modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
Jeevesh8/bert_ft_cola-58
9825801765da82244a893061954a15c7678b6801
2022-05-09T14:32:45.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_cola-58
4
null
transformers
19,600
Entry not found
Jeevesh8/bert_ft_cola-60
05f59beb61c1b6fa201e715f7d57e3302662eade
2022-05-09T14:34:04.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_cola-60
4
null
transformers
19,601
Entry not found
Jeevesh8/bert_ft_cola-61
8671685f288aef5ad01085ed22551f89d4dcbcd1
2022-05-09T14:34:43.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_cola-61
4
null
transformers
19,602
Entry not found
Jeevesh8/bert_ft_cola-64
c7bbade797097eb8c1e8ded44e02eeffd75a3eb5
2022-05-09T14:36:45.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_cola-64
4
null
transformers
19,603
Entry not found
Jeevesh8/bert_ft_cola-66
7c3e3b55c0c8b8ca9b94f18e0f0c7cad5c19311c
2022-05-09T14:38:02.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_cola-66
4
null
transformers
19,604
Entry not found
Jeevesh8/bert_ft_cola-67
95573875d0c1826df02bf07c99f12c286851e5ae
2022-05-09T14:38:41.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_cola-67
4
null
transformers
19,605
Entry not found
Jeevesh8/bert_ft_cola-68
51be95d214d794b2419c11369c2469446f6ee6c1
2022-05-09T14:39:21.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_cola-68
4
null
transformers
19,606
Entry not found
Jeevesh8/bert_ft_cola-69
0e3441b44c00b317e636b8348a491faa8740aa46
2022-05-09T14:40:02.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_cola-69
4
null
transformers
19,607
Entry not found
Jeevesh8/bert_ft_cola-70
607e45eef25e00e75f73abd7f2a903b657c9db44
2022-05-09T14:40:41.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_cola-70
4
null
transformers
19,608
Entry not found
Jeevesh8/bert_ft_cola-71
f214326f9e8aed81406c3cad1f0553a537151d32
2022-05-09T14:41:20.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_cola-71
4
null
transformers
19,609
Entry not found
Jeevesh8/bert_ft_cola-72
2fc48260cd02842e12e62ec985c7eb69c9ca3202
2022-05-09T14:42:00.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_cola-72
4
null
transformers
19,610
Entry not found
Jeevesh8/bert_ft_cola-73
a93505942d739a6cd73c8d96e46af00f393cd2a8
2022-05-09T14:42:38.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_cola-73
4
null
transformers
19,611
Entry not found
Jeevesh8/bert_ft_cola-74
3e754b5b3a4c8982c278dffd881cd82dd9a526a4
2022-05-09T14:43:17.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_cola-74
4
null
transformers
19,612
Entry not found
Jeevesh8/bert_ft_cola-75
8d8ebc76ced4b65f6ce3b90edc0fb6f5d03ed052
2022-05-09T14:44:04.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_cola-75
4
null
transformers
19,613
Entry not found
Jeevesh8/bert_ft_cola-76
13963ff0689a8e1cc060ea2936ea7abca3febd20
2022-05-09T14:44:44.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_cola-76
4
null
transformers
19,614
Entry not found
Jeevesh8/bert_ft_cola-77
bfd657ed6cb16616322a01331ed4308ec6b48fea
2022-05-09T14:45:25.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_cola-77
4
null
transformers
19,615
Entry not found
Jeevesh8/bert_ft_cola-78
27a61af402038bd9c4fb7f642f62da90233d0013
2022-05-09T14:46:05.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_cola-78
4
null
transformers
19,616
Entry not found
Jeevesh8/bert_ft_cola-80
d1faf92fdf9d6e4a49db1ae284e7fad494f8f3e9
2022-05-09T14:47:26.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_cola-80
4
null
transformers
19,617
Entry not found
Jeevesh8/bert_ft_cola-81
3de5a7c700fb9387d5dbed8222355c2867928074
2022-05-09T14:48:07.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_cola-81
4
null
transformers
19,618
Entry not found
Jeevesh8/bert_ft_cola-82
