modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
Jeevesh8/6ep_bert_ft_cola-47
869c7411aadd8fe9bc8fb4a51da1411d2aa85da7
2022-05-14T13:17:27.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/6ep_bert_ft_cola-47
4
null
transformers
19,700
Entry not found
Jeevesh8/6ep_bert_ft_cola-48
3e60972407f958dc6b34ffa95325adfb6c62d926
2022-05-14T13:19:06.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/6ep_bert_ft_cola-48
4
null
transformers
19,701
Entry not found
Jeevesh8/6ep_bert_ft_cola-51
2f1f287c71c7b34c2c0669d7241f7c84d6868b55
2022-05-14T13:24:03.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/6ep_bert_ft_cola-51
4
null
transformers
19,702
Entry not found
Jeevesh8/6ep_bert_ft_cola-56
e602531c2e9642a2495397ee1e14f939f95054bd
2022-05-14T13:32:21.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/6ep_bert_ft_cola-56
4
null
transformers
19,703
Entry not found
Jeevesh8/6ep_bert_ft_cola-57
dd3abf5ef577d6e6d1cbd7023831669f715cceba
2022-05-14T13:34:01.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/6ep_bert_ft_cola-57
4
null
transformers
19,704
Entry not found
Jeevesh8/6ep_bert_ft_cola-58
efdbb057230a52256c8de9985aaece44b1574892
2022-05-14T13:35:42.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/6ep_bert_ft_cola-58
4
null
transformers
19,705
Entry not found
Jeevesh8/6ep_bert_ft_cola-60
d5df941b78163340e3ccc1f7ca28cd25aaef456b
2022-05-14T13:39:01.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/6ep_bert_ft_cola-60
4
null
transformers
19,706
Entry not found
Jeevesh8/6ep_bert_ft_cola-64
040242743e7c8a9acd8e4beaa6610078286304e0
2022-05-14T13:45:39.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/6ep_bert_ft_cola-64
4
null
transformers
19,707
Entry not found
Jeevesh8/6ep_bert_ft_cola-65
60634ccb69ccdb6d81ab9951a0b7707ee3542d5f
2022-05-14T13:47:18.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/6ep_bert_ft_cola-65
4
null
transformers
19,708
Entry not found
Jeevesh8/6ep_bert_ft_cola-67
a4fecd367aa56a2ba91c452da970795b6b8e989b
2022-05-14T13:50:41.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/6ep_bert_ft_cola-67
4
null
transformers
19,709
Entry not found
Jeevesh8/6ep_bert_ft_cola-68
879631772ff9032d795969669a5ab744b7b70435
2022-05-14T13:52:21.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/6ep_bert_ft_cola-68
4
null
transformers
19,710
Entry not found
Jeevesh8/6ep_bert_ft_cola-70
a158b10f60ba33207eb018758a09015ea0cf94cc
2022-05-14T13:55:41.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/6ep_bert_ft_cola-70
4
null
transformers
19,711
Entry not found
Jeevesh8/6ep_bert_ft_cola-72
692fa7fc8fd5bc5232042a87816d7b6f8ca643fe
2022-05-14T13:59:00.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/6ep_bert_ft_cola-72
4
null
transformers
19,712
Entry not found
Jeevesh8/6ep_bert_ft_cola-74
e8ce7d6cac38103fac7794c167e6ac0bb3c64525
2022-05-14T14:02:21.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/6ep_bert_ft_cola-74
4
null
transformers
19,713
Entry not found
Jeevesh8/6ep_bert_ft_cola-78
e0a9a1c42ab16a2dfddc073e2a36d33d90fca7b9
2022-05-14T14:09:07.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/6ep_bert_ft_cola-78
4
null
transformers
19,714
Entry not found
Jeevesh8/6ep_bert_ft_cola-79
2d667b5b656efc6d89d52439292140e611fd06df
2022-05-14T14:10:47.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/6ep_bert_ft_cola-79
4
null
transformers
19,715
Entry not found
Jeevesh8/6ep_bert_ft_cola-82
64d99c3dbe1686024c4a28e9a9ba6c3b09fe7d58
2022-05-14T14:15:45.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/6ep_bert_ft_cola-82
4
null
transformers
19,716
Entry not found
Jeevesh8/6ep_bert_ft_cola-83
018970d277c7421ad7041aa8ec3c15a1a285eaa1
2022-05-14T14:17:24.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/6ep_bert_ft_cola-83
4
null
transformers
19,717
Entry not found
Jeevesh8/6ep_bert_ft_cola-84
78b9c423221758a7c84f64b4f5d418520358c1c9
2022-05-14T14:19:03.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/6ep_bert_ft_cola-84
4
null
transformers
19,718
Entry not found
Jeevesh8/6ep_bert_ft_cola-85
830a699d328c462bd1e0187e39b519ebead955ac
2022-05-14T14:20:44.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/6ep_bert_ft_cola-85
4
null
transformers
19,719
Entry not found
Jeevesh8/6ep_bert_ft_cola-86
473a5fcea1f60446302667ab323f96741676c362
2022-05-14T14:22:26.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/6ep_bert_ft_cola-86
4
null
transformers
19,720
Entry not found
Jeevesh8/6ep_bert_ft_cola-88
8bc46cd193597113f16dd2303b86ffff9106b9ff
2022-05-14T14:25:55.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/6ep_bert_ft_cola-88
4
null
transformers
19,721
Entry not found
Jeevesh8/6ep_bert_ft_cola-89
71928fd8c402abf713da3886b1456d3d204c79c7
2022-05-14T14:27:36.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/6ep_bert_ft_cola-89
4
null
transformers
19,722
Entry not found
Jeevesh8/6ep_bert_ft_cola-90
82cd62bf28b076f9e5576fb3305c521150e59d68
2022-05-14T14:29:17.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/6ep_bert_ft_cola-90
4
null
transformers
19,723
Entry not found
Jeevesh8/6ep_bert_ft_cola-91
ca9b7e906c0320a7ba64cd9ce91ebc9939cf7478
2022-05-14T14:30:58.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/6ep_bert_ft_cola-91
4
null
transformers
19,724
Entry not found
Jeevesh8/6ep_bert_ft_cola-92
d4469bfcade5f576fe5622224e8e0d70957ff820
2022-05-14T14:32:39.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/6ep_bert_ft_cola-92
4
null
transformers
19,725
Entry not found
Jeevesh8/6ep_bert_ft_cola-93
dd424199cae1abc6ea1db56115d659350307103f
2022-05-14T14:34:21.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/6ep_bert_ft_cola-93
4
null
transformers
19,726
Entry not found
Jeevesh8/6ep_bert_ft_cola-94
c62027a1b728546a3fca04e1ea096328a2a57726
2022-05-14T14:36:03.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/6ep_bert_ft_cola-94
4
null
