modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
Jeevesh8/feather_berts_50
095bc2f26fa4238538ca50ca027c2344eba93a4a
2022-04-20T13:34:25.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/feather_berts_50
4
null
transformers
19,400
Entry not found
Jeevesh8/feather_berts_51
eedec6b71eb7c4918912442b3912ae53d3af288f
2022-04-20T13:34:55.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/feather_berts_51
4
null
transformers
19,401
Entry not found
Jeevesh8/feather_berts_52
edbac651624547affc6d67004f2cfd1a86c19d29
2022-04-20T13:35:20.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/feather_berts_52
4
null
transformers
19,402
Entry not found
Jeevesh8/feather_berts_53
da2e51734d1ca5b4407e0e0d00adce2cac729b1f
2022-04-20T13:35:46.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/feather_berts_53
4
null
transformers
19,403
Entry not found
Jeevesh8/feather_berts_54
8ad3c3304aa812c2a316ca7541c75846b4d587de
2022-04-20T13:36:12.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/feather_berts_54
4
null
transformers
19,404
Entry not found
Jeevesh8/feather_berts_55
737a7022ef074e846a08089c037a4e1f60dbcc23
2022-04-20T13:36:36.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/feather_berts_55
4
null
transformers
19,405
Entry not found
Jeevesh8/feather_berts_56
fe03d1e8e4d89aadeeae81009b589a439f9b9e1a
2022-04-20T13:37:18.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/feather_berts_56
4
null
transformers
19,406
Entry not found
Jeevesh8/feather_berts_57
231fa0dbebf7c23c9956367270076f5129574ae2
2022-04-20T13:37:43.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/feather_berts_57
4
null
transformers
19,407
Entry not found
Jeevesh8/feather_berts_58
1f10ce43c242dad74d1aa3659bfc7e23e2fbade9
2022-04-20T13:38:09.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/feather_berts_58
4
null
transformers
19,408
Entry not found
Jeevesh8/feather_berts_59
b606443767d18233ec4a875a9ea16dce1cf1a0e6
2022-04-20T13:38:36.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/feather_berts_59
4
null
transformers
19,409
Entry not found
Jeevesh8/feather_berts_60
c880e1a797d05529ebdbe7740b86346ca117977b
2022-04-20T13:39:03.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/feather_berts_60
4
null
transformers
19,410
Entry not found
Jeevesh8/feather_berts_61
e7016f5446550fa2897f6d7186b10065f550b2a6
2022-04-20T13:39:30.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/feather_berts_61
4
null
transformers
19,411
Entry not found
Jeevesh8/feather_berts_62
aae603a34ce39c4ce47e28aaecdccb8b4a54ef51
2022-04-20T13:39:57.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/feather_berts_62
4
null
transformers
19,412
Entry not found
Jeevesh8/feather_berts_63
d44845bb56d80dbc3ab2d4e44897004b8d93c861
2022-04-20T13:40:23.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/feather_berts_63
4
null
transformers
19,413
Entry not found
Jeevesh8/feather_berts_64
4328531517c2feadb0bf0905de40ecc1d30ed9cb
2022-04-20T13:40:51.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/feather_berts_64
4
null
transformers
19,414
Entry not found
Jeevesh8/feather_berts_65
0d6692655fe3e4c8ac532add5da0f694c07e0a54
2022-04-20T13:41:22.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/feather_berts_65
4
null
transformers
19,415
Entry not found
Jeevesh8/feather_berts_66
8eea60349e5ef8baab0b3cafd77f436264ac93e4
2022-04-20T13:41:50.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/feather_berts_66
4
null
transformers
19,416
Entry not found
Jeevesh8/feather_berts_68
283f8c5dc4b184c0c901ee6232b3c3747a5bae99
2022-04-20T13:42:45.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/feather_berts_68
4
null
transformers
19,417
Entry not found
Jeevesh8/feather_berts_69
34c8c96af6651b9a11bdab96d09b50f0abad2b0f
2022-04-20T13:43:12.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/feather_berts_69
4
null
transformers
19,418
Entry not found
Jeevesh8/feather_berts_70
8d55d0d9d8c7870449524c983e148781ea1d9457
2022-04-20T13:43:39.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/feather_berts_70
4
null
transformers
19,419
Entry not found
Jeevesh8/feather_berts_71
21b37021fbf4ee1f3c2b762c26986cd1e308ebd8
2022-04-20T13:44:05.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/feather_berts_71
4
null
transformers
19,420
Entry not found
Jeevesh8/feather_berts_72
8f8b44d85ff81d1ac1804d380381741445a82d96
2022-04-20T13:44:32.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/feather_berts_72
4
null
transformers
19,421
Entry not found
Jeevesh8/feather_berts_74
d89a9332d58f449b683bba5b352043f930e26b62
2022-04-20T13:45:30.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/feather_berts_74
4
null
transformers
19,422
Entry not found
Jeevesh8/feather_berts_75
67f67854fc22cec797a6622d45edd3393823da87
2022-04-20T13:45:57.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/feather_berts_75
4
null
transformers
19,423
Entry not found
Jeevesh8/feather_berts_76
9cc114a4e73645943f86cc00e198ac14255779e3
2022-04-20T13:46:25.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/feather_berts_76
4
null
transformers
19,424
Entry not found
Jeevesh8/feather_berts_78
c5bcf645834f97f3d2d8eca638f39ba95d10833b
2022-04-20T13:47:19.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/feather_berts_78
4
null
transformers
19,425
Entry not found
Jeevesh8/feather_berts_79
cc503f5de7dcdf4f6391c8ceef4ca2e59764b967
2022-04-20T13:47:47.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/feather_berts_79
4
null
transformers
19,426
Entry not found
Jeevesh8/feather_berts_80
a4fd7f2dd20e2679266f713b39d7021c4c29923c
2022-04-20T13:48:13.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/feather_berts_80
4
null
transformers
19,427
Entry not found
Jeevesh8/feather_berts_81
c7d2d772610368beeca899ba2db6d5515e4711eb
2022-04-20T13:48:41.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/feather_berts_81
4
null
transformers
19,428
Entry not found
Jeevesh8/feather_berts_82
20d27fd09511d4a9b1df64ff208a2bf1a35fc8a6
2022-04-20T13:49:09.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/feather_berts_82
4
null
transformers
19,429
Entry not found
Jeevesh8/feather_berts_83
301d7b3e1a2fb167324e04aa9af8f98ab6a4d6f7
2022-04-20T13:49:36.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/feather_berts_83
4
null
transformers
19,430
Entry not found
Jeevesh8/feather_berts_84
fcc362c19e968a18b7d737195edea0f04bb10645
2022-04-20T13:50:04.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/feather_berts_84
4
null
transformers
19,431
Entry not found
Jeevesh8/feather_berts_86
e2967778d8b19305d43b4e0544b72c6a3d32fad0
2022-04-20T13:50:55.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/feather_berts_86
4
null
transformers
19,432
Entry not found
Jeevesh8/feather_berts_87
f16b675de8edddf27e85d3e0d5230ddd28eb645b
2022-04-20T13:51:20.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/feather_berts_87
4
null
transformers
19,433
Entry not found
Jeevesh8/feather_berts_88
cbeeff0c68905285bdb692d7bfb1934118e37031
2022-04-20T13:52:04.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/feather_berts_88
4
null
transformers
19,434
Entry not found
Jeevesh8/feather_berts_89
a8c620920c1385c5a9a78582ddcf6b507079fe03
2022-04-20T13:52:41.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/feather_berts_89
4
null
transformers
19,435
Entry not found
Jeevesh8/feather_berts_90
239910589dacb9c66ee4fc0ca86490d0008d8cc3
2022-04-20T13:53:06.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/feather_berts_90
4
null
transformers
19,436
Entry not found
Jeevesh8/feather_berts_91
d54d3b3ef115d86cf6a2f295d5865a4387f7b20d
2022-04-20T13:53:32.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/feather_berts_91
4
null
transformers
19,437
Entry not found
Jeevesh8/feather_berts_92
1995862bd96739c086e6798b270ae50f947b9aa5
2022-04-20T13:53:58.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/feather_berts_92
4
null
transformers
19,438
Entry not found
Jeevesh8/feather_berts_94
7dc4ac6ae5c57eee73bb5932616aa095304e0300
2022-04-20T13:54:56.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/feather_berts_94
4
null
transformers
19,439
Entry not found
Jeevesh8/feather_berts_96