48e3ef8751336745a772b3d9c8914940bc9e8397
2022-05-09T14:48:49.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_cola-82
4
null
transformers
19,619
Entry not found
Jeevesh8/bert_ft_cola-84
4f03d1dea5bbae496c7315f77972f613b3f3908e
2022-05-09T14:50:09.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_cola-84
4
null
transformers
19,620
Entry not found
Jeevesh8/bert_ft_cola-86
ec53173f9e56965e93054a07b15a1c0278250969
2022-05-09T14:51:26.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_cola-86
4
null
transformers
19,621
Entry not found
Jeevesh8/bert_ft_cola-87
34c9fc3c83831e4f4de39c98e43db4ea7cdb8b5d
2022-05-09T14:52:05.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_cola-87
4
null
transformers
19,622
Entry not found
Jeevesh8/bert_ft_cola-88
20f9bb6cb1b278a92f91f151aa8187c3c2ae7d9b
2022-05-09T14:52:43.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_cola-88
4
null
transformers
19,623
Entry not found
Jeevesh8/bert_ft_cola-89
fd0c63dfe5b38d4e14445dc726315f255281df38
2022-05-09T14:53:23.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_cola-89
4
null
transformers
19,624
Entry not found
Jeevesh8/bert_ft_cola-90
0d35b0b4bf7bfc49ce55e1cade5961cb271e4dd2
2022-05-09T14:54:05.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_cola-90
4
null
transformers
19,625
Entry not found
Jeevesh8/bert_ft_cola-91
583c5dfe590171f9c3afdc5e079c93b6e0b05371
2022-05-09T14:54:44.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_cola-91
4
null
transformers
19,626
Entry not found
Jeevesh8/bert_ft_cola-92
8606fd3d4ab72bb757800ab0bfe7c1c06f1fd47f
2022-05-09T14:55:22.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_cola-92
4
null
transformers
19,627
Entry not found
Jeevesh8/bert_ft_cola-93
6e547f322de23a64947a8fad9d442a9630634258
2022-05-09T14:56:03.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_cola-93
4
null
transformers
19,628
Entry not found
Jeevesh8/bert_ft_cola-94
aace9d57803b3237ad75c2306abc4c6d1371cc8f
2022-05-09T14:56:42.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_cola-94
4
null
transformers
19,629
Entry not found
Jeevesh8/bert_ft_cola-95
80fddea6c7aca0911e1a82ce2e9adbc2f4a29d79
2022-05-09T14:57:20.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_cola-95
4
null
transformers
19,630
Entry not found
Jeevesh8/bert_ft_cola-96
c5ffb904728773b5293600a8e77fca9e1243a718
2022-05-09T14:57:59.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_cola-96
4
null
transformers
19,631
Entry not found
Jeevesh8/bert_ft_cola-97
7c14abc0ea62ae17e1b8b6e3f78aba3cb44c2cba
2022-05-09T14:58:38.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_cola-97
4
null
transformers
19,632
Entry not found
Jeevesh8/bert_ft_cola-98
1aeb601ccbe5cb1ebaeaaae5c5704900dd256130
2022-05-09T14:59:18.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_cola-98
4
null
transformers
19,633
Entry not found
Jeevesh8/bert_ft_cola-99
ad99fa918f92f2daa0f3aa4daf61d86ac1b59eff
2022-05-09T14:59:57.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_cola-99
4
null
transformers
19,634
Entry not found
princeton-nlp/CoFi-MRPC-s60
7197cf0174c250b91fdab08dfacc7310589627ba
2022-05-09T15:24:25.000Z
[ "pytorch", "bert", "text-classification", "arxiv:2204.00408", "transformers" ]
text-classification
false
princeton-nlp
null
princeton-nlp/CoFi-MRPC-s60
4
null
transformers
19,635
This is a model checkpoint for "[Structured Pruning Learns Compact and Accurate Models](https://arxiv.org/pdf/2204.00408.pdf)". The model is pruned from `bert-base-uncased` to a 60% sparsity on dataset MRPC. Please go to [our repository](https://github.com/princeton-nlp/CoFiPruning) for more details on how to use the model for inference. Note that you would have to use the model class specified in our repository to load the model.
