modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
bkwebb23/gpt2-untemplated-quests
5fcff363d9e1e09de37905677d63c2dd2b7bce0c
2022-04-13T16:22:01.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "license:mit" ]
text-generation
false
bkwebb23
null
bkwebb23/gpt2-untemplated-quests
4
null
transformers
19,300
--- license: mit ---
namanpun/exp1
fcc2920fc0d80a117814b1edfdf1b7d9b5abc03f
2022-04-14T20:24:46.000Z
[ "pytorch", "tf", "rust", "gpt2", "text-generation", "transformers", "license:mit" ]
text-generation
false
namanpun
null
namanpun/exp1
4
null
transformers
19,301
--- license: mit --- Exp1 FoundryxBittensor
QuickRead/PPO-policy_v3
448a0d960f60c5a6285763622c9c3f4cb8a8995d
2022-04-22T14:18:57.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
QuickRead
null
QuickRead/PPO-policy_v3
4
null
transformers
19,302
Entry not found
vinaykudari/t5-acled-ie
55852710027178e79becdc7310aaaa58b68e1f54
2022-05-09T03:58:44.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
vinaykudari
null
vinaykudari/t5-acled-ie
4
null
transformers
19,303
Entry not found
SiriusRen/my-rubbish-model2
c6f1aaa3bb7bfe97208795de652613ad0d225181
2022-04-14T06:03:09.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
SiriusRen
null
SiriusRen/my-rubbish-model2
4
null
transformers
19,304
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: my-rubbish-model2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my-rubbish-model2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.10.0 - Datasets 2.0.1.dev0 - Tokenizers 0.11.6
eleldar/marian-finetuned-kde4-en-to-fr-accelerate
a96ddbe5068c6da345f1e04d556038994f0c025b
2022-04-14T11:46:34.000Z
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
eleldar
null
eleldar/marian-finetuned-kde4-en-to-fr-accelerate
4
null
transformers
19,305
Entry not found
aaya/distilbert-base-uncased-finetuned-ner
dfea8f6885987932ff229eb037de4898abac3594
2022-04-15T05:46:55.000Z
[ "pytorch", "tensorboard", "distilbert", "token-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
aaya
null
aaya/distilbert-base-uncased-finetuned-ner
4
null
transformers
19,306
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
jason9693/koelectra-small-v3-generator-apeach
483da65df11b24f0d0934ad7a1f20a466832302f
2022-04-16T14:43:51.000Z
[ "pytorch", "electra", "text-classification", "ko", "dataset:jason9693/APEACH", "transformers", "autotrain", "co2_eq_emissions" ]
text-classification
false
jason9693
null
jason9693/koelectra-small-v3-generator-apeach
4
null
transformers
19,307
--- tags: autotrain language: ko widget: - text: "개념 집에다 ctrl+z헤놓고 왔나" datasets: - jason9693/APEACH co2_eq_emissions: 0.01856239042036965 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 742522663 - CO2 Emissions (in grams): 0.01856239042036965 ## Validation Metrics - Loss: 0.4798508286476135 - Accuracy: 0.7740053050397878 - Precision: 0.7236622073578596 - Recall: 0.9006243496357961 - AUC: 0.8798210006261515 - F1: 0.8025034770514604 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/jason9693/autotrain-kor_hate_eval-742522663 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("jason9693/autotrain-kor_hate_eval-742522663", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("jason9693/autotrain-kor_hate_eval-742522663", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
ketan-rmcf/hinglish-finetuned
ee0a3972f4231e06180cfeedd1509066e95a58dd
2022-04-15T10:03:30.000Z
[ "pytorch", "tf", "tensorboard", "bert", "fill-mask", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
fill-mask
false
ketan-rmcf
null
ketan-rmcf/hinglish-finetuned
4
null
transformers
19,308
--- tags: - generated_from_trainer model-index: - name: hinglish-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hinglish-finetuned This model is a fine-tuned version of [verloop/Hinglish-Bert](https://huggingface.co/verloop/Hinglish-Bert) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.0786 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.3784 | 1.0 | 80 | 3.0527 | | 3.0398 | 2.0 | 160 | 2.8067 | | 2.9133 | 3.0 | 240 | 2.7252 | | 2.7872 | 4.0 | 320 | 2.5783 | | 2.6205 | 5.0 | 400 | 2.5050 | | 2.5979 | 6.0 | 480 | 2.4654 | | 2.5655 | 7.0 | 560 | 2.4091 | | 2.5412 | 8.0 | 640 | 2.3630 | | 2.4479 | 9.0 | 720 | 2.3754 | | 2.3724 | 10.0 | 800 | 2.2860 | | 2.3842 | 11.0 | 880 | 2.2812 | | 2.3411 | 12.0 | 960 | 2.2038 | | 2.2617 | 13.0 | 1040 | 2.1887 | | 2.3141 | 14.0 | 1120 | 2.1966 | | 2.2115 | 15.0 | 1200 | 2.1248 | | 2.2363 | 16.0 | 1280 | 2.1006 | | 2.2191 | 17.0 | 1360 | 2.1248 | | 2.1856 | 18.0 | 1440 | 2.0872 | | 2.2009 | 19.0 | 1520 | 2.0299 | | 2.2364 | 20.0 | 1600 | 2.0193 | | 2.1785 | 21.0 | 1680 | 2.0227 | | 2.1934 | 22.0 | 1760 | 2.0540 | | 2.1479 | 23.0 | 1840 | 2.0381 | | 2.0973 | 24.0 | 1920 | 1.9885 | | 2.1376 | 25.0 | 2000 | 2.0142 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
dpazmino/finetuning-sentiment-model_duke_final_two
0ba7fa775c77f30eeb746e6d6aac86047006c585
2022-04-15T17:30:54.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
dpazmino
null
dpazmino/finetuning-sentiment-model_duke_final_two
4
null
transformers
19,309
--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 model-index: - name: finetuning-sentiment-model_duke_final_two results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model_duke_final_two This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3381 - F1: 0.8801 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
Raychanan/COVID_RandomOver
778b4778567a4fd02cb7c5bcb7221e643bd4738b
2022-04-15T01:24:46.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Raychanan
null
Raychanan/COVID_RandomOver
4
null
transformers
19,310
--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 model-index: - name: results results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # results This model is a fine-tuned version of [hfl/chinese-bert-wwm-ext](https://huggingface.co/hfl/chinese-bert-wwm-ext) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4235 - F1: 0.9546 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.1307 | 1.0 | 3268 | 0.9040 | 0.0 | | 0.8795 | 2.0 | 6536 | 0.5532 | 0.9546 | | 0.8183 | 3.0 | 9804 | 0.3641 | 0.9546 | | 1.0074 | 4.0 | 13072 | 0.3998 | 0.9546 | | 0.7947 | 5.0 | 16340 | 0.4235 | 0.9546 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
SiriusRen/my-finetuned-bert
a85d6e557a6296b221946777ff2c859716f4b804
2022-04-22T05:50:05.000Z
[ "pytorch", "bert", "transformers" ]
null
false
SiriusRen
null
SiriusRen/my-finetuned-bert
4
null
transformers
19,311
Entry not found
MartinoMensio/racism-models-raw-label-epoch-2
974a57ce2be7aa1a07535d32f543a31b4f7c9abf
2022-05-04T16:04:18.000Z
[ "pytorch", "bert", "text-classification", "es", "transformers", "license:mit" ]
text-classification
false
MartinoMensio
null
MartinoMensio/racism-models-raw-label-epoch-2
4
null
transformers
19,312
--- language: es license: mit widget: - text: "y porqué es lo que hay que hacer con los menas y con los adultos también!!!! NO a los inmigrantes ilegales!!!!" --- ### Description This model is a fine-tuned version of [BETO (spanish bert)](https://huggingface.co/dccuchile/bert-base-spanish-wwm-uncased) that has been trained on the *Datathon Against Racism* dataset (2022) We performed several experiments that will be described in the upcoming paper "Estimating Ground Truth in a Low-labelled Data Regime:A Study of Racism Detection in Spanish" (NEATClasS 2022) We applied 6 different methods ground-truth estimations, and for each one we performed 4 epochs of fine-tuning. The result is made of 24 models: | method | epoch 1 | epoch 3 | epoch 3 | epoch 4 | |--- |--- |--- |--- |--- | | raw-label | [raw-label-epoch-1](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-1) | [raw-label-epoch-2](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-2) | [raw-label-epoch-3](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-3) | [raw-label-epoch-4](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-4) | | m-vote-strict | [m-vote-strict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-1) | [m-vote-strict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-2) | [m-vote-strict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-3) | [m-vote-strict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-4) | | m-vote-nonstrict | [m-vote-nonstrict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-1) | [m-vote-nonstrict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-2) | [m-vote-nonstrict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-3) | [m-vote-nonstrict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-4) | | regression-w-m-vote | [regression-w-m-vote-epoch-1](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-1) | [regression-w-m-vote-epoch-2](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-2) | [regression-w-m-vote-epoch-3](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-3) | [regression-w-m-vote-epoch-4](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-4) | | w-m-vote-strict | [w-m-vote-strict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-1) | [w-m-vote-strict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-2) | [w-m-vote-strict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-3) | [w-m-vote-strict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-4) | | w-m-vote-nonstrict | [w-m-vote-nonstrict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-1) | [w-m-vote-nonstrict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-2) | [w-m-vote-nonstrict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-3) | [w-m-vote-nonstrict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-4) | This model is `raw-label-epoch-2` ### Usage ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline model_name = 'raw-label-epoch-2' tokenizer = AutoTokenizer.from_pretrained("dccuchile/bert-base-spanish-wwm-uncased") full_model_path = f'MartinoMensio/racism-models-{model_name}' model = AutoModelForSequenceClassification.from_pretrained(full_model_path) pipe = pipeline("text-classification", model = model, tokenizer = tokenizer) texts = [ 'y porqué es lo que hay que hacer con los menas y con los adultos también!!!! NO a los inmigrantes ilegales!!!!', 'Es que los judíos controlan el mundo' ] print(pipe(texts)) # [{'label': 'racist', 'score': 0.8982619643211365}, {'label': 'non-racist', 'score': 0.6703745126724243}] ``` For more details, see https://github.com/preyero/neatclass22
MartinoMensio/racism-models-regression-w-m-vote-epoch-3
7369f665cbe1a220c4ff2681e3994c3a6ec6c2c2
2022-05-04T16:21:40.000Z
[ "pytorch", "bert", "text-classification", "es", "transformers", "license:mit" ]
text-classification
false
MartinoMensio
null
MartinoMensio/racism-models-regression-w-m-vote-epoch-3
4
null
transformers
19,313