70dde6cf5c9a7c35617b0f28abe59b1418b2fa9e
2022-04-20T13:55:49.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/feather_berts_96
4
null
transformers
19,440
Entry not found
Jeevesh8/feather_berts_97
546550eeeabe728e784bc45ebd8f5bb5323ff467
2022-04-20T13:56:14.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/feather_berts_97
4
null
transformers
19,441
Entry not found
Jeevesh8/feather_berts_98
b114ee687805cad88a76fc1dc0f2044df5bc0623
2022-04-20T13:56:57.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/feather_berts_98
4
null
transformers
19,442
Entry not found
Jeevesh8/feather_berts_99
c21f847b65e5c9a1d4495fdf755236bd4287950f
2022-04-20T13:57:23.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/feather_berts_99
4
null
transformers
19,443
Entry not found
Finnish-NLP/t5-tiny-nl6-finnish
8fc6c94aa5fc8bb72d31a1ff150426f940981ac7
2022-07-12T13:05:38.000Z
[ "pytorch", "jax", "tensorboard", "t5", "text2text-generation", "fi", "dataset:Finnish-NLP/mc4_fi_cleaned", "dataset:wikipedia", "arxiv:1910.10683", "arxiv:2002.05202", "arxiv:2109.10686", "transformers", "finnish", "t5x", "seq2seq", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
Finnish-NLP
null
Finnish-NLP/t5-tiny-nl6-finnish
4
null
transformers
19,444
--- language: - fi license: apache-2.0 tags: - finnish - t5 - t5x - seq2seq datasets: - Finnish-NLP/mc4_fi_cleaned - wikipedia inference: false --- # T5-tiny-nl6 for Finnish Pretrained T5 model on Finnish language using a span-based masked language modeling (MLM) objective. T5 was introduced in [this paper](https://arxiv.org/abs/1910.10683) and first released at [this page](https://github.com/google-research/text-to-text-transfer-transformer). **Note:** The Hugging Face inference widget is deactivated because this model needs a text-to-text fine-tuning on a specific downstream task to be useful in practice. As an example of a fine-tuned Finnish T5 model, you can check [Finnish-NLP/t5-small-nl24-casing-punctuation-correction](https://huggingface.co/Finnish-NLP/t5-small-nl24-casing-punctuation-correction) which has been fine-tuned to correct missing casing and punctuation for Finnish text. ## Model description T5 is an encoder-decoder model and treats all NLP problems in a text-to-text format. Finnish T5 is a transformers model pretrained on a very large corpus of Finnish data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and outputs from those texts. More precisely, it was pretrained with the span-based masked language modeling (MLM) objective. Spans of the input sequence are masked by so-called sentinel tokens (a.k.a unique mask tokens) and the output sequence is formed as a concatenation of the same sentinel tokens and the real masked tokens. This way, the model learns an inner representation of the Finnish language. This model used the [T5 v1.1](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) improvements compared to the original T5 model during the pretraining: - GEGLU activation in feed-forward hidden layer, rather than ReLU - see [here](https://arxiv.org/abs/2002.05202) - Dropout was turned off in pretraining (quality win). Dropout should be re-enabled during fine-tuning - Pretrained on span-based masked language modeling (MLM) objective only without mixing in the downstream tasks - No parameter sharing between embedding and classifier layer This model also used the "efficient" T5 architecture findings presented in [this paper](https://arxiv.org/abs/2109.10686). In a nutshell, the paper indicates that a Deep-Narrow model architecture is favorable for downstream performance compared to other model architectures of similar parameter count. To be more precise, model depth is defined as the number of transformer blocks that are stacked sequentially. This model uses the [t5-efficient-tiny-nl6](https://huggingface.co/google/t5-efficient-tiny-nl6) architecture's layer depth which means both the encoder and the decoder have 6 transformer layers compared to the original T5 "tiny" model's architecture of 4 transformer layers. In total, this model has 31 million parameters. ## Intended uses & limitations This model was only pretrained in a self-supervised way excluding any supervised training. Therefore, this model has to be fine-tuned before it is usable on a downstream task, like text classification, unlike the Google's original T5 model. **Note:** You most likely need to fine-tune these T5 models without mixed precision so fine-tune them with full fp32 precision. You can also find more fine-tuning tips from [here](https://discuss.huggingface.co/t/t5-finetuning-tips), for example. ### How to use Here is how to use this model in PyTorch: ```python from transformers import T5Tokenizer, T5ForConditionalGeneration tokenizer = T5Tokenizer.from_pretrained("Finnish-NLP/t5-tiny-nl6-finnish") model = T5ForConditionalGeneration.from_pretrained("Finnish-NLP/t5-tiny-nl6-finnish") ``` and in TensorFlow: ```python from transformers import T5Tokenizer, TFT5ForConditionalGeneration tokenizer = T5Tokenizer.from_pretrained("Finnish-NLP/t5-tiny-nl6-finnish") model = T5ForConditionalGeneration.from_pretrained("Finnish-NLP/t5-tiny-nl6-finnish", from_pt=True) ``` ### Limitations and bias The training data used for this model contains a lot of unfiltered content from the internet, which is far from neutral. Therefore, the model can have biased predictions. This bias will also affect all fine-tuned versions of this model. ## Training data This Finnish T5 model was pretrained on the combination of six datasets: - [mc4_fi_cleaned](https://huggingface.co/datasets/Finnish-NLP/mc4_fi_cleaned), the dataset mC4 is a multilingual colossal, cleaned version of Common Crawl's web crawl corpus. We used the Finnish subset of the mC4 dataset and further cleaned it with our own text data cleaning codes (check the dataset repo). - [wikipedia](https://huggingface.co/datasets/wikipedia) We used the Finnish subset of the wikipedia (August 2021) dataset - [Yle Finnish News Archive 2011-2018](http://urn.fi/urn:nbn:fi:lb-2017070501) - [Yle Finnish News Archive 2019-2020](http://urn.fi/urn:nbn:fi:lb-2021050401) - [Finnish News Agency Archive (STT)](http://urn.fi/urn:nbn:fi:lb-2018121001) - [The Suomi24 Sentences Corpus](http://urn.fi/urn:nbn:fi:lb-2020021803) Raw datasets were automatically cleaned to filter out bad quality and non-Finnish examples. Also, a [perplexity](https://huggingface.co/course/chapter7/3#perplexity-for-language-models) score was calculated for all texts with a KenLM model which was trained with very clean Finnish texts only. This perplexity score can then be used to determine how "clean" Finnish language the text contains. Lastly, all datasets were concatenated and the top 90% perplexity score was used as a filtering threshold to filter out the worst quality 10% of texts. Together these cleaned datasets were around 76GB of text. ## Training procedure ### Preprocessing The texts are tokenized using WordPiece and a vocabulary size of 32000. The inputs and the outputs are sequences of 512 consecutive tokens. Texts are not lower cased so this model is case-sensitive: it makes a difference between finnish and Finnish. ### Pretraining The model was trained on TPUv3-8 VM, sponsored by the [Google TPU Research Cloud](https://sites.research.google/trc/about/), for 500K steps with a batch size of 512 (in total 131B tokens). The optimizer used was a AdaFactor with learning rate warmup for 10K steps with a constant learning rate of 1e-2, and then an inverse square root decay (exponential decay) of the learning rate after. Training code was from the Google's Jax/Flax based [t5x framework](https://github.com/google-research/t5x) and also some t5x task definitions were adapted from [Per's t5x work](https://huggingface.co/pere). ## Evaluation results Evaluation was done by fine-tuning the model on a downstream text classification task with two different labeled Finnish datasets: [Yle News](https://github.com/spyysalo/yle-corpus) and [Eduskunta](https://github.com/aajanki/eduskunta-vkk). Classification fine-tuning was done with a sequence length of 128 tokens. When fine-tuned on those datasets, this model (the first