modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
amirbr/finetuning-sentiment-model-3000-samples
ceb533c91e6dee933b1d4ef0901b60fc16077603
2022-05-02T20:06:03.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
amirbr
null
amirbr/finetuning-sentiment-model-3000-samples
4
null
transformers
19,500
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: finetuning-sentiment-model-3000-samples results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Tokenizers 0.12.1
adielsa/distilbert-base-uncased-finetuned-cola
d921c1a21722baca97027d3abed6a6dd7f65b947
2022-04-30T12:37:50.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
adielsa
null
adielsa/distilbert-base-uncased-finetuned-cola
4
null
transformers
19,501
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5387376669923544 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8256 - Matthews Correlation: 0.5387 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5257 | 1.0 | 535 | 0.5286 | 0.4093 | | 0.3447 | 2.0 | 1070 | 0.5061 | 0.4972 | | 0.2303 | 3.0 | 1605 | 0.5878 | 0.5245 | | 0.1761 | 4.0 | 2140 | 0.7969 | 0.5153 | | 0.1346 | 5.0 | 2675 | 0.8256 | 0.5387 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
TehranNLP-org/electra-base-mnli
d4aeffccce83c440cc2f163705eb17c3b165954c
2022-05-03T17:01:07.000Z
[ "pytorch", "electra", "text-classification", "en", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
TehranNLP-org
null
TehranNLP-org/electra-base-mnli
4
null
transformers
19,502
--- language: - en license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: SEED0042 results: - task: name: Text Classification type: text-classification dataset: name: MNLI type: '' args: mnli metrics: - name: Accuracy type: accuracy value: 0.8879266428935303 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SEED0042 This model is a fine-tuned version of [google/electra-base-discriminator](https://huggingface.co/google/electra-base-discriminator) on the MNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.4265 - Accuracy: 0.8879 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - distributed_type: not_parallel - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.3762 | 1.0 | 12272 | 0.3312 | 0.8794 | | 0.2542 | 2.0 | 24544 | 0.3467 | 0.8843 | | 0.1503 | 3.0 | 36816 | 0.4265 | 0.8879 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu113 - Datasets 2.1.0 - Tokenizers 0.11.6
TehranNLP-org/bert-large-mnli
cd33ad6c53d6724570c15d72e02ceae5145d8a08
2022-05-03T17:02:10.000Z
[ "pytorch", "bert", "text-classification", "en", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
TehranNLP-org
null
TehranNLP-org/bert-large-mnli
4
null
transformers
19,503
--- language: - en license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: SEED0042 results: - task: name: Text Classification type: text-classification dataset: name: MNLI type: '' args: mnli metrics: - name: Accuracy type: accuracy value: 0.8572592969943963 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SEED0042 This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on the MNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.5092 - Accuracy: 0.8573 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: not_parallel - gradient_accumulation_steps: 32 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.4736 | 1.0 | 12271 | 0.4213 | 0.8372 | | 0.3248 | 2.0 | 24542 | 0.4055 | 0.8538 | | 0.1571 | 3.0 | 36813 | 0.5092 | 0.8573 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu113 - Datasets 2.1.0 - Tokenizers 0.11.6
victoriapl01/sensitive_spanish_classifier
298fff1bbbd78ca980eac5b1b3866c3861b093e4
2022-04-30T19:24:38.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
victoriapl01
null
victoriapl01/sensitive_spanish_classifier
4
1
transformers
19,504
Entry not found
radicalrascal/DialoGPT-medium-jimmy
214b8e96bd7872e6f89b5ea554fc7e8a94d7ef08
2022-04-30T20:59:33.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational", "lm-head", "causal-lm" ]
conversational
false
radicalrascal
null
radicalrascal/DialoGPT-medium-jimmy
4
null
transformers
19,505
--- tags: - conversational - lm-head - causal-lm --- # Jimmy DialoGPT Model
Yanael/bert-finetuned-mrpc
4218fbeddaa87af9656a41d10229c59537f89027
2022-05-01T15:25:05.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Yanael
null
Yanael/bert-finetuned-mrpc
4
null
transformers
19,506
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue model-index: - name: bert-finetuned-mrpc results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-mrpc This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the glue dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.8.1+cu102 - Datasets 2.1.0 - Tokenizers 0.12.1
Nakul24/Spanbert-emotion-extraction
7ad9e842c3699257202e0f6ea8a5c0982eea12ec
2022-05-03T05:10:03.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
Nakul24
null
Nakul24/Spanbert-emotion-extraction
4
1
transformers
19,507
Enter the Name of Emotion in the Question Field Enter The Text from which emotion has to be extracted Example 1- Question - Guilty Context - I shouted to my mom Example 2 - Question - Sad Context - I felt betrayed when my girlfriend kissed another guy even though she was drunk Note: Model is still under development stage so results might be a little strange
