modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
mboth/distil-eng-quora-sentence
0432d0fa4c983b9ecd6b95613882406eb273216d
2021-07-09T06:00:21.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
mboth
null
mboth/distil-eng-quora-sentence
4
1
sentence-transformers
18,800
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # mboth/distil-eng-quora-sentence This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('mboth/distil-eng-quora-sentence') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('mboth/distil-eng-quora-sentence') model = AutoModel.from_pretrained('mboth/distil-eng-quora-sentence') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=mboth/distil-eng-quora-sentence) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
meghanabhange/Hinglish-Bert-Class
30fe74ce635c67976b7fee2b9c8e4f03dac60c65
2021-05-19T23:12:59.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
meghanabhange
null
meghanabhange/Hinglish-Bert-Class
4
null
transformers
18,801
Entry not found
mhu-coder/ConvTasNet_Libri1Mix_enhsingle
a7275d944176c8969495fe611c32520004aa070b
2021-09-23T16:10:04.000Z
[ "pytorch", "dataset:libri1mix", "dataset:enh_single", "asteroid", "audio", "ConvTasNet", "audio-to-audio", "license:cc-by-sa-4.0" ]
audio-to-audio
false
mhu-coder
null
mhu-coder/ConvTasNet_Libri1Mix_enhsingle
4
1
asteroid
18,802
--- tags: - asteroid - audio - ConvTasNet - audio-to-audio datasets: - libri1mix - enh_single license: cc-by-sa-4.0 --- ## Asteroid model `mhu-coder/ConvTasNet_Libri1Mix_enhsingle` Imported from [Zenodo](https://zenodo.org/record/4301955#.X9cj98Jw0bY) ### Description: This model was trained by Mathieu Hu using the librimix/ConvTasNet recipe in [Asteroid](https://github.com/asteroid-team/asteroid). It was trained on the `enh_single` task of the Libri1Mix dataset. ### Training config: ```yaml data: n_src: 1 sample_rate: 16000 segment: 3 task: enh_single train_dir: data/wav16k/min/train-100 valid_dir: data/wav16k/min/dev filterbank: kernel_size: 16 n_filters: 512 stride: 8 main_args: exp_dir: exp/train_convtasnet_f34664b9 help: None masknet: bn_chan: 128 hid_chan: 512 mask_act: relu n_blocks: 8 n_repeats: 3 n_src: 1 skip_chan: 128 optim: lr: 0.001 optimizer: adam weight_decay: 0.0 positional arguments: training: batch_size: 2 early_stop: True epochs: 200 half_lr: True num_workers: 4 ``` ### Results: ```yaml si_sdr: 13.938355526049932 si_sdr_imp: 10.488574220190232 sdr: 14.567380104207393 sdr_imp: 11.064717304994337 sir: inf sir_imp: nan sar: 14.567380104207393 sar_imp: 11.064717304994337 stoi: 0.9201010933251715 stoi_imp: 0.1241812697846321 ``` ### License notice: This work "ConvTasNet_Libri1Mx_enhsingle" is a derivative of [CSR-I (WSJ0) Complete](https://catalog.ldc.upenn.edu/LDC93S6A) by [LDC](https://www.ldc.upenn.edu/), used under [LDC User Agreement for Non-Members](https://catalog.ldc.upenn.edu/license/ldc-non-members-agreement.pdf) (Research only). "ConvTasNet_Libri1Mix_enhsingle" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Mathieu Hu.
michaelrglass/dpr-ctx_encoder-multiset-base-kgi0-zsre
ab012f489c29f6c4edd8317b548a6845f222700f
2021-04-20T18:21:38.000Z
[ "pytorch", "dpr", "transformers" ]
null
false
michaelrglass
null
michaelrglass/dpr-ctx_encoder-multiset-base-kgi0-zsre
4
null
transformers
18,803
Entry not found
microsoft/deberta-xxlarge-v2-mnli
095b3cb5ae735180e64199fe9b0f7b7015553a32
2021-02-11T02:05:00.000Z
[ "pytorch", "deberta-v2", "en", "transformers", "deberta", "license:mit" ]
null
false
microsoft
null
microsoft/deberta-xxlarge-v2-mnli
4
null
transformers
18,804
--- language: en tags: deberta thumbnail: https://huggingface.co/front/thumbnails/microsoft.png license: mit --- ## DeBERTa: Decoding-enhanced BERT with Disentangled Attention ## This model is DEPRECATED, please use [DeBERTa-V2-XXLarge-MNLI](https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli)
microsoft/unispeech-1350-en-168-es-ft-1h
e64faf70af36fe556a1916981a06c5dbccba2a09
2021-12-19T23:01:13.000Z
[ "pytorch", "unispeech", "automatic-speech-recognition", "es", "dataset:common_voice", "arxiv:2101.07597", "transformers", "audio" ]
automatic-speech-recognition
false
microsoft
null
microsoft/unispeech-1350-en-168-es-ft-1h
4
null
transformers
18,805
--- language: - es datasets: - common_voice tags: - audio - automatic-speech-recognition --- # UniSpeech-Large-plus Spanish [Microsoft's UniSpeech](https://www.microsoft.com/en-us/research/publication/unispeech-unified-speech-representation-learning-with-labeled-and-unlabeled-data/) The large model pretrained on 16kHz sampled speech audio and phonetic labels and consequently fine-tuned on 1h of Spanish phonemes. When using the model make sure that your speech input is also sampled at 16kHz and your text in converted into a sequence of phonemes. [Paper: UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) Authors: Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang **Abstract** *In this paper, we propose a unified pre-training approach called UniSpeech to learn speech representations with both unlabeled and labeled data, in which supervised phonetic CTC learning and phonetically-aware contrastive self-supervised learning are conducted in a multi-task learning manner. The resultant representations can capture information more correlated with phonetic structures and improve the generalization across languages and domains. We evaluate the effectiveness of UniSpeech for cross-lingual representation learning on public CommonVoice corpus. The results show that UniSpeech outperforms self-supervised pretraining and supervised transfer learning for speech recognition by a maximum of 13.4% and 17.8% relative phone error rate reductions respectively (averaged over all testing languages). The transferability of UniSpeech is also demonstrated on a domain-shift speech recognition task, i.e., a relative word error rate reduction of 6% against the previous approach.* The original model can be found under https://github.com/microsoft/UniSpeech/tree/main/UniSpeech. # Usage This is an speech model that has been fine-tuned on phoneme classification. ## Inference ```python import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F model_id = "microsoft/unispeech-1350-en-168-es-ft-1h" sample = next(iter(load_dataset("common_voice", "es", split="test", streaming=True))) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() model = AutoModelForCTC.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) input_values = processor(resampled_audio, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values).logits prediction_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(prediction_ids) # -> gives: # b j e n i k e ɾ ɾ e ɣ a l o a s a β ɾ i ɾ p ɾ i m e ɾ o' # for: Bien . ¿ y qué regalo vas a abrir primero ? ``` # Contribution The model was contributed by [cywang](https://huggingface.co/cywang) and [patrickvonplaten](https://huggingface.co/patrickvonplaten). # License The official license can be found [here](https://github.com/microsoft/UniSpeech/blob/main/LICENSE) # Official Results See *UniSpeeech-L^{+}* - *es*: ![design](https://raw.githubusercontent.com/patrickvonplaten/scientific_images/master/unispeech_results.png)
microsoft/unispeech-1350-en-17h-ky-ft-1h
47f2558e5235c1ca19376d3fee08564055f29626
2021-12-19T23:00:00.000Z
[ "pytorch", "unispeech", "automatic-speech-recognition", "ky", "dataset:common_voice", "arxiv:2101.07597", "transformers", "audio" ]
automatic-speech-recognition
false
microsoft
null
microsoft/unispeech-1350-en-17h-ky-ft-1h
4
null
transformers
18,806
--- language: - ky datasets: - common_voice tags: - audio - automatic-speech-recognition --- # UniSpeech-Large-plus Kyrgyz [Microsoft's UniSpeech](https://www.microsoft.com/en-us/research/publication/unispeech-unified-speech-representation-learning-with-labeled-and-unlabeled-data/) The large model pretrained on 16kHz sampled speech audio and phonetic labels and consequently fine-tuned on 1h of Kyrgyz phonemes. When using the model make sure that your speech input is also sampled at 16kHz and your text in converted into a sequence of phonemes. [Paper: UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) Authors: Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang **Abstract** *In this paper, we propose a unified pre-training approach called UniSpeech to learn speech representations with both unlabeled and labeled data, in which supervised phonetic CTC learning and phonetically-aware contrastive self-supervised learning are conducted in a multi-task learning manner. The resultant representations can capture information more correlated with phonetic structures and improve the generalization across languages and domains. We evaluate the effectiveness of UniSpeech for cross-lingual representation learning on public CommonVoice corpus. The results show that UniSpeech outperforms self-supervised pretraining and supervised transfer learning for speech recognition by a maximum of 13.4% and 17.8% relative phone error rate reductions respectively (averaged over all testing languages). The transferability of UniSpeech is also demonstrated on a domain-shift speech recognition task, i.e., a relative word error rate reduction of 6% against the previous approach.* The original model can be found under https://github.com/microsoft/UniSpeech/tree/main/UniSpeech. # Usage This is an speech model that has been fine-tuned on phoneme classification. ## Inference ```python import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F model_id = "microsoft/unispeech-1350-en-17h-ky-ft-1h" sample = next(iter(load_dataset("common_voice", "ky", split="test", streaming=True))) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() model = AutoModelForCTC.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) input_values = processor(resampled_audio, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values).logits prediction_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(prediction_ids) ``` # Contribution The model was contributed by [cywang](https://huggingface.co/cywang) and [patrickvonplaten](https://huggingface.co/patrickvonplaten). # License The official license can be found [here](https://github.com/microsoft/UniSpeech/blob/main/LICENSE) # Official Results See *UniSpeeech-L^{+}* - *ky*: ![design](https://raw.githubusercontent.com/patrickvonplaten/scientific_images/master/unispeech_results.png)
microsoft/unispeech-sat-large-sd
1e451cf8fdaa17c25d2a08d70511a06b22488e40
2021-12-17T18:42:36.000Z
[ "pytorch", "unispeech-sat", "audio-frame-classification", "en", "arxiv:1912.07875", "arxiv:2106.06909", "arxiv:2101.00390", "arxiv:2110.05752", "transformers", "speech" ]
null
false
microsoft
null
microsoft/unispeech-sat-large-sd
4
null
transformers
18,807
--- language: - en datasets: tags: - speech --- # UniSpeech-SAT-Large for Speaker Diarization [Microsoft's UniSpeech](https://www.microsoft.com/en-us/research/publication/unispeech-unified-speech-representation-learning-with-labeled-and-unlabeled-data/) The model was pretrained on 16kHz sampled speech audio with utterance and speaker contrastive loss. When using the model, make sure that your speech input is also sampled at 16kHz. The model was pre-trained on: - 60,000 hours of [Libri-Light](https://arxiv.org/abs/1912.07875) - 10,000 hours of [GigaSpeech](https://arxiv.org/abs/2106.06909) - 24,000 hours of [VoxPopuli](https://arxiv.org/abs/2101.00390) [Paper: UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) Authors: Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu **Abstract** *Self-supervised learning (SSL) is a long-standing goal for speech processing, since it utilizes large-scale unlabeled data and avoids extensive human labeling. Recent years witness great successes in applying self-supervised learning in speech recognition, while limited exploration was attempted in applying SSL for modeling speaker characteristics. In this paper, we aim to improve the existing SSL framework for speaker representation learning. Two methods are introduced for enhancing the unsupervised speaker information extraction. First, we apply the multi-task learning to the current SSL framework, where we integrate the utterance-wise contrastive loss with the SSL objective function. Second, for better speaker discrimination, we propose an utterance mixing strategy for data augmentation, where additional overlapped utterances are created unsupervisely and incorporate during training. We integrate the proposed methods into the HuBERT framework. Experiment results on SUPERB benchmark show that the proposed system achieves state-of-the-art performance in universal representation learning, especially for speaker identification oriented tasks. An ablation study is performed verifying the efficacy of each proposed method. Finally, we scale up training dataset to 94 thousand hours public audio data and achieve further performance improvement in all SUPERB tasks..* The original model can be found under https://github.com/microsoft/UniSpeech/tree/main/UniSpeech-SAT. # Fine-tuning details The model is fine-tuned on the [LibriMix dataset](https://github.com/JorisCos/LibriMix) using just a linear layer for mapping the network outputs. # Usage ## Speaker Diarization ```python from transformers import Wav2Vec2FeatureExtractor, UniSpeechSatForAudioFrameClassification from datasets import load_dataset import torch dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation") feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained('microsoft/unispeech-sat-large-sd') model = UniSpeechSatForAudioFrameClassification.from_pretrained('microsoft/unispeech-sat-large-sd') # audio file is decoded on the fly inputs = feature_extractor(dataset[0]["audio"]["array"], return_tensors="pt") logits = model(**inputs).logits probabilities = torch.sigmoid(logits[0]) # labels is a one-hot array of shape (num_frames, num_speakers) labels = (probabilities > 0.5).long() ``` # License The official license can be found [here](https://github.com/microsoft/UniSpeech/blob/main/LICENSE) ![design](https://raw.githubusercontent.com/patrickvonplaten/scientific_images/master/UniSpeechSAT.png)
