorch", "deberta-v2", "fill-mask", "ja", "transformers", "japanese", "masked-lm", "license:cc-by-sa-4.0", "autotrain_compatible" ]
fill-mask
false
KoichiYasuoka
null
KoichiYasuoka/deberta-small-japanese-aozora
4
null
transformers
19,965
--- language: - "ja" tags: - "japanese" - "masked-lm" license: "cc-by-sa-4.0" pipeline_tag: "fill-mask" mask_token: "[MASK]" widget: - text: "日本に着いたら[MASK]を訪ねなさい。" --- # deberta-small-japanese-aozora ## Model Description This is a DeBERTa(V2) model pre-trained on 青空文庫 texts. You can fine-tune `deberta-small-japanese-aozora` for downstream tasks, such as [POS-tagging](https://huggingface.co/KoichiYasuoka/deberta-small-japanese-luw-upos), dependency-parsing, and so on. ## How to Use ```py from transformers import AutoTokenizer,AutoModelForMaskedLM tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/deberta-small-japanese-aozora") model=AutoModelForMaskedLM.from_pretrained("KoichiYasuoka/deberta-small-japanese-aozora") ```
versae/bertin-roberta-base-spanish-finetuned-recores3
c7adb28ff7ee1a5c708f6de62870b247f5aebc55
2022-05-23T14:13:48.000Z
[ "pytorch", "tensorboard", "roberta", "multiple-choice", "transformers", "generated_from_trainer", "license:cc-by-4.0", "model-index" ]
multiple-choice
false
versae
null
versae/bertin-roberta-base-spanish-finetuned-recores3
4
null
transformers
19,966
--- license: cc-by-4.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: bertin-roberta-base-spanish-finetuned-recores3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bertin-roberta-base-spanish-finetuned-recores3 This model is a fine-tuned version of [bertin-project/bertin-roberta-base-spanish](https://huggingface.co/bertin-project/bertin-roberta-base-spanish) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 6.0975 - Accuracy: 0.3884 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 3000 - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.6095 | 1.0 | 524 | 1.6094 | 0.2342 | | 1.607 | 2.0 | 1048 | 1.5612 | 0.3058 | | 1.4059 | 3.0 | 1572 | 1.6292 | 0.3361 | | 0.7047 | 4.0 | 2096 | 2.5111 | 0.4132 | | 0.2671 | 5.0 | 2620 | 3.2399 | 0.3499 | | 0.1065 | 6.0 | 3144 | 5.1217 | 0.3444 | | 0.0397 | 7.0 | 3668 | 4.3270 | 0.3691 | | 0.0162 | 8.0 | 4192 | 5.1796 | 0.3719 | | 0.0096 | 9.0 | 4716 | 5.2161 | 0.3994 | | 0.0118 | 10.0 | 5240 | 4.9225 | 0.3719 | | 0.0015 | 11.0 | 5764 | 5.0544 | 0.3829 | | 0.0091 | 12.0 | 6288 | 5.7731 | 0.3884 | | 0.0052 | 13.0 | 6812 | 4.1606 | 0.3939 | | 0.0138 | 14.0 | 7336 | 6.2725 | 0.3857 | | 0.0027 | 15.0 | 7860 | 6.2274 | 0.3857 | | 0.0003 | 16.0 | 8384 | 6.0935 | 0.4022 | | 0.0002 | 17.0 | 8908 | 5.7650 | 0.3994 | | 0.0 | 18.0 | 9432 | 6.3595 | 0.4215 | | 0.0 | 19.0 | 9956 | 5.8934 | 0.3747 | | 0.0001 | 20.0 | 10480 | 6.0571 | 0.3884 | | 0.0 | 21.0 | 11004 | 6.0718 | 0.3884 | | 0.0 | 22.0 | 11528 | 6.0844 | 0.3884 | | 0.0 | 23.0 | 12052 | 6.0930 | 0.3884 | | 0.0 | 24.0 | 12576 | 6.0966 | 0.3884 | | 0.0 | 25.0 | 13100 | 6.0975 | 0.3884 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
peter2000/xlm-roberta-base-finetuned-osdg
718eec41293aca60dc38e608301df044fc06f92c
2022-05-24T08:50:18.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
peter2000
null
peter2000/xlm-roberta-base-finetuned-osdg
4
null
transformers
19,967
--- license: mit tags: - generated_from_trainer model-index: - name: xlm-roberta-base-finetuned-osdg results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-osdg This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6747 - Acc: 0.8296 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-07 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Acc | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.552 | 1.0 | 509 | 0.6801 | 0.8229 | | 0.5261 | 2.0 | 1018 | 0.6821 | 0.8218 | | 0.5518 | 3.0 | 1527 | 0.6770 | 0.8246 | | 0.4856 | 4.0 | 2036 | 0.6781 | 0.8279 | | 0.5427 | 5.0 | 2545 | 0.6748 | 0.8318 | | 0.5049 | 6.0 | 3054 | 0.6769 | 0.8290 | | 0.5155 | 7.0 | 3563 | 0.6756 | 0.8307 | | 0.503 | 8.0 | 4072 | 0.6763 | 0.8296 | | 0.5009 | 9.0 | 4581 | 0.6741 | 0.8301 | | 0.555 | 10.0 | 5090 | 0.6747 | 0.8296 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
CEBaB/bert-base-uncased.CEBaB.causalm.food__service.2-class.exclusive.seed_42
18d28b45cc30242f73582e9313df57c106f83aea
2022-05-24T12:09:09.000Z
[ "pytorch", "bert_causalm", "transformers" ]
null
false
CEBaB
null
CEBaB/bert-base-uncased.CEBaB.causalm.food__service.2-class.exclusive.seed_42
4
null
transformers
19,968
Entry not found
juancavallotti/bert-zs-sentence-classifier
a131bbdbde31c8c2240d5256e76376d3fa6d163e
2022-05-23T22:31:34.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
juancavallotti
null
juancavallotti/bert-zs-sentence-classifier
4
null
transformers
19,969
