modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
list
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
huggingtweets/lavanyaai
1104994108d8b9c0c335401666cc3e421eb9606d
2021-05-22T11:42:16.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/lavanyaai
4
null
transformers
18,700
--- language: en thumbnail: http://www.huggingtweets.com/lavanyaai/1600320144154/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('http://pbs.twimg.com/profile_images/1302839376909488128/fPooODvu_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Lavanya 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@lavanyaai bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@lavanyaai's tweets](https://twitter.com/lavanyaai). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3187</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>1482</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>220</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1485</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/1s4lpnmf/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @lavanyaai's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/6zcv33k4) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/6zcv33k4/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/lavanyaai'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/mattwalshblog
87a6eb0668f4229350cf331c63889d8dce17c243
2021-08-28T16:15:33.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/mattwalshblog
4
null
transformers
18,701
--- language: en thumbnail: https://www.huggingtweets.com/mattwalshblog/1630167154915/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1389695100045959168/WIluCszp_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Matt Walsh</div> <div style="text-align: center; font-size: 14px;">@mattwalshblog</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Matt Walsh. | Data | Matt Walsh | | --- | --- | | Tweets downloaded | 3240 | | Retweets | 716 | | Short tweets | 71 | | Tweets kept | 2453 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2gnxwrlk/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mattwalshblog's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/uvdejb5p) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/uvdejb5p/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mattwalshblog') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/mralgore
72491d7409bf61b33c6b4db8b3f23728534f6390
2021-07-09T06:46:35.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/mralgore
4
null
transformers
18,702
--- language: en thumbnail: https://www.huggingtweets.com/mralgore/1625813191802/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1379330213042065410/XmWaaQtK_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Mr. Al Gore 🇺🇸 🏗</div> <div style="text-align: center; font-size: 14px;">@mralgore</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Mr. Al Gore 🇺🇸 🏗. | Data | Mr. Al Gore 🇺🇸 🏗 | | --- | --- | | Tweets downloaded | 1663 | | Retweets | 48 | | Short tweets | 409 | | Tweets kept | 1206 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/lb6ro1nm/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mralgore's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2hcr10go) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2hcr10go/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mralgore') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/nftmansa
00c86ef6309065a7240eed3ac86308ee2758ec97
2021-08-18T21:04:18.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/nftmansa
4
null
transformers
18,703
--- language: en thumbnail: https://www.huggingtweets.com/nftmansa/1629320654994/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1398377108007755781/nmudFxl3_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">NFT</div> <div style="text-align: center; font-size: 14px;">@nftmansa</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from NFT. | Data | NFT | | --- | --- | | Tweets downloaded | 3223 | | Retweets | 3037 | | Short tweets | 36 | | Tweets kept | 150 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/wwiy7t0n/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @nftmansa's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/b9rzi99p) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/b9rzi99p/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/nftmansa') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/patrick_exo
b81b0e771a334920d7f5b432485fb520796681e5
2021-05-22T18:08:35.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/patrick_exo
4
null
transformers
18,704
--- language: en thumbnail: https://www.huggingtweets.com/patrick_exo/1616890694033/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1094064355363250177/pggQx93t_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Patrick N 🤖 AI Bot </div> <div style="font-size: 15px">@patrick_exo bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@patrick_exo's tweets](https://twitter.com/patrick_exo). | Data | Quantity | | --- | --- | | Tweets downloaded | 3233 | | Retweets | 476 | | Short tweets | 269 | | Tweets kept | 2488 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2a0ktkyk/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @patrick_exo's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2weililh) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2weililh/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/patrick_exo') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/realbenfishbein
fd6cd2015cbfa11f066dd11faddd0716f51288e8
2021-07-24T05:27:00.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/realbenfishbein
4
null
transformers
18,705
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1349511600974278662/7v0yTYob_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Ben Fishbein</div> <div style="text-align: center; font-size: 14px;">@realbenfishbein</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Ben Fishbein. | Data | Ben Fishbein | | --- | --- | | Tweets downloaded | 261 | | Retweets | 8 | | Short tweets | 30 | | Tweets kept | 223 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2idreqex/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @realbenfishbein's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3me55h26) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3me55h26/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/realbenfishbein') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/robertodcrsj
44a5029f832a24920088aa74b740647d5c2571b0
2021-05-22T21:15:44.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/robertodcrsj
4
null
transformers
18,706
--- language: en thumbnail: http://res.cloudinary.com/huggingtweets/image/upload/v1600086568/robertodcrsj.jpg tags: - huggingtweets widget: - text: "My dream is" --- <link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('http://pbs.twimg.com/profile_images/1096124734440394752/2UhdoXP3_400x400.png')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Roberto 🤖 💻 📉 🐍💙 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@robertodcrsj bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@robertodcrsj's tweets](https://twitter.com/robertodcrsj). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>483</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>302</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>26</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>155</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/3fi4a9v5/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @robertodcrsj's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/3gsz62al) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/3gsz62al/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/robertodcrsj'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/stephencurry30
fc62796864024baa39bf7ec7ec0339a9e1384544
2022-04-02T22:43:52.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/stephencurry30
4
null
transformers
18,707
--- language: en thumbnail: http://www.huggingtweets.com/stephencurry30/1648939428122/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1484233608793518081/tOID8aXq_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Stephen Curry</div> <div style="text-align: center; font-size: 14px;">@stephencurry30</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Stephen Curry. | Data | Stephen Curry | | --- | --- | | Tweets downloaded | 3190 | | Retweets | 384 | | Short tweets | 698 | | Tweets kept | 2108 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2n8n86da/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @stephencurry30's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/24mjh4p6) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/24mjh4p6/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/stephencurry30') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/theofficetv
2f6075cccd48b9e457f2b96a583399e1af3c083e
2021-09-14T23:33:05.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/theofficetv
4
null
transformers
18,708
--- language: en thumbnail: https://www.huggingtweets.com/theofficetv/1631662381899/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1397240738493001729/Unk8D_yT_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">The Office on Peacock</div> <div style="text-align: center; font-size: 14px;">@theofficetv</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from The Office on Peacock. | Data | The Office on Peacock | | --- | --- | | Tweets downloaded | 3215 | | Retweets | 459 | | Short tweets | 592 | | Tweets kept | 2164 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3dwxnzp9/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @theofficetv's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1mnr0e28) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1mnr0e28/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/theofficetv') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/titusoneeeeil
ee29d992271a764c492a257219ae860e74da7355
2021-05-23T02:28:15.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/titusoneeeeil
4
null
transformers
18,709
--- language: en thumbnail: https://www.huggingtweets.com/titusoneeeeil/1618617702995/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1381694077788422147/gxj1pLW2_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Tart Sophistry 🤖 AI Bot </div> <div style="font-size: 15px">@titusoneeeeil bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@titusoneeeeil's tweets](https://twitter.com/titusoneeeeil). | Data | Quantity | | --- | --- | | Tweets downloaded | 338 | | Retweets | 32 | | Short tweets | 43 | | Tweets kept | 263 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/4hpwbrd2/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @titusoneeeeil's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/23b9ala1) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/23b9ala1/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/titusoneeeeil') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/vsshole
6e5043a403f0eede5b2d3206fc15b800ad09c32a
2022-05-10T21:24:12.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/vsshole
4
null
transformers
18,710
--- language: en thumbnail: http://www.huggingtweets.com/vsshole/1652217847985/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1475160033826586625/ZGf3YqfN_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">🌺 m ny 🐝🐙</div> <div style="text-align: center; font-size: 14px;">@vsshole</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from 🌺 m ny 🐝🐙. | Data | 🌺 m ny 🐝🐙 | | --- | --- | | Tweets downloaded | 3221 | | Retweets | 382 | | Short tweets | 1727 | | Tweets kept | 1112 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3f393wuv/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @vsshole's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/29sa4yhp) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/29sa4yhp/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/vsshole') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/weedsle
f2bb9f6fc1088941cc081254fce4e8256c29f700
2021-06-24T03:44:35.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/weedsle
4
null
transformers
18,711
--- language: en thumbnail: https://www.huggingtweets.com/weedsle/1624506233926/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1405834432234364928/41kQSLqT_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Kingus🔞</div> <div style="text-align: center; font-size: 14px;">@weedsle</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Kingus🔞. | Data | Kingus🔞 | | --- | --- | | Tweets downloaded | 1219 | | Retweets | 270 | | Short tweets | 157 | | Tweets kept | 792 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3ozegyos/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @weedsle's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2igdgxfs) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2igdgxfs/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/weedsle') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huyue012/wav2vec2-base-cynthia-tedlium-2500-v2
aaf373ff9f66a6adc47cd35f5feb63e8abacf40e
2021-11-19T04:09:16.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
huyue012
null
huyue012/wav2vec2-base-cynthia-tedlium-2500-v2
4
null
transformers
18,712
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-cynthia-tedlium-2500-v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-cynthia-tedlium-2500-v2 This model is a fine-tuned version of [facebook/wav2vec2-base-960h](https://huggingface.co/facebook/wav2vec2-base-960h) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6425 - Wer: 0.2033 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.1196 | 6.58 | 500 | 0.6498 | 0.2103 | | 0.1176 | 13.16 | 1000 | 0.6490 | 0.2169 | | 0.1227 | 19.73 | 1500 | 0.6241 | 0.2127 | | 0.1078 | 26.31 | 2000 | 0.6359 | 0.2118 | | 0.0956 | 32.89 | 2500 | 0.6330 | 0.2073 | | 0.1008 | 39.47 | 3000 | 0.6816 | 0.2036 | | 0.09 | 46.05 | 3500 | 0.6425 | 0.2033 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.13.3 - Tokenizers 0.10.3
hyerim/distilbert-base-uncased-finetuned-ner
45e43e3deebc594e3032e1b7fd0af411ab2757e4
2022-02-15T08:37:29.000Z
[ "pytorch", "tensorboard", "distilbert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
hyerim
null
hyerim/distilbert-base-uncased-finetuned-ner
4
null
transformers
18,713
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9273570324574961 - name: Recall type: recall value: 0.9397024275646045 - name: F1 type: f1 value: 0.9334889148191365 - name: Accuracy type: accuracy value: 0.9837641190207635 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0617 - Precision: 0.9274 - Recall: 0.9397 - F1: 0.9335 - Accuracy: 0.9838 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2403 | 1.0 | 878 | 0.0714 | 0.9171 | 0.9216 | 0.9193 | 0.9805 | | 0.0555 | 2.0 | 1756 | 0.0604 | 0.9206 | 0.9347 | 0.9276 | 0.9829 | | 0.031 | 3.0 | 2634 | 0.0617 | 0.9274 | 0.9397 | 0.9335 | 0.9838 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.7.1 - Datasets 1.18.3 - Tokenizers 0.10.1
hyyoka/wav2vec2-xlsr-korean-senior
9c00dc1ccac66c7486406bbd8ab89a92d38966f7
2022-01-28T06:08:19.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "kr", "dataset:aihub 자유대화 음성(노인남녀)", "transformers", "license:apache-2.0" ]
automatic-speech-recognition
false
hyyoka
null
hyyoka/wav2vec2-xlsr-korean-senior
4
null
transformers
18,714
--- language: kr datasets: - aihub 자유대화 음성(노인남녀) tags: - automatic-speech-recognition license: apache-2.0 --- # wav2vec2-xlsr-korean-senior Futher fine-tuned [fleek/wav2vec-large-xlsr-korean](https://huggingface.co/fleek/wav2vec-large-xlsr-korean) using the [AIhub 자유대화 음성(노인남녀)](https://aihub.or.kr/aidata/30704). - Total train data size: 808,642 - Total vaild data size: 159,970 When using this model, make sure that your speech input is sampled at 16kHz. The script used for training can be found here: https://github.com/hyyoka/wav2vec2-korean-senior ### Inference ``` py import torchaudio from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC import re def clean_up(transcription): hangul = re.compile('[^ ㄱ-ㅣ가-힣]+') result = hangul.sub('', transcription) return result model_name "hyyoka/wav2vec2-xlsr-korean-senior" processor = Wav2Vec2Processor.from_pretrained(model_name) model = Wav2Vec2ForCTC.from_pretrained(model_name) speech_array, sampling_rate = torchaudio.load(wav_file) feat = processor(speech_array[0], sampling_rate=16000, padding=True, max_length=800000, truncation=True, return_attention_mask=True, return_tensors="pt", pad_token_id=49 ) input = {'input_values': feat['input_values'],'attention_mask':feat['attention_mask']} outputs = model(**input, output_attentions=True) logits = outputs.logits predicted_ids = logits.argmax(axis=-1) transcription = processor.decode(predicted_ids[0]) stt_result = clean_up(transcription) ```