midas/gupshup_h2e_mbart
b0e78f67817f90377719b4f12cba4186b816ec69
2021-11-14T02:08:45.000Z
[ "pytorch", "mbart", "text2text-generation", "arxiv:1910.04073", "transformers", "autotrain_compatible" ]
text2text-generation
false
midas
null
midas/gupshup_h2e_mbart
4
null
transformers
18,808
# Gupshup GupShup: Summarizing Open-Domain Code-Switched Conversations EMNLP 2021 Paper: [https://aclanthology.org/2021.emnlp-main.499.pdf](https://aclanthology.org/2021.emnlp-main.499.pdf) Github: [https://github.com/midas-research/gupshup](https://github.com/midas-research/gupshup) ### Dataset Please request for the Gupshup data using [this Google form](https://docs.google.com/forms/d/1zvUk7WcldVF3RCoHdWzQPzPprtSJClrnHoIOYbzaJEI/edit?ts=61381ec0). Dataset is available for `Hinglish Dilaogues to English Summarization`(h2e) and `English Dialogues to English Summarization`(e2e). For each task, Dialogues/conversastion have `.source`(train.source) as file extension whereas Summary has `.target`(train.target) file extension. ".source" file need to be provided to `input_path` and ".target" file to `reference_path` argument in the scripts. ## Models All model weights are available on the Huggingface model hub. Users can either directly download these weights in their local and provide this path to `model_name` argument in the scripts or use the provided alias (to `model_name` argument) in scripts directly; this will lead to download weights automatically by scripts. Model names were aliased in "gupshup_TASK_MODEL" sense, where "TASK" can be h2e,e2e and MODEL can be mbart, pegasus, etc., as listed below. **1. Hinglish Dialogues to English Summary (h2e)** | Model | Huggingface Alias | |---------|-------------------------------------------------------------------------------| | mBART | [midas/gupshup_h2e_mbart](https://huggingface.co/midas/gupshup_h2e_mbart) | | PEGASUS | [midas/gupshup_h2e_pegasus](https://huggingface.co/midas/gupshup_h2e_pegasus) | | T5 MTL | [midas/gupshup_h2e_t5_mtl](https://huggingface.co/midas/gupshup_h2e_t5_mtl) | | T5 | [midas/gupshup_h2e_t5](https://huggingface.co/midas/gupshup_h2e_t5) | | BART | [midas/gupshup_h2e_bart](https://huggingface.co/midas/gupshup_h2e_bart) | | GPT-2 | [midas/gupshup_h2e_gpt](https://huggingface.co/midas/gupshup_h2e_gpt) | **2. English Dialogues to English Summary (e2e)** | Model | Huggingface Alias | |---------|-------------------------------------------------------------------------------| | mBART | [midas/gupshup_e2e_mbart](https://huggingface.co/midas/gupshup_e2e_mbart) | | PEGASUS | [midas/gupshup_e2e_pegasus](https://huggingface.co/midas/gupshup_e2e_pegasus) | | T5 MTL | [midas/gupshup_e2e_t5_mtl](https://huggingface.co/midas/gupshup_e2e_t5_mtl) | | T5 | [midas/gupshup_e2e_t5](https://huggingface.co/midas/gupshup_e2e_t5) | | BART | [midas/gupshup_e2e_bart](https://huggingface.co/midas/gupshup_e2e_bart) | | GPT-2 | [midas/gupshup_e2e_gpt](https://huggingface.co/midas/gupshup_e2e_gpt) | ## Inference ### Using command line 1. Clone this repo and create a python virtual environment (https://docs.python.org/3/library/venv.html). Install the required packages using ``` git clone https://github.com/midas-research/gupshup.git pip install -r requirements.txt ``` 2. run_eval script has the following arguments. * **model_name** : Path or alias to one of our models available on Huggingface as listed above. * **input_path** : Source file or path to file containing conversations, which will be summarized. * **save_path** : File path where to save summaries generated by the model. * **reference_path** : Target file or path to file containing summaries, used to calculate matrices. * **score_path** : File path where to save scores. * **bs** : Batch size * **device**: Cuda devices to use. Please make sure you have downloaded the Gupshup dataset using the above google form and provide the correct path to these files in the argument's `input_path` and `refrence_path.` Or you can simply put `test.source` and `test.target` in `data/h2e/`(hinglish to english) or `data/e2e/`(english to english) folder. For example, to generate English summaries from Hinglish dialogues using the mbart model, run the following command ``` python run_eval.py \ --model_name midas/gupshup_h2e_mbart \ --input_path data/h2e/test.source \ --save_path generated_summary.txt \ --reference_path data/h2e/test.target \ --score_path scores.txt \ --bs 8 ``` Another example, to generate English summaries from English dialogues using the Pegasus model ``` python run_eval.py \ --model_name midas/gupshup_e2e_pegasus \ --input_path data/e2e/test.source \ --save_path generated_summary.txt \ --reference_path data/e2e/test.target \ --score_path scores.txt \ --bs 8 ``` Please create an issue if you are facing any difficulties in replicating the results. ### References Please cite [[1]](https://arxiv.org/abs/1910.04073) if you found the resources in this repository useful. [1] Mehnaz, Laiba, Debanjan Mahata, Rakesh Gosangi, Uma Sushmitha Gunturi, Riya Jain, Gauri Gupta, Amardeep Kumar, Isabelle G. Lee, Anish Acharya, and Rajiv Shah. [*GupShup: Summarizing Open-Domain Code-Switched Conversations*](https://aclanthology.org/2021.emnlp-main.499.pdf) ``` @inproceedings{mehnaz2021gupshup, title={GupShup: Summarizing Open-Domain Code-Switched Conversations}, author={Mehnaz, Laiba and Mahata, Debanjan and Gosangi, Rakesh and Gunturi, Uma Sushmitha and Jain, Riya and Gupta, Gauri and Kumar, Amardeep and Lee, Isabelle G and Acharya, Anish and Shah, Rajiv}, booktitle={Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing}, pages={6177--6192}, year={2021} } ```
midas/gupshup_h2e_t5
ab85f7ba5e9f4c67cd55bd64257d789f37d23b01
2021-11-14T02:09:33.000Z
[ "pytorch", "t5", "text2text-generation", "arxiv:1910.04073", "transformers", "autotrain_compatible" ]
text2text-generation
false
midas
null
midas/gupshup_h2e_t5
4
null
transformers
18,809
# Gupshup GupShup: Summarizing Open-Domain Code-Switched Conversations EMNLP 2021 Paper: [https://aclanthology.org/2021.emnlp-main.499.pdf](https://aclanthology.org/2021.emnlp-main.499.pdf) Github: [https://github.com/midas-research/gupshup](https://github.com/midas-research/gupshup) ### Dataset Please request for the Gupshup data using [this Google form](https://docs.google.com/forms/d/1zvUk7WcldVF3RCoHdWzQPzPprtSJClrnHoIOYbzaJEI/edit?ts=61381ec0). Dataset is available for `Hinglish Dilaogues to English Summarization`(h2e) and `English Dialogues to English Summarization`(e2e). For each task, Dialogues/conversastion have `.source`(train.source) as file extension whereas Summary has `.target`(train.target) file extension. ".source" file need to be provided to `input_path` and ".target" file to `reference_path` argument in the scripts. ## Models All model weights are available on the Huggingface model hub. Users can either directly download these weights in their local and provide this path to `model_name` argument in the scripts or use the provided alias (to `model_name` argument) in scripts directly; this will lead to download weights automatically by scripts. Model names were aliased in "gupshup_TASK_MODEL" sense, where "TASK" can be h2e,e2e and MODEL can be mbart, pegasus, etc., as listed below. **1. Hinglish Dialogues to English Summary (h2e)** | Model | Huggingface Alias | |---------|-------------------------------------------------------------------------------| | mBART | [midas/gupshup_h2e_mbart](https://huggingface.co/midas/gupshup_h2e_mbart) | | PEGASUS | [midas/gupshup_h2e_pegasus](https://huggingface.co/midas/gupshup_h2e_pegasus) | | T5 MTL | [midas/gupshup_h2e_t5_mtl](https://huggingface.co/midas/gupshup_h2e_t5_mtl) | | T5 | [midas/gupshup_h2e_t5](https://huggingface.co/midas/gupshup_h2e_t5) | | BART | [midas/gupshup_h2e_bart](https://huggingface.co/midas/gupshup_h2e_bart) | | GPT-2 | [midas/gupshup_h2e_gpt](https://huggingface.co/midas/gupshup_h2e_gpt) | **2. English Dialogues to English Summary (e2e)** | Model | Huggingface Alias | |---------|-------------------------------------------------------------------------------| | mBART | [midas/gupshup_e2e_mbart](https://huggingface.co/midas/gupshup_e2e_mbart) | | PEGASUS | [midas/gupshup_e2e_pegasus](https://huggingface.co/midas/gupshup_e2e_pegasus) | | T5 MTL | [midas/gupshup_e2e_t5_mtl](https://huggingface.co/midas/gupshup_e2e_t5_mtl) | | T5 | [midas/gupshup_e2e_t5](https://huggingface.co/midas/gupshup_e2e_t5) | | BART | [midas/gupshup_e2e_bart](https://huggingface.co/midas/gupshup_e2e_bart) | | GPT-2 | [midas/gupshup_e2e_gpt](https://huggingface.co/midas/gupshup_e2e_gpt) | ## Inference ### Using command line 1. Clone this repo and create a python virtual environment (https://docs.python.org/3/library/venv.html). Install the required packages using ``` git clone https://github.com/midas-research/gupshup.git pip install -r requirements.txt ``` 2. run_eval script has the following arguments. * **model_name** : Path or alias to one of our models available on Huggingface as listed above. * **input_path** : Source file or path to file containing conversations, which will be summarized. * **save_path** : File path where to save summaries generated by the model. * **reference_path** : Target file or path to file containing summaries, used to calculate matrices. * **score_path** : File path where to save scores. * **bs** : Batch size * **device**: Cuda devices to use. Please make sure you have downloaded the Gupshup dataset using the above google form and provide the correct path to these files in the argument's `input_path` and `refrence_path.` Or you can simply put `test.source` and `test.target` in `data/h2e/`(hinglish to english) or `data/e2e/`(english to english) folder. For example, to generate English summaries from Hinglish dialogues using the mbart model, run the following command ``` python run_eval.py \ --model_name midas/gupshup_h2e_mbart \ --input_path data/h2e/test.source \ --save_path generated_summary.txt \ --reference_path data/h2e/test.target \ --score_path scores.txt \ --bs 8 ``` Another example, to generate English summaries from English dialogues using the Pegasus model ``` python run_eval.py \ --model_name midas/gupshup_e2e_pegasus \ --input_path data/e2e/test.source \ --save_path generated_summary.txt \ --reference_path data/e2e/test.target \ --score_path scores.txt \ --bs 8 ``` Please create an issue if you are facing any difficulties in replicating the results. ### References Please cite [[1]](https://arxiv.org/abs/1910.04073) if you found the resources in this repository useful. [1] Mehnaz, Laiba, Debanjan Mahata, Rakesh Gosangi, Uma Sushmitha Gunturi, Riya Jain, Gauri Gupta, Amardeep Kumar, Isabelle G. Lee, Anish Acharya, and Rajiv Shah. [*GupShup: Summarizing Open-Domain Code-Switched Conversations*](https://aclanthology.org/2021.emnlp-main.499.pdf) ``` @inproceedings{mehnaz2021gupshup, title={GupShup: Summarizing Open-Domain Code-Switched Conversations}, author={Mehnaz, Laiba and Mahata, Debanjan and Gosangi, Rakesh and Gunturi, Uma Sushmitha and Jain, Riya and Gupta, Gauri and Kumar, Amardeep and Lee, Isabelle G and Acharya, Anish and Shah, Rajiv}, booktitle={Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing}, pages={6177--6192}, year={2021} } ```
milyiyo/minilm-finetuned-emotion