--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 model-index: - name: bert-zs-sentence-classifier results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-zs-sentence-classifier This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3663 - F1: 0.8483 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.5973 | 0.01 | 500 | 0.5186 | 0.7538 | | 0.5021 | 0.03 | 1000 | 0.4646 | 0.7996 | | 0.4741 | 0.04 | 1500 | 0.4634 | 0.8064 | | 0.4656 | 0.06 | 2000 | 0.4485 | 0.8142 | | 0.4567 | 0.07 | 2500 | 0.4345 | 0.8160 | | 0.4448 | 0.09 | 3000 | 0.4239 | 0.8228 | | 0.4403 | 0.1 | 3500 | 0.4155 | 0.8294 | | 0.4163 | 0.12 | 4000 | 0.4021 | 0.8290 | | 0.4205 | 0.13 | 4500 | 0.4057 | 0.8283 | | 0.416 | 0.14 | 5000 | 0.4049 | 0.8319 | | 0.4115 | 0.16 | 5500 | 0.4095 | 0.8280 | | 0.4156 | 0.17 | 6000 | 0.3927 | 0.8349 | | 0.4042 | 0.19 | 6500 | 0.4003 | 0.8392 | | 0.4057 | 0.2 | 7000 | 0.3929 | 0.8385 | | 0.3977 | 0.22 | 7500 | 0.3915 | 0.8406 | | 0.4049 | 0.23 | 8000 | 0.3785 | 0.8433 | | 0.4027 | 0.24 | 8500 | 0.3807 | 0.8424 | | 0.4096 | 0.26 | 9000 | 0.3768 | 0.8435 | | 0.3958 | 0.27 | 9500 | 0.3846 | 0.8420 | | 0.4037 | 0.29 | 10000 | 0.3808 | 0.8381 | | 0.3813 | 0.3 | 10500 | 0.4004 | 0.8415 | | 0.3934 | 0.32 | 11000 | 0.3821 | 0.8422 | | 0.3895 | 0.33 | 11500 | 0.3844 | 0.8428 | | 0.3907 | 0.35 | 12000 | 0.3847 | 0.8435 | | 0.3862 | 0.36 | 12500 | 0.3803 | 0.8431 | | 0.3958 | 0.37 | 13000 | 0.3739 | 0.8392 | | 0.3845 | 0.39 | 13500 | 0.3817 | 0.8422 | | 0.3914 | 0.4 | 14000 | 0.3857 | 0.8424 | | 0.3814 | 0.42 | 14500 | 0.3793 | 0.8438 | | 0.3816 | 0.43 | 15000 | 0.3843 | 0.8395 | | 0.4022 | 0.45 | 15500 | 0.3737 | 0.8436 | | 0.3879 | 0.46 | 16000 | 0.3750 | 0.8424 | | 0.3794 | 0.48 | 16500 | 0.3743 | 0.8410 | | 0.393 | 0.49 | 17000 | 0.3733 | 0.8461 | | 0.384 | 0.5 | 17500 | 0.3765 | 0.8476 | | 0.3782 | 0.52 | 18000 | 0.3748 | 0.8451 | | 0.3931 | 0.53 | 18500 | 0.3807 | 0.8454 | | 0.3889 | 0.55 | 19000 | 0.3653 | 0.8463 | | 0.386 | 0.56 | 19500 | 0.3707 | 0.8445 | | 0.3802 | 0.58 | 20000 | 0.3700 | 0.8474 | | 0.3883 | 0.59 | 20500 | 0.3646 | 0.8463 | | 0.3825 | 0.61 | 21000 | 0.3665 | 0.8513 | | 0.382 | 0.62 | 21500 | 0.3620 | 0.8508 | | 0.3795 | 0.63 | 22000 | 0.3692 | 0.8493 | | 0.367 | 0.65 | 22500 | 0.3704 | 0.8479 | | 0.3825 | 0.66 | 23000 | 0.3723 | 0.8472 | | 0.3902 | 0.68 | 23500 | 0.3681 | 0.8465 | | 0.3813 | 0.69 | 24000 | 0.3668 | 0.8515 | | 0.3878 | 0.71 | 24500 | 0.3632 | 0.8506 | | 0.3743 | 0.72 | 25000 | 0.3728 | 0.8463 | | 0.3826 | 0.73 | 25500 | 0.3746 | 0.8465 | | 0.3892 | 0.75 | 26000 | 0.3602 | 0.8518 | | 0.3767 | 0.76 | 26500 | 0.3722 | 0.8513 | | 0.3724 | 0.78 | 27000 | 0.3716 | 0.8499 | | 0.3767 | 0.79 | 27500 | 0.3651 | 0.8483 | | 0.3846 | 0.81 | 28000 | 0.3753 | 0.8493 | | 0.3748 | 0.82 | 28500 | 0.3720 | 0.8458 | | 0.3768 | 0.84 | 29000 | 0.3663 | 0.8508 | | 0.3716 | 0.85 | 29500 | 0.3635 | 0.8531 | | 0.3673 | 0.86 | 30000 | 0.3659 | 0.8485 | | 0.3805 | 0.88 | 30500 | 0.3608 | 0.8518 | | 0.3718 | 0.89 | 31000 | 0.3695 | 0.8520 | | 0.374 | 0.91 | 31500 | 0.3631 | 0.8485 | | 0.3871 | 0.92 | 32000 | 0.3659 | 0.8485 | | 0.3724 | 0.94 | 32500 | 0.3584 | 0.8518 | | 0.3756 | 0.95 | 33000 | 0.3587 | 0.8492 | | 0.3709 | 0.97 | 33500 | 0.3700 | 0.8488 | | 0.376 | 0.98 | 34000 | 0.3657 | 0.8492 | | 0.372 | 0.99 | 34500 | 0.3663 | 0.8483 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
ismail-lucifer011/autotrain-company_all-903429540
bfc9313b5ef49ff46dac85bd335f7a49e966c2e3
2022-05-24T13:52:50.000Z
[ "pytorch", "distilbert", "token-classification", "en", "dataset:ismail-lucifer011/autotrain-data-company_all", "transformers", "autotrain", "co2_eq_emissions", "autotrain_compatible" ]
token-classification
false
ismail-lucifer011
null
ismail-lucifer011/autotrain-company_all-903429540
4
null
transformers
19,970
--- tags: autotrain language: en widget: - text: "I love AutoTrain 🤗" datasets: - ismail-lucifer011/autotrain-data-company_all co2_eq_emissions: 119.04546626922827 --- # Model Trained Using AutoTrain - Problem type: Entity Extraction - Model ID: 903429540 - CO2 Emissions (in grams): 119.04546626922827 ## Validation Metrics - Loss: 0.00617758184671402 - Accuracy: 0.9981441241415306 - Precision: 0.9826569893335472 - Recall: 0.9839294138903667 - F1: 0.9832927899686521 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/ismail-lucifer011/autotrain-company_all-903429540 ``` Or Python API: ``` from transformers import AutoModelForTokenClassification, AutoTokenizer model = AutoModelForTokenClassification.from_pretrained("ismail-lucifer011/autotrain-company_all-903429540", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("ismail-lucifer011/autotrain-company_all-903429540", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