zhiguoxu/xlm-roberta-base-finetuned-token-clasify
cbebabfeadfe15e6ae905f3fbd49134e40774826
2022-05-12T02:25:02.000Z
[ "pytorch", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
zhiguoxu
null
zhiguoxu/xlm-roberta-base-finetuned-token-clasify
4
null
transformers
19,636
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-token-clasify results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.zh metrics: - name: F1 type: f1 value: 0.6841680129240711 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-token-clasify This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.4777 - F1: 0.6842 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.7235 | 1.0 | 500 | 0.4621 | 0.4872 | | 0.4398 | 2.0 | 1000 | 0.4605 | 0.5648 | | 0.326 | 3.0 | 1500 | 0.3910 | 0.6019 | | 0.2421 | 4.0 | 2000 | 0.4549 | 0.6173 | | 0.1589 | 5.0 | 2500 | 0.4725 | 0.676 | | 0.1166 | 6.0 | 3000 | 0.4777 | 0.6842 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
moshew/MiniLM-L6-clinc-distilled
c2d0b44da9baea70e9abaae15795aac8b79f0a90
2022-05-10T17:58:23.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "transformers" ]
text-classification
false
moshew
null
moshew/MiniLM-L6-clinc-distilled
4
null
transformers
19,637
Entry not found
liyijing024/covid-twitter-bert-v2-mnli-NLI-STS-CrossEncoder-Covid-HeRA
848b4c2bc1f004ab907476f47c2ff2a1608b0698
2022-05-09T23:32:42.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
liyijing024
null
liyijing024/covid-twitter-bert-v2-mnli-NLI-STS-CrossEncoder-Covid-HeRA
4
null
transformers
19,638
Entry not found
mrm8488/electricidad-small-finetuned-politices-binary
fde495ce16bddf03cce7eef874d0fd9fd43c94b5
2022-05-10T09:18:15.000Z
[ "pytorch", "tensorboard", "electra", "text-classification", "transformers" ]
text-classification
false
mrm8488
null
mrm8488/electricidad-small-finetuned-politices-binary
4
null
transformers
19,639
Entry not found
SreyanG-NVIDIA/bert-base-cased-finetuned-cola
9ad01bbbe5b6885e775bc11f368729355c34a5ea
2022-05-10T10:54:43.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
SreyanG-NVIDIA
null
SreyanG-NVIDIA/bert-base-cased-finetuned-cola
4
null
transformers
19,640
Entry not found
choondrise/emolve_basic
7d3876b758ced813df6f5c57685766b750d430fa
2022-05-10T10:57:23.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
choondrise
null
choondrise/emolve_basic
4
null
transformers
19,641
Entry not found
FabianWillner/distilbert-base-uncased-finetuned-triviaqa
b015557f0b9eb6f57dc357656210f9d08bc80656
2022-06-08T12:22:36.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
FabianWillner
null
FabianWillner/distilbert-base-uncased-finetuned-triviaqa
4
null
transformers
19,642
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-triviaqa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-triviaqa This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9949 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.0391 | 1.0 | 11195 | 1.0133 | | 0.8425 | 2.0 | 22390 | 0.9949 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
akozlo/lib_gpt_med
b1c594a98e63b081daadc1bb08d5ea088b81c384
2022-05-10T13:02:41.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
akozlo
null
akozlo/lib_gpt_med
4
null
transformers
19,643
hello
chancar/distilbert-base-uncased-finetuned-ner
ff4a38cac25d3688593082081700daad0b82085a
2022-07-16T14:11:56.000Z
[ "pytorch", "tensorboard", "distilbert", "token-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
chancar
null
chancar/distilbert-base-uncased-finetuned-ner
4
null
transformers
19,644