transformers
19,727
Entry not found
Jeevesh8/6ep_bert_ft_cola-95
ceb1374f8002ac4b515a62d6e3be65d21b386f04
2022-05-14T14:37:43.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/6ep_bert_ft_cola-95
4
null
transformers
19,728
Entry not found
Jeevesh8/6ep_bert_ft_cola-96
0625e319b6eeeae39dd3885a92dc201ba5a8410e
2022-05-14T14:39:25.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/6ep_bert_ft_cola-96
4
null
transformers
19,729
Entry not found
Jeevesh8/6ep_bert_ft_cola-97
63d334bb1acc00724d4a76f69ace8be7de8c217a
2022-05-14T14:41:04.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/6ep_bert_ft_cola-97
4
null
transformers
19,730
Entry not found
Jeevesh8/6ep_bert_ft_cola-98
f121a01774268dbb39699131fc11ac7430e623eb
2022-05-14T14:42:47.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/6ep_bert_ft_cola-98
4
null
transformers
19,731
Entry not found
Jeevesh8/6ep_bert_ft_cola-99
7dc2fcaca04913056c2132770ae5f5192d26dbb4
2022-05-14T14:44:31.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/6ep_bert_ft_cola-99
4
null
transformers
19,732
Entry not found
PrajwalS/wav2vec2_train_large
26c2e1c9394b73ca080aa1e1bf51285e02973ac1
2022-05-15T11:20:33.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
PrajwalS
null
PrajwalS/wav2vec2_train_large
4
0
transformers
19,733
Entry not found
jtang9001/skynet_gpt2_1
5e2439f54c80fa2400e76107509df8a3872a6510
2022-05-15T00:33:31.000Z
[ "pytorch", "gpt2", "text-classification", "transformers" ]
text-classification
false
jtang9001
null
jtang9001/skynet_gpt2_1
4
null
transformers
19,734
Entry not found
jtang9001/skynet_gpt2_2
23b69a201d7e322d5f3ffd7231bc2af697252470
2022-05-15T01:43:00.000Z
[ "pytorch", "gpt2", "text-classification", "transformers" ]
text-classification
false
jtang9001
null
jtang9001/skynet_gpt2_2
4
null
transformers
19,735
Entry not found
Barik/testvata
511a5734b423b0a8a4b005cb3549e0f5ad92c800
2022-05-15T09:21:30.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Barik
null
Barik/testvata
4
null
transformers
19,736
Entry not found
Zohar/distilgpt2-finetuned-negative-restaurant-reviews-clean
7fe2d63456526af2d67ef74e4bd4cb264eae851d
2022-05-15T14:12:08.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-generation
false
Zohar
null
Zohar/distilgpt2-finetuned-negative-restaurant-reviews-clean
4
null
transformers
19,737
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-negative-restaurant-reviews-clean results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-negative-restaurant-reviews-clean This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.5187 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.6841 | 1.0 | 3105 | 3.5793 | | 3.6184 | 2.0 | 6210 | 3.5313 | | 3.5943 | 3.0 | 9315 | 3.5187 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.11.0
ali-issa/FYP_ARABIC
bf791128ff70203d72011188a69431da73796e28
2022-05-15T19:44:11.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
ali-issa
null
ali-issa/FYP_ARABIC
4
null
transformers
19,738
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-arabic-gpu-colab-similar-to-german-bigger-warm-up results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-arabic-gpu-colab-similar-to-german-bigger-warm-up This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6370 - Wer: 0.4146 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 6 - total_train_batch_size: 12 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5000 - num_epochs: 40 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 9.4958 | 2.83 | 400 | 3.4822 | 1.0 | | 3.2281 | 5.67 | 800 | 2.9404 | 1.0 | | 2.942 | 8.51 | 1200 | 2.8690 | 1.0 | | 2.6346 | 11.35 | 1600 | 1.5452 | 0.9994 | | 1.3472 | 14.18 | 2000 | 0.8261 | 0.6853 | | 0.8972 | 17.02 | 2400 | 0.6812 | 0.5737 | | 0.6924 | 19.85 | 2800 | 0.6552 | 0.5291 | | 0.5687 | 22.69 | 3200 | 0.6108 | 0.4909 | | 0.4734 | 25.53 | 3600 | 0.5877 | 0.4674 | | 0.4029 | 28.37 | 4000 | 0.6204 | 0.4662 | | 0.3483 | 31.2 | 4400 | 0.5932 | 0.4451 | | 0.307 | 34.04 | 4800 | 0.6445 | 0.4392 | | 0.2722 | 36.88 | 5200 | 0.6126 | 0.4292 | | 0.2247 | 39.71 | 5600 | 0.6370 | 0.4146 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
prashanth/mbart-large-cc25-ge-hi-to-en
f086bbfc6b5dab16c158663a7c51afe3b63de4c7
2022-05-16T13:47:51.000Z
[ "pytorch", "tensorboard", "mbart", "text2text-generation", "dataset:hindi_english_machine_translation", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
prashanth
null
prashanth/mbart-large-cc25-ge-hi-to-en
4
null
transformers
19,739
--- tags: - generated_from_trainer datasets: - hindi_english_machine_translation metrics: - bleu model-index: - name: mbart-large-cc25-ge-hi-to-en results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: hindi_english_machine_translation type: hindi_english_machine_translation args: hi-en metrics: - name: Bleu type: bleu value: 0.1823 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mbart-large-cc25-ge-hi-to-en This model is a fine-tuned version of [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25) on the hindi_english_machine_translation dataset. It achieves the following results on the evaluation set: - Loss: 1.1000 - Bleu: 0.1823 - Gen Len: 1023.383 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:------:|:---------------:|:------:|:--------:| | 1.4078 | 1.0 | 135739 | 1.1000 | 0.1823 | 1023.383 | ### Framework versions - Transformers 4.19.1 - Pytorch 1.11.0+cu102 - Datasets 1.18.0 - Tokenizers 0.12.1
PrajwalS/wav2vec2_train_large_on_untrained
6bf4b1cdc5af0c4f89ea9e7cfa42aa18ababc442
2022-05-16T04:33:47.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
PrajwalS
null
PrajwalS/wav2vec2_train_large_on_untrained
4
null
transformers
19,740
Entry not found
Gnosky/distilgpt2-finetuned-wikitext2
7466ba6462e3bcba60eccaa7b861ce9ec0d8fecf
2022-05-16T04:48:55.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-generation
