modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
santhoshkolloju/ans_gen
1fbf3881a12a7cc49819ce4e386d6f4458be263a
2021-06-23T14:06:04.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
santhoshkolloju
null
santhoshkolloju/ans_gen
4
null
transformers
18,900
Entry not found
saraks/cuad-distil-effective_date-08-29-v1
c16eb4b7e56f52b325a52ec82d3ed97da7b46d2a
2021-08-28T05:39:15.000Z
[ "pytorch", "distilbert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
saraks
null
saraks/cuad-distil-effective_date-08-29-v1
4
null
transformers
18,901
Entry not found
saraks/cuad-distil-governing_law-08-28-v1
66c3e4e06224f5ca4c66e8785ba89de54aef44ba
2021-08-27T18:58:20.000Z
[ "pytorch", "distilbert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
saraks
null
saraks/cuad-distil-governing_law-08-28-v1
4
null
transformers
18,902
Entry not found
sarnikowski/electra-small-discriminator-da-256-cased
290fcaff649803175cc4a02b295913820cde239a
2020-12-11T22:01:11.000Z
[ "pytorch", "tf", "electra", "pretraining", "da", "arxiv:2003.10555", "transformers", "license:cc-by-4.0" ]
null
false
sarnikowski
null
sarnikowski/electra-small-discriminator-da-256-cased
4
null
transformers
18,903
--- language: da license: cc-by-4.0 --- # Danish ELECTRA small (cased) An [ELECTRA](https://arxiv.org/abs/2003.10555) model pretrained on a custom Danish corpus (~17.5gb). For details regarding data sources and training procedure, along with benchmarks on downstream tasks, go to: https://github.com/sarnikowski/danish_transformers/tree/main/electra ## Usage ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("sarnikowski/electra-small-discriminator-da-256-cased") model = AutoModel.from_pretrained("sarnikowski/electra-small-discriminator-da-256-cased") ``` ## Questions? If you have any questions feel free to open an issue on the [danish_transformers](https://github.com/sarnikowski/danish_transformers) repository, or send an email to [email protected]
sarraf/distilbert-base-uncased-finetuned-cola
6f1e3e760948ce5b0b965af50a1ca0ff29e83ddd
2022-01-20T20:04:18.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers" ]
text-classification
false
sarraf
null
sarraf/distilbert-base-uncased-finetuned-cola
4
null
transformers
18,904
Entry not found
sbiswal/OdiaBert
f6a27331664ff51f1ee3fe9624e4e315516df176
2021-05-20T05:05:41.000Z
[ "pytorch", "jax", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
sbiswal
null
sbiswal/OdiaBert
4
null
transformers
18,905
Entry not found
seduerr/pai_meaningfulness
f619616058be2ddd50d528e2892ceca739ef729a
2021-06-23T14:15:30.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
seduerr
null
seduerr/pai_meaningfulness
4
null
transformers
18,906
Entry not found
seokho/gpt2-emotion
52608b95baf439ba8b5278ea9c25fed7ff85acfb
2021-07-06T06:07:33.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
seokho
null
seokho/gpt2-emotion
4
null
transformers
18,907
dataset: Emotion Detection from Text
sergunow/rick-sanchez-blenderbot-400-distill
57040b9c0816b9d5adb6ba5e73b8a9214cc3cf68
2021-06-17T22:33:55.000Z
[ "pytorch", "blenderbot", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
sergunow
null
sergunow/rick-sanchez-blenderbot-400-distill
4
null
transformers
18,908
Entry not found
seyonec/ChemBERTA_PubChem1M_shard00_140k
0f62cb969ef32c5d4a8915c6dfa2582f41681e21
2021-05-20T20:53:19.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
seyonec
null
seyonec/ChemBERTA_PubChem1M_shard00_140k
4
null
transformers
18,909
Entry not found
seyonec/SMILES_BPE_PubChem_250k
4bea109c2782909b30d148fb71c8eb5d9ed227da
2021-05-20T21:06:00.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
seyonec
null
seyonec/SMILES_BPE_PubChem_250k
4
null
transformers
18,910
Entry not found
seyonec/SmilesTokenizer_ChemBERTa_zinc250k_40k
a91bfd6c2d87e22755a45f77388ce0321af937b3
2021-05-20T21:11:20.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
seyonec
null
seyonec/SmilesTokenizer_ChemBERTa_zinc250k_40k
4
null
transformers
18,911
Entry not found
sgugger/debug-example2
d3d07ba8280bd9c120173f74ff54f7a42e6fb971
2022-01-27T13:46:00.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers" ]
text-classification
false
sgugger
null
sgugger/debug-example2
4
null
transformers
18,912
Entry not found
sgugger/marian-finetuned-kde4-en-to-fr
a25f49ba1276b49ee045005cbb9ed312415c785b
2021-09-28T13:47:35.000Z
[ "pytorch", "tensorboard", "marian", "text2text-generation", "dataset:kde4", "transformers", "translation", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
translation
false
sgugger
null
sgugger/marian-finetuned-kde4-en-to-fr
4
null
transformers
18,913
--- license: apache-2.0 tags: - translation - generated_from_trainer datasets: - kde4 metrics: - bleu model-index: - name: marian-finetuned-kde4-en-to-fr results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: kde4 type: kde4 args: en-fr metrics: - name: Bleu type: bleu value: 53.2503 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # marian-finetuned-kde4-en-to-fr This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-fr](https://huggingface.co/Helsinki-NLP/opus-mt-en-fr) on the kde4 dataset. It achieves the following results on the evaluation set: - Loss: 0.8666 - Bleu: 53.2503 - Gen Len: 14.7005 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.8.1+cu111 - Datasets 1.12.2.dev0 - Tokenizers 0.10.3
shahukareem/wav2vec2-xls-r-1b-dv-with-lm-v2
060a9f0c52ee8f72278480a72b461ecce4f8a416
2022-02-18T23:07:45.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
shahukareem
null
shahukareem/wav2vec2-xls-r-1b-dv-with-lm-v2
4
null
transformers
18,914
Entry not found
shauryr/checkpoint-475000
6d7e1fe6c96b72eee76716114a70368cfb35f353
2021-05-20T21:17:36.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
shauryr
null
shauryr/checkpoint-475000
4
null
transformers
18,915
Entry not found
shivam/wav2vec2-xls-r-300m-hindi
8c286c16ef1f835d996c33f3d9e8b8a08dd3cf51
2022-01-23T16:37:08.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "hi", "dataset:common_voice", "transformers", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
shivam
null
shivam/wav2vec2-xls-r-300m-hindi
4
1
transformers
18,916
--- language: - hi license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_7_0 - generated_from_trainer datasets: - common_voice model-index: - name: '' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - HI dataset. It achieves the following results on the evaluation set: - Loss: 1.4031 - Wer: 0.6827 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 5.3156 | 3.4 | 500 | 4.5583 | 1.0 | | 3.3329 | 6.8 | 1000 | 3.4274 | 1.0001 | | 2.1275 | 10.2 | 1500 | 1.7221 | 0.8763 | | 1.5737 | 13.6 | 2000 | 1.4188 | 0.8143 | | 1.3835 | 17.01 | 2500 | 1.2251 | 0.7447 | | 1.3247 | 20.41 | 3000 | 1.2827 | 0.7394 | | 1.231 | 23.81 | 3500 | 1.2216 | 0.7074 | | 1.1819 | 27.21 | 4000 | 1.2210 | 0.6863 | | 1.1546 | 30.61 | 4500 | 1.3233 | 0.7308 | | 1.0902 | 34.01 | 5000 | 1.3251 | 0.7010 | | 1.0749 | 37.41 | 5500 | 1.3274 | 0.7235 | | 1.0412 | 40.81 | 6000 | 1.2942 | 0.6856 | | 1.0064 | 44.22 | 6500 | 1.2581 | 0.6732 | | 1.0006 | 47.62 | 7000 | 1.2767 | 0.6885 | | 0.9518 | 51.02 | 7500 | 1.2966 | 0.6925 | | 0.9514 | 54.42 | 8000 | 1.2981 | 0.7067 | | 0.9241 | 57.82 | 8500 | 1.3835 | 0.7124 | | 0.9059 | 61.22 | 9000 | 1.3318 | 0.7083 | | 0.8906 | 64.62 | 9500 | 1.3640 | 0.6962 | | 0.8468 | 68.03 | 10000 | 1.4727 | 0.6982 | | 0.8631 | 71.43 | 10500 | 1.3401 | 0.6809 | | 0.8154 | 74.83 | 11000 | 1.4124 | 0.6955 | | 0.7953 | 78.23 | 11500 | 1.4245 | 0.6950 | | 0.818 | 81.63 | 12000 | 1.3944 | 0.6995 | | 0.7772 | 85.03 | 12500 | 1.3735 | 0.6785 | | 0.7857 | 88.43 | 13000 | 1.3696 | 0.6808 | | 0.7705 | 91.84 | 13500 | 1.4101 | 0.6870 | | 0.7537 | 95.24 | 14000 | 1.4178 | 0.6832 | | 0.7734 | 98.64 | 14500 | 1.4027 | 0.6831 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu113 - Datasets 1.18.1.dev0 - Tokenizers 0.11.0
shivam/xls-r-300m-marathi
0f36c3c0f95447e201c33748025bf7f0a617180a
2022-03-23T18:29:32.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "mr", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
shivam
null
shivam/xls-r-300m-marathi
4
null
transformers
18,917
--- language: - mr license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_8_0 - mr - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: '' results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Common Voice Corpus 8.0 type: mozilla-foundation/common_voice_8_0 args: mr metrics: - name: Test WER type: wer value: 38.27 - name: Test CER type: cer value: 8.91 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - MR dataset. It achieves the following results on the mozilla-foundation/common_voice_8_0 mr test set: - Without LM + WER: 48.53 + CER: 10.63 - With LM + WER: 38.27 + CER: 8.91 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 400.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 4.2706 | 22.73 | 500 | 4.0174 | 1.0 | | 3.2492 | 45.45 | 1000 | 3.2309 | 0.9908 | | 1.9709 | 68.18 | 1500 | 1.0651 | 0.8440 | | 1.4088 | 90.91 | 2000 | 0.5765 | 0.6550 | | 1.1326 | 113.64 | 2500 | 0.4842 | 0.5760 | | 0.9709 | 136.36 | 3000 | 0.4785 | 0.6013 | | 0.8433 | 159.09 | 3500 | 0.5048 | 0.5419 | | 0.7404 | 181.82 | 4000 | 0.5052 | 0.5339 | | 0.6589 | 204.55 | 4500 | 0.5237 | 0.5897 | | 0.5831 | 227.27 | 5000 | 0.5166 | 0.5447 | | 0.5375 | 250.0 | 5500 | 0.5292 | 0.5487 | | 0.4784 | 272.73 | 6000 | 0.5480 | 0.5596 | | 0.4421 | 295.45 | 6500 | 0.5682 | 0.5467 | | 0.4047 | 318.18 | 7000 | 0.5681 | 0.5447 | | 0.3779 | 340.91 | 7500 | 0.5783 | 0.5347 | | 0.3525 | 363.64 | 8000 | 0.5856 | 0.5367 | | 0.3393 | 386.36 | 8500 | 0.5960 | 0.5359 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu113 - Datasets 1.18.1.dev0 - Tokenizers 0.11.0
shiyue/roberta-large-realsumm-by-systems-fold3
9734c877e76ad9d0bc296f766bb32b1e6bb50055
2021-09-23T19:41:28.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
shiyue
null
shiyue/roberta-large-realsumm-by-systems-fold3
4
null
transformers
18,918
Entry not found
shiyue/roberta-large-realsumm-by-systems-fold4
2fa00737ac8658e0c44243a6065790e2c0cfab5f
2021-09-23T19:44:16.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
shiyue
null
shiyue/roberta-large-realsumm-by-systems-fold4
4
null
transformers
18,919
Entry not found
shokiokita/distilbert-base-uncased-finetuned-mrpc
66329831f7fc6045927b2b58592fcf4b58c03ff4
2021-10-12T05:56:42.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
shokiokita
null
shokiokita/distilbert-base-uncased-finetuned-mrpc
4
null
transformers
18,920
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-mrpc results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: mrpc metrics: - name: Accuracy type: accuracy value: 0.7328431372549019 - name: F1 type: f1 value: 0.8310077519379845 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-mrpc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.5579 - Accuracy: 0.7328 - F1: 0.8310 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 23 | 0.5797 | 0.7010 | 0.8195 | | No log | 2.0 | 46 | 0.5647 | 0.7083 | 0.8242 | | No log | 3.0 | 69 | 0.5677 | 0.7181 | 0.8276 | | No log | 4.0 | 92 | 0.5495 | 0.7328 | 0.8300 | | No log | 5.0 | 115 | 0.5579 | 0.7328 | 0.8310 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.12.1 - Tokenizers 0.10.3
shoubhik/wav2vec2-xls-r-300m-hindi_v3
e62e3237b8458531bb375c8b7902da2e0e2bbff2
2022-02-07T10:09:56.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
shoubhik
null
shoubhik/wav2vec2-xls-r-300m-hindi_v3
4
null
transformers
18,921
Entry not found
simonmun/COHA1910s
7e6a339b922b12532e813d332ad6383ef7be1329
2021-05-20T21:40:47.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
simonmun
null
simonmun/COHA1910s
4
null
transformers
18,922
Entry not found
simonmun/COHA1970s
8c87edb1809922de6abf5d5c8cbe848743aeda63
2021-05-20T21:47:23.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
simonmun
null
simonmun/COHA1970s
4
null
transformers
18,923
Entry not found
simonmun/COHA2000s
0693e79611506c5e5bf23ab4bb1d509417e560c8
2021-05-20T21:49:54.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
simonmun
null
simonmun/COHA2000s
4
null
transformers
18,924
Entry not found
simonmun/Ey_SentenceClassification
751acf89341e493b065abbbd83b559174c746c20
2021-05-20T05:56:16.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
simonmun
null
simonmun/Ey_SentenceClassification
4
null
transformers
18,925
Entry not found
sismetanin/rubert-ru-sentiment-krnd
2af64002e5d966538eaf3049bfc979c425197408
2021-05-20T06:06:54.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
sismetanin
null
sismetanin/rubert-ru-sentiment-krnd
4
null
transformers
18,926
Entry not found
sismetanin/rubert-ru-sentiment-rutweetcorp
164dcc73f41d6f9a21e52eedc706ca450c473340
2021-05-20T06:12:50.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
sismetanin
null
sismetanin/rubert-ru-sentiment-rutweetcorp
4
null
transformers
18,927
Entry not found
sismetanin/rubert_conversational-ru-sentiment-rusentiment
531a332f232ac77fefb78e4834b8f6276d535cb2
2021-05-20T06:22:35.000Z
[ "pytorch", "jax", "bert", "text-classification", "ru", "transformers", "sentiment analysis", "Russian" ]
text-classification
false
sismetanin
null
sismetanin/rubert_conversational-ru-sentiment-rusentiment
4
null
transformers
18,928
--- language: - ru tags: - sentiment analysis - Russian --- ## RuBERT-Conversational-ru-sentiment-RuSentiment RuBERT-Conversational-ru-sentiment-RuSentiment is a [RuBERT-Conversational](https://huggingface.co/DeepPavlov/rubert-base-cased-conversational) model fine-tuned on [RuSentiment dataset](https://github.com/text-machine-lab/rusentiment) of general-domain Russian-language posts from the largest Russian social network, VKontakte. <table> <thead> <tr> <th rowspan="4">Model</th> <th rowspan="4">Score<br></th> <th rowspan="4">Rank</th> <th colspan="12">Dataset</th> </tr> <tr> <td colspan="6">SentiRuEval-2016<br></td> <td colspan="2" rowspan="2">RuSentiment</td> <td rowspan="2">KRND</td> <td rowspan="2">LINIS Crowd</td> <td rowspan="2">RuTweetCorp</td> <td rowspan="2">RuReviews</td> </tr> <tr> <td colspan="3">TC</td> <td colspan="3">Banks</td> </tr> <tr> <td>micro F1</td> <td>macro F1</td> <td>F1</td> <td>micro F1</td> <td>macro F1</td> <td>F1</td> <td>wighted</td> <td>F1</td> <td>F1</td> <td>F1</td> <td>F1</td> <td>F1</td> </tr> </thead> <tbody> <tr> <td>SOTA</td> <td>n/s</td> <td></td> <td>76.71</td> <td>66.40</td> <td>70.68</td> <td>67.51</td> <td>69.53</td> <td>74.06</td> <td>78.50</td> <td>n/s</td> <td>73.63</td> <td>60.51</td> <td>83.68</td> <td>77.44</td> </tr> <tr> <td>XLM-RoBERTa-Large</td> <td>76.37</td> <td>1</td> <td>82.26</td> <td>76.36</td> <td>79.42</td> <td>76.35</td> <td>76.08</td> <td>80.89</td> <td>78.31</td> <td>75.27</td> <td>75.17</td> <td>60.03</td> <td>88.91</td> <td>78.81</td> </tr> <tr> <td>SBERT-Large</td> <td>75.43</td> <td>2</td> <td>78.40</td> <td>71.36</td> <td>75.14</td> <td>72.39</td> <td>71.87</td> <td>77.72</td> <td>78.58</td> <td>75.85</td> <td>74.20</td> <td>60.64</td> <td>88.66</td> <td>77.41</td> </tr> <tr> <td>MBARTRuSumGazeta</td> <td>74.70</td> <td>3</td> <td>76.06</td> <td>68.95</td> <td>73.04</td> <td>72.34</td> <td>71.93</td> <td>77.83</td> <td>76.71</td> <td>73.56</td> <td>74.18</td> <td>60.54</td> <td>87.22</td> <td>77.51</td> </tr> <tr> <td>Conversational RuBERT</td> <td>74.44</td> <td>4</td> <td>76.69</td> <td>69.09</td> <td>73.11</td> <td>69.44</td> <td>68.68</td> <td>75.56</td> <td>77.31</td> <td>74.40</td> <td>73.10</td> <td>59.95</td> <td>87.86</td> <td>77.78</td> </tr> <tr> <td>LaBSE</td> <td>74.11</td> <td>5</td> <td>77.00</td> <td>69.19</td> <td>73.55</td> <td>70.34</td> <td>69.83</td> <td>76.38</td> <td>74.94</td> <td>70.84</td> <td>73.20</td> <td>59.52</td> <td>87.89</td> <td>78.47</td> </tr> <tr> <td>XLM-RoBERTa-Base</td> <td>73.60</td> <td>6</td> <td>76.35</td> <td>69.37</td> <td>73.42</td> <td>68.45</td> <td>67.45</td> <td>74.05</td> <td>74.26</td> <td>70.44</td> <td>71.40</td> <td>60.19</td> <td>87.90</td> <td>78.28</td> </tr> <tr> <td>RuBERT</td> <td>73.45</td> <td>7</td> <td>74.03</td> <td>66.14</td> <td>70.75</td> <td>66.46</td> <td>66.40</td> <td>73.37</td> <td>75.49</td> <td>71.86</td> <td>72.15</td> <td>60.55</td> <td>86.99</td> <td>77.41</td> </tr> <tr> <td>MBART-50-Large-Many-to-Many</td> <td>73.15</td> <td>8</td> <td>75.38</td> <td>67.81</td> <td>72.26</td> <td>67.13</td> <td>66.97</td> <td>73.85</td> <td>74.78</td> <td>70.98</td> <td>71.98</td> <td>59.20</td> <td>87.05</td> <td>77.24</td> </tr> <tr> <td>SlavicBERT</td> <td>71.96</td> <td>9</td> <td>71.45</td> <td>63.03</td> <td>68.44</td> <td>64.32</td> <td>63.99</td> <td>71.31</td> <td>72.13</td> <td>67.57</td> <td>72.54</td> <td>58.70</td> <td>86.43</td> <td>77.16</td> </tr> <tr> <td>EnRuDR-BERT</td> <td>71.51</td> <td>10</td> <td>72.56</td> <td>64.74</td> <td>69.07</td> <td>61.44</td> <td>60.21</td> <td>68.34</td> <td>74.19</td> <td>69.94</td> <td>69.33</td> <td>56.55</td> <td>87.12</td> <td>77.95</td> </tr> <tr> <td>RuDR-BERT</td> <td>71.14</td> <td>11</td> <td>72.79</td> <td>64.23</td> <td>68.36</td> <td>61.86</td> <td>60.92</td> <td>68.48</td> <td>74.65</td> <td>70.63</td> <td>68.74</td> <td>54.45</td> <td>87.04</td> <td>77.91</td> </tr> <tr> <td>MBART-50-Large</td> <td>69.46</td> <td>12</td> <td>70.91</td> <td>62.67</td> <td>67.24</td> <td>61.12</td> <td>60.25</td> <td>68.41</td> <td>72.88</td> <td>68.63</td> <td>70.52</td> <td>46.39</td> <td>86.48</td> <td>77.52</td> </tr> </tbody> </table> The table shows per-task scores and a macro-average of those scores to determine a models’s position on the leaderboard. For datasets with multiple evaluation metrics (e.g., macro F1 and weighted F1 for RuSentiment), we use an unweighted average of the metrics as the score for the task when computing the overall macro-average. The same strategy for comparing models’ results was applied in the GLUE benchmark. ## Citation If you find this repository helpful, feel free to cite our publication: ``` @article{Smetanin2021Deep, author = {Sergey Smetanin and Mikhail Komarov}, title = {Deep transfer learning baselines for sentiment analysis in Russian}, journal = {Information Processing & Management}, volume = {58}, number = {3}, pages = {102484}, year = {2021}, issn = {0306-4573}, doi = {0.1016/j.ipm.2020.102484} } ``` Dataset: ``` @inproceedings{rogers2018rusentiment, title={RuSentiment: An enriched sentiment analysis dataset for social media in Russian}, author={Rogers, Anna and Romanov, Alexey and Rumshisky, Anna and Volkova, Svitlana and Gronas, Mikhail and Gribov, Alex}, booktitle={Proceedings of the 27th international conference on computational linguistics}, pages={755--763}, year={2018} } ```