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9780 - Precision: 0.0 - Recall: 0.0 - F1: 0.0 - Accuracy: 0.7891 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.002 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:| | 0.9591 | 1.0 | 878 | 0.9780 | 0.0 | 0.0 | 0.0 | 0.7891 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Tokenizers 0.12.1
reallycarlaost/finetuning-tut-model
aa5e36b9aef916e901a5e63115619929b19424e3
2022-05-10T17:21:47.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
reallycarlaost
null
reallycarlaost/finetuning-tut-model
4
null
transformers
19,645
Entry not found
cmcmorrow/distilbert-rater
b40aaf26e4f3846e97a5a2042d229e44bbb1b999
2022-05-10T17:52:42.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
cmcmorrow
null
cmcmorrow/distilbert-rater
4
null
transformers
19,646
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-rater results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-rater This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.16.2 - Pytorch 1.9.1 - Datasets 1.18.4 - Tokenizers 0.11.6
TinySuitStarfish/distilbert-base-uncased-finetuned-emotion
ac03691a026cc0dee97a0600ee38369acfe1beee
2022-05-10T19:11:10.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers" ]
text-classification
false
TinySuitStarfish
null
TinySuitStarfish/distilbert-base-uncased-finetuned-emotion
4
null
transformers
19,647
Entry not found
dreamerdeo/da-large
c185259f2fe357a62ad24555eef8916baad30489
2022-05-11T03:00:10.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
dreamerdeo
null
dreamerdeo/da-large
4
null
transformers
19,648
Entry not found
Yarn/autotrain-Traimn-853827191
1bd2fe60700de4333b6a28ecb77329af5a892958
2022-05-11T18:47:41.000Z
[ "pytorch", "bert", "text-classification", "unk", "dataset:Yarn/autotrain-data-Traimn", "transformers", "autotrain", "co2_eq_emissions" ]
text-classification
false
Yarn
null
Yarn/autotrain-Traimn-853827191
4
1
transformers
19,649
--- tags: autotrain language: unk widget: - text: "I love AutoTrain 🤗" datasets: - Yarn/autotrain-data-Traimn co2_eq_emissions: 1.712176860015081 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 853827191 - CO2 Emissions (in grams): 1.712176860015081 ## Validation Metrics - Loss: 0.10257730633020401 - Accuracy: 0.973421926910299 - Macro F1: 0.9735224586288418 - Micro F1: 0.973421926910299 - Weighted F1: 0.9735187934099364 - Macro Precision: 0.9738505933839127 - Micro Precision: 0.973421926910299 - Weighted Precision: 0.9738995774527256 - Macro Recall: 0.9734994306470444 - Micro Recall: 0.973421926910299 - Weighted Recall: 0.973421926910299 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/Yarn/autotrain-Traimn-853827191 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("Yarn/autotrain-Traimn-853827191", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("Yarn/autotrain-Traimn-853827191", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
EhsanAghazadeh/bert-base-uncased-random-weights-S42
5f53fe85fe70c03370f29d532bb4c1763b05daae
2022-05-15T14:23:49.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
EhsanAghazadeh
null
EhsanAghazadeh/bert-base-uncased-random-weights-S42
4
null
transformers
19,650
Entry not found
Pablo94/roberta-base-bne-finetuned-detests
1cac7a3dbce257ac5dae87c6f5be6d9e08c09690
2022-05-14T09:14:36.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Pablo94
null
Pablo94/roberta-base-bne-finetuned-detests
4
null
transformers
19,651