fb6005acdd6f3ab7088dec77ef0298616a41ba16
2022-01-16T00:37:00.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
milyiyo
null
milyiyo/minilm-finetuned-emotion
4
1
transformers
18,810
--- license: mit tags: - generated_from_trainer datasets: - emotion metrics: - f1 model-index: - name: minilm-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: F1 type: f1 value: 0.931192 --- Based model: [microsoft/MiniLM-L12-H384-uncased](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) Dataset: [emotion](https://huggingface.co/datasets/emotion) These are the results on the evaluation set: | Attribute | Value | | ------------------ | -------- | | Training Loss | 0.163100 | | Validation Loss | 0.192153 | | F1 | 0.931192 |
mimi/Waynehills-NLP-doogie
4e1ec489b96e2feb40a3a1586bb6d03cd3f7a6b2
2022-01-06T08:02:38.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
mimi
null
mimi/Waynehills-NLP-doogie
4
null
transformers
18,811
--- tags: - generated_from_trainer model-index: - name: Waynehills-NLP-doogie results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Waynehills-NLP-doogie This model is a fine-tuned version of [KETI-AIR/ke-t5-base-ko](https://huggingface.co/KETI-AIR/ke-t5-base-ko) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.9188 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 28.2167 | 0.06 | 1000 | 9.7030 | | 10.4479 | 0.12 | 2000 | 7.5450 | | 8.0306 | 0.19 | 3000 | 6.1969 | | 6.503 | 0.25 | 4000 | 5.3015 | | 5.5406 | 0.31 | 5000 | 4.6363 | | 4.7299 | 0.38 | 6000 | 4.0431 | | 3.9263 | 0.44 | 7000 | 3.6313 | | 3.4111 | 0.5 | 8000 | 3.4830 | | 3.0517 | 0.56 | 9000 | 3.3294 | | 2.7524 | 0.62 | 10000 | 3.2077 | | 2.5402 | 0.69 | 11000 | 3.1094 | | 2.3228 | 0.75 | 12000 | 3.1099 | | 2.1513 | 0.81 | 13000 | 3.0284 | | 2.0418 | 0.88 | 14000 | 3.0155 | | 1.8875 | 0.94 | 15000 | 3.0241 | | 1.756 | 1.0 | 16000 | 3.0165 | | 1.6489 | 1.06 | 17000 | 2.9849 | | 1.5788 | 1.12 | 18000 | 2.9496 | | 1.5368 | 1.19 | 19000 | 2.9500 | | 1.4467 | 1.25 | 20000 | 3.0133 | | 1.381 | 1.31 | 21000 | 2.9631 | | 1.3451 | 1.38 | 22000 | 3.0159 | | 1.2917 | 1.44 | 23000 | 2.9906 | | 1.2605 | 1.5 | 24000 | 3.0006 | | 1.2003 | 1.56 | 25000 | 2.9797 | | 1.1987 | 1.62 | 26000 | 2.9253 | | 1.1703 | 1.69 | 27000 | 3.0044 | | 1.1474 | 1.75 | 28000 | 2.9216 | | 1.0816 | 1.81 | 29000 | 2.9645 | | 1.0709 | 1.88 | 30000 | 3.0439 | | 1.0476 | 1.94 | 31000 | 3.0844 | | 1.0645 | 2.0 | 32000 | 2.9434 | | 1.0204 | 2.06 | 33000 | 2.9386 | | 0.9901 | 2.12 | 34000 | 3.0452 | | 0.9911 | 2.19 | 35000 | 2.9798 | | 0.9706 | 2.25 | 36000 | 2.9919 | | 0.9461 | 2.31 | 37000 | 3.0279 | | 0.9577 | 2.38 | 38000 | 2.9615 | | 0.9466 | 2.44 | 39000 | 2.9988 | | 0.9486 | 2.5 | 40000 | 2.9133 | | 0.9201 | 2.56 | 41000 | 3.0004 | | 0.896 | 2.62 | 42000 | 2.9626 | | 0.8893 | 2.69 | 43000 | 2.9667 | | 0.9028 | 2.75 | 44000 | 2.9543 | | 0.897 | 2.81 | 45000 | 2.8760 | | 0.8664 | 2.88 | 46000 | 2.9894 | | 0.8719 | 2.94 | 47000 | 2.8456 | | 0.8491 | 3.0 | 48000 | 2.9713 | | 0.8402 | 3.06 | 49000 | 2.9738 | | 0.8484 | 3.12 | 50000 | 2.9361 | | 0.8304 | 3.19 | 51000 | 2.8945 | | 0.8208 | 3.25 | 52000 | 2.9625 | | 0.8074 | 3.31 | 53000 | 3.0054 | | 0.8226 | 3.38 | 54000 | 2.9405 | | 0.8185 | 3.44 | 55000 | 2.9047 | | 0.8352 | 3.5 | 56000 | 2.9016 | | 0.8289 | 3.56 | 57000 | 2.9490 | | 0.7918 | 3.62 | 58000 | 2.9621 | | 0.8212 | 3.69 | 59000 | 2.9341 | | 0.7955 | 3.75 | 60000 | 2.9167 | | 0.7724 | 3.81 | 61000 | 2.9409 | | 0.8169 | 3.88 | 62000 | 2.8925 | | 0.7862 | 3.94 | 63000 | 2.9314 | | 0.803 | 4.0 | 64000 | 2.9271 | | 0.7595 | 4.06 | 65000 | 2.9263 | | 0.7931 | 4.12 | 66000 | 2.9400 | | 0.7759 | 4.19 | 67000 | 2.9501 | | 0.7859 | 4.25 | 68000 | 2.9133 | | 0.805 | 4.31 | 69000 | 2.8785 | | 0.7649 | 4.38 | 70000 | 2.9060 | | 0.7692 | 4.44 | 71000 | 2.8868 | | 0.7692 | 4.5 | 72000 | 2.9045 | | 0.7798 | 4.56 | 73000 | 2.8951 | | 0.7812 | 4.62 | 74000 | 2.9068 | | 0.7533 | 4.69 | 75000 | 2.9129 | | 0.7527 | 4.75 | 76000 | 2.9157 | | 0.7652 | 4.81 | 77000 | 2.9053 | | 0.7633 | 4.88 | 78000 | 2.9190 | | 0.7437 | 4.94 | 79000 | 2.9251 | | 0.7653 | 5.0 | 80000 | 2.9188 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.5.0 - Tokenizers 0.10.3
mklucifer/DialoGPT-medium-DEADPOOL
0550da6f5f3e109d635bbe8da5e87b2df05d7d38
2021-10-27T15:10:16.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
mklucifer
null
mklucifer/DialoGPT-medium-DEADPOOL
4
null
transformers
18,812
--- tags: - conversational --- # DEADPOOL DialoGPT Model
ml6team/distilbert-base-dutch-cased-toxic-comments
edf505d15afb6de3dbe994f13337c723495a4057
2022-01-20T08:21:12.000Z
[ "pytorch", "distilbert", "text-classification", "nl", "transformers", "license:apache-2.0" ]
text-classification
false
ml6team
null
ml6team/distilbert-base-dutch-cased-toxic-comments
4
5
transformers
18,813
--- language: - nl tags: - text-classification - pytorch widget: - text: "Ik heb je lief met heel mijn hart" example_title: "Non toxic comment 1" - text: "Dat is een goed punt, zo had ik het nog niet bekeken." example_title: "Non toxic comment 2" - text: "Wat de fuck zei je net tegen me, klootzak?" example_title: "Toxic comment 1" - text: "Rot op, vuile hoerenzoon." example_title: "Toxic comment 2" license: apache-2.0 metrics: - Accuracy, F1 Score, Recall, Precision --- # distilbert-base-dutch-toxic-comments ## Model description: This model was created with the purpose to detect toxic or potentially harmful comments. For this model, we finetuned a multilingual distilbert model [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on the translated [Jigsaw Toxicity dataset](https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge). The original dataset was translated using the appropriate [MariantMT model](https://huggingface.co/Helsinki-NLP/opus-mt-en-nl). The model was trained for 2 epochs, on 90% of the dataset, with the following arguments: ``` training_args = TrainingArguments( learning_rate=3e-5, per_device_train_batch_size=16, per_device_eval_batch_size=16, gradient_accumulation_steps=4, load_best_model_at_end=True, metric_for_best_model="recall", epochs=2, evaluation_strategy="steps", save_strategy="steps", save_total_limit=10, logging_steps=100, eval_steps=250, save_steps=250, weight_decay=0.001, report_to="wandb") ``` ## Model Performance: Model evaluation was done on 1/10th of the dataset, which served as the test dataset. | Accuracy | F1 Score | Recall | Precision | | --- | --- | --- | --- | | 95.75 | 78.88 | 77.23 | 80.61 | ## Dataset: Unfortunately we cannot open-source the dataset, since we are bound by the underlying Jigsaw license.
mmcquade11/autonlp-imdb-test-21134453
357f7eb72db04932822cc51da75b19199ebd1ca4
2021-10-18T17:47:59.000Z
[ "pytorch", "roberta", "text-classification", "en", "dataset:mmcquade11/autonlp-data-imdb-test", "transformers", "autonlp", "co2_eq_emissions" ]
text-classification
false
mmcquade11
null
mmcquade11/autonlp-imdb-test-21134453
4
null
transformers
18,814
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - mmcquade11/autonlp-data-imdb-test co2_eq_emissions: 38.102565360610484 --- # Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 21134453 - CO2 Emissions (in grams): 38.102565360610484 ## Validation Metrics - Loss: 0.172550767660141 - Accuracy: 0.9355 - Precision: 0.9362853135644159 - Recall: 0.9346 - AUC: 0.98267064 - F1: 0.9354418977079372 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/mmcquade11/autonlp-imdb-test-21134453 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("mmcquade11/autonlp-imdb-test-21134453", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("mmcquade11/autonlp-imdb-test-21134453", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
mofawzy/gpt-2-goodreads-ar
e00809551e44401ba29eb27d647d504bfbe78404
2021-05-23T09:53:17.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
mofawzy
null
mofawzy/gpt-2-goodreads-ar
4
null
transformers
18,815
### Generate Arabic reviews sentences with model GPT-2 Medium. #### Load model ``` from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("mofawzy/gpt-2-medium-ar") model = AutoModelWithLMHead.from_pretrained("mofawzy/gpt-2-medium-ar") ``` ### Eval: ``` ***** eval metrics ***** epoch = 20.0 eval_loss = 1.7798 eval_mem_cpu_alloc_delta = 3MB eval_mem_cpu_peaked_delta = 0MB eval_mem_gpu_alloc_delta = 0MB eval_mem_gpu_peaked_delta = 7044MB eval_runtime = 0:03:03.37 eval_samples = 527 eval_samples_per_second = 2.874 perplexity = 5.9285 ``` #### Notebook: https://colab.research.google.com/drive/1P0Raqrq0iBLNH87DyN9j0SwWg4C2HubV?usp=sharing
mohammed/wav2vec2-large-xlsr-arabic
acbe8be2e88637e63fc31d199de81b989e982600
2021-07-06T12:52:15.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "ar", "dataset:common_voice", "dataset:arabic_speech_corpus", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
mohammed
null
mohammed/wav2vec2-large-xlsr-arabic
4
2
transformers
18,816
--- language: ar datasets: - common_voice - arabic_speech_corpus metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: Mohammed XLSR Wav2Vec2 Large 53 results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice ar type: common_voice args: ar metrics: - name: Test WER type: wer value: 36.699 - name: Validation WER type: wer value: 36.699 --- # Wav2Vec2-Large-XLSR-53-Arabic Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Arabic using the `train` splits of [Common Voice](https://huggingface.co/datasets/common_voice) and [Arabic Speech Corpus](https://huggingface.co/datasets/arabic_speech_corpus). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python %%capture !pip install datasets !pip install transformers==4.4.0 !pip install torchaudio !pip install jiwer !pip install tnkeeh import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "ar", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("mohammed/wav2vec2-large-xlsr-arabic") model = Wav2Vec2ForCTC.from_pretrained("mohammed/wav2vec2-large-xlsr-arabic") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("The predicted sentence is: ", processor.batch_decode(predicted_ids)) print("The original sentence is:", test_dataset["sentence"][:2]) ``` The output is: ``` The predicted sentence is : ['ألديك قلم', 'ليست نارك مكسافة على هذه الأرض أبعد من يوم أمس'] The original sentence is: ['ألديك قلم ؟', 'ليست هناك مسافة على هذه الأرض أبعد من يوم أمس.'] ``` ## Evaluation The model can be evaluated as follows on the Arabic test data of Common Voice: ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re # creating a dictionary with all diacritics dict = { 'ِ': '', 'ُ': '', 'ٓ': '', 'ٰ': '', 'ْ': '', 'ٌ': '', 'ٍ': '', 'ً': '', 'ّ': '', 'َ': '', '~': '', ',': '', 'ـ': '', '—': '', '.': '', '!': '', '-': '', ';': '', ':': '', '\'': '', '"': '', '☭': '', '«': '', '»': '', '؛': '', 'ـ': '', '_': '', '،': '', '“': '', '%': '', '‘': '', '”': '', '�': '', '_': '', ',': '', '?': '', '#': '', '‘': '', '.': '', '؛': '', 'get': '', '؟': '', ' ': ' ', '\'ۖ ': '', '\'': '', '\'ۚ' : '', ' \'': '', '31': '', '24': '', '39': '' } # replacing multiple diacritics using dictionary (stackoverflow is amazing) def remove_special_characters(batch): # Create a regular expression from the dictionary keys regex = re.compile("(%s)" % "|".join(map(re.escape, dict.keys()))) # For each match, look-up corresponding value in dictionary batch["sentence"] = regex.sub(lambda mo: dict[mo.string[mo.start():mo.end()]], batch["sentence"]) return batch test_dataset = load_dataset("common_voice", "ar", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("mohammed/wav2vec2-large-xlsr-arabic") model = Wav2Vec2ForCTC.from_pretrained("mohammed/wav2vec2-large-xlsr-arabic") model.to("cuda") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) test_dataset = test_dataset.map(remove_special_characters) # Preprocessing the datasets. # We need to read the audio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 36.699% ## Future Work One can use *data augmentation*, *transliteration*, or *attention_mask* to increase the accuracy.