false
Gnosky
null
Gnosky/distilgpt2-finetuned-wikitext2
4
null
transformers
19,741
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-wikitext2 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.6421 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.7602 | 1.0 | 2334 | 3.6669 | | 3.653 | 2.0 | 4668 | 3.6472 | | 3.6006 | 3.0 | 7002 | 3.6421 | ### Framework versions - Transformers 4.19.1 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
yogeshchandrasekharuni/bart-paraphrase-finetuned-xsum-v2
cf0620b6bef71726dea0de46b6722963488544cf
2022-05-16T05:52:18.000Z
[ "pytorch", "tensorboard", "bart", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
yogeshchandrasekharuni
null
yogeshchandrasekharuni/bart-paraphrase-finetuned-xsum-v2
4
null
transformers
19,742
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-paraphrase-finetuned-xsum-v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-paraphrase-finetuned-xsum-v2 This model is a fine-tuned version of [eugenesiow/bart-paraphrase](https://huggingface.co/eugenesiow/bart-paraphrase) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2329 - Rouge1: 100.0 - Rouge2: 100.0 - Rougel: 100.0 - Rougelsum: 100.0 - Gen Len: 9.2619 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 21 | 1.2954 | 66.7012 | 60.8612 | 66.5163 | 66.4352 | 13.2857 | | No log | 2.0 | 42 | 0.6866 | 86.8284 | 82.7835 | 86.7208 | 86.784 | 9.5238 | | No log | 3.0 | 63 | 0.4652 | 95.1892 | 93.5619 | 95.2567 | 95.1657 | 10.3095 | | No log | 4.0 | 84 | 0.4280 | 97.7463 | 97.1782 | 97.8708 | 97.718 | 9.5 | | No log | 5.0 | 105 | 0.3712 | 99.6435 | 99.5767 | 99.6435 | 99.6435 | 9.3571 | | No log | 6.0 | 126 | 0.4451 | 99.2695 | 98.9418 | 99.1883 | 99.3506 | 9.3095 | | No log | 7.0 | 147 | 0.3169 | 99.246 | 99.0232 | 99.246 | 99.4048 | 9.619 | | No log | 8.0 | 168 | 0.2942 | 100.0 | 100.0 | 100.0 | 100.0 | 9.4048 | | No log | 9.0 | 189 | 0.3105 | 100.0 | 100.0 | 100.0 | 100.0 | 9.1667 | | No log | 10.0 | 210 | 0.3035 | 100.0 | 100.0 | 100.0 | 100.0 | 9.2619 | | No log | 11.0 | 231 | 0.2983 | 100.0 | 100.0 | 100.0 | 100.0 | 10.5714 | | No log | 12.0 | 252 | 0.2497 | 100.0 | 100.0 | 100.0 | 100.0 | 9.4286 | | No log | 13.0 | 273 | 0.2911 | 100.0 | 100.0 | 100.0 | 100.0 | 9.1667 | | No log | 14.0 | 294 | 0.2619 | 100.0 | 100.0 | 100.0 | 100.0 | 9.2143 | | No log | 15.0 | 315 | 0.2510 | 100.0 | 100.0 | 100.0 | 100.0 | 9.2381 | | No log | 16.0 | 336 | 0.2647 | 100.0 | 100.0 | 100.0 | 100.0 | 9.9048 | | No log | 17.0 | 357 | 0.2438 | 100.0 | 100.0 | 100.0 | 100.0 | 9.2143 | | No log | 18.0 | 378 | 0.2324 | 100.0 | 100.0 | 100.0 | 100.0 | 9.3095 | | No log | 19.0 | 399 | 0.2296 | 100.0 | 100.0 | 100.0 | 100.0 | 9.3095 | | No log | 20.0 | 420 | 0.2329 | 100.0 | 100.0 | 100.0 | 100.0 | 9.2619 | ### Framework versions - Transformers 4.19.1 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
Yarn007/autotrain-Napkin-872827783
75576b61d6b26a9a51d7990bc2fbae5da444f5e2
2022-05-16T13:01:19.000Z
[ "pytorch", "bert", "text-classification", "unk", "dataset:Yarn007/autotrain-data-Napkin", "transformers", "autotrain", "co2_eq_emissions" ]
text-classification
false
Yarn007
null
Yarn007/autotrain-Napkin-872827783
4
null
transformers
19,743
--- tags: autotrain language: unk widget: - text: "I love AutoTrain 🤗" datasets: - Yarn007/autotrain-data-Napkin co2_eq_emissions: 0.020162211418903533 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 872827783 - CO2 Emissions (in grams): 0.020162211418903533 ## Validation Metrics - Loss: 0.25198695063591003 - Accuracy: 0.9325714285714286 - Macro F1: 0.9254931094274171 - Micro F1: 0.9325714285714286 - Weighted F1: 0.9323540959391766 - Macro Precision: 0.9286720054236212 - Micro Precision: 0.9325714285714286 - Weighted Precision: 0.9324375609546055 - Macro Recall: 0.9227549386201338 - Micro Recall: 0.9325714285714286 - Weighted Recall: 0.9325714285714286 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/Yarn007/autotrain-Napkin-872827783 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("Yarn007/autotrain-Napkin-872827783", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("Yarn007/autotrain-Napkin-872827783", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
drGOD/rubert-tiny-finetuned-cola
06be372f3059a15f38cadf14ceee037938c695c1
2022-05-17T14:44:14.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
drGOD
null
drGOD/rubert-tiny-finetuned-cola
4
null
transformers
19,744
--- license: mit tags: - generated_from_trainer metrics: - matthews_correlation model-index: - name: rubert-tiny-finetuned-cola results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # rubert-tiny-finetuned-cola This model is a fine-tuned version of [cointegrated/rubert-tiny](https://huggingface.co/cointegrated/rubert-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0013 - Matthews Correlation: 0.9994 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.0640317288646484e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 28 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:-----:|:---------------:|:--------------------:| | 0.0326 | 1.0 | 2667 | 0.0180 | 0.9907 | | 0.0143 | 2.0 | 5334 | 0.0075 | 0.9957 | | 0.0102 | 3.0 | 8001 | 0.0049 | 0.9979 | | 0.0026 | 4.0 | 10668 | 0.0019 | 0.9993 | | 0.0018 | 5.0 | 13335 | 0.0013 | 0.9994 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
Danni/distilbert-base-uncased-finetuned-dbpedia-label
8cfb18fa125a59bfa7c05e1fb2bcd5da4619ffed
2022-05-16T15:16:22.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers" ]
text-classification
false
Danni
null
Danni/distilbert-base-uncased-finetuned-dbpedia-label
4
null
transformers
19,745
Entry not found
Caesarcc/bertimbau-finetune-br-news
dfdd54b38d617e996c9691d3accaf65e0708f5be
2022-05-17T02:30:05.000Z
[ "pytorch", "bert", "text-classification", "transformers", "license:mit" ]
text-classification