Yanael/dummy-model
2193695a917c6391ca9bdfca256558c774b1cd52
2022-05-01T20:00:15.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Yanael
null
Yanael/dummy-model
4
null
transformers
19,508
# Dummy Model Following the Hugging Face course
crcb/emo_go_new
72335e185cc316f5dfa9e35f30b8b05988a42c3f
2022-05-02T04:17:02.000Z
[ "pytorch", "roberta", "text-classification", "unk", "dataset:crcb/autotrain-data-go_emo_new", "transformers", "autotrain", "co2_eq_emissions" ]
text-classification
false
crcb
null
crcb/emo_go_new
4
null
transformers
19,509
--- tags: autotrain language: unk widget: - text: "I love AutoTrain 🤗" datasets: - crcb/autotrain-data-go_emo_new co2_eq_emissions: 20.58663910106142 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 813325491 - CO2 Emissions (in grams): 20.58663910106142 ## Validation Metrics - Loss: 1.3628994226455688 - Accuracy: 0.5920355494787216 - Macro F1: 0.4844439507523978 - Micro F1: 0.5920355494787216 - Weighted F1: 0.5873137663478112 - Macro Precision: 0.5458988948121151 - Micro Precision: 0.5920355494787216 - Weighted Precision: 0.591386299522425 - Macro Recall: 0.4753100798358001 - Micro Recall: 0.5920355494787216 - Weighted Recall: 0.5920355494787216 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/crcb/autotrain-go_emo_new-813325491 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("crcb/autotrain-go_emo_new-813325491", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("crcb/autotrain-go_emo_new-813325491", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
ali2066/DistilBERTFINAL_ctxSentence_TRAIN_webDiscourse_TEST_NULL_second_train_set_null_False
225ed0acd69b8fa2cdf572dd83ba9e7dab12e363
2022-05-02T13:37:28.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
ali2066
null
ali2066/DistilBERTFINAL_ctxSentence_TRAIN_webDiscourse_TEST_NULL_second_train_set_null_False
4
null
transformers
19,510
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: DistilBERTFINAL_ctxSentence_TRAIN_webDiscourse_TEST_NULL_second_train_set_null_False results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # DistilBERTFINAL_ctxSentence_TRAIN_webDiscourse_TEST_NULL_second_train_set_null_False This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base](https://huggingface.co/cardiffnlp/twitter-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.2555 - Precision: 1.0 - Recall: 0.0200 - F1: 0.0393 - Accuracy: 0.0486 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 95 | 0.5756 | nan | 0.0 | nan | 0.715 | | No log | 2.0 | 190 | 0.5340 | 0.6429 | 0.1579 | 0.2535 | 0.735 | | No log | 3.0 | 285 | 0.5298 | 0.5833 | 0.3684 | 0.4516 | 0.745 | | No log | 4.0 | 380 | 0.5325 | 0.5789 | 0.3860 | 0.4632 | 0.745 | | No log | 5.0 | 475 | 0.5452 | 0.4815 | 0.4561 | 0.4685 | 0.705 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
waboucay/camembert-base-finetuned-nli-rua_wl
4f90617c185c71d36d6e834c3eeb0b030a569433
2022-05-02T13:54:59.000Z
[ "pytorch", "camembert", "text-classification", "fr", "transformers", "nli" ]
text-classification
false
waboucay
null
waboucay/camembert-base-finetuned-nli-rua_wl
4
null
transformers
19,511
--- language: - fr tags: - nli metrics: - f1 --- ## Eval results We obtain the following results on ```validation``` and ```test``` sets: | Set | F1<sub>micro</sub> | F1<sub>macro</sub> | |------------|--------------------|--------------------| | validation | 73.8 | 73.7 | | test | 74.4 | 74.3 |
Dizzykong/gpt2-quests
fbc4f76d91a6b52f164879559519db2d5af4f876
2022-05-02T19:01:11.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
Dizzykong
null
Dizzykong/gpt2-quests
4
null
transformers
19,512
Entry not found
caush/Clickbait4
20813401dc32f8608a62645ffe728079c3940df8
2022-05-02T20:39:40.000Z
[ "pytorch", "bert", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
caush
null
caush/Clickbait4
4
null
transformers
19,513
--- license: mit tags: - generated_from_trainer model-index: - name: Clickbait1 results: [] --- This model is a fine-tuned version of microsoft/Multilingual-MiniLM-L12-H384 on the Webis-Clickbait-17 dataset. It achieves the following results on the evaluation set: Loss: 0.0261 The following list presents the current performances achieved by the participants. As primary evaluation measure, Mean Squared Error (MSE) with respect to the mean judgments of the annotators is used. Our result is 0,0261 for the MSE metric. We do not compute the other metrics. We try not to cheat using unknown data at the time of the challenge. We do not use k-fold cross validation techniques. | team | MSE | F1 | Precision | Recall| Accuracy| Runtime | |----- |----- |--- |-----------|-------|---------|-------- | |goldfish | 0.024 | 0.741 | 0.739 | 0.742 | 0.876 | 16:20:21| |caush | 0.026 | | | | | 00:11:00| |monkfish | 0.026 | 0.694 | 0.785 | 0.622 | 0.870 | 03:41:35| |dartfish | 0.027 | 0.706 | 0.733 | 0.681 | 0.865 | 00:47:07| |torpedo19 | 0.03 | 0.677 | 0.755 | 0.614 | 0.861 | 00:52:44| |albacore | 0.031 | 0.67 | 0.731 | 0.62 | 0.855 | 00:01:10| |blobfish | 0.032 | 0.646 | 0.738 | 0.574 | 0.85 | 00:03:22| |zingel | 0.033 | 0.683 | 0.719 | 0.65 | 0.856 | 00:03:27| |anchovy | 0.034 | 0.68 | 0.717 | 0.645 | 0.855 | 00:07:20| |ray | 0.034 | 0.684 | 0.691 | 0.677 | 0.851 | 00:29:28| |icarfish | 0.035 | 0.621 | 0.768 | 0.522 | 0.849 | 01:02:57| |emperor | 0.036 | 0.641 | 0.714 | 0.581 | 0.845 | 00:04:03| |carpetshark | 0.036 | 0.638 | 0.728 | 0.568 | 0.847 | 00:08:05| |electriceel | 0.038 | 0.588 | 0.727 | 0.493 | 0.835 | 01:04:54| |arowana | 0.039 | 0.656 | 0.659 | 0.654 | 0.837 | 00:35:24| |pineapplefish | 0.041 | 0.631 | 0.642 | 0.621 | 0.827 | 00:54:28| |whitebait | 0.043 | 0.565 | 0.7 | 0.474 | 0.826 | 00:04:31|