sismetanin/rubert_conversational-ru-sentiment-rutweetcorp
94ac4947eb3d456170c012f290279b348ccfcfb3
2021-05-20T06:24:01.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
sismetanin
null
sismetanin/rubert_conversational-ru-sentiment-rutweetcorp
4
null
transformers
18,929
Entry not found
sismetanin/xlm_roberta_large-ru-sentiment-sentirueval2016
30733a0704e7fc7caf0c43188f08293a75fc97dc
2021-02-25T02:52:29.000Z
[ "pytorch", "xlm-roberta", "text-classification", "transformers" ]
text-classification
false
sismetanin
null
sismetanin/xlm_roberta_large-ru-sentiment-sentirueval2016
4
null
transformers
18,930
Entry not found
snoop2head/KoGPT-Joong-2
becc490d8dd962199497ca7bf49d170ac9188355
2021-11-18T06:23:07.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
snoop2head
null
snoop2head/KoGPT-Joong-2
4
null
transformers
18,931
# KoGPT-Joong-2 [Github Source](https://github.com/snoop2head/KoGPT-Joong-2) ### KoGPT-Joong-2's Acrostic Poem Generation Examples (N행시 예시) ``` [연세대(1)] 연민이라는 것은 양날의 검과 같다 세기의 악연일수도.. 대가는 혹독할것이다 연기의 끝은 상처다 [연세대(2)] 연약한 마음으로 강한 척하지 말고 강한 마음을 먹자 세 마디 말보다 한마디 말이 더 진정성 있어 보인다. 대시 하지 마라. ``` ``` [자탄풍] 자그마하게 탄식의 강을 건너고 풍경의 나무를 넘어가네 ``` ### KoGPT-Joong-2's Phrase Generation Examples ``` [너는 나의] - 너는 나의 거짓말. 나는 너의 참말. 너를 잊었다는 나와 나를 잊었다는 너의 차이. - 너는 나의 옷자락이고 머릿결이고 꿈결이고 나를 헤집던 사정없는 풍속이었다 ``` ``` [그대 왜 내 꿈에] - 그대 왜 내 꿈에 나오지 않는 걸까요, 내 꿈 속에서도 그대 사라지면 어쩌나요 - 그대 왜 내 꿈에 불시착했는가. ``` ### Dataset finetuned on - [가사 데이터셋](_clones/char-rnn-tensorflow/data/lyricskor/input.txt) - [글스타그램 데이터셋](https://github.com/Keracorn/geulstagram) ### Dependencies Installation ```bash pip install -r requirements.txt ``` ### References - [KoGPT2-Transformers huggingface 활용 예시](https://github.com/taeminlee/KoGPT2-Transformers) - [SKT-AI의 KoGPT2와 pytorch를 이용해 소설을 생성하는 GPT-2 모델.](https://github.com/shbictai/narrativeKoGPT2) - [인공지능 수필 작가 블로그 글](https://jeinalog.tistory.com/entry/AI-x-Bookathon-%EC%9D%B8%EA%B3%B5%EC%A7%80%EB%8A%A5%EC%9D%84-%EC%88%98%ED%95%84-%EC%9E%91%EA%B0%80%EB%A1%9C-%ED%95%99%EC%8A%B5%EC%8B%9C%EC%BC%9C%EB%B3%B4%EC%9E%90) | [인공지능 수필 작가 코드](https://github.dev/jeina7/GPT2-essay-writer)
socialmediaie/TRAC2020_ALL_C_bert-base-multilingual-uncased
b6ac93a12b7e0af9e448b3509b2db2e80b8133fe
2021-05-20T06:54:45.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
socialmediaie
null
socialmediaie/TRAC2020_ALL_C_bert-base-multilingual-uncased
4
null
transformers
18,932
# Multilingual Joint Fine-tuning of Transformer models for identifying Trolling, Aggression and Cyberbullying at TRAC 2020 Models and predictions for submission to TRAC - 2020 Second Workshop on Trolling, Aggression and Cyberbullying Our approach is described in our paper titled: > Mishra, Sudhanshu, Shivangi Prasad, and Shubhanshu Mishra. 2020. "Multilingual Joint Fine-Tuning of Transformer Models for Identifying Trolling, Aggression and Cyberbullying at TRAC 2020." In Proceedings of the Second Workshop on Trolling, Aggression and Cyberbullying (TRAC-2020). The source code for training this model and more details can be found on our code repository: https://github.com/socialmediaie/TRAC2020 NOTE: These models are retrained for uploading here after our submission so the evaluation measures may be slightly different from the ones reported in the paper. If you plan to use the dataset please cite the following resources: * Mishra, Sudhanshu, Shivangi Prasad, and Shubhanshu Mishra. 2020. "Multilingual Joint Fine-Tuning of Transformer Models for Identifying Trolling, Aggression and Cyberbullying at TRAC 2020." In Proceedings of the Second Workshop on Trolling, Aggression and Cyberbullying (TRAC-2020). * Mishra, Shubhanshu, Shivangi Prasad, and Shubhanshu Mishra. 2020. “Trained Models for Multilingual Joint Fine-Tuning of Transformer Models for Identifying Trolling, Aggression and Cyberbullying at TRAC 2020.” University of Illinois at Urbana-Champaign. https://doi.org/10.13012/B2IDB-8882752_V1. ``` @inproceedings{Mishra2020TRAC, author = {Mishra, Sudhanshu and Prasad, Shivangi and Mishra, Shubhanshu}, booktitle = {Proceedings of the Second Workshop on Trolling, Aggression and Cyberbullying (TRAC-2020)}, title = {{Multilingual Joint Fine-tuning of Transformer models for identifying Trolling, Aggression and Cyberbullying at TRAC 2020}}, year = {2020} } @data{illinoisdatabankIDB-8882752, author = {Mishra, Shubhanshu and Prasad, Shivangi and Mishra, Shubhanshu}, doi = {10.13012/B2IDB-8882752_V1}, publisher = {University of Illinois at Urbana-Champaign}, title = {{Trained models for Multilingual Joint Fine-tuning of Transformer models for identifying Trolling, Aggression and Cyberbullying at TRAC 2020}}, url = {https://doi.org/10.13012/B2IDB-8882752{\_}V1}, year = {2020} } ``` ## Usage The models can be used via the following code: ```python from transformers import AutoModel, AutoTokenizer, AutoModelForSequenceClassification import torch from pathlib import Path from scipy.special import softmax import numpy as np import pandas as pd TASK_LABEL_IDS = { "Sub-task A": ["OAG", "NAG", "CAG"], "Sub-task B": ["GEN", "NGEN"], "Sub-task C": ["OAG-GEN", "OAG-NGEN", "NAG-GEN", "NAG-NGEN", "CAG-GEN", "CAG-NGEN"] } model_version="databank" # other option is hugging face library if model_version == "databank": # Make sure you have downloaded the required model file from https://databank.illinois.edu/datasets/IDB-8882752 # Unzip the file at some model_path (we are using: "databank_model") model_path = next(Path("databank_model").glob("./*/output/*/model")) # Assuming you get the following type of structure inside "databank_model" # 'databank_model/ALL/Sub-task C/output/bert-base-multilingual-uncased/model' lang, task, _, base_model, _ = model_path.parts tokenizer = AutoTokenizer.from_pretrained(base_model) model = AutoModelForSequenceClassification.from_pretrained(model_path) else: lang, task, base_model = "ALL", "Sub-task C", "bert-base-multilingual-uncased" base_model = f"socialmediaie/{lang}_{lang.split()[-1]}_{base_model}" tokenizer = AutoTokenizer.from_pretrained(base_model) model = AutoModelForSequenceClassification.from_pretrained(base_model) # For doing inference set model in eval mode model.eval() task_labels = TASK_LABEL_IDS[task] sentence = "This is a good cat and this is a bad dog." processed_sentence = f"{tokenizer.cls_token} {sentence}" tokens = tokenizer.tokenize(sentence) indexed_tokens = tokenizer.convert_tokens_to_ids(tokens) tokens_tensor = torch.tensor([indexed_tokens]) with torch.no_grad(): logits, = model(tokens_tensor, labels=None) logits preds = logits.detach().cpu().numpy() preds_probs = softmax(preds, axis=1) preds = np.argmax(preds_probs, axis=1) preds_labels = np.array(task_labels)[preds] print(dict(zip(task_labels, preds_probs[0])), preds_labels) """You should get an output as follows: ({'CAG-GEN': 0.06762535, 'CAG-NGEN': 0.03244293, 'NAG-GEN': 0.6897794, 'NAG-NGEN': 0.15498641, 'OAG-GEN': 0.034373745, 'OAG-NGEN': 0.020792078}, array(['NAG-GEN'], dtype='<U8')) """ ```
socialmediaie/TRAC2020_ENG_C_bert-base-uncased
80987a558132a288b0f8f8d6aded201563de12eb
2021-05-20T06:57:39.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
socialmediaie
null
socialmediaie/TRAC2020_ENG_C_bert-base-uncased
4
null
transformers
18,933
# Multilingual Joint Fine-tuning of Transformer models for identifying Trolling, Aggression and Cyberbullying at TRAC 2020 Models and predictions for submission to TRAC - 2020 Second Workshop on Trolling, Aggression and Cyberbullying. Our trained models as well as evaluation metrics during traing are available at: https://databank.illinois.edu/datasets/IDB-8882752# We also make a few of our models available in HuggingFace's models repository at https://huggingface.co/socialmediaie/, these models can be further fine-tuned on your dataset of choice. Our approach is described in our paper titled: > Mishra, Sudhanshu, Shivangi Prasad, and Shubhanshu Mishra. 2020. "Multilingual Joint Fine-Tuning of Transformer Models for Identifying Trolling, Aggression and Cyberbullying at TRAC 2020." In Proceedings of the Second Workshop on Trolling, Aggression and Cyberbullying (TRAC-2020). The source code for training this model and more details can be found on our code repository: https://github.com/socialmediaie/TRAC2020 NOTE: These models are retrained for uploading here after our submission so the evaluation measures may be slightly different from the ones reported in the paper. If you plan to use the dataset please cite the following resources: * Mishra, Sudhanshu, Shivangi Prasad, and Shubhanshu Mishra. 2020. "Multilingual Joint Fine-Tuning of Transformer Models for Identifying Trolling, Aggression and Cyberbullying at TRAC 2020." In Proceedings of the Second Workshop on Trolling, Aggression and Cyberbullying (TRAC-2020). * Mishra, Shubhanshu, Shivangi Prasad, and Shubhanshu Mishra. 2020. “Trained Models for Multilingual Joint Fine-Tuning of Transformer Models for Identifying Trolling, Aggression and Cyberbullying at TRAC 2020.” University of Illinois at Urbana-Champaign. https://doi.org/10.13012/B2IDB-8882752_V1. ``` @inproceedings{Mishra2020TRAC, author = {Mishra, Sudhanshu and Prasad, Shivangi and Mishra, Shubhanshu}, booktitle = {Proceedings of the Second Workshop on Trolling, Aggression and Cyberbullying (TRAC-2020)}, title = {{Multilingual Joint Fine-tuning of Transformer models for identifying Trolling, Aggression and Cyberbullying at TRAC 2020}}, year = {2020} } @data{illinoisdatabankIDB-8882752, author = {Mishra, Shubhanshu and Prasad, Shivangi and Mishra, Shubhanshu}, doi = {10.13012/B2IDB-8882752_V1}, publisher = {University of Illinois at Urbana-Champaign}, title = {{Trained models for Multilingual Joint Fine-tuning of Transformer models for identifying Trolling, Aggression and Cyberbullying at TRAC 2020}}, url = {https://doi.org/10.13012/B2IDB-8882752{\_}V1}, year = {2020} } ``` ## Usage The models can be used via the following code: ```python from transformers import AutoModel, AutoTokenizer, AutoModelForSequenceClassification import torch from pathlib import Path from scipy.special import softmax import numpy as np import pandas as pd TASK_LABEL_IDS = { "Sub-task A": ["OAG", "NAG", "CAG"], "Sub-task B": ["GEN", "NGEN"], "Sub-task C": ["OAG-GEN", "OAG-NGEN", "NAG-GEN", "NAG-NGEN", "CAG-GEN", "CAG-NGEN"] } model_version="databank" # other option is hugging face library if model_version == "databank": # Make sure you have downloaded the required model file from https://databank.illinois.edu/datasets/IDB-8882752 # Unzip the file at some model_path (we are using: "databank_model") model_path = next(Path("databank_model").glob("./*/output/*/model")) # Assuming you get the following type of structure inside "databank_model" # 'databank_model/ALL/Sub-task C/output/bert-base-multilingual-uncased/model' lang, task, _, base_model, _ = model_path.parts tokenizer = AutoTokenizer.from_pretrained(base_model) model = AutoModelForSequenceClassification.from_pretrained(model_path) else: lang, task, base_model = "ALL", "Sub-task C", "bert-base-multilingual-uncased" base_model = f"socialmediaie/TRAC2020_{lang}_{lang.split()[-1]}_{base_model}" tokenizer = AutoTokenizer.from_pretrained(base_model) model = AutoModelForSequenceClassification.from_pretrained(base_model) # For doing inference set model in eval mode model.eval() # If you want to further fine-tune the model you can reset the model to model.train() task_labels = TASK_LABEL_IDS[task] sentence = "This is a good cat and this is a bad dog." processed_sentence = f"{tokenizer.cls_token} {sentence}" tokens = tokenizer.tokenize(sentence) indexed_tokens = tokenizer.convert_tokens_to_ids(tokens) tokens_tensor = torch.tensor([indexed_tokens]) with torch.no_grad(): logits, = model(tokens_tensor, labels=None) logits preds = logits.detach().cpu().numpy() preds_probs = softmax(preds, axis=1) preds = np.argmax(preds_probs, axis=1) preds_labels = np.array(task_labels)[preds] print(dict(zip(task_labels, preds_probs[0])), preds_labels) """You should get an output as follows: ({'CAG-GEN': 0.06762535, 'CAG-NGEN': 0.03244293, 'NAG-GEN': 0.6897794, 'NAG-NGEN': 0.15498641, 'OAG-GEN': 0.034373745, 'OAG-NGEN': 0.020792078}, array(['NAG-GEN'], dtype='<U8')) """ ```
socialmediaie/TRAC2020_IBEN_C_bert-base-multilingual-uncased
40a2289958672bbdb1f90e3956b5ff20a74a916d
2021-05-20T07:06:16.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
socialmediaie
null
socialmediaie/TRAC2020_IBEN_C_bert-base-multilingual-uncased
4
null
transformers
18,934
# Multilingual Joint Fine-tuning of Transformer models for identifying Trolling, Aggression and Cyberbullying at TRAC 2020 Models and predictions for submission to TRAC - 2020 Second Workshop on Trolling, Aggression and Cyberbullying. Our trained models as well as evaluation metrics during traing are available at: https://databank.illinois.edu/datasets/IDB-8882752# We also make a few of our models available in HuggingFace's models repository at https://huggingface.co/socialmediaie/, these models can be further fine-tuned on your dataset of choice. Our approach is described in our paper titled: > Mishra, Sudhanshu, Shivangi Prasad, and Shubhanshu Mishra. 2020. "Multilingual Joint Fine-Tuning of Transformer Models for Identifying Trolling, Aggression and Cyberbullying at TRAC 2020." In Proceedings of the Second Workshop on Trolling, Aggression and Cyberbullying (TRAC-2020). The source code for training this model and more details can be found on our code repository: https://github.com/socialmediaie/TRAC2020 NOTE: These models are retrained for uploading here after our submission so the evaluation measures may be slightly different from the ones reported in the paper. If you plan to use the dataset please cite the following resources: * Mishra, Sudhanshu, Shivangi Prasad, and Shubhanshu Mishra. 2020. "Multilingual Joint Fine-Tuning of Transformer Models for Identifying Trolling, Aggression and Cyberbullying at TRAC 2020." In Proceedings of the Second Workshop on Trolling, Aggression and Cyberbullying (TRAC-2020). * Mishra, Shubhanshu, Shivangi Prasad, and Shubhanshu Mishra. 2020. “Trained Models for Multilingual Joint Fine-Tuning of Transformer Models for Identifying Trolling, Aggression and Cyberbullying at TRAC 2020.” University of Illinois at Urbana-Champaign. https://doi.org/10.13012/B2IDB-8882752_V1. ``` @inproceedings{Mishra2020TRAC, author = {Mishra, Sudhanshu and Prasad, Shivangi and Mishra, Shubhanshu}, booktitle = {Proceedings of the Second Workshop on Trolling, Aggression and Cyberbullying (TRAC-2020)}, title = {{Multilingual Joint Fine-tuning of Transformer models for identifying Trolling, Aggression and Cyberbullying at TRAC 2020}}, year = {2020} } @data{illinoisdatabankIDB-8882752, author = {Mishra, Shubhanshu and Prasad, Shivangi and Mishra, Shubhanshu}, doi = {10.13012/B2IDB-8882752_V1}, publisher = {University of Illinois at Urbana-Champaign}, title = {{Trained models for Multilingual Joint Fine-tuning of Transformer models for identifying Trolling, Aggression and Cyberbullying at TRAC 2020}}, url = {https://doi.org/10.13012/B2IDB-8882752{\_}V1}, year = {2020} } ``` ## Usage The models can be used via the following code: ```python from transformers import AutoModel, AutoTokenizer, AutoModelForSequenceClassification import torch from pathlib import Path from scipy.special import softmax import numpy as np import pandas as pd TASK_LABEL_IDS = { "Sub-task A": ["OAG", "NAG", "CAG"], "Sub-task B": ["GEN", "NGEN"], "Sub-task C": ["OAG-GEN", "OAG-NGEN", "NAG-GEN", "NAG-NGEN", "CAG-GEN", "CAG-NGEN"] } model_version="databank" # other option is hugging face library if model_version == "databank": # Make sure you have downloaded the required model file from https://databank.illinois.edu/datasets/IDB-8882752 # Unzip the file at some model_path (we are using: "databank_model") model_path = next(Path("databank_model").glob("./*/output/*/model")) # Assuming you get the following type of structure inside "databank_model" # 'databank_model/ALL/Sub-task C/output/bert-base-multilingual-uncased/model' lang, task, _, base_model, _ = model_path.parts tokenizer = AutoTokenizer.from_pretrained(base_model) model = AutoModelForSequenceClassification.from_pretrained(model_path) else: lang, task, base_model = "ALL", "Sub-task C", "bert-base-multilingual-uncased" base_model = f"socialmediaie/TRAC2020_{lang}_{lang.split()[-1]}_{base_model}" tokenizer = AutoTokenizer.from_pretrained(base_model) model = AutoModelForSequenceClassification.from_pretrained(base_model) # For doing inference set model in eval mode model.eval() # If you want to further fine-tune the model you can reset the model to model.train() task_labels = TASK_LABEL_IDS[task] sentence = "This is a good cat and this is a bad dog." processed_sentence = f"{tokenizer.cls_token} {sentence}" tokens = tokenizer.tokenize(sentence) indexed_tokens = tokenizer.convert_tokens_to_ids(tokens) tokens_tensor = torch.tensor([indexed_tokens]) with torch.no_grad(): logits, = model(tokens_tensor, labels=None) logits preds = logits.detach().cpu().numpy() preds_probs = softmax(preds, axis=1) preds = np.argmax(preds_probs, axis=1) preds_labels = np.array(task_labels)[preds] print(dict(zip(task_labels, preds_probs[0])), preds_labels) """You should get an output as follows: ({'CAG-GEN': 0.06762535, 'CAG-NGEN': 0.03244293, 'NAG-GEN': 0.6897794, 'NAG-NGEN': 0.15498641, 'OAG-GEN': 0.034373745, 'OAG-NGEN': 0.020792078}, array(['NAG-GEN'], dtype='<U8')) """ ```
soham950/timelines_classifier
34be02cd0c945d4f35a73198bd32464733a0d8cc
2021-05-20T07:07:42.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
soham950
null
soham950/timelines_classifier
4
null
transformers
18,935
Entry not found
speech-seq2seq/wav2vec2-2-bert-large-no-adapter-frozen-enc
0f63a2fdc492a0c02fbe6611c9df932c0a2106cc
2022-02-15T00:30:50.000Z
[ "pytorch", "tensorboard", "speech-encoder-decoder", "automatic-speech-recognition", "dataset:librispeech_asr", "transformers", "generated_from_trainer", "model-index" ]
automatic-speech-recognition
false
speech-seq2seq
null
speech-seq2seq/wav2vec2-2-bert-large-no-adapter-frozen-enc
4
null
transformers
18,936
--- tags: - generated_from_trainer datasets: - librispeech_asr model-index: - name: '' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model was trained from scratch on the librispeech_asr dataset. It achieves the following results on the evaluation set: - Loss: 11.7664 - Wer: 2.0133 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.171 | 0.28 | 500 | 8.6956 | 2.0055 | | 5.307 | 0.56 | 1000 | 8.5958 | 2.0096 | | 5.1449 | 0.84 | 1500 | 10.4208 | 2.0115 | | 6.1351 | 1.12 | 2000 | 10.2950 | 2.0059 | | 6.2997 | 1.4 | 2500 | 10.6762 | 2.0115 | | 6.1394 | 1.68 | 3000 | 10.9190 | 2.0110 | | 6.1868 | 1.96 | 3500 | 11.0166 | 2.0112 | | 5.9647 | 2.24 | 4000 | 11.4154 | 2.0141 | | 6.2202 | 2.52 | 4500 | 11.5837 | 2.0152 | | 5.9612 | 2.8 | 5000 | 11.7664 | 2.0133 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu113 - Datasets 1.18.3 - Tokenizers 0.11.0