mohsenfayyaz/bert-base-cased-toxicity
20449e48fc48c477568c72f12b6159d86290ca43
2021-05-19T23:39:41.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
mohsenfayyaz
null
mohsenfayyaz/bert-base-cased-toxicity
4
null
transformers
18,817
Entry not found
mohsenfayyaz/bert-base-uncased-offenseval2019-unbalanced
e2c36709fcd98f5761b8d3396354d0e515467ccf
2021-05-19T23:41:35.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
mohsenfayyaz
null
mohsenfayyaz/bert-base-uncased-offenseval2019-unbalanced
4
null
transformers
18,818
Entry not found
mohsenfayyaz/bert-base-uncased-toxicity-a
bc046871daaaba8d8c2ce7a10b2b4d7eb0ea46e2
2021-05-19T23:44:37.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
mohsenfayyaz
null
mohsenfayyaz/bert-base-uncased-toxicity-a
4
null
transformers
18,819
Entry not found
mohsenfayyaz/xlnet-base-cased-offenseval2019-downsample
bd015b15113ade3ce9ebfbd7617a7d6ac898f973
2021-05-04T13:58:20.000Z
[ "pytorch", "xlnet", "text-classification", "transformers" ]
text-classification
false
mohsenfayyaz
null
mohsenfayyaz/xlnet-base-cased-offenseval2019-downsample
4
null
transformers
18,820
Entry not found
mollypak/bert-model-baby
479f6cf68275cc5d09c3bf31fab1d57ab2e1407f
2021-11-26T13:30:51.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
mollypak
null
mollypak/bert-model-baby
4
null
transformers
18,821
Entry not found
momo/distilbert-base-uncased-finetuned-ner
9a242b287e56e5a2a963b662f5aabb2a0f37cf11
2021-11-28T17:15:36.000Z
[ "pytorch", "tensorboard", "distilbert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
momo
null
momo/distilbert-base-uncased-finetuned-ner
4
null
transformers
18,822
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9262123053131559 - name: Recall type: recall value: 0.9380243875153821 - name: F1 type: f1 value: 0.9320809248554913 - name: Accuracy type: accuracy value: 0.9839547555880344 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0617 - Precision: 0.9262 - Recall: 0.9380 - F1: 0.9321 - Accuracy: 0.9840 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2465 | 1.0 | 878 | 0.0727 | 0.9175 | 0.9199 | 0.9187 | 0.9808 | | 0.0527 | 2.0 | 1756 | 0.0610 | 0.9245 | 0.9361 | 0.9303 | 0.9834 | | 0.0313 | 3.0 | 2634 | 0.0617 | 0.9262 | 0.9380 | 0.9321 | 0.9840 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.8.0 - Datasets 1.16.1 - Tokenizers 0.10.3
monologg/kocharelectra-base-finetuned-goemotions
6aad036b0a14d69fc4dce14d18eca945e4456925
2020-05-29T12:52:27.000Z
[ "pytorch", "electra", "transformers" ]
null
false
monologg
null
monologg/kocharelectra-base-finetuned-goemotions
4
null
transformers
18,823
Entry not found
monologg/kocharelectra-base-generator
019d26cdd8791eb28e2b67ff956b0fb441db4ffd
2020-05-27T17:35:59.000Z
[ "pytorch", "electra", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
monologg
null
monologg/kocharelectra-base-generator
4
null
transformers
18,824
Entry not found
monologg/kocharelectra-small-finetuned-goemotions
e77adc04b5143e5989f09adff8fce8ac47d090b1
2020-05-29T12:56:37.000Z
[ "pytorch", "electra", "transformers" ]
null
false
monologg
null
monologg/kocharelectra-small-finetuned-goemotions
4
null
transformers
18,825
Entry not found
monologg/koelectra-base-finetuned-goemotions
c505c12811b558c574420afdaa74aac8b3c31421
2020-05-18T20:19:16.000Z
[ "pytorch", "electra", "transformers" ]
null
false
monologg
null
monologg/koelectra-base-finetuned-goemotions
4
null
transformers
18,826
Entry not found
monsoon-nlp/dv-muril
b67f178d9b0545a7652aad32f08d4ac2b5df7dca
2021-05-20T00:01:51.000Z
[ "pytorch", "jax", "bert", "fill-mask", "dv", "transformers", "autotrain_compatible" ]
fill-mask
false
monsoon-nlp
null
monsoon-nlp/dv-muril
4
null
transformers
18,827
--- language: dv --- # dv-muril This is an experiment in transfer learning, to insert Dhivehi word and word-piece tokens into Google's MuRIL model. This BERT-based model currently performs better than dv-wave ELECTRA on the Maldivian News Classification task https://github.com/Sofwath/DhivehiDatasets ## Training - Start with MuRIL (similar to mBERT) with no Thaana vocabulary - Based on PanLex dictionaries, attach 1,100 Dhivehi words to Malayalam or English embeddings - Add remaining words and word-pieces from BertWordPieceTokenizer / vocab.txt - Continue BERT pretraining ## Performance - mBERT: 52% - dv-wave (ELECTRA, 30k vocab): 89% - dv-muril (10k vocab) before BERT pretraining step: 89.8% - previous dv-muril (30k vocab): 90.7% - dv-muril (10k vocab): 91.6% CoLab notebook: https://colab.research.google.com/drive/113o6vkLZRkm6OwhTHrvE0x6QPpavj0fn
monsoon-nlp/dv-wave
2ba732ad89d9ead004e5fdc9941ddc829c2c6524
2020-12-11T21:51:38.000Z
[ "pytorch", "tf", "electra", "dv", "transformers" ]
null
false
monsoon-nlp
null
monsoon-nlp/dv-wave
4
null
transformers
18,828
--- language: dv --- # dv-wave This is a second attempt at a Dhivehi language model trained with Google Research's [ELECTRA](https://github.com/google-research/electra). Tokenization and pre-training CoLab: https://colab.research.google.com/drive/1ZJ3tU9MwyWj6UtQ-8G7QJKTn-hG1uQ9v?usp=sharing Using SimpleTransformers to classify news https://colab.research.google.com/drive/1KnyQxRNWG_yVwms_x9MUAqFQVeMecTV7?usp=sharing V1: similar performance to mBERT on news classification task after finetuning for 3 epochs (52%) V2: fixed tokenizers ```do_lower_case=False``` and ```strip_accents=False``` to preserve vowel signs of Dhivehi dv-wave: 89% to mBERT: 52% ## Corpus Trained on @Sofwath's 307MB corpus of Dhivehi text: https://github.com/Sofwath/DhivehiDatasets - this repo also contains the news classification task CSV [OSCAR](https://oscar-corpus.com/) was considered but has not been added to pretraining; as of this writing their web crawl has 126MB of Dhivehi text (79MB deduped). ## Vocabulary Included as vocab.txt in the upload - vocab_size is 29874
moshew/bert-small-aug-sst2-distilled
499849730805e6d6dba5eab7ba5c5bac42b18be7
2022-02-23T11:12:18.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
moshew
null
moshew/bert-small-aug-sst2-distilled
4
null
transformers
18,829
Accuracy = 92
moussaKam/frugalscore_medium_roberta_bert-score
b73f9b7a9466c99166673f4ec146085f23bb4973
2022-02-01T10:51:17.000Z
[ "pytorch", "bert", "text-classification", "arxiv:2110.08559", "transformers" ]
text-classification
false
moussaKam
null
moussaKam/frugalscore_medium_roberta_bert-score
4
null
transformers
18,830
# FrugalScore FrugalScore is an approach to learn a fixed, low cost version of any expensive NLG metric, while retaining most of its original performance Paper: https://arxiv.org/abs/2110.08559?context=cs Project github: https://github.com/moussaKam/FrugalScore The pretrained checkpoints presented in the paper : | FrugalScore | Student | Teacher | Method | |----------------------------------------------------|-------------|----------------|------------| | [moussaKam/frugalscore_tiny_bert-base_bert-score](https://huggingface.co/moussaKam/frugalscore_tiny_bert-base_bert-score) | BERT-tiny | BERT-Base | BERTScore | | [moussaKam/frugalscore_small_bert-base_bert-score](https://huggingface.co/moussaKam/frugalscore_small_bert-base_bert-score) | BERT-small | BERT-Base | BERTScore | | [moussaKam/frugalscore_medium_bert-base_bert-score](https://huggingface.co/moussaKam/frugalscore_medium_bert-base_bert-score) | BERT-medium | BERT-Base | BERTScore | | [moussaKam/frugalscore_tiny_roberta_bert-score](https://huggingface.co/moussaKam/frugalscore_tiny_roberta_bert-score) | BERT-tiny | RoBERTa-Large | BERTScore | | [moussaKam/frugalscore_small_roberta_bert-score](https://huggingface.co/moussaKam/frugalscore_small_roberta_bert-score) | BERT-small | RoBERTa-Large | BERTScore | | [moussaKam/frugalscore_medium_roberta_bert-score](https://huggingface.co/moussaKam/frugalscore_medium_roberta_bert-score) | BERT-medium | RoBERTa-Large | BERTScore | | [moussaKam/frugalscore_tiny_deberta_bert-score](https://huggingface.co/moussaKam/frugalscore_tiny_deberta_bert-score) | BERT-tiny | DeBERTa-XLarge | BERTScore | | [moussaKam/frugalscore_small_deberta_bert-score](https://huggingface.co/moussaKam/frugalscore_small_deberta_bert-score) | BERT-small | DeBERTa-XLarge | BERTScore | | [moussaKam/frugalscore_medium_deberta_bert-score](https://huggingface.co/moussaKam/frugalscore_medium_deberta_bert-score) | BERT-medium | DeBERTa-XLarge | BERTScore | | [moussaKam/frugalscore_tiny_bert-base_mover-score](https://huggingface.co/moussaKam/frugalscore_tiny_bert-base_mover-score) | BERT-tiny | BERT-Base | MoverScore | | [moussaKam/frugalscore_small_bert-base_mover-score](https://huggingface.co/moussaKam/frugalscore_small_bert-base_mover-score) | BERT-small | BERT-Base | MoverScore | | [moussaKam/frugalscore_medium_bert-base_mover-score](https://huggingface.co/moussaKam/frugalscore_medium_bert-base_mover-score) | BERT-medium | BERT-Base | MoverScore |
moussaKam/frugalscore_small_bert-base_mover-score
3437e3adb217131a1af4c38127649b9f1f00cf14
2022-05-11T11:05:28.000Z
[ "pytorch", "bert", "text-classification", "arxiv:2110.08559", "transformers" ]
text-classification
false
moussaKam
null
moussaKam/frugalscore_small_bert-base_mover-score
4
null
transformers
18,831
# FrugalScore FrugalScore is an approach to learn a fixed, low cost version of any expensive NLG metric, while retaining most of its original performance Paper: https://arxiv.org/abs/2110.08559?context=cs Project github: https://github.com/moussaKam/FrugalScore The pretrained checkpoints presented in the paper : | FrugalScore | Student | Teacher | Method | |----------------------------------------------------|-------------|----------------|------------| | [moussaKam/frugalscore_tiny_bert-base_bert-score](https://huggingface.co/moussaKam/frugalscore_tiny_bert-base_bert-score) | BERT-tiny | BERT-Base | BERTScore | | [moussaKam/frugalscore_small_bert-base_bert-score](https://huggingface.co/moussaKam/frugalscore_small_bert-base_bert-score) | BERT-small | BERT-Base | BERTScore | | [moussaKam/frugalscore_medium_bert-base_bert-score](https://huggingface.co/moussaKam/frugalscore_medium_bert-base_bert-score) | BERT-medium | BERT-Base | BERTScore | | [moussaKam/frugalscore_tiny_roberta_bert-score](https://huggingface.co/moussaKam/frugalscore_tiny_roberta_bert-score) | BERT-tiny | RoBERTa-Large | BERTScore | | [moussaKam/frugalscore_small_roberta_bert-score](https://huggingface.co/moussaKam/frugalscore_small_roberta_bert-score) | BERT-small | RoBERTa-Large | BERTScore | | [moussaKam/frugalscore_medium_roberta_bert-score](https://huggingface.co/moussaKam/frugalscore_medium_roberta_bert-score) | BERT-medium | RoBERTa-Large | BERTScore | | [moussaKam/frugalscore_tiny_deberta_bert-score](https://huggingface.co/moussaKam/frugalscore_tiny_deberta_bert-score) | BERT-tiny | DeBERTa-XLarge | BERTScore | | [moussaKam/frugalscore_small_deberta_bert-score](https://huggingface.co/moussaKam/frugalscore_small_deberta_bert-score) | BERT-small | DeBERTa-XLarge | BERTScore | | [moussaKam/frugalscore_medium_deberta_bert-score](https://huggingface.co/moussaKam/frugalscore_medium_deberta_bert-score) | BERT-medium | DeBERTa-XLarge | BERTScore | | [moussaKam/frugalscore_tiny_bert-base_mover-score](https://huggingface.co/moussaKam/frugalscore_tiny_bert-base_mover-score) | BERT-tiny | BERT-Base | MoverScore | | [moussaKam/frugalscore_small_bert-base_mover-score](https://huggingface.co/moussaKam/frugalscore_small_bert-base_mover-score) | BERT-small | BERT-Base | MoverScore | | [moussaKam/frugalscore_medium_bert-base_mover-score](https://huggingface.co/moussaKam/frugalscore_medium_bert-base_mover-score) | BERT-medium | BERT-Base | MoverScore |
mrm8488/RuPERTa-base-finetuned-spa-constitution
2c2175a87fbdeef84c54e432495c32b74d4f79f0
2021-05-20T18:12:03.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
mrm8488
null
mrm8488/RuPERTa-base-finetuned-spa-constitution
4
null
transformers
18,832
Entry not found
mrm8488/bert-mini-wrslb-finetuned-squadv1
a68eaa0039c5d956aa5740c5d5afe3afd5d1e227
2021-05-20T00:26:56.000Z
[ "pytorch", "jax", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
mrm8488
null
mrm8488/bert-mini-wrslb-finetuned-squadv1
4
null
transformers
18,833
Entry not found
mrm8488/bert-small-wrslb-finetuned-squadv1
e7aeb86ed58911ba91ce824e24207fe2a1b6d091
2021-05-20T00:34:10.000Z
[ "pytorch", "jax", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
mrm8488
null
mrm8488/bert-small-wrslb-finetuned-squadv1
4
null
transformers
18,834
Entry not found
mrm8488/electricidad-small-discriminator
2c4c04c7cd445ea978938e9618229fad7de2cbea
2022-03-30T20:44:50.000Z
[ "pytorch", "electra", "pretraining", "es", "dataset:large_spanish_corpus", "transformers", "Spanish", "Electra" ]
null
false
mrm8488
null
mrm8488/electricidad-small-discriminator
4
3
transformers
18,835