IsekaiMeta/dapprf
e72f5ec483c5c7d01a194b76b4423ad68361669f
2022-05-03T00:46:03.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
IsekaiMeta
null
IsekaiMeta/dapprf
4
null
transformers
19,514
--- tags: - conversational --- #dapprf
pfactorial/checkpoint-22500-epoch-20
957e11d8bfa59d6997c56455e2b7d07e66d74a8d
2022-05-03T05:48:55.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
pfactorial
null
pfactorial/checkpoint-22500-epoch-20
4
null
transformers
19,515
this is a Questions generating mode
DioLiu/distilbert-base-uncased-finetuned-sst2-nostop
0fece57fc926992ff4eb4bca8d53e9cae026eacd
2022-05-03T06:43:45.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
DioLiu
null
DioLiu/distilbert-base-uncased-finetuned-sst2-nostop
4
null
transformers
19,516
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-sst2-nostop results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-sst2-nostop This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0701 - Accuracy: 0.9888 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.125 | 1.0 | 1116 | 0.0975 | 0.9743 | | 0.0599 | 2.0 | 2232 | 0.0692 | 0.9840 | | 0.0191 | 3.0 | 3348 | 0.0570 | 0.9871 | | 0.0109 | 4.0 | 4464 | 0.0660 | 0.9882 | | 0.0092 | 5.0 | 5580 | 0.0701 | 0.9888 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
DioLiu/distilbert-base-uncased-finetuned-sst2-moreShake
82f1838fbb711d8b761965f0d4d6f6089dcf81f1
2022-05-03T10:10:55.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
DioLiu
null
DioLiu/distilbert-base-uncased-finetuned-sst2-moreShake
4
null
transformers
19,517
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-sst2-moreShake results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-sst2-moreShake This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1864 - Accuracy: 0.9739 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1208 | 1.0 | 1957 | 0.1102 | 0.9661 | | 0.0516 | 2.0 | 3914 | 0.1222 | 0.9704 | | 0.0223 | 3.0 | 5871 | 0.1574 | 0.9690 | | 0.0071 | 4.0 | 7828 | 0.1997 | 0.9706 | | 0.0026 | 5.0 | 9785 | 0.1864 | 0.9739 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
Someshfengde/distilbert-base-uncased-finetuned-emotion
63aeb95a6eb962935a77912fc83b7b696f615d8a
2022-05-03T12:13:25.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers" ]
text-classification
false
Someshfengde
null
Someshfengde/distilbert-base-uncased-finetuned-emotion
4
null
transformers
19,518
Entry not found
mrm8488/data2vec-text-base-finetuned-cola
486aa5f042d7cb4e266378a945fa8c1e9a5cfe00
2022-05-03T15:28:38.000Z
[ "pytorch", "tensorboard", "data2vec-text", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
mrm8488
null
mrm8488/data2vec-text-base-finetuned-cola
4
null
transformers
19,519
--- license: mit tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: data2vec-text-base-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5214716883534575 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # data2vec-text-base-finetuned-cola This model is a fine-tuned version of [facebook/data2vec-text-base](https://huggingface.co/facebook/data2vec-text-base) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.5254 - Matthews Correlation: 0.5215 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.160701759709141e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 30 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5632 | 1.0 | 535 | 0.5252 | 0.3869 | | 0.4572 | 2.0 | 1070 | 0.5534 | 0.4758 | | 0.3905 | 3.0 | 1605 | 0.4962 | 0.5259 | | 0.3592 | 4.0 | 2140 | 0.5254 | 0.5215 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
mrm8488/data2vec-text-base-finetuned-mrpc
b65b6a7ef1700ec0ef92a83be8e444539b82e009
2022-05-03T17:19:07.000Z
[ "pytorch", "tensorboard", "data2vec-text", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
mrm8488
null
mrm8488/data2vec-text-base-finetuned-mrpc
4
null
transformers
19,520
--- license: mit tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: data2vec-text-base-finetuned-mrpc results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: mrpc metrics: - name: Accuracy type: accuracy value: 0.8627450980392157 - name: F1 type: f1 value: 0.8992805755395683 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # data2vec-text-base-finetuned-mrpc This model is a fine-tuned version of [facebook/data2vec-text-base](https://huggingface.co/facebook/data2vec-text-base) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.4087 - Accuracy: 0.8627 - F1: 0.8993 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 9.486061628311107e-06 - train_batch_size: 4 - eval_batch_size: 16 - seed: 19 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.6197 | 1.0 | 917 | 0.4720 | 0.8039 | 0.8606 | | 0.4763 | 2.0 | 1834 | 0.4087 | 0.8627 | 0.8993 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