speech-seq2seq/wav2vec2-2-roberta-large-no-adapter-frozen-enc
d482347985acc2f406f3f5d90e75221706c230be
2022-02-17T03:21:25.000Z
[ "pytorch", "tensorboard", "speech-encoder-decoder", "automatic-speech-recognition", "dataset:librispeech_asr", "transformers", "generated_from_trainer", "model-index" ]
automatic-speech-recognition
false
speech-seq2seq
null
speech-seq2seq/wav2vec2-2-roberta-large-no-adapter-frozen-enc
4
null
transformers
18,937
--- tags: - generated_from_trainer datasets: - librispeech_asr model-index: - name: '' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model was trained from scratch on the librispeech_asr dataset. It achieves the following results on the evaluation set: - Loss: 20.5959 - Wer: 1.0008 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 6.4796 | 0.28 | 500 | 10.7690 | 1.0 | | 6.2294 | 0.56 | 1000 | 10.5096 | 1.0 | | 5.7859 | 0.84 | 1500 | 13.7547 | 1.0017 | | 6.0219 | 1.12 | 2000 | 15.4966 | 1.0007 | | 5.9142 | 1.4 | 2500 | 18.5919 | 1.0 | | 5.6761 | 1.68 | 3000 | 16.9601 | 1.0 | | 5.73 | 1.96 | 3500 | 18.9857 | 1.0004 | | 4.9793 | 2.24 | 4000 | 18.3202 | 1.0007 | | 5.2332 | 2.52 | 4500 | 19.5416 | 1.0008 | | 4.9792 | 2.8 | 5000 | 20.5959 | 1.0008 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu113 - Datasets 1.18.3 - Tokenizers 0.11.0
sripadh8/Distil_albert_student_albert
536db2b4b429d14c3a93315f43b859ce0d2520d1
2021-05-21T16:12:48.000Z
[ "pytorch", "albert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
sripadh8
null
sripadh8/Distil_albert_student_albert
4
null
transformers
18,938
Entry not found
srosy/distilbert-base-uncased-finetuned-ner
15200a5561ef1e7fb445b9f97767d874f6f4643a
2021-07-11T15:29:20.000Z
[ "pytorch", "distilbert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible" ]
token-classification
false
srosy
null
srosy/distilbert-base-uncased-finetuned-ner
4
null
transformers
18,939
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model_index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metric: name: Accuracy type: accuracy value: 0.9844313470062116 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0590 - Precision: 0.9266 - Recall: 0.9381 - F1: 0.9323 - Accuracy: 0.9844 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0616 | 1.0 | 878 | 0.0604 | 0.9195 | 0.9370 | 0.9282 | 0.9833 | | 0.0328 | 2.0 | 1756 | 0.0588 | 0.9258 | 0.9375 | 0.9316 | 0.9841 | | 0.0246 | 3.0 | 2634 | 0.0590 | 0.9266 | 0.9381 | 0.9323 | 0.9844 | ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1 - Datasets 1.9.0 - Tokenizers 0.10.3
sshleifer/student-pegasus-xsum-12-12
9602995a7ef99c120d357cf735ce3129dce420d8
2020-09-11T04:01:55.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
sshleifer
null
sshleifer/student-pegasus-xsum-12-12
4
null
transformers
18,940
Entry not found
sshleifer/student_cnn_12_9
922c73a2cf16e10a28864bce39f618c25ffd8df2
2021-06-14T08:39:43.000Z
[ "pytorch", "jax", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
sshleifer
null
sshleifer/student_cnn_12_9
4
null
transformers
18,941
Entry not found
sshleifer/student_cnn_9_12
29288e6c064e3d6dc3cc1c94c31f3853639b38e8
2021-06-14T09:22:48.000Z
[ "pytorch", "jax", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
sshleifer
null
sshleifer/student_cnn_9_12
4
null
transformers
18,942
Entry not found
st1992/paraphrase-MiniLM-L12-tagalog-v2
cecad20774abd5349e060250c1244b339d0a5f0d
2022-01-24T05:48:32.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
st1992
null
st1992/paraphrase-MiniLM-L12-tagalog-v2
4
null
transformers
18,943
# st1992/paraphrase-MiniLM-L12-tagalog-v2 paraphrase-MiniLM-L12-v2 finetuned on Tagalog language: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) : same as other sentence-transformer models ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('st1992/paraphrase-MiniLM-L12-tagalog-v2') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['hindi po', 'tulog na'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('st1992/paraphrase-MiniLM-L12-tagalog-v2') model = AutoModel.from_pretrained('st1992/paraphrase-MiniLM-L12-tagalog-v2') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ```
stefan-it/bort-full
6f8071b5417f1027757964f28263225f2c422b05
2020-12-16T13:06:42.000Z
[ "pytorch", "bort", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
stefan-it
null
stefan-it/bort-full
4
null
transformers
18,944
Entry not found
stevhliu/t5-small-finetuned-billsum-ca_test
98bda004599e71abcd5cb70098a09562be6ea04c
2022-06-29T20:05:37.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:billsum", "transformers", "summarization", "license:apache-2.0", "model-index", "autotrain_compatible" ]
summarization
false
stevhliu
null
stevhliu/t5-small-finetuned-billsum-ca_test
4
null
transformers
18,945
--- license: apache-2.0 datasets: - billsum tags: - summarization - t5 widget: - text: "The people of the State of California do enact as follows: SECTION 1. The\ \ Legislature hereby finds and declares as follows: (a) Many areas of the state\ \ are disproportionately impacted by drought because they are heavily dependent\ \ or completely reliant on groundwater from basins that are in overdraft and in\ \ which the water table declines year after year or from basins that are contaminated.\ \ (b) There are a number of state grant and loan programs that provide financial\ \ assistance to communities to address drinking water and wastewater needs. Unfortunately,\ \ there is no program in place to provide similar assistance to individual homeowners\ \ who are reliant on their own groundwater wells and who may not be able to afford\ \ conventional private loans to undertake vital water supply, water quality, and\ \ wastewater improvements. (c) The program created by this act is intended to\ \ bridge that gap by providing low-interest loans, grants, or both, to individual\ \ homeowners to undertake actions necessary to provide safer, cleaner, and more\ \ reliable drinking water and wastewater treatment. These actions may include,\ \ but are not limited to, digging deeper wells, improving existing wells and related\ \ equipment, addressing drinking water contaminants in the homeowner\u2019s water,\ \ or connecting to a local water or wastewater system. SEC. 2. Chapter 6.6 (commencing\ \ with Section 13486) is added to Division 7 of the Water Code, to read: CHAPTER\ \ 6.6. Water and Wastewater Loan and Grant Program 13486. (a) The board shall\ \ establish a program in accordance with this chapter to provide low-interest\ \ loans and grants to local agencies for low-interest loans and grants to eligible\ \ applicants for any of the following purposes:" example_title: Water use - text: "The people of the State of California do enact as follows: SECTION 1. Section\ \ 2196 of the Elections Code is amended to read: 2196. (a) (1) Notwithstanding\ \ any other provision of law, a person who is qualified to register to vote and\ \ who has a valid California driver\u2019s license or state identification card\ \ may submit an affidavit of voter registration electronically on the Internet\ \ Web site of the Secretary of State. (2) An affidavit submitted pursuant to this\ \ section is effective upon receipt of the affidavit by the Secretary of State\ \ if the affidavit is received on or before the last day to register for an election\ \ to be held in the precinct of the person submitting the affidavit. (3) The affiant\ \ shall affirmatively attest to the truth of the information provided in the affidavit.\ \ (4) For voter registration purposes, the applicant shall affirmatively assent\ \ to the use of his or her signature from his or her driver\u2019s license or\ \ state identification card. (5) For each electronic affidavit, the Secretary\ \ of State shall obtain an electronic copy of the applicant\u2019s signature from\ \ his or her driver\u2019s license or state identification card directly from\ \ the Department of Motor Vehicles. (6) The Secretary of State shall require a\ \ person who submits an affidavit pursuant to this section to submit all of the\ \ following: (A) The number from his or her California driver\u2019s license or\ \ state identification card. (B) His or her date of birth. (C) The last four digits\ \ of his or her social security number. (D) Any other information the Secretary\ \ of State deems necessary to establish the identity of the affiant. (7) Upon\ \ submission of an affidavit pursuant to this section, the electronic voter registration\ \ system shall provide for immediate verification of both of the following:" example_title: Election metrics: - rouge model-index: - name: t5-small-finetuned-billsum-ca_test results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: billsum type: billsum args: default metrics: - name: Rouge1 type: rouge value: 12.6315 - task: type: summarization name: Summarization dataset: name: billsum type: billsum config: default split: test metrics: - name: ROUGE-1 type: rouge value: 12.1368 verified: true - name: ROUGE-2 type: rouge value: 4.6017 verified: true - name: ROUGE-L type: rouge value: 10.0767 verified: true - name: ROUGE-LSUM type: rouge value: 10.6892 verified: true - name: loss type: loss value: 2.897707462310791 verified: true - name: gen_len type: gen_len value: 19.0 verified: true --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-billsum-ca_test This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the billsum dataset. It achieves the following results on the evaluation set: - Loss: 2.3376 - Rouge1: 12.6315 - Rouge2: 6.9839 - Rougel: 10.9983 - Rougelsum: 11.9383 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | No log | 1.0 | 495 | 2.4805 | 9.9389 | 4.1239 | 8.3979 | 9.1599 | 19.0 | | 3.1564 | 2.0 | 990 | 2.3833 | 12.1026 | 6.5196 | 10.5123 | 11.4527 | 19.0 | | 2.66 | 3.0 | 1485 | 2.3496 | 12.5389 | 6.8686 | 10.8798 | 11.8636 | 19.0 | | 2.5671 | 4.0 | 1980 | 2.3376 | 12.6315 | 6.9839 | 10.9983 | 11.9383 | 19.0 | ### Framework versions - Transformers 4.12.2 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
sunguk/sunguk-bert
34162f671ea21f20203c711c64af16af99abda9b
2021-03-19T08:37:20.000Z
[ "pytorch", "transformers" ]
null
false
sunguk
null
sunguk/sunguk-bert
4
null
transformers
18,946
Entry not found
sunitha/roberta-customds-finetune
b4dade54543a92360b82a3998637b1154a908728
2022-02-10T09:37:34.000Z
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
sunitha
null
sunitha/roberta-customds-finetune
4
null
transformers
18,947
Entry not found
tals/albert-base-mnli
8b229c50236cbb6edd4655f456b0b54a8ce841e4
2022-06-24T01:35:18.000Z
[ "pytorch", "albert", "text-classification", "python", "dataset:fever", "dataset:glue", "dataset:multi_nli", "dataset:tals/vitaminc", "transformers" ]
text-classification
false
tals
null
tals/albert-base-mnli
4
null
transformers
18,948
--- language: python datasets: - fever - glue - multi_nli - tals/vitaminc --- # Details Model used in [Get Your Vitamin C! Robust Fact Verification with Contrastive Evidence](https://aclanthology.org/2021.naacl-main.52/) (Schuster et al., NAACL 21`). For more details see: https://github.com/TalSchuster/VitaminC When using this model, please cite the paper. # BibTeX entry and citation info ```bibtex @inproceedings{schuster-etal-2021-get, title = "Get Your Vitamin {C}! Robust Fact Verification with Contrastive Evidence", author = "Schuster, Tal and Fisch, Adam and Barzilay, Regina", booktitle = "Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies", month = jun, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.naacl-main.52", doi = "10.18653/v1/2021.naacl-main.52", pages = "624--643", abstract = "Typical fact verification models use retrieved written evidence to verify claims. Evidence sources, however, often change over time as more information is gathered and revised. In order to adapt, models must be sensitive to subtle differences in supporting evidence. We present VitaminC, a benchmark infused with challenging cases that require fact verification models to discern and adjust to slight factual changes. We collect over 100,000 Wikipedia revisions that modify an underlying fact, and leverage these revisions, together with additional synthetically constructed ones, to create a total of over 400,000 claim-evidence pairs. Unlike previous resources, the examples in VitaminC are contrastive, i.e., they contain evidence pairs that are nearly identical in language and content, with the exception that one supports a given claim while the other does not. We show that training using this design increases robustness{---}improving accuracy by 10{\%} on adversarial fact verification and 6{\%} on adversarial natural language inference (NLI). Moreover, the structure of VitaminC leads us to define additional tasks for fact-checking resources: tagging relevant words in the evidence for verifying the claim, identifying factual revisions, and providing automatic edits via factually consistent text generation.", } ```
tanay/xlm-fine-tuned
3bc9684201ac82a3064f3d958ec641117cb65cd8
2021-03-22T05:13:25.000Z
[ "pytorch", "xlm-roberta", "text-classification", "transformers" ]
text-classification
false
tanay
null
tanay/xlm-fine-tuned
4
null
transformers
18,949
Entry not found
taoroalin/classifier_12aug_50k_labels
8cf662004cb833e637a1bfd323c5bb3eaeba34a2
2021-09-21T02:29:15.000Z
[ "pytorch", "deberta", "text-classification", "transformers" ]
text-classification
false
taoroalin
null
taoroalin/classifier_12aug_50k_labels
4
null
transformers
18,950
Entry not found
tareknaous/bart-empathetic-dialogues
fde7cae7a997a281bc075b26366f3469bf4bdf07
2022-02-21T08:53:08.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
tareknaous
null
tareknaous/bart-empathetic-dialogues
4
null
transformers
18,951
Entry not found
tareknaous/roberta2gpt2-daily-dialog
157af777abd7231db89733d2dfdf0a7415dfe8e7
2022-02-21T08:48:35.000Z
[ "pytorch", "encoder-decoder", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
tareknaous
null
tareknaous/roberta2gpt2-daily-dialog
4
null
transformers
18,952
Entry not found
tareknaous/t5-daily-dialog-vM
d1489f003bb8e0729e2621c88fbe157eae0d81b9
2022-02-21T16:27:49.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
tareknaous
null
tareknaous/t5-daily-dialog-vM
4
null
transformers
18,953
Entry not found
textattack/albert-base-v2-rotten_tomatoes
56ff2358f60e32880c477d45cfd2253117293088
2020-06-25T20:00:46.000Z
[ "pytorch", "tensorboard", "albert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
textattack
null
textattack/albert-base-v2-rotten_tomatoes
4
null
transformers
18,954
## albert-base-v2 fine-tuned with TextAttack on the rotten_tomatoes dataset This `albert-base-v2` model was fine-tuned for sequence classificationusing TextAttack and the rotten_tomatoes dataset loaded using the `nlp` library. The model was fine-tuned for 10 epochs with a batch size of 128, a learning rate of 2e-05, and a maximum sequence length of 128. Since this was a classification task, the model was trained with a cross-entropy loss function. The best score the model achieved on this task was 0.8855534709193246, as measured by the eval set accuracy, found after 1 epoch. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
textattack/xlnet-base-cased-RTE
ebc01c0851efcec15a0caeadb4f58db4a81a91da
2020-07-06T16:32:05.000Z
[ "pytorch", "xlnet", "text-generation", "transformers" ]
text-generation
false
textattack
null
textattack/xlnet-base-cased-RTE
4
null
transformers
18,955
## TextAttack Model Card This `xlnet-base-cased` model was fine-tuned for sequence classification using TextAttack and the glue dataset loaded using the `nlp` library. The model was fine-tuned for 5 epochs with a batch size of 16, a learning rate of 2e-05, and a maximum sequence length of 128. Since this was a classification task, the model was trained with a cross-entropy loss function. The best score the model achieved on this task was 0.7111913357400722, as measured by the eval set accuracy, found after 3 epochs. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
thomaszz/distilbert-base-uncased-finetuned-ner
0acf4190eb596bc4a54d215108527d3114477b72
2021-10-29T09:51:09.000Z
[ "pytorch", "tensorboard", "distilbert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
thomaszz
null
thomaszz/distilbert-base-uncased-finetuned-ner
4
null
transformers
18,956
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9244616234124793 - name: Recall type: recall value: 0.9364582168027744 - name: F1 type: f1 value: 0.9304212515282871 - name: Accuracy type: accuracy value: 0.9833987322668276 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0623 - Precision: 0.9245 - Recall: 0.9365 - F1: 0.9304 - Accuracy: 0.9834 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2377 | 1.0 | 878 | 0.0711 | 0.9176 | 0.9254 | 0.9215 | 0.9813 | | 0.0514 | 2.0 | 1756 | 0.0637 | 0.9213 | 0.9346 | 0.9279 | 0.9831 | | 0.031 | 3.0 | 2634 | 0.0623 | 0.9245 | 0.9365 | 0.9304 | 0.9834 | ### Framework versions - Transformers 4.12.0 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
thomwolf/vqgan_imagenet_f16_1024
b0c07d95af30b5ba5857d43711d43bf42f5e89b4
2021-06-08T21:16:25.000Z
[ "pytorch", "vqgan_model", "transformers" ]
null
false
thomwolf
null
thomwolf/vqgan_imagenet_f16_1024
4
null
transformers
18,957
Entry not found
thyagosme/wav2vec2-base-demo-colab
bcdf199eacf67716be9af4c3faa0b59fe6c3cfb7
2022-02-13T02:14:29.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
thyagosme
null
thyagosme/wav2vec2-base-demo-colab
4
null
transformers
18,958
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4657 - Wer: 0.3422 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.4477 | 4.0 | 500 | 1.3352 | 0.9039 | | 0.5972 | 8.0 | 1000 | 0.4752 | 0.4509 | | 0.2224 | 12.0 | 1500 | 0.4604 | 0.4052 | | 0.1308 | 16.0 | 2000 | 0.4542 | 0.3866 | | 0.0889 | 20.0 | 2500 | 0.4730 | 0.3589 | | 0.0628 | 24.0 | 3000 | 0.4984 | 0.3657 | | 0.0479 | 28.0 | 3500 | 0.4657 | 0.3422 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
tobiaslee/bert-2l-768h-uncased
82f115e1381b8858b93ba2af3819f99545f79092
2021-09-11T03:10:34.000Z
[ "pytorch", "bert", "transformers" ]
null
false
tobiaslee
null
tobiaslee/bert-2l-768h-uncased
4
null
transformers
18,959
# BERT-uncased-2L-768H This is a converted pytorch checkpoint for bert with 2L trained from scratch. See [Google BERT](https://github.com/google-research/bert) for details.