row of the table) achieves the following accuracy results compared to our other T5 models and their parameter counts: | | Model parameters | Yle News accuracy | Eduskunta accuracy | |-------------------------------------------------------|------------------|---------------------|----------------------| |Finnish-NLP/t5-tiny-nl6-finnish | 31 million |92.80 |69.07 | |Finnish-NLP/t5-mini-nl8-finnish | 72 million |93.89 |71.43 | |Finnish-NLP/t5-small-nl24-finnish | 260 million |**94.68** |74.90 | |Finnish-NLP/byt5-base-finnish | 582 million |92.33 |73.13 | |Finnish-NLP/t5-base-nl36-finnish | 814 million |94.40 |**75.97** | |Finnish-NLP/t5-large-nl36-finnish | 1425 million |TBA |TBA | Fine-tuning Google's multilingual mT5 models on the same datasets we can clearly see that our monolingual Finnish T5 models achieve much better results on Finnish text classification: | | Model parameters | Yle News accuracy | Eduskunta accuracy | |-------------------------------------------------------|------------------|---------------------|----------------------| |google/mt5-small | 301 million |91.51 |64.10 | |google/mt5-base | 583 million |92.71 |68.40 | ## Acknowledgements This project would not have been possible without compute generously provided by Google through the [TPU Research Cloud](https://sites.research.google/trc/). ## Team Members - Aapo Tanskanen, [Hugging Face profile](https://huggingface.co/aapot), [LinkedIn profile](https://www.linkedin.com/in/aapotanskanen/) - Rasmus Toivanen, [Hugging Face profile](https://huggingface.co/RASMUS), [LinkedIn profile](https://www.linkedin.com/in/rasmustoivanen/) Feel free to contact us for more details 🤗
frozenwalker/SciFive_pubmedqa_question_generation_using_numerical_prompt_entity
a856513f2a239220423b297f0f73f24429904e04
2022-04-20T19:59:38.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
frozenwalker
null
frozenwalker/SciFive_pubmedqa_question_generation_using_numerical_prompt_entity
4
null
transformers
19,445
Entry not found
birgermoell/common-voice-lithuanian-fairseq
7375a59151a3573810ebade422d0595c2de4d95f
2022-04-21T13:19:30.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "lt", "dataset:common_voice", "transformers", "common_voice", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
birgermoell
null
birgermoell/common-voice-lithuanian-fairseq
4
null
transformers
19,446
--- language: - lt license: apache-2.0 tags: - automatic-speech-recognition - common_voice - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-common_voice-lithuanian-fairseq results: [] --- # wav2vec2-common_voice-lithuanian-fairseq
satish860/sms_spam_detection-manning
72533bd227203b2604899e1c7bb41196645b3498
2022-04-22T02:22:56.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
satish860
null
satish860/sms_spam_detection-manning
4
null
transformers
19,447
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: sms_spam_detection-manning results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sms_spam_detection-manning This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0512 - Accuracy: 0.9886 - F1: 0.9573 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0a0+17540c5 - Datasets 2.1.0 - Tokenizers 0.12.1
Parsa/Buchwald-Hartwig-Yield-prediction
89b4205edffca3bd9c4c9d238878fb18750c95e8
2022-05-04T06:51:13.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
Parsa
null
Parsa/Buchwald-Hartwig-Yield-prediction
4
null
transformers
19,448
Buchwald-Hartwig-Yield-prediction is a finetuned model based on 'DeepChem/ChemBERTa-77M-MLM' for yield prediction. For training and testing the model, 'https://tdcommons.ai/single_pred_tasks/yields' data was used with 70/30 random splitting for the train and test dataset. the R2 score is equal to 97.2879% and val_loss is equal to 0.0020. for using it, your input should look like the following: 'reactant smiles''>>''product' with no spaces. For using it, do not use the Hosted inference API. instead, download it yourself or use the colab link below. [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1UyQwPaHmH5BiEa0yZyuZPmMsVi-hIms0#scrollTo=DKy4QptyYTqz) Github repo: https://github.com/mephisto121/Buchwald-Hartwig-Yield-prediction
junnyu/chinese_GAU-alpha-char_L-24_H-768
119c0c1d7fbe8ec043d1f9bc56ce3e81a3b89e2f
2022-05-11T03:29:46.000Z
[ "pytorch", "gau_alpha", "fill-mask", "zh", "transformers", "gau alpha", "torch", "autotrain_compatible" ]
fill-mask
false
junnyu
null
junnyu/chinese_GAU-alpha-char_L-24_H-768
4
1
transformers
19,449
--- language: zh tags: - gau alpha - torch inference: False --- # pytorch 代码 https://github.com/JunnYu/GAU-alpha-pytorch # bert4keras代码 https://github.com/ZhuiyiTechnology/GAU-alpha # Install ```bash pip install git+https://github.com/JunnYu/GAU-alpha-pytorch.git or pip install gau_alpha ``` ## 评测对比 ### CLUE-dev榜单分类任务结果,base版本。 | | iflytek | tnews | afqmc | cmnli | ocnli | wsc | csl | | :-----: | :-----: | :---: | :---: | :---: | :---: | :---: | :---: | | BERT | 60.06 | 56.80 | 72.41 | 79.56 | 73.93 | 78.62 | 83.93 | | RoBERTa | 60.64 | 58.06 | 74.05 | **81.24** | 76.00 | 87.50 | 84.50 | | RoFormer | 60.91 | 57.54 | 73.52 | 80.92 | 76.07 | 86.84 | 84.63 | | RoFormerV2<sup>*</sup> | 60.87 | 56.54 | 72.75 | 80.34 | 75.36 | 80.92 | 84.67 | | GAU-α | 61.41 | 57.76 | 74.17 | 81.82 | 75.86 | 79.93 | 85.67 | | RoFormerV2-pytorch| **62.87** | **59.03** | **76.20** | 80.85 | **79.73** | **87.82** | **91.87** | | GAU-α-pytorch(Adafactor) | 61.18 | 57.52 | 73.42 | 80.91 | 75.69 | 80.59 | 85.5 | | GAU-α-pytorch(AdamW wd0.01 warmup0.1) | 60.68 | 57.95 | 73.08 | 81.02 | 75.36 | 81.25 | 83.93 | ### CLUE-test榜单分类任务结果,base版本。 | | iflytek | tnews | afqmc | cmnli | ocnli | wsc | csl | | :-----: | :-----: | :---: | :---: | :---: | :---: | :---: | :---: | | RoFormerV2-pytorch | **63.15** | **58.24** | **75.42** | **80.59** | **74.17** | **83.79** | 83.73 | | GAU-α-pytorch(Adafactor) | 61.38 | 57.08 | 74.05 | 80.37 | 73.53 | 74.83 | **85.6** | | GAU-α-pytorch(AdamW wd0.01 warmup0.1) | 60.54 | 57.67 | 72.44 | 80.32 | 72.97 | 76.55 | 84.13 | ### CLUE-dev集榜单阅读理解和NER结果 | | cmrc2018 | c3 | chid | cluener | | :-----: | :-----: | :---: | :---: | :---: | | BERT | 56.17 | 60.54 | 85.69 | 79.45 | | RoBERTa | 56.54 | 67.66 | 86.71 | 79.47 | | RoFormer | 56.26 | 67.24 | 86.57 | 79.72 | | RoFormerV2<sup>*</sup> | 57.91 | 64.62 | 85.09 | **81.08** | | GAU-α | **58.09** | **68.24** | **87.91** | 80.01 | ### 注: - 其中RoFormerV2<sup>*</sup>表示的是未进行多任务学习的RoFormerV2模型,该模型苏神并未开源,感谢苏神的提醒。 - 其中不带有pytorch后缀结果都是从[GAU-alpha](https://github.com/ZhuiyiTechnology/GAU-alpha)仓库复制过来的。 - 其中带有pytorch后缀的结果都是自己训练得出的。 # Usage ```python import torch from gau_alpha import GAUAlphaForMaskedLM, GAUAlphaTokenizer text = "今天[MASK]很好,我[MASK]去公园玩。" tokenizer = GAUAlphaTokenizer.from_pretrained( "junnyu/chinese_GAU-alpha-char_L-24_H-768" ) pt_model = GAUAlphaForMaskedLM.from_pretrained( "junnyu/chinese_GAU-alpha-char_L-24_H-768" ) pt_inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): pt_outputs = pt_model(**pt_inputs).logits[0] pt_outputs_sentence = "pytorch: " for i, id in enumerate(tokenizer.encode(text)): if id == tokenizer.mask_token_id: val, idx = pt_outputs[i].softmax(-1).topk(k=5) tokens = tokenizer.convert_ids_to_tokens(idx) new_tokens = [] for v, t in zip(val.cpu(), tokens): new_tokens.append(f"{t}+{round(v.item(),4)}") pt_outputs_sentence += "[" + "||".join(new_tokens) + "]" else: pt_outputs_sentence += "".join( tokenizer.convert_ids_to_tokens([id], skip_special_tokens=True) ) print(pt_outputs_sentence) # pytorch: 今天[天+0.8657||气+0.0535||阳+0.0165||,+0.0126||晴+0.0111]很好,我[要+0.4619||想+0.4352||又+0.0252||就+0.0157||跑+0.0064]去公园玩。 ``` # Reference Bibtex: ```tex @techreport{gau-alpha, title={GAU-α: GAU-based Transformers for NLP - ZhuiyiAI}, author={Jianlin Su, Shengfeng Pan, Bo Wen, Yunfeng Liu}, year={2022}, url="https://github.com/ZhuiyiTechnology/GAU-alpha", } ```
bdickson/distilbert-base-uncased-finetuned-cola
a6cb8aaa0f144080b7d17bf0b7d5141de235d45f
2022-04-22T16:41:56.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers" ]
text-classification
false
bdickson
null
bdickson/distilbert-base-uncased-finetuned-cola
4
null
transformers
19,450
Entry not found
