modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
l3cube-pune/hing-roberta
2413811a1748c9b290a150b453056f2ac8aff498
2022-06-26T15:12:18.000Z
[ "pytorch", "xlm-roberta", "fill-mask", "hi", "en", "dataset:L3Cube-HingCorpus", "arxiv:2204.08398", "transformers", "codemix", "license:cc-by-4.0", "autotrain_compatible" ]
fill-mask
false
l3cube-pune
null
l3cube-pune/hing-roberta
4
null
transformers
19,100
--- license: cc-by-4.0 language: - hi - en tags: - hi - en - codemix datasets: - L3Cube-HingCorpus --- ## HingRoBERTa HingRoBERTa is a Hindi-English code-mixed RoBERTa model trained on roman text. It is an xlm-RoBERTa model fine-tuned on L3Cube-HingCorpus. <br> [dataset link] (https://github.com/l3cube-pune/code-mixed-nlp) More details on the dataset, models, and baseline results can be found in our [paper] (https://arxiv.org/abs/2204.08398) ``` @InProceedings{nayak-joshi:2022:WILDRE6, author = {Nayak, Ravindra and Joshi, Raviraj}, title = {L3Cube-HingCorpus and HingBERT: A Code Mixed Hindi-English Dataset and BERT Language Models}, booktitle = {Proceedings of The WILDRE-6 Workshop within the 13th Language Resources and Evaluation Conference}, month = {June}, year = {2022}, address = {Marseille, France}, publisher = {European Language Resources Association}, pages = {7--12} } ```
azaninello/distilgpt2-finetuned-shroomstoy
72cd4392f88fa875763138be9faf9c4ab6fd53bd
2022-03-04T19:13:30.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-generation
false
azaninello
null
azaninello/distilgpt2-finetuned-shroomstoy
4
null
transformers
19,101
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-shroomstoy results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-shroomstoy This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.0958 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 10 | 4.1207 | | No log | 2.0 | 20 | 4.1009 | | No log | 3.0 | 30 | 4.0958 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.6
nielsr/segformer-b0-finetuned-segments-sidewalk
3805bb23b5a8283ad0c21863b7dea9ebb2969ab5
2022-03-05T09:39:11.000Z
[ "pytorch", "tensorboard", "segformer", "transformers", "vision", "image-segmentation", "generated_from_trainer", "license:apache-2.0", "model-index" ]
image-segmentation
false
nielsr
null
nielsr/segformer-b0-finetuned-segments-sidewalk
4
null
transformers
19,102
--- license: apache-2.0 tags: - vision - image-segmentation - generated_from_trainer model-index: - name: segformer-b0-finetuned-segments-sidewalk results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # segformer-b0-finetuned-segments-sidewalk This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the segments/sidewalk-semantic dataset. It achieves the following results on the evaluation set: - Loss: 0.5679 - Miou: 0.2769 - Macc: 0.3331 - Overall Accuracy: 0.8424 - Per Category Iou: [nan, 0.7174911859423314, 0.8790751054409742, 0.6065232798410057, 0.6975274018055722, 0.3486407385349508, nan, 0.40093167116703843, 0.28779837903852556, 0.0, 0.7870339041746186, 0.0, 0.0, 0.0, 0.0, 0.1464360606454247, 0.0, 0.0, 0.6770283275082656, 0.0, 0.338555175257431, 0.14697310016578427, 0.0, nan, 0.0, 0.27163002251763635, 0.0, 0.0, 0.8257437911843676, 0.7169333376341568, 0.9108105550493353, 0.0, 0.0, 0.1016801552778885, 0.0] - Per Category Accuracy: [nan, 0.9199960254104915, 0.9327745517652714, 0.7304629327758765, 0.7378309547498484, 0.45295941407150275, nan, 0.5188608021128075, 0.5327441812670195, 0.0, 0.9353764765979435, 0.0, 0.0, 0.0, 0.0, 0.1588525415198792, 0.0, 0.0, 0.9238854794385364, 0.0, 0.4400394213522207, 0.15130051149615126, 0.0, nan, 0.0, 0.3570096986572905, 0.0, 0.0, 0.9359897980968498, 0.8570458108260572, 0.9549583230619891, 0.0, 0.0, 0.11786971668879294, 0.0] ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Miou | Macc | Overall Accuracy | Per Category Iou | Per Category Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:----------------:|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:| | 1.357 | 1.0 | 400 | 1.0006 | 0.1632 | 0.2069 | 0.7524 | [nan, 0.5642795884663824, 0.7491853309192827, 0.0, 0.40589649630192104, 0.02723606910696284, nan, 0.0002207740938439576, 0.0, 0.0, 0.6632462867093903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.5671699281129761, 0.0, 0.0009207911027492868, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.7507253434892517, 0.6157793573905029, 0.8774768871968204, 0.0, 0.0, 0.0, 0.0] | [nan, 0.6839993330882016, 0.9786792586618772, 0.0, 0.4818162160949784, 0.02785198456498826, nan, 0.00022133459131411787, 0.0, 0.0, 0.9043689536433023, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8606078323791991, 0.0, 0.0009210330367246509, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.895198618615298, 0.8549807032886052, 0.9328734839751688, 0.0, 0.0, 0.0, 0.0] | | 1.6346 | 2.0 | 800 | 0.7856 | 0.1903 | 0.2334 | 0.7917 | [nan, 0.6276046255936906, 0.8379492348238635, 0.0, 0.5220035981992285, 0.19441920935217594, nan, 0.16135703555333, 0.0, 0.0, 0.7357165628674137, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.567598980063164, 0.0, 0.07867871139133086, 0.0, 0.0, nan, 0.0, 0.02123705398363847, 0.0, 0.0, 0.7917172051343153, 0.6589515948064048, 0.8916684207946344, 0.0, 0.0, 0.00013685918191589503, 0.0] | [nan, 0.8610263337355926, 0.9499345560017969, 0.0, 0.5908796687797819, 0.2144081438468206, nan, 0.1813236746419022, 0.0, 0.0, 0.8825551027577866, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.9239907140298015, 0.0, 0.08495225520298297, 0.0, 0.0, nan, 0.0, 0.021302829364985724, 0.0, 0.0, 0.9258397010509258, 0.8834861376443207, 0.9489131468773239, 0.0, 0.0, 0.0001372777815910495, 0.0] | | 0.659 | 3.0 | 1200 | 0.6798 | 0.2215 | 0.2687 | 0.8107 | [nan, 0.6728474586764454, 0.8404607924530816, 0.21147709475332813, 0.5407350347311378, 0.23535489130104167, nan, 0.3087159264982809, 0.0060319580742948155, 0.0, 0.7331305064022374, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6378031991744924, 0.0, 0.35289337122777764, 6.24997656258789e-05, 0.0, nan, 0.0, 0.14698390926256938, 0.0, 0.0, 0.8019042204623998, 0.669283249725758, 0.8928145424856038, 0.0, 0.0, 0.03847722460691187, 0.0] | [nan, 0.866012011452706, 0.9627112260298595, 0.21236715482371135, 0.5645869262075475, 0.2750610095322395, nan, 0.3857655597748765, 0.0060319580742948155, 0.0, 0.939196440844118, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8380282443529743, 0.0, 0.5749902063170915, 6.256068386334744e-05, 0.0, nan, 0.0, 0.1605725590139305, 0.0, 0.0, 0.9212803460870584, 0.8870298583701837, 0.959700359744241, 0.0, 0.0, 0.04453994364914478, 0.0] | | 0.5481 | 4.0 | 1600 | 0.5999 | 0.2522 | 0.2998 | 0.8312 | [nan, 0.7078353465279917, 0.8661728761172196, 0.3857324719136883, 0.6338278880825696, 0.3440050078187208, nan, 0.35980405625532347, 0.23875867241702606, 0.0, 0.773703347865372, 0.0, 0.0, 0.0, 0.0, 0.0004931363471679884, 0.0, 0.0, 0.6554146448850521, 0.0, 0.367673493717809, 0.03089804641909161, 0.0, nan, 0.0, 0.21529017459808872, 0.0, 0.0, 0.818951849158376, 0.7007504838794707, 0.9053929635423027, 0.0, 0.0, 0.06626212301200333, 0.0] | [nan, 0.8955207784307155, 0.9536263694097721, 0.39712577675621036, 0.6989299616008556, 0.4248959179453637, nan, 0.42984959564233455, 0.26168627652468784, 0.0, 0.9055166364779607, 0.0, 0.0, 0.0, 0.0, 0.0004932058379466533, 0.0, 0.0, 0.8632164276000204, 0.0, 0.6365580872107307, 0.031401709658368616, 0.0, nan, 0.0, 0.2497286263775161, 0.0, 0.0, 0.9296676429517725, 0.8858954297713482, 0.9555756265860916, 0.0, 0.0, 0.0750792276952902, 0.0] | | 0.7855 | 5.0 | 2000 | 0.5679 | 0.2769 | 0.3331 | 0.8424 | [nan, 0.7174911859423314, 0.8790751054409742, 0.6065232798410057, 0.6975274018055722, 0.3486407385349508, nan, 0.40093167116703843, 0.28779837903852556, 0.0, 0.7870339041746186, 0.0, 0.0, 0.0, 0.0, 0.1464360606454247, 0.0, 0.0, 0.6770283275082656, 0.0, 0.338555175257431, 0.14697310016578427, 0.0, nan, 0.0, 0.27163002251763635, 0.0, 0.0, 0.8257437911843676, 0.7169333376341568, 0.9108105550493353, 0.0, 0.0, 0.1016801552778885, 0.0] | [nan, 0.9199960254104915, 0.9327745517652714, 0.7304629327758765, 0.7378309547498484, 0.45295941407150275, nan, 0.5188608021128075, 0.5327441812670195, 0.0, 0.9353764765979435, 0.0, 0.0, 0.0, 0.0, 0.1588525415198792, 0.0, 0.0, 0.9238854794385364, 0.0, 0.4400394213522207, 0.15130051149615126, 0.0, nan, 0.0, 0.3570096986572905, 0.0, 0.0, 0.9359897980968498, 0.8570458108260572, 0.9549583230619891, 0.0, 0.0, 0.11786971668879294, 0.0] | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.6
ietz/token-paraphrase-MiniLM-L6-v2
248c8e845621ffd5b8c92d3207da3f2083237b8a
2022-05-01T19:28:23.000Z
[ "pytorch", "bert", "feature-extraction", "transformers", "license:apache-2.0" ]
feature-extraction
false
ietz
null
ietz/token-paraphrase-MiniLM-L6-v2
4
null
transformers
19,103
--- license: apache-2.0 ---
mp6kv/feedback_intent_test
43fb1d401b619276accff0080a61434b9e8aebbf
2022-03-24T18:42:11.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
mp6kv
null
mp6kv/feedback_intent_test
4
null
transformers
19,104
--- license: mit tags: - generated_from_trainer model-index: - name: feedback_intent_test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # feedback_intent_test This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. ## Model description Custom data generated labeling text according to these three categories. - Positive : Encouraging the student that they are correct and on the right track - Neutral : Mixed feedback or feedback that asks for more information - Negative : Informing the student they need to change direction or that they are not correct Takes a user input of string text and classifies it according to one of three categories. ## Intended uses & limitations from transformers import pipeline classifier = pipeline("text-classification",model="mp6kv/feedback_intent_test") output = classifier("great job, you're getting it!") score = output[0]['score'] label = output[0]['label'] ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.6
Britain/DialoGPT-small-DanyBotTwo
bd02fb5aa9c36d721e181801f41a1ccf79b22551
2022-03-06T07:05:00.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Britain
null
Britain/DialoGPT-small-DanyBotTwo
4
null
transformers
19,105
--- tags: - conversational --- # DanyBot
nepp1d0/smiles-target-interaction
39985d394cb0f47eb45038f16d82b7473c9a69f4
2022-03-10T21:31:32.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
nepp1d0
null
nepp1d0/smiles-target-interaction
4
null
transformers
19,106
Entry not found
sanchit-gandhi/wav2vec2-2-rnd
6d4ae6edb3d69e5c8a1b73e72c0af8d804e90977
2022-03-08T22:30:32.000Z
[ "pytorch", "tensorboard", "speech-encoder-decoder", "automatic-speech-recognition", "dataset:librispeech_asr", "transformers", "generated_from_trainer", "model-index" ]
automatic-speech-recognition
false
sanchit-gandhi
null
sanchit-gandhi/wav2vec2-2-rnd
4
null
transformers
19,107
--- tags: - generated_from_trainer datasets: - librispeech_asr model-index: - name: '' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model was trained from scratch on the librispeech_asr dataset. It achieves the following results on the evaluation set: - Loss: 0.9599 - Wer: 0.1442 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 20.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 6.1431 | 1.68 | 1500 | 6.0870 | 1.4277 | | 5.498 | 3.36 | 3000 | 5.5505 | 1.6318 | | 3.575 | 5.04 | 4500 | 3.7856 | 0.6683 | | 1.7532 | 6.73 | 6000 | 2.4603 | 0.3576 | | 1.6379 | 8.41 | 7500 | 1.8847 | 0.2932 | | 1.3145 | 10.09 | 9000 | 1.5027 | 0.2222 | | 0.8389 | 11.77 | 10500 | 1.2637 | 0.1855 | | 0.9239 | 13.45 | 12000 | 1.1424 | 0.1683 | | 0.6666 | 15.13 | 13500 | 1.0562 | 0.1593 | | 0.5258 | 16.82 | 15000 | 0.9911 | 0.1489 | | 0.4733 | 18.5 | 16500 | 0.9599 | 0.1442 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu113 - Datasets 1.18.3 - Tokenizers 0.11.0
aytugkaya/distilbert-base-uncased-finetuned-emotion
23b71949d773850c7857d16c803ec5b1913309ff
2022-03-13T16:33:50.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
aytugkaya
null
aytugkaya/distilbert-base-uncased-finetuned-emotion
4
null
transformers
19,108
Entry not found
armageddon/roberta-large-squad2-covid-qa-deepset
c019efe9e88b8426fb6263a711a3c286b9fa60e7
2022-03-01T01:48:21.000Z
[ "pytorch", "tensorboard", "roberta", "question-answering", "dataset:covid_qa_deepset", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
armageddon
null
armageddon/roberta-large-squad2-covid-qa-deepset
4
null
transformers
19,109
--- tags: - generated_from_trainer datasets: - covid_qa_deepset model-index: - name: covid_qa_analysis_roberta-large-squad2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # covid_qa_analysis_roberta-large-squad2 This model is a fine-tuned version of [deepset/roberta-large-squad2](https://huggingface.co/deepset/roberta-large-squad2) on the covid_qa_deepset dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: tpu - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.16.2 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
malteos/scincl-wol
afba171adcb7b89c84026a8b9e97d786e1662a07
2022-03-07T10:43:21.000Z
[ "pytorch", "bert", "feature-extraction", "transformers", "license:mit" ]
feature-extraction
false
malteos
null
malteos/scincl-wol
4
null
transformers
19,110
--- license: mit --- # SciNCL based on training data w/o SciDocs leakage. See [malteos/scincl](https://huggingface.co/malteos/scincl) for more details.