false
Caesarcc
null
Caesarcc/bertimbau-finetune-br-news
4
null
transformers
19,746
--- license: mit ---
anuj55/roberta-base-squad2-finetuned-polifact
b7d75e3ac265463cbedd378c836fa4930174c8f3
2022-05-17T09:52:11.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "transformers" ]
text-classification
false
anuj55
null
anuj55/roberta-base-squad2-finetuned-polifact
4
null
transformers
19,747
Entry not found
dog/resnet50
27831fb05939a2c5e6c80b27c0cdfac60ebc45ba
2022-05-17T08:58:48.000Z
[ "pytorch", "timm", "image-classification" ]
image-classification
false
dog
null
dog/resnet50
4
null
timm
19,748
--- tags: - image-classification - timm library_tag: timm --- # Model card for dog/resnet50
huggingtweets/gduvivier-guilhermeboulos-ptbrasil
42d6dfa8f37b7a303ad015b71ef702e784375b3c
2022-05-17T17:55:26.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/gduvivier-guilhermeboulos-ptbrasil
4
null
transformers
19,749
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1410721079383969795/28HNul1J_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/936390568946651136/mFZ9oOfR_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1221967496640704512/3lOox3Kt_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">PT Brasil & Gregorio Duvivier & Guilherme Boulos</div> <div style="text-align: center; font-size: 14px;">@gduvivier-guilhermeboulos-ptbrasil</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from PT Brasil & Gregorio Duvivier & Guilherme Boulos. | Data | PT Brasil | Gregorio Duvivier | Guilherme Boulos | | --- | --- | --- | --- | | Tweets downloaded | 3250 | 3223 | 3248 | | Retweets | 535 | 1358 | 657 | | Short tweets | 116 | 450 | 122 | | Tweets kept | 2599 | 1415 | 2469 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1dcswedc/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @gduvivier-guilhermeboulos-ptbrasil's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/202hdnnd) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/202hdnnd/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/gduvivier-guilhermeboulos-ptbrasil') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
CEBaB/roberta-base.CEBaB.absa.exclusive.seed_42
c37d95e3d8ee1e156de64c4922c58071e3321024
2022-05-17T19:57:04.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
CEBaB
null
CEBaB/roberta-base.CEBaB.absa.exclusive.seed_42
4
null
transformers
19,750
Entry not found
CEBaB/roberta-base.CEBaB.absa.exclusive.seed_66
dfc3afb9b67309860269b478d161c421ff8ed6c6
2022-05-17T20:09:04.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
CEBaB
null
CEBaB/roberta-base.CEBaB.absa.exclusive.seed_66
4
null
transformers
19,751
Entry not found
CEBaB/lstm.CEBaB.absa.exclusive.seed_66
d57081daa1cd3ef4ee516f28914aed05bfce784e
2022-05-17T20:19:56.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
CEBaB
null
CEBaB/lstm.CEBaB.absa.exclusive.seed_66
4
null
transformers
19,752
Entry not found
CEBaB/roberta-base.CEBaB.absa.exclusive.seed_77
a227c773ace3e2c4a0bdb5158236d1a03cfba386
2022-05-17T20:20:51.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
CEBaB
null
CEBaB/roberta-base.CEBaB.absa.exclusive.seed_77
4
null
transformers
19,753
Entry not found
CEBaB/lstm.CEBaB.absa.exclusive.seed_77
389e967794e6a0e6bb40adaa965c8ab91563d665
2022-05-17T20:31:55.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
CEBaB
null
CEBaB/lstm.CEBaB.absa.exclusive.seed_77
4
null
transformers
19,754
Entry not found
CEBaB/roberta-base.CEBaB.absa.exclusive.seed_88
15db1c406b9e4f974c48560cdfda990a9869fd30
2022-05-17T20:32:43.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
CEBaB
null
CEBaB/roberta-base.CEBaB.absa.exclusive.seed_88
4
null
transformers
19,755
Entry not found
CEBaB/lstm.CEBaB.absa.exclusive.seed_88
c96d9b66e5a655de86408a19b02b622701d0ad91
2022-05-17T20:43:31.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
CEBaB
null
CEBaB/lstm.CEBaB.absa.exclusive.seed_88
4
null
transformers
19,756
Entry not found
CEBaB/roberta-base.CEBaB.absa.exclusive.seed_99
284b401e6bb5d9129b95aed0ab35fcd15ad8bbeb
2022-05-17T20:44:19.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
CEBaB
null
CEBaB/roberta-base.CEBaB.absa.exclusive.seed_99
4
null
transformers
19,757
Entry not found
CEBaB/lstm.CEBaB.absa.exclusive.seed_99
206ef31889240b4323fcd6540a1860681dd9ce17
2022-05-17T20:55:11.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
CEBaB
null
CEBaB/lstm.CEBaB.absa.exclusive.seed_99
4
null
transformers
19,758
Entry not found
CEBaB/lstm.CEBaB.absa.inclusive.seed_42
e7f2524747bc4027bc89b733bf39edfea9bd9d80
2022-05-17T23:52:34.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
CEBaB
null
CEBaB/lstm.CEBaB.absa.inclusive.seed_42
4
null
transformers
19,759
Entry not found
CEBaB/lstm.CEBaB.absa.inclusive.seed_66
2c178ccca493b40e5410548843987780a2842c48
2022-05-18T00:09:13.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
CEBaB
null
CEBaB/lstm.CEBaB.absa.inclusive.seed_66
4
null
transformers
19,760
Entry not found
CEBaB/roberta-base.CEBaB.absa.inclusive.seed_77
46a5f71f1caf4ee9de8564148254b2cfb64c8696
2022-05-18T00:14:56.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
CEBaB
null
CEBaB/roberta-base.CEBaB.absa.inclusive.seed_77
4
null
transformers
19,761
Entry not found
CEBaB/lstm.CEBaB.absa.inclusive.seed_77
0f06e15c2288653af00bd2f0f7db92dea9d44800
2022-05-18T00:26:05.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
CEBaB
null
CEBaB/lstm.CEBaB.absa.inclusive.seed_77
4
null
transformers
19,762
Entry not found
CEBaB/roberta-base.CEBaB.absa.inclusive.seed_99
c6b143fde76c91393ef51bb9be90587ee7dc4cf4
2022-05-18T00:49:41.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
CEBaB
null
CEBaB/roberta-base.CEBaB.absa.inclusive.seed_99
4
null
transformers
19,763
Entry not found
birgermoell/wav2vec2-liepa-1-percent
7f5d5e3192afdc4876e1e41c8b814887550947d1