mrm8488/data2vec-text-base-finetuned-rte
ec0e0bb2690138b206860421c2ed2544f390ad13
2022-05-04T15:26:07.000Z
[ "pytorch", "tensorboard", "data2vec-text", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
mrm8488
null
mrm8488/data2vec-text-base-finetuned-rte
4
null
transformers
19,521
--- license: mit tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: data2vec-text-base-finetuned-rte results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: rte metrics: - name: Accuracy type: accuracy value: 0.6209386281588448 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # data2vec-text-base-finetuned-rte This model is a fine-tuned version of [facebook/data2vec-text-base](https://huggingface.co/facebook/data2vec-text-base) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6670 - Accuracy: 0.6209 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 156 | 0.7091 | 0.4729 | | No log | 2.0 | 312 | 0.6893 | 0.5271 | | No log | 3.0 | 468 | 0.6670 | 0.6209 | | 0.6919 | 4.0 | 624 | 0.6740 | 0.5921 | | 0.6919 | 5.0 | 780 | 0.6644 | 0.6101 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
ncthuan/vi-distilled-msmarco-MiniLM-L12-cos-v5
10f4a7f8f56fe415325e12fff8be9681f5c89180
2022-05-04T12:52:08.000Z
[ "pytorch", "bert", "feature-extraction", "arxiv:2004.09813", "sentence-transformers", "sentence-similarity", "transformers", "license:mit" ]
sentence-similarity
false
ncthuan
null
ncthuan/vi-distilled-msmarco-MiniLM-L12-cos-v5
4
null
sentence-transformers
19,522
--- license: mit pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a Vietnamese [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like questions answering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> The thesis will be available on [https://github.com/ncthuan/uet-qa](https://github.com/ncthuan/uet-qa) with evaluation results in chapter 4. paraphrase-multilingual-minilm: 75 recall@10, 49 MRR@10 this model: 85 recall@10, 58 MRR@10 ## Training It was distilled using English-Vietnamese parallel data with this [training script](https://github.com/ncthuan/uet-qa/blob/main/scripts/train/make_multilingual.py) that follows the work of [Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation](https://www.sbert.net/examples/training/multilingual/README.html) teacher: msmarco-MiniLM-L12-cos-v5 student: paraphrase-multilingual-minilm-L12-v2 Data: PhoMT, MKQA, MLQA, XQuAD The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 40148 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MSELoss.MSELoss` Parameters of the fit()-Method: ``` { "epochs": 2, "evaluation_steps": 2000, "evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "correct_bias": false, "eps": 1e-06, "lr": 1e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 2000, "weight_decay": 0.005 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information --> ``` @inproceedings{reimers-2020-multilingual-sentence-bert, title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2020", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/2004.09813", } @article{thuan2022-uetqa, title={{Extractive question answering system on regulations for University of Engineering and Technology}}, author={Nguyen, Thuan}, journal={Undergraduate Thesis, University of Engineering and Technology, Vietnam National University Hanoi}, year={2022} } ```
chebmarcel/modern_nature
72a7fa4859e599e9b99229c00fbe71a6902a3bf9
2022-05-04T11:10:03.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
chebmarcel
null
chebmarcel/modern_nature
4
null
transformers
19,523
Entry not found
domenicrosati/question_converter-3b
ae6b54ed920e5328bae9c402d56e0998cb5a0bf3
2022-05-10T17:05:23.000Z
[ "pytorch", "t5", "text2text-generation", "en", "dataset:domenicrosati/QA2D", "transformers", "autotrain_compatible" ]
text2text-generation
false
domenicrosati
null
domenicrosati/question_converter-3b
4
1
transformers
19,524
--- language: - en tags: - text2text-generation datasets: - domenicrosati/QA2D widget: - text: "Where in the world is Carmen Sandiego. She is in Abruzzo" example_title: "Where is Carmen Sandiego?" - text: "Halifax is a city in which province. Nova Scotia" example_title: "A Halifact" --- # Question-Answer to Statement Converter A question answer pair to statement converter from https://github.com/jifan-chen/QA-Verification-Via-NLI See: ``` @article{chen2021can, title={Can NLI Models Verify QA Systems' Predictions?}, author={Chen, Jifan and Choi, Eunsol and Durrett, Greg}, journal={EMNLP Findings}, year={2021} } ``` **Note:** I am not the maintainer or orginal author just keeping it here to use huggingface APIs to produce statements from question answer pair for downstream applications. ## TL;DR: We fine-tune a seq2seq model, T5-3B (Raffel et al., 2020), using the \\((a, q, d)\\) pairs annotated by Demszky et al. (2018). Where a is answer, q is question, and d is declerative sentence (i.e. a statement). See Appendex B.2 of Chen et al. for more. ## Usage The prompt should be `{question} {seperator} {answer}` where the seperator is `</s>`. ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained('domenicrosati/question_converter-3b') model = AutoModelForSeq2SeqLM.from_pretrained('domenicrosati/question_converter-3b') question = "Where in the world is Carmen Sandiego?" answer = "She is in Abruzzo" prompt = f'{question} </s> {answer}' input_ids = tokenizer(prompt, return_tensors='pt').input_ids output_ids = model.generate(input_ids) responses = tokenizer.batch_decode(output_ids, skip_special_tokens=True) ``` > `['Carmen Sandiego is in Abruzzo.']`