transformersbook/bert-base-uncased-issues-128
235bf67eef05b0d346243bee7ef27a1200c542e0
2022-02-05T16:57:43.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
transformersbook
null
transformersbook/bert-base-uncased-issues-128
4
null
transformers
18,960
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-base-uncased-issues-128 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-issues-128 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the GitHub issues dataset. The model is used in Chapter 9: Dealing with Few to No Labels in the [NLP with Transformers book](https://learning.oreilly.com/library/view/natural-language-processing/9781098103231/). You can find the full code in the accompanying [Github repository](https://github.com/nlp-with-transformers/notebooks/blob/main/09_few-to-no-labels.ipynb). It achieves the following results on the evaluation set: - Loss: 1.2520 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 16 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.0949 | 1.0 | 291 | 1.7072 | | 1.649 | 2.0 | 582 | 1.4409 | | 1.4835 | 3.0 | 873 | 1.4099 | | 1.3938 | 4.0 | 1164 | 1.3858 | | 1.3326 | 5.0 | 1455 | 1.2004 | | 1.2949 | 6.0 | 1746 | 1.2955 | | 1.2451 | 7.0 | 2037 | 1.2682 | | 1.1992 | 8.0 | 2328 | 1.1938 | | 1.1784 | 9.0 | 2619 | 1.1686 | | 1.1397 | 10.0 | 2910 | 1.2050 | | 1.1293 | 11.0 | 3201 | 1.2058 | | 1.1006 | 12.0 | 3492 | 1.1680 | | 1.0835 | 13.0 | 3783 | 1.2414 | | 1.0757 | 14.0 | 4074 | 1.1522 | | 1.062 | 15.0 | 4365 | 1.1176 | | 1.0535 | 16.0 | 4656 | 1.2520 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu102 - Datasets 1.13.0 - Tokenizers 0.10.3
ttajun/bert_nm100k_posneg01
cf0ef43056320ba7fa1330844a54bced1a2ecc94
2021-12-22T02:34:54.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
ttajun
null
ttajun/bert_nm100k_posneg01
4
null
transformers
18,961
Entry not found
tucan9389/kcbert-base-finetuned-squad
7e5ae2ab60737ee1a8b6858b6d24d81c6144bf9c
2021-11-18T02:26:45.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "dataset:klue", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
tucan9389
null
tucan9389/kcbert-base-finetuned-squad
4
null
transformers
18,962
--- tags: - generated_from_trainer datasets: - klue model-index: - name: kcbert-base-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # kcbert-base-finetuned-squad This model is a fine-tuned version of [beomi/kcbert-base](https://huggingface.co/beomi/kcbert-base) on the klue dataset. It achieves the following results on the evaluation set: - Loss: 1.6736 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2221 | 1.0 | 4245 | 1.2784 | | 0.7673 | 2.0 | 8490 | 1.4099 | | 0.4479 | 3.0 | 12735 | 1.6736 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
ubamba98/wav2vec2-xls-r-1b-ro
ec31f5386b508c5cadbe042dee6766ad70ed6385
2022-03-23T18:29:42.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "ro", "dataset:mozilla-foundation/common_voice_7_0", "transformers", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
ubamba98
null
ubamba98/wav2vec2-xls-r-1b-ro
4
null
transformers
18,963
--- language: - ro license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_7_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: wav2vec2-xls-r-1b-ro results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7.0 type: mozilla-foundation/common_voice_7_0 args: ro metrics: - name: Test WER type: wer value: 99.99 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: ro metrics: - name: Test WER type: wer value: 99.98 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: ro metrics: - name: Test WER type: wer value: 99.99 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-1b-ro This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - RO dataset. It achieves the following results on the evaluation set: - Loss: 0.1113 - Wer: 0.4770 - Cer: 0.0306 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:| | 0.7844 | 1.67 | 1500 | 0.3412 | 0.8600 | 0.0940 | | 0.7272 | 3.34 | 3000 | 0.1926 | 0.6409 | 0.0527 | | 0.6924 | 5.02 | 4500 | 0.1413 | 0.5722 | 0.0401 | | 0.6327 | 6.69 | 6000 | 0.1252 | 0.5366 | 0.0371 | | 0.6363 | 8.36 | 7500 | 0.1235 | 0.5741 | 0.0389 | | 0.6238 | 10.03 | 9000 | 0.1180 | 0.5542 | 0.0362 | | 0.6018 | 11.71 | 10500 | 0.1192 | 0.5694 | 0.0369 | | 0.583 | 13.38 | 12000 | 0.1216 | 0.5772 | 0.0385 | | 0.5643 | 15.05 | 13500 | 0.1195 | 0.5419 | 0.0371 | | 0.5399 | 16.72 | 15000 | 0.1240 | 0.5224 | 0.0370 | | 0.5529 | 18.39 | 16500 | 0.1174 | 0.5555 | 0.0367 | | 0.5246 | 20.07 | 18000 | 0.1097 | 0.5047 | 0.0339 | | 0.4936 | 21.74 | 19500 | 0.1225 | 0.5189 | 0.0382 | | 0.4629 | 23.41 | 21000 | 0.1142 | 0.5047 | 0.0344 | | 0.4463 | 25.08 | 22500 | 0.1168 | 0.4887 | 0.0339 | | 0.4671 | 26.76 | 24000 | 0.1119 | 0.5073 | 0.0338 | | 0.4359 | 28.43 | 25500 | 0.1206 | 0.5479 | 0.0363 | | 0.4225 | 30.1 | 27000 | 0.1122 | 0.5170 | 0.0345 | | 0.4038 | 31.77 | 28500 | 0.1159 | 0.5032 | 0.0343 | | 0.4271 | 33.44 | 30000 | 0.1116 | 0.5126 | 0.0339 | | 0.3867 | 35.12 | 31500 | 0.1101 | 0.4937 | 0.0327 | | 0.3674 | 36.79 | 33000 | 0.1142 | 0.4940 | 0.0330 | | 0.3607 | 38.46 | 34500 | 0.1106 | 0.5145 | 0.0327 | | 0.3651 | 40.13 | 36000 | 0.1172 | 0.4921 | 0.0317 | | 0.3268 | 41.81 | 37500 | 0.1093 | 0.4830 | 0.0310 | | 0.3345 | 43.48 | 39000 | 0.1131 | 0.4760 | 0.0314 | | 0.3236 | 45.15 | 40500 | 0.1132 | 0.4864 | 0.0317 | | 0.312 | 46.82 | 42000 | 0.1124 | 0.4861 | 0.0315 | | 0.3106 | 48.49 | 43500 | 0.1116 | 0.4745 | 0.0306 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
ubamba98/wav2vec2-xls-r-300m-CV8-ro
db8fade442d050a4d304c9f5b1dbda999431bc69
2022-03-23T18:29:44.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "ro", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
ubamba98
null
ubamba98/wav2vec2-xls-r-300m-CV8-ro
4
null
transformers
18,964
--- language: - ro license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-xls-r-300m-CV8-ro results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-CV8-ro This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - RO dataset. It achieves the following results on the evaluation set: - Loss: 0.1578 - Wer: 0.6040 - Cer: 0.0475 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 2.9736 | 3.62 | 500 | 2.9508 | 1.0 | 1.0 | | 1.3293 | 7.25 | 1000 | 0.3330 | 0.8407 | 0.0862 | | 0.956 | 10.87 | 1500 | 0.2042 | 0.6872 | 0.0602 | | 0.9509 | 14.49 | 2000 | 0.2184 | 0.7088 | 0.0652 | | 0.9272 | 18.12 | 2500 | 0.2312 | 0.7211 | 0.0703 | | 0.8561 | 21.74 | 3000 | 0.2158 | 0.6838 | 0.0631 | | 0.8258 | 25.36 | 3500 | 0.1970 | 0.6844 | 0.0601 | | 0.7993 | 28.98 | 4000 | 0.1895 | 0.6698 | 0.0577 | | 0.7525 | 32.61 | 4500 | 0.1845 | 0.6453 | 0.0550 | | 0.7211 | 36.23 | 5000 | 0.1781 | 0.6274 | 0.0531 | | 0.677 | 39.85 | 5500 | 0.1732 | 0.6188 | 0.0514 | | 0.6517 | 43.48 | 6000 | 0.1691 | 0.6177 | 0.0503 | | 0.6326 | 47.1 | 6500 | 0.1619 | 0.6045 | 0.0479 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
uclanlp/plbart-multi_task-weak
e58915b41a7e7c2ce7defd5b9d63891feb7bc845
2022-03-02T07:38:33.000Z
[ "pytorch", "plbart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
uclanlp
null
uclanlp/plbart-multi_task-weak
4
null
transformers
18,965
Entry not found
uclanlp/plbart-ruby-en_XX
61f0c8960d9b641f8f25d70adcd527aa049ac043
2021-11-09T17:10:05.000Z
[ "pytorch", "plbart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
uclanlp
null
uclanlp/plbart-ruby-en_XX
4
null
transformers
18,966
Entry not found
uclanlp/plbart-single_task-all-generation
d688d8961b303af1bafc8f8e991e304d5681773a
2022-03-02T07:29:15.000Z
[ "pytorch", "plbart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
uclanlp
null
uclanlp/plbart-single_task-all-generation
4
null
transformers
18,967
Entry not found
uclanlp/plbart-single_task-weak-generation
de9cbb23b92932386904b9418de2d88fc24b886d
2022-03-02T07:25:34.000Z
[ "pytorch", "plbart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
uclanlp
null
uclanlp/plbart-single_task-weak-generation
4
null
transformers
18,968
Entry not found
uclanlp/visualbert-vcr-pre
1183a34c9fb03cef2cf97a037f47d84ecc36facc
2021-05-31T11:29:46.000Z
[ "pytorch", "visual_bert", "pretraining", "transformers" ]
null
false
uclanlp
null
uclanlp/visualbert-vcr-pre
4
null
transformers
18,969
Entry not found
uer/chinese_roberta_L-8_H-128
15dfe5d8fc174bf2dd45c41ed1cee629dbf23b22
2022-07-15T08:13:50.000Z
[ "pytorch", "tf", "jax", "bert", "fill-mask", "zh", "dataset:CLUECorpusSmall", "arxiv:1909.05658", "arxiv:1908.08962", "transformers", "autotrain_compatible" ]
fill-mask
false
uer
null
uer/chinese_roberta_L-8_H-128
4
null
transformers
18,970
--- language: zh datasets: CLUECorpusSmall widget: - text: "北京是[MASK]国的首都。" --- # Chinese RoBERTa Miniatures ## Model description This is the set of 24 Chinese RoBERTa models pre-trained by [UER-py](https://github.com/dbiir/UER-py/), which is introduced in [this paper](https://arxiv.org/abs/1909.05658). [Turc et al.](https://arxiv.org/abs/1908.08962) have shown that the standard BERT recipe is effective on a wide range of model sizes. Following their paper, we released the 24 Chinese RoBERTa models. In order to facilitate users to reproduce the results, we used the publicly available corpus and provided all training details. You can download the 24 Chinese RoBERTa miniatures either from the [UER-py Modelzoo page](https://github.com/dbiir/UER-py/wiki/Modelzoo), or via HuggingFace from the links below: | | H=128 | H=256 | H=512 | H=768 | | -------- | :-----------------------: | :-----------------------: | :-------------------------: | :-------------------------: | | **L=2** | [**2/128 (Tiny)**][2_128] | [2/256][2_256] | [2/512][2_512] | [2/768][2_768] | | **L=4** | [4/128][4_128] | [**4/256 (Mini)**][4_256] | [**4/512 (Small)**][4_512] | [4/768][4_768] | | **L=6** | [6/128][6_128] | [6/256][6_256] | [6/512][6_512] | [6/768][6_768] | | **L=8** | [8/128][8_128] | [8/256][8_256] | [**8/512 (Medium)**][8_512] | [8/768][8_768] | | **L=10** | [10/128][10_128] | [10/256][10_256] | [10/512][10_512] | [10/768][10_768] | | **L=12** | [12/128][12_128] | [12/256][12_256] | [12/512][12_512] | [**12/768 (Base)**][12_768] | Here are scores on the devlopment set of six Chinese tasks: | Model | Score | douban | chnsenticorp | lcqmc | tnews(CLUE) | iflytek(CLUE) | ocnli(CLUE) | | -------------- | :---: | :----: | :----------: | :---: | :---------: | :-----------: | :---------: | | RoBERTa-Tiny | 72.3 | 83.0 | 91.4 | 81.8 | 62.0 | 55.0 | 60.3 | | RoBERTa-Mini | 75.7 | 84.8 | 93.7 | 86.1 | 63.9 | 58.3 | 67.4 | | RoBERTa-Small | 76.8 | 86.5 | 93.4 | 86.5 | 65.1 | 59.4 | 69.7 | | RoBERTa-Medium | 77.8 | 87.6 | 94.8 | 88.1 | 65.6 | 59.5 | 71.2 | | RoBERTa-Base | 79.5 | 89.1 | 95.2 | 89.2 | 67.0 | 60.9 | 75.5 | For each task, we selected the best fine-tuning hyperparameters from the lists below, and trained with the sequence length of 128: - epochs: 3, 5, 8 - batch sizes: 32, 64 - learning rates: 3e-5, 1e-4, 3e-4 ## How to use You can use this model directly with a pipeline for masked language modeling (take the case of RoBERTa-Medium): ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='uer/chinese_roberta_L-8_H-512') >>> unmasker("中国的首都是[MASK]京。") [ {'sequence': '[CLS] 中 国 的 首 都 是 北 京 。 [SEP]', 'score': 0.8701988458633423, 'token': 1266, 'token_str': '北'}, {'sequence': '[CLS] 中 国 的 首 都 是 南 京 。 [SEP]', 'score': 0.1194809079170227, 'token': 1298, 'token_str': '南'}, {'sequence': '[CLS] 中 国 的 首 都 是 东 京 。 [SEP]', 'score': 0.0037803512532263994, 'token': 691, 'token_str': '东'}, {'sequence': '[CLS] 中 国 的 首 都 是 普 京 。 [SEP]', 'score': 0.0017127094324678183, 'token': 3249, 'token_str': '普'}, {'sequence': '[CLS] 中 国 的 首 都 是 望 京 。 [SEP]', 'score': 0.001687526935711503, 'token': 3307, 'token_str': '望'} ] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('uer/chinese_roberta_L-8_H-512') model = BertModel.from_pretrained("uer/chinese_roberta_L-8_H-512") text = "用你喜欢的任何文本替换我。" encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('uer/chinese_roberta_L-8_H-512') model = TFBertModel.from_pretrained("uer/chinese_roberta_L-8_H-512") text = "用你喜欢的任何文本替换我。" encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ## Training data [CLUECorpusSmall](https://github.com/CLUEbenchmark/CLUECorpus2020/) is used as training data. We found that models pre-trained on CLUECorpusSmall outperform those pre-trained on CLUECorpus2020, although CLUECorpus2020 is much larger than CLUECorpusSmall. ## Training procedure Models are pre-trained by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud](https://cloud.tencent.com/). We pre-train 1,000,000 steps with a sequence length of 128 and then pre-train 250,000 additional steps with a sequence length of 512. We use the same hyper-parameters on different model sizes. Taking the case of RoBERTa-Medium Stage1: ``` python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ --vocab_path models/google_zh_vocab.txt \ --dataset_path cluecorpussmall_seq128_dataset.pt \ --processes_num 32 --seq_length 128 \ --dynamic_masking --data_processor mlm ``` ``` python3 pretrain.py --dataset_path cluecorpussmall_seq128_dataset.pt \ --vocab_path models/google_zh_vocab.txt \ --config_path models/bert/medium_config.json \ --output_model_path models/cluecorpussmall_roberta_medium_seq128_model.bin \ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --total_steps 1000000 --save_checkpoint_steps 100000 --report_steps 50000 \ --learning_rate 1e-4 --batch_size 64 \ --data_processor mlm --target mlm ``` Stage2: ``` python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ --vocab_path models/google_zh_vocab.txt \ --dataset_path cluecorpussmall_seq512_dataset.pt \ --processes_num 32 --seq_length 512 \ --dynamic_masking --data_processor mlm ``` ``` python3 pretrain.py --dataset_path cluecorpussmall_seq512_dataset.pt \ --vocab_path models/google_zh_vocab.txt \ --pretrained_model_path models/cluecorpussmall_roberta_medium_seq128_model.bin-1000000 \ --config_path models/bert/medium_config.json \ --output_model_path models/cluecorpussmall_roberta_medium_seq512_model.bin \ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --total_steps 250000 --save_checkpoint_steps 50000 --report_steps 10000 \ --learning_rate 5e-5 --batch_size 16 \ --data_processor mlm --target mlm ``` Finally, we convert the pre-trained model into Huggingface's format: ``` python3 scripts/convert_bert_from_uer_to_huggingface.py --input_model_path models/cluecorpussmall_roberta_medium_seq512_model.bin-250000 \ --output_model_path pytorch_model.bin \ --layers_num 8 --type mlm ``` ### BibTeX entry and citation info ``` @article{devlin2018bert, title={Bert: Pre-training of deep bidirectional transformers for language understanding}, author={Devlin, Jacob and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1810.04805}, year={2018} } @article{liu2019roberta, title={Roberta: A robustly optimized bert pretraining approach}, author={Liu, Yinhan and Ott, Myle and Goyal, Naman and Du, Jingfei and Joshi, Mandar and Chen, Danqi and Levy, Omer and Lewis, Mike and Zettlemoyer, Luke and Stoyanov, Veselin}, journal={arXiv preprint arXiv:1907.11692}, year={2019} } @article{turc2019, title={Well-Read Students Learn Better: On the Importance of Pre-training Compact Models}, author={Turc, Iulia and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1908.08962v2 }, year={2019} } @article{zhao2019uer, title={UER: An Open-Source Toolkit for Pre-training Models}, author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong}, journal={EMNLP-IJCNLP 2019}, pages={241}, year={2019} } ``` [2_128]:https://huggingface.co/uer/chinese_roberta_L-2_H-128 [2_256]:https://huggingface.co/uer/chinese_roberta_L-2_H-256 [2_512]:https://huggingface.co/uer/chinese_roberta_L-2_H-512 [2_768]:https://huggingface.co/uer/chinese_roberta_L-2_H-768 [4_128]:https://huggingface.co/uer/chinese_roberta_L-4_H-128 [4_256]:https://huggingface.co/uer/chinese_roberta_L-4_H-256 [4_512]:https://huggingface.co/uer/chinese_roberta_L-4_H-512 [4_768]:https://huggingface.co/uer/chinese_roberta_L-4_H-768 [6_128]:https://huggingface.co/uer/chinese_roberta_L-6_H-128 [6_256]:https://huggingface.co/uer/chinese_roberta_L-6_H-256 [6_512]:https://huggingface.co/uer/chinese_roberta_L-6_H-512 [6_768]:https://huggingface.co/uer/chinese_roberta_L-6_H-768 [8_128]:https://huggingface.co/uer/chinese_roberta_L-8_H-128 [8_256]:https://huggingface.co/uer/chinese_roberta_L-8_H-256 [8_512]:https://huggingface.co/uer/chinese_roberta_L-8_H-512 [8_768]:https://huggingface.co/uer/chinese_roberta_L-8_H-768 [10_128]:https://huggingface.co/uer/chinese_roberta_L-10_H-128 [10_256]:https://huggingface.co/uer/chinese_roberta_L-10_H-256 [10_512]:https://huggingface.co/uer/chinese_roberta_L-10_H-512 [10_768]:https://huggingface.co/uer/chinese_roberta_L-10_H-768 [12_128]:https://huggingface.co/uer/chinese_roberta_L-12_H-128 [12_256]:https://huggingface.co/uer/chinese_roberta_L-12_H-256 [12_512]:https://huggingface.co/uer/chinese_roberta_L-12_H-512 [12_768]:https://huggingface.co/uer/chinese_roberta_L-12_H-768
