modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
efederici/sentence-it5-small
c96933e53fe75a9cb17ad32203f0926847d8f077
2022-03-29T17:29:14.000Z
[ "pytorch", "t5", "it", "sentence-transformers", "feature-extraction", "sentence-similarity", "transformers" ]
sentence-similarity
false
efederici
null
efederici/sentence-it5-small
4
null
sentence-transformers
19,200
--- pipeline_tag: sentence-similarity language: - it tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # sentence-IT5-small This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 512 dimensional dense vector space and can be used for tasks like clustering or semantic search. It is a T5 ([IT5](https://huggingface.co/gsarti/it5-small)) small model trained for asymmetric semantic search. Query is a keyword, Paragraph is a short news article. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["Questo è un esempio di frase", "Questo è un ulteriore esempio"] model = SentenceTransformer('efederici/sentence-IT5-small') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ["Questo è un esempio di frase", "Questo è un ulteriore esempio"] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('efederici/sentence-IT5-small') model = AutoModel.from_pretrained('efederici/sentence-IT5-small') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': None, 'do_lower_case': False}) with Transformer model: T5EncoderModel (1): Pooling({'word_embedding_dimension': 512, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ```
scasutt/wav2vec2-large-xlsr-53_toy_train_data_augmented
389b4d7a23f33a7d1c8d6a031403ff95a4d71a0b
2022-03-28T12:29:16.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
scasutt
null
scasutt/wav2vec2-large-xlsr-53_toy_train_data_augmented
4
null
transformers
19,201
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-large-xlsr-53_toy_train_data_augmented results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-53_toy_train_data_augmented This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5016 - Wer: 0.4656 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.418 | 1.05 | 250 | 3.4171 | 1.0 | | 3.0886 | 2.1 | 500 | 3.4681 | 1.0 | | 2.9422 | 3.15 | 750 | 2.6151 | 1.0 | | 1.3195 | 4.2 | 1000 | 0.8789 | 0.7739 | | 0.9154 | 5.25 | 1250 | 0.6364 | 0.6518 | | 0.6519 | 6.3 | 1500 | 0.5682 | 0.5949 | | 0.5622 | 7.35 | 1750 | 0.5273 | 0.5625 | | 0.4965 | 8.4 | 2000 | 0.4891 | 0.5283 | | 0.4283 | 9.45 | 2250 | 0.5018 | 0.5260 | | 0.4019 | 10.5 | 2500 | 0.5016 | 0.5006 | | 0.3585 | 11.55 | 2750 | 0.5047 | 0.5003 | | 0.3275 | 12.6 | 3000 | 0.5148 | 0.4866 | | 0.3427 | 13.65 | 3250 | 0.5035 | 0.4786 | | 0.3229 | 14.7 | 3500 | 0.4855 | 0.4768 | | 0.3332 | 15.75 | 3750 | 0.5040 | 0.4769 | | 0.2861 | 16.81 | 4000 | 0.5138 | 0.4669 | | 0.3029 | 17.86 | 4250 | 0.5133 | 0.4670 | | 0.2633 | 18.91 | 4500 | 0.5063 | 0.4637 | | 0.2621 | 19.96 | 4750 | 0.5016 | 0.4656 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu102 - Datasets 2.0.0 - Tokenizers 0.11.6
istassiy/ysda_2022_ml2_hw3_distilbert_base_uncased
16e63922f0f42affdb6964ac7ee0e5e5285b38b2
2022-03-29T02:00:27.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
istassiy
null
istassiy/ysda_2022_ml2_hw3_distilbert_base_uncased
4
null
transformers
19,202
Entry not found
robvanderg/Sem-RemmmBERT
3aaf8a8348c7d0cb549fc590443bfb169a226339
2022-03-28T11:29:41.000Z
[ "pytorch", "rembert", "feature-extraction", "multilingual", "dataset:SemEval 2022", "transformers", "STILT", "retraining", "multi-task learning" ]
feature-extraction
false
robvanderg
null
robvanderg/Sem-RemmmBERT
4
null
transformers
19,203
--- language: - multilingual tags: - STILT - retraining - multi-task learning datasets: - SemEval 2022 --- ## Sem-RemmmBERT This is the SemEval MaChAmp Multitask Multilingual BERT model. This model is retrained from remBERT (https://huggingface.co/google/rembertased). The retraining is done based on all SemEval 2022 tasks that are text based, and have annotation on the word, sentence or paragraph level. The retraining is done with MaChAmp (https://machamp-nlp.github.io/), a toolkit focusing on multi-task learning for NLP. More information can be found in the paper (which should be released when the SemEval proceedings are online).
nqcccccc/phobert-uit-absa-qab
1ccb85fc6f052287dc2a180cb39258e4725347e9
2022-04-01T12:45:45.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
nqcccccc
null
nqcccccc/phobert-uit-absa-qab
4
null
transformers
19,204
Entry not found
DrishtiSharma/xls-r-es-test-lm-finetuned-sentiment-mesd
56dcce7c4a8fb9d3cedd3da2d49cbdbb80f2b911
2022-03-28T19:03:37.000Z
[ "pytorch", "tensorboard", "wav2vec2", "audio-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
audio-classification
false
DrishtiSharma
null
DrishtiSharma/xls-r-es-test-lm-finetuned-sentiment-mesd
4
null
transformers
19,205
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: xls-r-es-test-lm-finetuned-sentiment-mesd results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xls-r-es-test-lm-finetuned-sentiment-mesd This model is a fine-tuned version of [glob-asr/xls-r-es-test-lm](https://huggingface.co/glob-asr/xls-r-es-test-lm) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7851 - Accuracy: 0.2385 ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.25e-05 - train_batch_size: 64 - eval_batch_size: 40 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.86 | 3 | 1.7876 | 0.1923 | | 1.9709 | 1.86 | 6 | 1.7869 | 0.2 | | 1.9709 | 2.86 | 9 | 1.7859 | 0.2308 | | 2.146 | 3.86 | 12 | 1.7851 | 0.2385 | | 1.9622 | 4.86 | 15 | 1.7842 | 0.1923 | | 1.9622 | 5.86 | 18 | 1.7834 | 0.1769 | | 2.137 | 6.86 | 21 | 1.7823 | 0.1923 | | 2.137 | 7.86 | 24 | 1.7812 | 0.1923 | | 2.1297 | 8.86 | 27 | 1.7800 | 0.1846 | | 1.9502 | 9.86 | 30 | 1.7787 | 0.1846 | | 1.9502 | 10.86 | 33 | 1.7772 | 0.1846 | | 2.1234 | 11.86 | 36 | 1.7760 | 0.1846 | | 2.1234 | 12.86 | 39 | 1.7748 | 0.1846 | | 2.1186 | 13.86 | 42 | 1.7736 | 0.1846 | | 1.9401 | 14.86 | 45 | 1.7725 | 0.1846 | | 1.9401 | 15.86 | 48 | 1.7715 | 0.1923 | | 2.112 | 16.86 | 51 | 1.7706 | 0.1923 | | 2.112 | 17.86 | 54 | 1.7701 | 0.1923 | | 2.1094 | 18.86 | 57 | 1.7697 | 0.2 | | 1.934 | 19.86 | 60 | 1.7696 | 0.2 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
Finnish-NLP/wav2vec2-xlsr-300m-finnish-lm
cadc72688129a1a16f33d0ae70da8d2b5855f640
2022-05-26T12:57:16.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "fi", "dataset:mozilla-foundation/common_voice_7_0", "arxiv:2111.09296", "transformers", "finnish", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Finnish-NLP
null
Finnish-NLP/wav2vec2-xlsr-300m-finnish-lm
4
null
transformers
19,206
--- license: apache-2.0 language: fi metrics: - wer - cer tags: - automatic-speech-recognition - fi - finnish - generated_from_trainer - hf-asr-leaderboard - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: wav2vec2-xlsr-300m-finnish-lm results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: fi metrics: - name: Test WER type: wer value: 8.16 - name: Test CER type: cer value: 1.97 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: FLEURS ASR type: google/fleurs args: fi_fi metrics: - name: Test WER type: wer value: 17.72 - name: Test CER type: cer value: 6.78 --- # Wav2vec2-xls-r-300m for Finnish ASR This acoustic model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) for Finnish ASR. The model has been fine-tuned with 275.6 hours of Finnish transcribed speech data. Wav2Vec2 XLS-R was introduced in [this paper](https://arxiv.org/abs/2111.09296) and first released at [this page](https://github.com/pytorch/fairseq/tree/main/examples/wav2vec#wav2vec-20). This repository also includes Finnish KenLM language model used in the decoding phase with the acoustic model. **Note**: this model is exactly the same as the [aapot/wav2vec2-xlsr-300m-finnish-lm](https://huggingface.co/aapot/wav2vec2-xlsr-300m-finnish-lm) model so that model has just been copied/moved to this `Finnish-NLP` Hugging Face organization. ## Model description Wav2Vec2 XLS-R is Facebook AI's large-scale multilingual pretrained model for speech. It is pretrained on 436k hours of unlabeled speech, including VoxPopuli, MLS, CommonVoice, BABEL, and VoxLingua107. It uses the wav2vec 2.0 objective, in 128 languages. You can read more about the pretrained model from [this blog](https://ai.facebook.com/blog/xls-r-self-supervised-speech-processing-for-128-languages) and [this paper](https://arxiv.org/abs/2111.09296). This model is fine-tuned version of the pretrained model (300 million parameter variant) for Finnish ASR. ## Intended uses & limitations You can use this model for Finnish ASR (speech-to-text) task. ### How to use Check the [run-finnish-asr-models.ipynb](https://huggingface.co/Finnish-NLP/wav2vec2-xlsr-300m-finnish-lm/blob/main/run-finnish-asr-models.ipynb) notebook in this repository for an detailed example on how to use this model. ### Limitations and bias This model was fine-tuned with audio samples which maximum length was 20 seconds so this model most likely works the best for quite short audios of similar length. However, you can try this model with a lot longer audios too and see how it works. If you encounter out of memory errors with very long audio files you can use the audio chunking method introduced in [this blog post](https://huggingface.co/blog/asr-chunking). A vast majority of the data used for fine-tuning was from the Finnish Parliament dataset so this model may not generalize so well to very different domains like common daily spoken Finnish with dialects etc. In addition, audios of the datasets tend to be adult male dominated so this model may not work as well for speeches of children and women, for example. The Finnish KenLM language model used in the decoding phase has been trained with text data from the audio transcriptions and from a subset of Finnish Wikipedia. Thus, the decoder's language model may not generalize to very different language, for example to spoken daily language with dialects (because especially the Wikipedia contains mostly formal Finnish language). It may be beneficial to train your own KenLM language model for your domain language and use that in the decoding. ## Training data This model was fine-tuned with 275.6 hours of Finnish transcribed speech data from following datasets: | Dataset | Hours | % of total hours | |:------------------------------------------------------------------------------------------------------------------------------ |:--------:|:----------------:| | [Common Voice 7.0 Finnish train + evaluation + other splits](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0) | 9.70 h | 3.52 % | | [Finnish parliament session 2](https://b2share.eudat.eu/records/4df422d631544ce682d6af1d4714b2d4) | 0.24 h | 0.09 % | | [VoxPopuli Finnish](https://github.com/facebookresearch/voxpopuli) | 21.97 h | 7.97 % | | [CSS10 Finnish](https://github.com/kyubyong/css10) | 10.32 h | 3.74 % | | [Aalto Finnish Parliament ASR Corpus](http://urn.fi/urn:nbn:fi:lb-2021051903) | 228.00 h | 82.73 % | | [Finnish Broadcast Corpus](http://urn.fi/urn:nbn:fi:lb-2016042502) | 5.37 h | 1.95 % | Datasets were filtered to include maximum length of 20 seconds long audio samples. ## Training procedure This model was trained during [Robust Speech Challenge Event](https://discuss.huggingface.co/t/open-to-the-community-robust-speech-recognition-challenge/13614) organized by Hugging Face. Training was done on a Tesla V100 GPU, sponsored by OVHcloud. Training script was provided by Hugging Face and it is available [here](https://github.com/huggingface/transformers/blob/main/examples/research_projects/robust-speech-event/run_speech_recognition_ctc_bnb.py). We only modified its data loading for our custom datasets. For the KenLM language model training, we followed the [blog post tutorial](https://huggingface.co/blog/wav2vec2-with-ngram) provided by Hugging Face. Training data for the 5-gram KenLM were text transcriptions of the audio training data and 100k random samples of cleaned [Finnish Wikipedia](https://huggingface.co/datasets/wikipedia) (August 2021) dataset. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-04 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: [8-bit Adam](https://github.com/facebookresearch/bitsandbytes) with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP The pretrained `facebook/wav2vec2-xls-r-300m` model was initialized with following hyperparameters: - attention_dropout: 0.094 - hidden_dropout: 0.047 - feat_proj_dropout: 0.04 - mask_time_prob: 0.082 - layerdrop: 0.041 - activation_dropout: 0.055 - ctc_loss_reduction: "mean" ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.973 | 0.17 | 500 | 0.5750 | 0.6844 | | 0.713 | 0.34 | 1000 | 0.3356 | 0.4518 | | 0.6563 | 0.5 | 1500 | 0.3007 | 0.4039 | | 0.642 | 0.67 | 2000 | 0.2619 | 0.3674 | | 0.6203 | 0.84 | 2500 | 0.2488 | 0.3558 | | 0.6016 | 1.01 | 3000 | 0.2795 | 0.3835 | | 0.5423 | 1.17 | 3500 | 0.2652 | 0.3310 | | 0.5639 | 1.34 | 4000 | 0.2479 | 0.3462 | | 0.586 | 1.51 | 4500 | 0.2409 | 0.3295 | | 0.5169 | 1.68 | 5000 | 0.2728 | 0.3352 | | 0.5176 | 1.84 | 5500 | 0.2254 | 0.3149 | | 0.4983 | 2.01 | 6000 | 0.2169 | 0.3009 | | 0.4982 | 2.18 | 6500 | 0.2215 | 0.3079 | | 0.4898 | 2.35 | 7000 | 0.2174 | 0.3023 | | 0.4922 | 2.51 | 7500 | 0.2217 | 0.3081 | | 0.5025 | 2.68 | 8000 | 0.2002 | 0.2710 | | 0.4745 | 2.85 | 8500 | 0.1935 | 0.2783 | | 0.4377 | 3.02 | 9000 | 0.1859 | 0.2742 | | 0.4511 | 3.18 | 9500 | 0.2038 | 0.2786 | | 0.4411 | 3.35 | 10000 | 0.1863 | 0.2651 | | 0.4501 | 3.52 | 10500 | 0.1948 | 0.2605 | | 0.4557 | 3.69 | 11000 | 0.1872 | 0.2695 | | 0.4493 | 3.85 | 11500 | 0.1888 | 0.2632 | | 0.4047 | 4.02 | 12000 | 0.1818 | 0.2559 | | 0.4319 | 4.19 | 12500 | 0.1896 | 0.2648 | | 0.4162 | 4.36 | 13000 | 0.1953 | 0.2595 | | 0.4046 | 4.52 | 13500 | 0.1864 | 0.2606 | | 0.4195 | 4.69 | 14000 | 0.1843 | 0.2467 | | 0.4146 | 4.86 | 14500 | 0.1686 | 0.2450 | | 0.378 | 5.03 | 15000 | 0.1731 | 0.2401 | | 0.3792 | 5.19 | 15500 | 0.1676 | 0.2325 | | 0.3855 | 5.36 | 16000 | 0.1740 | 0.2326 | | 0.4029 | 5.53 | 16500 | 0.1674 | 0.2345 | | 0.386 | 5.7 | 17000 | 0.1735 | 0.2280 | | 0.3811 | 5.86 | 17500 | 0.1692 | 0.2258 | | 0.3607 | 6.03 | 18000 | 0.1797 | 0.2279 | | 0.3604 | 6.2 | 18500 | 0.1651 | 0.2206 | | 0.3362 | 6.37 | 19000 | 0.1627 | 0.2199 | | 0.3611 | 6.53 | 19500 | 0.1652 | 0.2172 | | 0.3671 | 6.7 | 20000 | 0.1564 | 0.2140 | | 0.3769 | 6.87 | 20500 | 0.1525 | 0.2101 | | 0.3539 | 7.04 | 21000 | 0.1639 | 0.2096 | | 0.3225 | 7.21 | 21500 | 0.1611 | 0.2087 | | 0.3323 | 7.37 | 22000 | 0.1633 | 0.2008 | | 0.3327 | 7.54 | 22500 | 0.1692 | 0.1975 | | 0.3456 | 7.71 | 23000 | 0.1555 | 0.1991 | | 0.3058 | 7.88 | 23500 | 0.1590 | 0.1959 | | 0.3034 | 8.04 | 24000 | 0.1531 | 0.1973 | | 0.2925 | 8.21 | 24500 | 0.1583 | 0.1978 | | 0.2967 | 8.38 | 25000 | 0.1546 | 0.1906 | | 0.2974 | 8.55 | 25500 | 0.1540 | 0.1869 | | 0.3131 | 8.71 | 26000 | 0.1534 | 0.1850 | | 0.3306 | 8.88 | 26500 | 0.1482 | 0.1844 | | 0.2842 | 9.05 | 27000 | 0.1490 | 0.1854 | | 0.2879 | 9.22 | 27500 | 0.1463 | 0.1799 | | 0.27 | 9.38 | 28000 | 0.1454 | 0.1798 | | 0.2874 | 9.55 | 28500 | 0.1504 | 0.1787 | | 0.2757 | 9.72 | 29000 | 0.1512 | 0.1784 | | 0.3017 | 9.89 | 29500 | 0.1484 | 0.1800 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0 ## Evaluation results Evaluation was done with the [Common Voice 7.0 Finnish test split](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0), [Common Voice 9.0 Finnish test split](https://huggingface.co/datasets/mozilla-foundation/common_voice_9_0) and with the [FLEURS ASR Finnish test split](https://huggingface.co/datasets/google/fleurs). This model's training data includes the training splits of Common Voice 7.0 but our newer `Finnish-NLP/wav2vec2-base-fi-voxpopuli-v2-finetuned` and `Finnish-NLP/wav2vec2-large-uralic-voxpopuli-v2-finnish` models include the Common Voice 9.0 so we ran tests for both Common Voice versions. Note: Common Voice doesn't seem to fully preserve the test split as fixed between the dataset versions so it is possible that some of the training examples of Common Voice 9.0 are in the test split of the Common Voice 7.0 and vice versa. Thus, Common Voice test result comparisons are not fully accurate between the models trained with different Common Voice versions but the comparison should still be meaningful enough. ### Common Voice 7.0 testing To evaluate this model, run the `eval.py` script in this repository: ```bash python3 eval.py --model_id Finnish-NLP/wav2vec2-xlsr-300m-finnish-lm --dataset mozilla-foundation/common_voice_7_0 --config fi --split test ``` This model (the third row of the table) achieves the following WER (Word Error Rate) and CER (Character Error Rate) results compared to our other models and their parameter counts: | | Model parameters | WER (with LM) | WER (without LM) | CER (with LM) | CER (without LM) | |-------------------------------------------------------|------------------|---------------|------------------|---------------|------------------| |Finnish-NLP/wav2vec2-base-fi-voxpopuli-v2-finetuned | 95 million |5.85 |13.52 |1.35 |2.44 | |Finnish-NLP/wav2vec2-large-uralic-voxpopuli-v2-finnish | 300 million |4.13 |**9.66** |0.90 |1.66 | |Finnish-NLP/wav2vec2-xlsr-300m-finnish-lm | 300 million |8.16 |17.92 |1.97 |3.36 | |Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm | 1000 million |5.65 |13.11 |1.20 |2.23 | |Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm-v2 | 1000 million |**4.09** |9.73 |**0.88** |**1.65** | ### Common Voice 9.0 testing To evaluate this model, run the `eval.py` script in this repository: ```bash python3 eval.py --model_id Finnish-NLP/wav2vec2-xlsr-300m-finnish-lm --dataset mozilla-foundation/common_voice_9_0 --config fi --split test ``` This model (the third row of the table) achieves the following WER (Word Error Rate) and CER (Character Error Rate) results compared to our other models and their parameter counts: | | Model parameters | WER (with LM) | WER (without LM) | CER (with LM) | CER (without LM) | |-------------------------------------------------------|------------------|---------------|------------------|---------------|------------------| |Finnish-NLP/wav2vec2-base-fi-voxpopuli-v2-finetuned | 95 million |5.93 |14.08 |1.40 |2.59 | |Finnish-NLP/wav2vec2-large-uralic-voxpopuli-v2-finnish | 300 million |4.13 |9.83 |0.92 |1.71 | |Finnish-NLP/wav2vec2-xlsr-300m-finnish-lm | 300 million |7.42 |16.45 |1.79 |3.07 | |Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm | 1000 million |5.35 |13.00 |1.14 |2.20 | |Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm-v2 | 1000 million |**3.72** |**8.96** |**0.80** |**1.52** | ### FLEURS ASR testing To evaluate this model, run the `eval.py` script in this repository: ```bash python3 eval.py --model_id Finnish-NLP/wav2vec2-xlsr-300m-finnish-lm --dataset google/fleurs --config fi_fi --split test ``` This model (the third row of the table) achieves the following WER (Word Error Rate) and CER (Character Error Rate) results compared to our other models and their parameter counts: | | Model parameters | WER (with LM) | WER (without LM) | CER (with LM) | CER (without LM) | |-------------------------------------------------------|------------------|---------------|------------------|---------------|------------------| |Finnish-NLP/wav2vec2-base-fi-voxpopuli-v2-finetuned | 95 million |13.99 |17.16 |6.07 |6.61 | |Finnish-NLP/wav2vec2-large-uralic-voxpopuli-v2-finnish | 300 million |12.44 |**14.63** |5.77 |6.22 | |Finnish-NLP/wav2vec2-xlsr-300m-finnish-lm | 300 million |17.72 |23.30 |6.78 |7.67 | |Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm | 1000 million |20.34 |16.67 |6.97 |6.35 | |Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm-v2 | 1000 million |**12.11** |14.89 |**5.65** |**6.06** | ## Team Members - Aapo Tanskanen, [Hugging Face profile](https://huggingface.co/aapot), [LinkedIn profile](https://www.linkedin.com/in/aapotanskanen/) - Rasmus Toivanen, [Hugging Face profile](https://huggingface.co/RASMUS), [LinkedIn profile](https://www.linkedin.com/in/rasmustoivanen/) Feel free to contact us for more details 🤗
21iridescent/RoBERTa-base-finetuned-squad2-lwt
be9067a88599d1011d3d6b7e800857b678691069
2022-04-06T10:42:07.000Z
[ "pytorch", "tensorboard", "roberta", "question-answering", "dataset:squad_v2", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
21iridescent
null
21iridescent/RoBERTa-base-finetuned-squad2-lwt
4
1
transformers
19,207
--- --license: mit tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: roberta-base-finetuned-squad2-lwt --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> ## Model description #### Finetuned on SQUAD2.0 Dataset #### F1: 83.738696142672 Trained on single V100 GPU Everyone is welcome to use~ Hope you have a nice day ## Performance - HasAns_exact': 77.1255060728745, 'HasAns_f1': 83.87812741260885, 'HasAns_total': 5928, - 'NoAns_exact': 83.59966358284272, 'NoAns_f1': 83.59966358284272, 'NoAns_total': 5945, - 'best_exact': 80.36721974227238, 'best_exact_thresh': 0.0, - 'best_f1': 83.7386961426719, 'best_f1_thresh': 0.0, - 'exact': 80.36721974227238, - 'f1': 83.738696142672, - 'total': 11873 # roberta-base-finetuned-squad2-lwt This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad_v2 dataset. It achieves the following results on the evaluation set: - Loss: 0.9441 More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.871 | 1.0 | 8239 | 0.8156 | | 0.6787 | 2.0 | 16478 | 0.8494 | | 0.4867 | 3.0 | 24717 | 0.9441 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
GioReg/ita1
640cf098131d963291227d14dfffed4b750b1191
2022-03-30T14:42:06.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
GioReg
null
GioReg/ita1
4
null
transformers
19,208
--- tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: ita1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ita1 This model is a fine-tuned version of [m-polignano-uniba/bert_uncased_L-12_H-768_A-12_italian_alb3rt0](https://huggingface.co/m-polignano-uniba/bert_uncased_L-12_H-768_A-12_italian_alb3rt0) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5892 - Accuracy: 0.776 - F1: 0.5912 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
chnaaam/brokorli_sm
ad718a17ce04fa82870a3615670469a44f832c04
2022-03-29T12:53:01.000Z
[ "pytorch", "electra", "text-classification", "transformers" ]
text-classification
false
chnaaam
null
chnaaam/brokorli_sm
4
null
transformers
19,209
Entry not found
milmor/t5-small-spanish-nahuatl
331abcfa17e3128f76f83e746fdfc4d34f0d4f99
2022-04-10T18:20:50.000Z
[ "pytorch", "t5", "text2text-generation", "es", "nah", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
milmor
null
milmor/t5-small-spanish-nahuatl
4
2
transformers
19,210
--- license: apache-2.0 language: - es - nah tags: - translation widget: - text: "translate Spanish to Nahuatl: muchas flores son blancas" --- # t5-small-spanish-nahuatl ## Model description This model is a T5 Transformer ([t5-small](https://huggingface.co/t5-small)) fine-tuned on 29,007 spanish and nahuatl sentences using 12,890 samples collected from the web and 16,117 samples from the Axolotl dataset. The dataset is normalized using 'sep' normalization from [py-elotl](https://github.com/ElotlMX/py-elotl). ## Usage ```python from transformers import AutoModelForSeq2SeqLM from transformers import AutoTokenizer model = AutoModelForSeq2SeqLM.from_pretrained('milmor/t5-small-spanish-nahuatl') tokenizer = AutoTokenizer.from_pretrained('milmor/t5-small-spanish-nahuatl') model.eval() sentence = 'muchas flores son blancas' input_ids = tokenizer('translate Spanish to Nahuatl: ' + sentence, return_tensors='pt').input_ids outputs = model.generate(input_ids) # outputs = miak xochitl istak outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0] ``` ## Evaluation results The model is evaluated on 400 validation sentences. - Validation loss: 1.36 _Note: Since the Axolotl corpus contains multiple misalignments, the real Validation loss is slightly better. These misalignments also introduce noise into the training._ ## References - Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. 2019. Exploring the limits of transfer learning with a unified Text-to-Text transformer. - Ximena Gutierrez-Vasques, Gerardo Sierra, and Hernandez Isaac. 2016. Axolotl: a web accessible parallel corpus for Spanish-Nahuatl. In International Conference on Language Resources and Evaluation (LREC). > Created by [Emilio Alejandro Morales](https://huggingface.co/milmor).
princeton-nlp/CoFi-QNLI-s60
1dcc74c72e6675b90508176b8c2e2597088d9b18
2022-05-01T01:19:53.000Z
[ "pytorch", "bert", "text-classification", "arxiv:2204.00408", "transformers" ]
text-classification
false
princeton-nlp
null
princeton-nlp/CoFi-QNLI-s60
4
null
transformers
19,211
This is a model checkpoint for "[Structured Pruning Learns Compact and Accurate Models](https://arxiv.org/pdf/2204.00408.pdf)". The model is pruned from `bert-base-uncased` to a 60% sparsity on dataset QNLI. Please go to [our repository](https://github.com/princeton-nlp/CoFiPruning) for more details on how to use the model for inference. Note that you would have to use the model class specified in our repository to load the model.