2022-05-18T10:54:55.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "lt", "transformers", "common_voice", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
birgermoell
null
birgermoell/wav2vec2-liepa-1-percent
4
null
transformers
19,764
--- language: - lt license: apache-2.0 tags: - automatic-speech-recognition - common_voice - generated_from_trainer model-index: - name: wav2vec2-liepa-1-percent results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-liepa-1-percent This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the COMMON_VOICE - LT dataset. It achieves the following results on the evaluation set: - Loss: 0.5774 - Wer: 0.5079 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 15.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 0.23 | 100 | 3.3596 | 1.0 | | No log | 0.46 | 200 | 2.9280 | 1.0 | | No log | 0.69 | 300 | 1.5091 | 0.9650 | | No log | 0.93 | 400 | 0.9943 | 0.9177 | | 3.1184 | 1.16 | 500 | 0.7590 | 0.7793 | | 3.1184 | 1.39 | 600 | 0.7336 | 0.7408 | | 3.1184 | 1.62 | 700 | 0.7040 | 0.7618 | | 3.1184 | 1.85 | 800 | 0.6815 | 0.7233 | | 3.1184 | 2.08 | 900 | 0.6457 | 0.6865 | | 0.7917 | 2.31 | 1000 | 0.5705 | 0.6813 | | 0.7917 | 2.55 | 1100 | 0.5708 | 0.6620 | | 0.7917 | 2.78 | 1200 | 0.5888 | 0.6462 | | 0.7917 | 3.01 | 1300 | 0.6509 | 0.6970 | | 0.7917 | 3.24 | 1400 | 0.5871 | 0.6462 | | 0.5909 | 3.47 | 1500 | 0.6199 | 0.6813 | | 0.5909 | 3.7 | 1600 | 0.6230 | 0.5919 | | 0.5909 | 3.94 | 1700 | 0.5721 | 0.6427 | | 0.5909 | 4.17 | 1800 | 0.5331 | 0.5867 | | 0.5909 | 4.4 | 1900 | 0.5561 | 0.6007 | | 0.4607 | 4.63 | 2000 | 0.5414 | 0.5849 | | 0.4607 | 4.86 | 2100 | 0.5390 | 0.5587 | | 0.4607 | 5.09 | 2200 | 0.5313 | 0.5569 | | 0.4607 | 5.32 | 2300 | 0.5893 | 0.5797 | | 0.4607 | 5.56 | 2400 | 0.5507 | 0.5954 | | 0.3933 | 5.79 | 2500 | 0.5521 | 0.6025 | | 0.3933 | 6.02 | 2600 | 0.5663 | 0.5989 | | 0.3933 | 6.25 | 2700 | 0.5636 | 0.5832 | | 0.3933 | 6.48 | 2800 | 0.5464 | 0.5919 | | 0.3933 | 6.71 | 2900 | 0.5623 | 0.5832 | | 0.3367 | 6.94 | 3000 | 0.5324 | 0.5692 | | 0.3367 | 7.18 | 3100 | 0.5907 | 0.5394 | | 0.3367 | 7.41 | 3200 | 0.5653 | 0.5814 | | 0.3367 | 7.64 | 3300 | 0.5707 | 0.5814 | | 0.3367 | 7.87 | 3400 | 0.5754 | 0.5429 | | 0.2856 | 8.1 | 3500 | 0.5953 | 0.5569 | | 0.2856 | 8.33 | 3600 | 0.6275 | 0.5394 | | 0.2856 | 8.56 | 3700 | 0.6253 | 0.5569 | | 0.2856 | 8.8 | 3800 | 0.5930 | 0.5429 | | 0.2856 | 9.03 | 3900 | 0.6082 | 0.5219 | | 0.2522 | 9.26 | 4000 | 0.6026 | 0.5447 | | 0.2522 | 9.49 | 4100 | 0.6052 | 0.5271 | | 0.2522 | 9.72 | 4200 | 0.5871 | 0.5219 | | 0.2522 | 9.95 | 4300 | 0.5870 | 0.5236 | | 0.2522 | 10.19 | 4400 | 0.5881 | 0.5131 | | 0.2167 | 10.42 | 4500 | 0.6122 | 0.5289 | | 0.2167 | 10.65 | 4600 | 0.6128 | 0.5166 | | 0.2167 | 10.88 | 4700 | 0.6135 | 0.5377 | | 0.2167 | 11.11 | 4800 | 0.6055 | 0.5184 | | 0.2167 | 11.34 | 4900 | 0.6725 | 0.5569 | | 0.1965 | 11.57 | 5000 | 0.6482 | 0.5429 | | 0.1965 | 11.81 | 5100 | 0.6037 | 0.5096 | | 0.1965 | 12.04 | 5200 | 0.5931 | 0.5131 | | 0.1965 | 12.27 | 5300 | 0.5853 | 0.5114 | | 0.1965 | 12.5 | 5400 | 0.5798 | 0.5219 | | 0.172 | 12.73 | 5500 | 0.5775 | 0.5009 | | 0.172 | 12.96 | 5600 | 0.5782 | 0.5044 | | 0.172 | 13.19 | 5700 | 0.5804 | 0.5184 | | 0.172 | 13.43 | 5800 | 0.5977 | 0.5219 | | 0.172 | 13.66 | 5900 | 0.6069 | 0.5236 | | 0.1622 | 13.89 | 6000 | 0.5850 | 0.5131 | | 0.1622 | 14.12 | 6100 | 0.5758 | 0.5096 | | 0.1622 | 14.35 | 6200 | 0.5752 | 0.5009 | | 0.1622 | 14.58 | 6300 | 0.5727 | 0.5184 | | 0.1622 | 14.81 | 6400 | 0.5795 | 0.5044 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.10.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
FrGes/xlm-roberta-large-finetuned-EUJAV-datasetAB
c71556f3e846301a6346f5d6ca0873910657e631
2022-05-18T11:30:34.000Z
[ "pytorch", "xlm-roberta", "text-classification", "transformers" ]
text-classification
false
FrGes
null
FrGes/xlm-roberta-large-finetuned-EUJAV-datasetAB
4
null
transformers
19,765
Fine-tuned model based on #XLM-RoBERTa (large-sized model) Data for finetuning: Italian vaccine stance data: 1042 training tweets and 348 evaluation tweets #BibTeX entry and citation info to be added
ruselkomp/deep-pavlov-full
5c3422a14785faf2ce3f5cb508d0f4a8c9e969e9
2022-05-18T17:16:01.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
ruselkomp
null
ruselkomp/deep-pavlov-full
4
null
transformers
19,766
Entry not found
Jeevesh8/512seq_len_6ep_bert_ft_cola-0
92477fd3b87e6b7ba138993fce0afca63a3a9f81
2022-05-18T18:18:03.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/512seq_len_6ep_bert_ft_cola-0
4
null
transformers
19,767
Entry not found
Jeevesh8/512seq_len_6ep_bert_ft_cola-1
f768383e64e031040768ff1f07e2c53f443e65bd
2022-05-18T18:19:49.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/512seq_len_6ep_bert_ft_cola-1
4
null
transformers
19,768
Entry not found
Jeevesh8/512seq_len_6ep_bert_ft_cola-2
e659b6177f0b6f5c535ed327743ef3b636ebf72d
2022-05-18T18:21:35.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/512seq_len_6ep_bert_ft_cola-2
4
null
transformers
19,769
Entry not found
Jeevesh8/512seq_len_6ep_bert_ft_cola-54
c82a34ce5945b0e7d31e98dfa4b76fe660e89ac5
2022-05-18T18:36:32.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/512seq_len_6ep_bert_ft_cola-54
4
null
transformers
19,770
Entry not found
Jeevesh8/512seq_len_6ep_bert_ft_cola-55
c802bd6c006711c3f42d71507bf5405054b9ec29
2022-05-18T18:38:27.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/512seq_len_6ep_bert_ft_cola-55
4
null
transformers
19,771
Entry not found
Jeevesh8/512seq_len_6ep_bert_ft_cola-64
141d7b2fa3ebbf6adab02f5fd47c404616fd60ff
2022-05-18T18:42:04.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/512seq_len_6ep_bert_ft_cola-64
4
null
transformers
19,772
Entry not found
Jeevesh8/512seq_len_6ep_bert_ft_cola-65
4e069de87a60fcbdc5dc39dfd4d6bfcf78b5dd50