Manauu17/roberta_sentiments_es
a90e83edff9eaedbe2b12fc8541d777db6e3f7ce
2022-03-07T20:10:33.000Z
[ "pytorch", "tf", "roberta", "text-classification", "transformers" ]
text-classification
false
Manauu17
null
Manauu17/roberta_sentiments_es
4
1
transformers
19,111
# roberta_sentiments_es , a Sentiment Analysis model for Spanish sentences This is a roBERTa-base model trained on ~58M tweets and finetuned for sentiment analysis. This model currently supports Spanish sentences ## Example of classification ```python from transformers import AutoModelForSequenceClassification from transformers import TFAutoModelForSequenceClassification from transformers import AutoTokenizer import numpy as np import pandas as pd from scipy.special import softmax MODEL = 'Manauu17/roberta_sentiments_es_en' tokenizer = AutoTokenizer.from_pretrained(MODEL) # PyTorch model = AutoModelForSequenceClassification.from_pretrained(MODEL) text = ['@usuario siempre es bueno la opinión de un playo', 'Bendito año el que me espera'] encoded_input = tokenizer(text, return_tensors='pt', padding=True, truncation=True) output = model(**encoded_input) scores = output[0].detach().numpy() # TensorFlow model = TFAutoModelForSequenceClassification.from_pretrained(MODEL) text = ['La guerra no es buena para nadie.','Espero que mi jefe me de mañana libre'] encoded_input = tokenizer(text, return_tensors='tf', padding=True, truncation=True) output = model(encoded_input) scores = output[0].numpy() # Results def get_scores(model_output, labels_dict): scores = softmax(model_output) frame = pd.DataFrame(scores, columns=labels.values()) frame.style.highlight_max(axis=1,color="green") return frame ``` Output: ``` # PyTorch get_scores(scores, labels_dict).style.highlight_max(axis=1, color="green") Negative Neutral Positive 0 0.000607 0.004851 0.906596 1 0.079812 0.006650 0.001484 # TensorFlow get_scores(scores, labels_dict).style.highlight_max(axis=1, color="green") Negative Neutral Positive 0 0.017030 0.008920 0.000667 1 0.000260 0.001695 0.971429 ```
ctoraman/RoBERTa-TR-medium-bpe-16k
0fd5b4ea5dbf3c768bfd2412c116285767ca43a8
2022-04-20T06:48:03.000Z
[ "pytorch", "roberta", "fill-mask", "tr", "dataset:oscar", "arxiv:2204.08832", "transformers", "license:cc-by-nc-sa-4.0", "autotrain_compatible" ]
fill-mask
false
ctoraman
null
ctoraman/RoBERTa-TR-medium-bpe-16k
4
null
transformers
19,112
--- language: - tr tags: - roberta license: cc-by-nc-sa-4.0 datasets: - oscar --- # RoBERTa Turkish medium BPE 16k (uncased) Pretrained model on Turkish language using a masked language modeling (MLM) objective. The model is uncased. The pretrained corpus is OSCAR's Turkish split, but it is further filtered and cleaned. Model architecture is similar to bert-medium (8 layers, 8 heads, and 512 hidden size). Tokenization algorithm is BPE. Vocabulary size is 16.7k. The details and performance comparisons can be found at this paper: https://arxiv.org/abs/2204.08832 The following code can be used for model loading and tokenization, example max length (514) can be changed: ``` model = AutoModel.from_pretrained([model_path]) #for sequence classification: #model = AutoModelForSequenceClassification.from_pretrained([model_path], num_labels=[num_classes]) tokenizer = PreTrainedTokenizerFast(tokenizer_file=[file_path]) tokenizer.mask_token = "[MASK]" tokenizer.cls_token = "[CLS]" tokenizer.sep_token = "[SEP]" tokenizer.pad_token = "[PAD]" tokenizer.unk_token = "[UNK]" tokenizer.bos_token = "[CLS]" tokenizer.eos_token = "[SEP]" tokenizer.model_max_length = 514 ``` ### BibTeX entry and citation info ```bibtex @misc{https://doi.org/10.48550/arxiv.2204.08832, doi = {10.48550/ARXIV.2204.08832}, url = {https://arxiv.org/abs/2204.08832}, author = {Toraman, Cagri and Yilmaz, Eyup Halit and Şahinuç, Furkan and Ozcelik, Oguzhan}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Impact of Tokenization on Language Models: An Analysis for Turkish}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution Non Commercial Share Alike 4.0 International} } ```
daisyxie21/bert-base-uncased-8-50-0.01
345573f941ca44c61e9b6f48c987654910173e8f
2022-03-09T02:13:19.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
daisyxie21
null
daisyxie21/bert-base-uncased-8-50-0.01
4
null
transformers
19,113
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: bert-base-uncased-8-50-0.01 results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-8-50-0.01 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.9219 - Matthews Correlation: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.01 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:-----:|:---------------:|:--------------------:| | No log | 1.0 | 400 | 0.9219 | 0.0 | | 1.2047 | 2.0 | 800 | 1.8168 | 0.0 | | 1.0707 | 3.0 | 1200 | 1.4474 | 0.0 | | 1.0538 | 4.0 | 1600 | 1.5223 | 0.0 | | 1.316 | 5.0 | 2000 | 0.8467 | 0.0 | | 1.316 | 6.0 | 2400 | 1.0906 | 0.0 | | 1.2739 | 7.0 | 2800 | 0.6851 | 0.0 | | 1.1342 | 8.0 | 3200 | 1.3170 | 0.0 | | 1.2572 | 9.0 | 3600 | 0.8870 | 0.0 | | 1.0237 | 10.0 | 4000 | 1.3236 | 0.0 | | 1.0237 | 11.0 | 4400 | 0.9025 | 0.0 | | 0.9597 | 12.0 | 4800 | 0.7757 | 0.0 | | 1.0946 | 13.0 | 5200 | 1.2551 | 0.0 | | 1.0011 | 14.0 | 5600 | 1.1606 | 0.0 | | 1.1111 | 15.0 | 6000 | 0.6040 | 0.0 | | 1.1111 | 16.0 | 6400 | 1.4347 | 0.0 | | 1.0098 | 17.0 | 6800 | 0.6218 | 0.0 | | 1.0829 | 18.0 | 7200 | 0.4979 | 0.0 | | 0.9131 | 19.0 | 7600 | 1.3040 | 0.0 | | 0.879 | 20.0 | 8000 | 2.0309 | 0.0 | | 0.879 | 21.0 | 8400 | 0.5150 | 0.0 | | 0.9646 | 22.0 | 8800 | 0.4850 | 0.0 | | 0.9625 | 23.0 | 9200 | 0.5076 | 0.0 | | 0.9129 | 24.0 | 9600 | 1.1277 | 0.0 | | 0.8839 | 25.0 | 10000 | 0.9403 | 0.0 | | 0.8839 | 26.0 | 10400 | 1.6226 | 0.0 | | 0.9264 | 27.0 | 10800 | 0.6049 | 0.0 | | 0.7999 | 28.0 | 11200 | 0.9549 | 0.0 | | 0.752 | 29.0 | 11600 | 0.6757 | 0.0 | | 0.7675 | 30.0 | 12000 | 0.7320 | 0.0 | | 0.7675 | 31.0 | 12400 | 0.8393 | 0.0 | | 0.6887 | 32.0 | 12800 | 0.5977 | 0.0 | | 0.7563 | 33.0 | 13200 | 0.4815 | 0.0 | | 0.7671 | 34.0 | 13600 | 0.5457 | 0.0 | | 0.7227 | 35.0 | 14000 | 0.7384 | 0.0 | | 0.7227 | 36.0 | 14400 | 0.7749 | 0.0 | | 0.7308 | 37.0 | 14800 | 0.4726 | 0.0 | | 0.7191 | 38.0 | 15200 | 0.5069 | 0.0 | | 0.6846 | 39.0 | 15600 | 0.4762 | 0.0 | | 0.6151 | 40.0 | 16000 | 0.4738 | 0.0 | | 0.6151 | 41.0 | 16400 | 0.5114 | 0.0 | | 0.5982 | 42.0 | 16800 | 0.4866 | 0.0 | | 0.6199 | 43.0 | 17200 | 0.4717 | 0.0 | | 0.5737 | 44.0 | 17600 | 0.7651 | 0.0 | | 0.5703 | 45.0 | 18000 | 0.8008 | 0.0 | | 0.5703 | 46.0 | 18400 | 0.5391 | 0.0 | | 0.5748 | 47.0 | 18800 | 0.5097 | 0.0 | | 0.5297 | 48.0 | 19200 | 0.4731 | 0.0 | | 0.4902 | 49.0 | 19600 | 0.4720 | 0.0 | | 0.4955 | 50.0 | 20000 | 0.4748 | 0.0 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.9.0 - Datasets 1.18.3 - Tokenizers 0.11.0
ScandinavianMrT/distilbert-SARC
2d4aa446077f6026a51c09e0d74d979dad5b686e
2022-03-09T10:29:23.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
ScandinavianMrT
null
ScandinavianMrT/distilbert-SARC
4
null
transformers
19,114
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-SARC results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-SARC This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 0.4976 - eval_accuracy: 0.7590 - eval_runtime: 268.1875 - eval_samples_per_second: 753.782 - eval_steps_per_second: 47.113 - epoch: 1.0 - step: 50539 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.4 - Tokenizers 0.11.6
ctoraman/RoBERTa-TR-medium-word-7k
b8e36ac17b46309f19247663f0b09e1aa5eda0c3
2022-04-20T07:00:26.000Z
[ "pytorch", "roberta", "fill-mask", "tr", "dataset:oscar", "arxiv:2204.08832", "transformers", "license:cc-by-nc-sa-4.0", "autotrain_compatible" ]
fill-mask
false
ctoraman
null
ctoraman/RoBERTa-TR-medium-word-7k
4
null
transformers
19,115
--- language: - tr tags: - roberta license: cc-by-nc-sa-4.0 datasets: - oscar --- # RoBERTa Turkish medium Word-level 7k (uncased) Pretrained model on Turkish language using a masked language modeling (MLM) objective. The model is uncased. The pretrained corpus is OSCAR's Turkish split, but it is further filtered and cleaned. Model architecture is similar to bert-medium (8 layers, 8 heads, and 512 hidden size). Tokenization algorithm is Word-level, which means text is split by white space. Vocabulary size is 7.5k. The details and performance comparisons can be found at this paper: https://arxiv.org/abs/2204.08832 The following code can be used for model loading and tokenization, example max length (514) can be changed: ``` model = AutoModel.from_pretrained([model_path]) #for sequence classification: #model = AutoModelForSequenceClassification.from_pretrained([model_path], num_labels=[num_classes]) tokenizer = PreTrainedTokenizerFast(tokenizer_file=[file_path]) tokenizer.mask_token = "[MASK]" tokenizer.cls_token = "[CLS]" tokenizer.sep_token = "[SEP]" tokenizer.pad_token = "[PAD]" tokenizer.unk_token = "[UNK]" tokenizer.bos_token = "[CLS]" tokenizer.eos_token = "[SEP]" tokenizer.model_max_length = 514 ``` ### BibTeX entry and citation info ```bibtex @misc{https://doi.org/10.48550/arxiv.2204.08832, doi = {10.48550/ARXIV.2204.08832}, url = {https://arxiv.org/abs/2204.08832}, author = {Toraman, Cagri and Yilmaz, Eyup Halit and Şahinuç, Furkan and Ozcelik, Oguzhan}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Impact of Tokenization on Language Models: An Analysis for Turkish}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution Non Commercial Share Alike 4.0 International} } ```
datarpit/toy-qa
cd848d6a2a8f631a0c4fd94be96baaee45406a4a
2022-03-10T05:18:21.000Z
[ "pytorch", "distilbert", "question-answering", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
datarpit
null
datarpit/toy-qa
4
null
transformers
19,116
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: toy-qa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # toy-qa This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2410 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.9537 | 1.0 | 20415 | 0.2410 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0 - Datasets 1.18.3 - Tokenizers 0.11.6
kyleinincubated/autonlp-cat333-624217911
b20e6ae9fcb39f462634a5d9a8c12f8c1aa31cae
2022-03-10T03:47:17.000Z
[ "pytorch", "bert", "text-classification", "zh", "dataset:kyleinincubated/autonlp-data-cat333", "transformers", "autonlp", "co2_eq_emissions" ]
text-classification
false
kyleinincubated
null
kyleinincubated/autonlp-cat333-624217911
4
null
transformers
19,117
--- tags: autonlp language: zh widget: - text: "I love AutoNLP 🤗" datasets: - kyleinincubated/autonlp-data-cat333 co2_eq_emissions: 2.267288583123193 --- # Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 624217911 - CO2 Emissions (in grams): 2.267288583123193 ## Validation Metrics - Loss: 0.39670249819755554 - Accuracy: 0.9098901098901099 - Macro F1: 0.7398394202169645 - Micro F1: 0.9098901098901099 - Weighted F1: 0.9073329464119164 - Macro Precision: 0.7653753530396269 - Micro Precision: 0.9098901098901099 - Weighted Precision: 0.9096917983040914 - Macro Recall: 0.7382843728794468 - Micro Recall: 0.9098901098901099 - Weighted Recall: 0.9098901098901099 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/kyleinincubated/autonlp-cat333-624217911 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("kyleinincubated/autonlp-cat333-624217911", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("kyleinincubated/autonlp-cat333-624217911", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
kyleinincubated/autonlp-cat33-624317932
1e8d0d3a9973b97caa31f3bf9a9cbf39d03dd53c
2022-03-10T06:10:56.000Z
[ "pytorch", "bert", "text-classification", "zh", "dataset:kyleinincubated/autonlp-data-cat33", "transformers", "autonlp", "co2_eq_emissions" ]
text-classification
false
kyleinincubated
null
kyleinincubated/autonlp-cat33-624317932
4
null
transformers
19,118
--- tags: autonlp language: zh widget: - text: "I love AutoNLP 🤗" datasets: - kyleinincubated/autonlp-data-cat33 co2_eq_emissions: 1.2490471218570545 --- # Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 624317932 - CO2 Emissions (in grams): 1.2490471218570545 ## Validation Metrics - Loss: 0.5579860806465149 - Accuracy: 0.8717391304347826 - Macro F1: 0.6625543939916455 - Micro F1: 0.8717391304347827 - Weighted F1: 0.8593303742671491 - Macro Precision: 0.7214757380849891 - Micro Precision: 0.8717391304347826 - Weighted Precision: 0.8629042654788023 - Macro Recall: 0.6540187758140144 - Micro Recall: 0.8717391304347826 - Weighted Recall: 0.8717391304347826 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/kyleinincubated/autonlp-cat33-624317932 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("kyleinincubated/autonlp-cat33-624317932", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("kyleinincubated/autonlp-cat33-624317932", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
amanm27/bert-base-uncased-wiki-sports
30860ff23fe24617176912912c07556f8d6988f2
2022-03-10T06:53:42.000Z
[ "pytorch", "tensorboard", "bert", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
amanm27
null
amanm27/bert-base-uncased-wiki-sports
4
null
transformers
19,119
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-base-uncased-wiki-sports results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-wiki-sports This model is a fine-tuned version of [amanm27/bert-base-uncased-wiki](https://huggingface.co/amanm27/bert-base-uncased-wiki) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9753 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.3589 | 1.0 | 912 | 2.0686 | | 2.176 | 2.0 | 1824 | 2.0025 | | 2.1022 | 3.0 | 2736 | 1.9774 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0 - Datasets 1.18.3 - Tokenizers 0.11.0
amanm27/bert-base-uncased-wiki-sports-scouting
ea8fdd788f3c03b3d5383443a975dbd3212820bb
2022-03-10T07:18:56.000Z
[ "pytorch", "tensorboard", "bert", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
amanm27
null
amanm27/bert-base-uncased-wiki-sports-scouting
4
null
transformers
19,120
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-base-uncased-wiki-sports-scouting results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-wiki-sports-scouting This model is a fine-tuned version of [amanm27/bert-base-uncased-wiki-sports](https://huggingface.co/amanm27/bert-base-uncased-wiki-sports) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4909 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 378 | 1.6816 | | 1.9594 | 2.0 | 756 | 1.5421 | | 1.66 | 3.0 | 1134 | 1.5022 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0 - Datasets 1.18.3 - Tokenizers 0.11.0
nabin19677/Cartman
63536aea3648cfe61488080f665e9548b70b4d48
2022-03-10T10:11:39.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
nabin19677
null
nabin19677/Cartman
4
null
transformers
19,121
Entry not found
muneson/xls-r-300m-sv
f2531eb112291ae83304cfdddc0d586c40bc50cc
2022-03-11T05:48:55.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
muneson
null
muneson/xls-r-300m-sv
4
null
transformers
19,122
Entry not found
P0intMaN/PyAutoCode
1e2062415e4c89c06aca076af8f72d8443e28249
2022-04-06T15:26:28.000Z
[ "pytorch", "tf", "gpt2", "text-generation", "transformers", "license:mit" ]
text-generation
false
P0intMaN
null
P0intMaN/PyAutoCode
4
null
transformers
19,123
--- license: mit --- # PyAutoCode: GPT-2 based Python auto-code. PyAutoCode is a cut-down python autosuggestion built on **GPT-2** *(motivation: GPyT)* model. This baby model *(trained only up to 3 epochs)* is not **"fine-tuned"** yet therefore, I highly recommend not to use it in a production environment or incorporate PyAutoCode in any of your projects. It has been trained on **112GB** of Python data sourced from the best crowdsource platform ever -- **GitHub**. *NOTE: Increased training and fine tuning would be highly appreciated and I firmly believe that it would improve the ability of PyAutoCode significantly.* ## Some Model Features - Built on *GPT-2* - Tokenized with *ByteLevelBPETokenizer* - Data Sourced from *GitHub (almost 5 consecutive days of latest Python repositories)* - Makes use of *GPTLMHeadModel* and *DataCollatorForLanguageModelling* for training - Newline characters are custom coded as `<N>` ## Get a Glimpse of the Model You can make use of the **Inference API** of huggingface *(present on the right sidebar)* to load the model and check the result. Just enter any code snippet as input. Something like: ```sh for i in range( ``` ## Usage You can use my model too!. Here's a quick tour of how you can achieve this: Install transformers ```sh $ pip install transformers ``` Call the API and get it to work! ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("P0intMaN/PyAutoCode") model = AutoModelForCausalLM.from_pretrained("P0intMaN/PyAutoCode") # input: single line or multi-line. Highly recommended to use doc-strings. inp = """import pandas""" format_inp = inp.replace('\n', "<N>") tokenize_inp = tokenizer.encode(format_inp, return_tensors='pt') result = model.generate(tokenize_inp) decode_result = tokenizer.decode(result[0]) format_result = decode_result.replace('<N>', "\n") # printing the result print(format_result) ``` Upon successful execution, the above should probably produce *(your results may vary when this model is fine-tuned)* ```sh import pandas as pd import numpy as np import matplotlib.pyplot as plt ``` ## Credits ##### *Developed as a part of a university project by [Pratheek U](https://www.github.com/P0intMaN) and [Sourav Singh](https://github.com/Sourav11902312lpu)*
ScandinavianMrT/distilbert-SARC_withcontext
74b2eefdc69240b48e4f0938e06d88b0be29a8ea
2022-03-11T11:30:02.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
ScandinavianMrT
null
ScandinavianMrT/distilbert-SARC_withcontext
4
null
transformers
19,124
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-SARC_withcontext results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-SARC_withcontext This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4736 - Accuracy: 0.7732 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.4749 | 1.0 | 50539 | 0.4736 | 0.7732 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.4 - Tokenizers 0.11.6
anjandash/JavaBERT-mini
e99875b4568117a9ee2b2e915e91c0679e8113dd
2022-03-11T12:10:07.000Z
[ "pytorch", "tf", "bert", "text-classification", "java", "dataset:anjandash/java-8m-methods-v1", "transformers", "license:mit" ]
text-classification
false
anjandash
null
anjandash/JavaBERT-mini
4
null
transformers
19,125
--- language: - java license: mit datasets: - anjandash/java-8m-methods-v1 ---
Azu/trocr-handwritten-math
fc8dc9829360d42b1d4bc2f2668c831a72c80379
2022-03-11T13:00:38.000Z
[ "pytorch", "vision-encoder-decoder", "transformers" ]
null
false
Azu
null
Azu/trocr-handwritten-math
4
null
transformers
19,126