cammiemw/bert-marco-hdct
504a2cf0a1b7448b157983bc3b556328ea62c71e
2022-03-30T01:21:38.000Z
[ "pytorch", "bert", "text-classification", "transformers", "license:cc-by-nc-4.0" ]
text-classification
false
cammiemw
null
cammiemw/bert-marco-hdct
4
null
transformers
19,212
--- license: cc-by-nc-4.0 ---
Fredvv/distilbert-base-uncased-finetuned-imdb
72fb222ac7204f6070dd860d1ae23de13ce56702
2022-03-30T02:23:23.000Z
[ "pytorch", "tensorboard", "distilbert", "fill-mask", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
Fredvv
null
Fredvv/distilbert-base-uncased-finetuned-imdb
4
null
transformers
19,213
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.4454 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.6763 | 1.0 | 313 | 2.4484 | | 2.5402 | 2.0 | 626 | 2.4312 | | 2.5194 | 3.0 | 939 | 2.3894 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.2 - Datasets 2.0.0 - Tokenizers 0.11.6
hoangbinhmta99/wav2vec-NCKH-2022
f4da2b45c8e0e6e5791b5294da6b86ec02601770
2022-03-31T00:28:52.000Z
[ "pytorch", "wav2vec2", "feature-extraction", "vi", "dataset:vivos", "dataset:common_voice", "transformers", "audio", "speech", "Transformer", "license:cc-by-nc-4.0", "automatic-speech-recognition", "model-index" ]
automatic-speech-recognition
false
hoangbinhmta99
null
hoangbinhmta99/wav2vec-NCKH-2022
4
null
transformers
19,214
--- language: vi datasets: - vivos - common_voice metrics: - wer pipeline_tag: automatic-speech-recognition tags: - audio - speech - Transformer license: cc-by-nc-4.0 model-index: - name: Wav2vec2 NCKH Vietnamese 2022 results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice vi type: common_voice args: vi metrics: - name: Test WER type: wer value: No --- Convert from model .pt to transformer Link: https://huggingface.co/tommy19970714/wav2vec2-base-960h Bash: ```bash pip install transformers[sentencepiece] pip install fairseq -U git clone https://github.com/huggingface/transformers.git cp transformers/src/transformers/models/wav2vec2/convert_wav2vec2_original_pytorch_checkpoint_to_pytorch.py . wget https://dl.fbaipublicfiles.com/fairseq/wav2vec/wav2vec_small.pt -O ./wav2vec_small.pt mkdir dict wget https://dl.fbaipublicfiles.com/fairseq/wav2vec/dict.ltr.txt mkdir outputs python convert_wav2vec2_original_pytorch_checkpoint_to_pytorch.py --pytorch_dump_folder_path ./outputs --checkpoint_path ./finetuned/wav2vec_small.pt --dict_path ./dict/dict.ltr.txt --not_finetuned ``` # install and upload model ``` curl -s https://packagecloud.io/install/repositories/github/git-lfs/script.deb.sh | sudo bash git lfs install sudo apt-get install git-lfs git lfs install git clone https://huggingface.co/hoangbinhmta99/wav2vec-demo ls cd wav2vec-demo/ git status git add . git commit -m "First model version" git config --global user.email [yourname] git config --global user.name [yourpass] git commit -m "First model version" git push ```
aggtamv/Wav2vec2Askisi
c6b2bb6212061dcefd341b489511e729d90f19ed
2022-06-14T19:11:41.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
aggtamv
null
aggtamv/Wav2vec2Askisi
4
null
transformers
19,215
IIC/roberta-base-bne-bioasq
25ae3339b1f941f42c7060cbed029ada6748185f
2022-04-02T15:04:37.000Z
[ "pytorch", "roberta", "question-answering", "es", "dataset:IIC/bioasq22_es", "arxiv:2107.07253", "transformers", "model-index", "autotrain_compatible" ]
question-answering
false
IIC
null
IIC/roberta-base-bne-bioasq
4
null
transformers
19,216
--- language: - es tags: - question-answering # Example: audio datasets: - IIC/bioasq22_es metrics: - f1 # Optional. Add this if you want to encode your eval results in a structured way. model-index: - name: roberta-base-bne-bioasq results: - task: type: question-answering # Required. Example: automatic-speech-recognition name: question-answering # Optional. Example: Speech Recognition dataset: type: SQAC # Required. Example: common_voice. Use dataset id from https://hf.co/datasets name: IIC/bioasq22_es # Required. Example: Common Voice zh-CN metrics: - type: f1 value: 18.599535404584742 name: f1 --- This model was trained on the [bioasq22_es](https://huggingface.co/datasets/IIC/bioasq22_es) dataset, provided by [IIC](https://www.iic.uam.es/). It is an automatically translated version of the [bioasq](https://huggingface.co/datasets/kroshan/BioASQ) dataset. As for the model, it is a fine-tuned version of the Spanish version of [MarIA-Roberta](https://huggingface.co/PlanTL-GOB-ES/roberta-base-bne) trained by [BSC](https://www.bsc.es/). For training the model, we followed the recommendations of the own authors in [their paper](https://arxiv.org/abs/2107.07253), performing a full grid search over the hyperparameter space provided in the paper, and selected the best model based on eval\_loss. You can use the model like this: ```python from transformers import BertTokenizer, BertForQuestionAnswering import torch tokenizer = BertTokenizer.from_pretrained("IIC/roberta-base-bne-bioasq") model = BertForQuestionAnswering.from_pretrained("IIC/roberta-base-bne-bioasq") question, text = "Quién es el padre de Luke Skywalker?", "En la famosa película, Darth Veider le dice a Luke Skywalker aquella frase que todos recordamos: yo soy tu padre." inputs = tokenizer(question, text, return_tensors="pt") start_positions = torch.tensor([1]) end_positions = torch.tensor([3]) outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions) loss = outputs.loss start_scores = outputs.start_logits end_scores = outputs.end_logits ``` ### Contributions Thanks to [@avacaondata](https://huggingface.co/avacaondata), [@alborotis](https://huggingface.co/alborotis), [@albarji](https://huggingface.co/albarji), [@Dabs](https://huggingface.co/Dabs), [@GuillemGSubies](https://huggingface.co/GuillemGSubies) for adding this model.
Cheatham/xlm-roberta-large-finetuned-d1-002
f33379e29c388c8456ae4ffa9fa4d64ad3c21d60
2022-03-30T14:45:51.000Z
[ "pytorch", "xlm-roberta", "text-classification", "transformers" ]
text-classification
false
Cheatham
null
Cheatham/xlm-roberta-large-finetuned-d1-002
4
null
transformers
19,217
Entry not found
negfir/distilbert-base-uncased-finetuned-stsb
db4387bbdea321837685620d028bf87be9bbd850
2022-03-30T18:33:41.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
negfir
null
negfir/distilbert-base-uncased-finetuned-stsb
4
null
transformers
19,218
Entry not found
Cheatham/xlm-roberta-large-finetuned-d12-002
66419009fcf4fc33111f3cdb002fda66faaa1f77
2022-03-30T16:00:33.000Z
[ "pytorch", "xlm-roberta", "text-classification", "transformers" ]
text-classification
false
Cheatham
null
Cheatham/xlm-roberta-large-finetuned-d12-002
4
null
transformers
19,219
Entry not found
Cheatham/xlm-roberta-large-finetuned-d12-003
59a14f84e996e7348605de82a660322441911978
2022-03-30T17:47:45.000Z
[ "pytorch", "xlm-roberta", "text-classification", "transformers" ]
text-classification
false
Cheatham
null
Cheatham/xlm-roberta-large-finetuned-d12-003
4
null
transformers
19,220
Entry not found
sadia-afrin-purba/fake-news-classifier
1347cb0273b66324094df3fb04840705cdaadf5c
2022-04-02T10:10:09.000Z
[ "pytorch", "bert", "text-classification", "transformers", "license:mit" ]
text-classification
false
sadia-afrin-purba
null
sadia-afrin-purba/fake-news-classifier
4
null
transformers
19,221
--- license: mit ---
Cheatham/xlm-roberta-large-finetuned-d12-004
da06a9b9f646559dc002b612ee935902eb94681a
2022-03-30T18:44:24.000Z
[ "pytorch", "xlm-roberta", "text-classification", "transformers" ]
text-classification
false
Cheatham
null
Cheatham/xlm-roberta-large-finetuned-d12-004
4
null
transformers
19,222
Entry not found
midas/roberta-large-inspec-finetuned-crf
3d2540e8ac97c01560adf08e46e39c149ef8cc0c
2022-04-03T01:27:33.000Z
[ "pytorch", "roberta", "token-classification", "transformers", "license:afl-3.0", "autotrain_compatible" ]
token-classification
false
midas
null
midas/roberta-large-inspec-finetuned-crf
4
null
transformers
19,223
--- license: afl-3.0 ---
DrishtiSharma/poem-gen-spanish-t5-small-test
1cadb22102292d184273d694ad34ea88ef241e19
2022-03-31T03:53:52.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
text2text-generation
false
DrishtiSharma
null
DrishtiSharma/poem-gen-spanish-t5-small-test
4
null
transformers
19,224
--- license: mit tags: - generated_from_trainer model-index: - name: poem-gen-spanish-t5-small-test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # poem-gen-spanish-t5-small-test This model is a fine-tuned version of [hackathon-pln-es/poem-gen-spanish-t5-small](https://huggingface.co/hackathon-pln-es/poem-gen-spanish-t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.2170 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 12 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:------:|:---------------:| | 2.8391 | 0.73 | 30000 | 2.9486 | | 2.6782 | 1.46 | 60000 | 2.8990 | | 2.5323 | 2.19 | 90000 | 2.9193 | | 2.5191 | 2.93 | 120000 | 2.8982 | | 2.4007 | 3.66 | 150000 | 2.9241 | | 2.2909 | 4.39 | 180000 | 2.9418 | | 2.1741 | 5.12 | 210000 | 2.9783 | | 2.1973 | 5.85 | 240000 | 2.9671 | | 2.0969 | 6.58 | 270000 | 3.0179 | | 1.9818 | 7.31 | 300000 | 3.0582 | | 1.8639 | 8.05 | 330000 | 3.0918 | | 1.8824 | 8.78 | 360000 | 3.1095 | | 1.7929 | 9.51 | 390000 | 3.1502 | | 1.7247 | 10.24 | 420000 | 3.1855 | | 1.7039 | 10.97 | 450000 | 3.1953 | | 1.6475 | 11.7 | 480000 | 3.2180 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
TheGoldenToaster/DialoGPT-medium-Woody
c12e5f4cfa008cabdbdf63b21e2b8d413e21e803
2022-03-31T19:30:37.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
TheGoldenToaster
null
TheGoldenToaster/DialoGPT-medium-Woody
4
1
transformers
19,225
--- tags: - conversational --- #Bot Chat
abdusahmbzuai/aradia-ctc-hubert-ft
5b7f930ae872d827cd78ba5a0e2083d723d88c54
2022-03-31T20:56:27.000Z
[ "pytorch", "hubert", "automatic-speech-recognition", "transformers", "abdusahmbzuai/arabic_speech_massive_300hrs", "generated_from_trainer", "model-index" ]
automatic-speech-recognition
false
abdusahmbzuai
null
abdusahmbzuai/aradia-ctc-hubert-ft
4
null
transformers
19,226
--- tags: - automatic-speech-recognition - abdusahmbzuai/arabic_speech_massive_300hrs - generated_from_trainer model-index: - name: aradia-ctc-hubert-ft results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # aradia-ctc-hubert-ft This model is a fine-tuned version of [/l/users/abdulwahab.sahyoun/aradia/aradia-ctc-hubert-ft](https://huggingface.co//l/users/abdulwahab.sahyoun/aradia/aradia-ctc-hubert-ft) on the ABDUSAHMBZUAI/ARABIC_SPEECH_MASSIVE_300HRS - NA dataset. It achieves the following results on the evaluation set: - Loss: 0.8536 - Wer: 0.3737 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 0.43 | 100 | 3.6934 | 1.0 | | No log | 0.87 | 200 | 3.0763 | 1.0 | | No log | 1.3 | 300 | 2.9737 | 1.0 | | No log | 1.74 | 400 | 2.5734 | 1.0 | | 5.0957 | 2.17 | 500 | 1.1900 | 0.9011 | | 5.0957 | 2.61 | 600 | 0.9726 | 0.7572 | | 5.0957 | 3.04 | 700 | 0.8960 | 0.6209 | | 5.0957 | 3.48 | 800 | 0.7851 | 0.5515 | | 5.0957 | 3.91 | 900 | 0.7271 | 0.5115 | | 1.0312 | 4.35 | 1000 | 0.7053 | 0.4955 | | 1.0312 | 4.78 | 1100 | 0.6823 | 0.4737 | | 1.0312 | 5.22 | 1200 | 0.6768 | 0.4595 | | 1.0312 | 5.65 | 1300 | 0.6635 | 0.4488 | | 1.0312 | 6.09 | 1400 | 0.6602 | 0.4390 | | 0.6815 | 6.52 | 1500 | 0.6464 | 0.4310 | | 0.6815 | 6.95 | 1600 | 0.6455 | 0.4394 | | 0.6815 | 7.39 | 1700 | 0.6630 | 0.4312 | | 0.6815 | 7.82 | 1800 | 0.6521 | 0.4126 | | 0.6815 | 8.26 | 1900 | 0.6282 | 0.4284 | | 0.544 | 8.69 | 2000 | 0.6248 | 0.4178 | | 0.544 | 9.13 | 2100 | 0.6510 | 0.4104 | | 0.544 | 9.56 | 2200 | 0.6527 | 0.4013 | | 0.544 | 10.0 | 2300 | 0.6511 | 0.4064 | | 0.544 | 10.43 | 2400 | 0.6734 | 0.4061 | | 0.4478 | 10.87 | 2500 | 0.6756 | 0.4145 | | 0.4478 | 11.3 | 2600 | 0.6727 | 0.3990 | | 0.4478 | 11.74 | 2700 | 0.6619 | 0.4007 | | 0.4478 | 12.17 | 2800 | 0.6614 | 0.4019 | | 0.4478 | 12.61 | 2900 | 0.6695 | 0.4004 | | 0.3919 | 13.04 | 3000 | 0.6778 | 0.3966 | | 0.3919 | 13.48 | 3100 | 0.6872 | 0.3971 | | 0.3919 | 13.91 | 3200 | 0.6882 | 0.3945 | | 0.3919 | 14.35 | 3300 | 0.7177 | 0.4010 | | 0.3919 | 14.78 | 3400 | 0.6888 | 0.4043 | | 0.3767 | 15.22 | 3500 | 0.7124 | 0.4202 | | 0.3767 | 15.65 | 3600 | 0.7276 | 0.4120 | | 0.3767 | 16.09 | 3700 | 0.7265 | 0.4034 | | 0.3767 | 16.52 | 3800 | 0.7392 | 0.4077 | | 0.3767 | 16.95 | 3900 | 0.7403 | 0.3965 | | 0.3603 | 17.39 | 4000 | 0.7445 | 0.4016 | | 0.3603 | 17.82 | 4100 | 0.7579 | 0.4012 | | 0.3603 | 18.26 | 4200 | 0.7225 | 0.3963 | | 0.3603 | 18.69 | 4300 | 0.7355 | 0.3951 | | 0.3603 | 19.13 | 4400 | 0.7482 | 0.3925 | | 0.3153 | 19.56 | 4500 | 0.7723 | 0.3972 | | 0.3153 | 20.0 | 4600 | 0.7469 | 0.3898 | | 0.3153 | 20.43 | 4700 | 0.7800 | 0.3944 | | 0.3153 | 20.87 | 4800 | 0.7827 | 0.3897 | | 0.3153 | 21.3 | 4900 | 0.7935 | 0.3914 | | 0.286 | 21.74 | 5000 | 0.7984 | 0.3750 | | 0.286 | 22.17 | 5100 | 0.7945 | 0.3830 | | 0.286 | 22.61 | 5200 | 0.8011 | 0.3775 | | 0.286 | 23.04 | 5300 | 0.7978 | 0.3824 | | 0.286 | 23.48 | 5400 | 0.8161 | 0.3833 | | 0.2615 | 23.91 | 5500 | 0.7823 | 0.3858 | | 0.2615 | 24.35 | 5600 | 0.8312 | 0.3863 | | 0.2615 | 24.78 | 5700 | 0.8427 | 0.3819 | | 0.2615 | 25.22 | 5800 | 0.8432 | 0.3802 | | 0.2615 | 25.65 | 5900 | 0.8286 | 0.3794 | | 0.2408 | 26.09 | 6000 | 0.8224 | 0.3824 | | 0.2408 | 26.52 | 6100 | 0.8228 | 0.3823 | | 0.2408 | 26.95 | 6200 | 0.8324 | 0.3795 | | 0.2408 | 27.39 | 6300 | 0.8564 | 0.3744 | | 0.2408 | 27.82 | 6400 | 0.8629 | 0.3774 | | 0.2254 | 28.26 | 6500 | 0.8545 | 0.3778 | | 0.2254 | 28.69 | 6600 | 0.8492 | 0.3767 | | 0.2254 | 29.13 | 6700 | 0.8511 | 0.3751 | | 0.2254 | 29.56 | 6800 | 0.8491 | 0.3753 | | 0.2254 | 30.0 | 6900 | 0.8536 | 0.3737 | ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.10.2+cu113 - Datasets 1.18.4 - Tokenizers 0.11.6
gdwangh/distilbert-base-uncased-finetuned-cola
9f5f5d7fe2e41777e57221bd66b74095be45cc33
2022-04-09T10:39:17.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
gdwangh
null
gdwangh/distilbert-base-uncased-finetuned-cola
4
null
transformers
19,227
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5197669430092784 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6532 - Matthews Correlation: 0.5198 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5228 | 1.0 | 535 | 0.5270 | 0.4212 | | 0.3448 | 2.0 | 1070 | 0.5360 | 0.5073 | | 0.2305 | 3.0 | 1605 | 0.6532 | 0.5198 | | 0.1691 | 4.0 | 2140 | 0.7934 | 0.5171 | | 0.128 | 5.0 | 2675 | 0.8732 | 0.5166 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
xxr/bert-base-uncased-multi-128
786be7bd7d38087ac619e87d0ec793ff0c6fb6e1
2022-04-01T11:40:30.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
xxr
null
xxr/bert-base-uncased-multi-128
4
null
transformers
19,228
--- license: apache-2.0 tags: - generated_from_trainer datasets: - null model_index: - name: bert-base-uncased-multi-128 results: - task: name: Masked Language Modeling type: fill-mask --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-multi-128 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.7101 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 16 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 3.6636 | 1.0 | 812 | 3.2325 | | 3.2963 | 2.0 | 1624 | 3.1937 | | 3.1132 | 3.0 | 2436 | 3.2984 | | 2.9386 | 4.0 | 3248 | 3.2430 | | 2.7742 | 5.0 | 4060 | 3.1272 | | 2.5954 | 6.0 | 4872 | 3.1778 | | 2.501 | 7.0 | 5684 | 3.1649 | | 2.4073 | 8.0 | 6496 | 2.9395 | | 2.2933 | 9.0 | 7308 | 3.1262 | | 2.2218 | 10.0 | 8120 | 2.9994 | | 2.1558 | 11.0 | 8932 | 2.9922 | | 2.0873 | 12.0 | 9744 | 2.8414 | | 2.0104 | 13.0 | 10556 | 2.9351 | | 1.9364 | 14.0 | 11368 | 2.9253 | | 1.9045 | 15.0 | 12180 | 2.8701 | | 1.9152 | 16.0 | 12992 | 2.7101 | ### Framework versions - Transformers 4.8.2 - Pytorch 1.7.1 - Datasets 1.16.1 - Tokenizers 0.10.3
vicl/canine-c-finetuned-mrpc
27ed4f69d0376c1404e25083ec50fa5e9b79138f
2022-04-01T16:33:28.000Z
[ "pytorch", "tensorboard", "canine", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
vicl
null
vicl/canine-c-finetuned-mrpc
4
null
transformers
19,229
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: canine-c-finetuned-mrpc results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: mrpc metrics: - name: Accuracy type: accuracy value: 0.8627450980392157 - name: F1 type: f1 value: 0.9014084507042254 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # canine-c-finetuned-mrpc This model is a fine-tuned version of [google/canine-c](https://huggingface.co/google/canine-c) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.4066 - Accuracy: 0.8627 - F1: 0.9014 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 230 | 0.5014 | 0.7696 | 0.8479 | | No log | 2.0 | 460 | 0.4755 | 0.7892 | 0.8622 | | 0.5096 | 3.0 | 690 | 0.3645 | 0.8431 | 0.8869 | | 0.5096 | 4.0 | 920 | 0.4066 | 0.8627 | 0.9014 | | 0.2619 | 5.0 | 1150 | 0.4551 | 0.8431 | 0.8877 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
bitsanlp/distilbert-base-uncased-distilbert-fakenews-detection
7475546b92527e434eb83f7dbd8fa170a49b2272
2022-04-01T17:17:55.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
bitsanlp
null
bitsanlp/distilbert-base-uncased-distilbert-fakenews-detection
4
null
transformers
19,230
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-distilbert-fakenews-detection results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-distilbert-fakenews-detection This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0000 - Accuracy: 1.0 - F1: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---:| | 0.0125 | 1.0 | 978 | 0.0000 | 1.0 | 1.0 | | 0.0 | 2.0 | 1956 | 0.0000 | 1.0 | 1.0 | | 0.0 | 3.0 | 2934 | 0.0000 | 1.0 | 1.0 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.2+cu102 - Datasets 2.0.0 - Tokenizers 0.11.6
erikacardenas300/StartupClassifier
1c9f9994b86a272d7b882cfebb967bce8ba5bd22
2022-04-05T15:23:05.000Z
[ "pytorch", "distilbert", "text-classification", "en", "dataset:Crunchbase", "transformers" ]
text-classification
false
erikacardenas300
null
erikacardenas300/StartupClassifier
4
2
transformers
19,231
--- language: en datasets: - Crunchbase --- # Company Classifier This fine-tuned Distilbert model is using company descriptions for classification. The model is tasked to classify the company as either finance or biotech. The demo can be found on my profile under Spaces (https://huggingface.co/erikacardenas300). I hope you enjoy it!