--- language: es thumbnail: https://i.imgur.com/uxAvBfh.png tags: - Spanish - Electra datasets: - large_spanish_corpus --- ## ELECTRICIDAD: The Spanish Electra [Imgur](https://imgur.com/uxAvBfh) **ELECTRICIDAD** is a small Electra like model (discriminator in this case) trained on a [Large Spanish Corpus](https://github.com/josecannete/spanish-corpora) (aka BETO's corpus). As mentioned in the original [paper](https://openreview.net/pdf?id=r1xMH1BtvB): **ELECTRA** is a new method for self-supervised language representation learning. It can be used to pre-train transformer networks using relatively little compute. ELECTRA models are trained to distinguish "real" input tokens vs "fake" input tokens generated by another neural network, similar to the discriminator of a [GAN](https://arxiv.org/pdf/1406.2661.pdf). At small scale, ELECTRA achieves strong results even when trained on a single GPU. At large scale, ELECTRA achieves state-of-the-art results on the [SQuAD 2.0](https://rajpurkar.github.io/SQuAD-explorer/) dataset. For a detailed description and experimental results, please refer the paper [ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators](https://openreview.net/pdf?id=r1xMH1BtvB). ## Model details ⚙ |Param| # Value| |-----|--------| |Layers|\t12 | |Hidden |256 \t| |Params| 14M| ## Evaluation metrics (for discriminator) 🧾 |Metric | # Score | |-------|---------| |Accuracy| 0.94| |Precision| 0.76| |AUC | 0.92| ## Benchmarks 🔨 WIP 🚧 ## How to use the discriminator in `transformers` ```python from transformers import ElectraForPreTraining, ElectraTokenizerFast import torch discriminator = ElectraForPreTraining.from_pretrained("mrm8488/electricidad-small-discriminator") tokenizer = ElectraTokenizerFast.from_pretrained("mrm8488/electricidad-small-discriminator") sentence = "el zorro rojo es muy rápido" fake_sentence = "el zorro rojo es muy ser" fake_tokens = tokenizer.tokenize(sentence) fake_inputs = tokenizer.encode(sentence, return_tensors="pt") discriminator_outputs = discriminator(fake_inputs) predictions = torch.round((torch.sign(discriminator_outputs[0]) + 1) / 2) [print("%7s" % token, end="") for token in fake_tokens] [print("%7s" % int(prediction), end="") for prediction in predictions.tolist()[1:-1]] # Output: ''' el zorro rojo es muy ser 0 0 0 0 0 1[None, None, None, None, None, None] ''' ``` As you can see there is a **1** in the place where the model detected the fake token (**ser**). So, it works! 🎉 [Electricidad-small fine-tuned models](https://huggingface.co/models?search=electricidad-small) ## Acknowledgments I thank [🤗/transformers team](https://github.com/huggingface/transformers) for answering my doubts and Google for helping me with the [TensorFlow Research Cloud](https://www.tensorflow.org/tfrc) program. ## Citation If you want to cite this model you can use this: ```bibtex @misc{mromero2020electricidad-small-discriminator, title={Spanish Electra (small) by Manuel Romero}, author={Romero, Manuel}, publisher={Hugging Face}, journal={Hugging Face Hub}, howpublished={\url{https://huggingface.co/mrm8488/electricidad-small-discriminator}}, year={2020} } ``` > Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488) > Made with <span style="color: #e25555;">&hearts;</span> in Spain
mrm8488/scibert_scivocab-finetuned-CORD19
32d24a040bfbfe2558723fc76b7c18f61b9cc3a2
2021-05-20T00:48:35.000Z
[ "pytorch", "jax", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
mrm8488
null
mrm8488/scibert_scivocab-finetuned-CORD19
4
null
transformers
18,836
Entry not found
mrm8488/t5-base-finetuned-math-linear-algebra-2d
461e682b5f0577f892ed1373cdb3d0e626466585
2020-08-19T16:39:10.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
mrm8488
null
mrm8488/t5-base-finetuned-math-linear-algebra-2d
4
null
transformers
18,837
Entry not found
mrshu/wav2vec2-large-xlsr-slovene
f935524ed90c6bd485855aadaa150f028fbc47b6
2021-07-06T13:25:51.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "sl", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
mrshu
null
mrshu/wav2vec2-large-xlsr-slovene
4
null
transformers
18,838
--- language: sl datasets: - common_voice tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Slovene results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice sl type: common_voice args: sl metrics: - name: Test WER type: wer value: 36.97 --- # Wav2Vec2-Large-XLSR-53-Slovene Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Slovene using the [Common Voice](https://huggingface.co/datasets/common_voice) When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "sl", split="test[:2%]"). processor = Wav2Vec2Processor.from_pretrained("mrshu/wav2vec2-large-xlsr-slovene") model = Wav2Vec2ForCTC.from_pretrained("mrshu/wav2vec2-large-xlsr-slovene") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Slovene test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "sl", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("mrshu/wav2vec2-large-xlsr-slovene") model = Wav2Vec2ForCTC.from_pretrained("mrshu/wav2vec2-large-xlsr-slovene") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\«\»\)\(\„\'\–\’\—]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 36.97 % ## Training The Common Voice `train`, `validation` datasets were used for training. The script used for training can be found [here](https://colab.research.google.com/drive/14uahdilysnFsiYniHxY9fyKjFGuYQe7p)
mse30/bart-base-finetuned-multinews
3562810841c50072d210440e5624230687b5b9ee
2021-10-09T03:19:09.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
mse30
null
mse30/bart-base-finetuned-multinews
4
null
transformers
18,839
Entry not found
muhtasham/autonlp-Doctor_DE-24595545
a46f143e53582e6376263fdb77d627bebbd70188
2021-10-22T11:59:58.000Z
[ "pytorch", "bert", "text-classification", "de", "dataset:muhtasham/autonlp-data-Doctor_DE", "transformers", "autonlp", "co2_eq_emissions" ]
text-classification
false
muhtasham
null
muhtasham/autonlp-Doctor_DE-24595545
4
null
transformers
18,840
--- tags: autonlp language: de widget: - text: "I love AutoNLP 🤗" datasets: - muhtasham/autonlp-data-Doctor_DE co2_eq_emissions: 203.30658367993382 --- # Model Trained Using AutoNLP - Problem type: Single Column Regression - Model ID: 24595545 - CO2 Emissions (in grams): 203.30658367993382 ## Validation Metrics - Loss: 0.30214861035346985 - MSE: 0.30214861035346985 - MAE: 0.25911855697631836 - R2: 0.8455587614373526 - RMSE: 0.5496804714202881 - Explained Variance: 0.8476610779762268 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/muhtasham/autonlp-Doctor_DE-24595545 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("muhtasham/autonlp-Doctor_DE-24595545", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("muhtasham/autonlp-Doctor_DE-24595545", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
mwesner/bert-base-uncased
e33fba797781eed6a2ec06437ad1169958c8f373
2022-02-23T15:18:51.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
fill-mask
false
mwesner
null
mwesner/bert-base-uncased
4
null
transformers
18,841
--- tags: - generated_from_trainer model-index: - name: bert-base-uncased results: [] --- # bert-base-uncased This model was trained on a dataset of issues from github. It achieves the following results on the evaluation set: - Loss: 1.2437 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data Masked language model trained on github issue data with token length of 128. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 16 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:------:|:---------------:| | 2.205 | 1.0 | 9303 | 1.7893 | | 1.8417 | 2.0 | 18606 | 1.7270 | | 1.7103 | 3.0 | 27909 | 1.6650 | | 1.6014 | 4.0 | 37212 | 1.6052 | | 1.523 | 5.0 | 46515 | 1.5782 | | 1.4588 | 6.0 | 55818 | 1.4836 | | 1.3922 | 7.0 | 65121 | 1.4289 | | 1.317 | 8.0 | 74424 | 1.4414 | | 1.2622 | 9.0 | 83727 | 1.4322 | | 1.2123 | 10.0 | 93030 | 1.3651 | | 1.1753 | 11.0 | 102333 | 1.3636 | | 1.1164 | 12.0 | 111636 | 1.2872 | | 1.0636 | 13.0 | 120939 | 1.3705 | | 1.021 | 14.0 | 130242 | 1.3013 | | 0.996 | 15.0 | 139545 | 1.2756 | | 0.9625 | 16.0 | 148848 | 1.2437 | ### Framework versions - Transformers 4.14.1 - Pytorch 1.9.0 - Datasets 1.11.0 - Tokenizers 0.10.3
naram92/all-mpnet-base-v2-finetuned-mydata
929ddedf2036b9e05ecdfa7a99be03335d212939
2021-10-07T20:47:30.000Z
[ "pytorch", "tensorboard", "mpnet", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
naram92
null
naram92/all-mpnet-base-v2-finetuned-mydata
4
null
transformers
18,842
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: all-mpnet-base-v2-finetuned-mydata results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-mpnet-base-v2-finetuned-mydata This model is a fine-tuned version of [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.0441 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 416 | 4.5566 | | 5.5599 | 2.0 | 832 | 3.9093 | | 4.1188 | 3.0 | 1248 | 3.6204 | | 3.6951 | 4.0 | 1664 | 3.4622 | | 3.4406 | 5.0 | 2080 | 3.3143 | | 3.4406 | 6.0 | 2496 | 3.2054 | | 3.3001 | 7.0 | 2912 | 3.1572 | | 3.2002 | 8.0 | 3328 | 3.0510 | | 3.1467 | 9.0 | 3744 | 3.0717 | | 3.0763 | 10.0 | 4160 | 3.0017 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.12.1 - Tokenizers 0.10.3
nateraw/my-cool-timm-model-3
a108f8ba0274ad6bb6bc65cbf8962d2d587145f4
2021-11-15T20:08:55.000Z
[ "pytorch", "tensorboard", "dataset:cats_vs_dogs", "timm", "image-classification", "generated_from_trainer", "model-index" ]
image-classification
false
nateraw
null
nateraw/my-cool-timm-model-3
4
null
timm
18,843
--- tags: - image-classification - timm - generated_from_trainer datasets: - cats_vs_dogs model-index: - name: my-cool-timm-model-3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my-cool-timm-model-3 This model is a fine-tuned version of [resnet18](https://huggingface.co/resnet18) on the cats_vs_dogs dataset. It achieves the following results on the evaluation set: - Loss: 0.2455 - Acc1: 94.4175 - Acc5: 100.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Acc1 | Acc5 | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-----:| | 0.5152 | 0.14 | 10 | 0.2455 | 94.4175 | 100.0 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
nateraw/resnet18-random-classifier-123
20db6d9c301bdd7f04fa609d86923d60c8e62a6c
2021-11-23T04:45:37.000Z
[ "pytorch", "timm", "image-classification" ]
image-classification
false
nateraw
null
nateraw/resnet18-random-classifier-123
4
null
timm
18,844
--- tags: - image-classification - timm library_tag: timm --- # Model card for resnet18-random-classifier-123
nateraw/timm-resnet18-beans-test
237d6489fe22f45af47a74ef76b36cfdab4ebe1b
2021-09-04T00:55:46.000Z
[ "pytorch", "tensorboard", "dataset:beans", "timm", "image-classification", "generated_from_trainer" ]
image-classification
false
nateraw
null
nateraw/timm-resnet18-beans-test
4
null
timm
18,845
--- tags: - image-classification - timm - generated_from_trainer datasets: - beans metrics: - accuracy model_index: - name: timm-resnet18-beans-test results: - task: name: Image Classification type: image-classification dataset: name: beans type: beans args: default metric: name: Accuracy type: accuracy value: 0.3609022556390977 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # timm-resnet18-beans-test This model is a fine-tuned version of [resnet18](https://huggingface.co/resnet18) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 1.2126 - Accuracy: 0.3609 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 10 ### Training results ### Framework versions - Transformers 4.9.1 - Pytorch 1.9.0 - Datasets 1.11.1.dev0 - Tokenizers 0.10.3
nates-test-org/cait_s24_224
95705783329ab8d3d4bd6efeca8decacaa99fb1e
2021-10-29T04:22:26.000Z
[ "pytorch", "timm", "image-classification" ]
image-classification
false
nates-test-org
null
nates-test-org/cait_s24_224
4
null
timm
18,846
--- tags: - image-classification - timm library_tag: timm --- # Model card for cait_s24_224
ncoop57/neo-code-py
21bb94ddd2e530911c755ab8028f3532fd3ce999
2022-01-29T19:45:07.000Z
[ "pytorch", "gpt_neo", "text-generation", "transformers" ]
text-generation
false
ncoop57
null
ncoop57/neo-code-py
4
null
transformers
18,847
Entry not found
negfir/distilbert-base-uncased-finetuned-squad
ae4c5650bf98af6c6a7a4f004e725efb32606272
2022-03-24T01:39:12.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
negfir
null
negfir/distilbert-base-uncased-finetuned-squad
4
null
transformers
18,848
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.2200 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.2789 | 1.0 | 5533 | 1.2200 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.4 - Tokenizers 0.11.6
neuralspace-reverie/indic-transformers-te-distilbert
a838c2b0925d58d0ddfc404e72581004b004f352
2020-12-11T21:57:36.000Z
[ "pytorch", "tf", "distilbert", "fill-mask", "te", "transformers", "MaskedLM", "Telugu", "DistilBERT", "Question-Answering", "Token Classification", "Text Classification", "autotrain_compatible" ]
fill-mask
false
neuralspace-reverie
null
neuralspace-reverie/indic-transformers-te-distilbert
4
null
transformers
18,849
--- language: - te tags: - MaskedLM - Telugu - DistilBERT - Question-Answering - Token Classification - Text Classification --- # Indic-Transformers Telugu DistilBERT ## Model description This is a DistilBERT language model pre-trained on ~2 GB of monolingual training corpus. The pre-training data was majorly taken from [OSCAR](https://oscar-corpus.com/). This model can be fine-tuned on various downstream tasks like text-classification, POS-tagging, question-answering, etc. Embeddings from this model can also be used for feature-based training. ## Intended uses & limitations #### How to use ``` from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained('neuralspace-reverie/indic-transformers-te-distilbert') model = AutoModel.from_pretrained('neuralspace-reverie/indic-transformers-te-distilbert') text = "మీరు ఎలా ఉన్నారు" input_ids = tokenizer(text, return_tensors='pt')['input_ids'] out = model(input_ids)[0] print(out.shape) # out = [1, 5, 768] ``` #### Limitations and bias The original language model has been trained using `PyTorch` and hence the use of `pytorch_model.bin` weights file is recommended. The h5 file for `Tensorflow` has been generated manually by commands suggested [here](https://huggingface.co/transformers/model_sharing.html).