--- language: es license: mit widget: - text: "y porqué es lo que hay que hacer con los menas y con los adultos también!!!! NO a los inmigrantes ilegales!!!!" --- ### Description This model is a fine-tuned version of [BETO (spanish bert)](https://huggingface.co/dccuchile/bert-base-spanish-wwm-uncased) that has been trained on the *Datathon Against Racism* dataset (2022) We performed several experiments that will be described in the upcoming paper "Estimating Ground Truth in a Low-labelled Data Regime:A Study of Racism Detection in Spanish" (NEATClasS 2022) We applied 6 different methods ground-truth estimations, and for each one we performed 4 epochs of fine-tuning. The result is made of 24 models: | method | epoch 1 | epoch 3 | epoch 3 | epoch 4 | |--- |--- |--- |--- |--- | | raw-label | [raw-label-epoch-1](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-1) | [raw-label-epoch-2](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-2) | [raw-label-epoch-3](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-3) | [raw-label-epoch-4](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-4) | | m-vote-strict | [m-vote-strict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-1) | [m-vote-strict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-2) | [m-vote-strict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-3) | [m-vote-strict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-4) | | m-vote-nonstrict | [m-vote-nonstrict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-1) | [m-vote-nonstrict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-2) | [m-vote-nonstrict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-3) | [m-vote-nonstrict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-4) | | regression-w-m-vote | [regression-w-m-vote-epoch-1](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-1) | [regression-w-m-vote-epoch-2](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-2) | [regression-w-m-vote-epoch-3](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-3) | [regression-w-m-vote-epoch-4](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-4) | | w-m-vote-strict | [w-m-vote-strict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-1) | [w-m-vote-strict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-2) | [w-m-vote-strict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-3) | [w-m-vote-strict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-4) | | w-m-vote-nonstrict | [w-m-vote-nonstrict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-1) | [w-m-vote-nonstrict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-2) | [w-m-vote-nonstrict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-3) | [w-m-vote-nonstrict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-4) | This model is `regression-w-m-vote-epoch-3` ### Usage ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline from transformers.pipelines import TextClassificationPipeline class TextRegressionPipeline(TextClassificationPipeline): """ Class based on the TextClassificationPipeline from transformers. The difference is that instead of being based on a classifier, it is based on a regressor. You can specify the regression threshold when you call the pipeline or when you instantiate the pipeline. """ def __init__(self, **kwargs): """ Builds a new Pipeline based on regression. regression_threshold: Optional(float). If None, the pipeline will simply output the score. If set to a specific value, the output will be both the score and the label. """ self.regression_threshold = kwargs.pop("regression_threshold", None) super().__init__(**kwargs) def __call__(self, *args, **kwargs): """ You can also specify the regression threshold when you call the pipeline. regression_threshold: Optional(float). If None, the pipeline will simply output the score. If set to a specific value, the output will be both the score and the label. """ self.regression_threshold_call = kwargs.pop("regression_threshold", None) result = super().__call__(*args, **kwargs) return result def postprocess(self, model_outputs, function_to_apply=None, return_all_scores=False): outputs = model_outputs["logits"][0] outputs = outputs.numpy() scores = outputs score = scores[0] regression_threshold = self.regression_threshold # override the specific threshold if it is specified in the call if self.regression_threshold_call: regression_threshold = self.regression_threshold_call if regression_threshold: return {"label": 'racist' if score > regression_threshold else 'non-racist', "score": score} else: return {"score": score} model_name = 'regression-w-m-vote-epoch-3' tokenizer = AutoTokenizer.from_pretrained("dccuchile/bert-base-spanish-wwm-uncased") full_model_path = f'MartinoMensio/racism-models-{model_name}' model = AutoModelForSequenceClassification.from_pretrained(full_model_path) pipe = TextRegressionPipeline(model=model, tokenizer=tokenizer) texts = [ 'y porqué es lo que hay que hacer con los menas y con los adultos también!!!! NO a los inmigrantes ilegales!!!!', 'Es que los judíos controlan el mundo' ] # just get the score of regression print(pipe(texts)) # [{'score': 0.7393736}, {'score': 0.44301373}] # or also specify a threshold to cut racist/non-racist print(pipe(texts, regression_threshold=0.9)) # [{'label': 'non-racist', 'score': 0.7393736}, {'label': 'non-racist', 'score': 0.44301373}] ``` For more details, see https://github.com/preyero/neatclass22
MartinoMensio/racism-models-m-vote-strict-epoch-1
480f53d5f94477229e355e9a1bbbc2b404ee4e23
2022-05-04T16:07:46.000Z
[ "pytorch", "bert", "text-classification", "es", "transformers", "license:mit" ]
text-classification
false
MartinoMensio
null
MartinoMensio/racism-models-m-vote-strict-epoch-1
4
null
transformers
19,314
--- language: es license: mit widget: - text: "y porqué es lo que hay que hacer con los menas y con los adultos también!!!! NO a los inmigrantes ilegales!!!!" --- ### Description This model is a fine-tuned version of [BETO (spanish bert)](https://huggingface.co/dccuchile/bert-base-spanish-wwm-uncased) that has been trained on the *Datathon Against Racism* dataset (2022) We performed several experiments that will be described in the upcoming paper "Estimating Ground Truth in a Low-labelled Data Regime:A Study of Racism Detection in Spanish" (NEATClasS 2022) We applied 6 different methods ground-truth estimations, and for each one we performed 4 epochs of fine-tuning. The result is made of 24 models: | method | epoch 1 | epoch 3 | epoch 3 | epoch 4 | |--- |--- |--- |--- |--- | | raw-label | [raw-label-epoch-1](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-1) | [raw-label-epoch-2](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-2) | [raw-label-epoch-3](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-3) | [raw-label-epoch-4](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-4) | | m-vote-strict | [m-vote-strict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-1) | [m-vote-strict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-2) | [m-vote-strict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-3) | [m-vote-strict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-4) | | m-vote-nonstrict | [m-vote-nonstrict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-1) | [m-vote-nonstrict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-2) | [m-vote-nonstrict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-3) | [m-vote-nonstrict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-4) | | regression-w-m-vote | [regression-w-m-vote-epoch-1](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-1) | [regression-w-m-vote-epoch-2](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-2) | [regression-w-m-vote-epoch-3](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-3) | [regression-w-m-vote-epoch-4](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-4) | | w-m-vote-strict | [w-m-vote-strict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-1) | [w-m-vote-strict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-2) | [w-m-vote-strict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-3) | [w-m-vote-strict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-4) | | w-m-vote-nonstrict | [w-m-vote-nonstrict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-1) | [w-m-vote-nonstrict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-2) | [w-m-vote-nonstrict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-3) | [w-m-vote-nonstrict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-4) | This model is `m-vote-strict-epoch-1` ### Usage ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline model_name = 'm-vote-strict-epoch-1' tokenizer = AutoTokenizer.from_pretrained("dccuchile/bert-base-spanish-wwm-uncased") full_model_path = f'MartinoMensio/racism-models-{model_name}' model = AutoModelForSequenceClassification.from_pretrained(full_model_path) pipe = pipeline("text-classification", model = model, tokenizer = tokenizer) texts = [ 'y porqué es lo que hay que hacer con los menas y con los adultos también!!!! NO a los inmigrantes ilegales!!!!', 'Es que los judíos controlan el mundo' ] print(pipe(texts)) # [{'label': 'racist', 'score': 0.6074065566062927}, {'label': 'non-racist', 'score': 0.8047575950622559}] ``` For more details, see https://github.com/preyero/neatclass22
MartinoMensio/racism-models-m-vote-strict-epoch-2
92723b2b7a5a06c76003e0ee994165fd4bd15424
2022-05-04T16:08:39.000Z
[ "pytorch", "bert", "text-classification", "es", "transformers", "license:mit" ]
text-classification
false
MartinoMensio
null
MartinoMensio/racism-models-m-vote-strict-epoch-2
4
null
transformers
19,315
--- language: es license: mit widget: - text: "y porqué es lo que hay que hacer con los menas y con los adultos también!!!! NO a los inmigrantes ilegales!!!!" --- ### Description This model is a fine-tuned version of [BETO (spanish bert)](https://huggingface.co/dccuchile/bert-base-spanish-wwm-uncased) that has been trained on the *Datathon Against Racism* dataset (2022) We performed several experiments that will be described in the upcoming paper "Estimating Ground Truth in a Low-labelled Data Regime:A Study of Racism Detection in Spanish" (NEATClasS 2022) We applied 6 different methods ground-truth estimations, and for each one we performed 4 epochs of fine-tuning. The result is made of 24 models: | method | epoch 1 | epoch 3 | epoch 3 | epoch 4 | |--- |--- |--- |--- |--- | | raw-label | [raw-label-epoch-1](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-1) | [raw-label-epoch-2](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-2) | [raw-label-epoch-3](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-3) | [raw-label-epoch-4](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-4) | | m-vote-strict | [m-vote-strict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-1) | [m-vote-strict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-2) | [m-vote-strict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-3) | [m-vote-strict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-4) | | m-vote-nonstrict | [m-vote-nonstrict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-1) | [m-vote-nonstrict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-2) | [m-vote-nonstrict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-3) | [m-vote-nonstrict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-4) | | regression-w-m-vote | [regression-w-m-vote-epoch-1](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-1) | [regression-w-m-vote-epoch-2](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-2) | [regression-w-m-vote-epoch-3](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-3) | [regression-w-m-vote-epoch-4](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-4) | | w-m-vote-strict | [w-m-vote-strict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-1) | [w-m-vote-strict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-2) | [w-m-vote-strict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-3) | [w-m-vote-strict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-4) | | w-m-vote-nonstrict | [w-m-vote-nonstrict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-1) | [w-m-vote-nonstrict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-2) | [w-m-vote-nonstrict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-3) | [w-m-vote-nonstrict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-4) | This model is `m-vote-strict-epoch-2` ### Usage ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline model_name = 'm-vote-strict-epoch-2' tokenizer = AutoTokenizer.from_pretrained("dccuchile/bert-base-spanish-wwm-uncased") full_model_path = f'MartinoMensio/racism-models-{model_name}' model = AutoModelForSequenceClassification.from_pretrained(full_model_path) pipe = pipeline("text-classification", model = model, tokenizer = tokenizer) texts = [ 'y porqué es lo que hay que hacer con los menas y con los adultos también!!!! NO a los inmigrantes ilegales!!!!', 'Es que los judíos controlan el mundo' ] print(pipe(texts)) # [{'label': 'racist', 'score': 0.923829972743988}, {'label': 'non-racist', 'score': 0.8673009872436523}] ``` For more details, see https://github.com/preyero/neatclass22