wuyue1987/distilbert-base-uncased-suggestion-finetuned
069befec3f126643be31ea55ceed7fd05eab3fa5
2022-04-02T00:27:41.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers" ]
text-classification
false
wuyue1987
null
wuyue1987/distilbert-base-uncased-suggestion-finetuned
4
1
transformers
19,232
Entry not found
DMetaSoul/sbert-chinese-general-v1-distill
7f20ecf1db8f800b6a1592e6e9de8b5b78d598ab
2022-04-02T09:39:47.000Z
[ "pytorch", "bert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers", "semantic-search", "chinese" ]
sentence-similarity
false
DMetaSoul
null
DMetaSoul/sbert-chinese-general-v1-distill
4
null
sentence-transformers
19,233
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers - semantic-search - chinese --- # DMetaSoul/sbert-chinese-general-v1-distill 此模型是之前[开源通用语义匹配模型](https://huggingface.co/DMetaSoul/sbert-chinese-general-v1)的蒸馏版本(仅4层 BERT),适用于**通用语义匹配**场景(此模型在 Chinese-STS 任务上效果较好,但在其它任务上效果并非最优,存在一定过拟合风险),比如文本特征抽取、文本向量聚类、文本语义搜索等业务场景。 离线训练好的大模型如果直接用于线上推理,对计算资源有苛刻的需求,而且难以满足业务环境对延迟、吞吐量等性能指标的要求,这里我们使用蒸馏手段来把大模型轻量化。从 12 层 BERT 蒸馏为 4 层后,模型参数量缩小到 44%,大概 latency 减半、throughput 翻倍、精度下降 3% 左右(具体结果详见下文评估小节)。 # Usage ## 1. Sentence-Transformers 通过 [sentence-transformers](https://www.SBERT.net) 框架来使用该模型,首先进行安装: ``` pip install -U sentence-transformers ``` 然后使用下面的代码来载入该模型并进行文本表征向量的提取: ```python from sentence_transformers import SentenceTransformer sentences = ["我的儿子!他猛然间喊道,我的儿子在哪儿?", "我的儿子呢!他突然喊道,我的儿子在哪里?"] model = SentenceTransformer('DMetaSoul/sbert-chinese-general-v1-distill') embeddings = model.encode(sentences) print(embeddings) ``` ## 2. HuggingFace Transformers 如果不想使用 [sentence-transformers](https://www.SBERT.net) 的话,也可以通过 HuggingFace Transformers 来载入该模型并进行文本向量抽取: ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ["我的儿子!他猛然间喊道,我的儿子在哪儿?", "我的儿子呢!他突然喊道,我的儿子在哪里?"] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('DMetaSoul/sbert-chinese-general-v1-distill') model = AutoModel.from_pretrained('DMetaSoul/sbert-chinese-general-v1-distill') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation 这里主要跟蒸馏前对应的 teacher 模型作了对比 *性能:* | | Teacher | Student | Gap | | ---------- | --------------------- | ------------------- | ----- | | Model | BERT-12-layers (102M) | BERT-4-layers (45M) | 0.44x | | Cost | 23s | 12s | -47% | | Latency | 37ms | 20ms | -46% | | Throughput | 422 sentence/s | 788 sentence/s | 1.8x | *精度:* | | **csts_dev** | **csts_test** | **afqmc** | **lcqmc** | **bqcorpus** | **pawsx** | **xiaobu** | **Avg** | | -------------- | ------------ | ------------- | --------- | --------- | ------------ | --------- | ---------- | ------- | | **Teacher** | 84.54% | 82.17% | 23.80% | 65.94% | 45.52% | 11.52% | 48.51% | 51.71% | | **Student** | 83.39% | 79.96% | 20.25% | 63.39% | 43.70% | 7.54% | 46.91% | 49.28% | | **Gap** (abs.) | - | - | - | - | - | - | - | -2.43% | *基于1万条数据测试,GPU设备是V100,batch_size=16,max_seq_len=256* ## Citing & Authors E-mail: [email protected]
DMetaSoul/sbert-chinese-qmc-domain-v1-distill
128ae92441c50c879ee0c2170204cc5aa2971129
2022-04-02T10:03:06.000Z
[ "pytorch", "bert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers", "semantic-search", "chinese" ]
sentence-similarity
false
DMetaSoul
null
DMetaSoul/sbert-chinese-qmc-domain-v1-distill
4
null
sentence-transformers
19,234
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers - semantic-search - chinese --- # DMetaSoul/sbert-chinese-qmc-domain-v1 此模型是基于之前开源[问题匹配模型](https://huggingface.co/DMetaSoul/sbert-chinese-qmc-domain-v1)的蒸馏轻量化版本(仅含4层 BERT),适用于**开放领域的问题匹配**场景,比如: - 洗澡用什么香皂好?vs. 洗澡用什么香皂好 - 大连哪里拍婚纱照好点? vs. 大连哪里拍婚纱照比较好 - 银行卡怎样挂失?vs. 银行卡丢了怎么挂失啊? 离线训练好的大模型如果直接用于线上推理,对计算资源有苛刻的需求,而且难以满足业务环境对延迟、吞吐量等性能指标的要求,这里我们使用蒸馏手段来把大模型轻量化。从 12 层 BERT 蒸馏为 4 层后,模型参数量缩小到 44%,大概 latency 减半、throughput 翻倍、精度下降 4% 左右(具体结果详见下文评估小节)。 # Usage ## 1. Sentence-Transformers 通过 [sentence-transformers](https://www.SBERT.net) 框架来使用该模型,首先进行安装: ``` pip install -U sentence-transformers ``` 然后使用下面的代码来载入该模型并进行文本表征向量的提取: ```python from sentence_transformers import SentenceTransformer sentences = ["我的儿子!他猛然间喊道,我的儿子在哪儿?", "我的儿子呢!他突然喊道,我的儿子在哪里?"] model = SentenceTransformer('DMetaSoul/sbert-chinese-qmc-domain-v1') embeddings = model.encode(sentences) print(embeddings) ``` ## 2. HuggingFace Transformers 如果不想使用 [sentence-transformers](https://www.SBERT.net) 的话,也可以通过 HuggingFace Transformers 来载入该模型并进行文本向量抽取: ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ["我的儿子!他猛然间喊道,我的儿子在哪儿?", "我的儿子呢!他突然喊道,我的儿子在哪里?"] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('DMetaSoul/sbert-chinese-qmc-domain-v1') model = AutoModel.from_pretrained('DMetaSoul/sbert-chinese-qmc-domain-v1') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation 这里主要跟蒸馏前对应的 teacher 模型作了对比 *性能:* | | Teacher | Student | Gap | | ---------- | --------------------- | ------------------- | ----- | | Model | BERT-12-layers (102M) | BERT-4-layers (45M) | 0.44x | | Cost | 23s | 12s | -47% | | Latency | 38ms | 20ms | -47% | | Throughput | 421 sentence/s | 791 sentence/s | 1.9x | *精度:* | | **csts_dev** | **csts_test** | **afqmc** | **lcqmc** | **bqcorpus** | **pawsx** | **xiaobu** | **Avg** | | -------------- | ------------ | ------------- | --------- | --------- | ------------ | --------- | ---------- | ------- | | **Teacher** | 80.90% | 76.62% | 34.51% | 77.05% | 52.95% | 12.97% | 59.47% | 56.35% | | **Student** | 79.89% | 76.34% | 27.59% | 69.26% | 49.40% | 9.06% | 53.52% | 52.15% | | **Gap** (abs.) | - | - | - | - | - | - | - | -4.2% | *基于1万条数据测试,GPU设备是V100,batch_size=16,max_seq_len=256* ## Citing & Authors E-mail: [email protected]
unjustify/autotrain-commonsense_1-696121179
59b9c87e82c4eabbd968e73368b6db3018193be4
2022-04-02T13:49:28.000Z
[ "pytorch", "roberta", "text-classification", "en", "dataset:unjustify/autotrain-data-commonsense_1", "transformers", "autotrain", "co2_eq_emissions" ]
text-classification
false
unjustify
null
unjustify/autotrain-commonsense_1-696121179
4
null
transformers
19,235
--- tags: autotrain language: en widget: - text: "I love AutoTrain 🤗" datasets: - unjustify/autotrain-data-commonsense_1 co2_eq_emissions: 4.355285184457145 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 696121179 - CO2 Emissions (in grams): 4.355285184457145 ## Validation Metrics - Loss: 0.34467628598213196 - Accuracy: 0.8544333807491702 - Precision: 0.9014251781472684 - Recall: 0.7721261444557477 - AUC: 0.9422766967397805 - F1: 0.8317808219178082 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/unjustify/autotrain-commonsense_1-696121179 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("unjustify/autotrain-commonsense_1-696121179", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("unjustify/autotrain-commonsense_1-696121179", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
reichenbach/fake-news-detector-v2
f714e9a5f03987d8f536770e48e53193f748a812
2022-04-03T13:42:32.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
reichenbach
null
reichenbach/fake-news-detector-v2
4
null
transformers
19,236
Entry not found
Finnish-NLP/t5-small-nl24-finnish
0f719aff08a49a15642f9c82d9acc19b2a2d98e9
2022-07-12T13:19:42.000Z
[ "pytorch", "jax", "tensorboard", "t5", "text2text-generation", "fi", "dataset:Finnish-NLP/mc4_fi_cleaned", "dataset:wikipedia", "arxiv:1910.10683", "arxiv:2002.05202", "arxiv:2109.10686", "transformers", "finnish", "t5x", "seq2seq", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
Finnish-NLP
null
Finnish-NLP/t5-small-nl24-finnish
4
null
transformers
19,237
--- language: - fi license: apache-2.0 tags: - finnish - t5 - t5x - seq2seq datasets: - Finnish-NLP/mc4_fi_cleaned - wikipedia inference: false --- # T5-small-nl24 for Finnish Pretrained T5 model on Finnish language using a span-based masked language modeling (MLM) objective. T5 was introduced in [this paper](https://arxiv.org/abs/1910.10683) and first released at [this page](https://github.com/google-research/text-to-text-transfer-transformer). **Note:** The Hugging Face inference widget is deactivated because this model needs a text-to-text fine-tuning on a specific downstream task to be useful in practice. As an example of a fine-tuned Finnish T5 model, you can check [Finnish-NLP/t5-small-nl24-casing-punctuation-correction](https://huggingface.co/Finnish-NLP/t5-small-nl24-casing-punctuation-correction) which has been fine-tuned to correct missing casing and punctuation for Finnish text. ## Model description T5 is an encoder-decoder model and treats all NLP problems in a text-to-text format. Finnish T5 is a transformers model pretrained on a very large corpus of Finnish data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and outputs from those texts. More precisely, it was pretrained with the span-based masked language modeling (MLM) objective. Spans of the input sequence are masked by so-called sentinel tokens (a.k.a unique mask tokens) and the output sequence is formed as a concatenation of the same sentinel tokens and the real masked tokens. This way, the model learns an inner representation of the Finnish language. This model used the [T5 v1.1](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) improvements compared to the original T5 model during the pretraining: - GEGLU activation in feed-forward hidden layer, rather than ReLU - see [here](https://arxiv.org/abs/2002.05202) - Dropout was turned off in pretraining (quality win). Dropout should be re-enabled during fine-tuning - Pretrained on span-based masked language modeling (MLM) objective only without mixing in the downstream tasks - No parameter sharing between embedding and classifier layer This model also used the "efficient" T5 architecture findings presented in [this paper](https://arxiv.org/abs/2109.10686). In a nutshell, the paper indicates that a Deep-Narrow model architecture is favorable for downstream performance compared to other model architectures of similar parameter count. To be more precise, model depth is defined as the number of transformer blocks that are stacked sequentially. This model uses the [t5-efficient-small-nl24](https://huggingface.co/google/t5-efficient-small-nl24) architecture's layer depth which means both the encoder and the decoder have 24 transformer layers compared to the original T5 "small" model's architecture of 6 transformer layers. In total, this model has 260 million parameters. ## Intended uses & limitations This model was only pretrained in a self-supervised way excluding any supervised training. Therefore, this model has to be fine-tuned before it is usable on a downstream task, like text classification, unlike the Google's original T5 model. **Note:** You most likely need to fine-tune these T5 models without mixed precision so fine-tune them with full fp32 precision. You can also find more fine-tuning tips from [here](https://discuss.huggingface.co/t/t5-finetuning-tips), for example. ### How to use Here is how to use this model in PyTorch: ```python from transformers import T5Tokenizer, T5ForConditionalGeneration tokenizer = T5Tokenizer.from_pretrained("Finnish-NLP/t5-small-nl24-finnish") model = T5ForConditionalGeneration.from_pretrained("Finnish-NLP/t5-small-nl24-finnish") ``` and in TensorFlow: ```python from transformers import T5Tokenizer, TFT5ForConditionalGeneration tokenizer = T5Tokenizer.from_pretrained("Finnish-NLP/t5-small-nl24-finnish") model = T5ForConditionalGeneration.from_pretrained("Finnish-NLP/t5-small-nl24-finnish", from_pt=True) ``` ### Limitations and bias The training data used for this model contains a lot of unfiltered content from the internet, which is far from neutral. Therefore, the model can have biased predictions. This bias will also affect all fine-tuned versions of this model. ## Training data This Finnish T5 model was pretrained on the combination of six datasets: - [mc4_fi_cleaned](https://huggingface.co/datasets/Finnish-NLP/mc4_fi_cleaned), the dataset mC4 is a multilingual colossal, cleaned version of Common Crawl's web crawl corpus. We used the Finnish subset of the mC4 dataset and further cleaned it with our own text data cleaning codes (check the dataset