This model generate the math expression LATEX sequence according to the handwritten math expression image. in CROHME 2014 test dataset CER=0.507772718700326
amir36/tutorial
e1f15d30e18934e9e372fd8e8f738562a6d6ea76
2022-03-12T02:33:07.000Z
[ "pytorch", "camembert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
amir36
null
amir36/tutorial
4
null
transformers
19,127
Entry not found
Splend1dchan/bert-large-uncased-slue-goldtrascription-e3-lr5e-5
7459fcee1fb3b1774c93d4f1b5684c99a37c173a
2022-03-12T07:38:21.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Splend1dchan
null
Splend1dchan/bert-large-uncased-slue-goldtrascription-e3-lr5e-5
4
null
transformers
19,128
Entry not found
Mnauel/wav2vec2-base-finetuned-ks
27b072f80eab4d58f648590d3652ff42221c8e18
2022-03-26T20:53:27.000Z
[ "pytorch", "tensorboard", "wav2vec2", "audio-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
audio-classification
false
Mnauel
null
Mnauel/wav2vec2-base-finetuned-ks
4
null
transformers
19,129
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: wav2vec2-base-finetuned-ks results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-finetuned-ks This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5766 - Accuracy: 0.8308 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 7 | 0.7247 | 0.7462 | | No log | 2.0 | 14 | 0.6844 | 0.7615 | | 0.4279 | 3.0 | 21 | 0.7254 | 0.7462 | | 0.4279 | 4.0 | 28 | 0.5891 | 0.8 | | 0.4279 | 5.0 | 35 | 0.6991 | 0.7462 | | 0.4478 | 6.0 | 42 | 0.6579 | 0.7615 | | 0.4478 | 7.0 | 49 | 0.6164 | 0.8 | | 0.4478 | 8.0 | 56 | 0.6191 | 0.8077 | | 0.4194 | 9.0 | 63 | 0.5766 | 0.8308 | | 0.4194 | 10.0 | 70 | 0.5704 | 0.8154 | | 0.4194 | 11.0 | 77 | 0.6518 | 0.8 | | 0.3833 | 12.0 | 84 | 0.6190 | 0.8077 | | 0.3833 | 13.0 | 91 | 0.5693 | 0.8231 | | 0.3833 | 14.0 | 98 | 0.5628 | 0.8231 | | 0.3607 | 15.0 | 105 | 0.5741 | 0.8154 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.10.3
khavitidala/xlmroberta-large-fine-tuned-indo-hoax-classification
029ed4ea6dddfbdec6230aa617597c4b982485af
2022-03-13T02:01:19.000Z
[ "pytorch", "xlm-roberta", "text-classification", "multilingual", "arxiv:1911.02116", "transformers", "exbert", "license:mit" ]
text-classification
false
khavitidala
null
khavitidala/xlmroberta-large-fine-tuned-indo-hoax-classification
4
null
transformers
19,130
--- tags: - exbert language: multilingual inference: true license: mit --- # Fine-tuned version of XLM-RoBERTa (large-sized model) fine tune by Ryan Abdurohman # XLM-RoBERTa (large-sized model) XLM-RoBERTa model pre-trained on 2.5TB of filtered CommonCrawl data containing 100 languages. It was introduced in the paper [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) by Conneau et al. and first released in [this repository](https://github.com/pytorch/fairseq/tree/master/examples/xlmr). Disclaimer: The team releasing XLM-RoBERTa did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description XLM-RoBERTa is a multilingual version of RoBERTa. It is pre-trained on 2.5TB of filtered CommonCrawl data containing 100 languages. RoBERTa is a transformers model pretrained on a large corpus in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with the Masked language modeling (MLM) objective. Taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. This way, the model learns an inner representation of 100 languages that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the XLM-RoBERTa model as inputs. ## Intended uses & limitations You can use the raw model for masked language modeling, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?search=xlm-roberta) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation, you should look at models like GPT2. ## Usage You can use this model directly with a pipeline for masked language modeling: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='xlm-roberta-large') >>> unmasker("Hello I'm a <mask> model.") [{'score': 0.10563907772302628, 'sequence': "Hello I'm a fashion model.", 'token': 54543, 'token_str': 'fashion'}, {'score': 0.08015287667512894, 'sequence': "Hello I'm a new model.", 'token': 3525, 'token_str': 'new'}, {'score': 0.033413201570510864, 'sequence': "Hello I'm a model model.", 'token': 3299, 'token_str': 'model'}, {'score': 0.030217764899134636, 'sequence': "Hello I'm a French model.", 'token': 92265, 'token_str': 'French'}, {'score': 0.026436051353812218, 'sequence': "Hello I'm a sexy model.", 'token': 17473, 'token_str': 'sexy'}] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import AutoTokenizer, AutoModelForMaskedLM tokenizer = AutoTokenizer.from_pretrained('xlm-roberta-large') model = AutoModelForMaskedLM.from_pretrained("xlm-roberta-large") # prepare input text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') # forward pass output = model(**encoded_input) ``` ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-1911-02116, author = {Alexis Conneau and Kartikay Khandelwal and Naman Goyal and Vishrav Chaudhary and Guillaume Wenzek and Francisco Guzm{\'{a}}n and Edouard Grave and Myle Ott and Luke Zettlemoyer and Veselin Stoyanov}, title = {Unsupervised Cross-lingual Representation Learning at Scale}, journal = {CoRR}, volume = {abs/1911.02116}, year = {2019}, url = {http://arxiv.org/abs/1911.02116}, eprinttype = {arXiv}, eprint = {1911.02116}, timestamp = {Mon, 11 Nov 2019 18:38:09 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-1911-02116.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <a href="https://huggingface.co/exbert/?model=xlm-roberta-base"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
anton-l/xtreme_s_xlsr_minds14_group_length
887f84122af888d0c53e2989fb77b7923102b6eb
2022-03-12T16:02:15.000Z
[ "pytorch", "tensorboard", "wav2vec2", "audio-classification", "transformers" ]
audio-classification
false
anton-l
null
anton-l/xtreme_s_xlsr_minds14_group_length
4
null
transformers
19,131
Entry not found
clapika2010/soccer_finetuned
d162cdfc6753f93dbbb9e81c8d9e5d252b071056
2022-03-14T07:27:16.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
clapika2010
null
clapika2010/soccer_finetuned
4
null
transformers
19,132
Entry not found
MarioCarmona/gpt-j-pretrained
f4fed6067b242814c6c7394c960652d6c455d49e
2022-03-13T11:08:27.000Z
[ "pytorch", "gptj", "text-generation", "transformers", "license:gpl-3.0" ]
text-generation
false
MarioCarmona
null
MarioCarmona/gpt-j-pretrained
4
null
transformers
19,133
--- license: gpl-3.0 ---
anwesham/indicbert_ar_ur
f7c1070645dbdab31170e5a09a3acdeb8622fe09
2022-03-13T10:50:12.000Z
[ "pytorch", "albert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
anwesham
null
anwesham/indicbert_ar_ur
4
null
transformers
19,134
Entry not found
MrAnderson/bert-base-2048-full-trivia-copied-embeddings
671c973b063a3fd5331034c9152eb636ea722cf2
2022-03-13T19:57:05.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
MrAnderson
null
MrAnderson/bert-base-2048-full-trivia-copied-embeddings
4
null
transformers
19,135
Entry not found
BAHIJA/bert-base-uncased-finetuned-sst2
e7e0dafa4fac8bf6f72a04f61b769531b23a5385
2022-03-14T05:48:26.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
BAHIJA
null
BAHIJA/bert-base-uncased-finetuned-sst2
4
null
transformers
19,136
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: bert-base-uncased-finetuned-sst2 results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: sst2 metrics: - name: Accuracy type: accuracy value: 0.9346330275229358 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-sst2 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.2745 - Accuracy: 0.9346 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.1778 | 1.0 | 4210 | 0.3553 | 0.9060 | | 0.1257 | 2.0 | 8420 | 0.2745 | 0.9346 | | 0.0779 | 3.0 | 12630 | 0.3272 | 0.9300 | | 0.0655 | 4.0 | 16840 | 0.3412 | 0.9323 | | 0.0338 | 5.0 | 21050 | 0.3994 | 0.9300 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.4 - Tokenizers 0.11.6
holtin/distilbert-base-uncased-holtin-finetuned-full-squad
c77ef9e64f8078a8941a7ed41f2117044dd3171f
2022-04-05T15:38:26.000Z
[ "pytorch", "distilbert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
holtin
null
holtin/distilbert-base-uncased-holtin-finetuned-full-squad
4
null
transformers
19,137
Entry not found
GPL/fiqa-distilbert-tas-b-gpl-self_miner
80546f30a73118b1b9cdfabf27b2fe444198eeaf
2022-03-14T14:17:13.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
GPL
null
GPL/fiqa-distilbert-tas-b-gpl-self_miner
4
null
sentence-transformers
19,138
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch def cls_pooling(model_output, attention_mask): return model_output[0][:,0] # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, cls pooling. sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 140000 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `gpl.toolkit.loss.MarginDistillationLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 140000, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
alynneoya/bert-base-cased-pt-lenerbr
676d28cb6476f7ab17f60c84246e03327e6702cf
2022-03-15T01:22:54.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
alynneoya
null
alynneoya/bert-base-cased-pt-lenerbr
4
null
transformers
19,139
Entry not found
joniponi/multilabel_inpatient_comments
b1e7b98469e1604d1b0693eb40a1e005649b386a
2022-03-24T15:58:18.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
joniponi
null
joniponi/multilabel_inpatient_comments
4
null
transformers
19,140
Entry not found
sanchit-gandhi/wav2vec2-2-rnd-2-layer-no-adapter
2c6850f50bc6e1243cf9db0f26ca7f416ee49db2
2022-03-17T02:23:57.000Z
[ "pytorch", "tensorboard", "speech-encoder-decoder", "automatic-speech-recognition", "dataset:librispeech_asr", "transformers", "generated_from_trainer", "model-index" ]
automatic-speech-recognition
false
sanchit-gandhi
null
sanchit-gandhi/wav2vec2-2-rnd-2-layer-no-adapter
4
null
transformers
19,141
--- tags: - generated_from_trainer datasets: - librispeech_asr model-index: - name: '' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model was trained from scratch on the librispeech_asr dataset. It achieves the following results on the evaluation set: - Loss: 1.8365 - Wer: 0.2812 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 20.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 5.8017 | 1.68 | 1500 | 5.7161 | 1.3220 | | 4.5907 | 3.36 | 3000 | 4.7936 | 0.9799 | | 3.151 | 5.04 | 4500 | 4.1610 | 0.7752 | | 1.5166 | 6.73 | 6000 | 3.5939 | 0.5343 | | 2.4523 | 8.41 | 7500 | 4.0013 | 0.6954 | | 1.423 | 10.09 | 9000 | 2.6917 | 0.4476 | | 0.7882 | 11.77 | 10500 | 2.4493 | 0.3967 | | 1.1643 | 13.45 | 12000 | 2.0629 | 0.3234 | | 0.5352 | 15.13 | 13500 | 2.0625 | 0.3363 | | 0.407 | 16.82 | 15000 | 1.8378 | 0.2812 | | 0.1162 | 18.5 | 16500 | 1.8365 | 0.2812 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu113 - Datasets 1.18.3 - Tokenizers 0.11.0
kSaluja/bert-finetuned-ner
1ae8e15c5dd082c3fd7b265a2f5ebd1928e11211
2022-03-15T23:18:41.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
kSaluja
null
kSaluja/bert-finetuned-ner
4
null
transformers
19,142
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1555 - Precision: 0.9681 - Recall: 0.9670 - F1: 0.9675 - Accuracy: 0.9687 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 253 | 0.1972 | 0.9467 | 0.9408 | 0.9437 | 0.9511 | | 0.3572 | 2.0 | 506 | 0.1626 | 0.9677 | 0.9614 | 0.9645 | 0.9661 | | 0.3572 | 3.0 | 759 | 0.1555 | 0.9681 | 0.9670 | 0.9675 | 0.9687 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
dmahata/dlkp_test
f89bc10dc7ab6471c192b14224c9c220ee168aaa
2022-03-16T02:49:18.000Z
[ "pytorch", "roberta", "token-classification", "transformers", "license:mit", "autotrain_compatible" ]
token-classification
false
dmahata
null
dmahata/dlkp_test
4
null
transformers
19,143
--- license: mit ---
aws-ai/vascl-roberta-large
3b9e9bf934c8dc7b42352121ec04b82bfbbfb3e0
2022-03-16T04:40:14.000Z
[ "pytorch", "roberta", "transformers", "license:apache-2.0" ]
null
false
aws-ai
null
aws-ai/vascl-roberta-large
4
null
transformers
19,144
--- license: apache-2.0 ---
Neulvo/marian-finetuned-kde4-en-to-fr
7bd814eebbb791f95748f174958451f895eb6dfc
2022-03-16T15:04:48.000Z
[ "pytorch", "tensorboard", "marian", "text2text-generation", "dataset:kde4", "transformers", "translation", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
translation
false
Neulvo
null
Neulvo/marian-finetuned-kde4-en-to-fr
4
null
transformers
19,145
--- license: apache-2.0 tags: - translation - generated_from_trainer datasets: - kde4 metrics: - bleu model-index: - name: marian-finetuned-kde4-en-to-fr results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: kde4 type: kde4 args: en-fr metrics: - name: Bleu type: bleu value: 52.893830905210194 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # marian-finetuned-kde4-en-to-fr This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-fr](https://huggingface.co/Helsinki-NLP/opus-mt-en-fr) on the kde4 dataset. It achieves the following results on the evaluation set: - Loss: 0.8564 - Bleu: 52.8938 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2 - Datasets 1.18.3 - Tokenizers 0.11.0
ai4bharat/MultiIndicWikiBioUnified
0db0f137e28079d43a2ad0ede2095d033b70a61c
2022-03-29T09:25:58.000Z
[ "pytorch", "mbart", "text2text-generation", "as", "bn", "hi", "kn", "ml", "or", "pa", "ta", "te", "dataset:ai4bharat/IndicWikiBio", "arxiv:2203.05437", "transformers", "wikibio", "multilingual", "nlp", "indicnlp", "autotrain_compatible" ]
text2text-generation
false
ai4bharat
null
ai4bharat/MultiIndicWikiBioUnified
4
null
transformers
19,146
--- tags: - wikibio - multilingual - nlp - indicnlp datasets: - ai4bharat/IndicWikiBio language: - as - bn - hi - kn - ml - or - pa - ta - te licenses: - cc-by-nc-4.0 widget: - <TAG> name </TAG> नवतेज भारती <TAG> image </TAG> NavtejBharati . jpg <TAG> birth name </TAG> नवतेज <TAG> birth date </TAG> 1938 <TAG> birth place </TAG> रोडे , भारतीय पंजाब , भारत । पंजाब <TAG> occupation </TAG> लेखक , कवि <TAG> nationality </TAG> कैनेडा । कैनेडियन <TAG> ethnicity </TAG> पंजाबी लोक । पंजाबी </s> <2hi> --- # MultiIndicWikiBioUnified MultiIndicWikiBioUnified is a multilingual, sequence-to-sequence pre-trained model, a [IndicBART](https://huggingface.co/ai4bharat/IndicBART) checkpoint fine-tuned on the 9 languages of [IndicWikiBio](https://huggingface.co/datasets/ai4bharat/IndicWikiBio) dataset. For fine-tuning details, see the [paper](https://arxiv.org/abs/2203.05437). You can use MultiIndicWikiBio to build biography generation applications for Indian languages by fine-tuning the model with supervised training data. Some salient features of the MultiIndicWikiBio are: <ul> <li >Supported languages: Assamese, Bengali, Hindi, Oriya, Punjabi, Kannada, Malayalam, Tamil, and Telugu. Not all of these languages are supported by mBART50 and mT5. </li> <li >The model is much smaller than the mBART and mT5(-base) models, so less computationally expensive for fine-tuning and decoding. </li> <li> Fine-tuned on an Indic language corpora (34,653 examples). </li> <li> All languages have been represented in Devanagari script to encourage transfer learning among the related languages. </li> </ul> You can read more about MultiIndicWikiBioUnified in this <a href="https://arxiv.org/abs/2203.05437">paper</a>. ## Using this model in `transformers` ``` from transformers import MBartForConditionalGeneration, AutoModelForSeq2SeqLM from transformers import AlbertTokenizer, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("ai4bharat/MultiIndicWikiBioUnified", do_lower_case=False, use_fast=False, keep_accents=True) # Or use tokenizer = AlbertTokenizer.from_pretrained("ai4bharat/MultiIndicWikiBioUnified", do_lower_case=False, use_fast=False, keep_accents=True) model = AutoModelForSeq2SeqLM.from_pretrained("ai4bharat/MultiIndicWikiBioUnified") # Or use model = MBartForConditionalGeneration.from_pretrained("ai4bharat/MultiIndicWikiBioUnified") # Some initial mapping bos_id = tokenizer._convert_token_to_id_with_added_voc("<s>") eos_id = tokenizer._convert_token_to_id_with_added_voc("</s>") pad_id = tokenizer._convert_token_to_id_with_added_voc("<pad>") # To get lang_id use any of ['<2as>', '<2bn>', '<2hi>', '<2kn>', '<2ml>', '<2or>', '<2pa>', '<2ta>', '<2te>'] # First tokenize the input and outputs. The format below is how IndicBART was trained so the input should be "Sentence </s> <2xx>" where xx is the language code. Similarly, the output should be "<2yy> Sentence </s>". inp = tokenizer("<TAG> name </TAG> भीखा लाल <TAG> office </TAG> विधायक - 318 - हसनगंज विधान सभा निर्वाचन क्षेत्र , उत्तर प्रदेश <TAG> term </TAG> 1957 से 1962 <TAG> nationality </TAG> भारतीय</s><2hi>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids out = tokenizer("<2hi> भीखा लाल ,भारत के उत्तर प्रदेश की दूसरी विधानसभा सभा में विधायक रहे। </s>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids model_outputs=model(input_ids=inp, decoder_input_ids=out[:,0:-1], labels=out[:,1:]) # For loss model_outputs.loss ## This is not label smoothed. # For logits model_outputs.logits # For generation. Pardon the messiness. Note the decoder_start_token_id. model.eval() # Set dropouts to zero model_output=model.generate(inp, use_cache=True,no_repeat_ngram_size=3,encoder_no_repeat_ngram_size=3, num_beams=4, max_length=20, min_length=1, early_stopping=True, pad_token_id=pad_id, bos_token_id=bos_id, eos_token_id=eos_id, decoder_start_token_id=tokenizer._convert_token_to_id_with_added_voc("<2hi>")) # Decode to get output strings decoded_output=tokenizer.decode(model_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False) print(decoded_output) # भीखा लाल ,भारत के उत्तर प्रदेश की दूसरी विधानसभा सभा में विधायक रहे। # Disclaimer Note that if your output language is not Hindi or Marathi, you should convert its script from Devanagari to the desired language using the [Indic NLP Library](https://github.com/AI4Bharat/indic-bart/blob/main/indic_scriptmap.py). ``` # Note: If you wish to use any language written in a non-Devanagari script, then you should first convert it to Devanagari using the <a href="https://github.com/anoopkunchukuttan/indic_nlp_library">Indic NLP Library</a>. After you get the output, you should convert it back into the original script. ## Benchmarks Scores on the `IndicWikiBio` test sets are as follows: Language | RougeL ---------|---------------------------- as | 56.28 bn | 57.42 hi | 67.48 kn | 40.01 ml | 38.84 or | 67.13 pa | 52.88 ta | 51.82 te | 51.43 ## Citation If you use this model, please cite the following paper: ``` @inproceedings{Kumar2022IndicNLGSM, title={IndicNLG Suite: Multilingual Datasets for Diverse NLG Tasks in Indic Languages}, author={Aman Kumar and Himani Shrotriya and Prachi Sahu and Raj Dabre and Ratish Puduppully and Anoop Kunchukuttan and Amogh Mishra and Mitesh M. Khapra and Pratyush Kumar}, year={2022}, url = "https://arxiv.org/abs/2203.05437" } ``` # License The model is available under the MIT License.