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: roberta-base-bne-finetuned-detests results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-bne-finetuned-detests This model is a fine-tuned version of [BSC-TeMU/roberta-base-bne](https://huggingface.co/BSC-TeMU/roberta-base-bne) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0052 - Accuracy: 0.8674 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2876 | 1.0 | 153 | 0.3553 | 0.8445 | | 0.3309 | 2.0 | 306 | 0.4247 | 0.8216 | | 0.0679 | 3.0 | 459 | 0.6958 | 0.8494 | | 0.0007 | 4.0 | 612 | 0.8027 | 0.8445 | | 0.0003 | 5.0 | 765 | 0.9791 | 0.8511 | | 0.0002 | 6.0 | 918 | 0.9495 | 0.8642 | | 0.0002 | 7.0 | 1071 | 0.9742 | 0.8642 | | 0.0001 | 8.0 | 1224 | 0.9913 | 0.8658 | | 0.0001 | 9.0 | 1377 | 1.0017 | 0.8674 | | 0.0001 | 10.0 | 1530 | 1.0052 | 0.8674 | ### Framework versions - Transformers 4.19.1 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
subhasisj/es-finetuned-squad-qa-minilmv2-16
2c406ab54397a0c39b6ec786adb65ff9c8b22c24
2022-05-12T22:52:07.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
subhasisj
null
subhasisj/es-finetuned-squad-qa-minilmv2-16
4
null
transformers
19,652
--- tags: - generated_from_trainer model-index: - name: es-finetuned-squad-qa-minilmv2-16 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # es-finetuned-squad-qa-minilmv2-16 This model is a fine-tuned version of [subhasisj/es-TAPT-MLM-MiniLM](https://huggingface.co/subhasisj/es-TAPT-MLM-MiniLM) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2304 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.485 | 1.0 | 711 | 1.7377 | | 1.6984 | 2.0 | 1422 | 1.3005 | | 1.0772 | 3.0 | 2133 | 1.2348 | | 0.9997 | 4.0 | 2844 | 1.2231 | | 0.8976 | 5.0 | 3555 | 1.2304 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
aajrami/bert-mlm-base
6346beb3e7d49d2337da786788145932dc35497c
2022-06-01T11:52:59.000Z
[ "pytorch", "roberta", "feature-extraction", "arxiv:2203.10415", "transformers", "bert", "license:cc-by-4.0" ]
feature-extraction
false
aajrami
null
aajrami/bert-mlm-base
4
null
transformers
19,653
--- tags: - bert license: cc-by-4.0 --- ## bert-mlm-base is a BERT base Language Model with an **MLM** pre-training objective. For more details about the pre-training objective and the pre-training hyperparameters, please refer to [How does the pre-training objective affect what large language models learn about linguistic properties?](https://arxiv.org/abs/2203.10415) ## License CC BY 4.0 ## Citation If you use this model, please cite the following paper: ``` @inproceedings{alajrami2022does, title={How does the pre-training objective affect what large language models learn about linguistic properties?}, author={Alajrami, Ahmed and Aletras, Nikolaos}, booktitle={Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)}, pages={131--147}, year={2022} } ```
manthan40/wav2vec2-base-finetuned-manthan-gujarati-digits
cf60c222e1cbe695174860a060703088c4808929
2022-05-13T02:03:31.000Z
[ "pytorch", "tensorboard", "wav2vec2", "audio-classification", "dataset:new_dataset", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
audio-classification
false
manthan40
null
manthan40/wav2vec2-base-finetuned-manthan-gujarati-digits
4
null
transformers
19,654
--- license: apache-2.0 tags: - generated_from_trainer datasets: - new_dataset metrics: - accuracy model-index: - name: wav2vec2-base-finetuned-manthan-gujarati-digits results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-finetuned-manthan-gujarati-digits This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the new_dataset dataset. It achieves the following results on the evaluation set: - Loss: 0.5613 - Accuracy: 0.9923 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.3392 | 0.98 | 12 | 1.1315 | 0.9665 | | 1.2319 | 1.98 | 24 | 0.9487 | 0.9716 | | 1.0824 | 2.98 | 36 | 0.8338 | 0.9820 | | 0.9995 | 3.98 | 48 | 0.7533 | 0.9845 | | 0.8175 | 4.98 | 60 | 0.6759 | 0.9923 | | 0.8015 | 5.98 | 72 | 0.6425 | 0.9845 | | 0.7417 | 6.98 | 84 | 0.6048 | 0.9871 | | 0.7181 | 7.98 | 96 | 0.5850 | 0.9923 | | 0.6907 | 8.98 | 108 | 0.5687 | 0.9897 | | 0.6511 | 9.98 | 120 | 0.5613 | 0.9923 | ### Framework versions - Transformers 4.19.0 - Pytorch 1.11.0+cu113 - Datasets 1.14.0 - Tokenizers 0.12.1