repo). - [wikipedia](https://huggingface.co/datasets/wikipedia) We used the Finnish subset of the wikipedia (August 2021) dataset - [Yle Finnish News Archive 2011-2018](http://urn.fi/urn:nbn:fi:lb-2017070501) - [Yle Finnish News Archive 2019-2020](http://urn.fi/urn:nbn:fi:lb-2021050401) - [Finnish News Agency Archive (STT)](http://urn.fi/urn:nbn:fi:lb-2018121001) - [The Suomi24 Sentences Corpus](http://urn.fi/urn:nbn:fi:lb-2020021803) Raw datasets were automatically cleaned to filter out bad quality and non-Finnish examples. Also, a [perplexity](https://huggingface.co/course/chapter7/3#perplexity-for-language-models) score was calculated for all texts with a KenLM model which was trained with very clean Finnish texts only. This perplexity score can then be used to determine how "clean" Finnish language the text contains. Lastly, all datasets were concatenated and the top 90% perplexity score was used as a filtering threshold to filter out the worst quality 10% of texts. Together these cleaned datasets were around 76GB of text. ## Training procedure ### Preprocessing The texts are tokenized using WordPiece and a vocabulary size of 32000. The inputs and the outputs are sequences of 512 consecutive tokens. Texts are not lower cased so this model is case-sensitive: it makes a difference between finnish and Finnish. ### Pretraining The model was trained on TPUv3-8 VM, sponsored by the [Google TPU Research Cloud](https://sites.research.google/trc/about/), for 500K steps with a batch size of 256 (in total 66B tokens). The optimizer used was a AdaFactor with learning rate warmup for 10K steps with a constant learning rate of 1e-2, and then an inverse square root decay (exponential decay) of the learning rate after. Training code was from the Google's Jax/Flax based [t5x framework](https://github.com/google-research/t5x) and also some t5x task definitions were adapted from [Per's t5x work](https://huggingface.co/pere). ## Evaluation results Evaluation was done by fine-tuning the model on a downstream text classification task with two different labeled Finnish datasets: [Yle News](https://github.com/spyysalo/yle-corpus) and [Eduskunta](https://github.com/aajanki/eduskunta-vkk). Classification fine-tuning was done with a sequence length of 128 tokens. When fine-tuned on those datasets, this model (the third row of the table) achieves the following accuracy results compared to our other T5 models and their parameter counts: | | Model parameters | Yle News accuracy | Eduskunta accuracy | |-------------------------------------------------------|------------------|---------------------|----------------------| |Finnish-NLP/t5-tiny-nl6-finnish | 31 million |92.80 |69.07 | |Finnish-NLP/t5-mini-nl8-finnish | 72 million |93.89 |71.43 | |Finnish-NLP/t5-small-nl24-finnish | 260 million |**94.68** |74.90 | |Finnish-NLP/byt5-base-finnish | 582 million |92.33 |73.13 | |Finnish-NLP/t5-base-nl36-finnish | 814 million |94.40 |**75.97** | |Finnish-NLP/t5-large-nl36-finnish | 1425 million |TBA |TBA | Fine-tuning Google's multilingual mT5 models on the same datasets we can clearly see that our monolingual Finnish T5 models achieve much better results on Finnish text classification: | | Model parameters | Yle News accuracy | Eduskunta accuracy | |-------------------------------------------------------|------------------|---------------------|----------------------| |google/mt5-small | 301 million |91.51 |64.10 | |google/mt5-base | 583 million |92.71 |68.40 | ## Acknowledgements This project would not have been possible without compute generously provided by Google through the [TPU Research Cloud](https://sites.research.google/trc/). ## Team Members - Aapo Tanskanen, [Hugging Face profile](https://huggingface.co/aapot), [LinkedIn profile](https://www.linkedin.com/in/aapotanskanen/) - Rasmus Toivanen, [Hugging Face profile](https://huggingface.co/RASMUS), [LinkedIn profile](https://www.linkedin.com/in/rasmustoivanen/) Feel free to contact us for more details 🤗
arnaudstiegler/long-layoutlm
746eef181eb61924ed202323dc8b17135bfc1946
2022-04-07T20:22:11.000Z
[ "pytorch", "layoutlm", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
arnaudstiegler
null
arnaudstiegler/long-layoutlm
4
null
transformers
19,238
Entry not found
bioformers/bioformer-litcovid
0434d1edd48e6ae4a6727d778b25496270d6c52d
2022-04-06T18:58:46.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
bioformers
null
bioformers/bioformer-litcovid
4
null
transformers
19,239
[`bioformers/bioformer-cased-v1.0`](https://huggingface.co/bioformers/bioformer-cased-v1.0) pretrained on 164,179 COVID-19 abstracts (from [LitCovid website](https://www.ncbi.nlm.nih.gov/research/coronavirus/)) for 100 epochs. In our evaluation, this pretraining process leads to improved performance on the multi-label COVID-19 topic classification task (BioCreative VII track 5).
emon1521/wav2vec2-base-timit-demo-colab
aa6215900b1937298b498c60f0a8f33bce9ae0a1
2022-04-05T07:32:44.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
emon1521
null
emon1521/wav2vec2-base-timit-demo-colab
4
null
transformers
19,240
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
Cheatham/xlm-roberta-large-finetuned-d12-005
7b0e5ac23fd219bf3abc4b9c99974f903b61d476
2022-04-04T08:24:48.000Z
[ "pytorch", "xlm-roberta", "text-classification", "transformers" ]
text-classification
false
Cheatham
null
Cheatham/xlm-roberta-large-finetuned-d12-005
4
null
transformers
19,241
Entry not found
pinku/FatimaFellowship_fake_and_real_news
ea86827d7f21029715d478ad39462995bf62da09
2022-04-05T03:22:45.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "license:bsd-3-clause" ]
text-classification
false
pinku
null
pinku/FatimaFellowship_fake_and_real_news
4
null
transformers
19,242
--- license: bsd-3-clause --- # Fatima Fellowship NLP Project ## Fake News Classifier - BERT base model finetuned to classify fake news.
Chhavnish/distilbert-base-uncased-finetuned-cola
a5744fdd1e8b79d492d848131f8f72f801eb752e
2022-04-05T06:29:11.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers" ]
text-classification
false
Chhavnish
null
Chhavnish/distilbert-base-uncased-finetuned-cola
4
null
transformers
19,243
Entry not found
LIA-AvignonUniversity/IWSLT2022-Niger-Mali
c2f78bdee8e7a1ba4852914b1221d44ed4bc3200
2022-05-11T09:31:51.000Z
[ "pytorch", "wav2vec2", "pretraining", "arxiv:2201.05051", "transformers" ]
null
false
LIA-AvignonUniversity
null
LIA-AvignonUniversity/IWSLT2022-Niger-Mali
4
null
transformers
19,244
## Model and data descriptions This is a wav2vec 2.0 base model trained on the Niger-Mali audio collection and on the Tamasheq-French speech corpus. These combined contained 111 hours of French, 109 hours of Fulfulde, 100 hours of Hausa, 243 hours of Tamasheq and 95 hours of Zarma. These corpora were presented in [Boito et al., 2022](https://arxiv.org/abs/2201.05051). ## Intended uses & limitations Pretrained wav2vec2 models are distributed under the Apache-2.0 license. Hence, they can be reused extensively without strict limitations. ## Referencing our IWSLT models ``` @article{boito2022trac, title={ON-TRAC Consortium Systems for the IWSLT 2022 Dialect and Low-resource Speech Translation Tasks}, author={Boito, Marcely Zanon and Ortega, John and Riguidel, Hugo and Laurent, Antoine and Barrault, Lo{\"\i}c and Bougares, Fethi and Chaabani, Firas and Nguyen, Ha and Barbier, Florentin and Gahbiche, Souhir and others}, journal={IWSLT}, year={2022} } ```
aswinsson/fake_new_classifier
47c3850860b38ac2fa69329744792038f017b8bf
2022-04-04T18:50:02.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "license:afl-3.0" ]
text-classification
false
aswinsson
null
aswinsson/fake_new_classifier
4
null
transformers
19,245
--- license: afl-3.0 --- The fake news classifer built using distillbert uncased. Created for the Fatima Fellowship coding challenge and trained on P100 instance for 3 epochs. The model is a binary classifier which predicts 1 in case of real news. Library: transformers \ Language: English \ Dataset: https:\/\/www.kaggle.com/datasets/clmentbisaillon/fake-and-real-news-dataset
dapang/distilbert-base-uncased-finetuned-moral-ctx-action-conseq
4cf7a0bdabbf2b3e51699b8f5b7bae83483dd417
2022-04-05T02:48:15.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
dapang
null
dapang/distilbert-base-uncased-finetuned-moral-ctx-action-conseq
4
null
transformers
19,246
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-moral-ctx-action-conseq results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-moral-ctx-action-conseq This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1111 - Accuracy: 0.9676 - F1: 0.9676 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 9.989502318502869e-05 - train_batch_size: 2000 - eval_batch_size: 2000 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 10 | 0.1569 | 0.9472 | 0.9472 | | No log | 2.0 | 20 | 0.1171 | 0.9636 | 0.9636 | | No log | 3.0 | 30 | 0.1164 | 0.9664 | 0.9664 | | No log | 4.0 | 40 | 0.1117 | 0.9672 | 0.9672 | | No log | 5.0 | 50 | 0.1111 | 0.9676 | 0.9676 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.1 - Datasets 2.0.0 - Tokenizers 0.11.0
emon1521/wav2vec2-base
888039e1f0c3f6edca5a1ed3fd897c794a822cf8
2022-04-06T11:39:24.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
emon1521
null
emon1521/wav2vec2-base
4
null
transformers
19,247
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.0808 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:---:| | 3.7118 | 0.5 | 500 | 3.0635 | 1.0 | | 2.9533 | 1.01 | 1000 | 3.0383 | 1.0 | | 2.9493 | 1.51 | 1500 | 3.0638 | 1.0 | | 2.9495 | 2.01 | 2000 | 3.0554 | 1.0 | | 2.9468 | 2.51 | 2500 | 3.0630 | 1.0 | | 2.9493 | 3.02 | 3000 | 3.0530 | 1.0 | | 2.9457 | 3.52 | 3500 | 3.0534 | 1.0 | | 2.9492 | 4.02 | 4000 | 3.0357 | 1.0 | | 2.9444 | 4.52 | 4500 | 3.0366 | 1.0 | | 2.9495 | 5.03 | 5000 | 3.0412 | 1.0 | | 2.9468 | 5.53 | 5500 | 3.0331 | 1.0 | | 2.9453 | 6.03 | 6000 | 3.0847 | 1.0 | | 2.9484 | 6.53 | 6500 | 3.0661 | 1.0 | | 2.9457 | 7.04 | 7000 | 3.0769 | 1.0 | | 2.9449 | 7.54 | 7500 | 3.0701 | 1.0 | | 2.9453 | 8.04 | 8000 | 3.1072 | 1.0 | | 2.9436 | 8.54 | 8500 | 3.1043 | 1.0 | | 2.9474 | 9.05 | 9000 | 3.0902 | 1.0 | | 2.9452 | 9.55 | 9500 | 3.0879 | 1.0 | | 2.9443 | 10.05 | 10000 | 3.1112 | 1.0 | | 2.9436 | 10.55 | 10500 | 3.0946 | 1.0 | | 2.9469 | 11.06 | 11000 | 3.0812 | 1.0 | | 2.9434 | 11.56 | 11500 | 3.1112 | 1.0 | | 2.9442 | 12.06 | 12000 | 3.0855 | 1.0 | | 2.9436 | 12.56 | 12500 | 3.0786 | 1.0 | | 2.9425 | 13.07 | 13000 | 3.0789 | 1.0 | | 2.9418 | 13.57 | 13500 | 3.0786 | 1.0 | | 2.9443 | 14.07 | 14000 | 3.0798 | 1.0 | | 2.9449 | 14.57 | 14500 | 3.0808 | 1.0 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.2 - Datasets 1.18.3 - Tokenizers 0.10.3
cwkeam/mctc-large
ce4eb45713b5f6873dcbb0e7bf35902c440cccb4
2022-05-02T18:00:33.000Z
[ "pytorch", "mctc", "transformers" ]
null
false
cwkeam
null
cwkeam/mctc-large
4
null
transformers
19,248
GioReg/AlbertoBertnews
cae8dea366b9b7fd26673557735d738843b3ceb5
2022-04-06T12:22:55.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
GioReg
null
GioReg/AlbertoBertnews
4
null
transformers
19,249
--- tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: AlbertoBertnews results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # AlbertoBertnews This model is a fine-tuned version of [m-polignano-uniba/bert_uncased_L-12_H-768_A-12_italian_alb3rt0](https://huggingface.co/m-polignano-uniba/bert_uncased_L-12_H-768_A-12_italian_alb3rt0) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1382 - Accuracy: 0.9640 - F1: 0.9635 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
Stremie/bert-base-uncased-clickbait
e4ad5c78d1eeedc1262652c1012ae623cecc38df
2022-04-18T12:52:13.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Stremie
null
Stremie/bert-base-uncased-clickbait
4
null
transformers
19,250
This model classifies whether a tweet is clickbait or not. It has been trained using [Webis-Clickbait-17](https://webis.de/data/webis-clickbait-17.html) dataset. Input is composed of 'postText'. Achieved ~0.7 F1-score on test data.