neurocode/IsRoBERTa
c343f2f15b450839451f86752cb3252be83c176b
2021-05-20T18:50:32.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "is", "dataset:Icelandic portion of the OSCAR corpus from INRIA", "dataset:oscar", "transformers", "autotrain_compatible" ]
fill-mask
false
neurocode
null
neurocode/IsRoBERTa
4
null
transformers
18,850
--- language: is datasets: - Icelandic portion of the OSCAR corpus from INRIA - oscar --- # IsRoBERTa a RoBERTa-like masked language model Probably the first icelandic transformer language model! ## Overview **Language:** Icelandic **Downstream-task:** masked-lm **Training data:** OSCAR corpus **Code:** See [here](https://github.com/neurocode-io/icelandic-language-model) **Infrastructure**: 1x Nvidia K80 ## Hyperparameters ``` per_device_train_batch_size = 48 n_epochs = 1 vocab_size = 52.000 max_position_embeddings = 514 num_attention_heads = 12 num_hidden_layers = 6 type_vocab_size = 1 learning_rate=0.00005 ``` ## Usage ### In Transformers ```python from transformers import ( pipeline, AutoTokenizer, AutoModelWithLMHead ) model_name = "neurocode/IsRoBERTa" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelWithLMHead.from_pretrained(model_name) >>> fill_mask = pipeline( ... "fill-mask", ... model=model, ... tokenizer=tokenizer ... ) >>> result = fill_mask("Hann fór út að <mask>.") >>> result [ {'sequence': '<s>Hann fór út að nýju.</s>', 'score': 0.03395755589008331, 'token': 2219, 'token_str': 'Ġnýju'}, {'sequence': '<s>Hann fór út að undanförnu.</s>', 'score': 0.029087543487548828, 'token': 7590, 'token_str': 'Ġundanförnu'}, {'sequence': '<s>Hann fór út að lokum.</s>', 'score': 0.024420788511633873, 'token': 4384, 'token_str': 'Ġlokum'}, {'sequence': '<s>Hann fór út að þessu.</s>', 'score': 0.021231256425380707, 'token': 921, 'token_str': 'Ġþessu'}, {'sequence': '<s>Hann fór út að honum.</s>', 'score': 0.0205782949924469, 'token': 1136, 'token_str': 'Ġhonum'} ] ``` ## Authors Bobby Donchev: `contact [at] donchev.is` Elena Cramer: `elena.cramer [at] neurocode.io` ## About us We bring AI software for our customers live Our focus: AI software development Get in touch: [LinkedIn](https://de.linkedin.com/company/neurocodeio) | [Website](https://neurocode.io)
nickmuchi/minilm-finetuned-emotion_nm
9b1f91ecb6ce61015ac5e61aa50b768c92c05fb9
2022-01-17T08:15:50.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
nickmuchi
null
nickmuchi/minilm-finetuned-emotion_nm
4
null
transformers
18,851
--- license: mit tags: - generated_from_trainer datasets: - emotion metrics: - f1 model-index: - name: minilm-finetuned-emotion_nm results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: F1 type: f1 value: 0.9322805793931607 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # minilm-finetuned-emotion_nm This model is a fine-tuned version of [microsoft/MiniLM-L12-H384-uncased](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1918 - F1: 0.9323 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.3627 | 1.0 | 250 | 1.0048 | 0.5936 | | 0.8406 | 2.0 | 500 | 0.6477 | 0.8608 | | 0.5344 | 3.0 | 750 | 0.4025 | 0.9099 | | 0.3619 | 4.0 | 1000 | 0.3142 | 0.9188 | | 0.274 | 5.0 | 1250 | 0.2489 | 0.9277 | | 0.2225 | 6.0 | 1500 | 0.2320 | 0.9303 | | 0.191 | 7.0 | 1750 | 0.2083 | 0.9298 | | 0.1731 | 8.0 | 2000 | 0.1969 | 0.9334 | | 0.1606 | 9.0 | 2250 | 0.1928 | 0.9362 | | 0.1462 | 10.0 | 2500 | 0.1918 | 0.9323 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
nicktien/TaipeiQA_v1
6f3dfb6e69bb2d8e168ca01bc5f897ceb60d5bc9
2022-01-04T11:34:30.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
nicktien
null
nicktien/TaipeiQA_v1
4
null
transformers
18,852
--- widget: - text: "所有權人接獲古蹟公告後,如不服指定程序該如何處理?" --- # TaipeiQA
nielsr/tapex-large-finetuned-tabfact
fa24859010fc8e07cca3824aaa0847db2e344140
2022-01-17T13:39:28.000Z
[ "pytorch", "bart", "text-classification", "en", "dataset:tab_fact", "arxiv:2107.07653", "transformers", "tapex", "license:apache-2.0" ]
text-classification
false
nielsr
null
nielsr/tapex-large-finetuned-tabfact
4
null
transformers
18,853
--- language: en tags: - tapex license: apache-2.0 datasets: - tab_fact inference: false --- TAPEX-large model fine-tuned on WTQ. This model was proposed in [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) by Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou. Original repo can be found [here](https://github.com/microsoft/Table-Pretraining). To load it and run inference, you can do the following: ``` from transformers import BartTokenizer, BartForSequenceClassification import pandas as pd tokenizer = BartTokenizer.from_pretrained("nielsr/tapex-large-finetuned-tabfact") model = BartForSequenceClassification.from_pretrained("nielsr/tapex-large-finetuned-tabfact") # create table data = {'Actors': ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"], 'Number of movies': ["87", "53", "69"]} table = pd.DataFrame.from_dict(data) # turn into dict table_dict = {"header": list(table.columns), "rows": [list(row.values) for i,row in table.iterrows()]} # turn into format TAPEX expects # define the linearizer based on this code: https://github.com/microsoft/Table-Pretraining/blob/main/tapex/processor/table_linearize.py linearizer = IndexedRowTableLinearize() linear_table = linearizer.process_table(table_dict) # add sentence sentence = "George Clooney has 69 movies" joint_input = sentence + " " + linear_table # encode encoding = tokenizer(joint_input, return_tensors="pt") # forward pass outputs = model(**encoding) # print prediction logits = outputs.logits print(logits.argmax(-1)) ```
nlokam/ada_V.3
71f5ff3fc3f53a732a63c306cd2cc5345bf08929
2022-01-26T23:28:36.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
nlokam
null
nlokam/ada_V.3
4
null
transformers
18,854
--- tags: - conversational --- # Ada model
nlpunibo/multiplechoice
fd25a3e80d41807805a965cd70aa06b7cbc2b244
2021-03-18T12:08:51.000Z
[ "pytorch", "distilbert", "multiple-choice", "transformers" ]
multiple-choice
false
nlpunibo
null
nlpunibo/multiplechoice
4
null
transformers
18,855
Entry not found
nouamanetazi/wav2vec2-xls-r-300m-ar
b6c8ec432be0f6ef61181f1d3d0d14286661fb8d
2022-03-23T18:35:04.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "ar", "dataset:common_voice", "transformers", "common_voice", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
nouamanetazi
null
nouamanetazi/wav2vec2-xls-r-300m-ar
4
1
transformers
18,856
--- language: - ar license: apache-2.0 tags: - ar - automatic-speech-recognition - common_voice - generated_from_trainer - hf-asr-leaderboard - robust-speech-event datasets: - common_voice model-index: - name: XLS-R-300M - Arabic results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: ar metrics: - name: Test WER type: wer value: 1.0 - name: Test CER type: cer value: 1.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-ar This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the COMMON_VOICE - AR dataset. It achieves the following results on the evaluation set: - eval_loss: 3.0191 - eval_wer: 1.0 - eval_runtime: 252.2389 - eval_samples_per_second: 30.217 - eval_steps_per_second: 0.476 - epoch: 1.0 - step: 340 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 5 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0 #### Evaluation Commands Please use the evaluation script `eval.py` included in the repo. 1. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py --model_id nouamanetazi/wav2vec2-xls-r-300m-ar --dataset speech-recognition-community-v2/dev_data --config ar --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ```
nuriafari/my_model
5c18bb546b16689d4492d5af4f75001a41e23793
2022-01-20T20:06:26.000Z
[ "pytorch", "tensorboard", "perceiver", "text-classification", "dataset:financial_phrasebank", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
nuriafari
null
nuriafari/my_model
4
null
transformers
18,857
--- license: apache-2.0 tags: - generated_from_trainer datasets: - financial_phrasebank metrics: - recall - accuracy - precision model-index: - name: my_model results: - task: name: Text Classification type: text-classification dataset: name: financial_phrasebank type: financial_phrasebank args: sentences_50agree metrics: - name: Recall type: recall value: 0.874936448490344 - name: Accuracy type: accuracy value: 0.865979381443299 - name: Precision type: precision value: 0.8280314825660291 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_model This model is a fine-tuned version of [deepmind/language-perceiver](https://huggingface.co/deepmind/language-perceiver) on the financial_phrasebank dataset. It achieves the following results on the evaluation set: - Loss: 0.3732 - Recall: 0.8749 - Accuracy: 0.8660 - Precision: 0.8280 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - distributed_type: tpu - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Recall | Accuracy | Precision | |:-------------:|:-----:|:----:|:---------------:|:------:|:--------:|:---------:| | 0.1421 | 1.0 | 273 | 0.3732 | 0.8749 | 0.8660 | 0.8280 | | 0.1036 | 2.0 | 546 | 0.3732 | 0.8749 | 0.8660 | 0.8280 | | 0.1836 | 3.0 | 819 | 0.3732 | 0.8749 | 0.8660 | 0.8280 | | 0.0423 | 4.0 | 1092 | 0.3732 | 0.8749 | 0.8660 | 0.8280 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.9.0+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
oemga38/distilbert-base-uncased-finetuned-cola
3f82c9cabf04434948a580424b8ce84194013020
2022-02-17T21:51:01.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
oemga38
null
oemga38/distilbert-base-uncased-finetuned-cola
4
null
transformers
18,858
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5570389007427182 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.7475 - Matthews Correlation: 0.5570 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5251 | 1.0 | 535 | 0.5304 | 0.4272 | | 0.3474 | 2.0 | 1070 | 0.4874 | 0.5136 | | 0.2356 | 3.0 | 1605 | 0.6454 | 0.5314 | | 0.1699 | 4.0 | 2140 | 0.7475 | 0.5570 | | 0.1244 | 5.0 | 2675 | 0.8525 | 0.5478 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
ogpat23/Jules-Chatbot
78727165f5b83c2758d83398c644bc239ce5ad74
2022-05-13T16:43:30.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
ogpat23
null
ogpat23/Jules-Chatbot
4
null
transformers
18,859
--- tags: - conversational --- # Chat bot based on Pulp fiction Character Jules # Model trained on Pytorch framework uisng Pulp fiction dialogue script dataset from kaggle
osanseviero/torch
edbb1f63aaaa010d7903261d243958363ce19ac2
2021-06-15T20:00:08.000Z
[ "pytorch", "transformers" ]
null
false
osanseviero
null
osanseviero/torch
4
null
transformers
18,860
example
oumeima/finetuned-bert-mrpc
63d0302ab1d8709b53bf0e216b486d95647ede77
2021-08-22T11:35:18.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0" ]
text-classification
false
oumeima
null
oumeima/finetuned-bert-mrpc
4
null
transformers
18,861
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model_index: - name: finetuned-bert-mrpc results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: mrpc metric: name: F1 type: f1 value: 0.9003322259136212 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned-bert-mrpc This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.5280 - Accuracy: 0.8529 - F1: 0.9003 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.5704 | 1.0 | 230 | 0.4204 | 0.7917 | 0.8542 | | 0.3391 | 2.0 | 460 | 0.4157 | 0.8456 | 0.8955 | | 0.1923 | 3.0 | 690 | 0.5280 | 0.8529 | 0.9003 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
p208p2002/gpt2-squad-nqg-hl
dcd6fb9f156e726555c22ea22ae8c4e599fd34b9
2021-05-23T10:53:50.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "dataset:squad", "arxiv:1606.05250", "arxiv:1705.00106", "transformers", "question-generation" ]
text-generation
false
p208p2002
null
p208p2002/gpt2-squad-nqg-hl
4
null
transformers
18,862
--- datasets: - squad tags: - question-generation widget: - text: "Harry Potter is a series of seven fantasy novels written by British author, [HL]J. K. Rowling[HL]." --- # Transformer QG on SQuAD HLQG is Proposed by [Ying-Hong Chan & Yao-Chung Fan. (2019). A Re-current BERT-based Model for Question Generation.](https://www.aclweb.org/anthology/D19-5821/) **This is a Reproduce Version** More detail: [p208p2002/Transformer-QG-on-SQuAD](https://github.com/p208p2002/Transformer-QG-on-SQuAD) ## Usage ### Input Format ``` C' = [c1, c2, ..., [HL], a1, ..., a|A|, [HL], ..., c|C|] ``` ### Input Example ``` Harry Potter is a series of seven fantasy novels written by British author, [HL]J. K. Rowling[HL]. ``` > # Who wrote Harry Potter? ## Data setting We report two dataset setting as Follow ### SQuAD - train: 87599\\\\t - validation: 10570 > [SQuAD: 100,000+ Questions for Machine Comprehension of Text](https://arxiv.org/abs/1606.05250) ### SQuAD NQG - train: 75722 - dev: 10570 - test: 11877 > [Learning to Ask: Neural Question Generation for Reading Comprehension](https://arxiv.org/abs/1705.00106) ## Available models - BART - GPT2 - T5 ## Expriments We report score with `NQG Scorer` which is using in SQuAD NQG. If not special explanation, the size of the model defaults to "base". ### SQuAD Model |Bleu 1|Bleu 2|Bleu 3|Bleu 4|METEOR|ROUGE-L| ---------------------------------|------|------|------|------|------|-------| BART-HLSQG |54.67 |39.26 |30.34 |24.15 |25.43 |52.64 | GPT2-HLSQG |49.31 |33.95 |25.41| 19.69 |22.29 |48.82 | T5-HLSQG |54.29 |39.22 |30.43 |24.26 |25.56 |53.11 | ### SQuAD NQG Model |Bleu 1|Bleu 2|Bleu 3|Bleu 4|METEOR|ROUGE-L| ---------------------------------|------|------|------|------|------|-------| BERT-HLSQG (Chan et al.) |49.73 |34.60 |26.13 |20.33 |23.88 |48.23 | BART-HLSQG |54.12 |38.19 |28.84 |22.35 |24.55 |51.03 | GPT2-HLSQG |49.82 |33.69 |24.71 |18.63 |21.90 |47.60 | T5-HLSQG |53.13 |37.60 |28.62 |22.38 |24.48 |51.20 |