TahaRazzaq/wav2vec2-base-urdu-demo-colab
3814b806763134bf62a0b5b2b9b63b5467a04738
2022-04-23T02:50:59.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
TahaRazzaq
null
TahaRazzaq/wav2vec2-base-urdu-demo-colab
4
null
transformers
19,451
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-urdu-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-urdu-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
juancavallotti/bert-base-culinary
289d0822305ad13f79aaa73224ff5f002affaa07
2022-04-23T02:37:22.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
juancavallotti
null
juancavallotti/bert-base-culinary
4
null
transformers
19,452
Entry not found
anshr/distilgpt2_reward_model_01
fa0b88b5bcd07f690a4afded0818e1e477656f6f
2022-04-23T15:43:07.000Z
[ "pytorch", "gpt2", "text-classification", "transformers" ]
text-classification
false
anshr
null
anshr/distilgpt2_reward_model_01
4
null
transformers
19,453
Entry not found
marksverdhei/t5-deshuffle
4c6e94e82c1e9ce99b523ba29ae9075b12c5c44b
2022-04-25T11:10:52.000Z
[ "pytorch", "t5", "text2text-generation", "en", "dataset:stas/c4-en-10k", "transformers", "autotrain_compatible" ]
text2text-generation
false
marksverdhei
null
marksverdhei/t5-deshuffle
4
1
transformers
19,454
--- language: en widget: - text: ' brown dog fox jumped lazy over quick the the ' datasets: - 'stas/c4-en-10k' --- # T5-deshuffle Bag Of Words (BOW) is a simple and typical encoding for making statistical models discover patterns in language However BOW is a lossy compression that eliminates a very important feature of text: order This model is trained to learn the most probable order of an unordered token sequence, using a subset of the c4 dataset, and can thus be seen as a "bag-of-words decoder". Currently, it does not perform well. I'm planning to re-train on a larger subset of c4 later (after may). How to run: ```python from transformers import T5ForConditionalGeneration, T5Tokenizer tokenizer = T5Tokenizer.from_pretrained("marksverdhei/t5-deshuffle") model = T5ForConditionalGeneration.from_pretrained("marksverdhei/t5-deshuffle") prompt = ' brown dog fox jumped lazy over quick the the ' ids = tokenizer(prompt, return_tensors="pt").input_ids generated_tokens, = model.generate(ids) print(tokenizer.decode(generated_tokens, skip_special_tokens=True)) ```
akumar33/ManuBERT
96c0397e8ce5ac128fba98575ef5ac5cfc568494
2022-04-24T00:06:14.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
akumar33
null
akumar33/ManuBERT
4
null
transformers
19,455
Entry not found
domenicrosati/t5-small-finetuned-contradiction-local-test
40983810c1b75676ac4258f071a09298f105b26b
2022-04-24T01:22:29.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:snli", "transformers", "summarization", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
summarization
false
domenicrosati
null
domenicrosati/t5-small-finetuned-contradiction-local-test
4
null
transformers
19,456
--- license: apache-2.0 tags: - summarization - generated_from_trainer datasets: - snli model-index: - name: t5-small-finetuned-contradiction-local-test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-contradiction-local-test This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the snli dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:| | No log | 1.0 | 405 | 2.5110 | 23.4004 | 8.9397 | 20.9541 | 21.5922 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
Felix92/doctr-torch-crnn-mobilenet-v3-large-french
c2767fc5bb6bf71baef483789563ea28dbce65d2
2022-05-25T21:31:24.000Z
[ "pytorch", "en", "fr", "transformers", "image-to-text" ]
image-to-text
false
Felix92
null
Felix92/doctr-torch-crnn-mobilenet-v3-large-french
4
null
transformers
19,457
--- pipeline_tag: image-to-text language: - en - fr --- <p align="center"> <img src="https://github.com/mindee/doctr/releases/download/v0.3.1/Logo_doctr.gif" width="60%"> </p> **Optical Character Recognition made seamless & accessible to anyone, powered by TensorFlow 2 & PyTorch** ## Task: recognition https://github.com/mindee/doctr ### Example usage: ```python >>> from doctr.io import DocumentFile >>> from doctr.models import ocr_predictor, from_hub >>> img = DocumentFile.from_images(['<image_path>']) >>> # Load your model from the hub >>> model = from_hub('mindee/my-model') >>> # Pass it to the predictor >>> # If your model is a recognition model: >>> predictor = ocr_predictor(det_arch='db_mobilenet_v3_large', >>> reco_arch=model, >>> pretrained=True) >>> # If your model is a detection model: >>> predictor = ocr_predictor(det_arch=model, >>> reco_arch='crnn_mobilenet_v3_small', >>> pretrained=True) >>> # Get your predictions >>> res = predictor(img) ```
Hate-speech-CNERG/kannada-codemixed-abusive-MuRIL
04fe9efb5d37aab77b0e0477198960a48fef8063
2022-05-03T08:48:39.000Z
[ "pytorch", "bert", "text-classification", "ka-en", "arxiv:2204.12543", "transformers", "license:afl-3.0" ]
text-classification
false
Hate-speech-CNERG
null
Hate-speech-CNERG/kannada-codemixed-abusive-MuRIL
4
null
transformers
19,458
--- language: ka-en license: afl-3.0 --- This model is used to detect **abusive speech** in **Code-Mixed Kannada**. It is finetuned on MuRIL model using Code-Mixed Kannada abusive speech dataset. The model is trained with learning rates of 2e-5. Training code can be found at this [url](https://github.com/hate-alert/IndicAbusive) LABEL_0 :-> Normal LABEL_1 :-> Abusive ### For more details about our paper Mithun Das, Somnath Banerjee and Animesh Mukherjee. "[Data Bootstrapping Approaches to Improve Low Resource Abusive Language Detection for Indic Languages](https://arxiv.org/abs/2204.12543)". Accepted at ACM HT 2022. ***Please cite our paper in any published work that uses any of these resources.*** ~~~ @article{das2022data, title={Data Bootstrapping Approaches to Improve Low Resource Abusive Language Detection for Indic Languages}, author={Das, Mithun and Banerjee, Somnath and Mukherjee, Animesh}, journal={arXiv preprint arXiv:2204.12543}, year={2022} } ~~~
crcb/carer_new
7832ed1faddff6dd0efdba4aae26518041816b8d
2022-04-25T08:08:42.000Z
[ "pytorch", "roberta", "text-classification", "unk", "dataset:crcb/autotrain-data-carer_new", "transformers", "autotrain", "co2_eq_emissions" ]
text-classification
false
crcb
null
crcb/carer_new
4
null
transformers
19,459
--- tags: autotrain language: unk widget: - text: "I love AutoTrain 🤗" datasets: - crcb/autotrain-data-carer_new co2_eq_emissions: 3.9861818439722594 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 781623992 - CO2 Emissions (in grams): 3.9861818439722594 ## Validation Metrics - Loss: 0.1639203429222107 - Accuracy: 0.9389179755671903 - Macro F1: 0.9055551236566716 - Micro F1: 0.9389179755671903 - Weighted F1: 0.9379300009988988 - Macro Precision: 0.9466951148514304 - Micro Precision: 0.9389179755671903 - Weighted Precision: 0.9435523016000105 - Macro Recall: 0.8818551804621082 - Micro Recall: 0.9389179755671903 - Weighted Recall: 0.9389179755671903 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/crcb/autotrain-carer_new-781623992 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("crcb/autotrain-carer_new-781623992", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("crcb/autotrain-carer_new-781623992", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
SophieTr/PP0_rm_v1_full
da8eeffa63586d38cfc45ba27df6dfa18788bf81
2022-04-28T16:51:27.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
SophieTr
null
SophieTr/PP0_rm_v1_full
4
null
transformers
19,460
Entry not found
Ghost1/distilbert-base-uncased-finetuned2-imdb
7455b1ee07d4294930c3cb37a826783980a3cefa
2022-04-26T12:40:59.000Z
[ "pytorch", "tensorboard", "distilbert", "fill-mask", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
Ghost1
null
Ghost1/distilbert-base-uncased-finetuned2-imdb
4
null
transformers
19,461
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned2-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned2-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.4725 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.707 | 1.0 | 157 | 2.4883 | | 2.5761 | 2.0 | 314 | 2.4229 | | 2.5255 | 3.0 | 471 | 2.4355 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