MartinoMensio/racism-models-m-vote-strict-epoch-4
838aa00f66a948070db5e89a0cba3b6358a6f5c6
2022-05-04T16:10:41.000Z
[ "pytorch", "bert", "text-classification", "es", "transformers", "license:mit" ]
text-classification
false
MartinoMensio
null
MartinoMensio/racism-models-m-vote-strict-epoch-4
4
null
transformers
19,316
--- language: es license: mit widget: - text: "y porqué es lo que hay que hacer con los menas y con los adultos también!!!! NO a los inmigrantes ilegales!!!!" --- ### Description This model is a fine-tuned version of [BETO (spanish bert)](https://huggingface.co/dccuchile/bert-base-spanish-wwm-uncased) that has been trained on the *Datathon Against Racism* dataset (2022) We performed several experiments that will be described in the upcoming paper "Estimating Ground Truth in a Low-labelled Data Regime:A Study of Racism Detection in Spanish" (NEATClasS 2022) We applied 6 different methods ground-truth estimations, and for each one we performed 4 epochs of fine-tuning. The result is made of 24 models: | method | epoch 1 | epoch 3 | epoch 3 | epoch 4 | |--- |--- |--- |--- |--- | | raw-label | [raw-label-epoch-1](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-1) | [raw-label-epoch-2](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-2) | [raw-label-epoch-3](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-3) | [raw-label-epoch-4](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-4) | | m-vote-strict | [m-vote-strict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-1) | [m-vote-strict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-2) | [m-vote-strict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-3) | [m-vote-strict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-4) | | m-vote-nonstrict | [m-vote-nonstrict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-1) | [m-vote-nonstrict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-2) | [m-vote-nonstrict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-3) | [m-vote-nonstrict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-4) | | regression-w-m-vote | [regression-w-m-vote-epoch-1](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-1) | [regression-w-m-vote-epoch-2](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-2) | [regression-w-m-vote-epoch-3](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-3) | [regression-w-m-vote-epoch-4](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-4) | | w-m-vote-strict | [w-m-vote-strict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-1) | [w-m-vote-strict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-2) | [w-m-vote-strict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-3) | [w-m-vote-strict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-4) | | w-m-vote-nonstrict | [w-m-vote-nonstrict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-1) | [w-m-vote-nonstrict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-2) | [w-m-vote-nonstrict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-3) | [w-m-vote-nonstrict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-4) | This model is `m-vote-strict-epoch-4` ### Usage ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline model_name = 'm-vote-strict-epoch-4' tokenizer = AutoTokenizer.from_pretrained("dccuchile/bert-base-spanish-wwm-uncased") full_model_path = f'MartinoMensio/racism-models-{model_name}' model = AutoModelForSequenceClassification.from_pretrained(full_model_path) pipe = pipeline("text-classification", model = model, tokenizer = tokenizer) texts = [ 'y porqué es lo que hay que hacer con los menas y con los adultos también!!!! NO a los inmigrantes ilegales!!!!', 'Es que los judíos controlan el mundo' ] print(pipe(texts)) # [{'label': 'racist', 'score': 0.9965864419937134}, {'label': 'racist', 'score': 0.6058831214904785}] ``` For more details, see https://github.com/preyero/neatclass22
MartinoMensio/racism-models-m-vote-nonstrict-epoch-1
b147380a037e6efda7c9c283f843b385975dbea1
2022-05-04T16:11:39.000Z
[ "pytorch", "bert", "text-classification", "es", "transformers", "license:mit" ]
text-classification
false
MartinoMensio
null
MartinoMensio/racism-models-m-vote-nonstrict-epoch-1
4
null
transformers
19,317
--- language: es license: mit widget: - text: "y porqué es lo que hay que hacer con los menas y con los adultos también!!!! NO a los inmigrantes ilegales!!!!" --- ### Description This model is a fine-tuned version of [BETO (spanish bert)](https://huggingface.co/dccuchile/bert-base-spanish-wwm-uncased) that has been trained on the *Datathon Against Racism* dataset (2022) We performed several experiments that will be described in the upcoming paper "Estimating Ground Truth in a Low-labelled Data Regime:A Study of Racism Detection in Spanish" (NEATClasS 2022) We applied 6 different methods ground-truth estimations, and for each one we performed 4 epochs of fine-tuning. The result is made of 24 models: | method | epoch 1 | epoch 3 | epoch 3 | epoch 4 | |--- |--- |--- |--- |--- | | raw-label | [raw-label-epoch-1](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-1) | [raw-label-epoch-2](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-2) | [raw-label-epoch-3](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-3) | [raw-label-epoch-4](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-4) | | m-vote-strict | [m-vote-strict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-1) | [m-vote-strict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-2) | [m-vote-strict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-3) | [m-vote-strict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-4) | | m-vote-nonstrict | [m-vote-nonstrict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-1) | [m-vote-nonstrict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-2) | [m-vote-nonstrict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-3) | [m-vote-nonstrict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-4) | | regression-w-m-vote | [regression-w-m-vote-epoch-1](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-1) | [regression-w-m-vote-epoch-2](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-2) | [regression-w-m-vote-epoch-3](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-3) | [regression-w-m-vote-epoch-4](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-4) | | w-m-vote-strict | [w-m-vote-strict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-1) | [w-m-vote-strict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-2) | [w-m-vote-strict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-3) | [w-m-vote-strict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-4) | | w-m-vote-nonstrict | [w-m-vote-nonstrict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-1) | [w-m-vote-nonstrict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-2) | [w-m-vote-nonstrict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-3) | [w-m-vote-nonstrict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-4) | This model is `m-vote-nonstrict-epoch-1` ### Usage ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline model_name = 'm-vote-nonstrict-epoch-1' tokenizer = AutoTokenizer.from_pretrained("dccuchile/bert-base-spanish-wwm-uncased") full_model_path = f'MartinoMensio/racism-models-{model_name}' model = AutoModelForSequenceClassification.from_pretrained(full_model_path) pipe = pipeline("text-classification", model = model, tokenizer = tokenizer) texts = [ 'y porqué es lo que hay que hacer con los menas y con los adultos también!!!! NO a los inmigrantes ilegales!!!!', 'Es que los judíos controlan el mundo' ] print(pipe(texts)) # [{'label': 'racist', 'score': 0.9265261888504028}, {'label': 'non-racist', 'score': 0.802951991558075}] ``` For more details, see https://github.com/preyero/neatclass22
MartinoMensio/racism-models-m-vote-nonstrict-epoch-2
e410d00797a4982bc52eaf4d9cfe87523114e9dd
2022-05-04T16:12:34.000Z
[ "pytorch", "bert", "text-classification", "es", "transformers", "license:mit" ]
text-classification
false
MartinoMensio
null
MartinoMensio/racism-models-m-vote-nonstrict-epoch-2
4
null
transformers
19,318
--- language: es license: mit widget: - text: "y porqué es lo que hay que hacer con los menas y con los adultos también!!!! NO a los inmigrantes ilegales!!!!" --- ### Description This model is a fine-tuned version of [BETO (spanish bert)](https://huggingface.co/dccuchile/bert-base-spanish-wwm-uncased) that has been trained on the *Datathon Against Racism* dataset (2022) We performed several experiments that will be described in the upcoming paper "Estimating Ground Truth in a Low-labelled Data Regime:A Study of Racism Detection in Spanish" (NEATClasS 2022) We applied 6 different methods ground-truth estimations, and for each one we performed 4 epochs of fine-tuning. The result is made of 24 models: | method | epoch 1 | epoch 3 | epoch 3 | epoch 4 | |--- |--- |--- |--- |--- | | raw-label | [raw-label-epoch-1](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-1) | [raw-label-epoch-2](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-2) | [raw-label-epoch-3](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-3) | [raw-label-epoch-4](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-4) | | m-vote-strict | [m-vote-strict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-1) | [m-vote-strict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-2) | [m-vote-strict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-3) | [m-vote-strict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-4) | | m-vote-nonstrict | [m-vote-nonstrict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-1) | [m-vote-nonstrict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-2) | [m-vote-nonstrict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-3) | [m-vote-nonstrict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-4) | | regression-w-m-vote | [regression-w-m-vote-epoch-1](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-1) | [regression-w-m-vote-epoch-2](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-2) | [regression-w-m-vote-epoch-3](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-3) | [regression-w-m-vote-epoch-4](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-4) | | w-m-vote-strict | [w-m-vote-strict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-1) | [w-m-vote-strict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-2) | [w-m-vote-strict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-3) | [w-m-vote-strict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-4) | | w-m-vote-nonstrict | [w-m-vote-nonstrict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-1) | [w-m-vote-nonstrict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-2) | [w-m-vote-nonstrict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-3) | [w-m-vote-nonstrict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-4) | This model is `m-vote-nonstrict-epoch-2` ### Usage ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline model_name = 'm-vote-nonstrict-epoch-2' tokenizer = AutoTokenizer.from_pretrained("dccuchile/bert-base-spanish-wwm-uncased") full_model_path = f'MartinoMensio/racism-models-{model_name}' model = AutoModelForSequenceClassification.from_pretrained(full_model_path) pipe = pipeline("text-classification", model = model, tokenizer = tokenizer) texts = [ 'y porqué es lo que hay que hacer con los menas y con los adultos también!!!! NO a los inmigrantes ilegales!!!!', 'Es que los judíos controlan el mundo' ] print(pipe(texts)) # [{'label': 'racist', 'score': 0.8650100827217102}, {'label': 'non-racist', 'score': 0.9674995541572571}] ``` For more details, see https://github.com/preyero/neatclass22