GioReg/AlbertoBertrecensioni
8374a776b5792d0e9caa07352e31fcfec0a9ab25
2022-04-06T14:02:46.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
GioReg
null
GioReg/AlbertoBertrecensioni
4
null
transformers
19,251
--- tags: - generated_from_trainer model-index: - name: AlbertoBertrecensioni results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # AlbertoBertrecensioni This model is a fine-tuned version of [m-polignano-uniba/bert_uncased_L-12_H-768_A-12_italian_alb3rt0](https://huggingface.co/m-polignano-uniba/bert_uncased_L-12_H-768_A-12_italian_alb3rt0) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
skosgi242/bert-large-uncased-whole-word-masking-lyrics
66c1a6f94bbbceba96808034c93563f9bb5b8b41
2022-05-07T12:28:24.000Z
[ "pytorch", "tensorboard", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
skosgi242
null
skosgi242/bert-large-uncased-whole-word-masking-lyrics
4
null
transformers
19,252
Entry not found
LACAI/roberta-large-PFG-donation-detection
91799e5e470e7c033b7442785d1d8cb451910ac1
2022-04-18T02:19:50.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "transformers", "license:mit" ]
text-classification
false
LACAI
null
LACAI/roberta-large-PFG-donation-detection
4
null
transformers
19,253
--- license: mit --- Base model: [roberta-large](https://huggingface.co/roberta-large) Fine tuned for persuadee donation detection on the [Persuasion For Good Dataset](https://gitlab.com/ucdavisnlp/persuasionforgood) (Wang et al., 2019): Given a complete dialogue from Persuasion For Good, the task is to predict the binary label: - 0: the persuadee does not intend to donate - 1: the persuadee intends to donate Only persuadee utterances are input to the model for this task - persuader utterances are discarded. Each training example is the concatenation of all persuadee utterances in a single dialogue, each separated by the `</s>` token. For example: **Input**: `<s>How are you?</s>Can you tell me more about the charity?</s>...</s>Sure, I'll donate a dollar.</s>...</s>` **Label**: 1 **Input**: `<s>How are you?</s>Can you tell me more about the charity?</s>...</s>I am not interested.</s>...</s>` **Label**: 0 The following Dialogues were excluded: - 146 dialogues where a donation of 0 was made at the end of the task but a non-zero amount was pledged by the persuadee in the dialogue, per the following regular expression: `(?:\$(?:0\.)?[1-9]|[1-9][.0-9]*?(?: ?\$| dollars?| cents?))` Data Info: - **Training set**: 587 dialogues, using actual end-task donations as labels - **Validation set**: 141 dialogues, using manual donation intention labels from Persuasion For Good 'AnnSet' - **Test set**: 143 dialogues, using manual donation intention labels from Persuasion For Good 'AnnSet' Training Info: - **Loss**: CrossEntropy with class weights: 1.5447 (class 0) and 0.7393 (class 1). These weights were derived from the training split. - **Early Stopping**: The checkpoint with the highest validation macro f1 was selected. This occurred at step 35 (see training metrics for more detail). Testing Info: - **Test Macro F1**: 0.893 - **Test Accuracy**: 0.902
Stremie/xlm-roberta-base-clickbait
601b119e96a4761ded895598c570f40fadfb9924
2022-04-18T12:51:20.000Z
[ "pytorch", "xlm-roberta", "text-classification", "transformers" ]
text-classification
false
Stremie
null
Stremie/xlm-roberta-base-clickbait
4
null
transformers
19,254
This model classifies whether a tweet is clickbait or not. It has been trained using [Webis-Clickbait-17](https://webis.de/data/webis-clickbait-17.html) dataset. Input is composed of 'postText'. Achieved ~0.7 F1-score on test data.
Danni/distilbert-base-uncased-finetuned-cola
3d59da0f1e2c74e099bbd1163827a8558b61e5ee
2022-04-13T07:28:04.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Danni
null
Danni/distilbert-base-uncased-finetuned-cola
4
null
transformers
19,255
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.44113488112476795 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.4994 - Matthews Correlation: 0.4411 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5282 | 1.0 | 535 | 0.4994 | 0.4411 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.0.0 - Tokenizers 0.11.6
pitspits/xlm-roberta-base-finetuned-panx-de
11a567213b9fec5b37cbb42a68b920a61ab59524
2022-04-13T14:12:42.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
pitspits
null
pitspits/xlm-roberta-base-finetuned-panx-de
4
null
transformers
19,256
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8651268890789849 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1398 - F1: 0.8651 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2615 | 1.0 | 525 | 0.1515 | 0.8253 | | 0.1285 | 2.0 | 1050 | 0.1423 | 0.8490 | | 0.0803 | 3.0 | 1575 | 0.1398 | 0.8651 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0 - Datasets 1.16.1 - Tokenizers 0.10.3
Bistolero/du_ge_all_cut
9035eb4b36464ea4601bf5e09bc18ab99159c4c8
2022-04-07T01:30:49.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Bistolero
null
Bistolero/du_ge_all_cut
4
null
transformers
19,257
Entry not found
shubh024/autotrain-intentclassificationfilipino-715021714
f402226d832f43e054a4efbc43366c205002f407
2022-04-07T07:38:46.000Z
[ "pytorch", "roberta", "text-classification", "unk", "dataset:shubh024/autotrain-data-intentclassificationfilipino", "transformers", "autotrain", "co2_eq_emissions" ]
text-classification
false
shubh024
null
shubh024/autotrain-intentclassificationfilipino-715021714
4
null
transformers
19,258
--- tags: autotrain language: unk widget: - text: "I love AutoTrain 🤗" datasets: - shubh024/autotrain-data-intentclassificationfilipino co2_eq_emissions: 0.003341516495672918 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 715021714 - CO2 Emissions (in grams): 0.003341516495672918 ## Validation Metrics - Loss: 0.5571377873420715 - Accuracy: 0.8 - Macro F1: 0.6709090909090909 - Micro F1: 0.8000000000000002 - Weighted F1: 0.7739393939393939 - Macro Precision: 0.7 - Micro Precision: 0.8 - Weighted Precision: 0.8 - Macro Recall: 0.7 - Micro Recall: 0.8 - Weighted Recall: 0.8 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/shubh024/autotrain-intentclassificationfilipino-715021714 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("shubh024/autotrain-intentclassificationfilipino-715021714", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("shubh024/autotrain-intentclassificationfilipino-715021714", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
danjohnvelasco/roberta-tagalog-base-cohfie-v1
0ee58ced248b5c461946444980d47efb62526b4d
2022-04-09T09:27:08.000Z
[ "pytorch", "roberta", "feature-extraction", "tl", "arxiv:2204.03251", "transformers", "tagalog", "filipino", "license:cc-by-sa-4.0" ]
feature-extraction
false
danjohnvelasco
null
danjohnvelasco/roberta-tagalog-base-cohfie-v1
4
null
transformers
19,259
--- language: tl tags: - roberta - tagalog - filipino license: cc-by-sa-4.0 inference: false --- # RoBERTa Tagalog Base (finetuned on COHFIE) We finetuned [RoBERTa Tagalog Base](https://huggingface.co/jcblaise/roberta-tagalog-base) on a subset of the Corpus of Historical Filipino and Philippine English (COHFIE) which contains pure filipino and code-switching (i.e. tagalog-english) sentences. All model details, training setups, and corpus details can be found in this paper: [Automatic WordNet Construction using Word Sense Induction through Sentence Embeddings](https://arxiv.org/abs/2204.03251). ## Training Data Sorry, the corpus is not publicly available yet. Stay tuned! ## Intended uses & limitations The intended use of this model is to adapt the pre-trained model to our target corpus, COHFIE, with the intention of clustering sentences. You can finetune this model on downstream NLP tasks in Filipino. This model may not be safe for use in production since we did not examine it for biases. Please use it with caution. ## How to use Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("danjohnvelasco/roberta-tagalog-base-cohfie-v1") model = AutoModel.from_pretrained("danjohnvelasco/roberta-tagalog-base-cohfie-v1") text = "Replace me with any text in Filipino." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## BibTeX entry and citation info If you use this model, please cite our work: ``` @misc{https://doi.org/10.48550/arxiv.2204.03251, doi = {10.48550/ARXIV.2204.03251}, url = {https://arxiv.org/abs/2204.03251}, author = {Velasco, Dan John and Alba, Axel and Pelagio, Trisha Gail and Ramirez, Bryce Anthony and Cruz, Jan Christian Blaise and Cheng, Charibeth}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Automatic WordNet Construction using Word Sense Induction through Sentence Embeddings}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
Shadman-Rohan/results
2e854ecae191424537f727365d5931c912f41b99
2022-04-08T07:33:26.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Shadman-Rohan
null
Shadman-Rohan/results
4
null
transformers
19,260
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: results results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # results This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0002 - Accuracy: 0.8923 - F1: 0.9167 - Precision: 0.8462 - Recall: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.0026 | 1.0 | 1956 | 0.0003 | 0.9552 | 0.9636 | 0.9298 | 1.0 | | 0.0015 | 2.0 | 3912 | 0.0003 | 0.6688 | 0.7815 | 0.6416 | 0.9996 | | 0.0011 | 3.0 | 5868 | 0.0002 | 0.8923 | 0.9167 | 0.8462 | 1.0 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
Cheatham/xlm-roberta-large-finetuned-d12-006
002a165396647160372b8613aa0f68cd4d932962
2022-04-08T12:53:16.000Z
[ "pytorch", "xlm-roberta", "text-classification", "transformers" ]
text-classification
false
Cheatham
null
Cheatham/xlm-roberta-large-finetuned-d12-006
4
null
transformers
19,261
Entry not found
philschmid/MiniLMv2-L6-H768-sst2
cb11bf2966e73b91f9a5428fc6e1efaa3f5bf97a
2022-04-08T13:57:20.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
philschmid
null
philschmid/MiniLMv2-L6-H768-sst2
4
null
transformers
19,262
--- tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: MiniLMv2-L6-H768-sst2 results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: sst2 metrics: - name: Accuracy type: accuracy value: 0.9426605504587156 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # MiniLMv2-L6-H768-sst2 This model is a fine-tuned version of [nreimers/MiniLMv2-L6-H768-distilled-from-RoBERTa-Large](https://huggingface.co/nreimers/MiniLMv2-L6-H768-distilled-from-RoBERTa-Large) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.2013 - Accuracy: 0.9427 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - distributed_type: sagemaker_data_parallel - num_devices: 8 - total_train_batch_size: 256 - total_eval_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4734 | 1.0 | 264 | 0.2046 | 0.9243 | | 0.2399 | 2.0 | 528 | 0.1912 | 0.9346 | | 0.1791 | 3.0 | 792 | 0.1943 | 0.9335 | | 0.1442 | 4.0 | 1056 | 0.2103 | 0.9369 | | 0.1217 | 5.0 | 1320 | 0.2013 | 0.9427 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.2+cu113 - Datasets 1.18.4 - Tokenizers 0.11.6
Shadman-Rohan/FakevsRealNews
70c747ccd764032a3e66f293b2a21089f8924fed
2022-05-05T06:37:28.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Shadman-Rohan
null
Shadman-Rohan/FakevsRealNews
4
null
transformers
19,263
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: FakevsRealNews results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Coding challenge The challenge involved building a fake news classifier using the huggingface library. This final model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an fake-and-real-news dataset. The link to the dataset is https://www.kaggle.com/datasets/clmentbisaillon/fake-and-real-news-dataset. It achieves the following results on the evaluation set: - Loss: 0.0000 - Accuracy: 1.0 - F1: 1.0 - Precision: 1.0 - Recall: 1.0 ## Model description Finetuned Distilbert ## Training and evaluation data The training data was split into train-dev-test in the ratio 80-10-10. ## Training procedure The title and text of each news story was concatenated to form each datapoint. Then a model was finetuned to perform single label classification on each datapoint. The final prediction is the class with the highest probability. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.0503 | 1.0 | 1956 | 0.0025 | 0.9995 | 0.9995 | 0.9995 | 0.9995 | | 0.001 | 2.0 | 3912 | 0.0001 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0007 | 3.0 | 5868 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
damlab/GO-language
06255cf62962aae5d55b19982540a212783ef58b
2022-04-09T14:28:07.000Z
[ "pytorch", "bert", "fill-mask", "dataset:damlab/uniprot", "transformers", "license:mit", "autotrain_compatible" ]
fill-mask
false
damlab
null
damlab/GO-language
4
null
transformers
19,264