uf-aice-lab/SafeMathBot
83b750465f2ce07768ce27e6fa7b393f35aafb6b
2022-02-11T20:15:31.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "generation", "math learning", "education", "license:mit" ]
text-generation
false
uf-aice-lab
null
uf-aice-lab/SafeMathBot
4
null
transformers
18,971
--- language: - en tags: - generation - math learning - education license: mit metrics: - PerspectiveAPI widget: - text: "<bos><speaker1>Hello! My name is CL. Nice meeting y'all!<speaker2>[SAFE]" example_title: "Safe Response" - text: "<bos><speaker1>Hello! My name is CL. Nice meeting y'all!<speaker2>[UNSAFE]" example_title: "Unsafe Response" --- # Math-RoBERTa for NLP tasks in math learning environments This model is fine-tuned with GPT2-xl with 8 Nvidia RTX 1080Ti GPUs and enhanced with conversation safety policies (e.g., threat, profanity, identity attack) using 3,000,000 math discussion posts by students and facilitators on Algebra Nation (https://www.mathnation.com/). SafeMathBot consists of 48 layers and over 1.5 billion parameters, consuming up to 6 gigabytes of disk space. Researchers can experiment with and finetune the model to help construct math conversational AI that can effectively avoid unsafe response generation. It was trained to allow researchers to control generated responses' safety using tags `[SAFE]` and `[UNSAFE]` ### Here is how to use it with texts in HuggingFace ```python # A list of special tokens the model was trained with special_tokens_dict = { 'additional_special_tokens': [ '[SAFE]','[UNSAFE]', '[OK]', '[SELF_M]','[SELF_F]', '[SELF_N]', '[PARTNER_M]', '[PARTNER_F]', '[PARTNER_N]', '[ABOUT_M]', '[ABOUT_F]', '[ABOUT_N]', '<speaker1>', '<speaker2>' ], 'bos_token': '<bos>', 'eos_token': '<eos>', } from transformers import AutoTokenizer, AutoModelForCausalLM math_bot_tokenizer = AutoTokenizer.from_pretrained('uf-aice-lab/SafeMathBot') safe_math_bot = AutoModelForCausalLM.from_pretrained('uf-aice-lab/SafeMathBot') text = "Replace me by any text you'd like." encoded_input = math_bot_tokenizer(text, return_tensors='pt') output = safe_math_bot(**encoded_input) ```
unicamp-dl/mMiniLM-L6-v2-en-msmarco
da8ace7c6264e4da63dcc3b31700b8c4760e9299
2022-01-05T21:30:07.000Z
[ "pytorch", "xlm-roberta", "text-classification", "pt", "dataset:msmarco", "arxiv:2108.13897", "transformers", "msmarco", "miniLM", "tensorflow", "en", "license:mit" ]
text-classification
false
unicamp-dl
null
unicamp-dl/mMiniLM-L6-v2-en-msmarco
4
null
transformers
18,972
--- language: pt license: mit tags: - msmarco - miniLM - pytorch - tensorflow - en datasets: - msmarco widget: - text: "Texto de exemplo em português" inference: false --- # mMiniLM-L6 Reranker finetuned on English MS MARCO ## Introduction mMiniLM-L6-v2-en-msmarco is a multilingual miniLM-based model fine-tuned on English MS MARCO passage dataset. Further information about the dataset or the translation method can be found on our [**mMARCO: A Multilingual Version of MS MARCO Passage Ranking Dataset**](https://arxiv.org/abs/2108.13897) and [mMARCO](https://github.com/unicamp-dl/mMARCO) repository. ## Usage ```python from transformers import AutoTokenizer, AutoModel model_name = 'unicamp-dl/mMiniLM-L6-v2-en-msmarco' tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModel.from_pretrained(model_name) ``` # Citation If you use mMiniLM-L6-v2-en-msmarco, please cite: @misc{bonifacio2021mmarco, title={mMARCO: A Multilingual Version of the MS MARCO Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Vitor Jeronymo and Hugo Queiroz Abonizio and Israel Campiotti and Marzieh Fadaee and and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, eprint={2108.13897}, archivePrefix={arXiv}, primaryClass={cs.CL} }
unicamp-dl/mMiniLM-L6-v2-pt-msmarco-v1
60c56025e861380d6bd71c057f5baafd360dd12d
2022-01-05T21:29:37.000Z
[ "pytorch", "xlm-roberta", "text-classification", "pt", "dataset:msmarco", "arxiv:2108.13897", "transformers", "msmarco", "miniLM", "tensorflow", "pt-br", "license:mit" ]
text-classification
false
unicamp-dl
null
unicamp-dl/mMiniLM-L6-v2-pt-msmarco-v1
4
null
transformers
18,973
--- language: pt license: mit tags: - msmarco - miniLM - pytorch - tensorflow - pt - pt-br datasets: - msmarco widget: - text: "Texto de exemplo em português" inference: false --- # mMiniLM-L6-v2 Reranker finetuned on mMARCO ## Introduction mMiniLM-L6-v2-pt-msmarco-v1 is a multilingual miniLM-based model finetuned on a Portuguese translated version of MS MARCO passage dataset. In the version v1, the Portuguese dataset was translated using [Helsinki](https://huggingface.co/Helsinki-NLP) NMT model. Further information about the dataset or the translation method can be found on our [**mMARCO: A Multilingual Version of MS MARCO Passage Ranking Dataset**](https://arxiv.org/abs/2108.13897) and [mMARCO](https://github.com/unicamp-dl/mMARCO) repository. ## Usage ```python from transformers import AutoTokenizer, AutoModel model_name = 'unicamp-dl/mMiniLM-L6-v2-pt-msmarco-v1' tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModel.from_pretrained(model_name) ``` # Citation If you use mMiniLM-L6-v2-pt-msmarco-v1, please cite: @misc{bonifacio2021mmarco, title={mMARCO: A Multilingual Version of MS MARCO Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Vitor Jeronymo and Hugo Queiroz Abonizio and Israel Campiotti and Marzieh Fadaee and and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, eprint={2108.13897}, archivePrefix={arXiv}, primaryClass={cs.CL} }
valhalla/awesome-model
96fb117d7d8fe5b15409db0093354dc4728317ba
2022-02-01T16:26:26.000Z
[ "pytorch", "awesome", "transformers" ]
null
false
valhalla
null
valhalla/awesome-model
4
null
transformers
18,974
Entry not found
valurank/distilroberta-mbfc-bias
3b59ac1064696b63560c4ec081a9861e3edec32b
2022-06-08T20:34:29.000Z
[ "pytorch", "roberta", "text-classification", "transformers", "generated_from_trainer", "license:other", "model-index" ]
text-classification
false
valurank
null
valurank/distilroberta-mbfc-bias
4
null
transformers
18,975
--- license: other tags: - generated_from_trainer model-index: - name: distilroberta-mbfc-bias results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-mbfc-bias This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the Proppy dataset, using political bias from mediabiasfactcheck.com as labels. It achieves the following results on the evaluation set: - Loss: 1.4130 - Acc: 0.6348 ## Training and evaluation data The training data used is the [proppy corpus](https://zenodo.org/record/3271522). Articles are labeled for political bias using the political bias of the source publication, as scored by mediabiasfactcheck.com. See [Proppy: Organizing the News Based on Their Propagandistic Content](https://propaganda.qcri.org/papers/elsarticle-template.pdf) for details. To create a more balanced training set, common labels are downsampled to have a maximum of 2000 articles. The resulting label distribution in the training data is as follows: ``` extremeright 689 leastbiased 2000 left 783 leftcenter 2000 right 1260 rightcenter 1418 unknown 2000 ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 12345 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 16 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Acc | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.9493 | 1.0 | 514 | 1.2765 | 0.4730 | | 0.7376 | 2.0 | 1028 | 1.0003 | 0.5812 | | 0.6702 | 3.0 | 1542 | 1.1294 | 0.5631 | | 0.6161 | 4.0 | 2056 | 1.0439 | 0.6058 | | 0.4934 | 5.0 | 2570 | 1.1196 | 0.6028 | | 0.4558 | 6.0 | 3084 | 1.0993 | 0.5977 | | 0.4717 | 7.0 | 3598 | 1.0308 | 0.6373 | | 0.3961 | 8.0 | 4112 | 1.1291 | 0.6234 | | 0.3829 | 9.0 | 4626 | 1.1554 | 0.6316 | | 0.3442 | 10.0 | 5140 | 1.1548 | 0.6465 | | 0.2505 | 11.0 | 5654 | 1.3605 | 0.6169 | | 0.2105 | 12.0 | 6168 | 1.3310 | 0.6297 | | 0.262 | 13.0 | 6682 | 1.2706 | 0.6383 | | 0.2031 | 14.0 | 7196 | 1.3658 | 0.6378 | | 0.2021 | 15.0 | 7710 | 1.4130 | 0.6348 | ### Framework versions - Transformers 4.11.2 - Pytorch 1.7.1 - Datasets 1.11.0 - Tokenizers 0.10.3
vasudevgupta/bigbird-pegasus-large-bigpatent
092182bbb12156e953b50aedf27320d0a755d716
2021-05-04T11:12:37.000Z
[ "pytorch", "bigbird_pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
vasudevgupta
null
vasudevgupta/bigbird-pegasus-large-bigpatent
4
null
transformers
18,976
Moved here: https://huggingface.co/google/bigbird-pegasus-large-bigpatent
vasudevgupta/biggan-mapping-model
8094516857b1d1eadf0897af55c6ebe82edc863a
2021-10-31T16:43:04.000Z
[ "pytorch", "transformers" ]
null
false
vasudevgupta
null
vasudevgupta/biggan-mapping-model
4
null
transformers
18,977
Entry not found
verloop/Hinglish-DistilBert-Class
28df970f806c69128f4e33ca308eafcb696cd7f2
2021-05-20T08:59:21.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
verloop
null
verloop/Hinglish-DistilBert-Class
4
null
transformers
18,978
Entry not found
vesteinn/IceBERT
ff91b3d4261a480eb38b4f5c16356d9083a31625
2021-12-17T07:40:29.000Z
[ "pytorch", "roberta", "fill-mask", "is", "transformers", "icelandic", "masked-lm", "license:agpl-3.0", "autotrain_compatible" ]
fill-mask
false
vesteinn
null
vesteinn/IceBERT
4
null
transformers
18,979
--- language: is widget: - text: Má bjóða þér <mask> í kvöld? - text: Forseti <mask> er ágæt. - text: Súpan var <mask> á bragðið. tags: - roberta - icelandic - masked-lm - pytorch license: agpl-3.0 --- # IceBERT IceBERT was trained with fairseq using the RoBERTa-base architecture. The training data used is shown in the table below. | Dataset | Size | Tokens | |------------------------------------------------------|---------|--------| | Icelandic Gigaword Corpus v20.05 (IGC) | 8.2 GB | 1,388M | | Icelandic Common Crawl Corpus (IC3) | 4.9 GB | 824M | | Greynir News articles | 456 MB | 76M | | Icelandic Sagas | 9 MB | 1.7M | | Open Icelandic e-books (Rafbókavefurinn) | 14 MB | 2.6M | | Data from the medical library of Landspitali | 33 MB | 5.2M | | Student theses from Icelandic universities (Skemman) | 2.2 GB | 367M | | Total | 15.8 GB | 2,664M |
vietnguyen39/Albert_vi_QA
6e82f73674c869b4ad170d7150fe9b733b2885cc
2021-11-07T01:49:17.000Z
[ "pytorch" ]
null
false
vietnguyen39
null
vietnguyen39/Albert_vi_QA
4
null
null
18,980
Entry not found
vijayv500/DialoGPT-small-Big-Bang-Theory-Series-Transcripts
040bc5487be7217252bbb68cb85fc1759180f536
2021-10-29T07:39:27.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational", "license:mit" ]
conversational
false
vijayv500
null
vijayv500/DialoGPT-small-Big-Bang-Theory-Series-Transcripts
4
null
transformers
18,981
--- tags: - conversational license: mit --- ## I fine-tuned DialoGPT-small model on "The Big Bang Theory" TV Series dataset from Kaggle (https://www.kaggle.com/mitramir5/the-big-bang-theory-series-transcript) ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch tokenizer = AutoTokenizer.from_pretrained("vijayv500/DialoGPT-small-Big-Bang-Theory-Series-Transcripts") model = AutoModelForCausalLM.from_pretrained("vijayv500/DialoGPT-small-Big-Bang-Theory-Series-Transcripts") # Let's chat for 5 lines for step in range(5): # encode the new user input, add the eos_token and return a tensor in Pytorch new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt') # append the new user input tokens to the chat history bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids # generated a response while limiting the total chat history to 1000 tokens, chat_history_ids = model.generate( bot_input_ids, max_length=200, pad_token_id=tokenizer.eos_token_id, no_repeat_ngram_size=3, do_sample=True, top_k=100, top_p=0.7, temperature = 0.8 ) # pretty print last ouput tokens from bot print("TBBT Bot: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True))) ```
vinhood/wineberto-italian-cased
43d86243ad20ae121749805677435a4a34431adc
2022-01-10T08:26:52.000Z
[ "pytorch", "bert", "fill-mask", "it", "transformers", "license:mit", "autotrain_compatible" ]
fill-mask
false
vinhood
null
vinhood/wineberto-italian-cased
4
null
transformers
18,982
--- language: it license: mit widget: - text: "Con del pesce bisogna bere un bicchiere di vino [MASK]." - text: "Con la carne c'è bisogno del vino [MASK]." - text: "A tavola non può mancare del buon [MASK]." --- # WineBERTo 🍷🥂 **wineberto-italian-cased** is a BERT model obtained by MLM adaptive-tuning [**bert-base-italian-xxl-cased**](https://huggingface.co/dbmdz/bert-base-italian-xxl-cased) on Italian drink recipes and wine descriptions, approximately 77k sentences (3.3M words). **Author:** Cristiano De Nobili ([@denocris](https://twitter.com/denocris) on Twitter, [LinkedIn](https://www.linkedin.com/in/cristiano-de-nobili/)) for [VINHOOD](https://www.vinhood.com/en/). <p> <img src="https://drive.google.com/uc?export=view&id=1dco9I9uzevP2V6oku1salIYcovUAeqWE" width="400"> </br> </p> # Perplexity Test set: 14k sentences about wine. | Model | Perplexity | | ------ | ------ | | wineberto-italian-cased | **2.29** | | bert-base-italian-xxl-cased | 4.60 | # Usage ```python from transformers import AutoModel, AutoTokenizer model_name = "vinhood/wineberto-italian-cased" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModel.from_pretrained(model_name) ```
vionwinnie/albert-goodnotes-reddit
666c505b6e56f0a0cae7ccda8b70886d81d9aaa6
2021-07-03T22:07:07.000Z
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
false
vionwinnie
null
vionwinnie/albert-goodnotes-reddit
4
null
transformers
18,983
Entry not found
vishnun/distilgpt2-finetuned-distilgpt2-med_articles
c1946ffc55744cd6ddc45dd105ad371b5992e803
2021-08-19T10:23:17.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:apache-2.0" ]
text-generation
false
vishnun
null
vishnun/distilgpt2-finetuned-distilgpt2-med_articles
4
null
transformers
18,984
--- license: apache-2.0 tags: - generated_from_trainer datasets: - null model_index: - name: distilgpt2-finetuned-distilgpt2-med_articles results: - task: name: Causal Language Modeling type: text-generation --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-distilgpt2-med_articles This model is a fine-tuned version of [vishnun/distilgpt2-finetuned-distilgpt2-med_articles](https://huggingface.co/vishnun/distilgpt2-finetuned-distilgpt2-med_articles) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.3171 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 65 | 3.3417 | | No log | 2.0 | 130 | 3.3300 | | No log | 3.0 | 195 | 3.3231 | | No log | 4.0 | 260 | 3.3172 | | No log | 5.0 | 325 | 3.3171 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
vitvit/XLMRFineTuneonEnglishNERFrozenBase
7ecabb3e1c74ed4019eb6f081fc1ce4edd6c6e2a
2021-08-31T10:40:00.000Z
[ "pytorch", "xlm-roberta", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:mit", "autotrain_compatible" ]
token-classification
false
vitvit
null
vitvit/XLMRFineTuneonEnglishNERFrozenBase
4
null
transformers
18,985