MartinoMensio/racism-models-m-vote-nonstrict-epoch-3
bda4da5024c309fbdfa4fa5b27b8d1a8b8182e4c
2022-05-04T16:13:17.000Z
[ "pytorch", "bert", "text-classification", "es", "transformers", "license:mit" ]
text-classification
false
MartinoMensio
null
MartinoMensio/racism-models-m-vote-nonstrict-epoch-3
4
null
transformers
19,319
--- language: es license: mit widget: - text: "y porqué es lo que hay que hacer con los menas y con los adultos también!!!! NO a los inmigrantes ilegales!!!!" --- ### Description This model is a fine-tuned version of [BETO (spanish bert)](https://huggingface.co/dccuchile/bert-base-spanish-wwm-uncased) that has been trained on the *Datathon Against Racism* dataset (2022) We performed several experiments that will be described in the upcoming paper "Estimating Ground Truth in a Low-labelled Data Regime:A Study of Racism Detection in Spanish" (NEATClasS 2022) We applied 6 different methods ground-truth estimations, and for each one we performed 4 epochs of fine-tuning. The result is made of 24 models: | method | epoch 1 | epoch 3 | epoch 3 | epoch 4 | |--- |--- |--- |--- |--- | | raw-label | [raw-label-epoch-1](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-1) | [raw-label-epoch-2](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-2) | [raw-label-epoch-3](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-3) | [raw-label-epoch-4](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-4) | | m-vote-strict | [m-vote-strict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-1) | [m-vote-strict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-2) | [m-vote-strict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-3) | [m-vote-strict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-4) | | m-vote-nonstrict | [m-vote-nonstrict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-1) | [m-vote-nonstrict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-2) | [m-vote-nonstrict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-3) | [m-vote-nonstrict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-4) | | regression-w-m-vote | [regression-w-m-vote-epoch-1](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-1) | [regression-w-m-vote-epoch-2](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-2) | [regression-w-m-vote-epoch-3](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-3) | [regression-w-m-vote-epoch-4](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-4) | | w-m-vote-strict | [w-m-vote-strict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-1) | [w-m-vote-strict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-2) | [w-m-vote-strict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-3) | [w-m-vote-strict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-4) | | w-m-vote-nonstrict | [w-m-vote-nonstrict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-1) | [w-m-vote-nonstrict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-2) | [w-m-vote-nonstrict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-3) | [w-m-vote-nonstrict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-4) | This model is `m-vote-nonstrict-epoch-3` ### Usage ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline model_name = 'm-vote-nonstrict-epoch-3' tokenizer = AutoTokenizer.from_pretrained("dccuchile/bert-base-spanish-wwm-uncased") full_model_path = f'MartinoMensio/racism-models-{model_name}' model = AutoModelForSequenceClassification.from_pretrained(full_model_path) pipe = pipeline("text-classification", model = model, tokenizer = tokenizer) texts = [ 'y porqué es lo que hay que hacer con los menas y con los adultos también!!!! NO a los inmigrantes ilegales!!!!', 'Es que los judíos controlan el mundo' ] print(pipe(texts)) # [{'label': 'racist', 'score': 0.9642159342765808}, {'label': 'non-racist', 'score': 0.9484726786613464}] ``` For more details, see https://github.com/preyero/neatclass22
MartinoMensio/racism-models-m-vote-nonstrict-epoch-4
483269931d7746329090224fc787b36beb452cea
2022-05-04T16:14:06.000Z
[ "pytorch", "bert", "text-classification", "es", "transformers", "license:mit" ]
text-classification
false
MartinoMensio
null
MartinoMensio/racism-models-m-vote-nonstrict-epoch-4
4
null
transformers
19,320
--- language: es license: mit widget: - text: "y porqué es lo que hay que hacer con los menas y con los adultos también!!!! NO a los inmigrantes ilegales!!!!" --- ### Description This model is a fine-tuned version of [BETO (spanish bert)](https://huggingface.co/dccuchile/bert-base-spanish-wwm-uncased) that has been trained on the *Datathon Against Racism* dataset (2022) We performed several experiments that will be described in the upcoming paper "Estimating Ground Truth in a Low-labelled Data Regime:A Study of Racism Detection in Spanish" (NEATClasS 2022) We applied 6 different methods ground-truth estimations, and for each one we performed 4 epochs of fine-tuning. The result is made of 24 models: | method | epoch 1 | epoch 3 | epoch 3 | epoch 4 | |--- |--- |--- |--- |--- | | raw-label | [raw-label-epoch-1](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-1) | [raw-label-epoch-2](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-2) | [raw-label-epoch-3](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-3) | [raw-label-epoch-4](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-4) | | m-vote-strict | [m-vote-strict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-1) | [m-vote-strict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-2) | [m-vote-strict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-3) | [m-vote-strict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-4) | | m-vote-nonstrict | [m-vote-nonstrict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-1) | [m-vote-nonstrict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-2) | [m-vote-nonstrict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-3) | [m-vote-nonstrict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-4) | | regression-w-m-vote | [regression-w-m-vote-epoch-1](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-1) | [regression-w-m-vote-epoch-2](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-2) | [regression-w-m-vote-epoch-3](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-3) | [regression-w-m-vote-epoch-4](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-4) | | w-m-vote-strict | [w-m-vote-strict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-1) | [w-m-vote-strict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-2) | [w-m-vote-strict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-3) | [w-m-vote-strict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-4) | | w-m-vote-nonstrict | [w-m-vote-nonstrict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-1) | [w-m-vote-nonstrict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-2) | [w-m-vote-nonstrict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-3) | [w-m-vote-nonstrict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-4) | This model is `m-vote-nonstrict-epoch-4` ### Usage ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline model_name = 'm-vote-nonstrict-epoch-4' tokenizer = AutoTokenizer.from_pretrained("dccuchile/bert-base-spanish-wwm-uncased") full_model_path = f'MartinoMensio/racism-models-{model_name}' model = AutoModelForSequenceClassification.from_pretrained(full_model_path) pipe = pipeline("text-classification", model = model, tokenizer = tokenizer) texts = [ 'y porqué es lo que hay que hacer con los menas y con los adultos también!!!! NO a los inmigrantes ilegales!!!!', 'Es que los judíos controlan el mundo' ] print(pipe(texts)) # [{'label': 'racist', 'score': 0.9791656136512756}, {'label': 'non-racist', 'score': 0.996966540813446}] ``` For more details, see https://github.com/preyero/neatclass22
MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-1
d8e6c81cd6bc1a6a12b5453b6d43e24d7a6658a7
2022-05-04T16:27:31.000Z
[ "pytorch", "bert", "text-classification", "es", "transformers", "license:mit" ]
text-classification
false
MartinoMensio
null
MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-1
4
null
transformers
19,321
--- language: es license: mit widget: - text: "y porqué es lo que hay que hacer con los menas y con los adultos también!!!! NO a los inmigrantes ilegales!!!!" --- ### Description This model is a fine-tuned version of [BETO (spanish bert)](https://huggingface.co/dccuchile/bert-base-spanish-wwm-uncased) that has been trained on the *Datathon Against Racism* dataset (2022) We performed several experiments that will be described in the upcoming paper "Estimating Ground Truth in a Low-labelled Data Regime:A Study of Racism Detection in Spanish" (NEATClasS 2022) We applied 6 different methods ground-truth estimations, and for each one we performed 4 epochs of fine-tuning. The result is made of 24 models: | method | epoch 1 | epoch 3 | epoch 3 | epoch 4 | |--- |--- |--- |--- |--- | | raw-label | [raw-label-epoch-1](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-1) | [raw-label-epoch-2](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-2) | [raw-label-epoch-3](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-3) | [raw-label-epoch-4](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-4) | | m-vote-strict | [m-vote-strict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-1) | [m-vote-strict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-2) | [m-vote-strict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-3) | [m-vote-strict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-4) | | m-vote-nonstrict | [m-vote-nonstrict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-1) | [m-vote-nonstrict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-2) | [m-vote-nonstrict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-3) | [m-vote-nonstrict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-4) | | regression-w-m-vote | [regression-w-m-vote-epoch-1](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-1) | [regression-w-m-vote-epoch-2](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-2) | [regression-w-m-vote-epoch-3](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-3) | [regression-w-m-vote-epoch-4](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-4) | | w-m-vote-strict | [w-m-vote-strict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-1) | [w-m-vote-strict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-2) | [w-m-vote-strict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-3) | [w-m-vote-strict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-4) | | w-m-vote-nonstrict | [w-m-vote-nonstrict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-1) | [w-m-vote-nonstrict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-2) | [w-m-vote-nonstrict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-3) | [w-m-vote-nonstrict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-4) | This model is `w-m-vote-nonstrict-epoch-1` ### Usage ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline model_name = 'w-m-vote-nonstrict-epoch-1' tokenizer = AutoTokenizer.from_pretrained("dccuchile/bert-base-spanish-wwm-uncased") full_model_path = f'MartinoMensio/racism-models-{model_name}' model = AutoModelForSequenceClassification.from_pretrained(full_model_path) pipe = pipeline("text-classification", model = model, tokenizer = tokenizer) texts = [ 'y porqué es lo que hay que hacer con los menas y con los adultos también!!!! NO a los inmigrantes ilegales!!!!', 'Es que los judíos controlan el mundo' ] print(pipe(texts)) # [{'label': 'racist', 'score': 0.8460916876792908}, {'label': 'non-racist', 'score': 0.9714874029159546}] ``` For more details, see https://github.com/preyero/neatclass22
MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-3
ed894e55d2bc73805b3a99b9310c7e4e267fcd7e
2022-05-04T16:28:53.000Z
[ "pytorch", "bert", "text-classification", "es", "transformers", "license:mit" ]
text-classification
false
MartinoMensio
null
MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-3
4
null
transformers
19,322
--- language: es license: mit widget: - text: "y porqué es lo que hay que hacer con los menas y con los adultos también!!!! NO a los inmigrantes ilegales!!!!" --- ### Description This model is a fine-tuned version of [BETO (spanish bert)](https://huggingface.co/dccuchile/bert-base-spanish-wwm-uncased) that has been trained on the *Datathon Against Racism* dataset (2022) We performed several experiments that will be described in the upcoming paper "Estimating Ground Truth in a Low-labelled Data Regime:A Study of Racism Detection in Spanish" (NEATClasS 2022) We applied 6 different methods ground-truth estimations, and for each one we performed 4 epochs of fine-tuning. The result is made of 24 models: | method | epoch 1 | epoch 3 | epoch 3 | epoch 4 | |--- |--- |--- |--- |--- | | raw-label | [raw-label-epoch-1](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-1) | [raw-label-epoch-2](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-2) | [raw-label-epoch-3](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-3) | [raw-label-epoch-4](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-4) | | m-vote-strict | [m-vote-strict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-1) | [m-vote-strict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-2) | [m-vote-strict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-3) | [m-vote-strict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-4) | | m-vote-nonstrict | [m-vote-nonstrict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-1) | [m-vote-nonstrict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-2) | [m-vote-nonstrict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-3) | [m-vote-nonstrict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-4) | | regression-w-m-vote | [regression-w-m-vote-epoch-1](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-1) | [regression-w-m-vote-epoch-2](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-2) | [regression-w-m-vote-epoch-3](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-3) | [regression-w-m-vote-epoch-4](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-4) | | w-m-vote-strict | [w-m-vote-strict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-1) | [w-m-vote-strict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-2) | [w-m-vote-strict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-3) | [w-m-vote-strict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-4) | | w-m-vote-nonstrict | [w-m-vote-nonstrict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-1) | [w-m-vote-nonstrict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-2) | [w-m-vote-nonstrict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-3) | [w-m-vote-nonstrict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-4) | This model is `w-m-vote-nonstrict-epoch-3` ### Usage ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline model_name = 'w-m-vote-nonstrict-epoch-3' tokenizer = AutoTokenizer.from_pretrained("dccuchile/bert-base-spanish-wwm-uncased") full_model_path = f'MartinoMensio/racism-models-{model_name}' model = AutoModelForSequenceClassification.from_pretrained(full_model_path) pipe = pipeline("text-classification", model = model, tokenizer = tokenizer) texts = [ 'y porqué es lo que hay que hacer con los menas y con los adultos también!!!! NO a los inmigrantes ilegales!!!!', 'Es que los judíos controlan el mundo' ] print(pipe(texts)) # [{'label': 'racist', 'score': 0.9937393665313721}, {'label': 'non-racist', 'score': 0.9902436137199402}] ``` For more details, see https://github.com/preyero/neatclass22
Chikashi/t5-small-finetuned-cnndm3-wikihow3
9ec5836da1363ab023bf9d066921ad3c8b35627e
2022-04-16T01:42:47.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:wikihow", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
Chikashi
null
Chikashi/t5-small-finetuned-cnndm3-wikihow3
4
null
transformers
19,323
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wikihow metrics: - rouge model-index: - name: t5-small-finetuned-cnndm3-wikihow3 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: wikihow type: wikihow args: all metrics: - name: Rouge1 type: rouge value: 27.2654 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-cnndm3-wikihow3 This model is a fine-tuned version of [Chikashi/t5-small-finetuned-cnndm3-wikihow2](https://huggingface.co/Chikashi/t5-small-finetuned-cnndm3-wikihow2) on the wikihow dataset. It achieves the following results on the evaluation set: - Loss: 2.3138 - Rouge1: 27.2654 - Rouge2: 10.5461 - Rougel: 23.2451 - Rougelsum: 26.6151 - Gen Len: 18.5263 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 2.5019 | 1.0 | 39313 | 2.3138 | 27.2654 | 10.5461 | 23.2451 | 26.6151 | 18.5263 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
dennishe97/longformer-code-relatedness
804849619668d3e5e481af5f6f90db0fdf6ebef8
2022-04-16T05:25:18.000Z
[ "pytorch", "longformer", "transformers" ]
null
false
dennishe97
null
dennishe97/longformer-code-relatedness
4
null
transformers
19,324
Entry not found
jason9693/soongsil-bert-base-apeach
18cc9bd7812c15bc2befe753d1327aad4d216f45
2022-04-16T14:20:38.000Z
[ "pytorch", "roberta", "text-classification", "ko", "dataset:jason9693/APEACH", "transformers" ]
text-classification
false
jason9693
null
jason9693/soongsil-bert-base-apeach
4
null
transformers
19,325
--- language: ko widget: - text: "응 어쩔티비~~" datasets: - jason9693/APEACH ---
crcb/goemos
de9cf308da9a92fc464231b01439bcd31d195554
2022-04-16T15:16:07.000Z
[ "pytorch", "bert", "text-classification", "en", "dataset:crcb/autotrain-data-go_emo", "transformers", "autotrain", "co2_eq_emissions" ]
text-classification
false
crcb
null
crcb/goemos
4
null
transformers
19,326
--- tags: autotrain language: en widget: - text: "I love AutoTrain 🤗" datasets: - crcb/autotrain-data-go_emo co2_eq_emissions: 31.11935827749309 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 748922872 - CO2 Emissions (in grams): 31.11935827749309 ## Validation Metrics - Loss: 0.17039568722248077 - Accuracy: 0.93625 - Macro F1: 0.9075787460059076 - Micro F1: 0.93625 - Weighted F1: 0.9371621543264445 - Macro Precision: 0.8945117620407296 - Micro Precision: 0.93625 - Weighted Precision: 0.9433589433926076 - Macro Recall: 0.9323604226458176 - Micro Recall: 0.93625 - Weighted Recall: 0.93625 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/crcb/autotrain-go_emo-748922872 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("crcb/autotrain-go_emo-748922872", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("crcb/autotrain-go_emo-748922872", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
crcb/emo_nojoylove
f83f7c99e05f0176efdf02b7af6c0785df71f458
2022-04-17T14:19:31.000Z
[ "pytorch", "bert", "text-classification", "en", "dataset:crcb/autotrain-data-emo_carer_nojoylove", "transformers", "autotrain", "co2_eq_emissions" ]
text-classification
false
crcb
null
crcb/emo_nojoylove
4
null
transformers
19,327
--- tags: autotrain language: en widget: - text: "I love AutoTrain 🤗" datasets: - crcb/autotrain-data-emo_carer_nojoylove co2_eq_emissions: 12.236769332727217 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 751422966 - CO2 Emissions (in grams): 12.236769332727217 ## Validation Metrics - Loss: 0.1358409821987152 - Accuracy: 0.9397905759162304 - Macro F1: 0.9096049124431982 - Micro F1: 0.9397905759162304 - Weighted F1: 0.9395954853807672 - Macro Precision: 0.919807346649452 - Micro Precision: 0.9397905759162304 - Weighted Precision: 0.9407259082357824 - Macro Recall: 0.9024000547645126 - Micro Recall: 0.9397905759162304 - Weighted Recall: 0.9397905759162304 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/crcb/autotrain-emo_carer_nojoylove-751422966 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("crcb/autotrain-emo_carer_nojoylove-751422966", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("crcb/autotrain-emo_carer_nojoylove-751422966", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
crcb/carer_2
1799c7136c3a9a04e111fa1f13be0121d404d0df
2022-04-17T14:14:39.000Z
[ "pytorch", "roberta", "text-classification", "en", "dataset:crcb/autotrain-data-emo_carer_nojoylove", "transformers", "autotrain", "co2_eq_emissions" ]
text-classification
false
crcb
null
crcb/carer_2
4
null
transformers
19,328
--- tags: autotrain language: en widget: - text: "I love AutoTrain 🤗" datasets: - crcb/autotrain-data-emo_carer_nojoylove co2_eq_emissions: 2.370895196595982 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 751422974 - CO2 Emissions (in grams): 2.370895196595982 ## Validation Metrics - Loss: 0.15362708270549774 - Accuracy: 0.9345549738219895 - Macro F1: 0.9016011681330569 - Micro F1: 0.9345549738219895 - Weighted F1: 0.9345413976263288 - Macro Precision: 0.9032333514618506 - Micro Precision: 0.9345549738219895 - Weighted Precision: 0.9345804677958041 - Macro Recall: 0.9001021129974442 - Micro Recall: 0.9345549738219895 - Weighted Recall: 0.9345549738219895 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/crcb/autotrain-emo_carer_nojoylove-751422974 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("crcb/autotrain-emo_carer_nojoylove-751422974", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("crcb/autotrain-emo_carer_nojoylove-751422974", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
huggingtweets/crowsunflower-holyhorror8-witheredstrings