KBLab/megatron-bert-large-swedish-cased-110k
1599fbd13fd64c43b92efac2c03b1e5a0ae8cdb7
2022-05-03T08:57:56.000Z
[ "pytorch", "megatron-bert", "sv", "transformers" ]
null
false
KBLab
null
KBLab/megatron-bert-large-swedish-cased-110k
4
null
transformers
19,147
--- language: - sv --- # Megatron-BERT-large Swedish 110k This BERT model was trained using the Megatron-LM library. The size of the model is a regular BERT-large with 340M parameters. The model was trained on about 70GB of data, consisting mostly of OSCAR and Swedish newspaper text curated by the National Library of Sweden. Training was done for 110k training steps using a batch size of 8k; the number of training steps is set to 500k, meaning that this version is a checkpoint. The hyperparameters for training followed the setting for RoBERTa. The model has three sister models trained on the same dataset: - [🤗 BERT Swedish](https://huggingface.co/KBLab/bert-base-swedish-cased-new) - [Megatron-BERT-base-600k](https://huggingface.co/KBLab/megatron-bert-base-swedish-cased-600k) - [Megatron-BERT-base-125k](https://huggingface.co/KBLab/megatron-bert-base-swedish-cased-125k) and a later checkpoint - [Megatron-BERT-large-165k](https://huggingface.co/KBLab/megatron-bert-large-swedish-cased-165k) ## Acknowledgements We gratefully acknowledge the HPC RIVR consortium (https://www.hpc-rivr.si) and EuroHPC JU (https://eurohpc-ju.europa.eu) for funding this research by providing computing resources of the HPC system Vega at the Institute of Information Science (https://www.izum.si).
internetoftim/BERT-Finetuning-Demo
56c37e537f0b347ed215b9bf5492953219c72122
2022-04-02T17:32:16.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
internetoftim
null
internetoftim/BERT-Finetuning-Demo
4
null
transformers
19,148
Entry not found
moshew/paraphrase-mpnet-base-v2_SetFit_emotions
a9816630452e7bbb461c36ef0fdb2861c8091109
2022-03-18T07:16:29.000Z
[ "pytorch", "mpnet", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
moshew
null
moshew/paraphrase-mpnet-base-v2_SetFit_emotions
4
null
sentence-transformers
19,149
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # moshew/paraphrase-mpnet-base-v2_SetFit_emotions This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('moshew/paraphrase-mpnet-base-v2_SetFit_emotions') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('moshew/paraphrase-mpnet-base-v2_SetFit_emotions') model = AutoModel.from_pretrained('moshew/paraphrase-mpnet-base-v2_SetFit_emotions') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=moshew/paraphrase-mpnet-base-v2_SetFit_emotions) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 2500 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
cammy/PRIMERA-100-MDS-own1
b04d9d62794f7db54511c7ef5e6a48f6b3e04338
2022-03-18T09:52:35.000Z
[ "pytorch", "tensorboard", "led", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
cammy
null
cammy/PRIMERA-100-MDS-own1
4
null
transformers
19,150
Entry not found
nherve/flaubert-oral-asr
b0d93989ade9bd0f4fbfda7f68a37c804a33ab05
2022-04-04T10:26:23.000Z
[ "pytorch", "flaubert", "fr", "transformers", "bert", "language-model", "french", "flaubert-base", "uncased", "asr", "speech", "oral", "natural language understanding", "NLU", "spoken language understanding", "SLU", "understanding", "license:mit" ]
null
false
nherve
null
nherve/flaubert-oral-asr
4
null
transformers
19,151
--- language: fr license: mit tags: - bert - language-model - flaubert - french - flaubert-base - uncased - asr - speech - oral - natural language understanding - NLU - spoken language understanding - SLU - understanding --- # FlauBERT-Oral models: Using ASR-Generated Text for Spoken Language Modeling **FlauBERT-Oral** are French BERT models trained on a very large amount of automatically transcribed speech from 350,000 hours of diverse French TV shows. They were trained with the [**FlauBERT software**](https://github.com/getalp/Flaubert) using the same parameters as the [flaubert-base-uncased](https://huggingface.co/flaubert/flaubert_base_uncased) model (12 layers, 12 attention heads, 768 dims, 137M parameters, uncased). ## Available FlauBERT-Oral models - `flaubert-oral-asr` : trained from scratch on ASR data, keeping the BPE tokenizer and vocabulary of flaubert-base-uncased - `flaubert-oral-asr_nb` : trained from scratch on ASR data, BPE tokenizer is also trained on the same corpus - `flaubert-oral-mixed` : trained from scratch on a mixed corpus of ASR and text data, BPE tokenizer is also trained on the same corpus - `flaubert-oral-ft` : fine-tuning of flaubert-base-uncased for a few epochs on ASR data ## Usage for sequence classification ```python flaubert_tokenizer = FlaubertTokenizer.from_pretrained("nherve/flaubert-oral-asr") flaubert_classif = FlaubertForSequenceClassification.from_pretrained("nherve/flaubert-oral-asr", num_labels=14) flaubert_classif.sequence_summary.summary_type = 'mean' # Then, train your model ``` ## References If you use FlauBERT-Oral models for your scientific publication, or if you find the resources in this repository useful, please cite the following papers: ``` @InProceedings{herve2022flaubertoral, author = {Herv\'{e}, Nicolas and Pelloin, Valentin and Favre, Benoit and Dary, Franck and Laurent, Antoine and Meignier, Sylvain and Besacier, Laurent}, title = {Using ASR-Generated Text for Spoken Language Modeling}, booktitle = {Proceedings of "Challenges & Perspectives in Creating Large Language Models" ACL 2022 Workshop}, month = {May}, year = {2022} } ```
nherve/flaubert-oral-mixed
1184f1d9c9deec917f002fe5e1d2d77c421ee7e8
2022-04-04T10:26:49.000Z
[ "pytorch", "flaubert", "fr", "transformers", "bert", "language-model", "french", "flaubert-base", "uncased", "asr", "speech", "oral", "natural language understanding", "NLU", "spoken language understanding", "SLU", "understanding", "license:mit" ]
null
false
nherve
null
nherve/flaubert-oral-mixed
4
null
transformers
19,152
--- language: fr license: mit tags: - bert - language-model - flaubert - french - flaubert-base - uncased - asr - speech - oral - natural language understanding - NLU - spoken language understanding - SLU - understanding --- # FlauBERT-Oral models: Using ASR-Generated Text for Spoken Language Modeling **FlauBERT-Oral** are French BERT models trained on a very large amount of automatically transcribed speech from 350,000 hours of diverse French TV shows. They were trained with the [**FlauBERT software**](https://github.com/getalp/Flaubert) using the same parameters as the [flaubert-base-uncased](https://huggingface.co/flaubert/flaubert_base_uncased) model (12 layers, 12 attention heads, 768 dims, 137M parameters, uncased). ## Available FlauBERT-Oral models - `flaubert-oral-asr` : trained from scratch on ASR data, keeping the BPE tokenizer and vocabulary of flaubert-base-uncased - `flaubert-oral-asr_nb` : trained from scratch on ASR data, BPE tokenizer is also trained on the same corpus - `flaubert-oral-mixed` : trained from scratch on a mixed corpus of ASR and text data, BPE tokenizer is also trained on the same corpus - `flaubert-oral-ft` : fine-tuning of flaubert-base-uncased for a few epochs on ASR data ## Usage for sequence classification ```python flaubert_tokenizer = FlaubertTokenizer.from_pretrained("nherve/flaubert-oral-asr") flaubert_classif = FlaubertForSequenceClassification.from_pretrained("nherve/flaubert-oral-asr", num_labels=14) flaubert_classif.sequence_summary.summary_type = 'mean' # Then, train your model ``` ## References If you use FlauBERT-Oral models for your scientific publication, or if you find the resources in this repository useful, please cite the following papers: ``` @InProceedings{herve2022flaubertoral, author = {Herv\'{e}, Nicolas and Pelloin, Valentin and Favre, Benoit and Dary, Franck and Laurent, Antoine and Meignier, Sylvain and Besacier, Laurent}, title = {Using ASR-Generated Text for Spoken Language Modeling}, booktitle = {Proceedings of "Challenges & Perspectives in Creating Large Language Models" ACL 2022 Workshop}, month = {May}, year = {2022} } ```
acsxz/distilbert-base-uncased-finetuned-emotion
36ef88d60422ffc274216d7dc6f01dd023d56d4c
2022-03-22T17:00:09.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers" ]
text-classification
false
acsxz
null
acsxz/distilbert-base-uncased-finetuned-emotion
4
null
transformers
19,153
Entry not found
eliasws/openApiT5-distilled-description-v1
2e107db74736be807625b080086fc55624fe5565
2022-03-18T18:47:47.000Z
[ "pytorch", "t5", "sentence-transformers", "feature-extraction", "sentence-similarity", "transformers" ]
sentence-similarity
false
eliasws
null
eliasws/openApiT5-distilled-description-v1
4
null
sentence-transformers
19,154
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 3681 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MSELoss.MSELoss` Parameters of the fit()-Method: ``` { "epochs": 5, "evaluation_steps": 0, "evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 3681, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': None, 'do_lower_case': False}) with Transformer model: T5EncoderModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
msamogh/autonlp-cai-out-of-scope-649919118
1b5795926f27f71ad8bf1e13faed05ffafaa067b
2022-03-19T21:40:40.000Z
[ "pytorch", "distilbert", "text-classification", "en", "dataset:msamogh/autonlp-data-cai-out-of-scope", "transformers", "autonlp", "co2_eq_emissions" ]
text-classification
false
msamogh
null
msamogh/autonlp-cai-out-of-scope-649919118
4
null
transformers
19,155
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - msamogh/autonlp-data-cai-out-of-scope co2_eq_emissions: 0.3996916853309825 --- # Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 649919118 - CO2 Emissions (in grams): 0.3996916853309825 ## Validation Metrics - Loss: 0.48289698362350464 - Accuracy: 0.8064516129032258 - Precision: 0.828125 - Recall: 0.8833333333333333 - AUC: 0.8353535353535354 - F1: 0.8548387096774193 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/msamogh/autonlp-cai-out-of-scope-649919118 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("msamogh/autonlp-cai-out-of-scope-649919118", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("msamogh/autonlp-cai-out-of-scope-649919118", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
Gunulhona/tb_pretrained
e7d059e30afcaf9c119aedc1a205eaf02f1501e9
2022-06-15T02:51:32.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "license:cc-by-nc-sa-4.0", "autotrain_compatible" ]
text2text-generation
false
Gunulhona
null
Gunulhona/tb_pretrained
4
null
transformers
19,156
--- license: cc-by-nc-sa-4.0 ---
mnavas/roberta-finetuned-CPV_Spanish
a328259a982343132765efe082919491361a474d
2022-05-17T09:06:28.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
mnavas
null
mnavas/roberta-finetuned-CPV_Spanish
4
null
transformers
19,157
--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: roberta-finetuned-CPV_Spanish results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-finetuned-CPV_Spanish This model is a fine-tuned version of [PlanTL-GOB-ES/roberta-base-bne](https://huggingface.co/PlanTL-GOB-ES/roberta-base-bne) on a dataset derived from Spanish Public Procurement documents from 2019. The whole fine-tuning process is available in the following [Kaggle notebook](https://www.kaggle.com/code/marianavasloro/fine-tuned-roberta-for-spanish-cpv-codes). It achieves the following results on the evaluation set: - Loss: 0.0465 - F1: 0.7918 - Roc Auc: 0.8860 - Accuracy: 0.7376 - Coverage Error: 10.2744 - Label Ranking Average Precision Score: 0.7973 ## Intended uses & limitations This model only predicts the first two digits of the CPV codes. The list of divisions CPV codes is the following: | Division | English | Spanish | | | | |----------|:----------------------------------------------------------------------------------------------------------------:|----------------------------------------------------------------------------------------------------------------------------------------------------|:-:|:-:|:-:| | 03 | Agricultural, farming, fishing, forestry and related products | Productos de la agricultura, ganadería, pesca, silvicultura y productos afines | | | | | 09 | Petroleum products, fuel, electricity and other sources of energy | Derivados del petróleo, combustibles, electricidad y otras fuentes de energía | | | | | 14 | Mining, basic metals and related products | Productos de la minería, de metales de base y productos afines | | | | | 15 | Food, beverages, tobacco and related products | Alimentos, bebidas, tabaco y productos afines | | | | | 16 | Agricultural machinery | Maquinaria agrícola | | | | | 18 | Clothing, footwear, luggage articles and accessories | Prendas de vestir, calzado, artículos de viaje y accesorios | | | | | 19 | Leather and textile fabrics, plastic and rubber materials | Piel y textiles, materiales de plástico y caucho | | | | | 22 | Printed matter and related products | Impresos y productos relacionados | | | | | 24 | Chemical products | Productos químicos | | | | | 30 | Office and computing machinery, equipment and supplies except furniture and software packages | Máquinas, equipo y artículos de oficina y de informática, excepto mobiliario y paquetes de software | | | | | 31 | Electrical machinery, apparatus, equipment and consumables; lighting | Máquinas, aparatos, equipo y productos consumibles eléctricos; iluminación | | | | | 32 | Radio, television, communication, telecommunication and related equipment | Equipos de radio, televisión, comunicaciones y telecomunicaciones y equipos conexos | | | | | 33 | Medical equipments, pharmaceuticals and personal care products | Equipamiento y artículos médicos, farmacéuticos y de higiene personal | | | | | 34 | Transport equipment and auxiliary products to transportation | Equipos de transporte y productos auxiliares | | | | | 35 | Security, fire | Equipo de seguridad, extinción de incendios, policía y defensa | | | | | 37 | Musical instruments, sport goods, games, toys, handicraft, art materials and accessories | Instrumentos musicales, artículos deportivos, juegos, juguetes, artículos de artesanía, materiales artísticos y accesorios | | | | | 38 | Laboratory, optical and precision equipments (excl. glasses) | Equipo de laboratorio, óptico y de precisión (excepto gafas) | | | | | 39 | Furniture (incl. office furniture), furnishings, domestic appliances (excl. lighting) and cleaning products | Mobiliario (incluido el de oficina), complementos de mobiliario, aparatos electrodomésticos (excluida la iluminación) y productos de limpieza | | | | | 41 | Collected and purified water | Agua recogida y depurada | | | | | 42 | Industrial machinery | Maquinaria industrial | | | | | 43 | Machinery for mining, quarrying, construction equipment | Maquinaria para la minería y la explotación de canteras y equipo de construcción | | | | | 44 | Construction structures and materials; auxiliary products to construction (except electric apparatus) | Estructuras y materiales de construcción; productos auxiliares para la construcción (excepto aparatos eléctricos) | | | | | 45 | Construction work | Trabajos de construcción | | | | | 48 | Software package and information systems | Paquetes de software y sistemas de información | | | | | 50 | Repair and maintenance services | Servicios de reparación y mantenimiento | | | | | 51 | Installation services (except software) | Servicios de instalación (excepto software) | | | | | 55 | Hotel, restaurant and retail trade services | Servicios comerciales al por menor de hostelería y restauración | | | | | 60 | Transport services (excl. Waste transport) | Servicios de transporte (excluido el transporte de residuos) | | | | | 63 | Supporting and auxiliary transport services; travel agencies services | Servicios de transporte complementarios y auxiliares; servicios de agencias de viajes | | | | | 64 | Postal and telecommunications services | Servicios de correos y telecomunicaciones | | | | | 65 | Public utilities | Servicios públicos | | | | | 66 | Financial and insurance services | Servicios financieros y de seguros | | | | | 70 | Real estate services | Servicios inmobiliarios | | | | | 71 | Architectural, construction, engineering and inspection services | Servicios de arquitectura, construcción, ingeniería e inspección | | | | | 72 | IT services: consulting, software development, Internet and support | Servicios TI: consultoría, desarrollo de software, Internet y apoyo | | | | | 73 | Research and development services and related consultancy services | Servicios de investigación y desarrollo y servicios de consultoría conexos | | | | | 75 | Administration, defence and social security services | Servicios de administración pública, defensa y servicios de seguridad social | | | | | 76 | Services related to the oil and gas industry | Servicios relacionados con la industria del gas y del petróleo | | | | | 77 | Agricultural, forestry, horticultural, aquacultural and apicultural services | Servicios agrícolas, forestales, hortícolas, acuícolas y apícolas | | | | | 79 | Business services: law, marketing, consulting, recruitment, printing and security | Servicios a empresas: legislación, mercadotecnia, asesoría, selección de personal, imprenta y seguridad | | | | | 80 | Education and training services | Servicios de enseñanza y formación | | | | | 85 | Health and social work services | Servicios de salud y asistencia social | | | | | 90 | Sewage, refuse, cleaning and environmental services | Servicios de alcantarillado, basura, limpieza y medio ambiente | | | | | 92 | Recreational, cultural and sporting services | Servicios de esparcimiento, culturales y deportivos | | | | | 98 | Other community, social and personal services | Otros servicios comunitarios, sociales o personales | | | | ## Training and evaluation data ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | Coverage Error | Label Ranking Average Precision Score | |:-------------:|:-----:|:-----:|:---------------:|:------:|:-------:|:--------:|:--------------:|:-------------------------------------:| | 0.0354 | 1.0 | 9054 | 0.0362 | 0.7560 | 0.8375 | 0.6963 | 14.0835 | 0.7357 | | 0.0311 | 2.0 | 18108 | 0.0331 | 0.7756 | 0.8535 | 0.7207 | 12.7880 | 0.7633 | | 0.0235 | 3.0 | 27162 | 0.0333 | 0.7823 | 0.8705 | 0.7283 | 11.5179 | 0.7811 | | 0.0157 | 4.0 | 36216 | 0.0348 | 0.7821 | 0.8699 | 0.7274 | 11.5836 | 0.7798 | | 0.011 | 5.0 | 45270 | 0.0377 | 0.7799 | 0.8787 | 0.7239 | 10.9173 | 0.7841 | | 0.008 | 6.0 | 54324 | 0.0395 | 0.7854 | 0.8787 | 0.7309 | 10.9042 | 0.7879 | | 0.0042 | 7.0 | 63378 | 0.0421 | 0.7872 | 0.8823 | 0.7300 | 10.5687 | 0.7903 | | 0.0025 | 8.0 | 72432 | 0.0439 | 0.7884 | 0.8867 | 0.7305 | 10.2220 | 0.7934 | | 0.0015 | 9.0 | 81486 | 0.0456 | 0.7889 | 0.8872 | 0.7316 | 10.1781 | 0.7945 | | 0.001 | 10.0 | 90540 | 0.0465 | 0.7918 | 0.8860 | 0.7376 | 10.2744 | 0.7973 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.9.1 - Datasets 1.18.4 - Tokenizers 0.11.6 ### Aknowledgments This work has been supported by NextProcurement European Action (grant agreement INEA/CEF/ICT/A2020/2373713-Action 2020-ES-IA-0255) and the Madrid Government (Comunidad de Madrid-Spain) under the Multiannual Agreement with Universidad Politécnica de Madrid in the line Support for R&D projects for Beatriz Galindo researchers, in the context of the V PRICIT (Regional Programme of Research and Technological Innovation). We also acknowledge the participation of Jennifer Tabita for the preparation of the initial set of notebooks, and the AI4Gov master students from the first cohort for their validation of the approach. Source of the data: Ministerio de Hacienda.