ikevin98/bert-base-uncased-sst2-distilled
204f39867b42a7bbcb4fab7e43f7da6d05c1e579
2021-08-12T14:03:32.000Z
[ "pytorch", "bert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0" ]
text-classification
false
ikevin98
null
ikevin98/bert-base-uncased-sst2-distilled
4
null
transformers
18,715
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model_index: name: bert-base-uncased-sst2-distilled --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-sst2-distilled This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unkown dataset. It achieves the following results on the evaluation set: - Loss: 0.2676 - Accuracy: 0.9025 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.3797 | 1.0 | 2105 | 0.2512 | 0.9002 | | 0.3036 | 2.0 | 4210 | 0.2643 | 0.8933 | | 0.2609 | 3.0 | 6315 | 0.2831 | 0.8956 | | 0.2417 | 4.0 | 8420 | 0.2676 | 0.9025 | | 0.2305 | 5.0 | 10525 | 0.2740 | 0.9025 | ### Framework versions - Transformers 4.9.1 - Pytorch 1.8.1 - Datasets 1.11.0 - Tokenizers 0.10.1
ikevin98/bert-base-uncased-sst2-membership-attack
a879ec2c2e71bde8a005fda85e2f448f91d2b44e
2021-09-12T15:14:11.000Z
[ "pytorch", "bert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0" ]
text-classification
false
ikevin98
null
ikevin98/bert-base-uncased-sst2-membership-attack
4
null
transformers
18,716
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model_index: name: bert-base-uncased-sst2-membership-attack --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-sst2-membership-attack This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unkown dataset. It achieves the following results on the evaluation set: - Loss: 0.6296 - Accuracy: 0.8681 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.6921 | 1.0 | 3813 | 0.6263 | 0.8360 | | 0.6916 | 2.0 | 7626 | 0.6296 | 0.8681 | | 0.6904 | 3.0 | 11439 | 0.6105 | 0.8406 | | 0.6886 | 4.0 | 15252 | 0.6192 | 0.8200 | | 0.6845 | 5.0 | 19065 | 0.6250 | 0.7798 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.8.1 - Datasets 1.11.0 - Tokenizers 0.10.1
indridinn/distilbert-base-uncased-finetuned-ner
fbcc692e4a78f2e53edb1ff4af0c9d9ecba8b451
2021-10-01T22:29:15.000Z
[ "pytorch", "tensorboard", "distilbert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
indridinn
null
indridinn/distilbert-base-uncased-finetuned-ner
4
null
transformers
18,717
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9274720407485328 - name: Recall type: recall value: 0.9370175634858485 - name: F1 type: f1 value: 0.932220367278798 - name: Accuracy type: accuracy value: 0.9836370279759162 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0610 - Precision: 0.9275 - Recall: 0.9370 - F1: 0.9322 - Accuracy: 0.9836 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2507 | 1.0 | 878 | 0.0714 | 0.9181 | 0.9243 | 0.9212 | 0.9813 | | 0.0516 | 2.0 | 1756 | 0.0617 | 0.9208 | 0.9325 | 0.9266 | 0.9828 | | 0.0306 | 3.0 | 2634 | 0.0610 | 0.9275 | 0.9370 | 0.9322 | 0.9836 | ### Framework versions - Transformers 4.11.2 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
infinitejoy/wav2vec2-large-xls-r-300m-breton
4b89b33f57438aee6d3e781426b458a7f8011752
2022-03-23T18:33:01.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "br", "dataset:mozilla-foundation/common_voice_7_0", "transformers", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
infinitejoy
null
infinitejoy/wav2vec2-large-xls-r-300m-breton
4
null
transformers
18,718
--- language: - br license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_7_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - Breton results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: br metrics: - name: Test WER type: wer value: 107.955 - name: Test CER type: cer value: 379.33 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-breton This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - BR dataset. It achieves the following results on the evaluation set: - Loss: 0.6102 - Wer: 0.4455 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.9205 | 3.33 | 500 | 2.8659 | 1.0 | | 1.6403 | 6.67 | 1000 | 0.9440 | 0.7593 | | 1.3483 | 10.0 | 1500 | 0.7580 | 0.6215 | | 1.2255 | 13.33 | 2000 | 0.6851 | 0.5722 | | 1.1139 | 16.67 | 2500 | 0.6409 | 0.5220 | | 1.0688 | 20.0 | 3000 | 0.6245 | 0.5055 | | 0.99 | 23.33 | 3500 | 0.6142 | 0.4874 | | 0.9345 | 26.67 | 4000 | 0.5946 | 0.4829 | | 0.9058 | 30.0 | 4500 | 0.6229 | 0.4704 | | 0.8683 | 33.33 | 5000 | 0.6153 | 0.4666 | | 0.8367 | 36.67 | 5500 | 0.5952 | 0.4542 | | 0.8162 | 40.0 | 6000 | 0.6030 | 0.4541 | | 0.8042 | 43.33 | 6500 | 0.5972 | 0.4485 | | 0.7836 | 46.67 | 7000 | 0.6070 | 0.4497 | | 0.7556 | 50.0 | 7500 | 0.6102 | 0.4455 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
infinitejoy/wav2vec2-large-xls-r-300m-lithuanian
00fd19637efbf149d18d762b64967bdf5eee76e6
2022-03-24T11:58:06.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "lt", "dataset:mozilla-foundation/common_voice_7_0", "transformers", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
infinitejoy
null
infinitejoy/wav2vec2-large-xls-r-300m-lithuanian
4
null
transformers
18,719
--- language: - lt license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_7_0 - generated_from_trainer - lt - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - Lithuanian results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: lt metrics: - name: Test WER type: wer value: 24.859 - name: Test CER type: cer value: 4.764 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-lithuanian This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - LT dataset. It achieves the following results on the evaluation set: - Loss: 0.1722 - Wer: 0.2486 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.6837 | 8.0 | 2000 | 0.6649 | 0.7515 | | 1.1105 | 16.0 | 4000 | 0.2386 | 0.3436 | | 1.0069 | 24.0 | 6000 | 0.2008 | 0.2968 | | 0.9417 | 32.0 | 8000 | 0.1915 | 0.2774 | | 0.887 | 40.0 | 10000 | 0.1819 | 0.2616 | | 0.8563 | 48.0 | 12000 | 0.1729 | 0.2475 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
irvingpop/dreambank
70a11df1448e85c8bfcd7b833b5f81222872e82d
2021-05-23T05:34:04.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
irvingpop
null
irvingpop/dreambank
4
null
transformers
18,720
Entry not found
ismaelardo/BETO_3d
191d2374b38e26ebf3104226ed756207b7d08c21
2021-10-11T18:50:46.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
ismaelardo
null
ismaelardo/BETO_3d
4
null
transformers
18,721
Este es el primer modelo de prueba BETO_3D
it5/it5-large-formal-to-informal
5403483eb81159ece9fd3e74c56a3b2553192975
2022-03-09T07:46:17.000Z
[ "pytorch", "tf", "jax", "tensorboard", "t5", "text2text-generation", "it", "dataset:yahoo/xformal_it", "arxiv:2203.03759", "transformers", "italian", "sequence-to-sequence", "style-transfer", "formality-style-transfer", "license:apache-2.0", "model-index", "co2_eq_emissions", "autotrain_compatible" ]
text2text-generation
false
it5
null
it5/it5-large-formal-to-informal
4
null
transformers
18,722
--- language: - it license: apache-2.0 tags: - italian - sequence-to-sequence - style-transfer - formality-style-transfer datasets: - yahoo/xformal_it widget: - text: "Questa performance è a dir poco spiacevole." - text: "In attesa di un Suo cortese riscontro, Le auguriamo un piacevole proseguimento di giornata." - text: "Questa visione mi procura una goduria indescrivibile." - text: "qualora ciò possa interessarti, ti pregherei di contattarmi." metrics: - rouge - bertscore model-index: - name: it5-large-formal-to-informal results: - task: type: formality-style-transfer name: "Formal-to-informal Style Transfer" dataset: type: xformal_it name: "XFORMAL (Italian Subset)" metrics: - type: rouge1 value: 0.611 name: "Avg. Test Rouge1" - type: rouge2 value: 0.409 name: "Avg. Test Rouge2" - type: rougeL value: 0.586 name: "Avg. Test RougeL" - type: bertscore value: 0.613 name: "Avg. Test BERTScore" args: - model_type: "dbmdz/bert-base-italian-xxl-uncased" - lang: "it" - num_layers: 10 - rescale_with_baseline: True - baseline_path: "bertscore_baseline_ita.tsv" co2_eq_emissions: emissions: "51g" source: "Google Cloud Platform Carbon Footprint" training_type: "fine-tuning" geographical_location: "Eemshaven, Netherlands, Europe" hardware_used: "1 TPU v3-8 VM" --- # IT5 Large for Formal-to-informal Style Transfer 🤗 This repository contains the checkpoint for the [IT5 Large](https://huggingface.co/gsarti/it5-large) model fine-tuned on Formal-to-informal style transfer on the Italian subset of the XFORMAL dataset as part of the experiments of the paper [IT5: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation](https://arxiv.org/abs/2203.03759) by [Gabriele Sarti](https://gsarti.com) and [Malvina Nissim](https://malvinanissim.github.io). A comprehensive overview of other released materials is provided in the [gsarti/it5](https://github.com/gsarti/it5) repository. Refer to the paper for additional details concerning the reported scores and the evaluation approach. ## Using the model Model checkpoints are available for usage in Tensorflow, Pytorch and JAX. They can be used directly with pipelines as: ```python from transformers import pipelines f2i = pipeline("text2text-generation", model='it5/it5-large-formal-to-informal') f2i("Vi ringrazio infinitamente per vostra disponibilità") >>> [{"generated_text": "e grazie per la vostra disponibilità!"}] ``` or loaded using autoclasses: ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("it5/it5-large-formal-to-informal") model = AutoModelForSeq2SeqLM.from_pretrained("it5/it5-large-formal-to-informal") ``` If you use this model in your research, please cite our work as: ```bibtex @article{sarti-nissim-2022-it5, title={{IT5}: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation}, author={Sarti, Gabriele and Nissim, Malvina}, journal={ArXiv preprint 2203.03759}, url={https://arxiv.org/abs/2203.03759}, year={2022}, month={mar} } ```
it5/mt5-small-formal-to-informal
4f5f37750996656fa9f96f7dac169cbc10c5fe6b
2022-03-09T07:44:42.000Z
[ "pytorch", "tf", "jax", "tensorboard", "mt5", "text2text-generation", "it", "dataset:yahoo/xformal_it", "arxiv:2203.03759", "transformers", "italian", "sequence-to-sequence", "style-transfer", "formality-style-transfer", "license:apache-2.0", "model-index", "co2_eq_emissions", "autotrain_compatible" ]
text2text-generation
false
it5
null
it5/mt5-small-formal-to-informal
4
null
transformers
18,723
--- language: - it license: apache-2.0 tags: - italian - sequence-to-sequence - style-transfer - formality-style-transfer datasets: - yahoo/xformal_it widget: - text: "Questa performance è a dir poco spiacevole." - text: "In attesa di un Suo cortese riscontro, Le auguriamo un piacevole proseguimento di giornata." - text: "Questa visione mi procura una goduria indescrivibile." - text: "qualora ciò possa interessarti, ti pregherei di contattarmi." metrics: - rouge - bertscore model-index: - name: mt5-small-formal-to-informal results: - task: type: formality-style-transfer name: "Formal-to-informal Style Transfer" dataset: type: xformal_it name: "XFORMAL (Italian Subset)" metrics: - type: rouge1 value: 0.651 name: "Avg. Test Rouge1" - type: rouge2 value: 0.450 name: "Avg. Test Rouge2" - type: rougeL value: 0.631 name: "Avg. Test RougeL" - type: bertscore value: 0.666 name: "Avg. Test BERTScore" args: - model_type: "dbmdz/bert-base-italian-xxl-uncased" - lang: "it" - num_layers: 10 - rescale_with_baseline: True - baseline_path: "bertscore_baseline_ita.tsv" co2_eq_emissions: emissions: "17g" source: "Google Cloud Platform Carbon Footprint" training_type: "fine-tuning" geographical_location: "Eemshaven, Netherlands, Europe" hardware_used: "1 TPU v3-8 VM" --- # mT5 Small for Formal-to-informal Style Transfer 🤗 This repository contains the checkpoint for the [mT5 Small](https://huggingface.co/google/mt5-small) model fine-tuned on Formal-to-informal style transfer on the Italian subset of the XFORMAL dataset as part of the experiments of the paper [IT5: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation](https://arxiv.org/abs/2203.03759) by [Gabriele Sarti](https://gsarti.com) and [Malvina Nissim](https://malvinanissim.github.io). A comprehensive overview of other released materials is provided in the [gsarti/it5](https://github.com/gsarti/it5) repository. Refer to the paper for additional details concerning the reported scores and the evaluation approach. ## Using the model Model checkpoints are available for usage in Tensorflow, Pytorch and JAX. They can be used directly with pipelines as: ```python from transformers import pipelines f2i = pipeline("text2text-generation", model='it5/mt5-small-formal-to-informal') f2i("Vi ringrazio infinitamente per vostra disponibilità") >>> [{"generated_text": "e grazie per la vostra disponibilità!"}] ``` or loaded using autoclasses: ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("it5/mt5-small-formal-to-informal") model = AutoModelForSeq2SeqLM.from_pretrained("it5/mt5-small-formal-to-informal") ``` If you use this model in your research, please cite our work as: ```bibtex @article{sarti-nissim-2022-it5, title={{IT5}: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation}, author={Sarti, Gabriele and Nissim, Malvina}, journal={ArXiv preprint 2203.03759}, url={https://arxiv.org/abs/2203.03759}, year={2022}, month={mar} } ```
izumi-lab/electra-small-japanese-generator
bc628256863d34f1aa6df9ef9a405607f979152b
2022-03-19T09:39:43.000Z
[ "pytorch", "electra", "fill-mask", "ja", "dataset:wikipedia", "arxiv:2003.10555", "transformers", "license:cc-by-sa-4.0", "autotrain_compatible" ]
fill-mask
false
izumi-lab
null
izumi-lab/electra-small-japanese-generator
4
null
transformers
18,724
--- language: ja license: cc-by-sa-4.0 datasets: - wikipedia widget: - text: 東京大学で[MASK]の研究をしています。 --- # ELECTRA small Japanese generator This is a [ELECTRA](https://github.com/google-research/electra) model pretrained on texts in the Japanese language. The codes for the pretraining are available at [retarfi/language-pretraining](https://github.com/retarfi/language-pretraining/tree/v1.0). ## Model architecture The model architecture is the same as ELECTRA small in the [original ELECTRA implementation](https://github.com/google-research/electra); 12 layers, 256 dimensions of hidden states, and 4 attention heads. ## Training Data The models are trained on the Japanese version of Wikipedia. The training corpus is generated from the Japanese version of Wikipedia, using Wikipedia dump file as of June 1, 2021. The corpus file is 2.9GB, consisting of approximately 20M sentences. ## Tokenization The texts are first tokenized by MeCab with IPA dictionary and then split into subwords by the WordPiece algorithm. The vocabulary size is 32768. ## Training The models are trained with the same configuration as ELECTRA small in the [original ELECTRA paper](https://arxiv.org/abs/2003.10555) except size; 128 tokens per instance, 128 instances per batch, and 1M training steps. The size of the generator is the same of the discriminator. ## Citation **There will be another paper for this pretrained model. Be sure to check here again when you cite.** ``` @inproceedings{suzuki2021fin-bert-electra, title={金融文書を用いた事前学習言語モデルの構築と検証}, % title={Construction and Validation of a Pre-Trained Language Model Using Financial Documents}, author={鈴木 雅弘 and 坂地 泰紀 and 平野 正徳 and 和泉 潔}, % author={Masahiro Suzuki and Hiroki Sakaji and Masanori Hirano and Kiyoshi Izumi}, booktitle={人工知能学会第27回金融情報学研究会(SIG-FIN)}, % booktitle={Proceedings of JSAI Special Interest Group on Financial Infomatics (SIG-FIN) 27}, pages={5-10}, year={2021} } ``` ## Licenses The pretrained models are distributed under the terms of the [Creative Commons Attribution-ShareAlike 4.0](https://creativecommons.org/licenses/by-sa/4.0/). ## Acknowledgments This work was supported by JSPS KAKENHI Grant Number JP21K12010.