pablouribe/beto-copus-overfitted
9881fea25969b4a4f9f8966d314ed3591017cc52
2022-01-18T20:05:59.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
pablouribe
null
pablouribe/beto-copus-overfitted
4
null
transformers
18,863
Entry not found
patrickvonplaten/prophetnet-decoder-clm-large-uncased
2ce2c5641eac02f7d99ec103a40210c176bd5a78
2020-10-21T10:06:17.000Z
[ "pytorch", "prophetnet", "text-generation", "transformers" ]
text-generation
false
patrickvonplaten
null
patrickvonplaten/prophetnet-decoder-clm-large-uncased
4
null
transformers
18,864
Entry not found
patrickvonplaten/prophetnet-large-uncased-cnndm_old
56bafad907302360edf943682ab0641da695f217
2020-10-16T12:55:25.000Z
[ "pytorch", "prophetnet", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
patrickvonplaten
null
patrickvonplaten/prophetnet-large-uncased-cnndm_old
4
null
transformers
18,865
Entry not found
patrickvonplaten/prophetnet-large-uncased-standalone
62441c2f0f93fff06d7dbd6930bc473cfabaa527
2020-10-21T10:13:29.000Z
[ "pytorch", "prophetnet", "transformers" ]
null
false
patrickvonplaten
null
patrickvonplaten/prophetnet-large-uncased-standalone
4
null
transformers
18,866
Entry not found
patrickvonplaten/wav2vec2-large-lv60h-100h-2nd-try
38dfd9c80bcbe9f43a36447e1aec30dd5d12415a
2021-03-03T13:02:06.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "arxiv:2006.11477", "transformers" ]
automatic-speech-recognition
false
patrickvonplaten
null
patrickvonplaten/wav2vec2-large-lv60h-100h-2nd-try
4
null
transformers
18,867
Fine-tuning of `wav2vec2-large-lv60` on 100h of Librispeech training data. Results are a bit worse than those reported in the Appendix in Table 3 of the original [paper](https://arxiv.org/pdf/2006.11477.pdf). Model was trained on *librispeech-clean-train.100* with following hyper-parameters: - 2 GPUs Titan RTX - Total update steps 17500 - Batch size per GPU: 16 corresponding to a *total batch size* of ca. ~750 seconds - Adam with linear decaying learning rate with 3000 warmup steps - dynamic padding for batch - fp16 - attention_mask was used during training Check: https://wandb.ai/patrickvonplaten/huggingface/reports/Project-Dashboard--Vmlldzo0OTI0OTc?accessToken=8azw8iyxnbiqd4ytxcgm4hbnfh3x1b2c9l2eyfqfzdqw7l0icreljc9qpx0rkl6f *Result (WER)* on Librispeech test: | "clean" | "other" | |---|---| | 4.0 | 10.3 |
patrickvonplaten/xprophetnet-large-uncased-standalone
0d7d60dded4dc2bfab2a94e93ce37f8c84ca7028
2020-10-21T10:16:36.000Z
[ "pytorch", "xlm-prophetnet", "transformers" ]
null
false
patrickvonplaten
null
patrickvonplaten/xprophetnet-large-uncased-standalone
4
null
transformers
18,868
Entry not found
patrickvonplaten/xprophetnet-large-wiki100-cased-xglue-ntg_old
4961a704b0cb659647dc3638667a1e50ceee329c
2020-10-16T13:09:59.000Z
[ "pytorch", "xlm-prophetnet", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
patrickvonplaten
null
patrickvonplaten/xprophetnet-large-wiki100-cased-xglue-ntg_old
4
null
transformers
18,869
Entry not found
pedropei/question-intimacy
5bf8c6ee2fda92df206c18ff224cbe68daf3f10b
2021-05-20T19:25:02.000Z
[ "pytorch", "jax", "roberta", "text-classification", "en", "transformers" ]
text-classification
false
pedropei
null
pedropei/question-intimacy
4
null
transformers
18,870
--- language: - en inference: false ---
pere/norwegian-roberta-base-highlr
ff287ff8b5ebf47a90f4d4643bb4235426421c58
2021-11-30T12:18:13.000Z
[ "pytorch", "jax", "tensorboard", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
pere
null
pere/norwegian-roberta-base-highlr
4
null
transformers
18,871
Same as norwegian-roberta-base but with higher learning rate and batch size
pertschuk/bert-large-uncased-msmarco
59a906252f66ae8fd75f5101f2620721c75d4146
2021-05-20T02:30:02.000Z
[ "pytorch", "jax", "bert", "transformers" ]
null
false
pertschuk
null
pertschuk/bert-large-uncased-msmarco
4
null
transformers
18,872
Entry not found
peterhsu/distilbert-base-uncased-finetuned-imdb
3d57bdbae75489a6ee2a5e6e2b1f121db0fd3610
2022-02-17T08:47:04.000Z
[ "pytorch", "tensorboard", "distilbert", "fill-mask", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
peterhsu
null
peterhsu/distilbert-base-uncased-finetuned-imdb
4
null
transformers
18,873
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.4718 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.707 | 1.0 | 157 | 2.4883 | | 2.572 | 2.0 | 314 | 2.4240 | | 2.5377 | 3.0 | 471 | 2.4355 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
pierric/test-EsperBERTo-small
0694fd56a2c6cf15aa79588683c9694c8adc1bb3
2021-05-20T19:29:19.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "esperanto", "transformers", "autotrain_compatible" ]
fill-mask
false
pierric
null
pierric/test-EsperBERTo-small
4
null
transformers
18,874
--- language: esperanto thumbnail: https://huggingface.co/blog/assets/EsperBERTo-thumbnail-v2.png --- ## EsperBERTo: RoBERTa-like Language model trained on Esperanto **Companion model to blog post https://huggingface.co/blog/how-to-train** 🔥 ### Training Details - current checkpoint: 566000 - machine name: `galinette`
pietrotrope/emotion_final
48576b1661384f5e8709528742b7bcab0cbf23ca
2021-12-11T11:14:26.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
pietrotrope
null
pietrotrope/emotion_final
4
null
transformers
18,875
Entry not found
pinecone/bert-mrpc-cross-encoder
97c588b361e8b941feb04135e2069fd23770559f
2021-12-30T12:12:14.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
pinecone
null
pinecone/bert-mrpc-cross-encoder
4
null
transformers
18,876
# MRPC Cross Encoder Demo model for use as part of Augmented SBERT chapters of the [NLP for Semantic Search course](https://www.pinecone.io/learn/nlp).
poom-sci/distilbert-qa
380e060bfb3f6d6263b92ebba3b52523d92df162
2021-11-12T04:45:13.000Z
[ "pytorch", "distilbert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
poom-sci
null
poom-sci/distilbert-qa
4
null
transformers
18,877
Entry not found
pooyaphoenix/distilbert-base-uncased-finetuned-cola
56f8d4d780bdab0c8a274c24d2f26adf359526b1
2021-11-01T10:54:03.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
pooyaphoenix
null
pooyaphoenix/distilbert-base-uncased-finetuned-cola
4
null
transformers
18,878
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5226700639354173 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.7904 - Matthews Correlation: 0.5227 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.528 | 1.0 | 535 | 0.5180 | 0.4003 | | 0.3508 | 2.0 | 1070 | 0.5120 | 0.5019 | | 0.2409 | 3.0 | 1605 | 0.6374 | 0.5128 | | 0.1806 | 4.0 | 2140 | 0.7904 | 0.5227 | | 0.1311 | 5.0 | 2675 | 0.8824 | 0.5227 | ### Framework versions - Transformers 4.12.2 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
prajjwal1/albert_new
8d4d574c1b91b33ca2d4a65e39fc703be05058c4
2021-05-26T19:57:27.000Z
[ "pytorch", "albert", "multiple-choice", "transformers" ]
multiple-choice
false
prajjwal1
null
prajjwal1/albert_new
4
null
transformers
18,879
Entry not found
prao/distilbert-base-uncased-finetuned-ner
0820a3265f4f40cb2a9ca5bb7927d4ae80197ce9
2021-08-03T07:15:20.000Z
[ "pytorch", "tensorboard", "distilbert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible" ]
token-classification
false
prao
null
prao/distilbert-base-uncased-finetuned-ner
4
null
transformers
18,880
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model_index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metric: name: Accuracy type: accuracy value: 0.9842883695807584 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0586 - Precision: 0.9293 - Recall: 0.9385 - F1: 0.9339 - Accuracy: 0.9843 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2436 | 1.0 | 878 | 0.0670 | 0.9190 | 0.9240 | 0.9215 | 0.9815 | | 0.0505 | 2.0 | 1756 | 0.0591 | 0.9252 | 0.9351 | 0.9301 | 0.9836 | | 0.0304 | 3.0 | 2634 | 0.0586 | 0.9293 | 0.9385 | 0.9339 | 0.9843 | ### Framework versions - Transformers 4.9.1 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
qarib/bert-base-qarib60_860k
b98c86a1175b24fde6c1802277a1eca7244d5e34
2021-05-20T03:48:03.000Z
[ "pytorch", "jax", "bert", "fill-mask", "ar", "dataset:arabic_billion_words", "dataset:open_subtitles", "dataset:twitter", "arxiv:2102.10684", "transformers", "tf", "bert-base-qarib60_860k", "qarib", "autotrain_compatible" ]
fill-mask
false
qarib
null
qarib/bert-base-qarib60_860k
4
null
transformers
18,881
--- language: ar tags: - pytorch - tf - bert-base-qarib60_860k - qarib datasets: - arabic_billion_words - open_subtitles - twitter metrics: - f1 widget: - text: " شو عندكم يا [MASK] ." --- # QARiB: QCRI Arabic and Dialectal BERT ## About QARiB QCRI Arabic and Dialectal BERT (QARiB) model, was trained on a collection of ~ 420 Million tweets and ~ 180 Million sentences of text. For tweets, the data was collected using twitter API and using language filter. `lang:ar`. For text data, it was a combination from [Arabic GigaWord](url), [Abulkhair Arabic Corpus]() and [OPUS](http://opus.nlpl.eu/). ### bert-base-qarib60_860k - Data size: 60Gb - Number of Iterations: 860k - Loss: 2.2454472 ## Training QARiB The training of the model has been performed using Google’s original Tensorflow code on Google Cloud TPU v2. We used a Google Cloud Storage bucket, for persistent storage of training data and models. See more details in [Training QARiB](https://github.com/qcri/QARiB/blob/main/Training_QARiB.md) ## Using QARiB You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the model hub to look for fine-tuned versions on a task that interests you. For more details, see [Using QARiB](https://github.com/qcri/QARiB/blob/main/Using_QARiB.md) ### How to use You can use this model directly with a pipeline for masked language modeling: ```python >>>from transformers import pipeline >>>fill_mask = pipeline("fill-mask", model="./models/data60gb_86k") >>> fill_mask("شو عندكم يا [MASK]") [{'sequence': '[CLS] شو عندكم يا عرب [SEP]', 'score': 0.0990147516131401, 'token': 2355, 'token_str': 'عرب'}, {'sequence': '[CLS] شو عندكم يا جماعة [SEP]', 'score': 0.051633741706609726, 'token': 2308, 'token_str': 'جماعة'}, {'sequence': '[CLS] شو عندكم يا شباب [SEP]', 'score': 0.046871256083250046, 'token': 939, 'token_str': 'شباب'}, {'sequence': '[CLS] شو عندكم يا رفاق [SEP]', 'score': 0.03598872944712639, 'token': 7664, 'token_str': 'رفاق'}, {'sequence': '[CLS] شو عندكم يا ناس [SEP]', 'score': 0.031996358186006546, 'token': 271, 'token_str': 'ناس'}] >>> fill_mask("قللي وشفيييك يرحم [MASK]") [{'sequence': '[CLS] قللي وشفيييك يرحم والديك [SEP]', 'score': 0.4152909517288208, 'token': 9650, 'token_str': 'والديك'}, {'sequence': '[CLS] قللي وشفيييك يرحملي [SEP]', 'score': 0.07663793861865997, 'token': 294, 'token_str': '##لي'}, {'sequence': '[CLS] قللي وشفيييك يرحم حالك [SEP]', 'score': 0.0453166700899601, 'token': 2663, 'token_str': 'حالك'}, {'sequence': '[CLS] قللي وشفيييك يرحم امك [SEP]', 'score': 0.04390475153923035, 'token': 1942, 'token_str': 'امك'}, {'sequence': '[CLS] قللي وشفيييك يرحمونك [SEP]', 'score': 0.027349254116415977, 'token': 3283, 'token_str': '##ونك'}] >>> fill_mask("وقام المدير [MASK]") [ {'sequence': '[CLS] وقام المدير بالعمل [SEP]', 'score': 0.0678194984793663, 'token': 4230, 'token_str': 'بالعمل'}, {'sequence': '[CLS] وقام المدير بذلك [SEP]', 'score': 0.05191086605191231, 'token': 984, 'token_str': 'بذلك'}, {'sequence': '[CLS] وقام المدير بالاتصال [SEP]', 'score': 0.045264165848493576, 'token': 26096, 'token_str': 'بالاتصال'}, {'sequence': '[CLS] وقام المدير بعمله [SEP]', 'score': 0.03732728958129883, 'token': 40486, 'token_str': 'بعمله'}, {'sequence': '[CLS] وقام المدير بالامر [SEP]', 'score': 0.0246378555893898, 'token': 29124, 'token_str': 'بالامر'} ] >>> fill_mask("وقامت المديرة [MASK]") [{'sequence': '[CLS] وقامت المديرة بذلك [SEP]', 'score': 0.23992691934108734, 'token': 984, 'token_str': 'بذلك'}, {'sequence': '[CLS] وقامت المديرة بالامر [SEP]', 'score': 0.108805812895298, 'token': 29124, 'token_str': 'بالامر'}, {'sequence': '[CLS] وقامت المديرة بالعمل [SEP]', 'score': 0.06639821827411652, 'token': 4230, 'token_str': 'بالعمل'}, {'sequence': '[CLS] وقامت المديرة بالاتصال [SEP]', 'score': 0.05613093823194504, 'token': 26096, 'token_str': 'بالاتصال'}, {'sequence': '[CLS] وقامت المديرة المديرة [SEP]', 'score': 0.021778125315904617, 'token': 41635, 'token_str': 'المديرة'}] ``` ## Training procedure The training of the model has been performed using Google’s original Tensorflow code on eight core Google Cloud TPU v2. We used a Google Cloud Storage bucket, for persistent storage of training data and models. ## Eval results We evaluated QARiB models on five NLP downstream task: - Sentiment Analysis - Emotion Detection - Named-Entity Recognition (NER) - Offensive Language Detection - Dialect Identification The results obtained from QARiB models outperforms multilingual BERT/AraBERT/ArabicBERT. ## Model Weights and Vocab Download From Huggingface site: https://huggingface.co/qarib/bert-base-qarib60_860k ## Contacts Ahmed Abdelali, Sabit Hassan, Hamdy Mubarak, Kareem Darwish and Younes Samih ## Reference ``` @article{abdelali2021pretraining, title={Pre-Training BERT on Arabic Tweets: Practical Considerations}, author={Ahmed Abdelali and Sabit Hassan and Hamdy Mubarak and Kareem Darwish and Younes Samih}, year={2021}, eprint={2102.10684}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