beston91/gpt2-xl_ft_logits_1k_2
8227d2953badd2a71ac843ae28efd8818d9c5a88
2022-03-21T11:27:12.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "model-index" ]
text-generation
false
beston91
null
beston91/gpt2-xl_ft_logits_1k_2
4
null
transformers
19,158
--- tags: - generated_from_trainer model-index: - name: gpt2-xl_ft_logits_1k_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-xl_ft_logits_1k_2 This model is a fine-tuned version of [gpt2-xl](https://huggingface.co/gpt2-xl) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 6.4793 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100.0 - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0.91 | 5 | 6.0743 | | No log | 1.91 | 10 | 6.1649 | | No log | 2.91 | 15 | 6.3068 | | No log | 3.91 | 20 | 6.4793 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6 ### Perplexity Score: 17.59307861328125
feiyangDu/bert-base-cased-0210-celential
3eebf08630a69b3fb04f6abf0d0dbf9e4dc1a689
2022-03-21T07:54:41.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
feiyangDu
null
feiyangDu/bert-base-cased-0210-celential
4
null
transformers
19,159
doctorlan/autonlp-ctrip-653519223
43a0bfa03cace789842bf62287e23ced5936a1c9
2022-03-21T09:01:53.000Z
[ "pytorch", "bert", "text-classification", "unk", "dataset:doctorlan/autonlp-data-ctrip", "transformers", "autonlp", "co2_eq_emissions" ]
text-classification
false
doctorlan
null
doctorlan/autonlp-ctrip-653519223
4
null
transformers
19,160
--- tags: autonlp language: unk widget: - text: "I love AutoNLP 🤗" datasets: - doctorlan/autonlp-data-ctrip co2_eq_emissions: 24.879856894708393 --- # Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 653519223 - CO2 Emissions (in grams): 24.879856894708393 ## Validation Metrics - Loss: 0.14671853184700012 - Accuracy: 0.9676666666666667 - Precision: 0.9794159885112494 - Recall: 0.9742857142857143 - AUC: 0.9901396825396825 - F1: 0.9768441155407017 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/doctorlan/autonlp-ctrip-653519223 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("doctorlan/autonlp-ctrip-653519223", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("doctorlan/autonlp-ctrip-653519223", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
Yaxin/electra-small-discriminator-yelp-mlm
36e38f5a61fd68b81f019a70af056ee37cc0d071
2022-03-21T09:21:02.000Z
[ "pytorch", "electra", "fill-mask", "dataset:yelp_review_full", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
Yaxin
null
Yaxin/electra-small-discriminator-yelp-mlm
4
null
transformers
19,161
--- license: apache-2.0 tags: - generated_from_trainer datasets: - yelp_review_full metrics: - accuracy model-index: - name: test-electra-small-yelp results: - task: name: Masked Language Modeling type: fill-mask dataset: name: yelp_review_full yelp_review_full type: yelp_review_full args: yelp_review_full metrics: - name: Accuracy type: accuracy value: 0.5677007577622891 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test-electra-small-yelp This model is a fine-tuned version of [google/electra-small-discriminator](https://huggingface.co/google/electra-small-discriminator) on the yelp_review_full yelp_review_full dataset. It achieves the following results on the evaluation set: - Loss: 2.2601 - Accuracy: 0.5677 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.10.0 - Datasets 1.18.3 - Tokenizers 0.11.0
gagan3012/TrOCR-Ar-Small
0fcc2872a3a7afe992818cce2ef6e15ebff27522
2022-03-21T20:49:02.000Z
[ "pytorch", "tensorboard", "vision-encoder-decoder", "ar", "transformers", "generated_from_trainer", "trocr", "model-index" ]
null
false
gagan3012
null
gagan3012/TrOCR-Ar-Small
4
null
transformers
19,162
--- tags: - generated_from_trainer - trocr language: ar model-index: - name: TrOCR-Ar-Small results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # TrOCR-Ar-Small This model is a fine-tuned version of [microsoft/trocr-small-stage1](https://huggingface.co/microsoft/trocr-small-stage1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.2771 - Cer: 0.8211 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.6363 | 0.14 | 1000 | 2.7594 | 0.9370 | | 2.7508 | 0.29 | 2000 | 2.6589 | 0.8901 | | 2.6519 | 0.43 | 3000 | 2.6059 | 0.8647 | | 2.5936 | 0.57 | 4000 | 2.5360 | 0.7941 | | 2.5069 | 0.72 | 5000 | 2.4701 | 0.8262 | | 2.4606 | 0.86 | 6000 | 2.4427 | 0.7552 | | 2.4046 | 1.0 | 7000 | 2.4262 | 0.7822 | | 2.3628 | 1.15 | 8000 | 2.3880 | 0.8186 | | 2.3458 | 1.29 | 9000 | 2.3589 | 0.8262 | | 2.3062 | 1.43 | 10000 | 2.3704 | 0.8693 | | 2.2884 | 1.58 | 11000 | 2.3065 | 0.8034 | | 2.263 | 1.72 | 12000 | 2.3413 | 0.8545 | | 2.2473 | 1.86 | 13000 | 2.3314 | 0.7996 | | 2.2318 | 2.01 | 14000 | 2.3034 | 0.8254 | | 2.2004 | 2.15 | 15000 | 2.3068 | 0.8461 | | 2.1774 | 2.29 | 16000 | 2.2799 | 0.8207 | | 2.1684 | 2.44 | 17000 | 2.2746 | 0.8249 | | 2.1637 | 2.58 | 18000 | 2.2540 | 0.7797 | | 2.1418 | 2.72 | 19000 | 2.2595 | 0.7937 | | 2.1309 | 2.87 | 20000 | 2.2771 | 0.8211 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
azwierzc/vilt-b32-finetuned-vqa-pl
bfa882cd2e550ba01a8c7e59e0bd8c756435ccb2
2022-03-21T12:01:07.000Z
[ "pytorch", "vilt", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
azwierzc
null
azwierzc/vilt-b32-finetuned-vqa-pl
4
null
transformers
19,163
Entry not found
PSW/ut_del_two_per_each_ver4
33744b3ad329038967dc4de79f181362150d3950
2022-03-21T15:26:16.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/ut_del_two_per_each_ver4
4
null
transformers
19,164
Entry not found
Messerschmitt/is712
b49330c1689fd31cba06b59c600670a7e7eab2c2
2022-03-21T15:50:48.000Z
[ "pytorch", "bert", "text-classification", "transformers", "license:afl-3.0" ]
text-classification
false
Messerschmitt
null
Messerschmitt/is712
4
null
transformers
19,165
--- license: afl-3.0 ---
StivenLancheros/roberta-base-biomedical-clinical-es-finetuned-ner-CRAFT_AugmentedTransfer_EN
3cc38a4f05593e103587811d453f9d46f77ec398
2022-03-21T22:10:39.000Z
[ "pytorch", "tensorboard", "roberta", "token-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
StivenLancheros
null
StivenLancheros/roberta-base-biomedical-clinical-es-finetuned-ner-CRAFT_AugmentedTransfer_EN
4
null
transformers
19,166
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: roberta-base-biomedical-clinical-es-finetuned-ner-CRAFT_AugmentedTransfer_EN results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-biomedical-clinical-es-finetuned-ner-CRAFT_AugmentedTransfer_EN This model is a fine-tuned version of [StivenLancheros/roberta-base-biomedical-clinical-es-finetuned-ner-CRAFT_Augmented_EN](https://huggingface.co/StivenLancheros/roberta-base-biomedical-clinical-es-finetuned-ner-CRAFT_Augmented_EN) on the CRAFT dataset. It achieves the following results on the evaluation set: - Loss: 0.2308 - Precision: 0.8366 - Recall: 0.8513 - F1: 0.8439 - Accuracy: 0.9681 ## Model description This model performs Named Entity Recognition for 6 entity tags: Sequence, Cell, Protein, Gene, Taxon, and Chemical from the CRAFT(Colorado Richly Annotated Full Text) Corpus in Spanish and English. Entity tags have been normalized and replaced from the original three letter code to a full name e.g. B-Protein, I-Chemical. This model is trained on augmented data created using Entity Replacement. 20% of the entities were replaced using a list of entities for each entity tag obtained from the official ontologies for each entity class. Both datasets (original, augmented) were concatenated. To improve F1 score the transfer learning was completed in two steps. Using [StivenLancheros/roberta-base-biomedical-clinical-es-finetuned-ner-CRAFT_Augmented_EN](https://huggingface.co/StivenLancheros/roberta-base-biomedical-clinical-es-finetuned-ner-CRAFT_Augmented_EN as a base model, I finetuned once more on the original CRAFT dataset in English. Biobert --> Augmented CRAFT --> CRAFT ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0129 | 1.0 | 1360 | 0.2119 | 0.8404 | 0.8364 | 0.8384 | 0.9666 | | 0.0072 | 2.0 | 2720 | 0.2132 | 0.8173 | 0.8583 | 0.8373 | 0.9662 | | 0.0042 | 3.0 | 4080 | 0.2180 | 0.8410 | 0.8515 | 0.8462 | 0.9686 | | 0.0019 | 4.0 | 5440 | 0.2308 | 0.8366 | 0.8513 | 0.8439 | 0.9681 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
danyaljj/gpt-j-6B-step-318500
f7c3f029e6222f5742f2883245f836aa1292d564
2022-03-22T23:10:51.000Z
[ "pytorch", "gptj", "text-generation", "transformers" ]
text-generation
false
danyaljj
null
danyaljj/gpt-j-6B-step-318500
4
null
transformers
19,167
Entry not found
danyaljj/gpt-j-6B-step-328500
cb96aeb8facf15e9b249034cd324a0d2b2415555
2022-03-22T23:09:11.000Z
[ "pytorch", "gptj", "text-generation", "transformers" ]
text-generation
false
danyaljj
null
danyaljj/gpt-j-6B-step-328500
4
null
transformers
19,168
Entry not found
danyaljj/gpt-j-6B-step-382500
132e906af4b00475b0f8b13f165c8cb3a08b32d5
2022-03-22T23:11:56.000Z
[ "pytorch", "gptj", "text-generation", "transformers" ]
text-generation
false
danyaljj
null
danyaljj/gpt-j-6B-step-382500
4
null
transformers
19,169
Entry not found
danyaljj/gpt-j-6B-step-384500
0e77c3aee79f2e9ea93044bd6bf9bf58c4117c84
2022-03-22T23:12:34.000Z
[ "pytorch", "gptj", "text-generation", "transformers" ]
text-generation
false
danyaljj
null
danyaljj/gpt-j-6B-step-384500
4
null
transformers
19,170
Entry not found
PSW/ut_del_two_per_each_ver5
0e0c1fe30290770a775bfef93ba0f5ba0a9cb800
2022-03-22T05:54:08.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/ut_del_two_per_each_ver5
4
null
transformers
19,171
Entry not found
mukayese/mbart-large-turkish-sum
84e561c757926a852674edaf0f3a127672af8b73
2022-03-22T14:32:33.000Z
[ "pytorch", "mbart", "text2text-generation", "dataset:mlsum", "arxiv:2203.01215", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
mukayese
null
mukayese/mbart-large-turkish-sum
4
1
transformers
19,172
--- tags: - generated_from_trainer datasets: - mlsum metrics: - rouge model-index: - name: mbart-large-turkish-sum results: - task: name: Summarization type: summarization dataset: name: mlsum tu type: mlsum args: tu metrics: - name: Rouge1 type: rouge value: 46.7011 --- # [Mukayese: Turkish NLP Strikes Back](https://arxiv.org/abs/2203.01215) ## Summarization: mukayese/mbart-large-turkish-sum This model is a fine-tuned version of [facebook/mbart-large-50](https://huggingface.co/facebook/mbart-large-50) on the mlsum/tu dataset. It achieves the following results on the evaluation set: - Rouge1: 46.7011 - Rouge2: 34.0087 - Rougel: 41.5475 - Rougelsum: 43.2108 Check [this](https://arxiv.org/abs/2203.01215) paper for more details on the model and the dataset. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 - mixed_precision_training: Native AMP - label_smoothing_factor: 0.1 ### Framework versions - Transformers 4.11.3 - Pytorch 1.8.2+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3 ### Citation ``` @misc{safaya-etal-2022-mukayese, title={Mukayese: Turkish NLP Strikes Back}, author={Ali Safaya and Emirhan Kurtuluş and Arda Göktoğan and Deniz Yuret}, year={2022}, eprint={2203.01215}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
aaraki/wav2vec2-base-finetuned-ks
6d817bf7a9faf669bce87c71cd27cf56d5376c3e
2022-03-23T05:55:15.000Z
[ "pytorch", "tensorboard", "wav2vec2", "audio-classification", "dataset:superb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
audio-classification
false
aaraki
null
aaraki/wav2vec2-base-finetuned-ks
4
null
transformers
19,173
--- license: apache-2.0 tags: - generated_from_trainer datasets: - superb metrics: - accuracy model-index: - name: wav2vec2-base-finetuned-ks results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-finetuned-ks This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the superb dataset. It achieves the following results on the evaluation set: - Loss: 0.9949 - Accuracy: 0.6958 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0231 | 1.0 | 399 | 0.9949 | 0.6958 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
FuriouslyAsleep/markingMultiClass
5cb73a696e37ce06aa1ed2d15d3c8b840c281e9a
2022-03-23T09:21:51.000Z
[ "pytorch", "distilbert", "text-classification", "en", "dataset:FuriouslyAsleep/autotrain-data-markingClassifier", "transformers", "autonlp", "co2_eq_emissions" ]
text-classification
false
FuriouslyAsleep
null
FuriouslyAsleep/markingMultiClass
4
null
transformers
19,174
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - FuriouslyAsleep/autotrain-data-markingClassifier co2_eq_emissions: 0.5712537632313806 --- # Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 661319476 - CO2 Emissions (in grams): 0.5712537632313806 ## Validation Metrics - Loss: 0.859619140625 - Accuracy: 0.8 - Macro F1: 0.6 - Micro F1: 0.8000000000000002 - Weighted F1: 0.72 - Macro Precision: 0.5555555555555555 - Micro Precision: 0.8 - Weighted Precision: 0.6666666666666666 - Macro Recall: 0.6666666666666666 - Micro Recall: 0.8 - Weighted Recall: 0.8 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/FuriouslyAsleep/autonlp-markingClassifier-661319476 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("FuriouslyAsleep/autonlp-markingClassifier-661319476", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("FuriouslyAsleep/autonlp-markingClassifier-661319476", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
nherve/flaubert-oral-ft
c383fafc0d6e70c1e1f5a9a2b8eef2f005bbfa27
2022-04-04T10:27:14.000Z
[ "pytorch", "fr", "transformers", "bert", "language-model", "flaubert", "french", "flaubert-base", "uncased", "asr", "speech", "oral", "natural language understanding", "NLU", "spoken language understanding", "SLU", "understanding", "license:mit" ]
null
false
nherve
null
nherve/flaubert-oral-ft
4
null
transformers
19,175
--- language: fr license: mit tags: - bert - language-model - flaubert - french - flaubert-base - uncased - asr - speech - oral - natural language understanding - NLU - spoken language understanding - SLU - understanding --- # FlauBERT-Oral models: Using ASR-Generated Text for Spoken Language Modeling **FlauBERT-Oral** are French BERT models trained on a very large amount of automatically transcribed speech from 350,000 hours of diverse French TV shows. They were trained with the [**FlauBERT software**](https://github.com/getalp/Flaubert) using the same parameters as the [flaubert-base-uncased](https://huggingface.co/flaubert/flaubert_base_uncased) model (12 layers, 12 attention heads, 768 dims, 137M parameters, uncased). ## Available FlauBERT-Oral models - `flaubert-oral-asr` : trained from scratch on ASR data, keeping the BPE tokenizer and vocabulary of flaubert-base-uncased - `flaubert-oral-asr_nb` : trained from scratch on ASR data, BPE tokenizer is also trained on the same corpus - `flaubert-oral-mixed` : trained from scratch on a mixed corpus of ASR and text data, BPE tokenizer is also trained on the same corpus - `flaubert-oral-ft` : fine-tuning of flaubert-base-uncased for a few epochs on ASR data ## Usage for sequence classification ```python flaubert_tokenizer = FlaubertTokenizer.from_pretrained("nherve/flaubert-oral-asr") flaubert_classif = FlaubertForSequenceClassification.from_pretrained("nherve/flaubert-oral-asr", num_labels=14) flaubert_classif.sequence_summary.summary_type = 'mean' # Then, train your model ``` ## References If you use FlauBERT-Oral models for your scientific publication, or if you find the resources in this repository useful, please cite the following papers: ``` @InProceedings{herve2022flaubertoral, author = {Herv\'{e}, Nicolas and Pelloin, Valentin and Favre, Benoit and Dary, Franck and Laurent, Antoine and Meignier, Sylvain and Besacier, Laurent}, title = {Using ASR-Generated Text for Spoken Language Modeling}, booktitle = {Proceedings of "Challenges & Perspectives in Creating Large Language Models" ACL 2022 Workshop}, month = {May}, year = {2022} } ```
lysandre/sharded-repo
143809b2b1a9372372ed0f34657ec9d067c2716e
2022-03-23T14:23:25.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
lysandre
null
lysandre/sharded-repo
4
null
transformers
19,176
Entry not found
gpucce/ProSolAdv_full_train
2bc19ea2962318837cc6d30ad68939cd46cc0217
2022-03-23T21:17:05.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
gpucce
null
gpucce/ProSolAdv_full_train
4
null
transformers
19,177
Entry not found
clisi2000/distilbert-base-uncased-distilled-clinc
6a0e3b0733aa82c4753fa91edc26dcd0da55e545
2022-03-24T03:50:04.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:clinc_oos", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
clisi2000
null
clisi2000/distilbert-base-uncased-distilled-clinc
4
null
transformers
19,178
--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos model-index: - name: distilbert-base-uncased-distilled-clinc results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-distilled-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 9 ### Framework versions - Transformers 4.13.0 - Pytorch 1.10.2+cpu - Datasets 1.18.4 - Tokenizers 0.10.3
yy642/bert-base-uncased-finetuned-rte-max-length-256-epoch-5
044d4f4b605df2fe0595acaa8eaccdfc001a820e
2022-03-24T05:01:22.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
yy642
null
yy642/bert-base-uncased-finetuned-rte-max-length-256-epoch-5
4
null
transformers
19,179
Entry not found
Helsinki-NLP/opus-mt-tc-base-uk-ro
09a793f34ff065f0dc321db6c8de7b9467a2968d
2022-06-01T13:10:21.000Z