jambo/microsoftBio-renet
25237a5a3713e6db8ebaf50416dd661e86eaeb3d
2021-07-15T11:41:27.000Z
[ "pytorch", "bert", "text-classification", "dataset:renet", "transformers", "generated_from_trainer", "license:mit" ]
text-classification
false
jambo
null
jambo/microsoftBio-renet
4
null
transformers
18,725
--- license: mit tags: - generated_from_trainer datasets: - renet metrics: - precision - recall - f1 - accuracy model_index: - name: BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext-finetuned-renet results: - task: name: Text Classification type: text-classification dataset: name: renet type: renet metric: name: Accuracy type: accuracy value: 0.8640646029609691 --- # BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext-finetuned-renet A model for detecting gene disease associations from abstracts. The model classifies as 0 for no association, or 1 for some association. This model is a fine-tuned version of [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) on the [RENET2](https://github.com/sujunhao/RENET2) dataset. Note that this considers only the abstract data, and not the full text information, from RENET2. It achieves the following results on the evaluation set: - Loss: 0.7226 - Precision: 0.7799 - Recall: 0.8211 - F1: 0.8 - Accuracy: 0.8641 - Auc: 0.9325 ## Training procedure The abstract dataset from RENET2 was split into 85% train, 15% evaluation being grouped by PMIDs and stratified by labels. That is, no data from the same PMID was seen in multiple both the training and the evaluation set. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 1 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Framework versions - Transformers 4.9.0.dev0 - Pytorch 1.10.0.dev20210630+cu113 - Datasets 1.8.0 - Tokenizers 0.10.3
jamescalam/bert-stsb-gold
cf7db3d2554fe7b6522db92a0a7c62cb06880bd6
2021-12-17T08:57:06.000Z
[ "pytorch", "bert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
jamescalam
null
jamescalam/bert-stsb-gold
4
null
sentence-transformers
18,726
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # Gold-only BERT STSb This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. It is used as a demo model within the [NLP for Semantic Search course](https://www.pinecone.io/learn/nlp), for the chapter on [In-domain Data Augmentation with BERT](https://www.pinecone.io/learn/data-augmentation/). ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('bert-stsb-gold') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('bert-stsb-gold') model = AutoModel.from_pretrained('bert-stsb-gold') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 360 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 36, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ```
jannesg/takalane_tso_roberta
b00754d531d85baf66238450b313b1c298dfd2b1
2021-09-22T08:52:13.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "ts", "transformers", "masked-lm", "license:mit", "autotrain_compatible" ]
fill-mask
false
jannesg
null
jannesg/takalane_tso_roberta
4
null
transformers
18,727
--- language: - ts thumbnail: https://pbs.twimg.com/media/EVjR6BsWoAAFaq5.jpg tags: - ts - fill-mask - pytorch - roberta - masked-lm license: mit --- # Takalani Sesame - Tsonga 🇿🇦 <img src="https://pbs.twimg.com/media/EVjR6BsWoAAFaq5.jpg" width="600"/> ## Model description Takalani Sesame (named after the South African version of Sesame Street) is a project that aims to promote the use of South African languages in NLP, and in particular look at techniques for low-resource languages to equalise performance with larger languages around the world. ## Intended uses & limitations #### How to use ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("jannesg/takalane_tso_roberta") model = AutoModelWithLMHead.from_pretrained("jannesg/takalane_tso_roberta") ``` #### Limitations and bias Updates will be added continously to improve performance. ## Training data Data collected from [https://wortschatz.uni-leipzig.de/en](https://wortschatz.uni-leipzig.de/en) <br/> **Sentences:** 20000 ## Training procedure No preprocessing. Standard Huggingface hyperparameters. ## Author Jannes Germishuys [website](http://jannesgg.github.io)
jasonwu/ToD-BERT-jnt
9a8f1d54228d49925598f0da4c3a4e0fe243ab67
2021-05-19T20:38:18.000Z
[ "pytorch", "tf", "jax", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
jasonwu
null
jasonwu/ToD-BERT-jnt
4
null
transformers
18,728
Entry not found
jcblaise/distilbert-tagalog-base-cased
5f6564b196e6869af9e9cb5bfcac09b63ae03219
2021-11-12T03:20:40.000Z
[ "pytorch", "jax", "distilbert", "tl", "transformers", "bert", "tagalog", "filipino", "license:gpl-3.0" ]
null
false
jcblaise
null
jcblaise/distilbert-tagalog-base-cased
4
null
transformers
18,729
--- language: tl tags: - distilbert - bert - tagalog - filipino license: gpl-3.0 inference: false --- **Deprecation Notice** This model is deprecated. New Filipino Transformer models trained with a much larger corpora are available. Use [`jcblaise/roberta-tagalog-base`](https://huggingface.co/jcblaise/roberta-tagalog-base) or [`jcblaise/roberta-tagalog-large`](https://huggingface.co/jcblaise/roberta-tagalog-large) instead for better performance. --- # DistilBERT Tagalog Base Cased Tagalog version of DistilBERT, distilled from [`bert-tagalog-base-cased`](https://huggingface.co/jcblaise/bert-tagalog-base-cased). This model is part of a larger research project. We open-source the model to allow greater usage within the Filipino NLP community. ## Usage The model can be loaded and used in both PyTorch and TensorFlow through the HuggingFace Transformers package. ```python from transformers import TFAutoModel, AutoModel, AutoTokenizer # TensorFlow model = TFAutoModel.from_pretrained('jcblaise/distilbert-tagalog-base-cased', from_pt=True) tokenizer = AutoTokenizer.from_pretrained('jcblaise/distilbert-tagalog-base-cased', do_lower_case=False) # PyTorch model = AutoModel.from_pretrained('jcblaise/distilbert-tagalog-base-cased') tokenizer = AutoTokenizer.from_pretrained('jcblaise/distilbert-tagalog-base-cased', do_lower_case=False) ``` Finetuning scripts and other utilities we use for our projects can be found in our centralized repository at https://github.com/jcblaisecruz02/Filipino-Text-Benchmarks ## Citations All model details and training setups can be found in our papers. If you use our model or find it useful in your projects, please cite our work: ``` @article{cruz2020establishing, title={Establishing Baselines for Text Classification in Low-Resource Languages}, author={Cruz, Jan Christian Blaise and Cheng, Charibeth}, journal={arXiv preprint arXiv:2005.02068}, year={2020} } @article{cruz2019evaluating, title={Evaluating Language Model Finetuning Techniques for Low-resource Languages}, author={Cruz, Jan Christian Blaise and Cheng, Charibeth}, journal={arXiv preprint arXiv:1907.00409}, year={2019} } ``` ## Data and Other Resources Data used to train this model as well as other benchmark datasets in Filipino can be found in my website at https://blaisecruz.com ## Contact If you have questions, concerns, or if you just want to chat about NLP and low-resource languages in general, you may reach me through my work email at [email protected]
jfarray/Model_dccuchile_bert-base-spanish-wwm-uncased_100_Epochs
d5bd386db77a099bcac7517416dff7f571c8446f
2022-02-14T22:15:16.000Z
[ "pytorch", "bert", "feature-extraction", "sentence-transformers", "sentence-similarity" ]
sentence-similarity
false
jfarray
null
jfarray/Model_dccuchile_bert-base-spanish-wwm-uncased_100_Epochs
4
null
sentence-transformers
18,730
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 256 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 11 with parameters: ``` {'batch_size': 15, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 100, "evaluation_steps": 1, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 110, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Dense({'in_features': 768, 'out_features': 256, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
jfarray/Model_dccuchile_bert-base-spanish-wwm-uncased_5_Epochs
b32d4cf9eaa9e8d58facd04244a68d66fcdd1ae3
2022-02-14T20:57:30.000Z
[ "pytorch", "bert", "feature-extraction", "sentence-transformers", "sentence-similarity" ]
sentence-similarity
false
jfarray
null
jfarray/Model_dccuchile_bert-base-spanish-wwm-uncased_5_Epochs
4
null
sentence-transformers
18,731
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 256 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 11 with parameters: ``` {'batch_size': 15, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 5, "evaluation_steps": 1, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 6, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Dense({'in_features': 768, 'out_features': 256, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
jhonparra18/wav2vec2-xls-r-300m-spanish-large-noLM
71931a15d9f1fcb937966d863b0fe1b06edf3bdb
2022-02-08T13:27:14.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "es", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
jhonparra18
null
jhonparra18/wav2vec2-xls-r-300m-spanish-large-noLM
4
null
transformers
18,732
--- license: apache-2.0 tags: - generated_from_trainer - "es" - "robust-speech-event" datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-spanish-large results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-spanish-large This model is a fine-tuned version of [tomascufaro/xls-r-es-test](https://huggingface.co/tomascufaro/xls-r-es-test) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.1431 - Wer: 0.1197 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 10 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 20 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 300 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.1769 | 0.15 | 400 | 0.1795 | 0.1698 | | 0.217 | 0.3 | 800 | 0.2000 | 0.1945 | | 0.2372 | 0.45 | 1200 | 0.1985 | 0.1859 | | 0.2351 | 0.6 | 1600 | 0.1901 | 0.1772 | | 0.2269 | 0.75 | 2000 | 0.1968 | 0.1783 | | 0.2284 | 0.9 | 2400 | 0.1873 | 0.1771 | | 0.2014 | 1.06 | 2800 | 0.1840 | 0.1696 | | 0.1988 | 1.21 | 3200 | 0.1904 | 0.1730 | | 0.1919 | 1.36 | 3600 | 0.1827 | 0.1630 | | 0.1919 | 1.51 | 4000 | 0.1788 | 0.1629 | | 0.1817 | 1.66 | 4400 | 0.1755 | 0.1558 | | 0.1812 | 1.81 | 4800 | 0.1795 | 0.1638 | | 0.1808 | 1.96 | 5200 | 0.1762 | 0.1603 | | 0.1625 | 2.11 | 5600 | 0.1721 | 0.1557 | | 0.1477 | 2.26 | 6000 | 0.1735 | 0.1504 | | 0.1508 | 2.41 | 6400 | 0.1708 | 0.1478 | | 0.157 | 2.56 | 6800 | 0.1644 | 0.1466 | | 0.1491 | 2.71 | 7200 | 0.1638 | 0.1445 | | 0.1458 | 2.86 | 7600 | 0.1582 | 0.1426 | | 0.1387 | 3.02 | 8000 | 0.1607 | 0.1376 | | 0.1269 | 3.17 | 8400 | 0.1559 | 0.1364 | | 0.1172 | 3.32 | 8800 | 0.1521 | 0.1335 | | 0.1203 | 3.47 | 9200 | 0.1534 | 0.1330 | | 0.1177 | 3.62 | 9600 | 0.1485 | 0.1304 | | 0.1167 | 3.77 | 10000 | 0.1498 | 0.1302 | | 0.1194 | 3.92 | 10400 | 0.1463 | 0.1287 | | 0.1053 | 4.07 | 10800 | 0.1483 | 0.1282 | | 0.098 | 4.22 | 11200 | 0.1498 | 0.1267 | | 0.0958 | 4.37 | 11600 | 0.1461 | 0.1233 | | 0.0946 | 4.52 | 12000 | 0.1444 | 0.1218 | | 0.094 | 4.67 | 12400 | 0.1434 | 0.1206 | | 0.0932 | 4.82 | 12800 | 0.1424 | 0.1206 | | 0.0912 | 4.98 | 13200 | 0.1431 | 0.1197 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
ji-xin/bert_base-QNLI-two_stage
eede6aefdd70a390295497311425d29d025e5576
2020-07-08T14:53:19.000Z
[ "pytorch", "transformers" ]
null
false
ji-xin
null
ji-xin/bert_base-QNLI-two_stage
4
null
transformers
18,733
Entry not found
ji-xin/bert_base-SST2-two_stage
eb03428e6460e612afa52ccfc22cfc15056f527b
2020-07-08T14:54:44.000Z
[ "pytorch", "transformers" ]
null
false
ji-xin
null
ji-xin/bert_base-SST2-two_stage
4
null
transformers
18,734
Entry not found
ji-xin/roberta_base-QNLI-two_stage
035feaba4ee7f396738ca644077beb5a5a4694cc
2020-07-08T15:06:38.000Z
[ "pytorch", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
ji-xin
null
ji-xin/roberta_base-QNLI-two_stage
4
null
transformers
18,735
Entry not found
jinlmsft/t5-large-slots
fa6c747d8f0588811697ba5556baf57551878595
2022-02-08T04:01:53.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
jinlmsft
null
jinlmsft/t5-large-slots
4
null
transformers
18,736
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: t5-large-slots results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-large-slots This model is a fine-tuned version of [t5-large](https://huggingface.co/t5-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0889 - Acc: 0.76 - True Num: 11167 - Num: 14748 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Acc | True Num | Num | |:-------------:|:-----:|:-----:|:---------------:|:----:|:--------:|:-----:| | 0.3539 | 0.56 | 1000 | 0.2669 | 0.56 | 8264 | 14748 | | 0.2523 | 1.13 | 2000 | 0.2031 | 0.56 | 8317 | 14748 | | 0.2003 | 1.69 | 3000 | 0.1498 | 0.58 | 8496 | 14748 | | 0.1609 | 2.25 | 4000 | 0.1284 | 0.58 | 8612 | 14748 | | 0.1431 | 2.82 | 5000 | 0.1119 | 0.59 | 8675 | 14748 | | 0.1236 | 3.38 | 6000 | 0.1054 | 0.59 | 8737 | 14748 | | 0.1172 | 3.95 | 7000 | 0.0981 | 0.59 | 8773 | 14748 | | 0.1027 | 4.51 | 8000 | 0.0955 | 0.6 | 8787 | 14748 | | 0.0968 | 5.07 | 9000 | 0.0931 | 0.6 | 8807 | 14748 | | 0.0911 | 5.64 | 10000 | 0.0895 | 0.6 | 8787 | 14748 | | 0.0852 | 6.2 | 11000 | 0.0912 | 0.6 | 8840 | 14748 | | 0.0823 | 6.76 | 12000 | 0.0880 | 0.6 | 8846 | 14748 | | 0.0768 | 7.33 | 13000 | 0.0915 | 0.6 | 8879 | 14748 | | 0.0758 | 7.89 | 14000 | 0.0892 | 0.6 | 8853 | 14748 | | 0.0708 | 8.46 | 15000 | 0.0885 | 0.6 | 8884 | 14748 | | 0.0701 | 9.02 | 16000 | 0.0884 | 0.6 | 8915 | 14748 | | 0.0685 | 9.58 | 17000 | 0.0884 | 0.6 | 8921 | 14748 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu102 - Datasets 1.15.1 - Tokenizers 0.10.3
jinmang2/beit-large-patch16-224-dapt-facemask
f15fe89ed7ffb86fc464f59196b9da9361fbb149
2021-09-02T04:53:40.000Z
[ "pytorch", "beit", "transformers" ]
null
false
jinmang2
null
jinmang2/beit-large-patch16-224-dapt-facemask
4
null
transformers
18,737
Entry not found
jkgrad/longformer-base-stsb
eca0ccf504bfe616fab38c4b8eb85c48522bcc20
2021-02-04T07:57:06.000Z
[ "pytorch", "longformer", "text-classification", "transformers" ]
text-classification
false
jkgrad
null
jkgrad/longformer-base-stsb
4
null
transformers
18,738
Entry not found
jky594176/BART1_GRU
8b7b8684d4ac3d26a86cc833526a081cb9ba7d0e
2021-05-30T12:59:07.000Z
[ "pytorch", "bart", "text-generation", "transformers" ]
text-generation
false
jky594176
null
jky594176/BART1_GRU
4
null
transformers
18,739
Entry not found
jky594176/recipe_BART1_NN
97a2dc4bc5933fa48d31587f0c04fae972bce1bf
2021-05-30T15:16:55.000Z
[ "pytorch", "bart", "text-generation", "transformers" ]
text-generation
false
jky594176
null
jky594176/recipe_BART1_NN
4
null
transformers
18,740
Entry not found
joaomiguel26/xlm-roberta-10-final
04602dc8525d44e10e8ac0654e9fb292b344218c
2021-12-06T16:26:38.000Z
[ "pytorch", "xlm-roberta", "feature-extraction", "transformers" ]
feature-extraction
false
joaomiguel26
null
joaomiguel26/xlm-roberta-10-final
4
null
transformers
18,741
Entry not found
joelito/gbert-base-ler
8a452000984a742a439839134877adebc83f24bc
2021-05-19T20:51:41.000Z
[ "pytorch", "tf", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
joelito
null
joelito/gbert-base-ler
4
null
transformers
18,742
# gbert-base-ler Task: ler Base Model: deepset/gbert-base Trained for 3 epochs Batch-size: 6 Seed: 42 Test F1-Score: 0.956
jpabbuehl/distilbert-base-uncased-finetuned-cola
c78c7d22e2bac73bf44ca9d39bb251c8ba98ed0d
2021-11-25T08:49:51.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
jpabbuehl
null
jpabbuehl/distilbert-base-uncased-finetuned-cola
4
null
transformers
18,743
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5229586822934302 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.7588 - Matthews Correlation: 0.5230 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5261 | 1.0 | 535 | 0.5125 | 0.4124 | | 0.3502 | 2.0 | 1070 | 0.5439 | 0.5076 | | 0.2378 | 3.0 | 1605 | 0.6629 | 0.4946 | | 0.1809 | 4.0 | 2140 | 0.7588 | 0.5230 | | 0.1309 | 5.0 | 2675 | 0.8901 | 0.5056 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
justin871030/bert-base-uncased-goemotions-ekman
96e2b8198a8936856c52501aebe40fdbd98494d3
2022-01-08T09:52:51.000Z
[ "pytorch", "bert", "transformers" ]
null
false
justin871030
null
justin871030/bert-base-uncased-goemotions-ekman
4
null
transformers
18,744
Entry not found
kaedefuto/chat_bot
25bda482eb9d5f0a2bf68e13e1f0332a564b8ef9
2021-09-07T14:25:01.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
kaedefuto
null
kaedefuto/chat_bot
4
null
transformers
18,745
Entry not found
kapilchauhan/distilbert-base-uncased-finetuned-cola
7ebbc5820d83445dd5e59ae8f6db08bf1d2cb24d
2022-02-24T12:29:36.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
kapilchauhan
null
kapilchauhan/distilbert-base-uncased-finetuned-cola
4
null
transformers
18,746
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5135743708561838 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.7696 - Matthews Correlation: 0.5136 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5284 | 1.0 | 535 | 0.4948 | 0.4093 | | 0.3529 | 2.0 | 1070 | 0.5135 | 0.4942 | | 0.2417 | 3.0 | 1605 | 0.6303 | 0.5083 | | 0.1818 | 4.0 | 2140 | 0.7696 | 0.5136 | | 0.1302 | 5.0 | 2675 | 0.8774 | 0.5123 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
kloon99/KML_Software_License_v1
6cb4c613c557b5808aa92acd8339e8356bb4dc56
2021-09-26T10:44:14.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
kloon99
null
kloon99/KML_Software_License_v1
4
null
transformers
18,747
{'C0': 'audit_rights', 'C1': 'licensee_indemnity', 'C2': 'licensor_indemnity', 'C3': 'license_grant', 'C4': 'eula_others', 'C5': 'licensee_infringement_indemnity', 'C6': 'licensor_exemption_liability', 'C7': 'licensor_limit_liabilty', 'C8': 'software_warranty'}
koala/bert-base-german-dbmdz-uncased-de
d80f7a22934822eb16547516b74a0615f63f2bdf
2021-12-10T09:30:47.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
koala
null
koala/bert-base-german-dbmdz-uncased-de
4
null
transformers
18,748
Entry not found
korca/bae-roberta-base-boolq
aa2f1e5cf59c3fda7f3881ba60e2f0d28cf5f307
2022-02-01T07:29:15.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
korca
null
korca/bae-roberta-base-boolq
4
null
transformers
18,749
Entry not found
korca/bae-roberta-base-mrpc
5b978bac6dd3945216badf0b4d74fb55ee6797bb
2022-02-02T04:46:58.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
korca
null
korca/bae-roberta-base-mrpc
4
null
transformers
18,750
Entry not found
korca/bae-roberta-base-rte-5
b6df5e2d606c598b513a37fd3ac82bd0d8b9a1d5
2022-02-04T16:19:11.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
korca
null
korca/bae-roberta-base-rte-5
4
null
transformers
18,751
Entry not found
korca/bae-roberta-base-rte
3d947ed4420de7e412aa59f0a463e4bba4ae481d
2022-02-02T04:53:59.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
korca
null
korca/bae-roberta-base-rte
4
null
transformers
18,752
Entry not found
korca/bert-base-mnli
28eb1602820974680f57f59316368794b96db944
2021-12-06T07:12:40.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
korca
null
korca/bert-base-mnli
4
null
transformers
18,753
Entry not found
korca/textfooler-roberta-base-sst2
e9782ae19318c479a57bc66d80279f5d936ca476
2022-01-31T15:38:40.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
korca
null
korca/textfooler-roberta-base-sst2
4
null
transformers
18,754
Entry not found
krevas/finance-koelectra-small-generator
780b58509cd7a1b674620793b8b4a5489581f098
2020-12-11T21:48:37.000Z
[ "pytorch", "electra", "fill-mask", "ko", "transformers", "autotrain_compatible" ]
fill-mask
false
krevas
null
krevas/finance-koelectra-small-generator
4
null
transformers
18,755
--- language: ko --- # 📈 Financial Korean ELECTRA model Pretrained ELECTRA Language Model for Korean (`finance-koelectra-small-generator`) > ELECTRA is a new method for self-supervised language representation learning. It can be used to > pre-train transformer networks using relatively little compute. ELECTRA models are trained to > distinguish "real" input tokens vs "fake" input tokens generated by another neural network, similar to > the discriminator of a GAN. More details about ELECTRA can be found in the [ICLR paper](https://openreview.net/forum?id=r1xMH1BtvB) or in the [official ELECTRA repository](https://github.com/google-research/electra) on GitHub. ## Stats The current version of the model is trained on a financial news data of Naver news. The final training corpus has a size of 25GB and 2.3B tokens. This model was trained a cased model on a TITAN RTX for 500k steps. ## Usage ```python from transformers import pipeline fill_mask = pipeline( "fill-mask", model="krevas/finance-koelectra-small-generator", tokenizer="krevas/finance-koelectra-small-generator" ) print(fill_mask(f"내일 해당 종목이 대폭 {fill_mask.tokenizer.mask_token}할 것이다.")) ``` # Huggingface model hub All models are available on the [Huggingface model hub](https://huggingface.co/krevas).