James-kc-min/SE_Roberta2
f8287bd2ec79150d34127b6e7d54665329629190
2022-04-28T16:12:07.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
James-kc-min
null
James-kc-min/SE_Roberta2
4
null
transformers
19,462
Entry not found
anshr/distilgpt2_trained_policy_model_01
5065f58740a776fa1655dd424f6c8b97b664a610
2022-04-25T21:33:30.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
anshr
null
anshr/distilgpt2_trained_policy_model_01
4
null
transformers
19,463
Entry not found
anshr/distilgpt2_reward_model_04
147f7b758e75e74de7b0a3d20e6306f7c94d8fa5
2022-04-26T03:48:09.000Z
[ "pytorch", "gpt2", "text-classification", "transformers" ]
text-classification
false
anshr
null
anshr/distilgpt2_reward_model_04
4
null
transformers
19,464
Entry not found
crcb/carer_5way
ca2f910d0e7a5b9ce8a700f4dade77e2d20e14e5
2022-04-26T05:46:33.000Z
[ "pytorch", "roberta", "text-classification", "unk", "dataset:crcb/autotrain-data-carer_5way", "transformers", "autotrain", "co2_eq_emissions" ]
text-classification
false
crcb
null
crcb/carer_5way
4
null
transformers
19,465
--- tags: autotrain language: unk widget: - text: "I love AutoTrain 🤗" datasets: - crcb/autotrain-data-carer_5way co2_eq_emissions: 4.164757528958762 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 786524275 - CO2 Emissions (in grams): 4.164757528958762 ## Validation Metrics - Loss: 0.16724252700805664 - Accuracy: 0.944234404536862 - Macro F1: 0.9437256923758108 - Micro F1: 0.9442344045368619 - Weighted F1: 0.9442368364749825 - Macro Precision: 0.9431692663638349 - Micro Precision: 0.944234404536862 - Weighted Precision: 0.9446229335037916 - Macro Recall: 0.9446884750469657 - Micro Recall: 0.944234404536862 - Weighted Recall: 0.944234404536862 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/crcb/autotrain-carer_5way-786524275 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("crcb/autotrain-carer_5way-786524275", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("crcb/autotrain-carer_5way-786524275", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
Isobutylcyclopentane/2022-055109-finetuned-eurosat
63955dc7485acb1085301e5b78a1598e01dbae79
2022-04-26T07:19:39.000Z
[ "pytorch", "tensorboard", "perceiver", "image-classification", "transformers" ]
image-classification
false
Isobutylcyclopentane
null
Isobutylcyclopentane/2022-055109-finetuned-eurosat
4
null
transformers
19,466
Entry not found
cynthiachan/procedure_classification_bert
efbb797f1ce49b7893c98bbe472509b68a20a507
2022-04-26T06:40:53.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
cynthiachan
null
cynthiachan/procedure_classification_bert
4
null
transformers
19,467
Entry not found
scasutt/wav2vec2-large-xlsr-53_full_random_noise_01
7966a67f89cdc657ec60afcdf142a5ecd46bb178
2022-04-27T15:08:14.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
scasutt
null
scasutt/wav2vec2-large-xlsr-53_full_random_noise_01
4
null
transformers
19,468
Entry not found
Cheatham/xlm-roberta-large-finetuned-dAB-002
27cea11363bb5c5d7ad953d532cb90ed43afc6fa
2022-04-26T07:51:59.000Z
[ "pytorch", "xlm-roberta", "text-classification", "transformers" ]
text-classification
false
Cheatham
null
Cheatham/xlm-roberta-large-finetuned-dAB-002
4
null
transformers
19,469
Entry not found
IneG/glue_sst_classifier
dfafebd57cab187bd9a4c0d0c024c1e8a9afaeb0
2022-04-26T11:44:29.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
IneG
null
IneG/glue_sst_classifier
4
null
transformers
19,470
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - f1 - accuracy model-index: - name: glue_sst_classifier results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: sst2 metrics: - name: F1 type: f1 value: 0.9033707865168539 - name: Accuracy type: accuracy value: 0.9013761467889908 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # glue_sst_classifier This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.2359 - F1: 0.9034 - Accuracy: 0.9014 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:--------:| | 0.3653 | 0.19 | 100 | 0.3213 | 0.8717 | 0.8727 | | 0.291 | 0.38 | 200 | 0.2662 | 0.8936 | 0.8911 | | 0.2239 | 0.57 | 300 | 0.2417 | 0.9081 | 0.9060 | | 0.2306 | 0.76 | 400 | 0.2359 | 0.9105 | 0.9094 | | 0.2185 | 0.95 | 500 | 0.2371 | 0.9011 | 0.8991 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
dimboump/glue_sst_classifier
4217bacc1d146ac7d7c3147e5d0ab15810eba9f4
2022-04-26T11:46:39.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
dimboump
null
dimboump/glue_sst_classifier
4
null
transformers
19,471
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - f1 - accuracy model-index: - name: glue_sst_classifier results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: sst2 metrics: - name: F1 type: f1 value: 0.9033707865168539 - name: Accuracy type: accuracy value: 0.9013761467889908 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # glue_sst_classifier This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.2359 - F1: 0.9034 - Accuracy: 0.9014 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:--------:| | 0.3653 | 0.19 | 100 | 0.3213 | 0.8717 | 0.8727 | | 0.291 | 0.38 | 200 | 0.2662 | 0.8936 | 0.8911 | | 0.2239 | 0.57 | 300 | 0.2417 | 0.9081 | 0.9060 | | 0.2306 | 0.76 | 400 | 0.2359 | 0.9105 | 0.9094 | | 0.2185 | 0.95 | 500 | 0.2371 | 0.9011 | 0.8991 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
MonaA/glue_sst_classifier_2
74d2f2b961c416e15e3c94143b491d092a7bbd35
2022-04-26T11:48:03.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
MonaA
null
MonaA/glue_sst_classifier_2
4
null
transformers
19,472
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - f1 - accuracy model-index: - name: glue_sst_classifier_2 results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: sst2 metrics: - name: F1 type: f1 value: 0.9033707865168539 - name: Accuracy type: accuracy value: 0.9013761467889908 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # glue_sst_classifier_2 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.2359 - F1: 0.9034 - Accuracy: 0.9014 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:--------:| | 0.3653 | 0.19 | 100 | 0.3213 | 0.8717 | 0.8727 | | 0.291 | 0.38 | 200 | 0.2662 | 0.8936 | 0.8911 | | 0.2239 | 0.57 | 300 | 0.2417 | 0.9081 | 0.9060 | | 0.2306 | 0.76 | 400 | 0.2359 | 0.9105 | 0.9094 | | 0.2185 | 0.95 | 500 | 0.2371 | 0.9011 | 0.8991 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
Caroline-Vandyck/glue_sst_classifier
358858871dcbf9a03afb6c3cd8dad1b3b6213c7a
2022-04-26T12:18:44.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Caroline-Vandyck
null
Caroline-Vandyck/glue_sst_classifier
4
null
transformers
19,473
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - f1 - accuracy model-index: - name: glue_sst_classifier results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: sst2 metrics: - name: F1 type: f1 value: 0.9033707865168539 - name: Accuracy type: accuracy value: 0.9013761467889908 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # glue_sst_classifier This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.2359 - F1: 0.9034 - Accuracy: 0.9014 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:--------:| | 0.3653 | 0.19 | 100 | 0.3213 | 0.8717 | 0.8727 | | 0.291 | 0.38 | 200 | 0.2662 | 0.8936 | 0.8911 | | 0.2239 | 0.57 | 300 | 0.2417 | 0.9081 | 0.9060 | | 0.2306 | 0.76 | 400 | 0.2359 | 0.9105 | 0.9094 | | 0.2185 | 0.95 | 500 | 0.2371 | 0.9011 | 0.8991 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
corvusMidnight/glue_sst_classifier_
e57087018a6435c49598feb181a0e38162eac736
2022-04-26T12:55:11.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
corvusMidnight
null
corvusMidnight/glue_sst_classifier_
4
null
transformers
19,474
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - f1 - accuracy model-index: - name: glue_sst_classifier_ results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: sst2 metrics: - name: F1 type: f1 value: 0.9033707865168539 - name: Accuracy type: accuracy value: 0.9013761467889908 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # glue_sst_classifier_ This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.2359 - F1: 0.9034 - Accuracy: 0.9014 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:--------:| | 0.3653 | 0.19 | 100 | 0.3213 | 0.8717 | 0.8727 | | 0.291 | 0.38 | 200 | 0.2662 | 0.8936 | 0.8911 | | 0.2239 | 0.57 | 300 | 0.2417 | 0.9081 | 0.9060 | | 0.2306 | 0.76 | 400 | 0.2359 | 0.9105 | 0.9094 | | 0.2185 | 0.95 | 500 | 0.2371 | 0.9011 | 0.8991 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