--- license: mit tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model_index: - name: xlm-roberta-base-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metric: name: Accuracy type: accuracy value: 0.90090188725725 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-ner This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.4181 - Precision: 0.6464 - Recall: 0.4904 - F1: 0.5577 - Accuracy: 0.9009 - It just needs more training time ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 5 - eval_batch_size: 5 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.9474 | 1.0 | 2809 | 0.9105 | 0.0 | 0.0 | 0.0 | 0.7879 | | 0.7728 | 2.0 | 5618 | 0.8002 | 0.0 | 0.0 | 0.0 | 0.7879 | | 0.7209 | 3.0 | 8427 | 0.7329 | 0.1818 | 0.0002 | 0.0004 | 0.7881 | | 0.6666 | 4.0 | 11236 | 0.6824 | 0.27 | 0.0050 | 0.0099 | 0.7903 | | 0.6372 | 5.0 | 14045 | 0.6416 | 0.3302 | 0.0261 | 0.0484 | 0.7988 | | 0.5982 | 6.0 | 16854 | 0.6084 | 0.4188 | 0.0686 | 0.1179 | 0.8128 | | 0.5812 | 7.0 | 19663 | 0.5800 | 0.4799 | 0.1152 | 0.1858 | 0.8266 | | 0.5684 | 8.0 | 22472 | 0.5569 | 0.5255 | 0.1647 | 0.2508 | 0.8380 | | 0.5389 | 9.0 | 25281 | 0.5375 | 0.5564 | 0.2128 | 0.3078 | 0.8482 | | 0.5307 | 10.0 | 28090 | 0.5205 | 0.5749 | 0.2550 | 0.3533 | 0.8567 | | 0.5106 | 11.0 | 30899 | 0.5064 | 0.5916 | 0.2916 | 0.3906 | 0.8636 | | 0.4921 | 12.0 | 33708 | 0.4938 | 0.6033 | 0.3236 | 0.4212 | 0.8698 | | 0.4967 | 13.0 | 36517 | 0.4825 | 0.6106 | 0.3544 | 0.4485 | 0.8758 | | 0.4707 | 14.0 | 39326 | 0.4733 | 0.6199 | 0.3753 | 0.4676 | 0.8798 | | 0.4704 | 15.0 | 42135 | 0.4654 | 0.6246 | 0.3927 | 0.4823 | 0.8830 | | 0.4654 | 16.0 | 44944 | 0.4574 | 0.6285 | 0.4159 | 0.5006 | 0.8871 | | 0.4314 | 17.0 | 47753 | 0.4514 | 0.6321 | 0.4240 | 0.5075 | 0.8887 | | 0.47 | 18.0 | 50562 | 0.4459 | 0.6358 | 0.4380 | 0.5187 | 0.8911 | | 0.4486 | 19.0 | 53371 | 0.4410 | 0.6399 | 0.4480 | 0.5271 | 0.8929 | | 0.4411 | 20.0 | 56180 | 0.4367 | 0.6413 | 0.4561 | 0.5331 | 0.8944 | | 0.4333 | 21.0 | 58989 | 0.4328 | 0.6411 | 0.4644 | 0.5386 | 0.8959 | | 0.4402 | 22.0 | 61798 | 0.4295 | 0.6425 | 0.4687 | 0.5420 | 0.8968 | | 0.4287 | 23.0 | 64607 | 0.4268 | 0.6442 | 0.4735 | 0.5458 | 0.8978 | | 0.4336 | 24.0 | 67416 | 0.4245 | 0.6441 | 0.4771 | 0.5482 | 0.8985 | | 0.4243 | 25.0 | 70225 | 0.4224 | 0.6454 | 0.4817 | 0.5517 | 0.8993 | | 0.4153 | 26.0 | 73034 | 0.4209 | 0.6469 | 0.4846 | 0.5541 | 0.8998 | | 0.4286 | 27.0 | 75843 | 0.4197 | 0.6467 | 0.4865 | 0.5553 | 0.9002 | | 0.436 | 28.0 | 78652 | 0.4188 | 0.6466 | 0.4887 | 0.5566 | 0.9006 | | 0.427 | 29.0 | 81461 | 0.4183 | 0.6465 | 0.4900 | 0.5575 | 0.9008 | | 0.4317 | 30.0 | 84270 | 0.4181 | 0.6464 | 0.4904 | 0.5577 | 0.9009 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
vitvit/XLMRFineTuneonEnglishNERFrozenBase30epochs
546708101059d37f3e46c401a8347c2d9c9b51b8
2021-09-01T05:16:40.000Z
[ "pytorch", "xlm-roberta", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:mit", "autotrain_compatible" ]
token-classification
false
vitvit
null
vitvit/XLMRFineTuneonEnglishNERFrozenBase30epochs
4
null
transformers
18,986
--- license: mit tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model_index: - name: xlm-roberta-base-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metric: name: Accuracy type: accuracy value: 0.9463931352557172 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-ner This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.2327 - Precision: 0.7363 - Recall: 0.7265 - F1: 0.7314 - Accuracy: 0.9464 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 5 - eval_batch_size: 5 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 300 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:------:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.9632 | 1.0 | 2809 | 0.9072 | 0.0 | 0.0 | 0.0 | 0.7879 | | 0.7652 | 2.0 | 5618 | 0.7899 | 0.0 | 0.0 | 0.0 | 0.7880 | | 0.7118 | 3.0 | 8427 | 0.7207 | 0.1429 | 0.0004 | 0.0007 | 0.7883 | | 0.6548 | 4.0 | 11236 | 0.6674 | 0.2934 | 0.0107 | 0.0206 | 0.7929 | | 0.622 | 5.0 | 14045 | 0.6234 | 0.3741 | 0.0460 | 0.0819 | 0.8064 | | 0.5802 | 6.0 | 16854 | 0.5871 | 0.4617 | 0.1024 | 0.1677 | 0.8230 | | 0.5605 | 7.0 | 19663 | 0.5557 | 0.5237 | 0.1611 | 0.2464 | 0.8380 | | 0.5445 | 8.0 | 22472 | 0.5297 | 0.5631 | 0.2264 | 0.3230 | 0.8514 | | 0.5138 | 9.0 | 25281 | 0.5075 | 0.5925 | 0.2896 | 0.3890 | 0.8634 | | 0.5029 | 10.0 | 28090 | 0.4879 | 0.6077 | 0.3405 | 0.4364 | 0.8730 | | 0.4813 | 11.0 | 30899 | 0.4716 | 0.6194 | 0.3822 | 0.4727 | 0.8807 | | 0.4606 | 12.0 | 33708 | 0.4564 | 0.6306 | 0.4184 | 0.5030 | 0.8873 | | 0.4616 | 13.0 | 36517 | 0.4431 | 0.6396 | 0.4482 | 0.5271 | 0.8929 | | 0.4366 | 14.0 | 39326 | 0.4315 | 0.6441 | 0.4681 | 0.5422 | 0.8968 | | 0.4334 | 15.0 | 42135 | 0.4218 | 0.6489 | 0.4830 | 0.5538 | 0.8995 | | 0.4259 | 16.0 | 44944 | 0.4112 | 0.6485 | 0.5070 | 0.5691 | 0.9040 | | 0.3912 | 17.0 | 47753 | 0.4031 | 0.6526 | 0.5159 | 0.5763 | 0.9058 | | 0.4274 | 18.0 | 50562 | 0.3955 | 0.6557 | 0.5294 | 0.5858 | 0.9083 | | 0.4034 | 19.0 | 53371 | 0.3885 | 0.6608 | 0.5407 | 0.5948 | 0.9106 | | 0.3952 | 20.0 | 56180 | 0.3819 | 0.6620 | 0.5523 | 0.6022 | 0.9126 | | 0.3862 | 21.0 | 58989 | 0.3755 | 0.6622 | 0.5652 | 0.6099 | 0.9148 | | 0.3887 | 22.0 | 61798 | 0.3698 | 0.6662 | 0.5725 | 0.6158 | 0.9163 | | 0.3764 | 23.0 | 64607 | 0.3648 | 0.6671 | 0.5788 | 0.6198 | 0.9176 | | 0.3791 | 24.0 | 67416 | 0.3599 | 0.6686 | 0.5838 | 0.6234 | 0.9185 | | 0.3684 | 25.0 | 70225 | 0.3551 | 0.6684 | 0.5926 | 0.6282 | 0.9201 | | 0.3573 | 26.0 | 73034 | 0.3515 | 0.6717 | 0.5954 | 0.6312 | 0.9210 | | 0.367 | 27.0 | 75843 | 0.3470 | 0.6711 | 0.6022 | 0.6348 | 0.9221 | | 0.3714 | 28.0 | 78652 | 0.3433 | 0.6735 | 0.6085 | 0.6393 | 0.9233 | | 0.3594 | 29.0 | 81461 | 0.3400 | 0.6738 | 0.6109 | 0.6408 | 0.9239 | | 0.3626 | 30.0 | 84270 | 0.3366 | 0.6765 | 0.6159 | 0.6448 | 0.9249 | | 0.3519 | 31.0 | 87079 | 0.3334 | 0.6765 | 0.6183 | 0.6461 | 0.9254 | | 0.3591 | 32.0 | 89888 | 0.3305 | 0.6767 | 0.6220 | 0.6482 | 0.9263 | | 0.3424 | 33.0 | 92697 | 0.3279 | 0.6785 | 0.6243 | 0.6502 | 0.9268 | | 0.3514 | 34.0 | 95506 | 0.3249 | 0.6794 | 0.6290 | 0.6532 | 0.9277 | | 0.3463 | 35.0 | 98315 | 0.3226 | 0.6806 | 0.6302 | 0.6544 | 0.9279 | | 0.3516 | 36.0 | 101124 | 0.3200 | 0.6812 | 0.6327 | 0.6561 | 0.9283 | | 0.3307 | 37.0 | 103933 | 0.3178 | 0.6809 | 0.6355 | 0.6574 | 0.9290 | | 0.343 | 38.0 | 106742 | 0.3155 | 0.6830 | 0.6384 | 0.6599 | 0.9294 | | 0.3415 | 39.0 | 109551 | 0.3134 | 0.6842 | 0.6416 | 0.6622 | 0.9299 | | 0.3307 | 40.0 | 112360 | 0.3112 | 0.6843 | 0.6437 | 0.6634 | 0.9305 | | 0.3428 | 41.0 | 115169 | 0.3093 | 0.6839 | 0.6455 | 0.6641 | 0.9310 | | 0.3348 | 42.0 | 117978 | 0.3074 | 0.6849 | 0.6474 | 0.6656 | 0.9312 | | 0.3282 | 43.0 | 120787 | 0.3057 | 0.6848 | 0.6486 | 0.6662 | 0.9316 | | 0.3346 | 44.0 | 123596 | 0.3040 | 0.6860 | 0.6497 | 0.6674 | 0.9318 | | 0.3349 | 45.0 | 126405 | 0.3023 | 0.6867 | 0.6524 | 0.6691 | 0.9324 | | 0.3323 | 46.0 | 129214 | 0.3010 | 0.6895 | 0.6522 | 0.6703 | 0.9326 | | 0.3258 | 47.0 | 132023 | 0.2992 | 0.6901 | 0.6549 | 0.6720 | 0.9331 | | 0.3276 | 48.0 | 134832 | 0.2978 | 0.6915 | 0.6563 | 0.6734 | 0.9334 | | 0.3345 | 49.0 | 137641 | 0.2962 | 0.6916 | 0.6585 | 0.6746 | 0.9337 | | 0.3138 | 50.0 | 140450 | 0.2949 | 0.6926 | 0.6594 | 0.6756 | 0.9339 | | 0.3285 | 51.0 | 143259 | 0.2935 | 0.6928 | 0.6601 | 0.6760 | 0.9340 | | 0.3135 | 52.0 | 146068 | 0.2925 | 0.6931 | 0.6610 | 0.6767 | 0.9343 | | 0.3206 | 53.0 | 148877 | 0.2914 | 0.6955 | 0.6624 | 0.6785 | 0.9346 | | 0.3105 | 54.0 | 151686 | 0.2899 | 0.6953 | 0.6638 | 0.6792 | 0.9348 | | 0.3045 | 55.0 | 154495 | 0.2887 | 0.6968 | 0.6651 | 0.6806 | 0.9352 | | 0.3082 | 56.0 | 157304 | 0.2875 | 0.6985 | 0.6680 | 0.6829 | 0.9356 | | 0.3229 | 57.0 | 160113 | 0.2865 | 0.6998 | 0.6688 | 0.6840 | 0.9357 | | 0.3113 | 58.0 | 162922 | 0.2855 | 0.7012 | 0.6704 | 0.6855 | 0.9361 | | 0.3047 | 59.0 | 165731 | 0.2843 | 0.7010 | 0.6713 | 0.6858 | 0.9362 | | 0.3028 | 60.0 | 168540 | 0.2833 | 0.7024 | 0.6728 | 0.6873 | 0.9365 | | 0.3082 | 61.0 | 171349 | 0.2826 | 0.7050 | 0.6740 | 0.6892 | 0.9367 | | 0.3054 | 62.0 | 174158 | 0.2814 | 0.7038 | 0.6752 | 0.6892 | 0.9369 | | 0.3124 | 63.0 | 176967 | 0.2804 | 0.7043 | 0.6770 | 0.6904 | 0.9372 | | 0.3138 | 64.0 | 179776 | 0.2796 | 0.7034 | 0.6783 | 0.6906 | 0.9374 | | 0.3022 | 65.0 | 182585 | 0.2787 | 0.7045 | 0.6785 | 0.6912 | 0.9374 | | 0.3142 | 66.0 | 185394 | 0.2778 | 0.7059 | 0.6792 | 0.6923 | 0.9377 | | 0.3043 | 67.0 | 188203 | 0.2770 | 0.7074 | 0.6808 | 0.6938 | 0.9381 | | 0.3053 | 68.0 | 191012 | 0.2762 | 0.7069 | 0.6813 | 0.6938 | 0.9381 | | 0.3147 | 69.0 | 193821 | 0.2752 | 0.7065 | 0.6832 | 0.6947 | 0.9383 | | 0.2998 | 70.0 | 196630 | 0.2746 | 0.7086 | 0.6831 | 0.6956 | 0.9384 | | 0.2951 | 71.0 | 199439 | 0.2739 | 0.7087 | 0.6831 | 0.6957 | 0.9385 | | 0.3087 | 72.0 | 202248 | 0.2733 | 0.7089 | 0.6838 | 0.6961 | 0.9385 | | 0.3059 | 73.0 | 205057 | 0.2723 | 0.7087 | 0.6867 | 0.6976 | 0.9389 | | 0.2983 | 74.0 | 207866 | 0.2717 | 0.7080 | 0.6860 | 0.6968 | 0.9389 | | 0.2994 | 75.0 | 210675 | 0.2710 | 0.7094 | 0.6867 | 0.6978 | 0.9390 | | 0.3056 | 76.0 | 213484 | 0.2706 | 0.7090 | 0.6854 | 0.6970 | 0.9389 | | 0.3118 | 77.0 | 216293 | 0.2698 | 0.7099 | 0.6869 | 0.6982 | 0.9391 | | 0.296 | 78.0 | 219102 | 0.2691 | 0.7093 | 0.6886 | 0.6988 | 0.9393 | | 0.3111 | 79.0 | 221911 | 0.2687 | 0.7111 | 0.6885 | 0.6996 | 0.9395 | | 0.2961 | 80.0 | 224720 | 0.2678 | 0.7103 | 0.6895 | 0.6997 | 0.9397 | | 0.3043 | 81.0 | 227529 | 0.2674 | 0.7111 | 0.6899 | 0.7003 | 0.9399 | | 0.2924 | 82.0 | 230338 | 0.2667 | 0.7125 | 0.6920 | 0.7021 | 0.9401 | | 0.2947 | 83.0 | 233147 | 0.2660 | 0.7107 | 0.6920 | 0.7012 | 0.9402 | | 0.3035 | 84.0 | 235956 | 0.2656 | 0.7126 | 0.6922 | 0.7023 | 0.9402 | | 0.3034 | 85.0 | 238765 | 0.2648 | 0.7133 | 0.6937 | 0.7034 | 0.9404 | | 0.297 | 86.0 | 241574 | 0.2645 | 0.7143 | 0.6946 | 0.7043 | 0.9406 | | 0.2943 | 87.0 | 244383 | 0.2639 | 0.7145 | 0.6955 | 0.7049 | 0.9407 | | 0.2929 | 88.0 | 247192 | 0.2636 | 0.7125 | 0.6940 | 0.7031 | 0.9406 | | 0.2974 | 89.0 | 250001 | 0.2628 | 0.7149 | 0.6975 | 0.7061 | 0.9410 | | 0.2917 | 90.0 | 252810 | 0.2626 | 0.7143 | 0.6949 | 0.7045 | 0.9408 | | 0.3031 | 91.0 | 255619 | 0.2620 | 0.7147 | 0.6958 | 0.7051 | 0.9409 | | 0.3053 | 92.0 | 258428 | 0.2612 | 0.7149 | 0.6977 | 0.7062 | 0.9411 | | 0.2921 | 93.0 | 261237 | 0.2610 | 0.7164 | 0.6969 | 0.7065 | 0.9411 | | 0.2934 | 94.0 | 264046 | 0.2606 | 0.7160 | 0.6969 | 0.7063 | 0.9412 | | 0.2863 | 95.0 | 266855 | 0.2601 | 0.7160 | 0.6973 | 0.7066 | 0.9412 | | 0.2918 | 96.0 | 269664 | 0.2595 | 0.7167 | 0.6986 | 0.7076 | 0.9413 | | 0.2926 | 97.0 | 272473 | 0.2591 | 0.7171 | 0.7004 | 0.7086 | 0.9415 | | 0.2844 | 98.0 | 275282 | 0.2588 | 0.7171 | 0.6997 | 0.7083 | 0.9414 | | 0.2924 | 99.0 | 278091 | 0.2585 | 0.7175 | 0.6986 | 0.7080 | 0.9414 | | 0.2931 | 100.0 | 280900 | 0.2580 | 0.7178 | 0.6997 | 0.7086 | 0.9415 | | 0.289 | 101.0 | 283709 | 0.2575 | 0.7184 | 0.7013 | 0.7098 | 0.9417 | | 0.2892 | 102.0 | 286518 | 0.2570 | 0.7178 | 0.7024 | 0.7100 | 0.9418 | | 0.285 | 103.0 | 289327 | 0.2567 | 0.7184 | 0.7013 | 0.7098 | 0.9417 | | 0.2809 | 104.0 | 292136 | 0.2565 | 0.7192 | 0.7013 | 0.7102 | 0.9418 | | 0.2802 | 105.0 | 294945 | 0.2561 | 0.7198 | 0.7014 | 0.7105 | 0.9420 | | 0.2878 | 106.0 | 297754 | 0.2556 | 0.7192 | 0.7022 | 0.7106 | 0.9419 | | 0.2853 | 107.0 | 300563 | 0.2554 | 0.7201 | 0.7017 | 0.7108 | 0.9420 | | 0.2871 | 108.0 | 303372 | 0.2549 | 0.7203 | 0.7038 | 0.7119 | 0.9422 | | 0.2904 | 109.0 | 306181 | 0.2545 | 0.7205 | 0.7043 | 0.7123 | 0.9422 | | 0.2848 | 110.0 | 308990 | 0.2543 | 0.7203 | 0.7031 | 0.7116 | 0.9423 | | 0.2933 | 111.0 | 311799 | 0.2538 | 0.7198 | 0.7046 | 0.7121 | 0.9423 | | 0.2885 | 112.0 | 314608 | 0.2534 | 0.7198 | 0.7056 | 0.7126 | 0.9425 | | 0.2813 | 113.0 | 317417 | 0.2532 | 0.7205 | 0.7058 | 0.7131 | 0.9425 | | 0.2858 | 114.0 | 320226 | 0.2528 | 0.7202 | 0.7067 | 0.7134 | 0.9426 | | 0.2871 | 115.0 | 323035 | 0.2525 | 0.7216 | 0.7075 | 0.7145 | 0.9427 | | 0.2725 | 116.0 | 325844 | 0.2522 | 0.7220 | 0.7065 | 0.7142 | 0.9428 | | 0.2887 | 117.0 | 328653 | 0.2519 | 0.7222 | 0.7068 | 0.7144 | 0.9428 | | 0.2773 | 118.0 | 331462 | 0.2514 | 0.7211 | 0.7079 | 0.7145 | 0.9428 | | 0.2831 | 119.0 | 334271 | 0.2513 | 0.7227 | 0.7078 | 0.7152 | 0.9429 | | 0.2924 | 120.0 | 337080 | 0.2508 | 0.7239 | 0.7091 | 0.7164 | 0.9431 | | 0.2944 | 121.0 | 339889 | 0.2507 | 0.7244 | 0.7090 | 0.7166 | 0.9431 | | 0.2887 | 122.0 | 342698 | 0.2506 | 0.7248 | 0.7088 | 0.7167 | 0.9431 | | 0.2826 | 123.0 | 345507 | 0.2501 | 0.7247 | 0.7100 | 0.7173 | 0.9432 | | 0.2795 | 124.0 | 348316 | 0.2500 | 0.7247 | 0.7090 | 0.7167 | 0.9431 | | 0.2855 | 125.0 | 351125 | 0.2496 | 0.7259 | 0.7104 | 0.7180 | 0.9433 | | 0.2797 | 126.0 | 353934 | 0.2494 | 0.7244 | 0.7101 | 0.7171 | 0.9433 | | 0.2804 | 127.0 | 356743 | 0.2491 | 0.7247 | 0.7097 | 0.7171 | 0.9433 | | 0.286 | 128.0 | 359552 | 0.2488 | 0.7238 | 0.7096 | 0.7166 | 0.9433 | | 0.2785 | 129.0 | 362361 | 0.2487 | 0.7237 | 0.7091 | 0.7163 | 0.9432 | | 0.284 | 130.0 | 365170 | 0.2484 | 0.7238 | 0.7104 | 0.7170 | 0.9434 | | 0.2757 | 131.0 | 367979 | 0.2480 | 0.725 | 0.7117 | 0.7183 | 0.9436 | | 0.286 | 132.0 | 370788 | 0.2477 | 0.7248 | 0.7117 | 0.7182 | 0.9436 | | 0.2874 | 133.0 | 373597 | 0.2476 | 0.7249 | 0.7115 | 0.7181 | 0.9436 | | 0.2796 | 134.0 | 376406 | 0.2474 | 0.7249 | 0.7119 | 0.7183 | 0.9437 | | 0.2851 | 135.0 | 379215 | 0.2471 | 0.7247 | 0.7115 | 0.7180 | 0.9437 | | 0.2833 | 136.0 | 382024 | 0.2469 | 0.7255 | 0.7124 | 0.7189 | 0.9438 | | 0.2859 | 137.0 | 384833 | 0.2466 | 0.7261 | 0.7126 | 0.7193 | 0.9438 | | 0.2903 | 138.0 | 387642 | 0.2464 | 0.7261 | 0.7131 | 0.7195 | 0.9439 | | 0.2836 | 139.0 | 390451 | 0.2462 | 0.7262 | 0.7129 | 0.7195 | 0.9439 | | 0.282 | 140.0 | 393260 | 0.2461 | 0.7258 | 0.7119 | 0.7188 | 0.9438 | | 0.2886 | 141.0 | 396069 | 0.2459 | 0.7254 | 0.7127 | 0.7190 | 0.9439 | | 0.2759 | 142.0 | 398878 | 0.2457 | 0.7259 | 0.7130 | 0.7194 | 0.9439 | | 0.2701 | 143.0 | 401687 | 0.2455 | 0.7267 | 0.7132 | 0.7199 | 0.9439 | | 0.2872 | 144.0 | 404496 | 0.2452 | 0.7262 | 0.7135 | 0.7198 | 0.9440 | | 0.2797 | 145.0 | 407305 | 0.2451 | 0.7264 | 0.7135 | 0.7199 | 0.9440 | | 0.2798 | 146.0 | 410114 | 0.2449 | 0.7256 | 0.7130 | 0.7192 | 0.9440 | | 0.2677 | 147.0 | 412923 | 0.2446 | 0.7264 | 0.7139 | 0.7201 | 0.9441 | | 0.2713 | 148.0 | 415732 | 0.2445 | 0.7264 | 0.7129 | 0.7196 | 0.9440 | | 0.2736 | 149.0 | 418541 | 0.2442 | 0.7268 | 0.7141 | 0.7204 | 0.9442 | | 0.2807 | 150.0 | 421350 | 0.2440 | 0.7270 | 0.7143 | 0.7206 | 0.9442 | | 0.2777 | 151.0 | 424159 | 0.2437 | 0.7269 | 0.7151 | 0.7210 | 0.9443 | | 0.2703 | 152.0 | 426968 | 0.2437 | 0.7279 | 0.7153 | 0.7215 | 0.9444 | | 0.2701 | 153.0 | 429777 | 0.2434 | 0.7277 | 0.7153 | 0.7214 | 0.9444 | | 0.2693 | 154.0 | 432586 | 0.2433 | 0.7271 | 0.7148 | 0.7209 | 0.9443 | | 0.2894 | 155.0 | 435395 | 0.2430 | 0.7275 | 0.7158 | 0.7216 | 0.9445 | | 0.2855 | 156.0 | 438204 | 0.2430 | 0.7290 | 0.7165 | 0.7227 | 0.9446 | | 0.2874 | 157.0 | 441013 | 0.2428 | 0.7292 | 0.7178 | 0.7235 | 0.9448 | | 0.2745 | 158.0 | 443822 | 0.2427 | 0.7296 | 0.7171 | 0.7233 | 0.9448 | | 0.2842 | 159.0 | 446631 | 0.2424 | 0.7294 | 0.7180 | 0.7236 | 0.9448 | | 0.281 | 160.0 | 449440 | 0.2423 | 0.7293 | 0.7177 | 0.7234 | 0.9448 | | 0.2655 | 161.0 | 452249 | 0.2421 | 0.7293 | 0.7183 | 0.7237 | 0.9448 | | 0.2701 | 162.0 | 455058 | 0.2419 | 0.7287 | 0.7170 | 0.7228 | 0.9447 | | 0.2787 | 163.0 | 457867 | 0.2418 | 0.7286 | 0.7170 | 0.7227 | 0.9446 | | 0.2779 | 164.0 | 460676 | 0.2416 | 0.7287 | 0.7174 | 0.7230 | 0.9447 | | 0.2926 | 165.0 | 463485 | 0.2416 | 0.7299 | 0.7172 | 0.7235 | 0.9447 | | 0.2751 | 166.0 | 466294 | 0.2413 | 0.7298 | 0.7185 | 0.7241 | 0.9449 | | 0.2756 | 167.0 | 469103 | 0.2412 | 0.7299 | 0.7185 | 0.7242 | 0.9449 | | 0.2792 | 168.0 | 471912 | 0.2411 | 0.7301 | 0.7184 | 0.7242 | 0.9449 | | 0.2722 | 169.0 | 474721 | 0.2409 | 0.7305 | 0.7190 | 0.7247 | 0.9450 | | 0.2719 | 170.0 | 477530 | 0.2408 | 0.7306 | 0.7184 | 0.7245 | 0.9449 | | 0.2736 | 171.0 | 480339 | 0.2407 | 0.7307 | 0.7188 | 0.7247 | 0.9450 | | 0.2805 | 172.0 | 483148 | 0.2404 | 0.7311 | 0.7199 | 0.7255 | 0.9451 | | 0.2762 | 173.0 | 485957 | 0.2402 | 0.7313 | 0.7205 | 0.7259 | 0.9452 | | 0.2717 | 174.0 | 488766 | 0.2402 | 0.7316 | 0.7195 | 0.7255 | 0.9451 | | 0.2657 | 175.0 | 491575 | 0.2400 | 