LACAI/roberta-large-dialog-narrative
5f8a7709a2dd59d52f9bc90a615ecce776fc13fa
2021-11-08T22:20:03.000Z
[ "pytorch", "tensorboard", "roberta", "fill-mask", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
fill-mask
false
LACAI
null
LACAI/roberta-large-dialog-narrative
4
1
transformers
18,756
--- license: mit tags: - generated_from_trainer model-index: - name: output_mlm results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # output_mlm This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.2024 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:------:|:---------------:| | 1.5832 | 0.19 | 15000 | 1.4992 | | 1.5325 | 0.39 | 30000 | 1.4653 | | 1.4979 | 0.58 | 45000 | 1.4359 | | 1.4715 | 0.77 | 60000 | 1.4039 | | 1.4448 | 0.97 | 75000 | 1.3877 | | 1.4191 | 1.16 | 90000 | 1.3603 | | 1.3988 | 1.35 | 105000 | 1.3425 | | 1.3699 | 1.54 | 120000 | 1.3230 | | 1.3493 | 1.74 | 135000 | 1.3012 | | 1.3201 | 1.93 | 150000 | 1.2773 | | 1.2993 | 2.12 | 165000 | 1.2617 | | 1.2745 | 2.32 | 180000 | 1.2490 | | 1.2614 | 2.51 | 195000 | 1.2283 | | 1.2424 | 2.7 | 210000 | 1.2152 | | 1.2296 | 2.9 | 225000 | 1.2052 | ### Framework versions - Transformers 4.11.2 - Pytorch 1.9.0 - Datasets 1.12.1 - Tokenizers 0.10.3
lagodw/plotly_gpt2_medium
50408788c0e908d0b53951c2aa873967a973b8a4
2021-10-21T15:18:48.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
lagodw
null
lagodw/plotly_gpt2_medium
4
null
transformers
18,757
Entry not found
lagodw/redditbot_gpt2_xl
ba5ce2258e334f7e2019980c4b02fc0a425e2c95
2021-10-04T18:21:06.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
lagodw
null
lagodw/redditbot_gpt2_xl
4
null
transformers
18,758
Entry not found
laurauzcategui/xlm-roberta-base-finetuned-marc-en
7a0a1355b1fefab378428fa7e0c42a12a66d145d
2021-10-22T13:20:51.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "text-classification", "dataset:amazon_reviews_multi", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
laurauzcategui
null
laurauzcategui/xlm-roberta-base-finetuned-marc-en
4
null
transformers
18,759
--- license: mit tags: - generated_from_trainer datasets: - amazon_reviews_multi model-index: - name: xlm-roberta-base-finetuned-marc-en results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-marc-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.8945 - Mae: 0.5 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mae | |:-------------:|:-----:|:----:|:---------------:|:---:| | 1.1411 | 1.0 | 235 | 0.9358 | 0.5 | | 0.9653 | 2.0 | 470 | 0.8945 | 0.5 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
laurievb/distilbert-base-uncased-finetuned-ner
f77fd07ae72f71512a761300e54f604a01b2f076
2021-08-16T09:37:45.000Z
[ "pytorch", "tensorboard", "distilbert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible" ]
token-classification
false
laurievb
null
laurievb/distilbert-base-uncased-finetuned-ner
4
null
transformers
18,760
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model_index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metric: name: Accuracy type: accuracy value: 0.9841453921553053 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0593 - Precision: 0.9257 - Recall: 0.9377 - F1: 0.9316 - Accuracy: 0.9841 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2402 | 1.0 | 878 | 0.0699 | 0.9129 | 0.9195 | 0.9162 | 0.9810 | | 0.0524 | 2.0 | 1756 | 0.0589 | 0.9220 | 0.9385 | 0.9301 | 0.9836 | | 0.0296 | 3.0 | 2634 | 0.0593 | 0.9257 | 0.9377 | 0.9316 | 0.9841 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
leeyujin/distilbert-base-uncased-finetuned-cola
fcd4bf290c37b516aa00ac7c42e2996726f74b0a
2022-02-07T07:08:04.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
leeyujin
null
leeyujin/distilbert-base-uncased-finetuned-cola
4
null
transformers
18,761
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5062132225102124 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.5608 - Matthews Correlation: 0.5062 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | No log | 1.0 | 134 | 0.4851 | 0.4301 | | No log | 2.0 | 268 | 0.4619 | 0.4891 | | No log | 3.0 | 402 | 0.5447 | 0.4965 | | 0.3828 | 4.0 | 536 | 0.5608 | 0.5062 | | 0.3828 | 5.0 | 670 | 0.5702 | 0.5029 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.8.1+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
leonadase/distilbert-base-uncased-finetuned-ner
356dfbc1bfd5c8a33e0de951dcede9508d35472a
2022-02-14T13:51:21.000Z
[ "pytorch", "tensorboard", "distilbert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
leonadase
null
leonadase/distilbert-base-uncased-finetuned-ner
4
null
transformers
18,762
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9210439378923027 - name: Recall type: recall value: 0.9356751314464705 - name: F1 type: f1 value: 0.9283018867924528 - name: Accuracy type: accuracy value: 0.983176322938345 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0611 - Precision: 0.9210 - Recall: 0.9357 - F1: 0.9283 - Accuracy: 0.9832 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2341 | 1.0 | 878 | 0.0734 | 0.9118 | 0.9206 | 0.9162 | 0.9799 | | 0.0546 | 2.0 | 1756 | 0.0591 | 0.9210 | 0.9350 | 0.9279 | 0.9829 | | 0.0297 | 3.0 | 2634 | 0.0611 | 0.9210 | 0.9357 | 0.9283 | 0.9832 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
lewtun/MiniLM-L12-H384-uncased-finetuned-imdb
95050a6c9141fd2d6ebdf76541ea3836b558ba6d
2021-09-28T18:59:38.000Z
[ "pytorch", "tensorboard", "bert", "fill-mask", "dataset:imdb", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
fill-mask
false
lewtun
null
lewtun/MiniLM-L12-H384-uncased-finetuned-imdb
4
null
transformers
18,763
--- license: mit tags: - generated_from_trainer datasets: - imdb model-index: - name: MiniLM-L12-H384-uncased-finetuned-imdb results: - task: name: Masked Language Modeling type: fill-mask dataset: name: imdb type: imdb args: plain_text --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # MiniLM-L12-H384-uncased-finetuned-imdb This model is a fine-tuned version of [microsoft/MiniLM-L12-H384-uncased](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 3.9328 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 5.2464 | 1.0 | 391 | 4.2951 | | 4.2302 | 2.0 | 782 | 4.0023 | | 4.0726 | 3.0 | 1173 | 3.9328 | ### Framework versions - Transformers 4.10.3 - Pytorch 1.9.1+cu111 - Datasets 1.12.1 - Tokenizers 0.10.3
lewtun/xlm-roberta-base-finetuned-marc-500-samples
2358f0bf0043c9424a95ec14b81ec12d652b88a4
2021-10-12T15:12:51.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "text-classification", "transformers" ]
text-classification
false
lewtun
null
lewtun/xlm-roberta-base-finetuned-marc-500-samples
4
null
transformers
18,764
--- tags:text-classification ---
lewtun/xlm-roberta-base-finetuned-marc-en-dummy
b1f6c54f687cb1d3e241ca66509a8ba5448d59a4
2021-10-21T20:03:13.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "text-classification", "dataset:amazon_reviews_multi", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
lewtun
null
lewtun/xlm-roberta-base-finetuned-marc-en-dummy
4
null
transformers
18,765
--- license: mit tags: - generated_from_trainer datasets: - amazon_reviews_multi model-index: - name: xlm-roberta-base-finetuned-marc-en-dummy results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-marc-en-dummy This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.8931 - Mae: 0.4634 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.1258 | 1.0 | 235 | 0.9538 | 0.4390 | | 0.9445 | 2.0 | 470 | 0.8931 | 0.4634 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
lgris/sew-tiny-portuguese-cv8
05d9a87f886f0eac586785a3ffd071e4d1cfe802
2022-03-23T18:29:00.000Z
[ "pytorch", "tensorboard", "sew", "automatic-speech-recognition", "pt", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
lgris
null
lgris/sew-tiny-portuguese-cv8
4
null
transformers
18,766
--- language: - pt license: apache-2.0 tags: - generated_from_trainer - hf-asr-leaderboard - pt - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: sew-tiny-portuguese-cv8 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: pt metrics: - name: Test WER type: wer value: 33.71 - name: Test CER type: cer value: 10.69 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: sv metrics: - name: Test WER type: wer value: 52.79 - name: Test CER type: cer value: 20.98 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: pt metrics: - name: Test WER type: wer value: 53.18 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: pt metrics: - name: Test WER type: wer value: 55.23 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sew-tiny-portuguese-cv8 This model is a fine-tuned version of [lgris/sew-tiny-pt](https://huggingface.co/lgris/sew-tiny-pt) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.4082 - Wer: 0.3053 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 40000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | No log | 1.93 | 1000 | 2.9134 | 0.9767 | | 2.9224 | 3.86 | 2000 | 2.8405 | 0.9789 | | 2.9224 | 5.79 | 3000 | 2.8094 | 0.9800 | | 2.8531 | 7.72 | 4000 | 2.7439 | 0.9891 | | 2.8531 | 9.65 | 5000 | 2.7057 | 1.0159 | | 2.7721 | 11.58 | 6000 | 2.7235 | 1.0709 | | 2.7721 | 13.51 | 7000 | 2.5931 | 1.1035 | | 2.6566 | 15.44 | 8000 | 2.2171 | 0.9884 | | 2.6566 | 17.37 | 9000 | 1.2399 | 0.8081 | | 1.9558 | 19.31 | 10000 | 0.9045 | 0.6353 | | 1.9558 | 21.24 | 11000 | 0.7705 | 0.5533 | | 1.4987 | 23.17 | 12000 | 0.7068 | 0.5165 | | 1.4987 | 25.1 | 13000 | 0.6641 | 0.4718 | | 1.3811 | 27.03 | 14000 | 0.6043 | 0.4470 | | 1.3811 | 28.96 | 15000 | 0.5532 | 0.4268 | | 1.2897 | 30.89 | 16000 | 0.5371 | 0.4101 | | 1.2897 | 32.82 | 17000 | 0.5924 | 0.4150 | | 1.225 | 34.75 | 18000 | 0.4949 | 0.3894 | | 1.225 | 36.68 | 19000 | 0.5591 | 0.4045 | | 1.193 | 38.61 | 20000 | 0.4927 | 0.3731 | | 1.193 | 40.54 | 21000 | 0.4922 | 0.3712 | | 1.1482 | 42.47 | 22000 | 0.4799 | 0.3662 | | 1.1482 | 44.4 | 23000 | 0.4846 | 0.3648 | | 1.1201 | 46.33 | 24000 | 0.4770 | 0.3623 | | 1.1201 | 48.26 | 25000 | 0.4530 | 0.3426 | | 1.0892 | 50.19 | 26000 | 0.4523 | 0.3527 | | 1.0892 | 52.12 | 27000 | 0.4573 | 0.3443 | | 1.0583 | 54.05 | 28000 | 0.4488 | 0.3353 | | 1.0583 | 55.98 | 29000 | 0.4295 | 0.3285 | | 1.0319 | 57.92 | 30000 | 0.4321 | 0.3220 | | 1.0319 | 59.85 | 31000 | 0.4244 | 0.3236 | | 1.0076 | 61.78 | 32000 | 0.4197 | 0.3201 | | 1.0076 | 63.71 | 33000 | 0.4230 | 0.3208 | | 0.9851 | 65.64 | 34000 | 0.4090 | 0.3127 | | 0.9851 | 67.57 | 35000 | 0.4088 | 0.3133 | | 0.9695 | 69.5 | 36000 | 0.4123 | 0.3088 | | 0.9695 | 71.43 | 37000 | 0.4017 | 0.3090 | | 0.9514 | 73.36 | 38000 | 0.4184 | 0.3086 | | 0.9514 | 75.29 | 39000 | 0.4075 | 0.3043 | | 0.944 | 77.22 | 40000 | 0.4082 | 0.3053 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
lgris/wav2vec2-xls-r-1b-cv8
a4316d1d5945e66ca098f22159f22ec6a7f870ca
2022-03-23T18:29:59.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "pt", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
lgris
null
lgris/wav2vec2-xls-r-1b-cv8
4
null
transformers
18,767
--- language: - pt license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_8_0 - pt - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-xls-r-1b-cv8 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: pt metrics: - name: Test WER type: wer value: 17.7 - name: Test CER type: cer value: 5.21 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: sv metrics: - name: Test WER type: wer value: 45.68 - name: Test CER type: cer value: 18.67 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: pt metrics: - name: Test WER type: wer value: 45.29 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: pt metrics: - name: Test WER type: wer value: 48.03 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-1b-cv8 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - PT dataset. It achieves the following results on the evaluation set: - Loss: 0.2007 - Wer: 0.1838 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 30.