10602e91f50629bb2ca0553c0d2cbd83daaec3dc
2022-04-17T18:28:49.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/crowsunflower-holyhorror8-witheredstrings
4
null
transformers
19,329
--- language: en thumbnail: http://www.huggingtweets.com/crowsunflower-holyhorror8-witheredstrings/1650220124956/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1515513843216171009/zT6m-Miq_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1510441725415899139/16Ro5tD5_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1511427151102287872/Onql0JIa_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">VacuumF & Jude obscura 🌒 & The Mad Puppet/Prophet</div> <div style="text-align: center; font-size: 14px;">@crowsunflower-holyhorror8-witheredstrings</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from VacuumF & Jude obscura 🌒 & The Mad Puppet/Prophet. | Data | VacuumF | Jude obscura 🌒 | The Mad Puppet/Prophet | | --- | --- | --- | --- | | Tweets downloaded | 454 | 3228 | 3243 | | Retweets | 2 | 829 | 134 | | Short tweets | 38 | 742 | 1275 | | Tweets kept | 414 | 1657 | 1834 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1fsr8bm1/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @crowsunflower-holyhorror8-witheredstrings's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/dgpcknqj) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/dgpcknqj/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/crowsunflower-holyhorror8-witheredstrings') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
crcb/hateval_re
83fbdc212c324847bef71dd40802cefa9ca3ab49
2022-04-18T01:35:05.000Z
[ "pytorch", "bert", "text-classification", "en", "dataset:crcb/autotrain-data-hate_speech", "transformers", "autotrain", "co2_eq_emissions" ]
text-classification
false
crcb
null
crcb/hateval_re
4
null
transformers
19,330
--- tags: autotrain language: en widget: - text: "I love AutoTrain 🤗" datasets: - crcb/autotrain-data-hate_speech co2_eq_emissions: 5.301132895184483 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 752122994 - CO2 Emissions (in grams): 5.301132895184483 ## Validation Metrics - Loss: 0.7107211351394653 - Accuracy: 0.7529411764705882 - Precision: 0.7502287282708143 - Recall: 0.9177392277560157 - AUC: 0.8358316393336287 - F1: 0.8255726151522779 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/crcb/autotrain-hate_speech-752122994 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("crcb/autotrain-hate_speech-752122994", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("crcb/autotrain-hate_speech-752122994", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
ardallie/xlm-roberta-base-finetuned-panx-de
2c43db15d16d8a50868ade4a023a6d63a34d30ee
2022-04-18T02:20:27.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
ardallie
null
ardallie/xlm-roberta-base-finetuned-panx-de
4
null
transformers
19,331
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.863114847211178 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1365 - F1: 0.8631 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2513 | 1.0 | 525 | 0.1650 | 0.8206 | | 0.1301 | 2.0 | 1050 | 0.1455 | 0.8454 | | 0.08 | 3.0 | 1575 | 0.1365 | 0.8631 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.2 - Datasets 1.16.1 - Tokenizers 0.10.3
supriyaraj47/roberta-base-nli
1661abd8133692c8b40307767ce58d57f8c151cb
2022-04-18T03:31:55.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
supriyaraj47
null
supriyaraj47/roberta-base-nli
4
null
transformers
19,332
Entry not found
Jatin-WIAI/marathi_relevance_clf
d15522e51540aa108fc4f768cf990baad0353bf8
2022-04-18T11:40:27.000Z
[ "pytorch", "xlm-roberta", "text-classification", "transformers" ]
text-classification
false
Jatin-WIAI
null
Jatin-WIAI/marathi_relevance_clf
4
null
transformers
19,333
Entry not found
SimoC/distilbert-base-uncased-finetuned-emotion
7d29435c7beda8cb9a0e58011934236dceb4f77f
2022-04-18T12:57:57.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers" ]
text-classification
false
SimoC
null
SimoC/distilbert-base-uncased-finetuned-emotion
4
null
transformers
19,334
Entry not found
crcb/hs_dvs
dbb3041e949c7e0bc502a1ad7caf9d36ce719749
2022-04-18T13:43:00.000Z
[ "pytorch", "distilbert", "text-classification", "en", "dataset:crcb/autotrain-data-dvs", "transformers", "autotrain", "co2_eq_emissions" ]
text-classification
false
crcb
null
crcb/hs_dvs
4
null
transformers
19,335
--- tags: autotrain language: en widget: - text: "I love AutoTrain 🤗" datasets: - crcb/autotrain-data-dvs co2_eq_emissions: 5.1746636998598445 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 753223051 - CO2 Emissions (in grams): 5.1746636998598445 ## Validation Metrics - Loss: 0.14639143645763397 - Accuracy: 0.9493645350010087 - Precision: 0.5460992907801419 - Recall: 0.2916666666666667 - AUC: 0.8843542768404266 - F1: 0.3802469135802469 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/crcb/autotrain-dvs-753223051 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("crcb/autotrain-dvs-753223051", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("crcb/autotrain-dvs-753223051", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
crcb/imp_hatred_f
415d7a50b368d20e0dfb9ccedc8aeae0263e0562
2022-04-18T14:11:31.000Z
[ "pytorch", "bert", "text-classification", "en", "dataset:crcb/autotrain-data-imp_hs", "transformers", "autotrain", "co2_eq_emissions" ]
text-classification
false
crcb
null
crcb/imp_hatred_f
4
null
transformers
19,336
--- tags: autotrain language: en widget: - text: "I love AutoTrain 🤗" datasets: - crcb/autotrain-data-imp_hs co2_eq_emissions: 0.05286505617263864 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 753423076 - CO2 Emissions (in grams): 0.05286505617263864 ## Validation Metrics - Loss: 0.539419412612915 - Accuracy: 0.7616387337057728 - Macro F1: 0.6428050387135232 - Micro F1: 0.761638733705773 - Weighted F1: 0.7592341595725172 - Macro Precision: 0.6606534010647378 - Micro Precision: 0.7616387337057728 - Weighted Precision: 0.7575825822976101 - Macro Recall: 0.6293404928847536 - Micro Recall: 0.7616387337057728 - Weighted Recall: 0.7616387337057728 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/crcb/autotrain-imp_hs-753423076 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("crcb/autotrain-imp_hs-753423076", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("crcb/autotrain-imp_hs-753423076", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
wangmiaobeng/chinese-bert-wwm-finetuned-jd
b9681136544348bc47558482bbfe97e815c74895
2022-04-18T15:17:37.000Z
[ "pytorch", "tensorboard", "bert", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
wangmiaobeng
null
wangmiaobeng/chinese-bert-wwm-finetuned-jd
4
null
transformers
19,337
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: chinese-bert-wwm-finetuned-jd results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # chinese-bert-wwm-finetuned-jd This model is a fine-tuned version of [hfl/chinese-bert-wwm](https://huggingface.co/hfl/chinese-bert-wwm) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.9340 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.1648 | 1.0 | 5 | 2.9366 | | 3.0095 | 2.0 | 10 | 2.9487 | | 3.0698 | 3.0 | 15 | 2.9177 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu102 - Datasets 2.1.0 - Tokenizers 0.12.1
TracyWang/t5-small-finetuned-xsum
e1afac4b586c6e1c7e3796d9f871a09e109aa407
2022-04-19T07:50:07.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:xsum", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
TracyWang
null
TracyWang/t5-small-finetuned-xsum
4
null
transformers
19,338
--- license: apache-2.0 tags: - generated_from_trainer datasets: - xsum model-index: - name: t5-small-finetuned-xsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xsum dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
waboucay/camembert-base-finetuned-nli-repnum_wl-rua_wl
a34a4742c580e7c608ce0ae9b014dbcb97d3de63
2022-04-21T15:10:51.000Z
[ "pytorch", "camembert", "text-classification", "fr", "transformers", "nli" ]
text-classification
false
waboucay
null
waboucay/camembert-base-finetuned-nli-repnum_wl-rua_wl
4
null
transformers
19,339
--- language: - fr tags: - nli metrics: - f1 --- ## Eval results We obtain the following results on ```validation``` and ```test``` sets: | Set | F1<sub>micro</sub> | F1<sub>macro</sub> | |------------|--------------------|--------------------| | validation | 73.5 | 73.5 | | test | 75.5 | 75.5 |
waboucay/camembert-base-finetuned-nli-xnli_fr-repnum_wl-rua_wl
b27130538c4c22865a9d83a05dbc2441c94cfa2a
2022-04-21T15:15:18.000Z
[ "pytorch", "camembert", "text-classification", "fr", "transformers", "nli" ]
text-classification
false
waboucay
null
waboucay/camembert-base-finetuned-nli-xnli_fr-repnum_wl-rua_wl
4
null
transformers
19,340
--- language: - fr tags: - nli metrics: - f1 --- ## Eval results We obtain the following results on ```validation``` and ```test``` sets: | Set | F1<sub>micro</sub> | F1<sub>macro</sub> | |------------|--------------------|--------------------| | validation | 83.1 | 82.2 | | test | 86.0 | 85.0 |
intellisr/autotrain-twitterMbti-758223271
38d86c7fcc0ea35a3d57bafa40c3345352dc6456
2022-04-19T14:18:50.000Z
[ "pytorch", "bert", "text-classification", "en", "dataset:intellisr/autotrain-data-twitterMbti", "transformers", "autotrain", "co2_eq_emissions" ]
text-classification
false
intellisr
null
intellisr/autotrain-twitterMbti-758223271
4
null
transformers
19,341
--- tags: autotrain language: en widget: - text: "I love AutoTrain 🤗" datasets: - intellisr/autotrain-data-twitterMbti co2_eq_emissions: 0.3313142450338848 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 758223271 - CO2 Emissions (in grams): 0.3313142450338848 ## Validation Metrics - Loss: 1.2496932744979858 - Accuracy: 0.6438828259620908 - Macro F1: 0.5757131072506373 - Micro F1: 0.6438828259620908 - Weighted F1: 0.6401462906378685 - Macro Precision: 0.6279826743318115 - Micro Precision: 0.6438828259620908 - Weighted Precision: 0.6479595607607238 - Macro Recall: 0.5436771609966322 - Micro Recall: 0.6438828259620908 - Weighted Recall: 0.6438828259620908 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/intellisr/autotrain-twitterMbti-758223271 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("intellisr/autotrain-twitterMbti-758223271", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("intellisr/autotrain-twitterMbti-758223271", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
hanxiong/distilbert-base-uncased-finetuned-cola
5700dc1436a9f1474c7394260c657e3397dabfe4
2022-04-20T02:10:02.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
hanxiong
null
hanxiong/distilbert-base-uncased-finetuned-cola
4
null
transformers
19,342
Entry not found
irmgnrtop/roberta-finetuned-error-detection
bd0f9fb4b836c001108786f5047b1e6728fb7cb3
2022-04-19T20:01:06.000Z
[ "pytorch", "tensorboard", "roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
irmgnrtop
null
irmgnrtop/roberta-finetuned-error-detection
4
null
transformers
19,343
Entry not found
GPL/dbpedia-entity-msmarco-distilbert-gpl
98a7c075f0ee63f12d63e3bfdf311858dec34603
2022-04-19T15:13:29.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
GPL
null
GPL/dbpedia-entity-msmarco-distilbert-gpl
4
null
sentence-transformers
19,344
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 140000 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `gpl.toolkit.loss.MarginDistillationLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 140000, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