[ "pytorch", "marian", "text2text-generation", "ro", "uk", "transformers", "translation", "opus-mt-tc", "license:cc-by-4.0", "model-index", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-tc-base-uk-ro
4
null
transformers
19,180
--- language: - ro - uk tags: - translation - opus-mt-tc license: cc-by-4.0 model-index: - name: opus-mt-tc-base-uk-ro results: - task: name: Translation ukr-ron type: translation args: ukr-ron dataset: name: flores101-devtest type: flores_101 args: ukr ron devtest metrics: - name: BLEU type: bleu value: 27.7 --- # opus-mt-tc-base-uk-ro Neural machine translation model for translating from Ukrainian (uk) to Romanian (ro). This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train). * Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.) ``` @inproceedings{tiedemann-thottingal-2020-opus, title = "{OPUS}-{MT} {--} Building open translation services for the World", author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh}, booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation", month = nov, year = "2020", address = "Lisboa, Portugal", publisher = "European Association for Machine Translation", url = "https://aclanthology.org/2020.eamt-1.61", pages = "479--480", } @inproceedings{tiedemann-2020-tatoeba, title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}", author = {Tiedemann, J{\"o}rg}, booktitle = "Proceedings of the Fifth Conference on Machine Translation", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.wmt-1.139", pages = "1174--1182", } ``` ## Model info * Release: 2022-03-08 * source language(s): * target language(s): * valid target language labels: * model: transformer-align * data: opusTCv20210807+pft ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge)) * tokenization: SentencePiece (spm32k,spm32k) * original model: [opusTCv20210807+pft_transformer-align_2022-03-08.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/ukr-ron/opusTCv20210807+pft_transformer-align_2022-03-08.zip) * more information released models: [OPUS-MT ukr-ron README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ukr-ron/README.md) * more information about the model: [MarianMT](https://huggingface.co/docs/transformers/model_doc/marian) This is a multilingual translation model with multiple target languages. A sentence initial language token is required in the form of `>>id<<` (id = valid target language ID), e.g. `>><<` ## Usage A short example code: ```python from transformers import MarianMTModel, MarianTokenizer src_text = [ ">>ron<< Стаття висловлює особисту думку автора.", ">>ron<< Качкодзьоби живуть на сході Австрії." ] model_name = "pytorch-models/opus-mt-tc-base-uk-ro" tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) for t in translated: print( tokenizer.decode(t, skip_special_tokens=True) ) # expected output: # Articolul exprimă opinia personală a autorului. # Kachkojiobi trăiesc în estul Austriei. ``` You can also use OPUS-MT models with the transformers pipelines, for example: ```python from transformers import pipeline pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-base-uk-ro") print(pipe(">>ron<< Стаття висловлює особисту думку автора.")) # expected output: Articolul exprimă opinia personală a autorului. ``` ## Benchmarks * test set translations: [opusTCv20210807+pft_transformer-align_2022-03-08.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ukr-ron/opusTCv20210807+pft_transformer-align_2022-03-08.test.txt) * test set scores: [opusTCv20210807+pft_transformer-align_2022-03-08.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ukr-ron/opusTCv20210807+pft_transformer-align_2022-03-08.eval.txt) * benchmark results: [benchmark_results.txt](benchmark_results.txt) * benchmark output: [benchmark_translations.zip](benchmark_translations.zip) | langpair | testset | chr-F | BLEU | #sent | #words | |----------|---------|-------|-------|-------|--------| | ukr-ron | flores101-devtest | 0.55343 | 27.7 | 1012 | 26799 | ## Acknowledgements The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland. ## Model conversion info * transformers version: 4.16.2 * OPUS-MT git hash: f084bad * port time: Wed Mar 23 21:48:27 EET 2022 * port machine: LM0-400-22516.local
Helsinki-NLP/opus-mt-tc-big-zle-fi
8be545c3213f82fe96e2b406f8f924875056c0d2
2022-06-01T13:10:09.000Z
[ "pytorch", "marian", "text2text-generation", "fi", "ru", "uk", "zle", "transformers", "translation", "opus-mt-tc", "license:cc-by-4.0", "model-index", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-tc-big-zle-fi
4
null
transformers
19,181
--- language: - fi - ru - uk - zle tags: - translation - opus-mt-tc license: cc-by-4.0 model-index: - name: opus-mt-tc-big-zle-fi results: - task: name: Translation rus-fin type: translation args: rus-fin dataset: name: flores101-devtest type: flores_101 args: rus fin devtest metrics: - name: BLEU type: bleu value: 17.4 - task: name: Translation ukr-fin type: translation args: ukr-fin dataset: name: flores101-devtest type: flores_101 args: ukr fin devtest metrics: - name: BLEU type: bleu value: 18.0 - task: name: Translation rus-fin type: translation args: rus-fin dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: rus-fin metrics: - name: BLEU type: bleu value: 42.2 --- # opus-mt-tc-big-zle-fi Neural machine translation model for translating from East Slavic languages (zle) to Finnish (fi). This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train). * Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.) ``` @inproceedings{tiedemann-thottingal-2020-opus, title = "{OPUS}-{MT} {--} Building open translation services for the World", author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh}, booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation", month = nov, year = "2020", address = "Lisboa, Portugal", publisher = "European Association for Machine Translation", url = "https://aclanthology.org/2020.eamt-1.61", pages = "479--480", } @inproceedings{tiedemann-2020-tatoeba, title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}", author = {Tiedemann, J{\"o}rg}, booktitle = "Proceedings of the Fifth Conference on Machine Translation", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.wmt-1.139", pages = "1174--1182", } ``` ## Model info * Release: 2022-03-07 * source language(s): rus ukr * target language(s): fin * model: transformer-big * data: opusTCv20210807+bt ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge)) * tokenization: SentencePiece (spm32k,spm32k) * original model: [opusTCv20210807+bt_transformer-big_2022-03-07.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/zle-fin/opusTCv20210807+bt_transformer-big_2022-03-07.zip) * more information released models: [OPUS-MT zle-fin README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/zle-fin/README.md) ## Usage A short example code: ```python from transformers import MarianMTModel, MarianTokenizer src_text = [ "Мы уже проголосовали.", "Один, два, три, чотири, п'ять, шість, сім, вісім, дев'ять, десять." ] model_name = "pytorch-models/opus-mt-tc-big-zle-fi" tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) for t in translated: print( tokenizer.decode(t, skip_special_tokens=True) ) # expected output: # Olemme jo äänestäneet. # Yksi, kaksi, kolme, neljä, viisi, kuusi, seitsemän, kahdeksan, yhdeksän, kymmenen. ``` You can also use OPUS-MT models with the transformers pipelines, for example: ```python from transformers import pipeline pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-zle-fi") print(pipe("Мы уже проголосовали.")) # expected output: Olemme jo äänestäneet. ``` ## Benchmarks * test set translations: [opusTCv20210807+bt_transformer-big_2022-03-07.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zle-fin/opusTCv20210807+bt_transformer-big_2022-03-07.test.txt) * test set scores: [opusTCv20210807+bt_transformer-big_2022-03-07.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zle-fin/opusTCv20210807+bt_transformer-big_2022-03-07.eval.txt) * benchmark results: [benchmark_results.txt](benchmark_results.txt) * benchmark output: [benchmark_translations.zip](benchmark_translations.zip) | langpair | testset | chr-F | BLEU | #sent | #words | |----------|---------|-------|-------|-------|--------| | rus-fin | tatoeba-test-v2021-08-07 | 0.66334 | 42.2 | 3643 | 19319 | | rus-fin | flores101-devtest | 0.52577 | 17.4 | 1012 | 18781 | | ukr-fin | flores101-devtest | 0.53440 | 18.0 | 1012 | 18781 | ## Acknowledgements The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland. ## Model conversion info * transformers version: 4.16.2 * OPUS-MT git hash: 42126b6 * port time: Thu Mar 24 09:28:52 EET 2022 * port machine: LM0-400-22516.local
Helsinki-NLP/opus-mt-tc-big-de-zle
a7cb10ebdc267e47b4026c545713a6ca7925a429
2022-06-01T13:08:11.000Z
[ "pytorch", "marian", "text2text-generation", "be", "de", "ru", "uk", "zle", "transformers", "translation", "opus-mt-tc", "license:cc-by-4.0", "model-index", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-tc-big-de-zle
4
null
transformers
19,182
--- language: - be - de - ru - uk - zle tags: - translation - opus-mt-tc license: cc-by-4.0 model-index: - name: opus-mt-tc-big-de-zle results: - task: name: Translation deu-rus type: translation args: deu-rus dataset: name: flores101-devtest type: flores_101 args: deu rus devtest metrics: - name: BLEU type: bleu value: 26.3 - task: name: Translation deu-ukr type: translation args: deu-ukr dataset: name: flores101-devtest type: flores_101 args: deu ukr devtest metrics: - name: BLEU type: bleu value: 24.2 - task: name: Translation deu-bel type: translation args: deu-bel dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: deu-bel metrics: - name: BLEU type: bleu value: 29.5 - task: name: Translation deu-rus type: translation args: deu-rus dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: deu-rus metrics: - name: BLEU type: bleu value: 46.1 - task: name: Translation deu-ukr type: translation args: deu-ukr dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: deu-ukr metrics: - name: BLEU type: bleu value: 40.7 - task: name: Translation deu-rus type: translation args: deu-rus dataset: name: newstest2012 type: wmt-2012-news args: deu-rus metrics: - name: BLEU type: bleu value: 20.8 - task: name: Translation deu-rus type: translation args: deu-rus dataset: name: newstest2013 type: wmt-2013-news args: deu-rus metrics: - name: BLEU type: bleu value: 24.9 --- # opus-mt-tc-big-de-zle Neural machine translation model for translating from German (de) to East Slavic languages (zle). This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train). * Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.) ``` @inproceedings{tiedemann-thottingal-2020-opus, title = "{OPUS}-{MT} {--} Building open translation services for the World", author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh}, booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation", month = nov, year = "2020", address = "Lisboa, Portugal", publisher = "European Association for Machine Translation", url = "https://aclanthology.org/2020.eamt-1.61", pages = "479--480", } @inproceedings{tiedemann-2020-tatoeba, title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}", author = {Tiedemann, J{\"o}rg}, booktitle = "Proceedings of the Fifth Conference on Machine Translation", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.wmt-1.139", pages = "1174--1182", } ``` ## Model info * Release: 2022-03-23 * source language(s): deu * target language(s): bel rus ukr * valid target language labels: >>bel<< >>rus<< >>ukr<< * model: transformer-big * data: opusTCv20210807 ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge)) * tokenization: SentencePiece (spm32k,spm32k) * original model: [opusTCv20210807_transformer-big_2022-03-23.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/deu-zle/opusTCv20210807_transformer-big_2022-03-23.zip) * more information released models: [OPUS-MT deu-zle README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/deu-zle/README.md) * more information about the model: [MarianMT](https://huggingface.co/docs/transformers/model_doc/marian) This is a multilingual translation model with multiple target languages. A sentence initial language token is required in the form of `>>id<<` (id = valid target language ID), e.g. `>>bel<<` ## Usage A short example code: ```python from transformers import MarianMTModel, MarianTokenizer src_text = [ ">>ukr<< Der Soldat hat mir Wasser gegeben.", ">>ukr<< Ich will hier nicht essen." ] model_name = "pytorch-models/opus-mt-tc-big-de-zle" tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) for t in translated: print( tokenizer.decode(t, skip_special_tokens=True) ) # expected output: # Солдат дав мені воду. # Я не хочу тут їсти. ``` You can also use OPUS-MT models with the transformers pipelines, for example: ```python from transformers import pipeline pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-de-zle") print(pipe(">>ukr<< Der Soldat hat mir Wasser gegeben.")) # expected output: Солдат дав мені воду. ``` ## Benchmarks * test set translations: [opusTCv20210807_transformer-big_2022-03-23.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/deu-zle/opusTCv20210807_transformer-big_2022-03-23.test.txt) * test set scores: [opusTCv20210807_transformer-big_2022-03-23.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/deu-zle/opusTCv20210807_transformer-big_2022-03-23.eval.txt) * benchmark results: [benchmark_results.txt](benchmark_results.txt) * benchmark output: [benchmark_translations.zip](benchmark_translations.zip) | langpair | testset | chr-F | BLEU | #sent | #words | |----------|---------|-------|-------|-------|--------| | deu-bel | tatoeba-test-v2021-08-07 | 0.53128 | 29.5 | 551 | 3601 | | deu-rus | tatoeba-test-v2021-08-07 | 0.67143 | 46.1 | 12800 | 87296 | | deu-ukr | tatoeba-test-v2021-08-07 | 0.62737 | 40.7 | 10319 | 56287 | | deu-rus | flores101-devtest | 0.54152 | 26.3 | 1012 | 23295 | | deu-ukr | flores101-devtest | 0.53286 | 24.2 | 1012 | 22810 | | deu-rus | newstest2012 | 0.49409 | 20.8 | 3003 | 64790 | | deu-rus | newstest2013 | 0.52631 | 24.9 | 3000 | 58560 | ## Acknowledgements The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland. ## Model conversion info * transformers version: 4.16.2 * OPUS-MT git hash: 1bdabf7 * port time: Thu Mar 24 01:29:09 EET 2022 * port machine: LM0-400-22516.local
Helsinki-NLP/opus-mt-tc-base-fi-uk
97b18786a291e3e92104c025ca9afc3f6b9959f9
2022-06-01T13:08:45.000Z
[ "pytorch", "marian", "text2text-generation", "fi", "uk", "transformers", "translation", "opus-mt-tc", "license:cc-by-4.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-tc-base-fi-uk
4
null
transformers
19,183
--- language: - fi - uk tags: - translation - opus-mt-tc license: cc-by-4.0 --- # opus-mt-tc-base-fi-uk Neural machine translation model for translating from Finnish (fi) to Ukrainian (uk). This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train). * Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.) ``` @inproceedings{tiedemann-thottingal-2020-opus, title = "{OPUS}-{MT} {--} Building open translation services for the World", author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh}, booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation", month = nov, year = "2020", address = "Lisboa, Portugal", publisher = "European Association for Machine Translation", url = "https://aclanthology.org/2020.eamt-1.61", pages = "479--480", } @inproceedings{tiedemann-2020-tatoeba, title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}", author = {Tiedemann, J{\"o}rg}, booktitle = "Proceedings of the Fifth Conference on Machine Translation", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.wmt-1.139", pages = "1174--1182", } ``` ## Model info * Release: 2022-03-07 * source language(s): fin * target language(s): ukr * model: transformer-align * data: opusTCv20210807+pbt ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge)) * tokenization: SentencePiece (spm32k,spm32k) * original model: [opusTCv20210807+pbt_transformer-align_2022-03-07.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/fin-ukr/opusTCv20210807+pbt_transformer-align_2022-03-07.zip) * more information released models: [OPUS-MT fin-ukr README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/fin-ukr/README.md) ## Usage A short example code: ```python from transformers import MarianMTModel, MarianTokenizer src_text = [ "Afrikka on ihmiskunnan kehto.", "Yksi, kaksi, kolme, neljä, viisi, kuusi, seitsemän, kahdeksan, yhdeksän, kymmenen." ] model_name = "pytorch-models/opus-mt-tc-base-fi-uk" tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) for t in translated: print( tokenizer.decode(t, skip_special_tokens=True) ) # expected output: # Африка є колискою людства. # Один, два, три, чотири, п'ять, шість, сім, вісім, дев'ять, десять. ``` You can also use OPUS-MT models with the transformers pipelines, for example: ```python from transformers import pipeline pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-base-fi-uk") print(pipe("Afrikka on ihmiskunnan kehto.")) # expected output: Африка є колискою людства. ``` ## Benchmarks * test set translations: [opusTCv20210807+pbt_transformer-align_2022-03-07.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/fin-ukr/opusTCv20210807+pbt_transformer-align_2022-03-07.test.txt) * test set scores: [opusTCv20210807+pbt_transformer-align_2022-03-07.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/fin-ukr/opusTCv20210807+pbt_transformer-align_2022-03-07.eval.txt) * benchmark results: [benchmark_results.txt](benchmark_results.txt) * benchmark output: [benchmark_translations.zip](benchmark_translations.zip) | langpair | testset | chr-F | BLEU | #sent | #words | |----------|---------|-------|-------|-------|--------| | fin-ukr | flores101-devtest | 0.49562 | 19.7 | 1012 | 22810 | ## Acknowledgements The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland. ## Model conversion info * transformers version: 4.16.2 * OPUS-MT git hash: 1bdabf7 * port time: Thu Mar 24 02:00:05 EET 2022 * port machine: LM0-400-22516.local