Yanhao/simcse-roberta-large
51f382a898d56ba3c4314ae259fff949498a2173
2022-05-04T21:55:59.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
Yanhao
null
Yanhao/simcse-roberta-large
4
null
transformers
19,525
Entry not found
YeRyeongLee/bert-base-uncased-finetuned-small-0505
7825fc10aa00d5908959a5f1d62ab44d56b1000f
2022-05-04T22:54:18.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
YeRyeongLee
null
YeRyeongLee/bert-base-uncased-finetuned-small-0505
4
null
transformers
19,526
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: bert-base-uncased-finetuned-small-0505 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-small-0505 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.8649 - Accuracy: 0.1818 - F1: 0.1182 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 13 | 1.8337 | 0.1818 | 0.0559 | | No log | 2.0 | 26 | 1.8559 | 0.2727 | 0.1414 | | No log | 3.0 | 39 | 1.8488 | 0.1818 | 0.1010 | | No log | 4.0 | 52 | 1.8649 | 0.1818 | 0.1182 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0 - Datasets 1.16.1 - Tokenizers 0.10.3
YeRyeongLee/mental-bert-base-uncased-finetuned-0505
78a2f58e03bdd1b1c7cf77fbdfd5cee5339e85a5
2022-05-05T04:19:55.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
YeRyeongLee
null
YeRyeongLee/mental-bert-base-uncased-finetuned-0505
4
null
transformers
19,527
--- tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: mental-bert-base-uncased-finetuned-0505 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mental-bert-base-uncased-finetuned-0505 This model is a fine-tuned version of [mental/mental-bert-base-uncased](https://huggingface.co/mental/mental-bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4195 - Accuracy: 0.9181 - F1: 0.9182 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 1373 | 0.2846 | 0.9124 | 0.9119 | | No log | 2.0 | 2746 | 0.3468 | 0.9132 | 0.9129 | | No log | 3.0 | 4119 | 0.3847 | 0.9189 | 0.9192 | | No log | 4.0 | 5492 | 0.4195 | 0.9181 | 0.9182 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0 - Datasets 1.16.1 - Tokenizers 0.10.3
CarlCochet/trajectory-transformer-halfcheetah-medium-replay-v2
b23fd1dcdc38aa1d5aacdbbdbfe93287be9e24a1
2022-05-12T17:02:23.000Z
[ "pytorch", "trajectory_transformer", "feature-extraction", "transformers", "license:mit" ]
feature-extraction
false
CarlCochet
null
CarlCochet/trajectory-transformer-halfcheetah-medium-replay-v2
4
null
transformers
19,528
--- license: mit ---
CarlCochet/trajectory-transformer-walker2d-medium-v2
ff7ed72745a4210be17b9d207543ec34c42f8037
2022-05-12T17:08:05.000Z
[ "pytorch", "trajectory_transformer", "feature-extraction", "transformers", "license:mit" ]
feature-extraction
false
CarlCochet
null
CarlCochet/trajectory-transformer-walker2d-medium-v2
4
null
transformers
19,529
--- license: mit ---
PSW/low_resource_percent1_seed42
057fb7075d8669a0bf8195eeabf2b96aa5274566
2022-05-05T09:47:08.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/low_resource_percent1_seed42
4
null
transformers
19,530
Entry not found
benjamin/gpt2-wechsel-uyghur
a4cee9a802b209925853b269304704b49477a824
2022-05-05T14:24:36.000Z
[ "pytorch", "gpt2", "text-generation", "ug", "arxiv:2112.06598", "transformers", "license:mit" ]
text-generation
false
benjamin
null
benjamin/gpt2-wechsel-uyghur
4
null
transformers
19,531
--- language: ug license: mit --- # gpt2-wechsel-uyghur Model trained with WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models. See the code here: https://github.com/CPJKU/wechsel And the paper here: https://arxiv.org/abs/2112.06598 ## Performance | Model | PPL | |---|---| | `gpt2-wechsel-sundanese` | **111.72** | | `gpt2` (retrained from scratch) | 149.46 | | Model | PPL | |---|---| | `gpt2-wechsel-scottish-gaelic` | **16.43** | | `gpt2` (retrained from scratch) | 19.53 | | Model | PPL | |---|---| | `gpt2-wechsel-uyghur` | **34.33** | | `gpt2` (retrained from scratch) | 42.82 | | Model | PPL | |---|---| | `gpt2-wechsel-malagasy` | **14.01** | | `gpt2` (retrained from scratch) | 15.93 | See our paper for details. ## Citation Please cite WECHSEL as ``` @misc{minixhofer2021wechsel, title={WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models}, author={Benjamin Minixhofer and Fabian Paischer and Navid Rekabsaz}, year={2021}, eprint={2112.06598}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
JoMart/distilbert-base-uncased-finetuned-cola
bf0728bfb9542d95c333ec2298774fbe6fccc3fd
2022-05-05T13:56:48.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers" ]
text-classification
false
JoMart
null
JoMart/distilbert-base-uncased-finetuned-cola
4
null
transformers
19,532
Entry not found
PSW/low_resource_percent20_maxsimins_seed1
8acee22fc56da26d1c3f8e7dd93013bd11ef0bca
2022-05-05T15:26:39.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/low_resource_percent20_maxsimins_seed1
4
null
transformers
19,533
Entry not found
PSW/low_resource_percent20_seed27