2022-05-18T18:43:52.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/512seq_len_6ep_bert_ft_cola-65
4
null
transformers
19,773
Entry not found
Jeevesh8/512seq_len_6ep_bert_ft_cola-66
caa3ea919089e31dd0a1cdc3e9ecfac22ce19c27
2022-05-18T18:45:41.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/512seq_len_6ep_bert_ft_cola-66
4
null
transformers
19,774
Entry not found
Jeevesh8/512seq_len_6ep_bert_ft_cola-67
41087a889a4653ae1e18ed14b9dab13265463ac7
2022-05-18T18:47:47.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/512seq_len_6ep_bert_ft_cola-67
4
null
transformers
19,775
Entry not found
Jeevesh8/512seq_len_6ep_bert_ft_cola-68
4149ace1c3790a4dc76eb34d0f993d6586242398
2022-05-18T18:49:35.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/512seq_len_6ep_bert_ft_cola-68
4
null
transformers
19,776
Entry not found
Jeevesh8/512seq_len_6ep_bert_ft_cola-69
d6a1e492e6902e2bb05b959228cd6faaa4d430c1
2022-05-18T18:51:24.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/512seq_len_6ep_bert_ft_cola-69
4
null
transformers
19,777
Entry not found
Jeevesh8/512seq_len_6ep_bert_ft_cola-70
06b3cddc30a7e06ae63e7ceaae994b0ab2e99096
2022-05-18T18:53:14.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/512seq_len_6ep_bert_ft_cola-70
4
null
transformers
19,778
Entry not found
Jeevesh8/512seq_len_6ep_bert_ft_cola-77
70619ad7a0c59e902720f7eb41fa77b645495033
2022-05-18T19:05:53.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/512seq_len_6ep_bert_ft_cola-77
4
null
transformers
19,779
Entry not found
Jeevesh8/512seq_len_6ep_bert_ft_cola-81
0b8ff79a77bbeea5cba6ae6b08d69d76523319c4
2022-05-18T19:13:12.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/512seq_len_6ep_bert_ft_cola-81
4
null
transformers
19,780
Entry not found
Jeevesh8/512seq_len_6ep_bert_ft_cola-82
8e1bcbafca79c5b7240e9685330c50c0262ff44d
2022-05-18T19:15:03.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/512seq_len_6ep_bert_ft_cola-82
4
null
transformers
19,781
Entry not found
Jeevesh8/512seq_len_6ep_bert_ft_cola-83
210d6c1451557ef94baa6925fd5f578a1680b687
2022-05-18T19:16:51.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/512seq_len_6ep_bert_ft_cola-83
4
null
transformers
19,782
Entry not found
Jeevesh8/512seq_len_6ep_bert_ft_cola-84
2b6cf61d9327ff91b2e8cb3ca2bd806f819067b5
2022-05-18T19:18:39.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/512seq_len_6ep_bert_ft_cola-84
4
null
transformers
19,783
Entry not found
Jeevesh8/512seq_len_6ep_bert_ft_cola-87
353d81b3c74bd6313dd2bb18be5f583ce6a87b86
2022-05-18T19:24:03.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/512seq_len_6ep_bert_ft_cola-87
4
null
transformers
19,784
Entry not found
Jeevesh8/512seq_len_6ep_bert_ft_cola-88
88f9e05be89b1d0156dc7b04067a37e128e4b043
2022-05-18T19:25:50.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/512seq_len_6ep_bert_ft_cola-88
4
null
transformers
19,785
Entry not found
Jeevesh8/512seq_len_6ep_bert_ft_cola-89
09a6c35e572dfebac6cd3cd2237337a81fb90c93
2022-05-18T19:27:42.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/512seq_len_6ep_bert_ft_cola-89
4
null
transformers
19,786
Entry not found
Jeevesh8/512seq_len_6ep_bert_ft_cola-90
bee3002fa5ad9eb9d257b493e7c8760858caf256
2022-05-18T19:29:29.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/512seq_len_6ep_bert_ft_cola-90
4
null
transformers
19,787
Entry not found
Jeevesh8/512seq_len_6ep_bert_ft_cola-91
728c2a372298f1d9691e09ce905250b7e2af776c
2022-05-18T19:31:19.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/512seq_len_6ep_bert_ft_cola-91
4
null
transformers
19,788
Entry not found
Jeevesh8/512seq_len_6ep_bert_ft_cola-96
7e9e133e28c63b3ef9c7123a3ca68b57bbe02653
2022-05-18T19:34:01.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/512seq_len_6ep_bert_ft_cola-96
4
null
transformers
19,789
Entry not found
Jeevesh8/512seq_len_6ep_bert_ft_cola-97
adf2326998806ff0f8ce45c57e14b8f7314bbf4a
2022-05-18T19:35:50.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/512seq_len_6ep_bert_ft_cola-97
4
null
transformers
19,790
Entry not found
Jeevesh8/512seq_len_6ep_bert_ft_cola-98
e320f68e7c27526eec33fa729c58baf761f6cd1f
2022-05-18T19:37:37.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/512seq_len_6ep_bert_ft_cola-98
4
null
transformers
19,791
Entry not found
Suhong/distilbert-base-uncased-emoji_mask_wearing
4349919374e121a536315f4a7c2822a4ec086d30
2022-05-19T12:50:04.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers" ]
text-classification
false
Suhong
null
Suhong/distilbert-base-uncased-emoji_mask_wearing
4
null
transformers
19,792
Entry not found
calcworks/distilbert-base-uncased-finetuned-clinc
f710dd9bfa22a4aa4d7b50dc4b5bd50bc13f48a0
2022-05-19T16:55:20.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:clinc_oos", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
calcworks
null
calcworks/distilbert-base-uncased-finetuned-clinc
4
null
transformers
19,793
--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos args: plus metrics: - name: Accuracy type: accuracy value: 0.9161290322580645 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.7755 - Accuracy: 0.9161 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 4.2893 | 1.0 | 318 | 3.2831 | 0.7403 | | 2.629 | 2.0 | 636 | 1.8731 | 0.8348 | | 1.5481 | 3.0 | 954 | 1.1581 | 0.8906 | | 1.0137 | 4.0 | 1272 | 0.8585 | 0.9077 | | 0.797 | 5.0 | 1590 | 0.7755 | 0.9161 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0 - Datasets 1.16.1 - Tokenizers 0.10.3
rsd16/wav2vec2-large-xlsr-53-fine-tuned-farsi
4710ee40db817eae20f4f25be017dd243d9f188f
2022-05-20T10:18:43.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
rsd16
null
rsd16/wav2vec2-large-xlsr-53-fine-tuned-farsi
4
null
transformers
19,794
Entry not found
papsebestyen/hubert-base-cc-finance-filter
05818d13501250c39f28443c254834c184924a6b
2022-05-19T19:31:47.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