Helsinki-NLP/opus-mt-tc-big-fr-zle
206f37c32fd23dbf78b90c2e298682f02ffcb18d
2022-06-01T13:08:23.000Z
[ "pytorch", "marian", "text2text-generation", "be", "fr", "ru", "uk", "zle", "transformers", "translation", "opus-mt-tc", "license:cc-by-4.0", "model-index", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-tc-big-fr-zle
4
null
transformers
19,184
--- language: - be - fr - ru - uk - zle tags: - translation - opus-mt-tc license: cc-by-4.0 model-index: - name: opus-mt-tc-big-fr-zle results: - task: name: Translation fra-rus type: translation args: fra-rus dataset: name: flores101-devtest type: flores_101 args: fra rus devtest metrics: - name: BLEU type: bleu value: 25.8 - task: name: Translation fra-ukr type: translation args: fra-ukr dataset: name: flores101-devtest type: flores_101 args: fra ukr devtest metrics: - name: BLEU type: bleu value: 23.1 - task: name: Translation fra-bel type: translation args: fra-bel dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: fra-bel metrics: - name: BLEU type: bleu value: 31.1 - task: name: Translation fra-rus type: translation args: fra-rus dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: fra-rus metrics: - name: BLEU type: bleu value: 46.1 - task: name: Translation fra-ukr type: translation args: fra-ukr dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: fra-ukr metrics: - name: BLEU type: bleu value: 39.9 - task: name: Translation fra-rus type: translation args: fra-rus dataset: name: newstest2012 type: wmt-2012-news args: fra-rus metrics: - name: BLEU type: bleu value: 23.1 - task: name: Translation fra-rus type: translation args: fra-rus dataset: name: newstest2013 type: wmt-2013-news args: fra-rus metrics: - name: BLEU type: bleu value: 24.8 --- # opus-mt-tc-big-fr-zle Neural machine translation model for translating from French (fr) to East Slavic languages (zle). This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train). * Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.) ``` @inproceedings{tiedemann-thottingal-2020-opus, title = "{OPUS}-{MT} {--} Building open translation services for the World", author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh}, booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation", month = nov, year = "2020", address = "Lisboa, Portugal", publisher = "European Association for Machine Translation", url = "https://aclanthology.org/2020.eamt-1.61", pages = "479--480", } @inproceedings{tiedemann-2020-tatoeba, title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}", author = {Tiedemann, J{\"o}rg}, booktitle = "Proceedings of the Fifth Conference on Machine Translation", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.wmt-1.139", pages = "1174--1182", } ``` ## Model info * Release: 2022-03-23 * source language(s): fra * target language(s): bel rus ukr * valid target language labels: >>bel<< >>rus<< >>ukr<< * model: transformer-big * data: opusTCv20210807 ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge)) * tokenization: SentencePiece (spm32k,spm32k) * original model: [opusTCv20210807_transformer-big_2022-03-23.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/fra-zle/opusTCv20210807_transformer-big_2022-03-23.zip) * more information released models: [OPUS-MT fra-zle README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/fra-zle/README.md) * more information about the model: [MarianMT](https://huggingface.co/docs/transformers/model_doc/marian) This is a multilingual translation model with multiple target languages. A sentence initial language token is required in the form of `>>id<<` (id = valid target language ID), e.g. `>>bel<<` ## Usage A short example code: ```python from transformers import MarianMTModel, MarianTokenizer src_text = [ ">>rus<< Ils ont acheté un très bon appareil photo.", ">>ukr<< Il s'est soudain mis à pleuvoir." ] model_name = "pytorch-models/opus-mt-tc-big-fr-zle" tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) for t in translated: print( tokenizer.decode(t, skip_special_tokens=True) ) # expected output: # Они купили очень хорошую камеру. # Раптом почався дощ. ``` You can also use OPUS-MT models with the transformers pipelines, for example: ```python from transformers import pipeline pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-fr-zle") print(pipe(">>rus<< Ils ont acheté un très bon appareil photo.")) # expected output: Они купили очень хорошую камеру. ``` ## Benchmarks * test set translations: [opusTCv20210807_transformer-big_2022-03-23.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/fra-zle/opusTCv20210807_transformer-big_2022-03-23.test.txt) * test set scores: [opusTCv20210807_transformer-big_2022-03-23.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/fra-zle/opusTCv20210807_transformer-big_2022-03-23.eval.txt) * benchmark results: [benchmark_results.txt](benchmark_results.txt) * benchmark output: [benchmark_translations.zip](benchmark_translations.zip) | langpair | testset | chr-F | BLEU | #sent | #words | |----------|---------|-------|-------|-------|--------| | fra-bel | tatoeba-test-v2021-08-07 | 0.52711 | 31.1 | 283 | 1703 | | fra-rus | tatoeba-test-v2021-08-07 | 0.66502 | 46.1 | 11490 | 70123 | | fra-ukr | tatoeba-test-v2021-08-07 | 0.61860 | 39.9 | 10035 | 54372 | | fra-rus | flores101-devtest | 0.54106 | 25.8 | 1012 | 23295 | | fra-ukr | flores101-devtest | 0.52733 | 23.1 | 1012 | 22810 | | fra-rus | newstest2012 | 0.51254 | 23.1 | 3003 | 64790 | | fra-rus | newstest2013 | 0.52342 | 24.8 | 3000 | 58560 | ## Acknowledgements The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland. ## Model conversion info * transformers version: 4.16.2 * OPUS-MT git hash: 1bdabf7 * port time: Thu Mar 24 02:05:04 EET 2022 * port machine: LM0-400-22516.local
Ryukijano/DialoGPT_med_model
c61938a84f438f07b7c4fd7eba86a1f4aeb7ac1a
2022-03-24T13:14:02.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
Ryukijano
null
Ryukijano/DialoGPT_med_model
4
null
transformers
19,185
Hello there , this bot is trained on DialoGTP for an epoch of 45
Helsinki-NLP/opus-mt-tc-base-ro-uk
da425340b48eaed8b02cc0937057b71ea83a41d1
2022-06-01T13:02:07.000Z
[ "pytorch", "marian", "text2text-generation", "ro", "uk", "transformers", "translation", "opus-mt-tc", "license:cc-by-4.0", "model-index", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-tc-base-ro-uk
4
null
transformers
19,186
--- language: - ro - uk tags: - translation - opus-mt-tc license: cc-by-4.0 model-index: - name: opus-mt-tc-base-ro-uk results: - task: name: Translation ron-ukr type: translation args: ron-ukr dataset: name: flores101-devtest type: flores_101 args: ron ukr devtest metrics: - name: BLEU type: bleu value: 22.3 --- # opus-mt-tc-base-ro-uk Neural machine translation model for translating from Romanian (ro) to Ukrainian (uk). This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train). * Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.) ``` @inproceedings{tiedemann-thottingal-2020-opus, title = "{OPUS}-{MT} {--} Building open translation services for the World", author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh}, booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation", month = nov, year = "2020", address = "Lisboa, Portugal", publisher = "European Association for Machine Translation", url = "https://aclanthology.org/2020.eamt-1.61", pages = "479--480", } @inproceedings{tiedemann-2020-tatoeba, title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}", author = {Tiedemann, J{\"o}rg}, booktitle = "Proceedings of the Fifth Conference on Machine Translation", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.wmt-1.139", pages = "1174--1182", } ``` ## Model info * Release: 2022-03-08 * source language(s): * target language(s): * valid target language labels: * model: transformer-align * data: opusTCv20210807+pbt ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge)) * tokenization: SentencePiece (spm32k,spm32k) * original model: [opusTCv20210807+pbt_transformer-align_2022-03-08.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/ron-ukr/opusTCv20210807+pbt_transformer-align_2022-03-08.zip) * more information released models: [OPUS-MT ron-ukr README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ron-ukr/README.md) * more information about the model: [MarianMT](https://huggingface.co/docs/transformers/model_doc/marian) This is a multilingual translation model with multiple target languages. A sentence initial language token is required in the form of `>>id<<` (id = valid target language ID), e.g. `>><<` ## Usage A short example code: ```python from transformers import MarianMTModel, MarianTokenizer src_text = [ "Articolul exprimă opinia personală a autorului.", "Ornitorincii trăiesc în estul Austriei." ] model_name = "pytorch-models/opus-mt-tc-base-ro-uk" tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) for t in translated: print( tokenizer.decode(t, skip_special_tokens=True) ) # expected output: # Стаття висловлює особисту думку автора. # Орніторінці живуть на сході Австрії. ``` You can also use OPUS-MT models with the transformers pipelines, for example: ```python from transformers import pipeline pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-base-ro-uk") print(pipe("Articolul exprimă opinia personală a autorului.")) # expected output: Стаття висловлює особисту думку автора. ``` ## Benchmarks * test set translations: [opusTCv20210807+pbt_transformer-align_2022-03-08.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ron-ukr/opusTCv20210807+pbt_transformer-align_2022-03-08.test.txt) * test set scores: [opusTCv20210807+pbt_transformer-align_2022-03-08.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ron-ukr/opusTCv20210807+pbt_transformer-align_2022-03-08.eval.txt) * benchmark results: [benchmark_results.txt](benchmark_results.txt) * benchmark output: [benchmark_translations.zip](benchmark_translations.zip) | langpair | testset | chr-F | BLEU | #sent | #words | |----------|---------|-------|-------|-------|--------| | ron-ukr | flores101-devtest | 0.52391 | 22.3 | 1012 | 22810 | ## Acknowledgements The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland. ## Model conversion info * transformers version: 4.16.2 * OPUS-MT git hash: 1bdabf7 * port time: Thu Mar 24 03:30:40 EET 2022 * port machine: LM0-400-22516.local
Helsinki-NLP/opus-mt-tc-big-zls-zle
6b6ea2e4cbec6c2a5fcf68860af05aeea38a3954
2022-06-01T13:04:29.000Z
[ "pytorch", "marian", "text2text-generation", "be", "bg", "hr", "ru", "sh", "sl", "sr_Cyrl", "sr_Latn", "uk", "zle", "zls", "transformers", "translation", "opus-mt-tc", "license:cc-by-4.0", "model-index", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-tc-big-zls-zle
4
null
transformers
19,187
--- language: - be - bg - hr - ru - sh - sl - sr_Cyrl - sr_Latn - uk - zle - zls tags: - translation - opus-mt-tc license: cc-by-4.0 model-index: - name: opus-mt-tc-big-zls-zle results: - task: name: Translation bul-rus type: translation args: bul-rus dataset: name: flores101-devtest type: flores_101 args: bul rus devtest metrics: - name: BLEU type: bleu value: 24.6 - task: name: Translation bul-ukr type: translation args: bul-ukr dataset: name: flores101-devtest type: flores_101 args: bul ukr devtest metrics: - name: BLEU type: bleu value: 22.9 - task: name: Translation hrv-rus type: translation args: hrv-rus dataset: name: flores101-devtest type: flores_101 args: hrv rus devtest metrics: - name: BLEU type: bleu value: 23.5 - task: name: Translation hrv-ukr type: translation args: hrv-ukr dataset: name: flores101-devtest type: flores_101 args: hrv ukr devtest metrics: - name: BLEU type: bleu value: 21.9 - task: name: Translation mkd-rus type: translation args: mkd-rus dataset: name: flores101-devtest type: flores_101 args: mkd rus devtest metrics: - name: BLEU type: bleu value: 24.3 - task: name: Translation mkd-ukr type: translation args: mkd-ukr dataset: name: flores101-devtest type: flores_101 args: mkd ukr devtest metrics: - name: BLEU type: bleu value: 22.5 - task: name: Translation slv-rus type: translation args: slv-rus dataset: name: flores101-devtest type: flores_101 args: slv rus devtest metrics: - name: BLEU type: bleu value: 22.0 - task: name: Translation slv-ukr type: translation args: slv-ukr dataset: name: flores101-devtest type: flores_101 args: slv ukr devtest metrics: - name: BLEU type: bleu value: 20.2 - task: name: Translation srp_Cyrl-rus type: translation args: srp_Cyrl-rus dataset: name: flores101-devtest type: flores_101 args: srp_Cyrl rus devtest metrics: - name: BLEU type: bleu value: 25.7 - task: name: Translation srp_Cyrl-ukr type: translation args: srp_Cyrl-ukr dataset: name: flores101-devtest type: flores_101 args: srp_Cyrl ukr devtest metrics: - name: BLEU type: bleu value: 24.4 - task: name: Translation bul-rus type: translation args: bul-rus dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: bul-rus metrics: - name: BLEU type: bleu value: 52.6 - task: name: Translation bul-ukr type: translation args: bul-ukr dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: bul-ukr metrics: - name: BLEU type: bleu value: 53.3 - task: name: Translation hbs-rus type: translation args: hbs-rus dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: hbs-rus metrics: - name: BLEU type: bleu value: 58.5 - task: name: Translation hbs-ukr type: translation args: hbs-ukr dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: hbs-ukr metrics: - name: BLEU type: bleu value: 52.3 - task: name: Translation hrv-ukr type: translation args: hrv-ukr dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: hrv-ukr metrics: - name: BLEU type: bleu value: 50.0 - task: name: Translation slv-rus type: translation args: slv-rus dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: slv-rus metrics: - name: BLEU type: bleu value: 27.3 - task: name: Translation srp_Cyrl-rus type: translation args: srp_Cyrl-rus dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: srp_Cyrl-rus metrics: - name: BLEU type: bleu value: 56.2 - task: name: Translation srp_Cyrl-ukr type: translation args: srp_Cyrl-ukr dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: srp_Cyrl-ukr metrics: - name: BLEU type: bleu value: 51.8 - task: name: Translation srp_Latn-rus type: translation args: srp_Latn-rus dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: srp_Latn-rus metrics: - name: BLEU type: bleu value: 60.1 - task: name: Translation srp_Latn-ukr type: translation args: srp_Latn-ukr dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: srp_Latn-ukr metrics: - name: BLEU type: bleu value: 55.8 --- # opus-mt-tc-big-zls-zle Neural machine translation model for translating from South Slavic languages (zls) to East Slavic languages (zle). This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train). * Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.) ``` @inproceedings{tiedemann-thottingal-2020-opus, title = "{OPUS}-{MT} {--} Building open translation services for the World", author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh}, booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation", month = nov, year = "2020", address = "Lisboa, Portugal", publisher = "European Association for Machine Translation", url = "https://aclanthology.org/2020.eamt-1.61", pages = "479--480", } @inproceedings{tiedemann-2020-tatoeba, title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}", author = {Tiedemann, J{\"o}rg}, booktitle = "Proceedings of the Fifth Conference on Machine Translation", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.wmt-1.139", pages = "1174--1182", } ``` ## Model info * Release: 2022-03-23 * source language(s): bul hbs hrv slv srp_Cyrl srp_Latn * target language(s): bel rus ukr * valid target language labels: >>bel<< >>rus<< >>ukr<< * model: transformer-big * data: opusTCv20210807+bt ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge)) * tokenization: SentencePiece (spm32k,spm32k) * original model: [opusTCv20210807+bt_transformer-big_2022-03-23.