stevemobs/deberta-base-finetuned-aqa
304db0cfe9a79e419be46cc76a78b7d08780957e
2022-05-24T16:35:00.000Z
[ "pytorch", "tensorboard", "deberta", "question-answering", "dataset:adversarial_qa", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
question-answering
false
stevemobs
null
stevemobs/deberta-base-finetuned-aqa
4
null
transformers
19,971
--- license: mit tags: - generated_from_trainer datasets: - adversarial_qa model-index: - name: deberta-base-finetuned-aqa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-base-finetuned-aqa This model is a fine-tuned version of [microsoft/deberta-base](https://huggingface.co/microsoft/deberta-base) on the adversarial_qa dataset. It achieves the following results on the evaluation set: - Loss: 1.6394 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.1054 | 1.0 | 2527 | 1.6947 | | 1.5387 | 2.0 | 5054 | 1.6394 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
peggyhuang/roberta-canard
a3c36aa7147bd64d7ab8b84653c3d1988f7870c5
2022-05-24T20:39:02.000Z
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
peggyhuang
null
peggyhuang/roberta-canard
4
null
transformers
19,972
Entry not found
emilylearning/cond_ft_none_on_reddit__prcnt_100__test_run_False__xlm-roberta-base
6ff54acfc8236740dc59014ba0094381671b9a0c
2022-05-26T08:38:26.000Z
[ "pytorch", "xlm-roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
emilylearning
null
emilylearning/cond_ft_none_on_reddit__prcnt_100__test_run_False__xlm-roberta-base
4
null
transformers
19,973
Entry not found
castorini/monot5-small-msmarco-100k
d1490270598cf288131cc8cb3d3f2b6148203234
2022-05-25T15:08:56.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
castorini
null
castorini/monot5-small-msmarco-100k
4
null
transformers
19,974
This model is a T5-small reranker fine-tuned on the MS MARCO passage dataset for 100k steps (or 1 epoch). For more details on how to use it, check the following links: - [A simple reranking example](https://github.com/castorini/pygaggle#a-simple-reranking-example) - [Rerank MS MARCO passages](https://github.com/castorini/pygaggle/blob/master/docs/experiments-msmarco-passage-subset.md) - [Rerank Robust04 documents](https://github.com/castorini/pygaggle/blob/master/docs/experiments-robust04-monot5-gpu.md) Paper describing the model: [Document Ranking with a Pretrained Sequence-to-Sequence Model](https://www.aclweb.org/anthology/2020.findings-emnlp.63/)
emilylearning/cond_ft_subreddit_on_reddit__prcnt_100__test_run_False__xlm-roberta-base
2e0f777ee72c8b42f1933cae9826d017612bce4d
2022-05-27T00:13:19.000Z
[ "pytorch", "xlm-roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
emilylearning
null
emilylearning/cond_ft_subreddit_on_reddit__prcnt_100__test_run_False__xlm-roberta-base
4
null
transformers
19,975
Entry not found
aioxlabs/dvoice-kabyle
bef2fda72d557f732294d962d8748ed122d8d6c3
2022-05-28T08:21:21.000Z
[ "wav2vec2", "feature-extraction", "kab", "dataset:commonvoice", "speechbrain", "CTC", "pytorch", "Transformer", "license:apache-2.0", "automatic-speech-recognition" ]
automatic-speech-recognition
false
aioxlabs
null
aioxlabs/dvoice-kabyle
4
null
speechbrain
19,976
--- language: "kab" thumbnail: pipeline_tag: automatic-speech-recognition tags: - CTC - pytorch - speechbrain - Transformer license: "apache-2.0" datasets: - commonvoice metrics: - wer - cer --- <iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe> <br/><br/> # wav2vec 2.0 with CTC/Attention trained on DVoice Kabyle (No LM) This repository provides all the necessary tools to perform automatic speech recognition from an end-to-end system pretrained on a [CommonVoice](https://commonvoice.mozilla.org/) Kabyle dataset within SpeechBrain. For a better experience, we encourage you to learn more about [SpeechBrain](https://speechbrain.github.io). | DVoice Release | Val. CER | Val. WER | Test CER | Test WER | |:-------------:|:---------------------------:| -----:| -----:| -----:| | v2.0 | 6.67 | 25.22 | 6.55 | 24.80 | # Pipeline description This ASR system is composed of 2 different but linked blocks: - Tokenizer (unigram) that transforms words into subword units and trained with the train transcriptions. - Acoustic model (wav2vec2.0 + CTC). A pretrained wav2vec 2.0 model ([facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53)) is combined with two DNN layers and finetuned on the Darija dataset. The obtained final acoustic representation is given to the CTC greedy decoder. The system is trained with recordings sampled at 16kHz (single channel). The code will automatically normalize your audio (i.e., resampling + mono channel selection) when calling *transcribe_file* if needed. # Install SpeechBrain First of all, please install