--- license: mit datasets: - damlab/uniprot metrics: - accuracy widget: - text: 'involved_in GO:0006468 involved_in GO:0007165 located_in GO:0042470 involved_in GO:0070372' example_title: 'Function' --- # GO-Language model ## Table of Contents - [Summary](#model-summary) - [Model Description](#model-description) - [Intended Uses & Limitations](#intended-uses-&-limitations) - [How to Use](#how-to-use) - [Training Data](#training-data) - [Training Procedure](#training-procedure) - [Preprocessing](#preprocessing) - [Training](#training) - [Evaluation Results](#evaluation-results) - [BibTeX Entry and Citation Info](#bibtex-entry-and-citation-info) ## Summary This model was built as a way to encode the Gene Ontology definition of a protein as vector representation. It was trained on a collection of gene-ontology terms from model organisms. Each function was sorted by the ID number and combined with its annotation description ie (`is_a`, `enables`, `located_in`, etc). The model is tokenized such that each description and GO term is its own token. This is intended to be used as a translation model between PROT-BERT and GO-Language. That type of translation model will be useful for predicting the function of novel genes. ## Model Description This model was trained using the damlab/uniprot dataset on the `go` field with 256 token chunks and a 15% mask rate. ## Intended Uses & Limitations This model is a useful encapsulation of gene ontology functions. It allows both an exploration of gene-level similarities as well as comparisons between functional terms. ## How to use As this is a BERT-style Masked Language learner, it can be used to determine the most likely token a masked position. ```python from transformers import pipeline unmasker = pipeline("fill-mask", model="damlab/GO-language") unmasker("involved_in [MASK] involved_in GO:0007165 located_in GO:0042470 involved_in GO:0070372") [{'score': 0.1040298342704773, 'token': 103, 'token_str': 'GO:0002250', 'sequence': 'involved_in GO:0002250 involved_in GO:0007165 located_in GO:0042470 involved_in GO:0070372'}, {'score': 0.018045395612716675, 'token': 21, 'token_str': 'GO:0005576', 'sequence': 'involved_in GO:0005576 involved_in GO:0007165 located_in GO:0042470 involved_in GO:0070372'}, {'score': 0.015035462565720081, 'token': 50, 'token_str': 'GO:0000139', 'sequence': 'involved_in GO:0000139 involved_in GO:0007165 located_in GO:0042470 involved_in GO:0070372'}, {'score': 0.01181247178465128, 'token': 37, 'token_str': 'GO:0007165', 'sequence': 'involved_in GO:0007165 involved_in GO:0007165 located_in GO:0042470 involved_in GO:0070372'}, {'score': 0.01000668853521347, 'token': 14, 'token_str': 'GO:0005737', 'sequence': 'involved_in GO:0005737 involved_in GO:0007165 located_in GO:0042470 involved_in GO:0070372'} ] ``` ## Training Data The dataset was trained using [damlab/uniprot](https://huggingface.co/datasets/damlab/uniprot) from a random initial model. The Gene Ontology functions were sorted (by ID number) along with annotating term. ## Training Procedure ### Preprocessing All strings were concatenated and chunked into 256 token chunks for training. A random 20% of chunks were held for validation. ### Training Training was performed with the HuggingFace training module using the MaskedLM data loader with a 15% masking rate. The learning rate was set at E-5, 50K warm-up steps, and a cosine_with_restarts learning rate schedule and continued until 3 consecutive epochs did not improve the loss on the held-out dataset. ## BibTeX Entry and Citation Info [More Information Needed]
akanksha-b14/songs_transcription_wav2vec_base2
994b64ae25bfa85f98195315a081aa83b24cd2d3
2022-04-09T19:24:18.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
akanksha-b14
null
akanksha-b14/songs_transcription_wav2vec_base2
4
null
transformers
19,265
Entry not found
linyi/chirowm-large
cdfb145de4087b8cfd5443faaf4357b336b4abd4
2022-04-11T03:57:22.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
linyi
null
linyi/chirowm-large
4
null
transformers
19,266
Entry not found
brad1141/baseline_gptv1
d3ccbcb43c90a5993caba29a2c03ff28284df2c6
2022-04-10T13:25:55.000Z
[ "pytorch", "gpt2", "token-classification", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
brad1141
null
brad1141/baseline_gptv1
4
null
transformers
19,267
--- license: mit tags: - generated_from_trainer model-index: - name: baseline_gptv1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # baseline_gptv1 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
anton-l/xtreme_s_xlsr_300m_fleurs_asr
ca5adeecf32fa6f101ebc6c782fb2d635a917cdf
2022-04-14T14:49:44.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
anton-l
null
anton-l/xtreme_s_xlsr_300m_fleurs_asr
4
null
transformers
19,268
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: xtreme_s_xlsr_300m_fleurs_asr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xtreme_s_xlsr_300m_fleurs_asr This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. It achieves the following results on the evaluation set: - Cer: 0.3330 - Loss: 1.2864 - Wer: 0.8344 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 32 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 5.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Cer | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:------:|:---------------:|:------:| | 4.677 | 0.13 | 1000 | 1.0 | 3.2323 | 1.0 | | 4.1512 | 0.26 | 2000 | 0.5098 | 1.7858 | 0.9869 | | 1.119 | 0.39 | 3000 | 0.4412 | 1.6628 | 0.9063 | | 0.8573 | 0.52 | 4000 | 0.3588 | 1.3440 | 0.9016 | | 1.0232 | 0.65 | 5000 | 0.3690 | 1.3004 | 0.8775 | | 0.6328 | 0.78 | 6000 | 0.3354 | 1.2219 | 0.8331 | | 0.6636 | 0.91 | 7000 | 0.3604 | 1.2839 | 0.8637 | | 0.6536 | 1.04 | 8000 | 0.3420 | 1.2481 | 0.8504 | | 0.5002 | 1.17 | 9000 | 0.3518 | 1.2514 | 0.8403 | | 0.4785 | 1.3 | 10000 | 0.3399 | 1.2409 | 0.8570 | | 0.517 | 1.43 | 11000 | 0.3599 | 1.3058 | 0.8654 | | 0.506 | 1.56 | 12000 | 0.3484 | 1.2350 | 0.8441 | | 0.4013 | 1.69 | 13000 | 0.3327 | 1.1982 | 0.8246 | | 0.3521 | 1.82 | 14000 | 0.3270 | 1.1653 | 0.8265 | | 0.4265 | 1.95 | 15000 | 0.3562 | 1.2647 | 0.8564 | | 0.3949 | 2.08 | 16000 | 0.3490 | 1.2988 | 0.8480 | | 0.3059 | 2.21 | 17000 | 0.3327 | 1.2332 | 0.8323 | | 0.3618 | 2.34 | 18000 | 0.3480 | 1.2394 | 0.8517 | | 0.2567 | 2.47 | 19000 | 0.3365 | 1.2294 | 0.8394 | | 0.3501 | 2.6 | 20000 | 0.3271 | 1.1853 | 0.8250 | | 0.2766 | 2.73 | 21000 | 0.3425 | 1.2339 | 0.8443 | | 0.3396 | 2.86 | 22000 | 0.3501 | 1.2768 | 0.8669 | | 0.3566 | 2.99 | 23000 | 0.3477 | 1.2648 | 0.8710 | | 0.3166 | 3.12 | 24000 | 0.3550 | 1.3773 | 0.8641 | | 0.2388 | 3.25 | 25000 | 0.3301 | 1.2374 | 0.8316 | | 0.2057 | 3.38 | 26000 | 0.3429 | 1.2846 | 0.8560 | | 0.2264 | 3.51 | 27000 | 0.3469 | 1.2676 | 0.8542 | | 0.1998 | 3.64 | 28000 | 0.3531 | 1.3365 | 0.8655 | | 0.2701 | 3.77 | 29000 | 0.3518 | 1.3124 | 0.8711 | | 0.18 | 3.9 | 30000 | 0.3498 | 1.3095 | 0.8648 | | 0.1337 | 4.03 | 31000 | 0.3397 | 1.2941 | 0.8452 | | 0.162 | 4.16 | 32000 | 0.3320 | 1.2942 | 0.8295 | | 0.2776 | 4.29 | 33000 | 0.3275 | 1.2690 | 0.8276 | | 0.1634 | 4.42 | 34000 | 0.3307 | 1.3145 | 0.8331 | | 0.2172 | 4.54 | 35000 | 0.3334 | 1.3031 | 0.8435 | | 0.1305 | 4.67 | 36000 | 0.3303 | 1.2768 | 0.8321 | | 0.1436 | 4.8 | 37000 | 0.3353 | 1.2968 | 0.8416 | | 0.134 | 4.93 | 38000 | 0.3330 | 1.2864 | 0.8344 | ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.10.1+cu111 - Datasets 1.18.4.dev0 - Tokenizers 0.11.6
danhsf/xlm-roberta-base-finetuned-panx-de
8b066a9306b2c645184e7665214910c6379e2fd0
2022-04-10T17:53:31.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
danhsf
null
danhsf/xlm-roberta-base-finetuned-panx-de
4
null
transformers
19,269
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8590909090909091 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1380 - F1: 0.8591 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2642 | 1.0 | 525 | 0.1624 | 0.8251 | | 0.1315 | 2.0 | 1050 | 0.1445 | 0.8508 | | 0.0832 | 3.0 | 1575 | 0.1380 | 0.8591 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
abdusahmbzuai/ft-opensubs-ar-en-marianmt
a01198362382d65f4c2e27aee75abc91819d3aef
2022-04-10T17:47:27.000Z
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
abdusahmbzuai
null
abdusahmbzuai/ft-opensubs-ar-en-marianmt
4
null
transformers
19,270
Entry not found
abdelrahman-alkhodary/distilbert-base-uncased-finetuned-emotion
1bb9527ca8a893ff23b4a046a5842ba656924c1d
2022-04-14T14:14:31.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers" ]
text-classification
false
abdelrahman-alkhodary
null
abdelrahman-alkhodary/distilbert-base-uncased-finetuned-emotion
4
null
transformers
19,271
Entry not found
ChrisZeng/electra-large-discriminator-nli-efl-hateval
a6f0d7f8518f5a6647ae877e70e0ab610037e054
2022-04-11T19:23:26.000Z
[ "pytorch", "electra", "text-classification", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
ChrisZeng
null
ChrisZeng/electra-large-discriminator-nli-efl-hateval
4
null
transformers
19,272
--- tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: electra-large-discriminator-nli-efl-hateval results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # electra-large-discriminator-nli-efl-hateval This model is a fine-tuned version of [ynie/electra-large-discriminator-snli_mnli_fever_anli_R1_R2_R3-nli](https://huggingface.co/ynie/electra-large-discriminator-snli_mnli_fever_anli_R1_R2_R3-nli) on the None dataset. It achieves the following results on the evaluation set: - Accuracy: 0.798 - F1: 0.7968 - Loss: 0.4166 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Accuracy | F1 | Validation Loss | |:-------------:|:-----:|:----:|:--------:|:------:|:---------------:| | 0.4175 | 1.0 | 210 | 0.7317 | 0.7305 | 0.4020 | | 0.3061 | 2.0 | 420 | 0.768 | 0.7675 | 0.3520 | | 0.2588 | 3.0 | 630 | 0.79 | 0.7888 | 0.3253 | | 0.234 | 4.0 | 840 | 0.788 | 0.7877 | 0.3373 | | 0.2116 | 5.0 | 1050 | 0.804 | 0.8033 | 0.3247 | | 0.1974 | 6.0 | 1260 | 0.793 | 0.7928 | 0.3400 | | 0.1807 | 7.0 | 1470 | 0.7973 | 0.7969 | 0.3511 | | 0.1715 | 8.0 | 1680 | 0.7993 | 0.7989 | 0.3496 | | 0.1577 | 9.0 | 1890 | 0.8043 | 0.8032 | 0.3507 | | 0.1469 | 10.0 | 2100 | 0.798 | 0.7970 | 0.3604 | | 0.1394 | 11.0 | 2310 | 0.7967 | 0.7957 | 0.3734 | | 0.1322 | 12.0 | 2520 | 0.7913 | 0.7906 | 0.3929 | | 0.1231 | 13.0 | 2730 | 0.795 | 0.7941 | 0.3954 | | 0.1189 | 14.0 | 2940 | 0.7977 | 0.7963 | 0.3994 | | 0.1143 | 15.0 | 3150 | 0.7993 | 0.7980 | 0.3995 | | 0.1083 | 16.0 | 3360 | 0.7927 | 0.7918 | 0.4125 | | 0.1079 | 17.0 | 3570 | 0.7993 | 0.7979 | 0.4036 | | 0.1055 | 18.0 | 3780 | 0.7967 | 0.7956 | 0.4121 | | 0.1006 | 19.0 | 3990 | 0.7973 | 0.7961 | 0.4152 | | 0.101 | 20.0 | 4200 | 0.798 | 0.7968 | 0.4166 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6
Jatin-WIAI/kannada_relevance_clf
5fab527fdbd703a6a93992435002e8e19216f4f4
2022-04-11T08:07:53.000Z
[ "pytorch", "xlm-roberta", "text-classification", "transformers" ]
text-classification
false
Jatin-WIAI
null
Jatin-WIAI/kannada_relevance_clf
4
null
transformers
19,273
Entry not found
Giyaseddin/distilbert-base-uncased-finetuned-short-answer-assessment
4904ea2889521c31ffcbe63bdfa9d55dcf84e81a
2022-04-11T15:17:08.000Z
[ "pytorch", "distilbert", "text-classification", "en", "dataset:Short Question Answer Assessment Dataset", "transformers", "license:apache-2.0" ]
text-classification
false
Giyaseddin
null
Giyaseddin/distilbert-base-uncased-finetuned-short-answer-assessment
4
null
transformers
19,274
--- license: apache-2.0 language: en library: transformers other: distilbert datasets: - Short Question Answer Assessment Dataset --- # DistilBERT base uncased model for Short Question Answer Assessment ## Model description DistilBERT is a transformers model, smaller and faster than BERT, which was pretrained on the same corpus in a self-supervised fashion, using the BERT base model as a teacher. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts using the BERT base model. This is a classification model that solves Short Question Answer Assessment task, finetuned [pretrained DistilBERT model](https://huggingface.co/distilbert-base-uncased) on [Question Answer Assessment dataset](#) ## Intended uses & limitations This can only be used for the kind of questions and answers provided by that are similar to the ones in the dataset of [Banjade et al.](https://aclanthology.org/W16-0520.pdf). ### How to use You can use this model directly with a : ```python >>> from transformers import pipeline >>> classifier = pipeline("text-classification", model="Giyaseddin/distilbert-base-uncased-finetuned-short-answer-assessment", return_all_scores=True) >>> context = "To rescue a child who has fallen down a well, rescue workers fasten him to a rope, the other end of which is then reeled in by a machine. The rope pulls the child straight upward at steady speed." >>> question = "How does the amount of tension in the rope compare to the downward force of gravity acting on the child?" >>> ref_answer = "Since the child is being raised straight upward at a constant speed, the net force on the child is zero and all the forces balance. That means that the tension in the rope balances the downward force of gravity." >>> student_answer = "The tension force is higher than the force of gravity." >>> >>> body = " [SEP] ".join([context, question, ref_answer, student_answer]) >>> raw_results = classifier([body]) >>> raw_results [[{'label': 'LABEL_0', 'score': 0.0004029414849355817}, {'label': 'LABEL_1', 'score': 0.0005476847873069346}, {'label': 'LABEL_2', 'score': 0.998059093952179}, {'label': 'LABEL_3', 'score': 0.0009902542224153876}]] >>> _LABELS_ID2NAME = {0: "correct", 1: "correct_but_incomplete", 2: "contradictory", 3: "incorrect"} >>> results = [] >>> for result in raw_results: for score in result: results.append([ {_LABELS_ID2NAME[int(score["label"][-1:])]: "%.2f" % score["score"]} ]) >>> results [[{'correct': '0.00'}], [{'correct_but_incomplete': '0.00'}], [{'contradictory': '1.00'}], [{'incorrect': '0.00'}]] ``` ### Limitations and bias Even if the training data used for this model could be characterized as fairly neutral, this model can have biased predictions. It also inherits some of [the bias of its teacher model](https://huggingface.co/bert-base-uncased#limitations-and-bias). This bias will also affect all fine-tuned versions of this model. Also one of the limiations of this model is the length, longer sequences would lead to wrong predictions, due to the pre-processing phase (after concatentating the input sequences, the important student answer might be pruned!) ## Pre-training data DistilBERT pretrained on the same data as BERT, which is [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers). ## Fine-tuning data The annotated dataset consists of 900 students’ short constructed answers and their correctness in the given context. Four qualitative levels of correctness are defined, correct, correct-but-incomplete, contradictory and Incorrect. ## Training procedure ### Preprocessing In the preprocessing phase, the following parts are concatenated: _question context_, _question_, _reference_answer_, and _student_answer_ using the separator `[SEP]`. This makes the full text as: ``` [CLS] Context Sentence [SEP] Question Sentence [SEP] Reference Answer Sentence [SEP] Student Answer Sentence [CLS] ``` The data are splitted according to the following ratio: - Training set 80%. - Test set 20%. Lables are mapped as: `{0: "correct", 1: "correct_but_incomplete", 2: "contradictory", 3: "incorrect"}` ### Fine-tuning The model was finetuned on GeForce GTX 960M for 20 minuts. The parameters are: | Parameter | Value | |:-------------------:|:-----:| | Learning rate | 5e-5 | | Weight decay | 0.01 | | Training batch size | 8 | | Epochs | 4 | Here is the scores during the training: | Epoch | Training Loss | Validation Loss | Accuracy | F1 | Precision | Recall | |:----------:|:-------------:|:-----------------:|:----------:|:---------:|:----------:|:--------:| | 1 | No log | 0.665765 | 0.755330 | 0.743574 | 0.781210 | 0.755330 | | 2 | 0.932100 | 0.362124 | 0.890355 | 0.889875 | 0.891407 | 0.890355 | | 3 | 0.364900 | 0.226225 | 0.942132 | 0.941802 | 0.942458 | 0.942132 | | 3 | 0.176900 | 0.193660 | 0.954315 | 0.954175 | 0.954985 | 0.954315 | ## Evaluation results When fine-tuned on downstream task of Question Answer Assessment, 4 class classification, this model achieved the following results: (scores are rounded to 2 floating points) | | precision | recall | f1-score | support | |:------------------------:|:----------:|:-------:|:--------:|:-------:| | _correct_ | 0.938 | 0.989 | 0.963 | 366 | | _correct_but_incomplete_ | 0.975 | 0.922 | 0.948 | 257 | | _contradictory_ | 0.946 | 0.938 | 0.942 | 113 | | _incorrect_ | 0.963 | 0.944 | 0.953 | 249 | | accuracy | - | - | 0.954 | 985 | | macro avg | 0.956 | 0.948 | 0.952 | 985 | | weighted avg | 0.955 | 0.954 | 0.954 | 985 | Confusion matrix: | Actual \ Predicted | _correct_ | _correct_but_incomplete_ | _contradictory_ | _incorrect_ | |:------------------------:|:---------:|:------------------------:|:---------------:|:-----------:| | _correct_ | 362 | 4 | 0 | 0 | | _correct_but_incomplete_ | 13 | 237 | 0 | 7 | | _contradictory_ | 4 | 1 | 106 | 2 | | _incorrect_ | 7 | 1 | 6 | 235 | The AUC score is: 'micro'= **0.9695** and 'macro': **0.9659**