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/zls-zle/opusTCv20210807+bt_transformer-big_2022-03-23.zip) * more information released models: [OPUS-MT zls-zle README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/zls-zle/README.md) * more information about the model: [MarianMT](https://huggingface.co/docs/transformers/model_doc/marian) This is a multilingual translation model with multiple target languages. A sentence initial language token is required in the form of `>>id<<` (id = valid target language ID), e.g. `>>bel<<` ## Usage A short example code: ```python from transformers import MarianMTModel, MarianTokenizer src_text = [ ">>rus<< Gdje je brigadir?", ">>ukr<< Zovem se Seli." ] model_name = "pytorch-models/opus-mt-tc-big-zls-zle" tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) for t in translated: print( tokenizer.decode(t, skip_special_tokens=True) ) # expected output: # Где бригадир? # Мене звати Саллі. ``` You can also use OPUS-MT models with the transformers pipelines, for example: ```python from transformers import pipeline pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-zls-zle") print(pipe(">>rus<< Gdje je brigadir?")) # expected output: Где бригадир? ``` ## Benchmarks * test set translations: [opusTCv20210807+bt_transformer-big_2022-03-23.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zls-zle/opusTCv20210807+bt_transformer-big_2022-03-23.test.txt) * test set scores: [opusTCv20210807+bt_transformer-big_2022-03-23.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zls-zle/opusTCv20210807+bt_transformer-big_2022-03-23.eval.txt) * benchmark results: [benchmark_results.txt](benchmark_results.txt) * benchmark output: [benchmark_translations.zip](benchmark_translations.zip) | langpair | testset | chr-F | BLEU | #sent | #words | |----------|---------|-------|-------|-------|--------| | bul-rus | tatoeba-test-v2021-08-07 | 0.71467 | 52.6 | 1247 | 7870 | | bul-ukr | tatoeba-test-v2021-08-07 | 0.71757 | 53.3 | 1020 | 4932 | | hbs-rus | tatoeba-test-v2021-08-07 | 0.74593 | 58.5 | 2500 | 14213 | | hbs-ukr | tatoeba-test-v2021-08-07 | 0.70244 | 52.3 | 942 | 4961 | | hrv-ukr | tatoeba-test-v2021-08-07 | 0.68931 | 50.0 | 389 | 2232 | | slv-rus | tatoeba-test-v2021-08-07 | 0.42255 | 27.3 | 657 | 4056 | | srp_Cyrl-rus | tatoeba-test-v2021-08-07 | 0.74112 | 56.2 | 881 | 5117 | | srp_Cyrl-ukr | tatoeba-test-v2021-08-07 | 0.68915 | 51.8 | 205 | 1061 | | srp_Latn-rus | tatoeba-test-v2021-08-07 | 0.75340 | 60.1 | 1483 | 8311 | | srp_Latn-ukr | tatoeba-test-v2021-08-07 | 0.73106 | 55.8 | 348 | 1668 | | bul-rus | flores101-devtest | 0.54226 | 24.6 | 1012 | 23295 | | bul-ukr | flores101-devtest | 0.53382 | 22.9 | 1012 | 22810 | | hrv-rus | flores101-devtest | 0.51726 | 23.5 | 1012 | 23295 | | hrv-ukr | flores101-devtest | 0.51011 | 21.9 | 1012 | 22810 | | mkd-bel | flores101-devtest | 0.40885 | 10.7 | 1012 | 24829 | | mkd-rus | flores101-devtest | 0.52509 | 24.3 | 1012 | 23295 | | mkd-ukr | flores101-devtest | 0.52021 | 22.5 | 1012 | 22810 | | slv-rus | flores101-devtest | 0.50349 | 22.0 | 1012 | 23295 | | slv-ukr | flores101-devtest | 0.49156 | 20.2 | 1012 | 22810 | | srp_Cyrl-rus | flores101-devtest | 0.53656 | 25.7 | 1012 | 23295 | | srp_Cyrl-ukr | flores101-devtest | 0.53623 | 24.4 | 1012 | 22810 | ## Acknowledgements The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland. ## Model conversion info * transformers version: 4.16.2 * OPUS-MT git hash: 1bdabf7 * port time: Thu Mar 24 04:08:51 EET 2022 * port machine: LM0-400-22516.local
BogdanKuloren/vi_classification_eqhub_roberta
7fcd94b3915657b0035179f31984652f407bd074
2022-03-24T16:57:32.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
BogdanKuloren
null
BogdanKuloren/vi_classification_eqhub_roberta
4
null
transformers
19,188
Entry not found
yy642/bert-base-uncased-finetuned-mnli-max-length-256-epoch-6
0461e7faf387585ebdfd18d208c0fcc005fac536
2022-03-25T04:40:06.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
yy642
null
yy642/bert-base-uncased-finetuned-mnli-max-length-256-epoch-6
4
null
transformers
19,189
Entry not found
agdsga/chinese-electra-large-discriminator-finetuned-ner
f76babcd5c96cd1c06a98be0fb3b7e2b75a83595
2022-03-25T08:31:30.000Z
[ "pytorch", "tensorboard", "electra", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
agdsga
null
agdsga/chinese-electra-large-discriminator-finetuned-ner
4
null
transformers
19,190
Entry not found
Graphcore/lxmert-vqa-uncased
4287c49b3c917a174e0f973ba2db5a72ab1fb0e9
2022-05-25T18:29:27.000Z
[ "pytorch", "lxmert", "question-answering", "dataset:Graphcore/vqa-lxmert", "arxiv:1908.07490", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
Graphcore
null
Graphcore/lxmert-vqa-uncased
4
null
transformers
19,191
--- license: apache-2.0 tags: - generated_from_trainer datasets: - Graphcore/vqa-lxmert metrics: - accuracy model-index: - name: vqa results: - task: name: Question Answering type: question-answering dataset: name: Graphcore/vqa-lxmert type: Graphcore/vqa-lxmert args: vqa metrics: - name: Accuracy type: accuracy value: 0.7242196202278137 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Graphcore/lxmert-vqa-uncased Optimum Graphcore is a new open-source library and toolkit that enables developers to access IPU-optimized models certified by Hugging Face. It is an extension of Transformers, providing a set of performance optimization tools enabling maximum efficiency to train and run models on Graphcore’s IPUs - a completely new kind of massively parallel processor to accelerate machine intelligence. Learn more about how to take train Transformer models faster with IPUs at [hf.co/hardware/graphcore](https://huggingface.co/hardware/graphcore). Through HuggingFace Optimum, Graphcore released ready-to-use IPU-trained model checkpoints and IPU configuration files to make it easy to train models with maximum efficiency in the IPU. Optimum shortens the development lifecycle of your AI models by letting you plug-and-play any public dataset and allows a seamless integration to our State-of-the-art hardware giving you a quicker time-to-value for your AI project. ## Model description LXMERT is a transformer model for learning vision-and-language cross-modality representations. It has a Transformer model that has three encoders: object relationship encoder, a language encoder, and a cross-modality encoder. It is pretrained via a combination of masked language modelling, visual-language text alignment, ROI-feature regression, masked visual-attribute modelling, masked visual-object modelling, and visual-question answering objectives. It achieves the state-of-the-art results on VQA and GQA. Paper link : [LXMERT: Learning Cross-Modality Encoder Representations from Transformers](https://arxiv.org/pdf/1908.07490.pdf) ## Intended uses & limitations This model is a fine-tuned version of [unc-nlp/lxmert-base-uncased](https://huggingface.co/unc-nlp/lxmert-base-uncased) on the [Graphcore/vqa-lxmert](https://huggingface.co/datasets/Graphcore/vqa-lxmert) dataset. It achieves the following results on the evaluation set: - Loss: 0.0009 - Accuracy: 0.7242 ## Training and evaluation data - [Graphcore/vqa-lxmert](https://huggingface.co/datasets/Graphcore/vqa-lxmert) dataset ## Training procedure Trained on 16 Graphcore Mk2 IPUs using [optimum-graphcore](https://github.com/huggingface/optimum-graphcore). Command line: ``` python examples/question-answering/run_vqa.py \ --model_name_or_path unc-nlp/lxmert-base-uncased \ --ipu_config_name Graphcore/lxmert-base-ipu \ --dataset_name Graphcore/vqa-lxmert \ --do_train \ --do_eval \ --max_seq_length 512 \ --per_device_train_batch_size 1 \ --num_train_epochs 4 \ --dataloader_num_workers 64 \ --logging_steps 5 \ --learning_rate 5e-5 \ --lr_scheduler_type linear \ --loss_scaling 16384 \ --weight_decay 0.01 \ --warmup_ratio 0.1 \ --output_dir /tmp/vqa/ \ --dataloader_drop_last \ --replace_qa_head \ --pod_type pod16 ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - distributed_type: IPU - total_train_batch_size: 64 - total_eval_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 4.0 - training precision: Mixed Precision ### Training results ``` ***** train metrics ***** "epoch": 4.0, "train_loss": 0.0060005393999575125, "train_runtime": 13854.802, "train_samples": 443757, "train_samples_per_second": 128.116, "train_steps_per_second": 2.002 ***** eval metrics ***** "eval_accuracy": 0.7242196202278137, "eval_loss": 0.0008745193481445312, "eval_samples": 214354, ``` ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.10.0+cpu - Datasets 2.0.0 - Tokenizers 0.11.6
world-wide/is-legit-kwd-march-27
a48b7485b15d147474a41a693c42ede59637cc9d
2022-03-26T18:44:40.000Z
[ "pytorch", "distilbert", "text-classification", "en", "dataset:bozelosp/autotrain-data-legit-keyword", "transformers", "autotrain", "co2_eq_emissions" ]
text-classification
false
world-wide
null
world-wide/is-legit-kwd-march-27
4
1
transformers
19,192
--- tags: autotrain language: en widget: - text: "I love AutoTrain 🤗" datasets: - bozelosp/autotrain-data-legit-keyword co2_eq_emissions: 0.5745216001459987 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 668419758 - CO2 Emissions (in grams): 0.5745216001459987 ## Validation Metrics - Loss: 0.5012844800949097 - Accuracy: 0.8057228915662651 - Precision: 0.7627627627627628 - Recall: 0.8355263157894737 - AUC: 0.868530701754386 - F1: 0.7974882260596545 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/bozelosp/autotrain-legit-keyword-668419758 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("bozelosp/autotrain-legit-keyword-668419758", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("bozelosp/autotrain-legit-keyword-668419758", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
YXHugging/autotrain-xlm-roberta-base-reviews-672119797
cf5eec7f478f0ee3c57b3c5e90fbfcac269efd8b
2022-03-27T12:55:19.000Z
[ "pytorch", "xlm-roberta", "text-classification", "unk", "dataset:YXHugging/autotrain-data-xlm-roberta-base-reviews", "transformers", "autotrain", "co2_eq_emissions" ]
text-classification
false
YXHugging
null
YXHugging/autotrain-xlm-roberta-base-reviews-672119797
4
null
transformers
19,193
--- tags: autotrain language: unk widget: - text: "I love AutoTrain 🤗" datasets: - YXHugging/autotrain-data-xlm-roberta-base-reviews co2_eq_emissions: 1019.0229633198007 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 672119797 - CO2 Emissions (in grams): 1019.0229633198007 ## Validation Metrics - Loss: 0.9898674488067627 - Accuracy: 0.5688083333333334 - Macro F1: 0.5640966271895913 - Micro F1: 0.5688083333333334 - Weighted F1: 0.5640966271895913 - Macro Precision: 0.5673737438011194 - Micro Precision: 0.5688083333333334 - Weighted Precision: 0.5673737438011194 - Macro Recall: 0.5688083333333334 - Micro Recall: 0.5688083333333334 - Weighted Recall: 0.5688083333333334 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/YXHugging/autotrain-xlm-roberta-base-reviews-672119797 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("YXHugging/autotrain-xlm-roberta-base-reviews-672119797", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("YXHugging/autotrain-xlm-roberta-base-reviews-672119797", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
YXHugging/autotrain-xlm-roberta-base-reviews-672119798
1e68b1f385471c49b167c8b8dbf462e53f14c65d
2022-03-27T12:58:03.000Z
[ "pytorch", "xlm-roberta", "text-classification", "unk", "dataset:YXHugging/autotrain-data-xlm-roberta-base-reviews", "transformers", "autotrain", "co2_eq_emissions" ]
text-classification
false
YXHugging
null
YXHugging/autotrain-xlm-roberta-base-reviews-672119798
4
null
transformers
19,194
--- tags: autotrain language: unk widget: - text: "I love AutoTrain 🤗" datasets: - YXHugging/autotrain-data-xlm-roberta-base-reviews co2_eq_emissions: 1013.8825767332373 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 672119798 - CO2 Emissions (in grams): 1013.8825767332373 ## Validation Metrics - Loss: 0.9646632075309753 - Accuracy: 0.5789333333333333 - Macro F1: 0.5775792001871465 - Micro F1: 0.5789333333333333 - Weighted F1: 0.5775792001871465 - Macro Precision: 0.5829444191847423 - Micro Precision: 0.5789333333333333 - Weighted Precision: 0.5829444191847424 - Macro Recall: 0.5789333333333333 - Micro Recall: 0.5789333333333333 - Weighted Recall: 0.5789333333333333 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/YXHugging/autotrain-xlm-roberta-base-reviews-672119798 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("YXHugging/autotrain-xlm-roberta-base-reviews-672119798", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("YXHugging/autotrain-xlm-roberta-base-reviews-672119798", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
YXHugging/autotrain-xlm-roberta-base-reviews-672119799
ef3497dbeffd7afa3d5e5eae08851466fc1972d0
2022-03-28T01:30:54.000Z
[ "pytorch", "xlm-roberta", "text-classification", "unk", "dataset:YXHugging/autotrain-data-xlm-roberta-base-reviews", "transformers", "autotrain", "co2_eq_emissions" ]
text-classification
false
YXHugging
null
YXHugging/autotrain-xlm-roberta-base-reviews-672119799
4
null
transformers
19,195
--- tags: autotrain language: unk widget: - text: "I love AutoTrain 🤗" datasets: - YXHugging/autotrain-data-xlm-roberta-base-reviews co2_eq_emissions: 1583.7188188958198 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 672119799 - CO2 Emissions (in grams): 1583.7188188958198 ## Validation Metrics - Loss: 0.9590993523597717 - Accuracy: 0.5827541666666667 - Macro F1: 0.5806748283026683 - Micro F1: 0.5827541666666667 - Weighted F1: 0.5806748283026683 - Macro Precision: 0.5834325027348383 - Micro Precision: 0.5827541666666667 - Weighted Precision: 0.5834325027348383 - Macro Recall: 0.5827541666666667 - Micro Recall: 0.5827541666666667 - Weighted Recall: 0.5827541666666667 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/YXHugging/autotrain-xlm-roberta-base-reviews-672119799 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("YXHugging/autotrain-xlm-roberta-base-reviews-672119799", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("YXHugging/autotrain-xlm-roberta-base-reviews-672119799", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
YXHugging/autotrain-xlm-roberta-base-reviews-672119800
bdd53ccbbc402f3780d3c9e9e0b087c7d02e0590
2022-03-28T08:18:33.000Z
[ "pytorch", "xlm-roberta", "text-classification", "unk", "dataset:YXHugging/autotrain-data-xlm-roberta-base-reviews", "transformers", "autotrain", "co2_eq_emissions" ]
text-classification
false
YXHugging
null
YXHugging/autotrain-xlm-roberta-base-reviews-672119800
4
null
transformers
19,196
--- tags: autotrain language: unk widget: - text: "I love AutoTrain 🤗" datasets: - YXHugging/autotrain-data-xlm-roberta-base-reviews co2_eq_emissions: 2011.6528745969179 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 672119800 - CO2 Emissions (in grams): 2011.6528745969179 ## Validation Metrics - Loss: 0.9570887088775635 - Accuracy: 0.5830708333333333 - Macro F1: 0.5789149828346194 - Micro F1: 0.5830708333333333 - Weighted F1: 0.5789149828346193 - Macro Precision: 0.5808338093704437 - Micro Precision: 0.5830708333333333 - Weighted Precision: 0.5808338093704437 - Macro Recall: 0.5830708333333334 - Micro Recall: 0.5830708333333333 - Weighted Recall: 0.5830708333333333 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/YXHugging/autotrain-xlm-roberta-base-reviews-672119800 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("YXHugging/autotrain-xlm-roberta-base-reviews-672119800", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("YXHugging/autotrain-xlm-roberta-base-reviews-672119800", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
YXHugging/autotrain-xlm-roberta-base-reviews-672119801
c644154fbedc7fab284a5f066e9ae052e7dd20b6
2022-03-27T16:53:50.000Z
[ "pytorch", "xlm-roberta", "text-classification", "unk", "dataset:YXHugging/autotrain-data-xlm-roberta-base-reviews", "transformers", "autotrain", "co2_eq_emissions" ]
text-classification
false
YXHugging
null
YXHugging/autotrain-xlm-roberta-base-reviews-672119801
4
null
transformers
19,197
--- tags: autotrain language: unk widget: - text: "I love AutoTrain 🤗" datasets: - YXHugging/autotrain-data-xlm-roberta-base-reviews co2_eq_emissions: 999.5670927087938 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 672119801 - CO2 Emissions (in grams): 999.5670927087938 ## Validation Metrics - Loss: 0.9767692685127258 - Accuracy: 0.5738333333333333 - Macro F1: 0.5698748846905103 - Micro F1: 0.5738333333333333 - Weighted F1: 0.5698748846905102 - Macro Precision: 0.5734242161804903 - Micro Precision: 0.5738333333333333 - Weighted Precision: 0.5734242161804902 - Macro Recall: 0.5738333333333333 - Micro Recall: 0.5738333333333333 - Weighted Recall: 0.5738333333333333 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/YXHugging/autotrain-xlm-roberta-base-reviews-672119801 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("YXHugging/autotrain-xlm-roberta-base-reviews-672119801", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("YXHugging/autotrain-xlm-roberta-base-reviews-672119801", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
Wiam/distilbert-base-uncased-finetuned-squad
cd1a795ae68821882d80bc0955ad92ec38a381d6
2022-03-27T03:05:10.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
Wiam
null
Wiam/distilbert-base-uncased-finetuned-squad
4
null
transformers
19,198
Entry not found
Splend1dchan/t5small4-squad1024
0bb48bcc7fc1a6904754d788a88d0d71036c8571
2022-03-27T22:26:42.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
Splend1dchan
null
Splend1dchan/t5small4-squad1024
4
null
transformers
19,199
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: t5small4-squad1024 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5small4-squad1024 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: tpu - gradient_accumulation_steps: 16 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.9.0+cu102 - Tokenizers 0.11.6