a203949dff961204c44de0bf92f5ddc64db1c50d
2022-05-05T20:17:03.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/low_resource_percent20_seed27
4
null
transformers
19,534
Entry not found
Khalsuu/english-filipino-wav2vec2-l-xls-r-test-04
805103a23454e1ffce0eea8c915c2ac49ae9a71d
2022-05-06T03:36:02.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:filipino_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Khalsuu
null
Khalsuu/english-filipino-wav2vec2-l-xls-r-test-04
4
null
transformers
19,535
--- license: apache-2.0 tags: - generated_from_trainer datasets: - filipino_voice model-index: - name: english-filipino-wav2vec2-l-xls-r-test-04 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # english-filipino-wav2vec2-l-xls-r-test-04 This model is a fine-tuned version of [jonatasgrosman/wav2vec2-large-xlsr-53-english](https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-english) on the filipino_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.0713 - Wer: 0.5078 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 40 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.2131 | 2.09 | 400 | 0.7100 | 0.6832 | | 0.6539 | 4.19 | 800 | 0.8307 | 0.6602 | | 0.5081 | 6.28 | 1200 | 0.7120 | 0.6297 | | 0.42 | 8.38 | 1600 | 0.7309 | 0.6299 | | 0.3482 | 10.47 | 2000 | 0.7665 | 0.6148 | | 0.293 | 12.57 | 2400 | 0.7091 | 0.5840 | | 0.265 | 14.66 | 2800 | 0.8170 | 0.6102 | | 0.2294 | 16.75 | 3200 | 0.9715 | 0.6216 | | 0.1872 | 18.85 | 3600 | 0.8516 | 0.5837 | | 0.1644 | 20.94 | 4000 | 0.8408 | 0.5767 | | 0.1495 | 23.04 | 4400 | 0.9188 | 0.5717 | | 0.1276 | 25.13 | 4800 | 1.0149 | 0.5451 | | 0.116 | 27.23 | 5200 | 1.0220 | 0.5683 | | 0.1017 | 29.32 | 5600 | 0.9319 | 0.5253 | | 0.0899 | 31.41 | 6000 | 0.9949 | 0.5435 | | 0.0861 | 33.51 | 6400 | 1.1029 | 0.5467 | | 0.0766 | 35.6 | 6800 | 1.0219 | 0.5193 | | 0.065 | 37.7 | 7200 | 1.0836 | 0.5214 | | 0.0588 | 39.79 | 7600 | 1.0713 | 0.5078 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
xingqiang/nezha-zh-address-match-base
ed14db994b9841bd91e9cda59df93a4641f55ad2
2022-05-06T03:06:38.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
xingqiang
null
xingqiang/nezha-zh-address-match-base
4
null
transformers
19,536
Entry not found
kneis/distilbert-sentiment-adversarial
6c8cbdc7d2e61b58b959013bc270dc63657769eb
2022-05-06T03:25:43.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
kneis
null
kneis/distilbert-sentiment-adversarial
4
null
transformers
19,537
Entry not found
nikhilmatta/NewsBiasClassifier
55f49900e27d0901636b0d025b5d5f17179cbe98
2022-05-06T03:52:53.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
nikhilmatta
null
nikhilmatta/NewsBiasClassifier
4
null
transformers
19,538
Entry not found
BAAI/GLM
b3046831fe5a497bbddcbf9e86179f8804bf8040
2022-07-20T08:00:47.000Z
[ "pytorch", "transformers" ]
null
false
BAAI
null
BAAI/GLM
4
null
transformers
19,539
Entry not found
Wakaka/bert-finetuned-mrpc
67c43ed5e9c13430204a107b620956be9627e092
2022-05-06T10:01:01.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Wakaka
null
Wakaka/bert-finetuned-mrpc
4
null
transformers
19,540
Entry not found
crabz/exp6
eb0ce7de3dc94d8d7ef4e1dfa7588b1cd44302f7
2022-05-06T10:08:16.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
crabz
null
crabz/exp6
4
null
transformers
19,541
Entry not found
chrishistewandb/finetuning-sentiment-model-3000-samples
2260269385be34a03831ed0f7668f25de410fca5
2022-05-06T21:16:00.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
chrishistewandb
null
chrishistewandb/finetuning-sentiment-model-3000-samples
4
null
transformers
19,542
Entry not found
armanc/affiliations-roberta-orig-83K-loss-0.102
b16ac22fb83a97fa13932511b545c5c73a577a30
2022-05-06T23:31:47.000Z
[ "pytorch", "transformers" ]
null
false
armanc
null
armanc/affiliations-roberta-orig-83K-loss-0.102
4
null
transformers
19,543
Entry not found
Siyam/Dansk-wav2vec21
5dad47bf35f9f431be51c0887bb56f71fd26f19a
2022-05-07T18:43:05.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Siyam
null
Siyam/Dansk-wav2vec21
4
null
transformers
19,544
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: Dansk-wav2vec21 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Dansk-wav2vec21 This model is a fine-tuned version of [Siyam/SKYLy](https://huggingface.co/Siyam/SKYLy) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.8025 - Wer: 0.4057 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.0563 | 4.26 | 400 | 0.7887 | 0.4560 | | 0.0756 | 8.51 | 800 | 0.7519 | 0.4444 | | 0.0497 | 12.77 | 1200 | 0.7979 | 0.4256 | | 0.0335 | 17.02 | 1600 | 0.8025 | 0.4057 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 2.1.0 - Tokenizers 0.10.3
SebastianS/marian-finetuned-kde4-en-to-fr-accelerate
de587a5b5f753055e0c5d96a008c8539dc93dabe
2022-05-07T20:25:20.000Z
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
SebastianS
null
SebastianS/marian-finetuned-kde4-en-to-fr-accelerate
4
null
transformers
19,545
Entry not found
KoichiYasuoka/roberta-base-coptic-upos
a7fc4d1f0f0bd23e8a347ccc30f3bfd284576912
2022-05-08T05:18:20.000Z
[ "pytorch", "roberta", "token-classification", "cop", "dataset:universal_dependencies", "transformers", "coptic", "pos", "dependency-parsing", "license:cc-by-sa-4.0", "autotrain_compatible" ]