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 2.1172 | 0.32 | 500 | 1.2852 | 0.9783 | | 1.4152 | 0.64 | 1000 | 0.6434 | 0.6105 | | 1.4342 | 0.96 | 1500 | 0.4844 | 0.3989 | | 1.4657 | 1.29 | 2000 | 0.5080 | 0.4490 | | 1.4961 | 1.61 | 2500 | 0.4764 | 0.4264 | | 1.4515 | 1.93 | 3000 | 0.4519 | 0.4068 | | 1.3924 | 2.25 | 3500 | 0.4472 | 0.4132 | | 1.4524 | 2.57 | 4000 | 0.4455 | 0.3939 | | 1.4328 | 2.89 | 4500 | 0.4369 | 0.4069 | | 1.3456 | 3.22 | 5000 | 0.4234 | 0.3774 | | 1.3725 | 3.54 | 5500 | 0.4387 | 0.3789 | | 1.3812 | 3.86 | 6000 | 0.4298 | 0.3825 | | 1.3282 | 4.18 | 6500 | 0.4025 | 0.3703 | | 1.3326 | 4.5 | 7000 | 0.3917 | 0.3502 | | 1.3028 | 4.82 | 7500 | 0.3889 | 0.3582 | | 1.293 | 5.14 | 8000 | 0.3859 | 0.3496 | | 1.321 | 5.47 | 8500 | 0.3875 | 0.3576 | | 1.3165 | 5.79 | 9000 | 0.3927 | 0.3589 | | 1.2701 | 6.11 | 9500 | 0.4058 | 0.3621 | | 1.2718 | 6.43 | 10000 | 0.4211 | 0.3916 | | 1.2683 | 6.75 | 10500 | 0.3968 | 0.3620 | | 1.2643 | 7.07 | 11000 | 0.4128 | 0.3848 | | 1.2485 | 7.4 | 11500 | 0.3849 | 0.3727 | | 1.2608 | 7.72 | 12000 | 0.3770 | 0.3474 | | 1.2388 | 8.04 | 12500 | 0.3774 | 0.3574 | | 1.2524 | 8.36 | 13000 | 0.3789 | 0.3550 | | 1.2458 | 8.68 | 13500 | 0.3770 | 0.3410 | | 1.2505 | 9.0 | 14000 | 0.3638 | 0.3403 | | 1.2254 | 9.32 | 14500 | 0.3770 | 0.3509 | | 1.2459 | 9.65 | 15000 | 0.3592 | 0.3349 | | 1.2049 | 9.97 | 15500 | 0.3600 | 0.3428 | | 1.2097 | 10.29 | 16000 | 0.3626 | 0.3347 | | 1.1988 | 10.61 | 16500 | 0.3740 | 0.3269 | | 1.1671 | 10.93 | 17000 | 0.3548 | 0.3245 | | 1.1532 | 11.25 | 17500 | 0.3394 | 0.3140 | | 1.1459 | 11.58 | 18000 | 0.3349 | 0.3156 | | 1.1511 | 11.9 | 18500 | 0.3272 | 0.3110 | | 1.1465 | 12.22 | 19000 | 0.3348 | 0.3084 | | 1.1426 | 12.54 | 19500 | 0.3193 | 0.3027 | | 1.1278 | 12.86 | 20000 | 0.3318 | 0.3021 | | 1.149 | 13.18 | 20500 | 0.3169 | 0.2947 | | 1.114 | 13.5 | 21000 | 0.3224 | 0.2986 | | 1.1249 | 13.83 | 21500 | 0.3227 | 0.2921 | | 1.0968 | 14.15 | 22000 | 0.3033 | 0.2878 | | 1.0851 | 14.47 | 22500 | 0.2996 | 0.2863 | | 1.0985 | 14.79 | 23000 | 0.3011 | 0.2843 | | 1.0808 | 15.11 | 23500 | 0.2932 | 0.2759 | | 1.069 | 15.43 | 24000 | 0.2919 | 0.2750 | | 1.0602 | 15.76 | 24500 | 0.2959 | 0.2713 | | 1.0369 | 16.08 | 25000 | 0.2931 | 0.2754 | | 1.0573 | 16.4 | 25500 | 0.2920 | 0.2722 | | 1.051 | 16.72 | 26000 | 0.2855 | 0.2632 | | 1.0279 | 17.04 | 26500 | 0.2850 | 0.2649 | | 1.0496 | 17.36 | 27000 | 0.2817 | 0.2585 | | 1.0516 | 17.68 | 27500 | 0.2961 | 0.2635 | | 1.0244 | 18.01 | 28000 | 0.2781 | 0.2589 | | 1.0099 | 18.33 | 28500 | 0.2783 | 0.2565 | | 1.0016 | 18.65 | 29000 | 0.2719 | 0.2537 | | 1.0157 | 18.97 | 29500 | 0.2621 | 0.2449 | | 0.9572 | 19.29 | 30000 | 0.2582 | 0.2427 | | 0.9802 | 19.61 | 30500 | 0.2707 | 0.2468 | | 0.9577 | 19.94 | 31000 | 0.2563 | 0.2389 | | 0.9562 | 20.26 | 31500 | 0.2592 | 0.2382 | | 0.962 | 20.58 | 32000 | 0.2539 | 0.2341 | | 0.9541 | 20.9 | 32500 | 0.2505 | 0.2288 | | 0.9587 | 21.22 | 33000 | 0.2486 | 0.2302 | | 0.9146 | 21.54 | 33500 | 0.2461 | 0.2269 | | 0.9215 | 21.86 | 34000 | 0.2387 | 0.2228 | | 0.9105 | 22.19 | 34500 | 0.2405 | 0.2222 | | 0.8949 | 22.51 | 35000 | 0.2316 | 0.2191 | | 0.9153 | 22.83 | 35500 | 0.2358 | 0.2180 | | 0.8907 | 23.15 | 36000 | 0.2369 | 0.2168 | | 0.8973 | 23.47 | 36500 | 0.2323 | 0.2120 | | 0.8878 | 23.79 | 37000 | 0.2293 | 0.2104 | | 0.8818 | 24.12 | 37500 | 0.2302 | 0.2132 | | 0.8919 | 24.44 | 38000 | 0.2262 | 0.2083 | | 0.8473 | 24.76 | 38500 | 0.2257 | 0.2040 | | 0.8516 | 25.08 | 39000 | 0.2246 | 0.2031 | | 0.8451 | 25.4 | 39500 | 0.2198 | 0.2000 | | 0.8288 | 25.72 | 40000 | 0.2199 | 0.1990 | | 0.8465 | 26.05 | 40500 | 0.2165 | 0.1972 | | 0.8305 | 26.37 | 41000 | 0.2128 | 0.1957 | | 0.8202 | 26.69 | 41500 | 0.2127 | 0.1937 | | 0.8223 | 27.01 | 42000 | 0.2100 | 0.1934 | | 0.8322 | 27.33 | 42500 | 0.2076 | 0.1905 | | 0.8139 | 27.65 | 43000 | 0.2054 | 0.1880 | | 0.8299 | 27.97 | 43500 | 0.2026 | 0.1868 | | 0.7937 | 28.3 | 44000 | 0.2045 | 0.1872 | | 0.7972 | 28.62 | 44500 | 0.2025 | 0.1861 | | 0.809 | 28.94 | 45000 | 0.2026 | 0.1858 | | 0.813 | 29.26 | 45500 | 0.2013 | 0.1838 | | 0.7718 | 29.58 | 46000 | 0.2010 | 0.1837 | | 0.7929 | 29.9 | 46500 | 0.2008 | 0.1840 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3.dev0 - Tokenizers 0.11.0
liaad/srl-pt_xlmr-base
07030ec73ebc895a16423d30f8b34355e27e0861
2021-09-22T08:56:34.000Z
[ "pytorch", "xlm-roberta", "feature-extraction", "multilingual", "pt", "dataset:PropBank.Br", "arxiv:2101.01213", "transformers", "xlm-roberta-base", "semantic role labeling", "finetuned", "license:apache-2.0" ]
feature-extraction
false
liaad
null
liaad/srl-pt_xlmr-base
4
null
transformers
18,768
--- language: - multilingual - pt tags: - xlm-roberta-base - semantic role labeling - finetuned license: apache-2.0 datasets: - PropBank.Br metrics: - F1 Measure --- # XLM-R base fine-tuned on Portuguese semantic role labeling ## Model description This model is the [`xlm-roberta-base`](https://huggingface.co/xlm-roberta-base) fine-tuned on Portuguese semantic role labeling data. This is part of a project from which resulted the following models: * [liaad/srl-pt_bertimbau-base](https://huggingface.co/liaad/srl-pt_bertimbau-base) * [liaad/srl-pt_bertimbau-large](https://huggingface.co/liaad/srl-pt_bertimbau-large) * [liaad/srl-pt_xlmr-base](https://huggingface.co/liaad/srl-pt_xlmr-base) * [liaad/srl-pt_xlmr-large](https://huggingface.co/liaad/srl-pt_xlmr-large) * [liaad/srl-pt_mbert-base](https://huggingface.co/liaad/srl-pt_mbert-base) * [liaad/srl-en_xlmr-base](https://huggingface.co/liaad/srl-en_xlmr-base) * [liaad/srl-en_xlmr-large](https://huggingface.co/liaad/srl-en_xlmr-large) * [liaad/srl-en_mbert-base](https://huggingface.co/liaad/srl-en_mbert-base) * [liaad/srl-enpt_xlmr-base](https://huggingface.co/liaad/srl-enpt_xlmr-base) * [liaad/srl-enpt_xlmr-large](https://huggingface.co/liaad/srl-enpt_xlmr-large) * [liaad/srl-enpt_mbert-base](https://huggingface.co/liaad/srl-enpt_mbert-base) * [liaad/ud_srl-pt_bertimbau-large](https://huggingface.co/liaad/ud_srl-pt_bertimbau-large) * [liaad/ud_srl-pt_xlmr-large](https://huggingface.co/liaad/ud_srl-pt_xlmr-large) * [liaad/ud_srl-enpt_xlmr-large](https://huggingface.co/liaad/ud_srl-enpt_xlmr-large) For more information, please see the accompanying article (See BibTeX entry and citation info below) and the [project's github](https://github.com/asofiaoliveira/srl_bert_pt). ## Intended uses & limitations #### How to use To use the transformers portion of this model: ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("liaad/srl-pt_xlmr-base") model = AutoModel.from_pretrained("liaad/srl-pt_xlmr-base") ``` To use the full SRL model (transformers portion + a decoding layer), refer to the [project's github](https://github.com/asofiaoliveira/srl_bert_pt). #### Limitations and bias - This model does not include a Tensorflow version. This is because the "type_vocab_size" in this model was changed (from 1 to 2) and, therefore, it cannot be easily converted to Tensorflow. ## Training procedure The model was trained on the PropBank.Br datasets, using 10-fold Cross-Validation. The 10 resulting models were tested on the folds as well as on a smaller opinion dataset "Buscapé". For more information, please see the accompanying article (See BibTeX entry and citation info below) and the [project's github](https://github.com/asofiaoliveira/srl_bert_pt). ## Eval results | Model Name | F<sub>1</sub> CV PropBank.Br (in domain) | F<sub>1</sub> Buscapé (out of domain) | | --------------- | ------ | ----- | | `srl-pt_bertimbau-base` | 76.30 | 73.33 | | `srl-pt_bertimbau-large` | 77.42 | 74.85 | | `srl-pt_xlmr-base` | 75.22 | 72.82 | | `srl-pt_xlmr-large` | 77.59 | 73.84 | | `srl-pt_mbert-base` | 72.76 | 66.89 | | `srl-en_xlmr-base` | 66.59 | 65.24 | | `srl-en_xlmr-large` | 67.60 | 64.94 | | `srl-en_mbert-base` | 63.07 | 58.56 | | `srl-enpt_xlmr-base` | 76.50 | 73.74 | | `srl-enpt_xlmr-large` | **78.22** | 74.55 | | `srl-enpt_mbert-base` | 74.88 | 69.19 | | `ud_srl-pt_bertimbau-large` | 77.53 | 74.49 | | `ud_srl-pt_xlmr-large` | 77.69 | 74.91 | | `ud_srl-enpt_xlmr-large` | 77.97 | **75.05** | ### BibTeX entry and citation info ```bibtex @misc{oliveira2021transformers, title={Transformers and Transfer Learning for Improving Portuguese Semantic Role Labeling}, author={Sofia Oliveira and Daniel Loureiro and Alípio Jorge}, year={2021}, eprint={2101.01213}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
liangtaiwan/bart-base-correct-mask-embedding
9b29ac89e717950efc64eb88ac60632ec96fa0da
2021-09-17T08:45:28.000Z
[ "pytorch", "bart", "feature-extraction", "transformers" ]
feature-extraction
false
liangtaiwan
null
liangtaiwan/bart-base-correct-mask-embedding
4
null
transformers
18,769
Entry not found
lighteternal/SSE-TUC-mt-el-en-cased
65b8555c775ddbe1edecca4f4cf5371a01eb4146
2021-03-31T17:26:16.000Z
[ "pytorch", "fsmt", "text2text-generation", "en", "el", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
lighteternal
null
lighteternal/SSE-TUC-mt-el-en-cased
4
null
transformers
18,770
--- language: - en - el tags: - translation widget: - text: "Ο όρος τεχνητή νοημοσύνη αναφέρεται στον κλάδο της πληροφορικής ο οποίος ασχολείται με τη σχεδίαση και την υλοποίηση υπολογιστικών συστημάτων που μιμούνται στοιχεία της ανθρώπινης συμπεριφοράς. " license: apache-2.0 metrics: - bleu --- ## Greek to English NMT ## By the Hellenic Army Academy (SSE) and the Technical University of Crete (TUC) * source languages: el * target languages: en * licence: apache-2.0 * dataset: Opus, CCmatrix * model: transformer(fairseq) * pre-processing: tokenization + BPE segmentation * metrics: bleu, chrf ### Model description Trained using the Fairseq framework, transformer_iwslt_de_en architecture.\\ BPE segmentation (20k codes).\\ Mixed-case model. ### How to use ``` from transformers import FSMTTokenizer, FSMTForConditionalGeneration mname = "lighteternal/SSE-TUC-mt-el-en-cased" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) text = "Ο όρος τεχνητή νοημοσύνη αναφέρεται στον κλάδο της πληροφορικής ο οποίος ασχολείται με τη σχεδίαση και την υλοποίηση υπολογιστικών συστημάτων που μιμούνται στοιχεία της ανθρώπινης συμπεριφοράς ." encoded = tokenizer.encode(text, return_tensors='pt') outputs = model.generate(encoded, num_beams=5, num_return_sequences=5, early_stopping=True) for i, output in enumerate(outputs): i += 1 print(f"{i}: {output.tolist()}") decoded = tokenizer.decode(output, skip_special_tokens=True) print(f"{i}: {decoded}") ``` ## Training data Consolidated corpus from Opus and CC-Matrix (~6.6GB in total) ## Eval results Results on Tatoeba testset (EL-EN): | BLEU | chrF | | ------ | ------ | | 79.3 | 0.795 | Results on XNLI parallel (EL-EN): | BLEU | chrF | | ------ | ------ | | 66.2 | 0.623 | ### BibTeX entry and citation info Dimitris Papadopoulos, et al. "PENELOPIE: Enabling Open Information Extraction for the Greek Language through Machine Translation." (2021). Accepted at EACL 2021 SRW ### Acknowledgement The research work was supported by the Hellenic Foundation for Research and Innovation (HFRI) under the HFRI PhD Fellowship grant (Fellowship Number:50, 2nd call)
luffycodes/bb_narataka_roberta_large_nli_bsz_16_bb_bsz_16_nli_lr_3e5_bb_lr_3e5_grad_adam
13cc06bd18bfaec747f2c8a75976b962171a4c17
2021-10-30T02:19:29.000Z
[ "pytorch", "roberta", "transformers" ]
null
false
luffycodes
null
luffycodes/bb_narataka_roberta_large_nli_bsz_16_bb_bsz_16_nli_lr_3e5_bb_lr_3e5_grad_adam
4
null
transformers
18,771
Entry not found
luigisbrother/wav2vec2-common_voice-tr-demo-dist
94410eb6a1cb37888d732aa6c749960571c5aa71
2021-10-18T10:12:29.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
luigisbrother
null
luigisbrother/wav2vec2-common_voice-tr-demo-dist
4
null
transformers
18,772
Entry not found
lumalik/vent-roberta-emotion
f2f301758031d78f6e6a0796077e9ae033b2f819
2021-08-31T10:16:58.000Z
[ "pytorch", "roberta", "text-classification", "arxiv:1901.04856", "transformers" ]
text-classification
false
lumalik
null
lumalik/vent-roberta-emotion
4
1
transformers
18,773
# Vent-roBERTa-emotion This is a roBERTa pretrained on twitter and then trained for self-labeled emotion classification on the Vent dataset (see https://arxiv.org/abs/1901.04856). The Vent dataset contains 33 million posts annotated with one emotion by the user themselves. <br/> The model was trained to recognize 5 emotions ("Affection", "Anger", "Fear", "Happiness", "Sadness") on 7 million posts from the dataset. <br/> Example of how to use the classifier on single texts. <br/> ```` from transformers import AutoModelForSequenceClassification from transformers import AutoTokenizer import numpy as np from scipy.special import softmax import torch tokenizer = AutoTokenizer.from_pretrained("lumalik/vent-roberta-emotion") model = AutoModelForSequenceClassification.from_pretrained("lumalik/vent-roberta-emotion") model.eval() texts = ["You wont believe what happened to me today", "You wont believe what happened to me today!", "You wont believe what happened to me today...", "You wont believe what happened to me today <3", "You wont believe what happened to me today :)", "You wont believe what happened to me today :("] for text in texts: encoded_text = tokenizer(text, return_tensors="pt") output = model(**encoded_text) output = softmax(output[0].detach().numpy(), axis=1) print("======================") print(text) print("Affection: {}".format(output[0][0])) print("Anger: {}".format(output[0][1])) print("Fear: {}".format(output[0][2])) print("Happiness: {}".format(output[0][3])) print("Sadness: {}".format(output[0][4])) ````
lvwerra/bert-base-uncased-issues-128-issues-128
78415dd4b82abce0f2ca1e561ce0061ec20d4023
2021-10-27T22:51:47.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
lvwerra
null
lvwerra/bert-base-uncased-issues-128-issues-128
4
null
transformers
18,774
Entry not found
lysandre/arxiv
6449932bb66ad5a8a72e1bd9ade6c365cabc59ef
2021-05-23T08:44:27.000Z
[ "pytorch", "jax", "gpt2", "transformers" ]
null
false
lysandre
null
lysandre/arxiv
4
null
transformers
18,775
# ArXiv GPT-2 checkpoint This is a GPT-2 small checkpoint for PyTorch. It is the official `gpt2-small` finetuned to ArXiv paper on physics fields. ## Training data This model was trained on a subset of ArXiv papers that were parsed from PDF to txt. The resulting data is made of 130MB of text, mostly from quantum physics (quant-ph) and other physics sub-fields.