jkhan447/language-detection-RoBert-base
ec88e39e4344a1dd1ff216a2e8ff3bb3df059d99
2022-05-13T10:19:59.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
jkhan447
null
jkhan447/language-detection-RoBert-base
4
null
transformers
19,655
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: language-detection-RoBert-base results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # language-detection-RoBert-base This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1398 - Accuracy: 0.9865 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results ### Framework versions - Transformers 4.19.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
AnonymousSub/rule_based_hier_triplet_epochs_1_shard_1_kldiv_squad2.0
db84367d42f51a48cda97f45983d9cd2293c5efe
2022-05-13T11:13:22.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
AnonymousSub
null
AnonymousSub/rule_based_hier_triplet_epochs_1_shard_1_kldiv_squad2.0
4
null
transformers
19,656
Entry not found
anwesham/autotrain-imdb-sentiment-analysis-864927559
d47528c6e56b8350e6a852567c94bb6dd30d4029
2022-05-14T03:56:56.000Z
[ "pytorch", "distilbert", "text-classification", "unk", "dataset:anwesham/autotrain-data-imdb-sentiment-analysis", "transformers", "co2_eq_emissions" ]
text-classification
false
anwesham
null
anwesham/autotrain-imdb-sentiment-analysis-864927559
4
null
transformers
19,657
--- language: unk datasets: - anwesham/autotrain-data-imdb-sentiment-analysis co2_eq_emissions: 0.2033402242358345 --- - Problem type: Binary Classification - Model ID: 864927559 - CO2 Emissions (in grams): 0.2033402242358345 ## Validation Metrics - Loss: 0.18383920192718506 - Accuracy: 0.9318 - Precision: 0.9560625264047318 - Recall: 0.9052 - AUC: 0.98281574 - F1: 0.9299363057324841 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/anwesham/autotrain-imdb-sentiment-analysis-864927559 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("anwesham/autotrain-imdb-sentiment-analysis-864927559", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("anwesham/autotrain-imdb-sentiment-analysis-864927559", use_auth_token=True) inputs = tokenizer("I love to eat food", return_tensors="pt") outputs = model(**inputs) ```
Jeevesh8/6ep_bert_ft_cola-0
a318b8af390a9f43f5bdf866aa787f48a197bdcd
2022-05-14T11:33:10.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/6ep_bert_ft_cola-0
4
null
transformers
19,658
Entry not found
Jeevesh8/6ep_bert_ft_cola-1
def8f49e3ecd850dbb74246603cda2f32eccfaf6
2022-05-14T11:34:48.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/6ep_bert_ft_cola-1
4
null
transformers
19,659
Entry not found
Jeevesh8/6ep_bert_ft_cola-3
68026f431dc4717398a94cf25b93439330a2c5e4
2022-05-14T11:38:02.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/6ep_bert_ft_cola-3
4
null
transformers
19,660
Entry not found
Jeevesh8/6ep_bert_ft_cola-4
9b6fe552f322ef96bc2a2689bb5525de41c8d62b
2022-05-14T11:39:37.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/6ep_bert_ft_cola-4
4
null
transformers
19,661
Entry not found
Jeevesh8/6ep_bert_ft_cola-6
79da704a6a67d2b31afab2111bcbe8e2b07d1ec9
2022-05-14T11:42:50.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/6ep_bert_ft_cola-6
4
null
transformers
19,662
Entry not found
Jeevesh8/6ep_bert_ft_cola-7
76af61abd7169b155c8f9264caee5dd3e7f4577a
2022-05-14T11:44:35.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/6ep_bert_ft_cola-7
4
null
transformers
19,663
Entry not found
Jeevesh8/6ep_bert_ft_cola-8
6b4a11ff895e27ad73eaf838af02f82bc59ca17d