tranformers and SpeechBrain with the following command: ``` pip install speechbrain transformers ``` Please notice that we encourage you to read the SpeechBrain tutorials and learn more about [SpeechBrain](https://speechbrain.github.io). # Transcribing your own audio files (in Kabyle) ```python from speechbrain.pretrained import EncoderASR asr_model = EncoderASR.from_hparams(source="aioxlabs/dvoice-kabyle", savedir="pretrained_models/asr-wav2vec2-dvoice-wol") asr_model.transcribe_file('./the_path_to_your_audio_file') ``` # Inference on GPU To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method. # Training To train the model from scratch, please see our GitHub tutorial [here](https://github.com/AIOXLABS/DVoice). # Limitations The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets. # Referencing SpeechBrain ``` @misc{SB2021, author = {Ravanelli, Mirco and Parcollet, Titouan and Rouhe, Aku and Plantinga, Peter and Rastorgueva, Elena and Lugosch, Loren and Dawalatabad, Nauman and Ju-Chieh, Chou and Heba, Abdel and Grondin, Francois and Aris, William and Liao, Chien-Feng and Cornell, Samuele and Yeh, Sung-Lin and Na, Hwidong and Gao, Yan and Fu, Szu-Wei and Subakan, Cem and De Mori, Renato and Bengio, Yoshua }, title = {SpeechBrain}, year = {2021}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\\\\url{https://github.com/speechbrain/speechbrain}}, } ``` # About DVoice DVoice is a community initiative that aims to provide Africa low resources languages with data and models to facilitate their use of voice technologies. The lack of data on these languages makes it necessary to collect data using methods that are specific to each one. Two different approaches are currently used: the DVoice platforms ([https://dvoice.ma](https://dvoice.ma) and [https://dvoice.sn](https://dvoice.sn)), which are based on Mozilla Common Voice, for collecting authentic recordings from the community, and transfer learning techniques for automatically labeling recordings that are retrived from social medias. The DVoice platform currently manages 7 languages including Darija (Moroccan Arabic dialect) whose dataset appears on this version, Wolof, Mandingo, Serere, Pular, Diola and Soninke. For this project, AIOX Labs the SI2M Laboratory are joining forces to build the future of technologies together. # About AIOX Labs Based in Rabat, London and Paris, AIOX-Labs mobilizes artificial intelligence technologies to meet the business needs and data projects of companies. - He is at the service of the growth of groups, the optimization of processes or the improvement of the customer experience. - AIOX-Labs is multi-sector, from fintech to industry, including retail and consumer goods. - Business ready data products with a solid algorithmic base and adaptability for the specific needs of each client. - A complementary team made up of doctors in AI and business experts with a solid scientific base and international publications. Website: [https://www.aiox-labs.com/](https://www.aiox-labs.com/) # SI2M Laboratory The Information Systems, Intelligent Systems and Mathematical Modeling Research Laboratory (SI2M) is an academic research laboratory of the National Institute of Statistics and Applied Economics (INSEA). The research areas of the laboratories are Information Systems, Intelligent Systems, Artificial Intelligence, Decision Support, Network and System Security, Mathematical Modelling. Website: [SI2M Laboratory](https://insea.ac.ma/index.php/pole-recherche/equipe-de-recherche/150-laboratoire-de-recherche-en-systemes-d-information-systemes-intelligents-et-modelisation-mathematique) # About SpeechBrain SpeechBrain is an open-source and all-in-one speech toolkit. It is designed to be simple, extremely flexible, and user-friendly. Competitive or state-of-the-art performance is obtained in various domains. Website: https://speechbrain.github.io/ GitHub: https://github.com/speechbrain/speechbrain # Referencing SpeechBrain ``` @misc{SB2021, author = {Ravanelli, Mirco and Parcollet, Titouan and Rouhe, Aku and Plantinga, Peter and Rastorgueva, Elena and Lugosch, Loren and Dawalatabad, Nauman and Ju-Chieh, Chou and Heba, Abdel and Grondin, Francois and Aris, William and Liao, Chien-Feng and Cornell, Samuele and Yeh, Sung-Lin and Na, Hwidong and Gao, Yan and Fu, Szu-Wei and Subakan, Cem and De Mori, Renato and Bengio, Yoshua }, title = {SpeechBrain}, year = {2021}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\\\\url{https://github.com/speechbrain/speechbrain}}, } ``` # Acknowledgements This research was supported through computational resources of HPC-MARWAN (www.marwan.ma/hpc) provided by CNRST, Rabat, Morocco. We deeply thank this institution.