quarter100/BoolQ_dain_test
13eedaf1113b2d64e95404ecaafabaa3a9cf3bc1
2021-12-27T02:02:43.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
quarter100
null
quarter100/BoolQ_dain_test
4
null
transformers
18,882
Entry not found
quarter100/ko-boolq-model
0b90e8781f0e35d8c978876130ad1fcb7c11b5a0
2021-12-20T13:23:04.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
quarter100
null
quarter100/ko-boolq-model
4
1
transformers
18,883
labeled by "YES" : 1, "NO" : 0, "No Answer" : 2 fine tuned by klue/roberta-large
redwoodresearch/classifier_12aug_50k_labels
b35b588233377a36955ceee0ddf4c7ba40631471
2021-09-21T02:58:41.000Z
[ "pytorch", "deberta", "text-classification", "transformers" ]
text-classification
false
redwoodresearch
null
redwoodresearch/classifier_12aug_50k_labels
4
null
transformers
18,884
Entry not found
researchaccount/sa_sub2
4238d72dca3b2519d8aea4e4edeb866c9aaa9503
2021-05-20T04:21:46.000Z
[ "pytorch", "jax", "bert", "text-classification", "en", "transformers" ]
text-classification
false
researchaccount
null
researchaccount/sa_sub2
4
null
transformers
18,885
--- language: en widget: - text: "USER USER USER USER لاحول ولاقوه الا بالله 💔 💔 💔 💔 HASH TAG متي يصدر قرار العشرين ! ! ! ! ! !" --- Sub 2
researchaccount/sa_sub4
02294b3482cc2cf5b50bc4e941cac566e4efc151
2021-05-20T04:24:52.000Z
[ "pytorch", "jax", "bert", "text-classification", "en", "transformers" ]
text-classification
false
researchaccount
null
researchaccount/sa_sub4
4
null
transformers
18,886
--- language: en widget: - text: "USER USER USER USER لاحول ولاقوه الا بالله 💔 💔 💔 💔 HASH TAG متي يصدر قرار العشرين ! ! ! ! ! !" --- Sub 4
rexxar96/autonlp-sentiment-analysis-456211724
a3e9927d761166cf8dbeecb688dfe603e947f1de
2021-12-29T14:47:09.000Z
[ "pytorch", "distilbert", "text-classification", "unk", "dataset:rexxar96/autonlp-data-sentiment-analysis", "transformers", "autonlp", "co2_eq_emissions" ]
text-classification
false
rexxar96
null
rexxar96/autonlp-sentiment-analysis-456211724
4
null
transformers
18,887
--- tags: autonlp language: unk widget: - text: "I love AutoNLP 🤗" datasets: - rexxar96/autonlp-data-sentiment-analysis co2_eq_emissions: 22.28263989637389 --- # Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 456211724 - CO2 Emissions (in grams): 22.28263989637389 ## Validation Metrics - Loss: 0.23710417747497559 - Accuracy: 0.9119100357812234 - Precision: 0.8882611424984307 - Recall: 0.9461718488799733 - AUC: 0.974790366001874 - F1: 0.9163024121741946 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/rexxar96/autonlp-sentiment-analysis-456211724 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("rexxar96/autonlp-sentiment-analysis-456211724", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("rexxar96/autonlp-sentiment-analysis-456211724", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
rg089/bert_newspaper_source
66c0c84ba893f71dfaae01eff834b3764d00e0ac
2021-11-27T19:06:53.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
rg089
null
rg089/bert_newspaper_source
4
1
transformers
18,888
Entry not found
ricardo-filho/sbertimbau-large-nli-sts
bb1b5669743b2ea4422fac018757eabf643d1ecb
2021-08-13T13:58:12.000Z
[ "pytorch", "bert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
ricardo-filho
null
ricardo-filho/sbertimbau-large-nli-sts
4
null
sentence-transformers
18,889
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 356 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "callback": null, "epochs": 4, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 143, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 64, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
riyadhctg/distilbert-base-uncased-finetuned-cola
5726807d8579447ea2cea1b3bdc36131c4d3b65c
2021-08-30T07:04:19.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0" ]
text-classification
false
riyadhctg
null
riyadhctg/distilbert-base-uncased-finetuned-cola
4
null
transformers
18,890
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model_index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metric: name: Matthews Correlation type: matthews_correlation value: 0.5526838482765232 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.7691 - Matthews Correlation: 0.5527 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5247 | 1.0 | 535 | 0.5390 | 0.4315 | | 0.353 | 2.0 | 1070 | 0.5273 | 0.4994 | | 0.2386 | 3.0 | 1605 | 0.6391 | 0.5089 | | 0.17 | 4.0 | 2140 | 0.7691 | 0.5527 | | 0.1348 | 5.0 | 2675 | 0.8483 | 0.5472 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
rjbownes/BBC-GQA
eb5db0066b3ff1adfd64bd52252c009467781263
2021-06-23T13:57:11.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
rjbownes
null
rjbownes/BBC-GQA
4
null
transformers
18,891
Entry not found
rjbownes/lovelace-generator
cb10dfa02542b04276eac89632469e79a9813cd6
2021-06-23T13:59:02.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
rjbownes
null
rjbownes/lovelace-generator
4
null
transformers
18,892
Entry not found
rtoguchi/t5-small-finetuned-en-to-ro-fp16_off-lr_2e-7-weight_decay_0.001
81a8b19fb4e53d4ea7eee35d3ae763e0498df25c
2021-12-03T19:24:15.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:wmt16", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
rtoguchi
null
rtoguchi/t5-small-finetuned-en-to-ro-fp16_off-lr_2e-7-weight_decay_0.001
4
null
transformers
18,893
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wmt16 metrics: - bleu model-index: - name: t5-small-finetuned-en-to-ro-fp16_off-lr_2e-7-weight_decay_0.001 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: wmt16 type: wmt16 args: ro-en metrics: - name: Bleu type: bleu value: 4.7258 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-en-to-ro-fp16_off-lr_2e-7-weight_decay_0.001 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wmt16 dataset. It achieves the following results on the evaluation set: - Loss: 1.4943 - Bleu: 4.7258 - Gen Len: 18.7149 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-07 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | 1.047 | 1.0 | 7629 | 1.4943 | 4.7258 | 18.7149 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
saattrupdan/alvenir-wav2vec2-base-cv8-da
98d042a658f0779dc2c391c912c60b31d58062d7
2022-03-22T10:52:55.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "da", "dataset:common_voice_8_0", "transformers", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
saattrupdan
null
saattrupdan/alvenir-wav2vec2-base-cv8-da
4
null
transformers
18,894
--- language: - da license: apache-2.0 tasks: - automatic-speech-recognition datasets: - common_voice_8_0 metrics: - wer model-index: - name: alvenir-wav2vec2-base-cv8-da results: - task: type: automatic-speech-recognition dataset: type: mozilla-foundation/common_voice_8_0 args: da name: Danish Common Voice 8.0 metrics: - type: wer value: 39.86 - task: type: automatic-speech-recognition dataset: type: Alvenir/alvenir_asr_da_eval name: Alvenir ASR test dataset metrics: - type: wer value: 34.12 --- # Alvenir-Wav2vec2-base-CV8-da ## Model description This model is a fine-tuned version of the Danish acoustic model [Alvenir/wav2vec2-base-da](https://huggingface.co/Alvenir/wav2vec2-base-da) on the Danish part of [Common Voice 8.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0), containing ~6 crowdsourced hours of read-aloud Danish speech. ## Performance The model achieves the following WER scores (lower is better): | **Dataset** | **WER without LM** | **WER with 5-gram LM** | | :---: | ---: | ---: | | [Danish part of Common Voice 8.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0/viewer/da/train) | 46.05 | 39.86 | | [Alvenir test set](https://huggingface.co/datasets/Alvenir/alvenir_asr_da_eval) | 41.08 | 34.12 |
sabhi/t5-base-qa-qg
fb6c39f225ed9cd4c929d26c4eceb586a07bfede
2021-09-07T07:24:12.000Z
[ "pytorch", "t5", "text2text-generation", "dataset:squadv1", "arxiv:1910.10683", "transformers", "question-generation", "autotrain_compatible" ]
text2text-generation
false
sabhi
null
sabhi/t5-base-qa-qg
4
1
transformers
18,895
--- datasets: - squadv1 tags: - question-generation --- ## T5 for multi-task QA and QG This is multi-task [t5-base](https://arxiv.org/abs/1910.10683) model trained for question answering and answer aware question generation tasks. For question generation the answer spans are highlighted within the text with special highlight tokens (`<hl>`) and prefixed with 'generate question: '. For QA the input is processed like this `question: question_text context: context_text </s>` You can play with the model using the inference API. Here's how you can use it For QG `generate question: <hl> 42 <hl> is the answer to life, the universe and everything. </s>` For QA `question: What is 42 context: 42 is the answer to life, the universe and everything. </s>` For more deatils see [this](https://github.com/sabhi27/question_generation) repo. ### Model in action 🚀 You'll need to clone the [repo](https://github.com/sabhi27/question_generation). [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/sabhi27/question_generation/blob/master/question_generation.ipynb) ```python3 from pipelines import pipeline nlp = pipeline("multitask-qa-qg", model="sabhi/t5-base-qa-qg") # to generate questions simply pass the text nlp("42 is the answer to life, the universe and everything.") => [{'answer': '42', 'question': 'What is the answer to life, the universe and everything?'}] # for qa pass a dict with "question" and "context" nlp({ "question": "What is 42 ?", "context": "42 is the answer to life, the universe and everything." }) => 'the answer to life, the universe and everything' ```
sambotx4/scamantha
50e6f9cff1c54fff11cf0a93af1da81a1a3a6278
2021-08-12T10:20:43.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
sambotx4
null
sambotx4/scamantha
4
null
transformers
18,896
--- tags: - conversational --- # Scamantha
sammy786/wav2vec2-xlsr-sakha
06627f367db2d01f1b1ae79f55c0d8a1d4f0411b
2022-03-24T11:56:16.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "sah", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
sammy786
null
sammy786/wav2vec2-xlsr-sakha
4
null
transformers
18,897
--- language: - sah license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - sah - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: sammy786/wav2vec2-xlsr-sakha results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: sah metrics: - name: Test WER type: wer value: 36.15 - name: Test CER type: cer value: 8.06 --- # sammy786/wav2vec2-xlsr-sakha This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - sah dataset. It achieves the following results on evaluation set (which is 10 percent of train data set merged with other and dev datasets): - Loss: 21.39 - Wer: 30.99 ## Model description "facebook/wav2vec2-xls-r-1b" was finetuned. ## Intended uses & limitations More information needed ## Training and evaluation data Training data - Common voice Finnish train.tsv, dev.tsv and other.tsv ## Training procedure For creating the train dataset, all possible datasets were appended and 90-10 split was used. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000045637994662983496 - train_batch_size: 16 - eval_batch_size: 16 - seed: 13 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 500 - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Step | Training Loss | Validation Loss | Wer | |------|---------------|-----------------|----------| | 200 | 4.541600 | 1.044711 | 0.926395 | | 400 | 1.013700 | 0.290368 | 0.401758 | | 600 | 0.645000 | 0.232261 | 0.346555 | | 800 | 0.467800 | 0.214120 | 0.318340 | | 1000 | 0.502300 | 0.213995 | 0.309957 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.10.3 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id sammy786/wav2vec2-xlsr-sakha --dataset mozilla-foundation/common_voice_8_0 --config sah --split test ```
sanayAI/sanay-bert
06568bd76ad0c78facfc2b0d72561d3824d56397
2021-05-20T04:44:48.000Z
[ "pytorch", "jax", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
sanayAI
null
sanayAI/sanay-bert
4
null
transformers
18,898
Entry not found
sanchit-gandhi/wav2vec2-2-gpt2-no-adapter
9e51a4203878c4120fa76a6bb780d8e44f080b51
2022-02-22T18:18:09.000Z
[ "pytorch", "tensorboard", "speech-encoder-decoder", "automatic-speech-recognition", "dataset:librispeech_asr", "transformers", "generated_from_trainer", "model-index" ]
automatic-speech-recognition
false
sanchit-gandhi
null
sanchit-gandhi/wav2vec2-2-gpt2-no-adapter
4
null
transformers
18,899
--- tags: - generated_from_trainer datasets: - librispeech_asr model-index: - name: '' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model was trained from scratch on the librispeech_asr dataset. It achieves the following results on the evaluation set: - Loss: 5.2453 - Wer: 1.9070 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.6407 | 0.28 | 500 | 6.3882 | 1.9939 | | 5.6351 | 0.56 | 1000 | 6.1492 | 2.0010 | | 5.4896 | 0.84 | 1500 | 5.8014 | 1.9549 | | 4.9941 | 1.12 | 2000 | 5.7117 | 1.9888 | | 5.1524 | 1.4 | 2500 | 5.5260 | 1.3353 | | 4.8291 | 1.68 | 3000 | 5.4030 | 1.9694 | | 4.6539 | 1.96 | 3500 | 5.3507 | 1.9606 | | 4.351 | 2.24 | 4000 | 5.4178 | 1.9678 | | 4.1189 | 2.52 | 4500 | 5.2799 | 1.9154 | | 3.9921 | 2.8 | 5000 | 5.2453 | 1.9070 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu113 - Datasets 1.18.3 - Tokenizers 0.11.0