2022-05-14T11:46:15.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/6ep_bert_ft_cola-8
4
null
transformers
19,664
Entry not found
Jeevesh8/6ep_bert_ft_cola-9
95deb94b68e28d9e680562d83b4c4e0047d578d5
2022-05-14T11:47:57.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/6ep_bert_ft_cola-9
4
null
transformers
19,665
Entry not found
Jeevesh8/6ep_bert_ft_cola-10
74ef00d835710690cfc8773ef489f2afe7a7b88d
2022-05-14T11:49:38.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/6ep_bert_ft_cola-10
4
null
transformers
19,666
Entry not found
Jeevesh8/6ep_bert_ft_cola-11
0c49145264fd114685a356ed400b16fbb6306ea6
2022-05-14T11:51:17.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/6ep_bert_ft_cola-11
4
null
transformers
19,667
Entry not found
Jeevesh8/6ep_bert_ft_cola-12
743d13de5a27b775ce31f6cb7a16413ebfce2dda
2022-05-14T11:52:56.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/6ep_bert_ft_cola-12
4
null
transformers
19,668
Entry not found
Jeevesh8/6ep_bert_ft_cola-14
3e8046ff994a2e8d7e0f1a9a2fdc2a8f99c9abc3
2022-05-14T12:21:10.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/6ep_bert_ft_cola-14
4
null
transformers
19,669
Entry not found
Jeevesh8/6ep_bert_ft_cola-15
6b45083f63549918f67bafddd9105881c540131c
2022-05-14T12:22:57.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/6ep_bert_ft_cola-15
4
null
transformers
19,670
Entry not found
Jeevesh8/6ep_bert_ft_cola-16
1b513e92afd57f25a5369d10d93c354cf7293a3e
2022-05-14T12:24:42.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/6ep_bert_ft_cola-16
4
null
transformers
19,671
Entry not found
Jeevesh8/6ep_bert_ft_cola-17
51924767a4082b8da4c500ba02ae6e53921c16b0
2022-05-14T12:26:21.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/6ep_bert_ft_cola-17
4
null
transformers
19,672
Entry not found
Jeevesh8/6ep_bert_ft_cola-18
f51f5a3145950f3f35b047e75228b62a9d58f349
2022-05-14T12:28:09.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/6ep_bert_ft_cola-18
4
null
transformers
19,673
Entry not found
Jeevesh8/6ep_bert_ft_cola-19
b2f57c9973f2f83e614fac2fffb12d1ebbc04f35
2022-05-14T12:29:53.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/6ep_bert_ft_cola-19
4
null
transformers
19,674
Entry not found
Jeevesh8/6ep_bert_ft_cola-20
81a13ef65fd267125254002a26c192a6f8fcf4c5
2022-05-14T12:31:32.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/6ep_bert_ft_cola-20
4
null
transformers
19,675
Entry not found
Jeevesh8/6ep_bert_ft_cola-21
4d03151b47c71102114d84cea5a275ce6a817428
2022-05-14T12:33:14.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/6ep_bert_ft_cola-21
4
null
transformers
19,676
Entry not found
Jeevesh8/6ep_bert_ft_cola-22
e06189ba56903b5e2f3649cd6f4b55097ecd44fc
2022-05-14T12:34:53.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/6ep_bert_ft_cola-22
4
null
transformers
19,677
Entry not found
Jeevesh8/6ep_bert_ft_cola-24
ef9779f13088c0c6774a6bef448aec2487295b93
2022-05-14T12:38:12.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/6ep_bert_ft_cola-24
4
null
transformers
19,678
Entry not found
Jeevesh8/6ep_bert_ft_cola-25
355bb8e038c46ce6fe03ca2ffd8f57764942d3af
2022-05-14T12:39:54.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/6ep_bert_ft_cola-25
4
null
transformers
19,679
Entry not found
Jeevesh8/6ep_bert_ft_cola-26
3a63b14fe6c583efa9b6dff23407cb473e711636
2022-05-14T12:41:32.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/6ep_bert_ft_cola-26
4
null
transformers
19,680
Entry not found
Jeevesh8/6ep_bert_ft_cola-27
c8e463c92e7a95119cded437a5d55b585d62c36e
2022-05-14T12:43:13.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/6ep_bert_ft_cola-27
4
null
transformers
19,681
Entry not found
Jeevesh8/6ep_bert_ft_cola-29
ff171dcd2f29931157cee36ec106b96587ea8a86