lysandre/new-dummy-model
ba384e28b28bfc5300885d784fa0d6e8912501f2
2021-06-12T07:49:19.000Z
[ "pytorch", "tf", "distilbert", "text-classification", "transformers" ]
text-classification
false
lysandre
null
lysandre/new-dummy-model
4
null
transformers
18,776
# Dummy model This is a dummy model.
lysandre/tests
5f89bea6acdf9cf23df74bac902820d0a32bc6f4
2021-06-17T06:55:09.000Z
[ "pytorch", "tensorboard", "distilbert", "feature-extraction", "transformers" ]
feature-extraction
false
lysandre
null
lysandre/tests
4
null
transformers
18,777
Entry not found
lysandre/tiny-distil
3d8f72f19066ac3e502ee3be04afe74b8611342f
2021-06-17T07:47:21.000Z
[ "pytorch", "distilbert", "feature-extraction", "transformers" ]
feature-extraction
false
lysandre
null
lysandre/tiny-distil
4
null
transformers
18,778
Entry not found
m-lin20/satellite-instrument-roberta-NER
d78f556ddf702099cc95ad7451b222af91309192
2021-12-13T07:58:30.000Z
[ "pytorch", "roberta", "token-classification", "pt", "transformers", "autotrain_compatible" ]
token-classification
false
m-lin20
null
m-lin20/satellite-instrument-roberta-NER
4
1
transformers
18,779
--- language: "pt" widget: - text: "Poised for launch in mid-2021, the joint NASA-USGS Landsat 9 mission will continue this important data record. In many respects Landsat 9 is a clone of Landsat-8. The Operational Land Imager-2 (OLI-2) is largely identical to Landsat 8 OLI, providing calibrated imagery covering the solar reflected wavelengths. The Thermal Infrared Sensor-2 (TIRS-2) improves upon Landsat 8 TIRS, addressing known issues including stray light incursion and a malfunction of the instrument scene select mirror. In addition, Landsat 9 adds redundancy to TIRS-2, thus upgrading the instrument to a 5-year design life commensurate with other elements of the mission. Initial performance testing of OLI-2 and TIRS-2 indicate that the instruments are of excellent quality and expected to match or improve on Landsat 8 data quality. " example_title: "example 1" - text: "Compared to its predecessor, Jason-3, the two AMR-C radiometer instruments have an external calibration system which enables higher radiometric stability accomplished by moving the secondary mirror between well-defined targets. Sentinel-6 allows continuing the study of the ocean circulation, climate change, and sea-level rise for at least another decade. Besides the external calibration for the AMR heritage radiometer (18.7, 23.8, and 34 GHz channels), the AMR-C contains a high-resolution microwave radiometer (HRMR) with radiometer channels at 90, 130, and 168 GHz. This subsystem allows for a factor of 5× higher spatial resolution at coastal transitions. This article presents a brief description of the instrument and the measured performance of the completed AMR-C-A and AMR-C-B instruments." example_title: "example 2" - text: "The Landsat 9 will continue the Landsat data record into its fifth decade with a near-copy build of Landsat 8 with launch scheduled for December 2020. The two instruments on Landsat 9 are Thermal Infrared Sensor-2 (TIRS-2) and Operational Land Imager-2 (OLI-2)." example_title: "example 3" inference: parameters: aggregation_strategy: "simple" --- # satellite-instrument-roberta-NER For details, please visit the [GitHub link](https://github.com/Tsinghua-mLin/satellite-instrument-NER).
m3hrdadfi/albert-fa-base-v2-sentiment-deepsentipers-binary
f5bbe4f6c33215bc1fede622864cf60ebac92ef9
2020-12-26T08:42:08.000Z
[ "pytorch", "tf", "albert", "text-classification", "fa", "transformers", "license:apache-2.0" ]
text-classification
false
m3hrdadfi
null
m3hrdadfi/albert-fa-base-v2-sentiment-deepsentipers-binary
4
null
transformers
18,780
--- language: fa license: apache-2.0 --- # ALBERT Persian A Lite BERT for Self-supervised Learning of Language Representations for the Persian Language > میتونی بهش بگی برت_کوچولو [ALBERT-Persian](https://github.com/m3hrdadfi/albert-persian) is the first attempt on ALBERT for the Persian Language. The model was trained based on Google's ALBERT BASE Version 2.0 over various writing styles from numerous subjects (e.g., scientific, novels, news) with more than 3.9M documents, 73M sentences, and 1.3B words, like the way we did for ParsBERT. Please follow the [ALBERT-Persian](https://github.com/m3hrdadfi/albert-persian) repo for the latest information about previous and current models. ## Persian Sentiment [Digikala, SnappFood, DeepSentiPers] It aims to classify text, such as comments, based on their emotional bias. We tested three well-known datasets for this task: `Digikala` user comments, `SnappFood` user comments, and `DeepSentiPers` in two binary-form and multi-form types. ### DeepSentiPers which is a balanced and augmented version of SentiPers, contains 12,138 user opinions about digital products labeled with five different classes; two positives (i.e., happy and delighted), two negatives (i.e., furious and angry) and one neutral class. Therefore, this dataset can be utilized for both multi-class and binary classification. In the case of binary classification, the neutral class and its corresponding sentences are removed from the dataset. **Binary:** 1. Negative (Furious + Angry) 2. Positive (Happy + Delighted) **Multi** 1. Furious 2. Angry 3. Neutral 4. Happy 5. Delighted | Label | # | |:---------:|:----:| | Furious | 236 | | Angry | 1357 | | Neutral | 2874 | | Happy | 2848 | | Delighted | 2516 | **Download** You can download the dataset from: - [SentiPers](https://github.com/phosseini/sentipers) - [DeepSentiPers](https://github.com/JoyeBright/DeepSentiPers) ## Results The following table summarizes the F1 score obtained as compared to other models and architectures. | Dataset | ALBERT-fa-base-v2 | ParsBERT-v1 | mBERT | DeepSentiPers | |:------------------------:|:-----------------:|:-----------:|:-----:|:-------------:| | SentiPers (Multi Class) | 66.12 | 71.11 | - | 69.33 | | SentiPers (Binary Class) | 91.09 | 92.13 | - | 91.98 | ### BibTeX entry and citation info Please cite in publications as the following: ```bibtex @misc{ALBERTPersian, author = {Mehrdad Farahani}, title = {ALBERT-Persian: A Lite BERT for Self-supervised Learning of Language Representations for the Persian Language}, year = {2020}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\url{https://github.com/m3hrdadfi/albert-persian}}, } @article{ParsBERT, title={ParsBERT: Transformer-based Model for Persian Language Understanding}, author={Mehrdad Farahani, Mohammad Gharachorloo, Marzieh Farahani, Mohammad Manthouri}, journal={ArXiv}, year={2020}, volume={abs/2005.12515} } ``` ## Questions? Post a Github issue on the [ALBERT-Persian](https://github.com/m3hrdadfi/albert-persian) repo.
m3tafl0ps/autonlp-NLPIsFun-251844
d115c71d65d7c40f0cf7fc4b2c9b71c935184891
2021-06-05T17:15:23.000Z
[ "pytorch", "bert", "text-classification", "en", "dataset:m3tafl0ps/autonlp-data-NLPIsFun", "transformers", "autonlp" ]
text-classification
false
m3tafl0ps
null
m3tafl0ps/autonlp-NLPIsFun-251844
4
null
transformers
18,781
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - m3tafl0ps/autonlp-data-NLPIsFun --- # Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 251844 ## Validation Metrics - Loss: 0.38616305589675903 - Accuracy: 0.8356545961002786 - Precision: 0.8253968253968254 - Recall: 0.8571428571428571 - AUC: 0.9222387781709815 - F1: 0.8409703504043127 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/m3tafl0ps/autonlp-NLPIsFun-251844 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("m3tafl0ps/autonlp-NLPIsFun-251844", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("m3tafl0ps/autonlp-NLPIsFun-251844", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
macedonizer/sr-roberta-base
2ff2fb34bd6561e1a1f79b76599a72b49457d3e7
2021-09-22T08:59:00.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "sr", "dataset:wiki-sr", "transformers", "masked-lm", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
macedonizer
null
macedonizer/sr-roberta-base
4
null
transformers
18,782
--- language: - sr thumbnail: https://huggingface.co/macedonizer/sr-roberta-base/lets-talk-about-nlp-sr.jpg tags: - masked-lm license: apache-2.0 datasets: - wiki-sr --- # SR-RoBERTa base model Pretrained model on Serbian language using a masked language modeling (MLM) objective. It was introduced in this paper and first released in this repository. This model is case-sensitive: it makes a difference between скопје and Скопје. # Model description RoBERTa is a transformers model pre-trained on a large corpus of мацед data in a self-supervised fashion. This means it was pre-trained on the raw texts only, with no humans labeling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pre-trained with the Masked language modeling (MLM) objective. Taking a sentence, the model randomly masks 15% of the words in the input then runs the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences, for instance, you can train a standard classifier using the features produced by the BERT model as inputs. # Intended uses & limitations You can use the raw model for masked language modeling, but it's mostly intended to be fine-tuned on a downstream task. See the model hub to look for fine-tuned versions of a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification, or question answering. For tasks such as text generation, you should look at models like GPT2. # How to use You can use this model directly with a pipeline for masked language modeling: \ from transformers import pipeline \ unmasker = pipeline('fill-mask', model='macedonizer/sr-roberta-base') \ unmasker("Београд је <mask> град Србије.") \ [{'score': 0.7834128141403198, 'sequence': 'Београд је главни град Србије', 'token': 3087, 'token_str': ' главни'}, {'score': 0.15424974262714386, 'sequence': 'Београд је највећи град Србије', 'token': 3916, 'token_str': ' највећи'}, {'score': 0.0035441946238279343, 'sequence': 'Београд је најважнији град Србије', 'token': 18577, 'token_str': ' најважнији'}, {'score': 0.003132033161818981, 'sequence': 'Београд је велики град Србије', 'token': 2063, 'token_str': ' велики'}, {'score': 0.0030417360831052065, 'sequence': 'Београд је важан град Србије', 'token': 9463, 'token_str': ' важан'}] Here is how to use this model to get the features of a given text in PyTorch: from transformers import RobertaTokenizer, RobertaModel \ tokenizer = RobertaTokenizer.from_pretrained('macedonizer/mk-roberta-base') \ model = RobertaModel.from_pretrained('macedonizer/sr-roberta-base') \ text = "Replace me by any text you'd like." \ encoded_input = tokenizer(text, return_tensors='pt') \ output = model(**encoded_input)
madlag/bert-base-uncased-squadv1-x1.96-f88.3-d27-hybrid-filled-opt-v1
4af4ba55aee2c86bdd66f45986cfa5a0cc39af4a
2021-06-16T14:54:10.000Z
[ "pytorch", "tf", "bert", "question-answering", "en", "dataset:squad", "transformers", "license:mit", "autotrain_compatible" ]
question-answering
false
madlag
null
madlag/bert-base-uncased-squadv1-x1.96-f88.3-d27-hybrid-filled-opt-v1
4
null
transformers
18,783