papsebestyen
null
papsebestyen/hubert-base-cc-finance-filter
4
null
transformers
19,795
--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 model-index: - name: hubert-base-cc-finance-filter results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hubert-base-cc-finance-filter This model is a fine-tuned version of [papsebestyen/hubert-base-cc-finetuned-forum](https://huggingface.co/papsebestyen/hubert-base-cc-finetuned-forum) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5388 - F1: 0.7671 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3.887995089067299e-05 - train_batch_size: 60 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 160.18013334673049 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.5717 | 1.0 | 54 | 0.6918 | 0.624 | | 0.4104 | 2.0 | 108 | 0.4236 | 0.7119 | | 0.3124 | 3.0 | 162 | 0.6001 | 0.7451 | | 0.1404 | 4.0 | 216 | 0.5388 | 0.7671 | | 0.1305 | 5.0 | 270 | 0.5388 | 0.7671 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0a0+17540c5 - Datasets 2.2.1 - Tokenizers 0.12.1
jonfrank/mt5-small-finetuned-amazon-en-es
9f5c5188a71724a2a7f3607778bc9f7eb628de19
2022-05-19T17:49:31.000Z
[ "pytorch", "tensorboard", "mt5", "text2text-generation", "transformers", "summarization", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
summarization
false
jonfrank
null
jonfrank/mt5-small-finetuned-amazon-en-es
4
null
transformers
19,796
--- license: apache-2.0 tags: - summarization - generated_from_trainer metrics: - rouge model-index: - name: mt5-small-finetuned-amazon-en-es results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-finetuned-amazon-en-es This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset. It was created by following the [huggingface tutorial](https://huggingface.co/course/chapter7/5?fw=pt). It achieves the following results on the evaluation set: - Loss: 3.0173 - Rouge1: 16.7977 - Rouge2: 8.6849 - Rougel: 16.4822 - Rougelsum: 16.4975 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:| | 3.4693 | 1.0 | 1209 | 3.1215 | 17.5363 | 8.3875 | 17.0229 | 16.9653 | | 3.4231 | 2.0 | 2418 | 3.0474 | 16.7927 | 8.3533 | 16.2748 | 16.2379 | | 3.271 | 3.0 | 3627 | 3.0440 | 16.7233 | 7.9129 | 16.2385 | 16.1915 | | 3.1885 | 4.0 | 4836 | 3.0264 | 16.3078 | 7.5751 | 15.844 | 15.889 | | 3.1216 | 5.0 | 6045 | 3.0277 | 17.259 | 8.7504 | 16.8293 | 16.8543 | | 3.0739 | 6.0 | 7254 | 3.0188 | 16.8374 | 8.6457 | 16.4407 | 16.4743 | | 3.0393 | 7.0 | 8463 | 3.0161 | 17.3064 | 8.7822 | 16.9423 | 16.9543 | | 3.0202 | 8.0 | 9672 | 3.0173 | 16.7977 | 8.6849 | 16.4822 | 16.4975 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
Ukhushn/distilbert-base-uncased-finetuned-homedepot
86f5dede53642b5e5f8f3318f227bc9501a801a3
2022-05-19T22:15:06.000Z
[ "pytorch", "tensorboard", "distilbert", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
Ukhushn
null
Ukhushn/distilbert-base-uncased-finetuned-homedepot
4
null
transformers
19,797
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-homedepot results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-homedepot This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.2826 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.9909 | 1.0 | 4688 | 2.5285 | | 2.5495 | 2.0 | 9376 | 2.3476 | | 2.4198 | 3.0 | 14064 | 2.2841 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
pszemraj/opt-peter-1.3B
bff665b33970d05a9eddab6c6fdae2a232d1a74a
2022-06-24T14:06:12.000Z
[ "pytorch", "tensorboard", "opt", "text-generation", "transformers", "generated_from_trainer", "non-commercial", "dialogue", "chatbot", "license:apache-2.0" ]
text-generation
false
pszemraj
null
pszemraj/opt-peter-1.3B
4
null
transformers
19,798
--- license: apache-2.0 tags: - generated_from_trainer - text-generation - opt - non-commercial - dialogue - chatbot widget: - text: "If you could live anywhere, where would it be? peter szemraj:" example_title: "live anywhere" - text: "What would you sing at Karaoke night? peter szemraj:" example_title: "Karaoke" - text: "If you could hire someone to help you, would it be with cleaning, cooking, or yard work? peter szemraj:" example_title: "help" - text: "What form of public transportation do you prefer? (air, boat, train, bus, car, etc.) peter szemraj:" example_title: "transportation" - text: "What's your favorite zoo animal? peter szemraj:" example_title: "animal" - text: "Do you like or dislike surprises? Why or why not? peter szemraj:" example_title: "surprises" - text: "What celebrity would you like to meet at Starbucks for a cup of coffee? peter szemraj:" example_title: "celebrity " inference: parameters: min_length: 2 max_length: 64 length_penalty: 0.7 temperature: 0.3 no_repeat_ngram_size: 2 top_k: 20 do_sample: True repetition_penalty: 4.5 --- # pszemraj/opt-peter-1.3B This model is a fine-tuned version of [pszemraj/opt-peter-1.3B-1E](https://huggingface.co/pszemraj/opt-peter-1.3B-1E) on 80k Whatsapp/iMessages (mine). It achieves the following results on the evaluation set, after training for 1 epoch (_on top of the 1E checkpoint linked above_): - eval_loss: 3.4220 - eval_runtime: 954.9678 - eval_samples_per_second: 9.114 - eval_steps_per_second: 2.279 - epoch: 1.0 - step: 1235 ## Model description - Exploring to see how OPT does in terms of dialogue/conversational applications :) - Seems to do a lot better than GPT-Neo with similar training parameters ## Intended uses & limitations - OPT has a license that does not allow for commercial use, see original for details - **any statements or claims made by this model do not reflect actual claims/statements by me** ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.01 - num_epochs: 2 ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Tokenizers 0.12.1
allenai/tk-instruct-small-def-pos
4436f5351392fbe3c3e6718386d6feaeda9eaf6b
2022-05-27T06:28:10.000Z