token-classification
false
KoichiYasuoka
null
KoichiYasuoka/roberta-base-coptic-upos
4
null
transformers
19,546
--- language: - "cop" tags: - "coptic" - "token-classification" - "pos" - "dependency-parsing" datasets: - "universal_dependencies" license: "cc-by-sa-4.0" pipeline_tag: "token-classification" widget: - text: "ⲧⲉⲛⲟⲩⲇⲉⲛ̄ⲟⲩⲟⲉⲓⲛϩ︤ⲙ︥ⲡϫⲟⲉⲓⲥ·" - text: "ⲙⲟⲟϣⲉϩⲱⲥϣⲏⲣⲉⲙ̄ⲡⲟⲩⲟⲉⲓⲛ·" --- # roberta-base-coptic-upos ## Model Description This is a RoBERTa model pre-trained with [UD_Coptic](https://universaldependencies.org/cop/) for POS-tagging and dependency-parsing, derived from [roberta-base-coptic](https://huggingface.co/KoichiYasuoka/roberta-base-coptic). Every word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech). ## How to Use ```py from transformers import AutoTokenizer,AutoModelForTokenClassification tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-base-coptic-upos") model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/roberta-base-coptic-upos") ``` or ``` import esupar nlp=esupar.load("KoichiYasuoka/roberta-base-coptic-upos") ``` ## See Also [esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa models
theojolliffe/distill-pegasus-cnn-arxiv-pubmed-v3-e8
471186f4f9932d23061bce38c612c04115d37ad8
2022-05-08T09:33:22.000Z
[ "pytorch", "tensorboard", "pegasus", "text2text-generation", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
theojolliffe
null
theojolliffe/distill-pegasus-cnn-arxiv-pubmed-v3-e8
4
null
transformers
19,547
--- tags: - generated_from_trainer metrics: - rouge model-index: - name: distill-pegasus-cnn-arxiv-pubmed-v3-e8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distill-pegasus-cnn-arxiv-pubmed-v3-e8 This model is a fine-tuned version of [theojolliffe/distill-pegasus-cnn-arxiv-pubmed](https://huggingface.co/theojolliffe/distill-pegasus-cnn-arxiv-pubmed) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.6844 - Rouge1: 49.0081 - Rouge2: 30.6784 - Rougel: 33.5258 - Rougelsum: 45.5354 - Gen Len: 125.6852 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:| | 2.7633 | 1.0 | 795 | 2.1211 | 48.9615 | 30.3509 | 33.7359 | 44.508 | 124.7963 | | 2.3051 | 2.0 | 1590 | 1.9464 | 48.6806 | 30.452 | 34.2187 | 44.6379 | 124.6296 | | 2.2244 | 3.0 | 2385 | 1.8294 | 48.9739 | 30.6717 | 33.605 | 45.0942 | 125.3704 | | 2.0733 | 4.0 | 3180 | 1.7769 | 49.0049 | 30.8354 | 33.6965 | 44.8603 | 125.7037 | | 1.9759 | 5.0 | 3975 | 1.7192 | 50.3946 | 32.1072 | 34.5453 | 46.4493 | 125.5741 | | 1.9478 | 6.0 | 4770 | 1.7037 | 49.4631 | 31.654 | 34.4601 | 46.2376 | 125.5185 | | 1.9016 | 7.0 | 5565 | 1.6874 | 48.2641 | 29.6354 | 33.1059 | 44.8436 | 125.6852 | | 1.8882 | 8.0 | 6360 | 1.6844 | 49.0081 | 30.6784 | 33.5258 | 45.5354 | 125.6852 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
rahulacj/mbart-large-cc25-finetuned-hi-to-en-v2
6a8e23b442401945c45e68cd8982cb4a170ed9b1
2022-05-10T23:37:59.000Z
[ "pytorch", "tensorboard", "mbart", "text2text-generation", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
rahulacj
null
rahulacj/mbart-large-cc25-finetuned-hi-to-en-v2
4
null
transformers
19,548
--- tags: - generated_from_trainer metrics: - bleu model-index: - name: mbart-large-cc25-finetuned-hi-to-en-v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mbart-large-cc25-finetuned-hi-to-en-v2 This model is a fine-tuned version of [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.8027 - Bleu: 33.4814 - Gen Len: 21.8974 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| | 1.8971 | 1.0 | 3955 | 1.6015 | 19.3557 | 43.7594 | | 1.3266 | 2.0 | 7910 | 1.4917 | 19.1404 | 35.3155 | | 0.9906 | 3.0 | 11865 | 1.5354 | 26.999 | 26.7497 | | 0.6987 | 4.0 | 15820 | 1.6457 | 31.9572 | 23.4565 | | 0.5073 | 5.0 | 19775 | 1.8544 | 34.1169 | 22.1507 | | 0.3554 | 6.0 | 23730 | 2.0985 | 34.0746 | 22.2396 | | 0.2423 | 7.0 | 27685 | 2.2534 | 33.2205 | 22.2184 | | 0.1918 | 8.0 | 31640 | 2.4014 | 32.2001 | 22.635 | | 0.1423 | 9.0 | 35595 | 2.5067 | 32.4074 | 22.8716 | | 0.1105 | 10.0 | 39550 | 2.5618 | 33.1965 | 22.5905 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
Jeevesh8/bert_ft_cola-1
d11f92b68d1353021c372130fed9a31bb4160612
2022-05-09T08:59:48.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_cola-1
4
null
transformers
19,549
Entry not found
guhuawuli/distilbert-base-uncased-finetuned-ner
4618777dd0d2e6bf2752a8ec9219b97a3d754c12
2022-05-09T15:03:24.000Z
[ "pytorch", "tensorboard", "distilbert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
guhuawuli
null
guhuawuli/distilbert-base-uncased-finetuned-ner
4
null
transformers
19,550
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.8982049036777583 - name: Recall type: recall value: 0.9179997762613268 - name: F1 type: f1 value: 0.9079944674965422 - name: Accuracy type: accuracy value: 0.979427137115351 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0729 - Precision: 0.8982 - Recall: 0.9180 - F1: 0.9080 - Accuracy: 0.9794 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 220 | 0.1036 | 0.8607 | 0.8797 | 0.8701 | 0.9727 | | No log | 2.0 | 440 | 0.0762 | 0.8912 | 0.9131 | 0.9020 | 0.9783 | | 0.2005 | 3.0 | 660 | 0.0729 | 0.8982 | 0.9180 | 0.9080 | 0.9794 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0a0+3fd9dcf - Datasets 2.1.0 - Tokenizers 0.12.1