--- language: en thumbnail: license: mit tags: - question-answering - - datasets: - squad metrics: - squad widget: - text: "Where is the Eiffel Tower located?" context: "The Eiffel Tower is a wrought-iron lattice tower on the Champ de Mars in Paris, France. It is named after the engineer Gustave Eiffel, whose company designed and built the tower." - text: "Who is Frederic Chopin?" context: "Frédéric François Chopin, born Fryderyk Franciszek Chopin (1 March 1810 – 17 October 1849), was a Polish composer and virtuoso pianist of the Romantic era who wrote primarily for solo piano." --- ## BERT-base uncased model fine-tuned on SQuAD v1 This model was created using the [nn_pruning](https://github.com/huggingface/nn_pruning) python library: the **linear layers contains 27.0%** of the original weights. This model **CANNOT be used without using nn_pruning `optimize_model`** function, as it uses NoNorms instead of LayerNorms and this is not currently supported by the Transformers library. It uses ReLUs instead of GeLUs as in the initial BERT network, to speedup inference. This does not need special handling, as it is supported by the Transformers library, and flagged in the model config by the ```"hidden_act": "relu"``` entry. The model contains **43.0%** of the original weights **overall** (the embeddings account for a significant part of the model, and they are not pruned by this method). With a simple resizing of the linear matrices it ran **1.96x as fast as bert-base-uncased** on the evaluation. This is possible because the pruning method lead to structured matrices: to visualize them, hover below on the plot to see the non-zero/zero parts of each matrix. <div class="graph"><script src="/madlag/bert-base-uncased-squadv1-x1.96-f88.3-d27-hybrid-filled-opt-v1/raw/main/model_card/density_info.js" id="aa996a95-2c09-4974-ae46-778cf5b50833"></script></div> In terms of accuracy, its **F1 is 88.33**, compared with 88.5 for bert-base-uncased, a **F1 drop of 0.17**. ## Fine-Pruning details This model was fine-tuned from the HuggingFace [model](https://huggingface.co/bert-base-uncased) checkpoint on [SQuAD1.1](https://rajpurkar.github.io/SQuAD-explorer), and distilled from the model [bert-large-uncased-whole-word-masking-finetuned-squad](https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad) This model is case-insensitive: it does not make a difference between english and English. A side-effect of the block pruning is that some of the attention heads are completely removed: 55 heads were removed on a total of 144 (38.2%). Here is a detailed view on how the remaining heads are distributed in the network after pruning. <div class="graph"><script src="/madlag/bert-base-uncased-squadv1-x1.96-f88.3-d27-hybrid-filled-opt-v1/raw/main/model_card/pruning_info.js" id="d74872e0-a89c-4ce0-b0fa-1c5709b67cd9"></script></div> ## Details of the SQuAD1.1 dataset | Dataset | Split | # samples | | -------- | ----- | --------- | | SQuAD1.1 | train | 90.6K | | SQuAD1.1 | eval | 11.1k | ### Fine-tuning - Python: `3.8.5` - Machine specs: ```CPU: Intel(R) Core(TM) i7-6700K CPU Memory: 64 GiB GPUs: 1 GeForce GTX 3090, with 24GiB memory GPU driver: 455.23.05, CUDA: 11.1 ``` ### Results **Pytorch model file size**: `374MB` (original BERT: `420MB`) | Metric | # Value | # Original ([Table 2](https://www.aclweb.org/anthology/N19-1423.pdf))| Variation | | ------ | --------- | --------- | --------- | | **EM** | **81.31** | **80.8** | **+0.51**| | **F1** | **88.33** | **88.5** | **-0.17**| ## Example Usage Install nn_pruning: it contains the optimization script, which just pack the linear layers into smaller ones by removing empty rows/columns. `pip install nn_pruning` Then you can use the `transformers library` almost as usual: you just have to call `optimize_model` when the pipeline has loaded. ```python from transformers import pipeline from nn_pruning.inference_model_patcher import optimize_model qa_pipeline = pipeline( "question-answering", model="madlag/bert-base-uncased-squadv1-x1.96-f88.3-d27-hybrid-filled-opt-v1", tokenizer="madlag/bert-base-uncased-squadv1-x1.96-f88.3-d27-hybrid-filled-opt-v1" ) print("bert-base-uncased parameters: 191.0M") print(f"Parameters count (includes only head pruning, not feed forward pruning)={int(qa_pipeline.model.num_parameters() / 1E6)}M") qa_pipeline.model = optimize_model(qa_pipeline.model, "dense") print(f"Parameters count after complete optimization={int(qa_pipeline.model.num_parameters() / 1E6)}M") predictions = qa_pipeline({ 'context': "Frédéric François Chopin, born Fryderyk Franciszek Chopin (1 March 1810 – 17 October 1849), was a Polish composer and virtuoso pianist of the Romantic era who wrote primarily for solo piano.", 'question': "Who is Frederic Chopin?", }) print("Predictions", predictions) ```
mahaamami/distilroberta-base-model-transcript
12bf8faac43fc003207fabcae72b29c6e8e5c500
2022-01-13T13:28:24.000Z
[ "pytorch", "tensorboard", "roberta", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
mahaamami
null
mahaamami/distilroberta-base-model-transcript
4
null
transformers
18,784
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilroberta-base-model-transcript results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-model-transcript This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8922 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.1193 | 1.0 | 5570 | 1.9873 | | 2.0502 | 2.0 | 11140 | 1.9304 | | 1.9718 | 3.0 | 16710 | 1.8922 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
malay-huggingface/albert-large-bahasa-cased
7edeea22528544bb9bfc780b4e8707647eff2952
2021-09-26T12:40:49.000Z
[ "pytorch", "albert", "fill-mask", "ms", "transformers", "autotrain_compatible" ]
fill-mask
false
malay-huggingface
null
malay-huggingface/albert-large-bahasa-cased
4
null
transformers
18,785
--- language: ms --- # albert-large-bahasa-cased Pretrained ALBERT large language model for Malay. ## Pretraining Corpus `albert-large-bahasa-cased` model was pretrained on ~1.4 Billion words. Below is list of data we trained on, 1. [cleaned local texts](https://github.com/huseinzol05/malay-dataset/tree/master/dumping/clean). 2. [translated The Pile](https://github.com/huseinzol05/malay-dataset/tree/master/corpus/pile). ## Pretraining details - All steps can reproduce from here, [Malaya/pretrained-model/albert](https://github.com/huseinzol05/Malaya/tree/master/pretrained-model/albert). ## Load Pretrained Model You can use this model by installing `torch` or `tensorflow` and Huggingface library `transformers`. And you can use it directly by initializing it like this: ```python from transformers import AlbertTokenizer, AlbertModel model = AlbertModel.from_pretrained('malay-huggingface/albert-large-bahasa-cased') tokenizer = AlbertTokenizer.from_pretrained( 'malay-huggingface/albert-large-bahasa-cased', do_lower_case = False, ) ``` ## Example using AutoModelWithLMHead ```python from transformers import AlbertTokenizer, AlbertForMaskedLM, pipeline model = AlbertForMaskedLM.from_pretrained('malay-huggingface/albert-large-bahasa-cased') tokenizer = AlbertTokenizer.from_pretrained( 'malay-huggingface/albert-large-bahasa-cased', do_lower_case = False, ) fill_mask = pipeline('fill-mask', model=model, tokenizer=tokenizer) fill_mask('Permohonan Najib, anak untuk dengar isu perlembagaan [MASK] .') ``` Output is, ```text [{'sequence': 'Permohonan Najib, anak untuk dengar isu perlembagaan Malaysia.', 'score': 0.09178723394870758, 'token': 1957, 'token_str': 'M a l a y s i a'}, {'sequence': 'Permohonan Najib, anak untuk dengar isu perlembagaan negara.', 'score': 0.053524162620306015, 'token': 2134, 'token_str': 'n e g a r a'}, {'sequence': 'Permohonan Najib, anak untuk dengar isu perlembagaan dikemukakan.', 'score': 0.031137527897953987, 'token': 9383, 'token_str': 'd i k e m u k a k a n'}, {'sequence': 'Permohonan Najib, anak untuk dengar isu perlembagaan 1MDB.', 'score': 0.02826082520186901, 'token': 13838, 'token_str': '1 M D B'}, {'sequence': 'Permohonan Najib, anak untuk dengar isu perlembagaan ditolak.', 'score': 0.026568090543150902, 'token': 11465, 'token_str': 'd i t o l a k'}] ```
malay-huggingface/bert-large-bahasa-cased
702684329e92a5c7863a498cd28e4f07b41f1537
2021-09-11T16:10:26.000Z
[ "pytorch", "bert", "fill-mask", "ms", "transformers", "autotrain_compatible" ]
fill-mask
false
malay-huggingface
null
malay-huggingface/bert-large-bahasa-cased
4
null
transformers
18,786
--- language: ms --- # bert-large-bahasa-cased Pretrained BERT large language model for Malay. ## Pretraining Corpus `bert-large-bahasa-cased` model was pretrained on ~1.4 Billion words. Below is list of data we trained on, 1. [cleaned local texts](https://github.com/huseinzol05/malay-dataset/tree/master/dumping/clean). 2. [translated The Pile](https://github.com/huseinzol05/malay-dataset/tree/master/corpus/pile). ## Pretraining details - All steps can reproduce from here, [Malaya/pretrained-model/bert](https://github.com/huseinzol05/Malaya/tree/master/pretrained-model/bert). ## Load Pretrained Model You can use this model by installing `torch` or `tensorflow` and Huggingface library `transformers`. And you can use it directly by initializing it like this: ```python from transformers import BertTokenizer, BertModel model = BertModel.from_pretrained('malay-huggingface/bert-large-bahasa-cased') tokenizer = BertTokenizer.from_pretrained( 'malay-huggingface/bert-large-bahasa-cased', do_lower_case = False, ) ``` ## Example using AutoModelWithLMHead ```python from transformers import BertTokenizer, BertForMaskedLM, pipeline model = BertForMaskedLM.from_pretrained('malay-huggingface/bert-large-bahasa-cased') tokenizer = BertTokenizer.from_pretrained( 'malay-huggingface/bert-large-bahasa-cased', do_lower_case = False, ) fill_mask = pipeline('fill-mask', model=model, tokenizer=tokenizer) fill_mask('Permohonan Najib, anak untuk dengar isu perlembagaan [MASK] .') ``` Output is, ```text [{'sequence': 'Permohonan Najib, anak untuk dengar isu perlembagaan Malaysia.', 'score': 0.09178723394870758, 'token': 1957, 'token_str': 'M a l a y s i a'}, {'sequence': 'Permohonan Najib, anak untuk dengar isu perlembagaan negara.', 'score': 0.053524162620306015, 'token': 2134, 'token_str': 'n e g a r a'}, {'sequence': 'Permohonan Najib, anak untuk dengar isu perlembagaan dikemukakan.', 'score': 0.031137527897953987, 'token': 9383, 'token_str': 'd i k e m u k a k a n'}, {'sequence': 'Permohonan Najib, anak untuk dengar isu perlembagaan 1MDB.', 'score': 0.02826082520186901, 'token': 13838, 'token_str': '1 M D B'}, {'sequence': 'Permohonan Najib, anak untuk dengar isu perlembagaan ditolak.', 'score': 0.026568090543150902, 'token': 11465, 'token_str': 'd i t o l a k'}] ```
mamlong34/t5_large_race_cosmos_qa
a1f6e5fd3ab689acb1da1e673996ee0571671b83
2021-10-22T15:58:00.000Z
[ "pytorch", "t5", "text2text-generation", "dataset:race", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
mamlong34
null
mamlong34/t5_large_race_cosmos_qa
4
null
transformers
18,787
--- license: apache-2.0 tags: - generated_from_trainer datasets: - race metrics: - accuracy model-index: - name: t5_large_race_cosmos_qa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5_large_race_cosmos_qa This model is a fine-tuned version of [t5-large](https://huggingface.co/t5-large) on the race dataset. It achieves the following results on the evaluation set: - Loss: 0.4382 - Accuracy: 0.8023 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Accuracy | Validation Loss | |:-------------:|:-----:|:-----:|:--------:|:---------------:| | 0.3513 | 1.0 | 10983 | 0.7714 | 0.3165 | | 0.2109 | 2.0 | 21966 | 0.7986 | 0.3329 | | 0.0929 | 3.0 | 32949 | 0.4382 | 0.8023 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0 - Datasets 1.14.0 - Tokenizers 0.10.3
mamlong34/t5_small_race_mutlirc
f5cc3900b971694685e5ea42f6ffedca0ea60632
2021-10-10T12:12:47.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
mamlong34
null
mamlong34/t5_small_race_mutlirc
4
null
transformers
18,788
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: t5_small_race_mutlirc results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5_small_race_mutlirc This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5760 - Accuracy: 0.5259 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Accuracy | Validation Loss | |:-------------:|:-----:|:-----:|:--------:|:---------------:| | 0.6043 | 1.0 | 14141 | 0.4832 | 0.5925 | | 0.5647 | 2.0 | 28282 | 0.5152 | 0.5659 | | 0.5237 | 3.0 | 42423 | 0.5760 | 0.5259 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.1 - Datasets 1.12.1 - Tokenizers 0.10.3
manishiitg/distilbart-xsum-12-6-recruit-qa
0ddd63c59120fbe3624d2a10c17251ac2307bbe3
2020-11-02T11:30:29.000Z
[ "pytorch", "bart", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
manishiitg
null
manishiitg/distilbart-xsum-12-6-recruit-qa
4
null
transformers
18,789
Entry not found
manueldeprada/t5-cord19
c8d0776b17f0569181b1c8f01134ae4a88559b75
2021-04-25T23:12:15.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
manueldeprada
null
manueldeprada/t5-cord19
4
null
transformers
18,790
# T5-base pretrained on CORD-19 dataset The model has been pretrained on text and abstracts from the CORD-19 dataset, using a manually implemented denoising objetive similar to the original T5 denoising objective. Model needs to be finetuned on downstream tasks. Code avaliable in github: [https://github.com/manueldeprada/Pretraining-T5-PyTorch-Lightning](https://github.com/manueldeprada/Pretraining-T5-PyTorch-Lightning).