GPL/quora-msmarco-distilbert-gpl
308a1cab477f4a04d3fdc28a8de50949e54ef784
2022-04-19T15:15:18.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
GPL
null
GPL/quora-msmarco-distilbert-gpl
4
null
sentence-transformers
19,345
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 140000 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `gpl.toolkit.loss.MarginDistillationLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 140000, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
GPL/nfcorpus-tsdae-msmarco-distilbert-gpl
c2ea2bd85b18f26e2e80ed697087e714df36a5f7
2022-04-19T15:25:07.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
GPL
null
GPL/nfcorpus-tsdae-msmarco-distilbert-gpl
4
null
sentence-transformers
19,346
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 140000 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `gpl.toolkit.loss.MarginDistillationLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 140000, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
GPL/scidocs-tsdae-msmarco-distilbert-gpl
026375e33eb4f149a94e8b5adcbb642e87eaaec9
2022-04-19T15:27:32.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
GPL
null
GPL/scidocs-tsdae-msmarco-distilbert-gpl
4
null
sentence-transformers
19,347
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 140000 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `gpl.toolkit.loss.MarginDistillationLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 140000, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
nielsr/segformer-trainer-test
92f73207233eea18d6c7a44dd3fbee88e86b7c52
2022-04-19T20:19:47.000Z
[ "pytorch", "tensorboard", "segformer", "transformers", "image-segmentation", "vision", "generated_from_trainer", "license:apache-2.0", "model-index" ]
image-segmentation
false
nielsr
null
nielsr/segformer-trainer-test
4
null
transformers
19,348
--- license: apache-2.0 tags: - image-segmentation - vision - generated_from_trainer widget: - src: https://segmentsai-prod.s3.eu-west-2.amazonaws.com/assets/admin-tobias/439f6843-80c5-47ce-9b17-0b2a1d54dbeb.jpg example_title: Brugge model-index: - name: segformer-trainer-test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # segformer-trainer-test This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the segments/sidewalk-semantic dataset. It achieves the following results on the evaluation set: - Loss: 1.3886 - Mean Iou: 0.1391 - Mean Accuracy: 0.1905 - Overall Accuracy: 0.7192 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6
GPL/trec-news-tsdae-msmarco-distilbert-margin-mse
09eda6d9fbe8657b207317645eaf97200815771c
2022-04-19T16:46:27.000Z
[ "pytorch", "distilbert", "feature-extraction", "transformers" ]
feature-extraction
false
GPL
null
GPL/trec-news-tsdae-msmarco-distilbert-margin-mse
4
null
transformers
19,349
Entry not found
GPL/trec-covid-tsdae-msmarco-distilbert-margin-mse
db6514c42b81e0baf9e4a5cab482db4d79caa1a6
2022-04-19T16:47:22.000Z
[ "pytorch", "distilbert", "feature-extraction", "transformers" ]
feature-extraction
false
GPL
null
GPL/trec-covid-tsdae-msmarco-distilbert-margin-mse
4
null
transformers
19,350
Entry not found
Intel/bert-base-uncased-finetuned-swag-int8-static
aba9433bbeb71e21ec4a2644abb776a262013f61
2022-06-10T02:42:12.000Z
[ "pytorch", "bert", "multiple-choice", "en", "dataset:swag", "transformers", "int8", "Intel® Neural Compressor", "PostTrainingStatic", "license:apache-2.0", "model-index" ]
multiple-choice
false
Intel
null
Intel/bert-base-uncased-finetuned-swag-int8-static
4
null
transformers
19,351
--- language: - en license: apache-2.0 tags: - multiple-choice - int8 - Intel® Neural Compressor - PostTrainingStatic datasets: - swag metrics: - accuracy model-index: - name: bert-base-uncased-finetuned-swag-int8-static results: - task: name: Multiple-choice type: multiple-choice dataset: name: Swag type: swag metrics: - name: Accuracy type: accuracy value: 0.7838148474693298 --- # INT8 bert-base-uncased-finetuned-swag ### Post-training static quantization This is an INT8 PyTorch model quantized with [Intel® Neural Compressor](https://github.com/intel/neural-compressor). The original fp32 model comes from the fine-tuned model [thyagosme/bert-base-uncased-finetuned-swag](https://huggingface.co/thyagosme/bert-base-uncased-finetuned-swag). The calibration dataloader is the train dataloader. The default calibration sampling size 100 isn't divisible exactly by batch size 8, so the real sampling size is 104. The linear modules **bert.encoder.layer.2.output.dense, bert.encoder.layer.5.intermediate.dense, bert.encoder.layer.9.output.dense, bert.encoder.layer.10.output.dense** fall back to fp32 to meet the 1% relative accuracy loss. ### Test result | |INT8|FP32| |---|:---:|:---:| | **Accuracy (eval-accuracy)** |0.7838|0.7915| | **Model size (MB)** |133|418| ### Load with Intel® Neural Compressor: ```python from neural_compressor.utils.load_huggingface import OptimizedModel int8_model = OptimizedModel.from_pretrained( 'Intel/bert-base-uncased-finetuned-swag-int8-static', ) ```
patrickvonplaten/data2vec-audio-base-960h-4-gram
82f08be70f49eaa7f360f6d0714f9c3509e61a0e
2022-05-24T11:09:21.000Z
[ "pytorch", "data2vec-audio", "automatic-speech-recognition", "en", "dataset:librispeech_asr", "arxiv:2202.03555", "transformers", "speech", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
patrickvonplaten
null
patrickvonplaten/data2vec-audio-base-960h-4-gram
4
null
transformers
19,352
--- language: en datasets: - librispeech_asr tags: - speech - hf-asr-leaderboard license: apache-2.0 widget: - example_title: Librispeech sample 1 src: https://cdn-media.huggingface.co/speech_samples/sample1.flac - example_title: Librispeech sample 2 src: https://cdn-media.huggingface.co/speech_samples/sample2.flac model-index: - name: data2vec-audio-base-960h results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: LibriSpeech (clean) type: librispeech_asr config: clean split: test args: language: en metrics: - name: Test WER type: wer value: 2.77 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: LibriSpeech (other) type: librispeech_asr config: other split: test args: language: en metrics: - name: Test WER type: wer value: 7.08 --- # Data2Vec-Audio-Base-960h [Facebook's Data2Vec](https://ai.facebook.com/research/data2vec-a-general-framework-for-self-supervised-learning-in-speech-vision-and-language/) The base model pretrained and fine-tuned on 960 hours of Librispeech on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. [Paper](https://arxiv.org/abs/2202.03555) Authors: Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli **Abstract** While the general idea of self-supervised learning is identical across modalities, the actual algorithms and objectives differ widely because they were developed with a single modality in mind. To get us closer to general self-supervised learning, we present data2vec, a framework that uses the same learning method for either speech, NLP or computer vision. The core idea is to predict latent representations of the full input data based on a masked view of the input in a self-distillation setup using a standard Transformer architecture. Instead of predicting modality-specific targets such as words, visual tokens or units of human speech which are local in nature, data2vec predicts contextualized latent representations that contain information from the entire input. Experiments on the major benchmarks of speech recognition, image classification, and natural language understanding demonstrate a new state of the art or competitive performance to predominant approaches. The original model can be found under https://github.com/pytorch/fairseq/tree/main/examples/data2vec . # Pre-Training method ![model image](https://raw.githubusercontent.com/patrickvonplaten/scientific_images/master/data2vec.png) For more information, please take a look at the [official paper](https://arxiv.org/abs/2202.03555). # Usage To transcribe audio files the model can be used as a standalone acoustic model as follows: ```python from transformers import Wav2Vec2Processor, Data2VecForCTC from datasets import load_dataset import torch # load model and processor processor = Wav2Vec2Processor.from_pretrained("facebook/data2vec-audio-base-960h") model = Data2VecForCTC.from_pretrained("facebook/data2vec-audio-base-960h") # load dummy dataset and read soundfiles ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation") # tokenize input_values = processor(ds[0]["audio"]["array"],, return_tensors="pt", padding="longest").input_values # Batch size 1 # retrieve logits logits = model(input_values).logits # take argmax and decode predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(predicted_ids) ``` ## Evaluation This code snippet shows how to evaluate **facebook/data2vec-audio-base-960h** on LibriSpeech's "clean" and "other" test data. ```python from transformers import Wav2Vec2Processor, Data2VecForCTC from datasets import load_dataset import torch from jiwer import wer # load model and processor processor = Wav2Vec2Processor.from_pretrained("facebook/data2vec-audio-base-960h").to("cuda") model = Data2VecForCTC.from_pretrained("facebook/data2vec-audio-base-960h") librispeech_eval = load_dataset("librispeech_asr", "clean", split="test") def map_to_pred(batch): input_values = processor(batch["audio"]["array"], return_tensors="pt", padding="longest").input_values with torch.no_grad(): logits = model(input_values.to("cuda")).logits predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(predicted_ids) batch["transcription"] = transcription return batch result = librispeech_eval.map(map_to_pred, batched=True, batch_size=1, remove_columns=["audio"]) print("WER:", wer(result["text"], result["transcription"])) ``` *Result (WER)*: | "clean" | "other" | |---|---| | 2.77 | 7.08 |
mwong/roberta-base-climate-evidence-related
316363dbe901a92c2e19a39a89f88d4f0ae17fc0
2022-06-24T03:34:04.000Z
[ "pytorch", "roberta", "text-classification", "en", "dataset:mwong/fever-evidence-related", "dataset:mwong/climate-evidence-related", "transformers", "text classification", "fact checking", "license:mit" ]
text-classification
false
mwong
null
mwong/roberta-base-climate-evidence-related
4
1
transformers
19,353
--- language: en license: mit tags: - text classification - fact checking datasets: - mwong/fever-evidence-related - mwong/climate-evidence-related widget: - text: "Earth’s changing climate is a critical issue and poses the risk of significant environmental, social and economic disruptions around the globe.</s></s>Because of fears of climate change and adverse effects of drilling explosions and oil spills in the Gulf of Mexico, legislation has been considered, and governmental regulations and orders have been issued, which, combined with the local economic and employment conditions caused by both, could materially adversely impact the oil and gas industries and the economic health of areas in which a significant number of our stores are located." example_title: "Evidence related to claim" metrics: f1 --- # ClimateRoberta ClimateRoberta is a classifier model that predicts if climate related evidence is related to query claim. The model achieved F1 score of 80.13% with test dataset "mwong/climate-evidence-related". Using pretrained roberta-base model, the classifier head is trained on Fever dataset and adapted to climate domain using ClimateFever dataset.