0.7314 | 0.7195 | 0.7254 | 0.9451 | | 0.276 | 176.0 | 494384 | 0.2398 | 0.7309 | 0.7197 | 0.7253 | 0.9452 | | 0.2767 | 177.0 | 497193 | 0.2397 | 0.7314 | 0.7202 | 0.7258 | 0.9452 | | 0.2672 | 178.0 | 500002 | 0.2396 | 0.7309 | 0.7197 | 0.7252 | 0.9451 | | 0.2727 | 179.0 | 502811 | 0.2395 | 0.7316 | 0.7202 | 0.7258 | 0.9453 | | 0.2746 | 180.0 | 505620 | 0.2394 | 0.7314 | 0.7202 | 0.7258 | 0.9453 | | 0.2704 | 181.0 | 508429 | 0.2392 | 0.7312 | 0.7203 | 0.7257 | 0.9453 | | 0.2927 | 182.0 | 511238 | 0.2392 | 0.7314 | 0.7199 | 0.7256 | 0.9453 | | 0.2705 | 183.0 | 514047 | 0.2391 | 0.7316 | 0.7199 | 0.7257 | 0.9453 | | 0.2668 | 184.0 | 516856 | 0.2390 | 0.7318 | 0.7198 | 0.7258 | 0.9453 | | 0.2562 | 185.0 | 519665 | 0.2388 | 0.7307 | 0.7187 | 0.7246 | 0.9451 | | 0.2642 | 186.0 | 522474 | 0.2387 | 0.7314 | 0.7197 | 0.7255 | 0.9452 | | 0.2688 | 187.0 | 525283 | 0.2385 | 0.7316 | 0.7205 | 0.7260 | 0.9453 | | 0.284 | 188.0 | 528092 | 0.2384 | 0.7313 | 0.7202 | 0.7257 | 0.9453 | | 0.2656 | 189.0 | 530901 | 0.2383 | 0.7321 | 0.7210 | 0.7265 | 0.9454 | | 0.2724 | 190.0 | 533710 | 0.2383 | 0.7324 | 0.7215 | 0.7269 | 0.9455 | | 0.2815 | 191.0 | 536519 | 0.2382 | 0.7322 | 0.7209 | 0.7265 | 0.9454 | | 0.2847 | 192.0 | 539328 | 0.2380 | 0.7320 | 0.7219 | 0.7269 | 0.9455 | | 0.2686 | 193.0 | 542137 | 0.2379 | 0.7323 | 0.7223 | 0.7273 | 0.9456 | | 0.2641 | 194.0 | 544946 | 0.2378 | 0.7326 | 0.7220 | 0.7272 | 0.9455 | | 0.2871 | 195.0 | 547755 | 0.2377 | 0.7319 | 0.7220 | 0.7269 | 0.9455 | | 0.2682 | 196.0 | 550564 | 0.2376 | 0.7331 | 0.7222 | 0.7276 | 0.9456 | | 0.2772 | 197.0 | 553373 | 0.2376 | 0.7328 | 0.7216 | 0.7272 | 0.9456 | | 0.2781 | 198.0 | 556182 | 0.2375 | 0.7330 | 0.7218 | 0.7273 | 0.9456 | | 0.2612 | 199.0 | 558991 | 0.2373 | 0.7328 | 0.7223 | 0.7275 | 0.9456 | | 0.2788 | 200.0 | 561800 | 0.2372 | 0.7332 | 0.7225 | 0.7278 | 0.9457 | | 0.2797 | 201.0 | 564609 | 0.2371 | 0.7326 | 0.7223 | 0.7274 | 0.9456 | | 0.2641 | 202.0 | 567418 | 0.2370 | 0.7331 | 0.7226 | 0.7278 | 0.9457 | | 0.2742 | 203.0 | 570227 | 0.2369 | 0.7334 | 0.7225 | 0.7279 | 0.9457 | | 0.2622 | 204.0 | 573036 | 0.2369 | 0.7339 | 0.7234 | 0.7286 | 0.9458 | | 0.2732 | 205.0 | 575845 | 0.2367 | 0.7333 | 0.7232 | 0.7282 | 0.9457 | | 0.264 | 206.0 | 578654 | 0.2366 | 0.7334 | 0.7230 | 0.7282 | 0.9457 | | 0.27 | 207.0 | 581463 | 0.2366 | 0.7339 | 0.7231 | 0.7284 | 0.9457 | | 0.2808 | 208.0 | 584272 | 0.2364 | 0.7331 | 0.7227 | 0.7279 | 0.9457 | | 0.2881 | 209.0 | 587081 | 0.2364 | 0.7333 | 0.7228 | 0.7280 | 0.9457 | | 0.2723 | 210.0 | 589890 | 0.2364 | 0.7335 | 0.7232 | 0.7283 | 0.9457 | | 0.2696 | 211.0 | 592699 | 0.2362 | 0.7332 | 0.7236 | 0.7284 | 0.9458 | | 0.2729 | 212.0 | 595508 | 0.2362 | 0.7334 | 0.7236 | 0.7284 | 0.9458 | | 0.265 | 213.0 | 598317 | 0.2361 | 0.7332 | 0.7235 | 0.7283 | 0.9458 | | 0.2816 | 214.0 | 601126 | 0.2360 | 0.7329 | 0.7236 | 0.7283 | 0.9458 | | 0.273 | 215.0 | 603935 | 0.2359 | 0.7339 | 0.7241 | 0.7290 | 0.9458 | | 0.2681 | 216.0 | 606744 | 0.2359 | 0.7338 | 0.7239 | 0.7288 | 0.9458 | | 0.2648 | 217.0 | 609553 | 0.2358 | 0.7342 | 0.7242 | 0.7292 | 0.9459 | | 0.269 | 218.0 | 612362 | 0.2357 | 0.7341 | 0.7237 | 0.7289 | 0.9458 | | 0.277 | 219.0 | 615171 | 0.2357 | 0.7346 | 0.7239 | 0.7292 | 0.9458 | | 0.266 | 220.0 | 617980 | 0.2356 | 0.7344 | 0.7246 | 0.7295 | 0.9460 | | 0.2737 | 221.0 | 620789 | 0.2355 | 0.7345 | 0.7249 | 0.7297 | 0.9460 | | 0.2779 | 222.0 | 623598 | 0.2356 | 0.7345 | 0.7239 | 0.7292 | 0.9459 | | 0.2834 | 223.0 | 626407 | 0.2354 | 0.7349 | 0.7249 | 0.7298 | 0.9460 | | 0.273 | 224.0 | 629216 | 0.2354 | 0.7349 | 0.7249 | 0.7299 | 0.9460 | | 0.2691 | 225.0 | 632025 | 0.2353 | 0.7345 | 0.7251 | 0.7298 | 0.9460 | | 0.2696 | 226.0 | 634834 | 0.2352 | 0.7345 | 0.7254 | 0.7299 | 0.9461 | | 0.2643 | 227.0 | 637643 | 0.2352 | 0.7350 | 0.7244 | 0.7296 | 0.9460 | | 0.2685 | 228.0 | 640452 | 0.2351 | 0.7349 | 0.7250 | 0.7300 | 0.9461 | | 0.2818 | 229.0 | 643261 | 0.2350 | 0.7346 | 0.7250 | 0.7298 | 0.9461 | | 0.2848 | 230.0 | 646070 | 0.2349 | 0.7349 | 0.7255 | 0.7302 | 0.9462 | | 0.2781 | 231.0 | 648879 | 0.2349 | 0.7349 | 0.7258 | 0.7303 | 0.9462 | | 0.2633 | 232.0 | 651688 | 0.2348 | 0.7350 | 0.7251 | 0.7301 | 0.9461 | | 0.2694 | 233.0 | 654497 | 0.2348 | 0.7349 | 0.7252 | 0.7300 | 0.9461 | | 0.2595 | 234.0 | 657306 | 0.2347 | 0.7348 | 0.7251 | 0.7299 | 0.9461 | | 0.2732 | 235.0 | 660115 | 0.2346 | 0.7347 | 0.7249 | 0.7297 | 0.9461 | | 0.2728 | 236.0 | 662924 | 0.2346 | 0.7346 | 0.7248 | 0.7296 | 0.9461 | | 0.2673 | 237.0 | 665733 | 0.2345 | 0.7346 | 0.7249 | 0.7297 | 0.9461 | | 0.2694 | 238.0 | 668542 | 0.2345 | 0.7351 | 0.7251 | 0.7301 | 0.9461 | | 0.2721 | 239.0 | 671351 | 0.2345 | 0.7353 | 0.7256 | 0.7304 | 0.9462 | | 0.264 | 240.0 | 674160 | 0.2344 | 0.7351 | 0.7255 | 0.7303 | 0.9462 | | 0.267 | 241.0 | 676969 | 0.2343 | 0.7352 | 0.7256 | 0.7304 | 0.9462 | | 0.2728 | 242.0 | 679778 | 0.2343 | 0.7355 | 0.7256 | 0.7305 | 0.9462 | | 0.2697 | 243.0 | 682587 | 0.2343 | 0.7354 | 0.7255 | 0.7304 | 0.9462 | | 0.2688 | 244.0 | 685396 | 0.2342 | 0.7352 | 0.7253 | 0.7302 | 0.9462 | | 0.2741 | 245.0 | 688205 | 0.2341 | 0.7354 | 0.7259 | 0.7306 | 0.9462 | | 0.2834 | 246.0 | 691014 | 0.2341 | 0.7353 | 0.7255 | 0.7304 | 0.9462 | | 0.2706 | 247.0 | 693823 | 0.2341 | 0.7357 | 0.7262 | 0.7309 | 0.9462 | | 0.2686 | 248.0 | 696632 | 0.2340 | 0.7355 | 0.7258 | 0.7306 | 0.9462 | | 0.2655 | 249.0 | 699441 | 0.2340 | 0.7350 | 0.7253 | 0.7301 | 0.9462 | | 0.274 | 250.0 | 702250 | 0.2340 | 0.7350 | 0.7251 | 0.7300 | 0.9462 | | 0.2728 | 251.0 | 705059 | 0.2339 | 0.7349 | 0.7252 | 0.7300 | 0.9462 | | 0.2696 | 252.0 | 707868 | 0.2338 | 0.7354 | 0.7259 | 0.7306 | 0.9463 | | 0.2678 | 253.0 | 710677 | 0.2338 | 0.7350 | 0.7254 | 0.7302 | 0.9462 | | 0.279 | 254.0 | 713486 | 0.2337 | 0.7350 | 0.7256 | 0.7303 | 0.9462 | | 0.2523 | 255.0 | 716295 | 0.2337 | 0.7350 | 0.7255 | 0.7302 | 0.9462 | | 0.2722 | 256.0 | 719104 | 0.2336 | 0.7351 | 0.7257 | 0.7304 | 0.9462 | | 0.2794 | 257.0 | 721913 | 0.2335 | 0.7348 | 0.7254 | 0.7301 | 0.9462 | | 0.279 | 258.0 | 724722 | 0.2335 | 0.7345 | 0.7253 | 0.7299 | 0.9462 | | 0.2676 | 259.0 | 727531 | 0.2335 | 0.7351 | 0.7256 | 0.7303 | 0.9463 | | 0.261 | 260.0 | 730340 | 0.2335 | 0.7354 | 0.7259 | 0.7306 | 0.9463 | | 0.2674 | 261.0 | 733149 | 0.2334 | 0.7350 | 0.7258 | 0.7304 | 0.9463 | | 0.2742 | 262.0 | 735958 | 0.2334 | 0.7351 | 0.7258 | 0.7304 | 0.9463 | | 0.2592 | 263.0 | 738767 | 0.2333 | 0.7351 | 0.7259 | 0.7305 | 0.9463 | | 0.2729 | 264.0 | 741576 | 0.2333 | 0.7351 | 0.7259 | 0.7305 | 0.9463 | | 0.2775 | 265.0 | 744385 | 0.2333 | 0.7355 | 0.7262 | 0.7308 | 0.9463 | | 0.2695 | 266.0 | 747194 | 0.2333 | 0.7356 | 0.7263 | 0.7309 | 0.9463 | | 0.2674 | 267.0 | 750003 | 0.2332 | 0.7356 | 0.7263 | 0.7310 | 0.9463 | | 0.2522 | 268.0 | 752812 | 0.2332 | 0.7354 | 0.7260 | 0.7307 | 0.9463 | | 0.2621 | 269.0 | 755621 | 0.2332 | 0.7361 | 0.7265 | 0.7313 | 0.9464 | | 0.2813 | 270.0 | 758430 | 0.2331 | 0.7360 | 0.7265 | 0.7313 | 0.9464 | | 0.2629 | 271.0 | 761239 | 0.2331 | 0.7360 | 0.7265 | 0.7313 | 0.9464 | | 0.2762 | 272.0 | 764048 | 0.2331 | 0.7359 | 0.7263 | 0.7311 | 0.9463 | | 0.2599 | 273.0 | 766857 | 0.2331 | 0.7362 | 0.7264 | 0.7313 | 0.9464 | | 0.2795 | 274.0 | 769666 | 0.2331 | 0.7362 | 0.7264 | 0.7313 | 0.9464 | | 0.2628 | 275.0 | 772475 | 0.2330 | 0.7360 | 0.7260 | 0.7309 | 0.9463 | | 0.2762 | 276.0 | 775284 | 0.2330 | 0.7360 | 0.7261 | 0.7310 | 0.9463 | | 0.2657 | 277.0 | 778093 | 0.2330 | 0.7361 | 0.7261 | 0.7310 | 0.9463 | | 0.2673 | 278.0 | 780902 | 0.2330 | 0.7360 | 0.7259 | 0.7309 | 0.9463 | | 0.2718 | 279.0 | 783711 | 0.2330 | 0.7361 | 0.7261 | 0.7311 | 0.9464 | | 0.2631 | 280.0 | 786520 | 0.2329 | 0.7356 | 0.7257 | 0.7306 | 0.9463 | | 0.2744 | 281.0 | 789329 | 0.2329 | 0.7359 | 0.7260 | 0.7309 | 0.9463 | | 0.2848 | 282.0 | 792138 | 0.2329 | 0.7360 | 0.7261 | 0.7310 | 0.9464 | | 0.271 | 283.0 | 794947 | 0.2329 | 0.7359 | 0.7262 | 0.7310 | 0.9464 | | 0.262 | 284.0 | 797756 | 0.2328 | 0.7359 | 0.7262 | 0.7310 | 0.9464 | | 0.2622 | 285.0 | 800565 | 0.2328 | 0.7359 | 0.7263 | 0.7310 | 0.9464 | | 0.2679 | 286.0 | 803374 | 0.2328 | 0.7359 | 0.7263 | 0.7310 | 0.9464 | | 0.2616 | 287.0 | 806183 | 0.2328 | 0.7359 | 0.7263 | 0.7311 | 0.9464 | | 0.2721 | 288.0 | 808992 | 0.2328 | 0.7360 | 0.7264 | 0.7312 | 0.9464 | | 0.2693 | 289.0 | 811801 | 0.2328 | 0.7361 | 0.7264 | 0.7312 | 0.9464 | | 0.2645 | 290.0 | 814610 | 0.2328 | 0.7361 | 0.7264 | 0.7312 | 0.9464 | | 0.2728 | 291.0 | 817419 | 0.2328 | 0.7361 | 0.7264 | 0.7312 | 0.9464 | | 0.2637 | 292.0 | 820228 | 0.2327 | 0.7362 | 0.7264 | 0.7313 | 0.9464 | | 0.2713 | 293.0 | 823037 | 0.2327 | 0.7363 | 0.7265 | 0.7314 | 0.9464 | | 0.2623 | 294.0 | 825846 | 0.2327 | 0.7363 | 0.7265 | 0.7314 | 0.9464 | | 0.2667 | 295.0 | 828655 | 0.2327 | 0.7363 | 0.7265 | 0.7314 | 0.9464 | | 0.2679 | 296.0 | 831464 | 0.2327 | 0.7363 | 0.7265 | 0.7314 | 0.9464 | | 0.2595 | 297.0 | 834273 | 0.2327 | 0.7363 | 0.7265 | 0.7314 | 0.9464 | | 0.2609 | 298.0 | 837082 | 0.2327 | 0.7363 | 0.7265 | 0.7314 | 0.9464 | | 0.2616 | 299.0 | 839891 | 0.2327 | 0.7363 | 0.7265 | 0.7314 | 0.9464 | | 0.2713 | 300.0 | 842700 | 0.2327 | 0.7363 | 0.7265 | 0.7314 | 0.9464 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
vitvit/xlm-roberta-base-finetuned-ner
b7aaf8726a4a00be1acb9227cf68f5b524ce24bf
2021-08-31T08:54:58.000Z
[ "pytorch", "xlm-roberta", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:mit", "autotrain_compatible" ]
token-classification
false
vitvit
null
vitvit/xlm-roberta-base-finetuned-ner
4
null
transformers
18,987
--- license: mit tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model_index: - name: xlm-roberta-base-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metric: name: Accuracy type: accuracy value: 0.9882987313361343 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-ner This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.1202 - Precision: 0.9447 - Recall: 0.9536 - F1: 0.9492 - Accuracy: 0.9883 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 5 - eval_batch_size: 5 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1023 | 1.0 | 2809 | 0.0724 | 0.9338 | 0.9363 | 0.9351 | 0.9850 | | 0.0596 | 2.0 | 5618 | 0.0760 | 0.9295 | 0.9359 | 0.9327 | 0.9848 | | 0.0406 | 3.0 | 8427 | 0.0740 | 0.9346 | 0.9410 | 0.9378 | 0.9863 | | 0.0365 | 4.0 | 11236 | 0.0676 | 0.9368 | 0.9490 | 0.9428 | 0.9870 | | 0.0279 | 5.0 | 14045 | 0.0737 | 0.9453 | 0.9476 | 0.9464 | 0.9877 | | 0.0147 | 6.0 | 16854 | 0.0812 | 0.9413 | 0.9515 | 0.9464 | 0.9878 | | 0.0138 | 7.0 | 19663 | 0.0893 | 0.9425 | 0.9525 | 0.9475 | 0.9876 | | 0.0158 | 8.0 | 22472 | 0.1066 | 0.9362 | 0.9464 | 0.9412 | 0.9862 | | 0.0092 | 9.0 | 25281 | 0.1026 | 0.9391 | 0.9511 | 0.9451 | 0.9869 | | 0.0073 | 10.0 | 28090 | 0.1001 | 0.9442 | 0.9503 | 0.9472 | 0.9879 | | 0.0069 | 11.0 | 30899 | 0.1103 | 0.9399 | 0.9511 | 0.9455 | 0.9871 | | 0.0073 | 12.0 | 33708 | 0.1170 | 0.9383 | 0.9481 | 0.9432 | 0.9876 | | 0.0054 | 13.0 | 36517 | 0.1068 | 0.9407 | 0.9491 | 0.9448 | 0.9875 | | 0.0048 | 14.0 | 39326 | 0.1096 | 0.9438 | 0.9518 | 0.9477 | 0.9879 | | 0.0042 | 15.0 | 42135 | 0.1187 | 0.9442 | 0.9523 | 0.9483 | 0.9884 | | 0.0037 | 16.0 | 44944 | 0.1162 | 0.9384 | 0.9521 | 0.9452 | 0.9875 | | 0.0039 | 17.0 | 47753 | 0.1046 | 0.9435 | 0.9477 | 0.9456 | 0.9878 | | 0.0025 | 18.0 | 50562 | 0.1063 | 0.9501 | 0.9549 | 0.9525 | 0.9889 | | 0.0021 | 19.0 | 53371 | 0.0992 | 0.9533 | 0.9572 | 0.9553 | 0.9895 | | 0.0019 | 20.0 | 56180 | 0.1216 | 0.9404 | 0.9524 | 0.9464 | 0.9876 | | 0.0021 | 21.0 | 58989 | 0.1080 | 0.9430 | 0.9478 | 0.9454 | 0.9880 | | 0.0032 | 22.0 | 61798 | 0.1109 | 0.9436 | 0.9512 | 0.9474 | 0.9881 | | 0.0115 | 23.0 | 64607 | 0.1161 | 0.9412 | 0.9475 | 0.9443 | 0.9874 | | 0.001 | 24.0 | 67416 | 0.1216 | 0.9446 | 0.9518 | 0.9481 | 0.9882 | | 0.0004 | 25.0 | 70225 | 0.1145 | 0.9478 | 0.9527 | 0.9503 | 0.9888 | | 0.0005 | 26.0 | 73034 | 0.1217 | 0.9479 | 0.9531 | 0.9505 | 0.9887 | | 0.0007 | 27.0 | 75843 | 0.1199 | 0.9452 | 0.9561 | 0.9506 | 0.9887 | | 0.0053 | 28.0 | 78652 | 0.1187 | 0.9440 | 0.9510 | 0.9475 | 0.9881 | | 0.0014 | 29.0 | 81461 | 0.1207 | 0.9461 | 0.9540 | 0.9500 | 0.9884 | | 0.0023 | 30.0 | 84270 | 0.1202 | 0.9447 | 0.9536 | 0.9492 | 0.9883 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
voidful/asr_hubert_cluster_bart_base
45970cf5aeed8b997de7f6f66805ec263979d762
2021-07-19T12:21:00.000Z
[ "pytorch", "bart", "text2text-generation", "en", "dataset:librispeech", "transformers", "audio", "automatic-speech-recognition", "speech", "asr", "hubert", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
voidful
null
voidful/asr_hubert_cluster_bart_base
4
null
transformers
18,988
--- language: en datasets: - librispeech tags: - audio - automatic-speech-recognition - speech - asr - hubert license: apache-2.0 metrics: - wer - cer --- # voidful/asr_hubert_cluster_bart_base ## Usage download file ```shell wget https://raw.githubusercontent.com/voidful/hubert-cluster-code/main/km_feat_100_layer_20 wget https://cdn-media.huggingface.co/speech_samples/sample1.flac ``` Hubert kmeans code ```python import joblib import torch from transformers import Wav2Vec2FeatureExtractor, HubertModel import soundfile as sf class HubertCode(object): def __init__(self, hubert_model, km_path, km_layer): self.processor = Wav2Vec2FeatureExtractor.from_pretrained(hubert_model) self.model = HubertModel.from_pretrained(hubert_model) self.km_model = joblib.load(km_path) self.km_layer = km_layer self.C_np = self.km_model.cluster_centers_.transpose() self.Cnorm_np = (self.C_np ** 2).sum(0, keepdims=True) self.C = torch.from_numpy(self.C_np) self.Cnorm = torch.from_numpy(self.Cnorm_np) if torch.cuda.is_available(): self.C = self.C.cuda() self.Cnorm = self.Cnorm.cuda() self.model = self.model.cuda() def __call__(self, filepath, sampling_rate=None): speech, sr = sf.read(filepath) input_values = self.processor(speech, return_tensors="pt", sampling_rate=sr).input_values if torch.cuda.is_available(): input_values = input_values.cuda() hidden_states = self.model(input_values, output_hidden_states=True).hidden_states x = hidden_states[self.km_layer].squeeze() dist = ( x.pow(2).sum(1, keepdim=True) - 2 * torch.matmul(x, self.C) + self.Cnorm ) return dist.argmin(dim=1).cpu().numpy() ``` input ```python hc = HubertCode("facebook/hubert-large-ll60k", './km_feat_100_layer_20', 20) voice_ids = hc('./sample1.flac') ``` bart model ````python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("voidful/asr_hubert_cluster_bart_base") model = AutoModelForSeq2SeqLM.from_pretrained("voidful/asr_hubert_cluster_bart_base") ```` generate output ```python gen_output = model.generate(input_ids=tokenizer("".join([f":vtok{i}:" for i in voice_ids]),return_tensors='pt').input_ids,max_length=1024) print(tokenizer.decode(gen_output[0], skip_special_tokens=True)) ``` ## Result `going along slushy country roads and speaking to damp audience in drifty school rooms day after day for a fortnight he'll have to put in an appearance at some place of worship on sunday morning and he can come to ask immediately afterwards`
vovaf709/bert_classifier
5881f7431adbc1e1828ecfd802147baf82c56e5e
2021-12-17T16:32:36.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
vovaf709
null
vovaf709/bert_classifier
4
null
transformers
18,989
Entry not found
w11wo/sundanese-gpt2-base-emotion-classifier
6a1fcca05096085980f0b9ea9b2bb3a6b4294217
2022-02-26T13:15:23.000Z
[ "pytorch", "tf", "gpt2", "text-classification", "su", "transformers", "sundanese-gpt2-base-emotion-classifier", "license:mit" ]
text-classification
false
w11wo
null
w11wo/sundanese-gpt2-base-emotion-classifier
4
null
transformers
18,990