maple/xlm-roberta-large
f0e767b44ffae83f9774a9995ecd4f209c478d33
2022-01-03T11:22:56.000Z
[ "pytorch", "xlm-roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
maple
null
maple/xlm-roberta-large
4
null
transformers
18,791
Entry not found
marciovbarbosa/t5-small-finetuned-de-to-en-lr3e-4
383565855d66320c8e16032cde2eb26e85836c6e
2021-12-04T03:33:12.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:wmt16", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
marciovbarbosa
null
marciovbarbosa/t5-small-finetuned-de-to-en-lr3e-4
4
null
transformers
18,792
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wmt16 metrics: - bleu model-index: - name: t5-small-finetuned-de-to-en-lr3e-4 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: wmt16 type: wmt16 args: de-en metrics: - name: Bleu type: bleu value: 11.9094 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-de-to-en-lr3e-4 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wmt16 dataset. It achieves the following results on the evaluation set: - Loss: 1.9059 - Bleu: 11.9094 - Gen Len: 17.2257 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | No log | 1.0 | 272 | 1.8814 | 10.3468 | 17.2244 | | 2.2309 | 2.0 | 544 | 1.8320 | 10.9949 | 17.2768 | | 2.2309 | 3.0 | 816 | 1.8273 | 11.4299 | 17.2147 | | 1.7515 | 4.0 | 1088 | 1.8321 | 11.5576 | 17.3191 | | 1.7515 | 5.0 | 1360 | 1.8377 | 11.8255 | 17.2244 | | 1.488 | 6.0 | 1632 | 1.8562 | 11.6741 | 17.2427 | | 1.488 | 7.0 | 1904 | 1.8653 | 11.7363 | 17.2331 | | 1.3301 | 8.0 | 2176 | 1.8938 | 12.0458 | 17.2044 | | 1.3301 | 9.0 | 2448 | 1.9005 | 11.8676 | 17.2437 | | 1.2241 | 10.0 | 2720 | 1.9059 | 11.9094 | 17.2257 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
marcolatella/hate_trained
5f57d6f9f8f2c0429a73d034f615481f59997cb6
2021-12-11T00:02:24.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:tweet_eval", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
marcolatella
null
marcolatella/hate_trained
4
null
transformers
18,793
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tweet_eval metrics: - f1 model-index: - name: hate_trained results: - task: name: Text Classification type: text-classification dataset: name: tweet_eval type: tweet_eval args: hate metrics: - name: F1 type: f1 value: 0.7875737774565976 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hate_trained This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 0.8182 - F1: 0.7876 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.7272339744854407e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.4635 | 1.0 | 563 | 0.4997 | 0.7530 | | 0.3287 | 2.0 | 1126 | 0.5138 | 0.7880 | | 0.216 | 3.0 | 1689 | 0.6598 | 0.7821 | | 0.1309 | 4.0 | 2252 | 0.8182 | 0.7876 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
maroo93/squad1.1_1
161192a4cec4efb749356c5239815da2f365b523
2021-05-19T23:08:41.000Z
[ "pytorch", "jax", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
maroo93
null
maroo93/squad1.1_1
4
null
transformers
18,794
Entry not found
masapasa/xls-r-300m-it-cv8-ds13
d943e85baf67bdce02dea2b33a0a151da2338473
2022-03-23T18:35:02.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "it", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
masapasa
null
masapasa/xls-r-300m-it-cv8-ds13
4
1
transformers
18,795
--- language: - it license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: '' results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8.0 type: mozilla-foundation/common_voice_8_0 args: it metrics: - name: Test WER type: wer value: 100.0 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: it metrics: - name: Test WER type: wer value: 100.0 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: it metrics: - name: Test WER type: wer value: 100.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - SV-SE dataset. It achieves the following results on the evaluation set: - Loss: 0.3549 - Wer: 0.3827 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.4129 | 5.49 | 500 | 3.3224 | 1.0 | | 2.9323 | 10.98 | 1000 | 2.9128 | 1.0000 | | 1.6839 | 16.48 | 1500 | 0.7740 | 0.6854 | | 1.485 | 21.97 | 2000 | 0.5830 | 0.5976 | | 1.362 | 27.47 | 2500 | 0.4866 | 0.4905 | | 1.2752 | 32.96 | 3000 | 0.4240 | 0.4967 | | 1.1957 | 38.46 | 3500 | 0.3899 | 0.4258 | | 1.1646 | 43.95 | 4000 | 0.3597 | 0.4014 | | 1.1265 | 49.45 | 4500 | 0.3559 | 0.3829 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
maximedb/mqa-cross-encoder
3e002fbebe222059311aaa68050570004ad81fb0
2021-11-18T16:33:52.000Z
[ "pytorch", "xlm-roberta", "text-classification", "transformers" ]
text-classification
false
maximedb
null
maximedb/mqa-cross-encoder
4
null
transformers
18,796
hello
maximedb/polyfaq_cross
8b6f3ff2f19b3f9158f1af7e1c43b3504de8fd8b
2022-01-17T18:32:14.000Z
[ "pytorch", "xlm-roberta", "text-classification", "transformers" ]
text-classification
false
maximedb
null
maximedb/polyfaq_cross
4
null
transformers
18,797
Entry not found
mbeukman/xlm-roberta-base-finetuned-naija-finetuned-ner-naija
0ee35960db9c197d9f47c751594386076a878553
2021-11-25T09:04:20.000Z
[ "pytorch", "xlm-roberta", "token-classification", "pcm", "dataset:masakhaner", "arxiv:2103.11811", "transformers", "NER", "autotrain_compatible" ]
token-classification
false
mbeukman
null
mbeukman/xlm-roberta-base-finetuned-naija-finetuned-ner-naija
4
null
transformers
18,798
--- language: - pcm tags: - NER datasets: - masakhaner metrics: - f1 - precision - recall widget: - text: "Mixed Martial Arts joinbodi , Ultimate Fighting Championship , UFC don decide say dem go enta back di octagon on Saturday , 9 May , for Jacksonville , Florida ." --- # xlm-roberta-base-finetuned-naija-finetuned-ner-naija This is a token classification (specifically NER) model that fine-tuned [xlm-roberta-base-finetuned-naija](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-naija) on the [MasakhaNER](https://arxiv.org/abs/2103.11811) dataset, specifically the Nigerian Pidgin part. More information, and other similar models can be found in the [main Github repository](https://github.com/Michael-Beukman/NERTransfer). ## About This model is transformer based and was fine-tuned on the MasakhaNER dataset. It is a named entity recognition dataset, containing mostly news articles in 10 different African languages. The model was fine-tuned for 50 epochs, with a maximum sequence length of 200, 32 batch size, 5e-5 learning rate. This process was repeated 5 times (with different random seeds), and this uploaded model performed the best out of those 5 seeds (aggregate F1 on test set). This model was fine-tuned by me, Michael Beukman while doing a project at the University of the Witwatersrand, Johannesburg. This is version 1, as of 20 November 2021. This model is licensed under the [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0). ### Contact & More information For more information about the models, including training scripts, detailed results and further resources, you can visit the the [main Github repository](https://github.com/Michael-Beukman/NERTransfer). You can contact me by filing an issue on this repository. ### Training Resources In the interest of openness, and reporting resources used, we list here how long the training process took, as well as what the minimum resources would be to reproduce this. Fine-tuning each model on the NER dataset took between 10 and 30 minutes, and was performed on a NVIDIA RTX3090 GPU. To use a batch size of 32, at least 14GB of GPU memory was required, although it was just possible to fit these models in around 6.5GB's of VRAM when using a batch size of 1. ## Data The train, evaluation and test datasets were taken directly from the MasakhaNER [Github](https://github.com/masakhane-io/masakhane-ner) repository, with minimal to no preprocessing, as the original dataset is already of high quality. The motivation for the use of this data is that it is the "first large, publicly available, high­ quality dataset for named entity recognition (NER) in ten African languages" ([source](https://arxiv.org/pdf/2103.11811.pdf)). The high-quality data, as well as the groundwork laid by the paper introducing it are some more reasons why this dataset was used. For evaluation, the dedicated test split was used, which is from the same distribution as the training data, so this model may not generalise to other distributions, and further testing would need to be done to investigate this. The exact distribution of the data is covered in detail [here](https://arxiv.org/abs/2103.11811). ## Intended Use This model are intended to be used for NLP research into e.g. interpretability or transfer learning. Using this model in production is not supported, as generalisability and downright performance is limited. In particular, this is not designed to be used in any important downstream task that could affect people, as harm could be caused by the limitations of the model, described next. ## Limitations This model was only trained on one (relatively small) dataset, covering one task (NER) in one domain (news articles) and in a set span of time. The results may not generalise, and the model may perform badly, or in an unfair / biased way if used on other tasks. Although the purpose of this project was to investigate transfer learning, the performance on languages that the model was not trained for does suffer. Because this model used xlm-roberta-base as its starting point (potentially with domain adaptive fine-tuning on specific languages), this model's limitations can also apply here. These can include being biased towards the hegemonic viewpoint of most of its training data, being ungrounded and having subpar results on other languages (possibly due to unbalanced training data). As [Adelani et al. (2021)](https://arxiv.org/abs/2103.11811) showed, the models in general struggled with entities that were either longer than 3 words and entities that were not contained in the training data. This could bias the models towards not finding, e.g. names of people that have many words, possibly leading to a misrepresentation in the results. Similarly, names that are uncommon, and may not have been found in the training data (due to e.g. different languages) would also be predicted less often. Additionally, this model has not been verified in practice, and other, more subtle problems may become prevalent if used without any verification that it does what it is supposed to. ### Privacy & Ethical Considerations The data comes from only publicly available news sources, the only available data should cover public figures and those that agreed to be reported on. See the original MasakhaNER paper for more details. No explicit ethical considerations or adjustments were made during fine-tuning of this model. ## Metrics The language adaptive models achieve (mostly) superior performance over starting with xlm-roberta-base. Our main metric was the aggregate F1 score for all NER categories. These metrics are on the test set for MasakhaNER, so the data distribution is similar to the training set, so these results do not directly indicate how well these models generalise. We do find large variation in transfer results when starting from different seeds (5 different seeds were tested), indicating that the fine-tuning process for transfer might be unstable. The metrics used were chosen to be consistent with previous work, and to facilitate research. Other metrics may be more appropriate for other purposes. ## Caveats and Recommendations In general, this model performed worse on the 'date' category compared to others, so if dates are a critical factor, then that might need to be taken into account and addressed, by for example collecting and annotating more data. ## Model Structure Here are some performance details on this specific model, compared to others we trained. All of these metrics were calculated on the test set, and the seed was chosen that gave the best overall F1 score. The first three result columns are averaged over all categories, and the latter 4 provide performance broken down by category. This model can predict the following label for a token ([source](https://huggingface.co/Davlan/xlm-roberta-large-masakhaner)): Abbreviation|Description -|- O|Outside of a named entity B-DATE |Beginning of a DATE entity right after another DATE entity I-DATE |DATE entity B-PER |Beginning of a person’s name right after another person’s name I-PER |Person’s name B-ORG |Beginning of an organisation right after another organisation I-ORG |Organisation B-LOC |Beginning of a location right after another location I-LOC |Location | Model Name | Staring point | Evaluation / Fine-tune Language | F1 | Precision | Recall | F1 (DATE) | F1 (LOC) | F1 (ORG) | F1 (PER) | | -------------------------------------------------- | -------------------- | -------------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- | | [xlm-roberta-base-finetuned-naija-finetuned-ner-naija](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-naija-finetuned-ner-naija) (This model) | [pcm](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-naija) | pcm | 88.06 | 87.04 | 89.12 | 90.00 | 88.00 | 81.00 | 92.00 | | [xlm-roberta-base-finetuned-swahili-finetuned-ner-naija](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-swahili-finetuned-ner-naija) | [swa](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-swahili) | pcm | 89.12 | 87.84 | 90.42 | 90.00 | 89.00 | 82.00 | 94.00 | | [xlm-roberta-base-finetuned-ner-naija](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-ner-naija) | [base](https://huggingface.co/xlm-roberta-base) | pcm | 88.89 | 88.13 | 89.66 | 92.00 | 87.00 | 82.00 | 94.00 | ## Usage To use this model (or others), you can do the following, just changing the model name ([source](https://huggingface.co/dslim/bert-base-NER)): ``` from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline model_name = 'mbeukman/xlm-roberta-base-finetuned-naija-finetuned-ner-naija' tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForTokenClassification.from_pretrained(model_name) nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "Mixed Martial Arts joinbodi , Ultimate Fighting Championship , UFC don decide say dem go enta back di octagon on Saturday , 9 May , for Jacksonville , Florida ." ner_results = nlp(example) print(ner_results) ```
mbeukman/xlm-roberta-base-finetuned-ner-hausa
112c9abe8884dfb53264282776d76fe652cd5fe8
2021-11-25T09:04:25.000Z
[ "pytorch", "xlm-roberta", "token-classification", "ha", "dataset:masakhaner", "arxiv:2103.11811", "transformers", "NER", "autotrain_compatible" ]
token-classification
false
mbeukman
null
mbeukman/xlm-roberta-base-finetuned-ner-hausa
4
null
transformers
18,799
--- language: - ha tags: - NER datasets: - masakhaner metrics: - f1 - precision - recall widget: - text: "A saurari cikakken rahoton wakilin Muryar Amurka Ibrahim Abdul'aziz" --- # xlm-roberta-base-finetuned-ner-hausa This is a token classification (specifically NER) model that fine-tuned [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the [MasakhaNER](https://arxiv.org/abs/2103.11811) dataset, specifically the Hausa part. More information, and other similar models can be found in the [main Github repository](https://github.com/Michael-Beukman/NERTransfer). ## About This model is transformer based and was fine-tuned on the MasakhaNER dataset. It is a named entity recognition dataset, containing mostly news articles in 10 different African languages. The model was fine-tuned for 50 epochs, with a maximum sequence length of 200, 32 batch size, 5e-5 learning rate. This process was repeated 5 times (with different random seeds), and this uploaded model performed the best out of those 5 seeds (aggregate F1 on test set). This model was fine-tuned by me, Michael Beukman while doing a project at the University of the Witwatersrand, Johannesburg. This is version 1, as of 20 November 2021. This model is licensed under the [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0). ### Contact & More information For more information about the models, including training scripts, detailed results and further resources, you can visit the the [main Github repository](https://github.com/Michael-Beukman/NERTransfer). You can contact me by filing an issue on this repository. ### Training Resources In the interest of openness, and reporting resources used, we list here how long the training process took, as well as what the minimum resources would be to reproduce this. Fine-tuning each model on the NER dataset took between 10 and 30 minutes, and was performed on a NVIDIA RTX3090 GPU. To use a batch size of 32, at least 14GB of GPU memory was required, although it was just possible to fit these models in around 6.5GB's of VRAM when using a batch size of 1. ## Data The train, evaluation and test datasets were taken directly from the MasakhaNER [Github](https://github.com/masakhane-io/masakhane-ner) repository, with minimal to no preprocessing, as the original dataset is already of high quality. The motivation for the use of this data is that it is the "first large, publicly available, high­ quality dataset for named entity recognition (NER) in ten African languages" ([source](https://arxiv.org/pdf/2103.11811.pdf)). The high-quality data, as well as the groundwork laid by the paper introducing it are some more reasons why this dataset was used. For evaluation, the dedicated test split was used, which is from the same distribution as the training data, so this model may not generalise to other distributions, and further testing would need to be done to investigate this. The exact distribution of the data is covered in detail [here](https://arxiv.org/abs/2103.11811). ## Intended Use This model are intended to be used for NLP research into e.g. interpretability or transfer learning. Using this model in production is not supported, as generalisability and downright performance is limited. In particular, this is not designed to be used in any important downstream task that could affect people, as harm could be caused by the limitations of the model, described next. ## Limitations This model was only trained on one (relatively small) dataset, covering one task (NER) in one domain (news articles) and in a set span of time. The results may not generalise, and the model may perform badly, or in an unfair / biased way if used on other tasks. Although the purpose of this project was to investigate transfer learning, the performance on languages that the model was not trained for does suffer. Because this model used xlm-roberta-base as its starting point (potentially with domain adaptive fine-tuning on specific languages), this model's limitations can also apply here. These can include being biased towards the hegemonic viewpoint of most of its training data, being ungrounded and having subpar results on other languages (possibly due to unbalanced training data). As [Adelani et al. (2021)](https://arxiv.org/abs/2103.11811) showed, the models in general struggled with entities that were either longer than 3 words and entities that were not contained in the training data. This could bias the models towards not finding, e.g. names of people that have many words, possibly leading to a misrepresentation in the results. Similarly, names that are uncommon, and may not have been found in the training data (due to e.g. different languages) would also be predicted less often. Additionally, this model has not been verified in practice, and other, more subtle problems may become prevalent if used without any verification that it does what it is supposed to. ### Privacy & Ethical Considerations The data comes from only publicly available news sources, the only available data should cover public figures and those that agreed to be reported on. See the original MasakhaNER paper for more details. No explicit ethical considerations or adjustments were made during fine-tuning of this model. ## Metrics The language adaptive models achieve (mostly) superior performance over starting with xlm-roberta-base. Our main metric was the aggregate F1 score for all NER categories. These metrics are on the test set for MasakhaNER, so the data distribution is similar to the training set, so these results do not directly indicate how well these models generalise. We do find large variation in transfer results when starting from different seeds (5 different seeds were tested), indicating that the fine-tuning process for transfer might be unstable. The metrics used were chosen to be consistent with previous work, and to facilitate research. Other metrics may be more appropriate for other purposes. ## Caveats and Recommendations In general, this model performed worse on the 'date' category compared to others, so if dates are a critical factor, then that might need to be taken into account and addressed, by for example collecting and annotating more data. ## Model Structure Here are some performance details on this specific model, compared to others we trained. All of these metrics were calculated on the test set, and the seed was chosen that gave the best overall F1 score. The first three result columns are averaged over all categories, and the latter 4 provide performance broken down by category. This model can predict the following label for a token ([source](https://huggingface.co/Davlan/xlm-roberta-large-masakhaner)): Abbreviation|Description -|- O|Outside of a named entity B-DATE |Beginning of a DATE entity right after another DATE entity I-DATE |DATE entity B-PER |Beginning of a person’s name right after another person’s name I-PER |Person’s name B-ORG |Beginning of an organisation right after another organisation I-ORG |Organisation B-LOC |Beginning of a location right after another location I-LOC |Location | Model Name | Staring point | Evaluation / Fine-tune Language | F1 | Precision | Recall | F1 (DATE) | F1 (LOC) | F1 (ORG) | F1 (PER) | | -------------------------------------------------- | -------------------- | -------------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- | | [xlm-roberta-base-finetuned-ner-hausa](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-ner-hausa) (This model) | [base](https://huggingface.co/xlm-roberta-base) | hau | 89.94 | 87.74 | 92.25 | 84.00 | 94.00 | 74.00 | 93.00 | | [xlm-roberta-base-finetuned-hausa-finetuned-ner-hausa](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-hausa-finetuned-ner-hausa) | [hau](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-hausa) | hau | 92.27 | 90.46 | 94.16 | 85.00 | 95.00 | 80.00 | 97.00 | | [xlm-roberta-base-finetuned-swahili-finetuned-ner-hausa](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-swahili-finetuned-ner-hausa) | [swa](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-swahili) | hau | 89.14 | 87.18 | 91.20 | 82.00 | 93.00 | 76.00 | 93.00 | ## Usage To use this model (or others), you can do the following, just changing the model name ([source](https://huggingface.co/dslim/bert-base-NER)): ``` from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline model_name = 'mbeukman/xlm-roberta-base-finetuned-ner-hausa' tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForTokenClassification.from_pretrained(model_name) nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "A saurari cikakken rahoton wakilin Muryar Amurka Ibrahim Abdul'aziz" ner_results = nlp(example) print(ner_results) ```