Jeevesh8/feather_berts_0
5aadd91f02fbfcf72850e05e830276ed6867e000
2022-04-20T13:11:48.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/feather_berts_0
4
null
transformers
19,354
Entry not found
Jeevesh8/feather_berts_1
18dfb7fbccbe74daeb79fb85fa733a978216888f
2022-04-20T13:13:34.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/feather_berts_1
4
null
transformers
19,355
Entry not found
Jeevesh8/feather_berts_2
0d7a8ce3b7b2f6c503cf2f95f4a2db126f08b5de
2022-04-20T13:13:57.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/feather_berts_2
4
null
transformers
19,356
Entry not found
Jeevesh8/feather_berts_3
bee63da864326930d7b54dd901807970563f1284
2022-04-20T13:14:23.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/feather_berts_3
4
null
transformers
19,357
Entry not found
Jeevesh8/feather_berts_4
647d7193902b7b1cf1419003355b2492672eb29c
2022-04-20T13:14:47.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/feather_berts_4
4
null
transformers
19,358
Entry not found
Jeevesh8/feather_berts_5
cb092e34a2757d68e9a5988cd7edcfa3845a9cb7
2022-04-20T13:15:12.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/feather_berts_5
4
null
transformers
19,359
Entry not found
Jeevesh8/feather_berts_6
2c61c43682042708a1594dc246ce81ffe982a7ea
2022-04-20T13:15:38.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/feather_berts_6
4
null
transformers
19,360
Entry not found
Jeevesh8/feather_berts_7
e5e717255fbedffae6f9e68da102ebc551343dcd
2022-04-20T13:16:03.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/feather_berts_7
4
null
transformers
19,361
Entry not found
Jeevesh8/feather_berts_8
39e7b694ed2a10ae89f9802eb0b0d71cf1d8a06c
2022-04-20T13:16:28.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/feather_berts_8
4
null
transformers
19,362
Entry not found
Jeevesh8/feather_berts_9
eb5465710b5050b04880d14e37d70e048cb749d4
2022-04-20T13:16:54.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/feather_berts_9
4
null
transformers
19,363
Entry not found
Jeevesh8/feather_berts_10
38b9d9d39d327c0a809635816a6a4cdccb672c24
2022-04-20T13:17:19.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/feather_berts_10
4
null
transformers
19,364
Entry not found
Jeevesh8/feather_berts_11
869d38d71e9a1437240d889e76b9efbff3406845
2022-04-20T13:17:44.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/feather_berts_11
4
null
transformers
19,365
Entry not found
Jeevesh8/feather_berts_12
09d235ef03582af82d0b30782bbddecfcbfd1d96
2022-04-20T13:18:09.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/feather_berts_12
4
null
transformers
19,366
Entry not found
Jeevesh8/feather_berts_13
8f72900b9c84fafd3f10b1473af59bdd26a16dd6
2022-04-20T13:18:34.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/feather_berts_13
4
null
transformers
19,367
Entry not found
Jeevesh8/feather_berts_14
adecbdb764d90a5ff0b88af390dde7e6713f4a61
2022-04-20T13:19:00.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/feather_berts_14
4
null
transformers
19,368
Entry not found
Jeevesh8/feather_berts_15
19cb407828e8275b34132ab151f1053c652799b4
2022-04-20T13:19:25.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/feather_berts_15
4
null
transformers
19,369
Entry not found
Jeevesh8/feather_berts_16
4005b4ca83120fff587adffd11f097b7c4ad3fb7
2022-04-20T13:19:50.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/feather_berts_16
4
null
transformers
19,370
Entry not found
Jeevesh8/feather_berts_17
659c977c709f0004371454023e406de432bacbc6
2022-04-20T13:20:15.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/feather_berts_17
4
null
transformers
19,371
Entry not found
Jeevesh8/feather_berts_18
2bd597915fa00be232f0cb6ff0fb33b8584bc46e
2022-04-20T13:20:41.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/feather_berts_18
4
null
transformers
19,372
Entry not found
Jeevesh8/feather_berts_21
e5860302af32921eca05a2d7e13c48f1fd98c22b
2022-04-20T13:21:58.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/feather_berts_21
4
null
transformers
19,373
Entry not found
Jeevesh8/feather_berts_22
9d6be3df9b89cb818d603484b10453a85cfed7f1
2022-04-20T13:22:23.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/feather_berts_22
4
null
transformers
19,374
Entry not found
Jeevesh8/feather_berts_23
2de9d163b3cf2f7ca1ccea91d5774e075e54c7b0
2022-04-20T13:22:49.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/feather_berts_23
4
null
transformers
19,375
Entry not found
Jeevesh8/feather_berts_24
63a2d58abfa0ec495533ec46b604622bc87047ca
2022-04-20T13:23:15.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/feather_berts_24
4
null
transformers
19,376
Entry not found
Jeevesh8/feather_berts_25
a7c9f20e5983376b1912c3e27fdd0d92bc730fc1
2022-04-20T13:23:41.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/feather_berts_25
4
null
transformers
19,377
Entry not found
Jeevesh8/feather_berts_26
d0efe1e6ca3d19e911f6d20c23f55ab8bb3620e0
2022-04-20T13:24:07.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/feather_berts_26
4
null
transformers
19,378
Entry not found
Jeevesh8/feather_berts_27
63b9057d703044188f9f2fe1387d4709309e9ed5
2022-04-20T13:24:33.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/feather_berts_27
4
null
transformers
19,379
Entry not found
Jeevesh8/feather_berts_29
46a14ceee12fded8faa8c1b98496e0002ab42efb
2022-04-20T13:25:26.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/feather_berts_29
4
null
transformers
19,380
Entry not found
Jeevesh8/feather_berts_30
db62c83484600bf1a8c9ea4564f3497181b6639f
2022-04-20T13:25:51.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/feather_berts_30
4
null
transformers
19,381
Entry not found
Jeevesh8/feather_berts_31
63f55192fbe42b9fdb4b7939c1feec7ffe5180c0
2022-04-20T13:26:16.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/feather_berts_31
4
null
transformers
19,382
Entry not found
Jeevesh8/feather_berts_32
bbdc3955dfd72cd07657cd2d2945d5b4b488ace4
2022-04-20T13:26:42.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/feather_berts_32
4
null
transformers
19,383
Entry not found
Jeevesh8/feather_berts_33
fd1c3c86b9fe6b559e81a8f289ebe87373c6e199
2022-04-20T13:27:08.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/feather_berts_33
4
null
transformers
19,384
Entry not found
Jeevesh8/feather_berts_34
d82104bb835981083d3192de1910964f2895633e
2022-04-20T13:27:34.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/feather_berts_34
4
null
transformers
19,385
Entry not found
Jeevesh8/feather_berts_35
dfc7503b2398cbcaed7fb6bc5284ea8fd6198fd9
2022-04-20T13:27:59.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/feather_berts_35
4
null
transformers
19,386
Entry not found
Jeevesh8/feather_berts_36
d8f65400b7de9c39d59055b03c9b5165326caab2
2022-04-20T13:28:25.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/feather_berts_36
4
null
transformers
19,387
Entry not found
Jeevesh8/feather_berts_37
d24f0e1fb26c372944b8ad1d5ef8c5a3cb734165
2022-04-20T13:28:50.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/feather_berts_37
4
null
transformers
19,388
Entry not found
Jeevesh8/feather_berts_38
6741e33f6aec5b8d74bed0c3064ad6e31f2268b1
2022-04-20T13:29:16.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/feather_berts_38
4
null
transformers
19,389
Entry not found
Jeevesh8/feather_berts_39
57c0bb4a8e73b8f9b9eef18b4f399e639949f198
2022-04-20T13:29:42.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/feather_berts_39
4
null
transformers
19,390
Entry not found
Jeevesh8/feather_berts_40
3b1150c55eb19d55bc0b3c64b47c00099c2b2510
2022-04-20T13:30:08.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/feather_berts_40
4
null
transformers
19,391
Entry not found
Jeevesh8/feather_berts_41
91d553b0603463f923c795a95cf0f6a702230a2d
2022-04-20T13:30:32.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/feather_berts_41
4
null
transformers
19,392
Entry not found
Jeevesh8/feather_berts_42
d0fbc3c87dec977a9218250c542e7225df1493f3
2022-04-20T13:30:58.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/feather_berts_42
4
null
transformers
19,393
Entry not found
Jeevesh8/feather_berts_43
e551dc9bb18261afd90c4c3213231dba8ab9e72f
2022-04-20T13:31:24.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/feather_berts_43
4
null
transformers
19,394
Entry not found
Jeevesh8/feather_berts_45
6552ec31ffc9626a2aeefcf75643f2007bfa62cd
2022-04-20T13:32:16.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/feather_berts_45
4
null
transformers
19,395
Entry not found
Jeevesh8/feather_berts_46
601d1cc8623516e0a31bbde28d5588a6698f86c6
2022-04-20T13:32:42.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/feather_berts_46
4
null
transformers
19,396
Entry not found
Jeevesh8/feather_berts_47
faa9f53f2d3999a82f77c710b442437dc06fc97d
2022-04-20T13:33:06.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/feather_berts_47
4
null
transformers
19,397
Entry not found
Jeevesh8/feather_berts_48
f675cd8bcda20d93a479db049e6aa0907e86b173
2022-04-20T13:33:32.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/feather_berts_48
4
null
transformers
19,398
Entry not found
Jeevesh8/feather_berts_49
ecc3900aaca3aebe2fee4116087870047e88c792
2022-04-20T13:33:58.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/feather_berts_49
4
null
transformers
19,399
Entry not found