--- language: su tags: - sundanese-gpt2-base-emotion-classifier license: mit widget: - text: "Wah, éta gélo, keren pisan!" --- ## Sundanese GPT-2 Base Emotion Classifier Sundanese GPT-2 Base Emotion Classifier is an emotion-text-classification model based on the [OpenAI GPT-2](https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) model. The model was originally the pre-trained [Sundanese GPT-2 Base](https://hf.co/w11wo/sundanese-gpt2-base) model, which is then fine-tuned on the [Sundanese Twitter dataset](https://github.com/virgantara/sundanese-twitter-dataset), consisting of Sundanese tweets. 10% of the dataset is kept for evaluation purposes. After training, the model achieved an evaluation accuracy of 94.84% and F1-macro of 94.75%. Hugging Face's `Trainer` class from the [Transformers](https://huggingface.co/transformers) library was used to train the model. PyTorch was used as the backend framework during training, but the model remains compatible with other frameworks nonetheless. ## Model | Model | #params | Arch. | Training/Validation data (text) | | ---------------------------------------- | ------- | ---------- | ------------------------------- | | `sundanese-gpt2-base-emotion-classifier` | 124M | GPT-2 Base | Sundanese Twitter dataset | ## Evaluation Results The model was trained for 10 epochs and the best model was loaded at the end. | Epoch | Training Loss | Validation Loss | Accuracy | F1 | Precision | Recall | | ----- | ------------- | --------------- | -------- | -------- | --------- | -------- | | 1 | 0.819200 | 0.331463 | 0.880952 | 0.878694 | 0.883126 | 0.879304 | | 2 | 0.140300 | 0.309764 | 0.900794 | 0.899025 | 0.906819 | 0.898632 | | 3 | 0.018600 | 0.324491 | 0.948413 | 0.947525 | 0.948037 | 0.948153 | | 4 | 0.004500 | 0.335100 | 0.932540 | 0.931648 | 0.934629 | 0.931617 | | 5 | 0.000200 | 0.392145 | 0.932540 | 0.932281 | 0.935075 | 0.932527 | | 6 | 0.000000 | 0.371689 | 0.932540 | 0.931760 | 0.934925 | 0.931840 | | 7 | 0.000000 | 0.368086 | 0.944444 | 0.943652 | 0.945875 | 0.943843 | | 8 | 0.000000 | 0.367550 | 0.944444 | 0.943652 | 0.945875 | 0.943843 | | 9 | 0.000000 | 0.368033 | 0.944444 | 0.943652 | 0.945875 | 0.943843 | | 10 | 0.000000 | 0.368391 | 0.944444 | 0.943652 | 0.945875 | 0.943843 | ## How to Use ### As Text Classifier ```python from transformers import pipeline pretrained_name = "sundanese-gpt2-base-emotion-classifier" nlp = pipeline( "sentiment-analysis", model=pretrained_name, tokenizer=pretrained_name ) nlp("Wah, éta gélo, keren pisan!") ``` ## Disclaimer Do consider the biases which come from both the pre-trained RoBERTa model and the Sundanese Twitter dataset that may be carried over into the results of this model. ## Author Sundanese GPT-2 Base Emotion Classifier was trained and evaluated by [Wilson Wongso](https://w11wo.github.io/). All computation and development are done on Google Colaboratory using their free GPU access. ## Citation Information ```bib @article{rs-907893, author = {Wongso, Wilson and Lucky, Henry and Suhartono, Derwin}, journal = {Journal of Big Data}, year = {2022}, month = {Feb}, day = {26}, abstract = {The Sundanese language has over 32 million speakers worldwide, but the language has reaped little to no benefits from the recent advances in natural language understanding. Like other low-resource languages, the only alternative is to fine-tune existing multilingual models. In this paper, we pre-trained three monolingual Transformer-based language models on Sundanese data. When evaluated on a downstream text classification task, we found that most of our monolingual models outperformed larger multilingual models despite the smaller overall pre-training data. In the subsequent analyses, our models benefited strongly from the Sundanese pre-training corpus size and do not exhibit socially biased behavior. We released our models for other researchers and practitioners to use.}, issn = {2693-5015}, doi = {10.21203/rs.3.rs-907893/v1}, url = {https://doi.org/10.21203/rs.3.rs-907893/v1} } ```
w11wo/wav2vec2-xls-r-300m-zh-HK-v2
ce79a8ce8e224a16f92bab7891442eac24f46b78
2022-03-23T18:27:41.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "zh-HK", "dataset:common_voice", "arxiv:2111.09296", "transformers", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
w11wo
null
w11wo/wav2vec2-xls-r-300m-zh-HK-v2
4
null
transformers
18,991
--- language: zh-HK license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - robust-speech-event datasets: - common_voice model-index: - name: Wav2Vec2 XLS-R 300M Cantonese (zh-HK) results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice type: common_voice args: zh-HK metrics: - name: Test CER type: cer value: 31.73 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: zh-HK metrics: - name: Test CER type: cer value: 23.11 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: zh-HK metrics: - name: Test CER type: cer value: 23.02 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: zh-HK metrics: - name: Test CER type: cer value: 56.6 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: zh-HK metrics: - name: Test CER type: cer value: 55.11 --- # Wav2Vec2 XLS-R 300M Cantonese (zh-HK) Wav2Vec2 XLS-R 300M Cantonese (zh-HK) is an automatic speech recognition model based on the [XLS-R](https://arxiv.org/abs/2111.09296) architecture. This model is a fine-tuned version of [Wav2Vec2-XLS-R-300M](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the `zh-HK` subset of the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. This model was trained using HuggingFace's PyTorch framework and is part of the [Robust Speech Challenge Event](https://discuss.huggingface.co/t/open-to-the-community-robust-speech-recognition-challenge/13614) organized by HuggingFace. All training was done on a Tesla V100, sponsored by OVH. All necessary scripts used for training could be found in the [Files and versions](https://huggingface.co/w11wo/wav2vec2-xls-r-300m-zh-HK-v2/tree/main) tab, as well as the [Training metrics](https://huggingface.co/w11wo/wav2vec2-xls-r-300m-zh-HK-v2/tensorboard) logged via Tensorboard. ## Model | Model | #params | Arch. | Training/Validation data (text) | | ------------------------------ | ------- | ----- | ------------------------------- | | `wav2vec2-xls-r-300m-zh-HK-v2` | 300M | XLS-R | `Common Voice zh-HK` Dataset | ## Evaluation Results The model achieves the following results on evaluation: | Dataset | Loss | CER | | -------------------------------- | ------ | ------ | | `Common Voice` | 0.8089 | 31.73% | | `Common Voice 7` | N/A | 23.11% | | `Common Voice 8` | N/A | 23.02% | | `Robust Speech Event - Dev Data` | N/A | 56.60% | ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - `learning_rate`: 0.0001 - `train_batch_size`: 8 - `eval_batch_size`: 8 - `seed`: 42 - `gradient_accumulation_steps`: 4 - `total_train_batch_size`: 32 - `optimizer`: Adam with `betas=(0.9, 0.999)` and `epsilon=1e-08` - `lr_scheduler_type`: linear - `lr_scheduler_warmup_steps`: 2000 - `num_epochs`: 100.0 - `mixed_precision_training`: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | | :-----------: | :---: | :---: | :-------------: | :----: | :----: | | 69.8341 | 1.34 | 500 | 80.0722 | 1.0 | 1.0 | | 6.6418 | 2.68 | 1000 | 6.6346 | 1.0 | 1.0 | | 6.2419 | 4.02 | 1500 | 6.2909 | 1.0 | 1.0 | | 6.0813 | 5.36 | 2000 | 6.1150 | 1.0 | 1.0 | | 5.9677 | 6.7 | 2500 | 6.0301 | 1.1386 | 1.0028 | | 5.9296 | 8.04 | 3000 | 5.8975 | 1.2113 | 1.0058 | | 5.6434 | 9.38 | 3500 | 5.5404 | 2.1624 | 1.0171 | | 5.1974 | 10.72 | 4000 | 4.5440 | 2.1702 | 0.9366 | | 4.3601 | 12.06 | 4500 | 3.3839 | 2.2464 | 0.8998 | | 3.9321 | 13.4 | 5000 | 2.8785 | 2.3097 | 0.8400 | | 3.6462 | 14.74 | 5500 | 2.5108 | 1.9623 | 0.6663 | | 3.5156 | 16.09 | 6000 | 2.2790 | 1.6479 | 0.5706 | | 3.32 | 17.43 | 6500 | 2.1450 | 1.8337 | 0.6244 | | 3.1918 | 18.77 | 7000 | 1.8536 | 1.9394 | 0.6017 | | 3.1139 | 20.11 | 7500 | 1.7205 | 1.9112 | 0.5638 | | 2.8995 | 21.45 | 8000 | 1.5478 | 1.0624 | 0.3250 | | 2.7572 | 22.79 | 8500 | 1.4068 | 1.1412 | 0.3367 | | 2.6881 | 24.13 | 9000 | 1.3312 | 2.0100 | 0.5683 | | 2.5993 | 25.47 | 9500 | 1.2553 | 2.0039 | 0.6450 | | 2.5304 | 26.81 | 10000 | 1.2422 | 2.0394 | 0.5789 | | 2.4352 | 28.15 | 10500 | 1.1582 | 1.9970 | 0.5507 | | 2.3795 | 29.49 | 11000 | 1.1160 | 1.8255 | 0.4844 | | 2.3287 | 30.83 | 11500 | 1.0775 | 1.4123 | 0.3780 | | 2.2622 | 32.17 | 12000 | 1.0704 | 1.7445 | 0.4894 | | 2.2225 | 33.51 | 12500 | 1.0272 | 1.7237 | 0.5058 | | 2.1843 | 34.85 | 13000 | 0.9756 | 1.8042 | 0.5028 | | 2.1 | 36.19 | 13500 | 0.9527 | 1.8909 | 0.6055 | | 2.0741 | 37.53 | 14000 | 0.9418 | 1.9026 | 0.5880 | | 2.0179 | 38.87 | 14500 | 0.9363 | 1.7977 | 0.5246 | | 2.0615 | 40.21 | 15000 | 0.9635 | 1.8112 | 0.5599 | | 1.9448 | 41.55 | 15500 | 0.9249 | 1.7250 | 0.4914 | | 1.8966 | 42.89 | 16000 | 0.9023 | 1.5829 | 0.4319 | | 1.8662 | 44.24 | 16500 | 0.9002 | 1.4833 | 0.4230 | | 1.8136 | 45.58 | 17000 | 0.9076 | 1.1828 | 0.2987 | | 1.7908 | 46.92 | 17500 | 0.8774 | 1.5773 | 0.4258 | | 1.7354 | 48.26 | 18000 | 0.8727 | 1.5037 | 0.4024 | | 1.6739 | 49.6 | 18500 | 0.8636 | 1.1239 | 0.2789 | | 1.6457 | 50.94 | 19000 | 0.8516 | 1.2269 | 0.3104 | | 1.5847 | 52.28 | 19500 | 0.8399 | 1.3309 | 0.3360 | | 1.5971 | 53.62 | 20000 | 0.8441 | 1.3153 | 0.3335 | | 1.602 | 54.96 | 20500 | 0.8590 | 1.2932 | 0.3433 | | 1.5063 | 56.3 | 21000 | 0.8334 | 1.1312 | 0.2875 | | 1.4631 | 57.64 | 21500 | 0.8474 | 1.1698 | 0.2999 | | 1.4997 | 58.98 | 22000 | 0.8638 | 1.4279 | 0.3854 | | 1.4301 | 60.32 | 22500 | 0.8550 | 1.2737 | 0.3300 | | 1.3798 | 61.66 | 23000 | 0.8266 | 1.1802 | 0.2934 | | 1.3454 | 63.0 | 23500 | 0.8235 | 1.3816 | 0.3711 | | 1.3678 | 64.34 | 24000 | 0.8550 | 1.6427 | 0.5035 | | 1.3761 | 65.68 | 24500 | 0.8510 | 1.6709 | 0.4907 | | 1.2668 | 67.02 | 25000 | 0.8515 | 1.5842 | 0.4505 | | 1.2835 | 68.36 | 25500 | 0.8283 | 1.5353 | 0.4221 | | 1.2961 | 69.7 | 26000 | 0.8339 | 1.5743 | 0.4369 | | 1.2656 | 71.05 | 26500 | 0.8331 | 1.5331 | 0.4217 | | 1.2556 | 72.39 | 27000 | 0.8242 | 1.4708 | 0.4109 | | 1.2043 | 73.73 | 27500 | 0.8245 | 1.4469 | 0.4031 | | 1.2722 | 75.07 | 28000 | 0.8202 | 1.4924 | 0.4096 | | 1.202 | 76.41 | 28500 | 0.8290 | 1.3807 | 0.3719 | | 1.1679 | 77.75 | 29000 | 0.8195 | 1.4097 | 0.3749 | | 1.1967 | 79.09 | 29500 | 0.8059 | 1.2074 | 0.3077 | | 1.1241 | 80.43 | 30000 | 0.8137 | 1.2451 | 0.3270 | | 1.1414 | 81.77 | 30500 | 0.8117 | 1.2031 | 0.3121 | | 1.132 | 83.11 | 31000 | 0.8234 | 1.4266 | 0.3901 | | 1.0982 | 84.45 | 31500 | 0.8064 | 1.3712 | 0.3607 | | 1.0797 | 85.79 | 32000 | 0.8167 | 1.3356 | 0.3562 | | 1.0119 | 87.13 | 32500 | 0.8215 | 1.2754 | 0.3268 | | 1.0216 | 88.47 | 33000 | 0.8163 | 1.2512 | 0.3184 | | 1.0375 | 89.81 | 33500 | 0.8137 | 1.2685 | 0.3290 | | 0.9794 | 91.15 | 34000 | 0.8220 | 1.2724 | 0.3255 | | 1.0207 | 92.49 | 34500 | 0.8165 | 1.2906 | 0.3361 | | 1.0169 | 93.83 | 35000 | 0.8153 | 1.2819 | 0.3305 | | 1.0127 | 95.17 | 35500 | 0.8187 | 1.2832 | 0.3252 | | 0.9978 | 96.51 | 36000 | 0.8111 | 1.2612 | 0.3210 | | 0.9923 | 97.85 | 36500 | 0.8076 | 1.2278 | 0.3122 | | 1.0451 | 99.2 | 37000 | 0.8086 | 1.2451 | 0.3156 | ## Disclaimer Do consider the biases which came from pre-training datasets that may be carried over into the results of this model. ## Authors Wav2Vec2 XLS-R 300M Cantonese (zh-HK) was trained and evaluated by [Wilson Wongso](https://w11wo.github.io/). All computation and development are done on OVH Cloud. ## Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.4.dev0 - Tokenizers 0.11.0
wangsheng/autonlp-poi_train-31237266
b32f7c00fdad728eb927bdf29c644be73bd607a7
2021-11-10T14:09:14.000Z
[ "pytorch", "bert", "text-classification", "unk", "dataset:wangsheng/autonlp-data-poi_train", "transformers", "autonlp", "co2_eq_emissions" ]
text-classification
false
wangsheng
null
wangsheng/autonlp-poi_train-31237266
4
null
transformers
18,992
--- tags: autonlp language: unk widget: - text: "I love AutoNLP 🤗" datasets: - wangsheng/autonlp-data-poi_train co2_eq_emissions: 390.39411176775826 --- # Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 31237266 - CO2 Emissions (in grams): 390.39411176775826 ## Validation Metrics - Loss: 0.1643059253692627 - Accuracy: 0.9379398019660155 - Precision: 0.7467491278147795 - Recall: 0.7158710854363028 - AUC: 0.9631629384458238 - F1: 0.7309841664079478 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/wangsheng/autonlp-poi_train-31237266 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("wangsheng/autonlp-poi_train-31237266", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("wangsheng/autonlp-poi_train-31237266", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
wangyuwei/bert_finetuning_test
125a1a3cac0b079f998615c21098f0c6c578d8de
2021-05-20T09:06:29.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
wangyuwei
null
wangyuwei/bert_finetuning_test
4
null
transformers
18,993
Entry not found
wgpubs/session-4-imdb-model
f8a8b2fd701b5031f36fd42ef3cd710280a875da
2021-08-01T17:31:32.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
wgpubs
null
wgpubs/session-4-imdb-model
4
1
transformers
18,994
Entry not found
woosukji/kogpt2-resume
e2606bad32492e753e82aa9315df0ea6c695b85a
2021-10-16T11:34:11.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
woosukji
null
woosukji/kogpt2-resume
4
null
transformers
18,995
Entry not found
wzhouad/prix-lm
1f85d7fa0b42f9adc84fc1933672322845e4dca1
2021-11-16T21:41:03.000Z
[ "pytorch", "xlm-roberta", "text-generation", "transformers" ]
text-generation
false
wzhouad
null
wzhouad/prix-lm
4
null
transformers
18,996
Entry not found
xysmalobia/test-trainer
1b8003cd65857415e1914d800b132cd1e945d302
2021-11-14T00:52:38.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
xysmalobia
null
xysmalobia/test-trainer
4
null
transformers
18,997
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: test-trainer results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: mrpc metrics: - name: Accuracy type: accuracy value: 0.8504901960784313 - name: F1 type: f1 value: 0.893542757417103 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test-trainer This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.5802 - Accuracy: 0.8505 - F1: 0.8935 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 459 | 0.4443 | 0.8039 | 0.8485 | | 0.5584 | 2.0 | 918 | 0.3841 | 0.8431 | 0.8810 | | 0.3941 | 3.0 | 1377 | 0.5802 | 0.8505 | 0.8935 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.15.1 - Tokenizers 0.10.3
ybybybybybybyb/autonlp-revanalysis-6711455
d57c446a8e31685bdcea600200552048c9e43969
2021-08-04T04:38:05.000Z
[ "pytorch", "funnel", "text-classification", "ko", "dataset:ybybybybybybyb/autonlp-data-revanalysis", "transformers", "autonlp" ]
text-classification
false
ybybybybybybyb
null
ybybybybybybyb/autonlp-revanalysis-6711455
4
null
transformers
18,998
--- tags: autonlp language: ko widget: - text: "I love AutoNLP 🤗" datasets: - ybybybybybybyb/autonlp-data-revanalysis --- # Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 6711455 ## Validation Metrics - Loss: 0.8241586089134216 - Accuracy: 0.7835820895522388 - Macro F1: 0.5297383029341792 - Micro F1: 0.783582089552239 - Weighted F1: 0.7130091019920225 - Macro Precision: 0.48787061994609165 - Micro Precision: 0.7835820895522388 - Weighted Precision: 0.6541416904694856 - Macro Recall: 0.5795454545454546 - Micro Recall: 0.7835820895522388 - Weighted Recall: 0.7835820895522388 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/ybybybybybybyb/autonlp-revanalysis-6711455 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("ybybybybybybyb/autonlp-revanalysis-6711455", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("ybybybybybybyb/autonlp-revanalysis-6711455", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
yobi/klue-roberta-base-sts
e7ace3c45c785b10ccd43a16be02f1b2e464a68c
2021-07-06T11:36:08.000Z
[ "pytorch", "roberta", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
yobi
null
yobi/klue-roberta-base-sts
4
null
sentence-transformers
18,999
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- ## Usage ``` from sentence_transformers import SentenceTransformer, models embedding_model = models.Transformer("yobi/klue-roberta-base-sts") pooling_model = models.Pooling( embedding_model.get_word_embedding_dimension(), pooling_mode_mean_tokens=True, ) model = SentenceTransformer(modules=[embedding_model, pooling_model]) model.encode("안녕하세요.", convert_to_tensor=True) ```