anshr/distilgpt2_reward_model_05
8ac79f888d0dd28cf138331518e4280139c120a9
2022-04-26T21:44:56.000Z
[ "pytorch", "gpt2", "text-classification", "transformers" ]
text-classification
false
anshr
null
anshr/distilgpt2_reward_model_05
4
null
transformers
19,475
Entry not found
Rem59/autotrain-Test_2-789524315
10cd8808be67e735c38575b0aaa1eb5c3fc1557d
2022-04-26T19:11:30.000Z
[ "pytorch", "camembert", "text-classification", "unk", "dataset:Rem59/autotrain-data-Test_2", "transformers", "autotrain", "co2_eq_emissions" ]
text-classification
false
Rem59
null
Rem59/autotrain-Test_2-789524315
4
null
transformers
19,476
--- tags: autotrain language: unk widget: - text: "I love AutoTrain 🤗" datasets: - Rem59/autotrain-data-Test_2 co2_eq_emissions: 2.0134443204822188 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 789524315 - CO2 Emissions (in grams): 2.0134443204822188 ## Validation Metrics - Loss: 0.8042349815368652 - Accuracy: 0.6904761904761905 - Macro F1: 0.27230046948356806 - Micro F1: 0.6904761904761905 - Weighted F1: 0.5640509725016768 - Macro Precision: 0.23015873015873015 - Micro Precision: 0.6904761904761905 - Weighted Precision: 0.4767573696145125 - Macro Recall: 0.3333333333333333 - Micro Recall: 0.6904761904761905 - Weighted Recall: 0.6904761904761905 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/Rem59/autotrain-Test_2-789524315 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("Rem59/autotrain-Test_2-789524315", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("Rem59/autotrain-Test_2-789524315", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
obokkkk/opus-mt-ko-en-finetuned-en-to-ko
a8818ea08ad7b9b90ca7e849a404008c6363854e
2022-04-27T06:01:35.000Z
[ "pytorch", "tensorboard", "marian", "text2text-generation", "dataset:kde4", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
obokkkk
null
obokkkk/opus-mt-ko-en-finetuned-en-to-ko
4
null
transformers
19,477
--- license: apache-2.0 tags: - generated_from_trainer datasets: - kde4 metrics: - bleu model-index: - name: opus-mt-ko-en-finetuned-en-to-ko results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: kde4 type: kde4 args: en-ko metrics: - name: Bleu type: bleu value: 17.4129 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-ko-en-finetuned-en-to-ko This model is a fine-tuned version of [Helsinki-NLP/opus-mt-ko-en](https://huggingface.co/Helsinki-NLP/opus-mt-ko-en) on the kde4 dataset. It achieves the following results on the evaluation set: - Loss: 2.1606 - Bleu: 17.4129 - Gen Len: 10.8989 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | 2.3645 | 1.0 | 3596 | 2.1606 | 17.4129 | 10.8989 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
aherzberg/wav2vec2-base-finetuned
73bc5b24d22a5795f7997312c82c07158e578950
2022-05-01T22:13:10.000Z
[ "pytorch", "tensorboard", "wav2vec2", "audio-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
audio-classification
false
aherzberg
null
aherzberg/wav2vec2-base-finetuned
4
null
transformers
19,478
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: wav2vec2-base-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-finetuned This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5114 - Accuracy: 0.8383 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.5081 | 0.99 | 79 | 1.3270 | 0.5857 | | 0.8949 | 1.99 | 158 | 0.8406 | 0.7412 | | 0.6861 | 2.99 | 237 | 0.6829 | 0.7818 | | 0.5477 | 3.99 | 316 | 0.6234 | 0.7942 | | 0.4601 | 4.99 | 395 | 0.6184 | 0.8004 | | 0.3969 | 5.99 | 474 | 0.5768 | 0.8039 | | 0.3276 | 6.99 | 553 | 0.5441 | 0.8224 | | 0.2975 | 7.99 | 632 | 0.5205 | 0.8295 | | 0.2809 | 8.99 | 711 | 0.5204 | 0.8322 | | 0.2315 | 9.99 | 790 | 0.5114 | 0.8383 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.5.0 - Datasets 1.14.0 - Tokenizers 0.10.3
UT/BMW_DEBIAS
496a47c2778797e5e61a85e52dc918c2b868e49b
2022-04-27T11:55:59.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
UT
null
UT/BMW_DEBIAS
4
null
transformers
19,479
Entry not found
faisalahmad2/autotrain-nlp-text-summarization-by-faisal-793224456
3eb3e0a67d0093dae5e8936aed567f47335ec3fc
2022-04-29T14:05:30.000Z
[ "pytorch", "t5", "text2text-generation", "en", "dataset:faisalahmad2/autotrain-data-nlp-text-summarization-by-faisal", "transformers", "autotrain", "co2_eq_emissions", "autotrain_compatible" ]
text2text-generation
false
faisalahmad2
null
faisalahmad2/autotrain-nlp-text-summarization-by-faisal-793224456
4
null
transformers
19,480
--- tags: autotrain language: en widget: - text: "I love AutoTrain 🤗" datasets: - faisalahmad2/autotrain-data-nlp-text-summarization-by-faisal co2_eq_emissions: 27.26671996544415 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 793224456 - CO2 Emissions (in grams): 27.26671996544415 ## Validation Metrics - Loss: 1.5189369916915894 - Rouge1: 38.7852 - Rouge2: 17.0785 - RougeL: 32.1082 - RougeLsum: 32.1103 - Gen Len: 18.7332 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/faisalahmad2/autotrain-nlp-text-summarization-by-faisal-793224456 ```
cassiepowell/LaBSE-for-similarity
786d42a485b1cac1fdf2a3ca7f190f95078e280f
2022-04-28T17:57:33.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
cassiepowell
null
cassiepowell/LaBSE-for-similarity
4
null
transformers
19,481
Entry not found
caush/Clickbait3
c1df78dd26b5acb27c65ecaf531188b231821968
2022-04-28T02:06:02.000Z
[ "pytorch", "bert", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
caush
null
caush/Clickbait3
4
null
transformers
19,482
--- license: mit tags: - generated_from_trainer model-index: - name: Clickbait3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Clickbait3 This model is a fine-tuned version of [microsoft/Multilingual-MiniLM-L12-H384](https://huggingface.co/microsoft/Multilingual-MiniLM-L12-H384) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0248 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0.05 | 50 | 0.0373 | | No log | 0.1 | 100 | 0.0320 | | No log | 0.15 | 150 | 0.0295 | | No log | 0.21 | 200 | 0.0302 | | No log | 0.26 | 250 | 0.0331 | | No log | 0.31 | 300 | 0.0280 | | No log | 0.36 | 350 | 0.0277 | | No log | 0.41 | 400 | 0.0316 | | No log | 0.46 | 450 | 0.0277 | | 0.0343 | 0.51 | 500 | 0.0276 | | 0.0343 | 0.56 | 550 | 0.0282 | | 0.0343 | 0.62 | 600 | 0.0280 | | 0.0343 | 0.67 | 650 | 0.0271 | | 0.0343 | 0.72 | 700 | 0.0264 | | 0.0343 | 0.77 | 750 | 0.0265 | | 0.0343 | 0.82 | 800 | 0.0260 | | 0.0343 | 0.87 | 850 | 0.0263 | | 0.0343 | 0.92 | 900 | 0.0259 | | 0.0343 | 0.97 | 950 | 0.0277 | | 0.0278 | 1.03 | 1000 | 0.0281 | | 0.0278 | 1.08 | 1050 | 0.0294 | | 0.0278 | 1.13 | 1100 | 0.0256 | | 0.0278 | 1.18 | 1150 | 0.0258 | | 0.0278 | 1.23 | 1200 | 0.0254 | | 0.0278 | 1.28 | 1250 | 0.0265 | | 0.0278 | 1.33 | 1300 | 0.0252 | | 0.0278 | 1.38 | 1350 | 0.0251 | | 0.0278 | 1.44 | 1400 | 0.0264 | | 0.0278 | 1.49 | 1450 | 0.0262 | | 0.023 | 1.54 | 1500 | 0.0272 | | 0.023 | 1.59 | 1550 | 0.0278 | | 0.023 | 1.64 | 1600 | 0.0255 | | 0.023 | 1.69 | 1650 | 0.0258 | | 0.023 | 1.74 | 1700 | 0.0262 | | 0.023 | 1.79 | 1750 | 0.0250 | | 0.023 | 1.85 | 1800 | 0.0253 | | 0.023 | 1.9 | 1850 | 0.0271 | | 0.023 | 1.95 | 1900 | 0.0248 | | 0.023 | 2.0 | 1950 | 0.0258 | | 0.0224 | 2.05 | 2000 | 0.0252 | | 0.0224 | 2.1 | 2050 | 0.0259 | | 0.0224 | 2.15 | 2100 | 0.0254 | | 0.0224 | 2.21 | 2150 | 0.0260 | | 0.0224 | 2.26 | 2200 | 0.0254 | | 0.0224 | 2.31 | 2250 | 0.0266 | | 0.0224 | 2.36 | 2300 | 0.0258 | | 0.0224 | 2.41 | 2350 | 0.0258 | | 0.0224 | 2.46 | 2400 | 0.0256 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0 - Datasets 2.0.0 - Tokenizers 0.11.6
caush/Clickbait5
5c9585678047a7048bb501b420c0ea32e1cf0d98
2022-04-28T03:15:08.000Z
[ "pytorch", "bert", "text-classification", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
caush
null
caush/Clickbait5
4
null
transformers
19,483