Xuan-Rui/pet-1000-iPT.p4PTmBERT
a921f9417046304d104b4bd4add3f12ab48b0228
2022-05-27T04:13:49.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Xuan-Rui
null
Xuan-Rui/pet-1000-iPT.p4PTmBERT
4
null
transformers
19,977
Entry not found
Xuan-Rui/pet-1000-iPT.p4PTptBERT
79e496bb2e628b5d0db5ac7f085f4d433a2b4d07
2022-05-27T04:21:41.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Xuan-Rui
null
Xuan-Rui/pet-1000-iPT.p4PTptBERT
4
null
transformers
19,978
Entry not found
teppei727/bart-base-finetuned-amazon-onlyen
9186635a0a713415b2342d3818299ed426582570
2022-05-27T08:16:49.000Z
[ "pytorch", "tensorboard", "bart", "text2text-generation", "dataset:amazon_reviews_multi", "transformers", "summarization", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
summarization
false
teppei727
null
teppei727/bart-base-finetuned-amazon-onlyen
4
null
transformers
19,979
--- license: apache-2.0 tags: - summarization - generated_from_trainer datasets: - amazon_reviews_multi metrics: - rouge model-index: - name: bart-base-finetuned-amazon-onlyen results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: amazon_reviews_multi type: amazon_reviews_multi args: en metrics: - name: Rouge1 type: rouge value: 17.2662 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-base-finetuned-amazon-onlyen This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 3.7572 - Rouge1: 17.2662 - Rouge2: 8.7425 - Rougel: 16.5765 - Rougelsum: 16.6844 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | 2.9212 | 1.0 | 771 | 2.8034 | 15.381 | 8.5254 | 15.223 | 15.059 | | 2.3109 | 2.0 | 1542 | 2.8386 | 19.8947 | 11.0965 | 19.4876 | 19.5366 | | 1.8973 | 3.0 | 2313 | 2.9258 | 17.7443 | 8.9232 | 17.311 | 17.1796 | | 1.5421 | 4.0 | 3084 | 3.0696 | 17.8204 | 8.8919 | 17.3889 | 17.205 | | 1.2391 | 5.0 | 3855 | 3.2609 | 15.9828 | 8.0523 | 15.393 | 15.3808 | | 0.9736 | 6.0 | 4626 | 3.4080 | 15.7572 | 8.806 | 15.2435 | 15.3036 | | 0.7824 | 7.0 | 5397 | 3.5537 | 18.4389 | 9.5135 | 17.7836 | 17.8758 | | 0.6233 | 8.0 | 6168 | 3.6909 | 14.6698 | 6.9584 | 13.9417 | 14.0057 | | 0.5086 | 9.0 | 6939 | 3.7357 | 16.9465 | 7.7604 | 16.1993 | 16.2963 | | 0.4412 | 10.0 | 7710 | 3.7572 | 17.2662 | 8.7425 | 16.5765 | 16.6844 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
kenkaneki/bert-base-aeslc-da
372609c0e8fd0e9ea87291d60fc24a79139361ed
2022-05-27T20:35:44.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
kenkaneki
null
kenkaneki/bert-base-aeslc-da
4
null
transformers
19,980
Entry not found
Abdelrahman-Rezk/bert-base-arabic-camelbert-mix-poetry-finetuned-qawaf2
a4c747d593c386b37fd8fe91b91e90f708acfa11
2022-05-27T21:17:17.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Abdelrahman-Rezk
null
Abdelrahman-Rezk/bert-base-arabic-camelbert-mix-poetry-finetuned-qawaf2
4
null
transformers
19,981
Entry not found
PDRES/roberta-base-bne-finetuned-amazon_reviews_multi
a38121201eb167e6268e6cbc7976aae5987e4bd1
2022-05-28T06:21:35.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "dataset:amazon_reviews_multi", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
PDRES
null
PDRES/roberta-base-bne-finetuned-amazon_reviews_multi
4
null
transformers
19,982
--- license: apache-2.0 tags: - generated_from_trainer datasets: - amazon_reviews_multi model-index: - name: roberta-base-bne-finetuned-amazon_reviews_multi results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-bne-finetuned-amazon_reviews_multi This model is a fine-tuned version of [BSC-TeMU/roberta-base-bne](https://huggingface.co/BSC-TeMU/roberta-base-bne) on the amazon_reviews_multi dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
Ritvik19/autotrain-sentiment_polarity-918130222
4c9d71c44c804196b543d2ccbce6b5bc32e66288
2022-05-28T14:18:46.000Z
[ "pytorch", "roberta", "text-classification", "unk", "dataset:Ritvik19/autotrain-data-sentiment_polarity", "transformers", "autotrain", "co2_eq_emissions" ]
text-classification
false
Ritvik19
null
Ritvik19/autotrain-sentiment_polarity-918130222
4
null
transformers
19,983
--- tags: autotrain language: unk widget: - text: "I love AutoTrain 🤗" datasets: - Ritvik19/autotrain-data-sentiment_polarity co2_eq_emissions: 4.280488237750762 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 918130222 - CO2 Emissions (in grams): 4.280488237750762 ## Validation Metrics - Loss: 0.13608604669570923 - Accuracy: 0.9504804036293305 - Precision: 0.9792047060317863 - Recall: 0.9647185343057701 - AUC: 0.9791895292939061 - F1: 0.9719076444852428 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/Ritvik19/autotrain-sentiment_polarity-918130222 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("Ritvik19/autotrain-sentiment_polarity-918130222", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("Ritvik19/autotrain-sentiment_polarity-918130222", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
zenkri/autotrain-Arabic_Poetry_by_Subject-920730227
8da60381502ea1d0600ea6611db3fce44035e955
2022-05-28T08:39:47.000Z