2022-05-14T12:46:38.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/6ep_bert_ft_cola-29
4
null
transformers
19,682
Entry not found
Jeevesh8/6ep_bert_ft_cola-30
902047a576a3f08b7e6bb7eaf1837d401fc5320d
2022-05-14T12:48:24.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/6ep_bert_ft_cola-30
4
null
transformers
19,683
Entry not found
Jeevesh8/6ep_bert_ft_cola-31
b9bdebd0c6b0bda5619b418f2467de56d7e1b144
2022-05-14T12:50:33.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/6ep_bert_ft_cola-31
4
null
transformers
19,684
Entry not found
Jeevesh8/6ep_bert_ft_cola-32
ade6a9f0de7322fb4ef950e6755150670f909baf
2022-05-14T12:52:14.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/6ep_bert_ft_cola-32
4
null
transformers
19,685
Entry not found
Jeevesh8/6ep_bert_ft_cola-33
68037cbd6f05720082d9d6281d0c4ffb04914078
2022-05-14T12:54:02.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/6ep_bert_ft_cola-33
4
null
transformers
19,686
Entry not found
Jeevesh8/6ep_bert_ft_cola-34
74f6f51dd5a502667d9a389bb87eb796c1b77bbc
2022-05-14T12:55:43.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/6ep_bert_ft_cola-34
4
null
transformers
19,687
Entry not found
Jeevesh8/6ep_bert_ft_cola-35
14344dc4efd99b6ddf4fc0bdb29426613332e5b0
2022-05-14T12:57:26.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/6ep_bert_ft_cola-35
4
null
transformers
19,688
Entry not found
Jeevesh8/6ep_bert_ft_cola-36
5e097c528198c27e54baf32b8a2a8dcc225b5afd
2022-05-14T12:59:06.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/6ep_bert_ft_cola-36
4
null
transformers
19,689
Entry not found
Jeevesh8/6ep_bert_ft_cola-37
8505c6a4de9ffcc9cb37a8e6b75517cdb4062477
2022-05-14T13:00:47.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/6ep_bert_ft_cola-37
4
null
transformers
19,690
Entry not found
Jeevesh8/6ep_bert_ft_cola-38
e570bb9e9f191764b7add13c5fe9ed9665010b4f
2022-05-14T13:02:26.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/6ep_bert_ft_cola-38
4
null
transformers
19,691
Entry not found
Jeevesh8/6ep_bert_ft_cola-39
95df5a0948d81923b5c8eebac275f429273289dd
2022-05-14T13:04:07.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/6ep_bert_ft_cola-39
4
null
transformers
19,692
Entry not found
Jeevesh8/6ep_bert_ft_cola-40
774cbfe5b59f8b59c7ce0ad5eb0fc9f351b498db
2022-05-14T13:05:45.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/6ep_bert_ft_cola-40
4
null
transformers
19,693
Entry not found
Jeevesh8/6ep_bert_ft_cola-41
18198e953f275ad247769302b3315d7dd9a8c045
2022-05-14T13:07:28.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/6ep_bert_ft_cola-41
4
null
transformers
19,694
Entry not found
Jeevesh8/6ep_bert_ft_cola-42
ff5a7fddc1cb3ff07fe663dc4077f967ec22ba8a
2022-05-14T13:09:08.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/6ep_bert_ft_cola-42
4
null
transformers
19,695
Entry not found
Jeevesh8/6ep_bert_ft_cola-43
272981ee30f45c9fa59b998147ba49eb3e17ab92
2022-05-14T13:10:48.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/6ep_bert_ft_cola-43
4
null
transformers
19,696
Entry not found
Jeevesh8/6ep_bert_ft_cola-44
65cbb1e3bd49efa32c7084d43f7ef9188bc753cf
2022-05-14T13:12:29.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/6ep_bert_ft_cola-44
4
null
transformers
19,697
Entry not found
Jeevesh8/6ep_bert_ft_cola-45
777a4c2fe1600a7b2fdd692bd3626a67f8f5a3d5
2022-05-14T13:14:07.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/6ep_bert_ft_cola-45
4
null
transformers
19,698
Entry not found
Jeevesh8/6ep_bert_ft_cola-46
ac762bb89e739ce23b9d30fc517253b76e01492c
2022-05-14T13:15:48.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/6ep_bert_ft_cola-46
4
null
transformers
19,699
Entry not found