--- tags: - generated_from_trainer model-index: - name: Clickbait5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Clickbait5 This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0258 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0.04 | 50 | 0.0258 | | No log | 0.08 | 100 | 0.0269 | | No log | 0.12 | 150 | 0.0259 | | No log | 0.16 | 200 | 0.0260 | | No log | 0.21 | 250 | 0.0267 | | No log | 0.25 | 300 | 0.0276 | | No log | 0.29 | 350 | 0.0284 | | No log | 0.33 | 400 | 0.0270 | | No log | 0.37 | 450 | 0.0269 | | 0.0195 | 0.41 | 500 | 0.0260 | | 0.0195 | 0.45 | 550 | 0.0284 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0 - Datasets 2.0.0 - Tokenizers 0.11.6
oliverguhr/wav2vec2-large-xlsr-53-german-cv8
47ae8592c47551cd5da7dba65796e33486246cb5
2022-05-05T07:58:33.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "de", "dataset:common_voice", "transformers", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
oliverguhr
null
oliverguhr/wav2vec2-large-xlsr-53-german-cv8
4
null
transformers
19,484
--- language: - de license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xlsr-53-german-cv8-dropout results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-53-german-cv8-dropout This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - DE dataset. It achieves the following results on the evaluation set: - Loss: 0.1111 - Wer: 0.1117 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.2081 | 1.0 | 6815 | 0.1784 | 0.1910 | | 0.1686 | 2.0 | 13630 | 0.1621 | 0.1725 | | 0.1515 | 3.0 | 20445 | 0.1569 | 0.1649 | | 0.1426 | 4.0 | 27260 | 0.1466 | 0.1681 | | 0.135 | 5.0 | 34075 | 0.1357 | 0.1410 | | 0.1093 | 6.0 | 40890 | 0.1313 | 0.1436 | | 0.1 | 7.0 | 47705 | 0.1242 | 0.1250 | | 0.0999 | 8.0 | 54520 | 0.1191 | 0.1218 | | 0.084 | 9.0 | 61335 | 0.1134 | 0.1164 | | 0.0752 | 10.0 | 68150 | 0.1111 | 0.1117 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6
classla/wav2vec2-large-slavic-parlaspeech-hr-lm
d89612cdc04ca1bb3d2f4bc54b2db91351160d3b
2022-05-18T14:06:27.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "hr", "dataset:parlaspeech-hr", "transformers", "audio", "parlaspeech" ]
automatic-speech-recognition
false
classla
null
classla/wav2vec2-large-slavic-parlaspeech-hr-lm
4
null
transformers
19,485
--- language: hr datasets: - parlaspeech-hr tags: - audio - automatic-speech-recognition - parlaspeech widget: - example_title: example 1 src: https://huggingface.co/classla/wav2vec2-xls-r-parlaspeech-hr/raw/main/1800.m4a - example_title: example 2 src: https://huggingface.co/classla/wav2vec2-xls-r-parlaspeech-hr/raw/main/00020578b.flac.wav - example_title: example 3 src: https://huggingface.co/classla/wav2vec2-xls-r-parlaspeech-hr/raw/main/00020570a.flac.wav --- # wav2vec2-large-slavic-parlaspeech-hr-lm This model for Croatian ASR is based on the [facebook/wav2vec2-large-slavic-voxpopuli-v2 model](https://huggingface.co/facebook/wav2vec2-large-slavic-voxpopuli-v2) and was fine-tuned with 300 hours of recordings and transcripts from the ASR Croatian parliament dataset [ParlaSpeech-HR v1.0](http://hdl.handle.net/11356/1494) and enhanced with a 5-gram language model based on the [ParlaMint dataset](http://hdl.handle.net/11356/1432). If you use this model, please cite the following paper: Nikola Ljubešić, Danijel Koržinek, Peter Rupnik, Ivo-Pavao Jazbec. ParlaSpeech-HR -- a freely available ASR dataset for Croatian bootstrapped from the ParlaMint corpus. Accepted at ParlaCLARIN@LREC. ## Metrics Evaluation is performed on the dev and test portions of the [ParlaSpeech-HR v1.0](http://hdl.handle.net/11356/1494) dataset. |split|CER|WER| |---|---|---| |dev|0.0253|0.0556| |test|0.0188|0.0430| ## Usage in `transformers` Tested with `transformers==4.18.0`, `torch==1.11.0`, and `SoundFile==0.10.3.post1`. ```python from transformers import Wav2Vec2ProcessorWithLM, Wav2Vec2ForCTC import soundfile as sf import torch import os device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # load model and tokenizer processor = Wav2Vec2ProcessorWithLM.from_pretrained( "classla/wav2vec2-large-slavic-parlaspeech-hr-lm") model = Wav2Vec2ForCTC.from_pretrained("classla/wav2vec2-large-slavic-parlaspeech-hr-lm") # download the example wav files: os.system("wget https://huggingface.co/classla/wav2vec2-large-slavic-parlaspeech-hr-lm/raw/main/00020570a.flac.wav") # read the wav file speech, sample_rate = sf.read("00020570a.flac.wav") input_values = processor(speech, sampling_rate=sample_rate, return_tensors="pt").input_values.cuda() inputs = processor(speech, sampling_rate=sample_rate, return_tensors="pt") with torch.no_grad(): logits = model(**inputs).logits transcription = processor.batch_decode(logits.numpy()).text[0] # remove the raw wav file os.system("rm 00020570a.flac.wav") transcription # 'velik broj poslovnih subjekata poslao je sa minusom velik dio' ``` ## Training hyperparameters In fine-tuning, the following arguments were used: | arg | value | |-------------------------------|-------| | `per_device_train_batch_size` | 16 | | `gradient_accumulation_steps` | 4 | | `num_train_epochs` | 8 | | `learning_rate` | 3e-4 | | `warmup_steps` | 500 |
aakarshan/autotrain-Question-translation-797524592
48aac34cfe416468fbc29d290a4a1c2d1bb532fe
2022-04-28T14:48:38.000Z
[ "pytorch", "mt5", "text2text-generation", "en", "hi", "dataset:aakarshan/autotrain-data-Question-translation", "transformers", "autotrain", "translation", "co2_eq_emissions", "autotrain_compatible" ]
translation
false
aakarshan
null
aakarshan/autotrain-Question-translation-797524592
4
null
transformers
19,486
--- tags: - autotrain - translation language: - en - hi datasets: - aakarshan/autotrain-data-Question-translation co2_eq_emissions: 27.564419884224776 --- # Model Trained Using AutoTrain - Problem type: Translation - Model ID: 797524592 - CO2 Emissions (in grams): 27.564419884224776 ## Validation Metrics - Loss: 2.2697999477386475 - SacreBLEU: 14.9797 - Gen len: 13.7071
juancavallotti/roberta-base-culinary-finetuned
6fecab9a9ee91005fb67d36a22a556423ced01d6
2022-04-28T17:42:59.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
juancavallotti
null
juancavallotti/roberta-base-culinary-finetuned
4
null
transformers
19,487
--- tags: - generated_from_trainer metrics: - f1 model-index: - name: roberta-base-culinary-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-culinary-finetuned This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0657 - F1: 0.9929 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.1803 | 0.11 | 500 | 0.1939 | 0.9611 | | 0.1543 | 0.22 | 1000 | 0.1364 | 0.9669 | | 0.1213 | 0.32 | 1500 | 0.1487 | 0.9728 | | 0.1079 | 0.43 | 2000 | 0.0855 | 0.9773 | | 0.0975 | 0.54 | 2500 | 0.0844 | 0.9831 | | 0.0855 | 0.65 | 3000 | 0.0785 | 0.9831 | | 0.0844 | 0.76 | 3500 | 0.0679 | 0.9857 | | 0.0793 | 0.86 | 4000 | 0.0489 | 0.9890 | | 0.0864 | 0.97 | 4500 | 0.0399 | 0.9903 | | 0.049 | 1.08 | 5000 | 0.0528 | 0.9890 | | 0.0353 | 1.19 | 5500 | 0.0635 | 0.9877 | | 0.0321 | 1.3 | 6000 | 0.0542 | 0.9903 | | 0.0311 | 1.41 | 6500 | 0.0559 | 0.9896 | | 0.0315 | 1.51 | 7000 | 0.0736 | 0.9857 | | 0.04 | 1.62 | 7500 | 0.0648 | 0.9909 | | 0.0265 | 1.73 | 8000 | 0.0608 | 0.9909 | | 0.0443 | 1.84 | 8500 | 0.0617 | 0.9883 | | 0.0443 | 1.95 | 9000 | 0.0555 | 0.9896 | | 0.0235 | 2.05 | 9500 | 0.0608 | 0.9903 | | 0.0139 | 2.16 | 10000 | 0.0613 | 0.9922 | | 0.0126 | 2.27 | 10500 | 0.0739 | 0.9903 | | 0.0164 | 2.38 | 11000 | 0.0679 | 0.9903 | | 0.0172 | 2.49 | 11500 | 0.0606 | 0.9922 | | 0.0175 | 2.59 | 12000 | 0.0442 | 0.9942 | | 0.01 | 2.7 | 12500 | 0.0661 | 0.9916 | | 0.0059 | 2.81 | 13000 | 0.0659 | 0.9929 | | 0.0216 | 2.92 | 13500 | 0.0504 | 0.9929 | | 0.0123 | 3.03 | 14000 | 0.0584 | 0.9929 | | 0.0047 | 3.14 | 14500 | 0.0573 | 0.9929 | | 0.0123 | 3.24 | 15000 | 0.0511 | 0.9935 | | 0.0027 | 3.35 | 15500 | 0.0579 | 0.9942 | | 0.0025 | 3.46 | 16000 | 0.0602 | 0.9935 | | 0.0051 | 3.57 | 16500 | 0.0598 | 0.9935 | | 0.0044 | 3.68 | 17000 | 0.0617 | 0.9929 | | 0.0061 | 3.78 | 17500 | 0.0634 | 0.9935 | | 0.0048 | 3.89 | 18000 | 0.0672 | 0.9929 | | 0.0078 | 4.0 | 18500 | 0.0657 | 0.9929 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
Raffay/wav2vec-urdu-asr-project