[ "pytorch", "bert", "text-classification", "ar", "dataset:zenkri/autotrain-data-Arabic_Poetry_by_Subject-1d8ba412", "transformers", "autotrain", "co2_eq_emissions" ]
text-classification
false
zenkri
null
zenkri/autotrain-Arabic_Poetry_by_Subject-920730227
4
null
transformers
19,984
--- tags: autotrain language: ar widget: - text: "I love AutoTrain 🤗" datasets: - zenkri/autotrain-data-Arabic_Poetry_by_Subject-1d8ba412 co2_eq_emissions: 0.06170374019107819 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 920730227 - CO2 Emissions (in grams): 0.06170374019107819 ## Validation Metrics - Loss: 0.5905918478965759 - Accuracy: 0.8687837028160575 - Macro F1: 0.7777187122151491 - Micro F1: 0.8687837028160575 - Weighted F1: 0.8673230166815299 - Macro Precision: 0.796117563625016 - Micro Precision: 0.8687837028160575 - Weighted Precision: 0.8692944353097692 - Macro Recall: 0.7732013751753718 - Micro Recall: 0.8687837028160575 - Weighted Recall: 0.8687837028160575 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/zenkri/autotrain-Arabic_Poetry_by_Subject-920730227 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("zenkri/autotrain-Arabic_Poetry_by_Subject-920730227", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("zenkri/autotrain-Arabic_Poetry_by_Subject-920730227", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
GioReg/dbmdzBERTnews
f7e6b2aca5bda59d2e42c4d28a37c9e932215a66
2022-05-28T12:56:48.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
GioReg
null
GioReg/dbmdzBERTnews
4
null
transformers
19,985
--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: dbmdzBERTnews results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dbmdzBERTnews This model is a fine-tuned version of [dbmdz/bert-base-italian-uncased](https://huggingface.co/dbmdz/bert-base-italian-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0960 - Accuracy: 0.9733 - F1: 0.9730 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
GioReg/umbertoBERTnews
b545a797079853ff6c0f4514a23c0368c677dce5
2022-05-28T14:01:45.000Z
[ "pytorch", "tensorboard", "camembert", "text-classification", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
GioReg
null
GioReg/umbertoBERTnews
4
null
transformers
19,986
--- tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: umbertoBERTnews results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # umbertoBERTnews This model is a fine-tuned version of [Musixmatch/umberto-commoncrawl-cased-v1](https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0847 - Accuracy: 0.9798 - F1: 0.9798 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
GioReg/mBERTrecensioni
d238e5b0a6f96b99c1572ab8b924c2124ada59ee
2022-05-28T15:35:57.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
GioReg
null
GioReg/mBERTrecensioni
4
null
transformers
19,987
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: mBERTrecensioni results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mBERTrecensioni This model is a fine-tuned version of [bert-base-multilingual-uncased](https://huggingface.co/bert-base-multilingual-uncased) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
theojolliffe/bart-large-cnn-pubmed1o3-pubmed2o3-pubmed3o3-arxiv1o3
f2e3e1e46834481197e7382ac81b86b59f64a919
2022-05-29T19:18:42.000Z
[ "pytorch", "tensorboard", "bart", "text2text-generation", "dataset:scientific_papers", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
text2text-generation
false
theojolliffe
null
theojolliffe/bart-large-cnn-pubmed1o3-pubmed2o3-pubmed3o3-arxiv1o3
4
null
transformers
19,988
--- license: mit tags: - generated_from_trainer datasets: - scientific_papers metrics: - rouge model-index: - name: bart-large-cnn-pubmed1o3-pubmed2o3-pubmed3o3-arxiv1o3 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: scientific_papers type: scientific_papers args: arxiv metrics: - name: Rouge1 type: rouge value: 42.2455 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-cnn-pubmed1o3-pubmed2o3-pubmed3o3-arxiv1o3 This model is a fine-tuned version of [theojolliffe/bart-large-cnn-pubmed1o3-pubmed2o3-pubmed3o3](https://huggingface.co/theojolliffe/bart-large-cnn-pubmed1o3-pubmed2o3-pubmed3o3) on the scientific_papers dataset. It achieves the following results on the evaluation set: - Loss: 2.1825 - Rouge1: 42.2455 - Rouge2: 15.6488 - Rougel: 24.4935 - Rougelsum: 37.9427 - Gen Len: 131.1379 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:| | 2.185 | 1.0 | 33840 | 2.1825 | 42.2455 | 15.6488 | 24.4935 | 37.9427 | 131.1379 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
zoha/wav2vec2-base-common-voice-90p-persian-colab
879a28d30e1db43b6da7d43aef8a2fb69f6f33d3
2022-05-28T20:21:10.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
zoha
null
zoha/wav2vec2-base-common-voice-90p-persian-colab
4
null
transformers
19,989
Entry not found
GioReg/notiBERTrecensioni
bd710ceabd8011cac576e26803b26ef6fddb04a5
2022-05-28T17:47:42.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
GioReg
null
GioReg/notiBERTrecensioni
4
null
transformers
19,990