aherzberg/wav2vec2-base-finetuned-ks
ff70e92dfdf8d3dd34a72483f4d9bdf47308e0f9
2022-04-11T18:18:10.000Z
[ "pytorch", "tensorboard", "wav2vec2", "audio-classification", "dataset:superb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
audio-classification
false
aherzberg
null
aherzberg/wav2vec2-base-finetuned-ks
4
null
transformers
19,275
--- license: apache-2.0 tags: - generated_from_trainer datasets: - superb metrics: - accuracy model-index: - name: wav2vec2-base-finetuned-ks results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-finetuned-ks This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the superb dataset. It achieves the following results on the evaluation set: - Loss: 0.0919 - Accuracy: 0.9828 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6135 | 1.0 | 399 | 0.5203 | 0.9404 | | 0.2519 | 2.0 | 798 | 0.1896 | 0.9768 | | 0.1804 | 3.0 | 1197 | 0.1258 | 0.9771 | | 0.1751 | 4.0 | 1596 | 0.1047 | 0.9812 | | 0.1628 | 5.0 | 1995 | 0.0919 | 0.9828 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
arampacha/clip-test
21857b464cf0639ebe413049ae553b2c053f8900
2022-04-11T22:57:54.000Z
[ "pytorch", "tensorboard", "clip", "feature-extraction", "dataset:arampacha/rsicd", "transformers", "generated_from_trainer", "model-index" ]
feature-extraction
false
arampacha
null
arampacha/clip-test
4
1
transformers
19,276
--- tags: - generated_from_trainer datasets: - arampacha/rsicd model-index: - name: clip-test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # clip-test This model is a fine-tuned version of [openai/clip-vit-base-patch32](https://huggingface.co/openai/clip-vit-base-patch32) on the arampacha/rsicd dataset. It achieves the following results on the evaluation set: - Loss: 4.2656 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
hufanyoung/segformer-b0-finetuned-segments-sidewalk-2
c0e63fbc0ff3a4b19c8a381d5e07df4ecc59a224
2022-04-16T02:16:14.000Z
[ "pytorch", "tensorboard", "segformer", "transformers", "vision", "image-segmentation", "generated_from_trainer", "license:apache-2.0", "model-index" ]
image-segmentation
false
hufanyoung
null
hufanyoung/segformer-b0-finetuned-segments-sidewalk-2
4
null
transformers
19,277
--- license: apache-2.0 tags: - vision - image-segmentation - generated_from_trainer model-index: - name: segformer-b0-finetuned-segments-sidewalk-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # segformer-b0-finetuned-segments-sidewalk-2 This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the segments/sidewalk-semantic dataset. It achieves the following results on the evaluation set: - Loss: 2.9327 - Mean Iou: 0.0763 - Mean Accuracy: 0.1260 - Overall Accuracy: 0.5923 - Per Category Iou: [nan, 0.15598158400203022, 0.6233750625153907, 0.0037560777123078824, 0.026995519273962765, 0.027599075064035524, 0.0, 0.0010671752114502803, 0.0, 0.0, 0.503652156236298, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.42226922942999406, 0.0, 0.0005751844669974061, 0.0, 0.0, 0.0, 0.015053303500921295, 0.0, 0.0, 0.0, 0.5380260834627074, 0.2004924888392474, 0.07113330974397604, 7.792680075848753e-05, 0.000328515111695138, 0.0025085129486024, 0.0] - Per Category Accuracy: [nan, 0.17282441039529764, 0.9228726118961177, 0.00408103876916878, 0.028255152590055656, 0.029544523907019265, nan, 0.0010791707371488259, 0.0, 0.0, 0.8681646650418041, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.7122996003019028, 0.0, 0.0005801259615003622, 0.0, 0.0, nan, 0.02304960072549563, 0.0, 0.0, 0.0, 0.9348363685365858, 0.2596289024956107, 0.07122958643730157, 8.48216389425569e-05, 0.0005356047133214773, 0.0026059641588056346, 0.0] ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 0.05 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:| | 3.0624 | 0.03 | 10 | 3.1628 | 0.0726 | 0.1219 | 0.5758 | [nan, 0.0878087898079964, 0.611982872765419, 0.0001999765816897758, 0.006930751650791711, 0.0208104329339671, 0.0, 0.0010631316774049914, 0.0, 0.0, 0.4839157481183621, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.39292052415275885, 0.0, 0.0003268797082673576, 0.0011424188270622699, 0.0, 0.0, 0.004317032040472175, 3.142508260307427e-05, 0.0, 0.0, 0.5537894233680722, 0.28184052017073197, 0.015966383939961543, 0.0002995587926924772, 0.0005713078253519804, 0.0035316933149879015, 0.0] | [nan, 0.09656561651317118, 0.9239613003877697, 0.00021265611687132485, 0.007163978434475801, 0.0222089828684614, nan, 0.0010774805715464, 0.0, 0.0, 0.8583517795809614, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.705533848895072, 0.0, 0.00033222625115695, 0.0011495555325644448, 0.0, nan, 0.008061062548807214, 3.244014792707455e-05, 0.0, 0.0, 0.8715627360179777, 0.3828074002074446, 0.01597238073499201, 0.0003298619292210546, 0.0011388100215281895, 0.003805890022240969, 0.0] | | 2.6259 | 0.05 | 20 | 2.9327 | 0.0763 | 0.1260 | 0.5923 | [nan, 0.15598158400203022, 0.6233750625153907, 0.0037560777123078824, 0.026995519273962765, 0.027599075064035524, 0.0, 0.0010671752114502803, 0.0, 0.0, 0.503652156236298, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.42226922942999406, 0.0, 0.0005751844669974061, 0.0, 0.0, 0.0, 0.015053303500921295, 0.0, 0.0, 0.0, 0.5380260834627074, 0.2004924888392474, 0.07113330974397604, 7.792680075848753e-05, 0.000328515111695138, 0.0025085129486024, 0.0] | [nan, 0.17282441039529764, 0.9228726118961177, 0.00408103876916878, 0.028255152590055656, 0.029544523907019265, nan, 0.0010791707371488259, 0.0, 0.0, 0.8681646650418041, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.7122996003019028, 0.0, 0.0005801259615003622, 0.0, 0.0, nan, 0.02304960072549563, 0.0, 0.0, 0.0, 0.9348363685365858, 0.2596289024956107, 0.07122958643730157, 8.48216389425569e-05, 0.0005356047133214773, 0.0026059641588056346, 0.0] | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
nntadotzip/xlnet-base-cased-IUChatbot-ontologyDts-12April2022
09806b2ccdb739b5f9c38552c965a6e3a5d44156
2022-04-12T06:37:05.000Z
[ "pytorch", "tensorboard", "xlnet", "question-answering", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
question-answering
false
nntadotzip
null
nntadotzip/xlnet-base-cased-IUChatbot-ontologyDts-12April2022
4
null
transformers
19,278
--- license: mit tags: - generated_from_trainer model-index: - name: xlnet-base-cased-IUChatbot-ontologyDts-12April2022 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlnet-base-cased-IUChatbot-ontologyDts-12April2022 This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co/xlnet-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6500 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 294 | 0.7861 | | 1.2483 | 2.0 | 588 | 0.6727 | | 1.2483 | 3.0 | 882 | 0.6500 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
smeoni/nbme-Bio_ClinicalBERT
d1e2c9abfa063cc21d09a13b2ae1c11840b0bcb0
2022-04-12T20:02:31.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
smeoni
null
smeoni/nbme-Bio_ClinicalBERT
4
null
transformers
19,279
Entry not found
Xuan-Rui/pet-10-p0
ac00d7e824820c508ab609fbd00ae75dd998d2d1
2022-04-13T05:02:25.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Xuan-Rui
null
Xuan-Rui/pet-10-p0
4
null
transformers
19,280
Entry not found
Xuan-Rui/pet-10-p1
c60dd38672166df1bc0dad988d21df2eeff7076d
2022-04-13T05:09:22.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Xuan-Rui
null
Xuan-Rui/pet-10-p1
4
null
transformers
19,281
Entry not found
Xuan-Rui/pet-10-p2
94f3d7b77c994b095657aeaf6537ecfb41aceec3
2022-04-13T05:15:35.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Xuan-Rui
null
Xuan-Rui/pet-10-p2
4
null
transformers
19,282
Entry not found
Xuan-Rui/pet-10-p3
bc1ff3ef7cba8b15894a88f5d2eabcc8ad14f5b8
2022-04-13T05:22:06.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Xuan-Rui
null
Xuan-Rui/pet-10-p3
4
null
transformers
19,283
Entry not found
Xuan-Rui/pet-10-p4
39dcfc2c575b285ad7b786246946fdfd5342b6f4
2022-04-13T05:28:16.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Xuan-Rui
null
Xuan-Rui/pet-10-p4
4
null
transformers
19,284
Entry not found
Xuan-Rui/pet-100-p0
c6b72ab2f4d096f4671ca8105832906d49b56ea2
2022-04-13T05:57:01.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Xuan-Rui
null
Xuan-Rui/pet-100-p0
4
null
transformers
19,285
Entry not found
Xuan-Rui/pet-100-p1
8b88d4ff8b8faa6458b4b8dc47043197b655ecaa
2022-04-13T06:03:13.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Xuan-Rui
null
Xuan-Rui/pet-100-p1
4
null
transformers
19,286
Entry not found
Xuan-Rui/pet-100-p2
b7dddd50c3b45e358cb12967570c3e400bac5c90
2022-04-13T06:09:10.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Xuan-Rui
null
Xuan-Rui/pet-100-p2
4
null
transformers
19,287
Entry not found
Xuan-Rui/pet-100-p3
0be43ca93c4359de8d5f1acc688a80d2d966f0a6
2022-04-13T06:16:06.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Xuan-Rui
null
Xuan-Rui/pet-100-p3
4
null
transformers
19,288
Entry not found
Xuan-Rui/pet-100-p4
dfcc7067b18781060d97e7f9e44bb21cbce483e6
2022-04-13T06:22:15.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Xuan-Rui
null
Xuan-Rui/pet-100-p4
4
null
transformers
19,289
Entry not found
Xuan-Rui/pet-100-all
2febaa41ff8f5488c240d3505a5514a6f2345149
2022-04-13T06:28:24.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Xuan-Rui
null
Xuan-Rui/pet-100-all
4
null
transformers
19,290
Entry not found
Xuan-Rui/pet-1000-p0
28faeeee3bf1e5ef9a4b41e627cc91eedf75a4ab
2022-04-13T06:34:51.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Xuan-Rui
null
Xuan-Rui/pet-1000-p0
4
null
transformers
19,291
Entry not found
Xuan-Rui/pet-1000-p1
58dbaf3515fff7fc153591857a348062fd02a092
2022-04-13T06:40:47.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Xuan-Rui
null
Xuan-Rui/pet-1000-p1
4
null
transformers
19,292
Entry not found
Xuan-Rui/pet-1000-p2
cf6034b4842b66d59756f9fe247fdb3219680c2a
2022-04-13T06:46:53.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Xuan-Rui
null
Xuan-Rui/pet-1000-p2
4
null
transformers
19,293
Entry not found
Xuan-Rui/pet-1000-p3
9242bc4a18da3083efd456c6d360d9a9dc5d1d98
2022-04-13T06:53:44.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Xuan-Rui
null
Xuan-Rui/pet-1000-p3
4
null
transformers
19,294
Entry not found
Xuan-Rui/ipet-10-all
940707ebe131822912b9d8a44f63a1c0a0c24b46
2022-04-13T07:13:09.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Xuan-Rui
null
Xuan-Rui/ipet-10-all
4
null
transformers
19,295
Entry not found
Xuan-Rui/ipet-100-all
d099f123b96e9bd417088f1b4c7a0a74f3ddaa62
2022-04-13T07:19:23.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Xuan-Rui
null
Xuan-Rui/ipet-100-all
4
null
transformers
19,296
Entry not found
Sadhaklal/albert-large-v2-subword-masking-domain-adapted-nbme
6b6bf9d2071e42c1a811902e84ecb07e27f146a4
2022-04-24T06:47:30.000Z
[ "pytorch", "tensorboard", "albert", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
Sadhaklal
null
Sadhaklal/albert-large-v2-subword-masking-domain-adapted-nbme
4
null
transformers
19,297
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: albert-large-v2-subword-masking-domain-adapted-nbme results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # albert-large-v2-subword-masking-domain-adapted-nbme This model is a fine-tuned version of [albert-large-v2](https://huggingface.co/albert-large-v2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1807 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.7821 | 1.0 | 1790 | 1.3868 | | 1.2825 | 2.0 | 3580 | 1.2248 | | 1.1817 | 3.0 | 5370 | 1.1712 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
studio-ousia/mluke-base-lite
acc1f9fd333435f37d6dea294fc38f8939edf0c3
2022-05-11T08:17:23.000Z
[ "pytorch", "luke", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
studio-ousia
null
studio-ousia/mluke-base-lite
4
null
transformers
19,298
Entry not found
studio-ousia/mluke-large-lite
b7e2c739af9d1da4ac5dc6cfa5052437bd76db8d
2022-05-11T08:18:07.000Z
[ "pytorch", "luke", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
studio-ousia
null
studio-ousia/mluke-large-lite
4
null
transformers
19,299
Entry not found