331221ecd020ea7837ce8ad77df166f4da58fec7
2022-05-02T13:07:41.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
Raffay
null
Raffay/wav2vec-urdu-asr-project
4
null
transformers
19,488
Entry not found
UT/PARSBRT_DEBIAS
5316be0053e24c3446dcdbe86ec8f55d987ce7b9
2022-04-28T22:33:37.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
UT
null
UT/PARSBRT_DEBIAS
4
null
transformers
19,489
Entry not found
shahidul034/sentence_equivalent_check
79e61fc49b56384529581c45317b04ae8d9ae29f
2022-04-30T11:28:04.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
shahidul034
null
shahidul034/sentence_equivalent_check
4
1
transformers
19,490
This model helps to identify the equivalent of two sentences. ==>python 3.8 working in transformers installation -->pip install git+https://github.com/huggingface/transformers -->python -m pip install jupyter -->pip install torch==1.5.0 -f https://download.pytorch.org/whl/torch_stable.html -->pip install tensorflow-gpu How to create virtual environment: Main tutorial: https://www.datacamp.com/community/tutorials/virtual-environment-in-python https://www.geeksforgeeks.org/set-up-virtual-environment-for-python-using-anaconda/ # Creating a new Virtual Environment. The following command takes '-n' as a flag, which is for creating a new environment with its name as 'env' and the specific Python version of '3.7'. -->conda create -n env python=3.6 Activating the Virtual Environment. The command below activates the Virtual Environment, which changes the prompt where the 'env' is shown in parenthesis. -->conda activate env Install the required package. For example, the 'numpy' package is installed where 'env' is the specific Virtual Environment. -->conda install -n env numpy Listing all of the installed packages inside a Virtual Environment. The following command can list the package specific to the Virtual Environment. -->conda list Listing out all of the created Virtual Environment. All of the environments created will be listed by the following command. -->conda env list Deactivating the Virtual Environment. The following command will deactivate the current environment 'env' and will change to 'base'. -->conda deactivate Removing the Virtual Environment. The following command removes the 'myenv' Virtual Environment with all its packages at the same time. -->conda env remove -n myenv Install jupyter kernel for the virtual environment using the following command: Running the following command will create a kernel that can be used to run jupyter notebook commands inside the virtual environment. -->ipython kernel install --user --name=venv Select the installed kernel when you want to use jupyter notebook in this virtual environment. You can see now you have the kernel in the list of kernels and now you can have separate dependencies for the jupyter notebook and be more organized. After you are done with the project and no longer need the kernel you can uninstall it by running the following code: -->jupyter-kernelspec uninstall venv Tutorial:geeksforgeeks.org/using-jupyter-notebook-in-virtual-environment/ ==>sometimes it needs to install jupyter notebook -->python -m pip install jupyter ==> Open the jupyter notebook in anaconda prompt when virual envirnment on.then write jupyter-notebook in anaconda promt(env must be on) (https://stackoverflow.com/questions/42449814/running-jupyter-notebook-in-a-virtualenv-installed-sklearn-module-not-available) ==> for installation pytorch ,follow this tuorial (https://stackoverflow.com/questions/57499002/cant-install-pytorch-with-pip-on-windows)
Rbanerjee/simpsons-character-discriminator
71f924bfbf929808151d51bd8a115cfea94abe18
2022-04-28T21:52:49.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
Rbanerjee
null
Rbanerjee/simpsons-character-discriminator
4
null
transformers
19,491
Entry not found
hippoarale/mT5_multilingual_XLSum-finetuned-th-wikilingua
a41bdc7e1c22c3e6f345c1710e067eac12267d66
2022-05-01T11:16:51.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
hippoarale
null
hippoarale/mT5_multilingual_XLSum-finetuned-th-wikilingua
4
null
transformers
19,492
--- tags: - generated_from_trainer model-index: - name: outputs results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # outputs This model is a fine-tuned version of [csebuetnlp/mT5_multilingual_XLSum](https://huggingface.co/csebuetnlp/mT5_multilingual_XLSum) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 250 - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
shoubhik/electra_abbv
932956dfba58836b05bc52c1b455e9cd4903f38a
2022-04-29T11:15:57.000Z
[ "pytorch", "electra", "text-classification", "transformers" ]
text-classification
false
shoubhik
null
shoubhik/electra_abbv
4
null
transformers
19,493
Entry not found
UT/MULTIBRT
e1fd568cfd12491b4c7744afd4b1d4ede676adc8
2022-04-29T12:18:23.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
UT
null
UT/MULTIBRT
4
null
transformers
19,494
Entry not found
bhuvi/super_nli
3966d74e2e2dc286ff8b42dc811811754416451e
2022-04-29T17:39:14.000Z
[ "pytorch", "mpnet", "feature-extraction", "transformers" ]
feature-extraction
false
bhuvi
null
bhuvi/super_nli
4
null
transformers
19,495
Entry not found
masapasa/deberta_amazon_reviews_v2
d4c5ebde4ecf8f65baa25dff78ef8e1c7861031d
2022-04-29T16:26:04.000Z
[ "pytorch", "tensorboard", "deberta-v2", "text-classification", "transformers" ]
text-classification
false
masapasa
null
masapasa/deberta_amazon_reviews_v2
4
null
transformers
19,496
Entry not found
mrm8488/data2vec-text-base-finetuned-mnli
219587c87af530c91ced390ce1cdbf3b26d05cba
2022-04-29T21:05:54.000Z
[ "pytorch", "tensorboard", "data2vec-text", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
mrm8488
null
mrm8488/data2vec-text-base-finetuned-mnli
4
null
transformers
19,497
--- license: mit tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: data2vec-text-base-finetuned-mnli results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: mnli metrics: - name: Accuracy type: accuracy value: 0.7862455425369332 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # data2vec-text-base-finetuned-mnli This model is a fine-tuned version of [facebook/data2vec-text-base](https://huggingface.co/facebook/data2vec-text-base) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.5521 - Accuracy: 0.7862 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:------:|:---------------:|:--------:| | 1.099 | 1.0 | 24544 | 1.0987 | 0.3182 | | 1.0993 | 2.0 | 49088 | 1.0979 | 0.3545 | | 0.7481 | 3.0 | 73632 | 0.7197 | 0.7046 | | 0.5671 | 4.0 | 98176 | 0.5862 | 0.7728 | | 0.5505 | 5.0 | 122720 | 0.5521 | 0.7862 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
obokkkk/mt5-base_2_3
7d698b01a36f750c88af116300d927a64692a11a
2022-05-01T11:36:51.000Z
[ "pytorch", "tensorboard", "mt5", "text2text-generation", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
obokkkk
null
obokkkk/mt5-base_2_3
4
null
transformers
19,498
--- tags: - generated_from_trainer metrics: - bleu model-index: - name: mt5-base_2_3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-base_2_3 This model is a fine-tuned version of [obokkkk/mt5-base_2](https://huggingface.co/obokkkk/mt5-base_2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1465 - Bleu: 9.5474 - Gen Len: 17.854 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 64 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | No log | 1.0 | 175 | 1.1739 | 9.0271 | 17.8543 | | No log | 2.0 | 350 | 1.1660 | 9.1398 | 17.8468 | | 1.3653 | 3.0 | 525 | 1.1585 | 9.251 | 17.8656 | | 1.3653 | 4.0 | 700 | 1.1538 | 9.3176 | 17.8476 | | 1.3653 | 5.0 | 875 | 1.1518 | 9.3529 | 17.8608 | | 1.2985 | 6.0 | 1050 | 1.1505 | 9.4818 | 17.8552 | | 1.2985 | 7.0 | 1225 | 1.1475 | 9.499 | 17.8575 | | 1.2985 | 8.0 | 1400 | 1.1471 | 9.5511 | 17.871 | | 1.2632 | 9.0 | 1575 | 1.1459 | 9.5315 | 17.8547 | | 1.2632 | 10.0 | 1750 | 1.1465 | 9.5474 | 17.854 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
dyyyyyyyy/xTune_panx_XLM-RoBERTa-large
8ca63b4ddda6ced690fc87a92df969384507bb8c
2022-04-30T08:41:01.000Z
[ "pytorch", "xlm-roberta", "transformers" ]
null
false
dyyyyyyyy
null
dyyyyyyyy/xTune_panx_XLM-RoBERTa-large
4
null
transformers
19,499
Entry not found