--- tags: - generated_from_trainer model-index: - name: notiBERTrecensioni results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # notiBERTrecensioni This model is a fine-tuned version of [GioReg/notiBERTo](https://huggingface.co/GioReg/notiBERTo) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
KDB/bert-base-finetuned-sts
03cfac002667c95e654b0e98d85e1fb401b2b36d
2022-05-30T03:59:09.000Z
[ "pytorch", "bert", "text-classification", "dataset:klue", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
KDB
null
KDB/bert-base-finetuned-sts
4
null
transformers
19,991
--- tags: - generated_from_trainer datasets: - klue metrics: - pearsonr model-index: - name: bert-base-finetuned-sts results: - task: name: Text Classification type: text-classification dataset: name: klue type: klue args: sts metrics: - name: Pearsonr type: pearsonr value: 0.8970473420720607 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-finetuned-sts This model is a fine-tuned version of [klue/bert-base](https://huggingface.co/klue/bert-base) on the klue dataset. It achieves the following results on the evaluation set: - Loss: 0.4770 - Pearsonr: 0.8970 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearsonr | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 92 | 0.6330 | 0.8717 | | No log | 2.0 | 184 | 0.6206 | 0.8818 | | No log | 3.0 | 276 | 0.5010 | 0.8947 | | No log | 4.0 | 368 | 0.4717 | 0.8956 | | No log | 5.0 | 460 | 0.4770 | 0.8970 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
chrisvinsen/xlsr-wav2vec2-final-1-lm-3
38e356aa0c10c3bf0d7eee484092e10b7601fe4d
2022-06-02T23:23:59.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
chrisvinsen
null
chrisvinsen/xlsr-wav2vec2-final-1-lm-3
4
null
transformers
19,992
Indonli + CommonVoice8.0 Dataset --> Train + Validation + Test WER : 0.216 WER with LM: 0.104
sriiikar/wav2vec2-hindi-3
aadba336473e345b85b2667b223217dd98a590d2
2022-05-29T11:42:20.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
sriiikar
null
sriiikar/wav2vec2-hindi-3
4
null
transformers
19,993
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-hindi-3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-hindi-3 This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.0900 - Wer: 0.7281 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 40 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.609 | 6.41 | 1000 | 1.2290 | 0.7497 | | 0.3754 | 12.82 | 2000 | 1.5350 | 0.7128 | | 0.1587 | 19.23 | 3000 | 1.8671 | 0.7322 | | 0.103 | 25.64 | 4000 | 1.9383 | 0.7300 | | 0.0761 | 32.05 | 5000 | 2.0767 | 0.7306 | | 0.0616 | 38.46 | 6000 | 2.0900 | 0.7281 | ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.2.3.dev0 - Tokenizers 0.12.1
YeRyeongLee/bert-base-uncased-finetuned-removed-0529
652f91a943c0d549518b2d5ba63d5e94e7ee26c8
2022-05-29T15:03:49.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
YeRyeongLee
null
YeRyeongLee/bert-base-uncased-finetuned-removed-0529
4
null
transformers
19,994
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: bert-base-uncased-finetuned-removed-0529 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-removed-0529 This model is a fine-tuned version of [YeRyeongLee/bert-base-uncased-finetuned-0505-2](https://huggingface.co/YeRyeongLee/bert-base-uncased-finetuned-0505-2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1501 - Accuracy: 0.8767 - F1: 0.8765 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:| | No log | 1.0 | 3180 | 0.5072 | 0.8358 | 0.8373 | | No log | 2.0 | 6360 | 0.5335 | 0.8566 | 0.8564 | | No log | 3.0 | 9540 | 0.6317 | 0.8594 | 0.8603 | | No log | 4.0 | 12720 | 0.6781 | 0.8723 | 0.8727 | | No log | 5.0 | 15900 | 0.8235 | 0.8679 | 0.8682 | | No log | 6.0 | 19080 | 0.9205 | 0.8676 | 0.8674 | | No log | 7.0 | 22260 | 0.9898 | 0.8698 | 0.8695 | | 0.2348 | 8.0 | 25440 | 1.0756 | 0.8695 | 0.8695 | | 0.2348 | 9.0 | 28620 | 1.1342 | 0.8739 | 0.8735 | | 0.2348 | 10.0 | 31800 | 1.1501 | 0.8767 | 0.8765 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.9.0 - Datasets 1.16.1 - Tokenizers 0.12.1
GioReg/bertNEGsentiment
503b75126fc3be211d06cbaf24ad6e7f10a24a12
2022-05-29T08:24:09.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
GioReg
null
GioReg/bertNEGsentiment
4
null
transformers
19,995
--- tags: - generated_from_trainer model-index: - name: bertNEGsentiment results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bertNEGsentiment This model is a fine-tuned version of [m-polignano-uniba/bert_uncased_L-12_H-768_A-12_italian_alb3rt0](https://huggingface.co/m-polignano-uniba/bert_uncased_L-12_H-768_A-12_italian_alb3rt0) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
YeRyeongLee/bert-base-uncased-finetuned-removed-0530
7ba2a2adced163f4fe876b121f442b1dfd714eba
2022-05-30T03:13:36.000Z
[ "pytorch", "bert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
YeRyeongLee
null
YeRyeongLee/bert-base-uncased-finetuned-removed-0530
4
null
transformers
19,996