[ "pytorch", "t5", "text2text-generation", "en", "dataset:natural instructions v2.0", "arxiv:1910.10683", "arxiv:2204.07705", "transformers", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
allenai
null
allenai/tk-instruct-small-def-pos
4
null
transformers
19,799
--- language: en license: apache-2.0 datasets: - natural instructions v2.0 --- # Model description Tk-Instruct is a series of encoder-decoder Transformer models that are trained to solve various NLP tasks by following in-context instructions (plain language task definitions, k-shot examples, explanations, etc). Built upon the pre-trained [T5 models](https://arxiv.org/abs/1910.10683), they are fine-tuned on a large number of tasks & instructions that are collected in the [Natural Instructions benchmark](https://github.com/allenai/natural-instructions), which contains 1600+ tasks in 70+ broach categories in total. This enables the model to not only process the training tasks, but also generalize to many unseen tasks without further parameter update. More resources for using the model: - **Paper**: [link](https://arxiv.org/abs/2204.07705) - **Code repository**: [Tk-Instruct](https://github.com/yizhongw/Tk-Instruct) - **Official Website**: [Natural Instructions](https://instructions.apps.allenai.org/) - **All released models**: [allenai/tk-instruct](https://huggingface.co/models?search=allenai/tk-instruct) ## Intended uses & limitations Tk-Instruct can be used to do many NLP tasks by following instructions. ### How to use When instructing the model, task definition or demonstration examples or explanations should be prepended to the original input and fed into the model. You can easily try Tk-Instruct models as follows: ```python >>> from transformers import AutoTokenizer, AutoModelForSeq2SeqLM >>> tokenizer = AutoTokenizer.from_pretrained("allenai/tk-instruct-3b-def") >>> model = AutoModelForSeq2SeqLM.from_pretrained("allenai/tk-instruct-3b-def") >>> input_ids = tokenizer.encode( "Definition: return the currency of the given country. Now complete the following example - Input: India. Output:", return_tensors="pt") >>> output = model.generate(input_ids, max_length=10) >>> output = tokenizer.decode(output[0], skip_special_tokens=True) # model should output 'Indian Rupee' >>> input_ids = tokenizer.encode( "Definition: negate the following sentence. Input: John went to school. Output:", return_tensors="pt") >>> output = model.generate(input_ids, max_length=10) >>> output = tokenizer.decode(output[0], skip_special_tokens=True) # model should output 'John did not go to shool.' ``` ### Limitations We are still working on understanding the behaviors of these models, but here are several issues we have found: - Models are generally sensitive to the instruction. Sometimes rewording the instruction can lead to very different output. - Models are not always compliant to the instruction. Sometimes the model don't follow your instruction (e.g., when you ask the model to generate one sentence, it might still generate one word or a long story). - Models might totally fail on some tasks. If you find serious issues or any interesting result, you are welcome to share with us! ## Training data Tk-Instruct is trained using the tasks & instructions in [Natural Instructions benchmark](https://github.com/allenai/natural-instructions), which contains 1600+ tasks in 70+ broach categories in total. We follow the official train/test split. Tk-Instruct model series were trained using 757 tasks, and mTk-Instruct series were trained using 1271 tasks (including some non-English tasks). The training tasks are in 64 broad categories, such as text categorization / question answering / sentiment analysis / summarization / grammar error detection / dialogue generation / etc. The other 12 categories are selected for evaluation. ## Training procedure All our models are initialized from either T5 models or mT5 models. Because generating the output can be regarded as a form of language modeling, we used their [LM adapted version](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#lm-adapted-t511lm100k). All data is converted into a text-to-text format, and models are fine-tuned to maximize the likelihood of the output sequence. Our [released models](https://huggingface.co/models?search=allenai/tk-instruct) are in different sizes, and each of them was trained with a specific type of instruction encoding. For instance, `tk-instruct-3b-def-pos` was initialized from [t5-xl-lm-adapt](https://huggingface.co/google/t5-xl-lm-adapt), and it saw task definition & 2 positive examples as the instruction during training time. Although they are trained with only one type of instruction encodings, we found they can usually work with other type of encodings at test time (see more in our paper). ### BibTeX entry and citation info ```bibtex @article{wang2022benchmarking, title={Benchmarking Generalization via In-Context Instructions on 1,600+ Language Tasks}, author={Yizhong Wang and Swaroop Mishra and Pegah Alipoormolabashi and Yeganeh Kordi and Amirreza Mirzaei and A. Arunkumar and Arjun Ashok and Arut Selvan Dhanasekaran and Atharva Naik and David Stap and Eshaan Pathak and Giannis Karamanolakis and Haizhi Gary Lai and Ishan Purohit and Ishani Mondal and Jacob Anderson and Kirby Kuznia and Krima Doshi and Maitreya Patel and Kuntal Kumar Pal and M. Moradshahi and Mihir Parmar and Mirali Purohit and Neeraj Varshney and Phani Rohitha Kaza and Pulkit Verma and Ravsehaj Singh Puri and Rushang Karia and Shailaja Keyur Sampat and Savan Doshi and Siddharth Deepak Mishra and Sujan C. Reddy and Sumanta Patro and Tanay Dixit and Xu-dong Shen and Chitta Baral and Yejin Choi and Hannaneh Hajishirzi and Noah A. Smith and Daniel Khashabi}, year={2022}, archivePrefix={arXiv}, eprint={2204.07705}, primaryClass={cs.CL}, } ```