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: bert-base-uncased-finetuned-removed-0530 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-removed-0530 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1269 - Accuracy: 0.8745 - F1: 0.8745 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:| | No log | 1.0 | 3180 | 0.5939 | 0.8113 | 0.8113 | | No log | 2.0 | 6360 | 0.6459 | 0.8189 | 0.8183 | | No log | 3.0 | 9540 | 0.6523 | 0.8597 | 0.8604 | | No log | 4.0 | 12720 | 0.8159 | 0.8522 | 0.8521 | | No log | 5.0 | 15900 | 0.9294 | 0.8601 | 0.8599 | | No log | 6.0 | 19080 | 1.0066 | 0.8594 | 0.8592 | | No log | 7.0 | 22260 | 1.0268 | 0.8686 | 0.8689 | | 0.2451 | 8.0 | 25440 | 1.0274 | 0.8758 | 0.8760 | | 0.2451 | 9.0 | 28620 | 1.0850 | 0.8726 | 0.8727 | | 0.2451 | 10.0 | 31800 | 1.1269 | 0.8745 | 0.8745 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.9.0 - Datasets 1.16.1 - Tokenizers 0.12.1
YeRyeongLee/roberta-base-finetuned-removed-0530
4b15bacdaede3640d136b45b639c70f25cf59950
2022-05-30T06:26:57.000Z
[ "pytorch", "roberta", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
YeRyeongLee
null
YeRyeongLee/roberta-base-finetuned-removed-0530
4
null
transformers
19,997
--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: roberta-base-finetuned-removed-0530 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-finetuned-removed-0530 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7910 - Accuracy: 0.9082 - F1: 0.9084 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:| | No log | 1.0 | 3180 | 0.6250 | 0.8277 | 0.8250 | | No log | 2.0 | 6360 | 0.4578 | 0.8689 | 0.8684 | | No log | 3.0 | 9540 | 0.4834 | 0.8792 | 0.8797 | | No log | 4.0 | 12720 | 0.6377 | 0.8899 | 0.8902 | | No log | 5.0 | 15900 | 0.6498 | 0.8921 | 0.8921 | | No log | 6.0 | 19080 | 0.6628 | 0.8931 | 0.8928 | | No log | 7.0 | 22260 | 0.7380 | 0.8925 | 0.8918 | | 0.2877 | 8.0 | 25440 | 0.7313 | 0.8975 | 0.8974 | | 0.2877 | 9.0 | 28620 | 0.7593 | 0.9025 | 0.9026 | | 0.2877 | 10.0 | 31800 | 0.7910 | 0.9082 | 0.9084 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.9.0 - Datasets 1.16.1 - Tokenizers 0.12.1
CH0KUN/autotrain-TNC_Data1000_wangchanBERTa-927730545
398a8240ffd202eb74b57c45bbba369829efbb02
2022-05-30T06:32:34.000Z
[ "pytorch", "camembert", "text-classification", "unk", "dataset:CH0KUN/autotrain-data-TNC_Data1000_wangchanBERTa", "transformers", "autotrain", "co2_eq_emissions" ]
text-classification
false
CH0KUN
null
CH0KUN/autotrain-TNC_Data1000_wangchanBERTa-927730545
4
null
transformers
19,998
--- tags: autotrain language: unk widget: - text: "I love AutoTrain 🤗" datasets: - CH0KUN/autotrain-data-TNC_Data1000_wangchanBERTa co2_eq_emissions: 0.03882318406133382 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 927730545 - CO2 Emissions (in grams): 0.03882318406133382 ## Validation Metrics - Loss: 0.346664160490036 - Accuracy: 0.9212962962962963 - Macro F1: 0.9193830593356196 - Micro F1: 0.9212962962962963 - Weighted F1: 0.9213272351125573 - Macro Precision: 0.920255423800781 - Micro Precision: 0.9212962962962963 - Weighted Precision: 0.9231182355921642 - Macro Recall: 0.920208415963133 - Micro Recall: 0.9212962962962963 - Weighted Recall: 0.9212962962962963 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/CH0KUN/autotrain-TNC_Data1000_wangchanBERTa-927730545 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("CH0KUN/autotrain-TNC_Data1000_wangchanBERTa-927730545", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("CH0KUN/autotrain-TNC_Data1000_wangchanBERTa-927730545", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
CH0KUN/autotrain-TNC_Data2500_WangchanBERTa-928030564
796ad0d715f86460a41cce11f3c1b79ea786884b
2022-05-30T07:27:02.000Z
[ "pytorch", "camembert", "text-classification", "unk", "dataset:CH0KUN/autotrain-data-TNC_Data2500_WangchanBERTa", "transformers", "autotrain", "co2_eq_emissions" ]
text-classification
false
CH0KUN
null
CH0KUN/autotrain-TNC_Data2500_WangchanBERTa-928030564
4
null
transformers
19,999
--- tags: autotrain language: unk widget: - text: "I love AutoTrain 🤗" datasets: - CH0KUN/autotrain-data-TNC_Data2500_WangchanBERTa co2_eq_emissions: 0.07293362913158113 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 928030564 - CO2 Emissions (in grams): 0.07293362913158113 ## Validation Metrics - Loss: 0.4989683926105499 - Accuracy: 0.8445845697329377 - Macro F1: 0.8407629450432429 - Micro F1: 0.8445845697329377 - Weighted F1: 0.8407629450432429 - Macro Precision: 0.8390327354531153 - Micro Precision: 0.8445845697329377 - Weighted Precision: 0.8390327354531154 - Macro Recall: 0.8445845697329377 - Micro Recall: 0.8445845697329377 - Weighted Recall: 0.8445845697329377 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/CH0KUN/autotrain-TNC_Data2500_WangchanBERTa-928030564 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("CH0KUN/autotrain-TNC_Data2500_WangchanBERTa-928030564", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("CH0KUN/autotrain-TNC_Data2500_WangchanBERTa-928030564", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```