Jeevesh8/bert_ft_cola-2
ea09f156ae940d48ef835899f37c90602fd9145a
2022-05-09T13:55:36.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_cola-2
4
null
transformers
19,551
Entry not found
Jeevesh8/bert_ft_cola-3
8be3c295e3846e88ebacbd3a4673aa920052e3a0
2022-05-09T13:56:15.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_cola-3
4
null
transformers
19,552
Entry not found
Jeevesh8/bert_ft_cola-4
0d4f759956a335005083f1b4a807ff6c105a3460
2022-05-09T13:56:53.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_cola-4
4
null
transformers
19,553
Entry not found
Jeevesh8/bert_ft_cola-5
cc01f8dee424dbe6753b576a5afb3f87418b10de
2022-05-09T13:57:32.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_cola-5
4
null
transformers
19,554
Entry not found
Jeevesh8/bert_ft_cola-6
e23c85995f56724e9fd490f863e377d40da2831e
2022-05-09T13:58:11.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_cola-6
4
null
transformers
19,555
Entry not found
Jeevesh8/bert_ft_cola-7
cc33ddda3f655b75963c7f7fc8dab462a811d0fb
2022-05-09T13:58:50.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_cola-7
4
null
transformers
19,556
Entry not found
Jeevesh8/bert_ft_cola-8
090d060554b3777c2e34d7ca1362d3e43fff851a
2022-05-09T13:59:28.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_cola-8
4
null
transformers
19,557
Entry not found
Jeevesh8/bert_ft_cola-9
0f711801ab099a3819e0e7ded470db4a49762f04
2022-05-09T14:00:08.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_cola-9
4
null
transformers
19,558
Entry not found
Jeevesh8/bert_ft_cola-10
2eadeaeda49e0e7cbb733f8a3adfb9c8646ff261
2022-05-09T14:00:49.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_cola-10
4
null
transformers
19,559
Entry not found
Jeevesh8/bert_ft_cola-13
0155bb2e2ee8f974e92073285514fbe877f9cea7
2022-05-09T14:02:49.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_cola-13
4
null
transformers
19,560
Entry not found
Jeevesh8/bert_ft_cola-14
9444135c043c5fde981891760c2cfeb6c208816e
2022-05-09T14:03:28.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_cola-14
4
null
transformers
19,561
Entry not found
Jeevesh8/bert_ft_cola-15
f53de774aba2e39810a625ce609ebb0a15338120
2022-05-09T14:04:07.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_cola-15
4
null
transformers
19,562
Entry not found
Jeevesh8/bert_ft_cola-16
915f6e733fd7c5354ea159354aa93d7601027af6
2022-05-09T14:04:53.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_cola-16
4
null
transformers
19,563
Entry not found
Jeevesh8/bert_ft_cola-17
b35642730cfbf2463ec7852e37a2d11c8a94409d
2022-05-09T14:05:32.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_cola-17
4
null
transformers
19,564
Entry not found
Jeevesh8/bert_ft_cola-18
81d4722aecb2cbd1a97d4b59746fea92b7047bb0
2022-05-09T14:06:11.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_cola-18
4
null
transformers
19,565
Entry not found
Jeevesh8/bert_ft_cola-19
7c2a159f19acb0b9a5ce7cf83cfc2568a23996b5
2022-05-09T14:06:50.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_cola-19
4
null
transformers
19,566
Entry not found
Jeevesh8/bert_ft_cola-22
83a4a56f9454978c759560063b7c0719c24f1bc5
2022-05-09T14:08:45.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_cola-22
4
null
transformers
19,567
Entry not found
Jeevesh8/bert_ft_cola-23
45183fb9296b4f69ddde028a548c685516f7c824
2022-05-09T14:09:24.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_cola-23
4
null
transformers
19,568
Entry not found
Jeevesh8/bert_ft_cola-24
c978c2fec2a41ca25633073b3322fa88b8b80ccc
2022-05-09T14:10:02.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_cola-24
4
null
transformers
19,569
Entry not found
Jeevesh8/bert_ft_cola-25
efb773b303a9d015e769196afcba1c3442031a20
2022-05-09T14:10:41.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_cola-25
4
null
transformers
19,570
Entry not found
Jeevesh8/bert_ft_cola-26
3b164098b36edb49409136c18f314147f7c82a72
2022-05-09T14:11:20.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_cola-26
4
null
transformers
19,571
Entry not found
Jeevesh8/bert_ft_cola-27
9f71d7a615f2862ef52ce1f6c7acbc883acd8fe2
2022-05-09T14:11:59.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_cola-27
4
null
transformers
19,572
Entry not found
Jeevesh8/bert_ft_cola-28
6993d8408b312fe90c31775b698caf27e588b064
2022-05-09T14:12:38.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_cola-28
4
null
transformers
19,573
Entry not found
Jeevesh8/bert_ft_cola-29
2559284ef3144367e3a06993696a199bb05c5df8
2022-05-09T14:13:17.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_cola-29
4
null
transformers
19,574
Entry not found
Jeevesh8/bert_ft_cola-30
f18ad70db1a29bd8db9dcb69cdf1afea2caed76f
2022-05-09T14:13:58.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_cola-30
4
null
transformers
19,575
Entry not found
Jeevesh8/bert_ft_cola-31
fa10068d341c59595d6c913e0cf15c902eebd3db
2022-05-09T14:14:35.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_cola-31
4
null
transformers
19,576
Entry not found
Jeevesh8/bert_ft_cola-32
730dda0a30b21cff0d074e20486d96822d116bf9
2022-05-09T14:15:14.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_cola-32
4
null
transformers
19,577
Entry not found
Jeevesh8/bert_ft_cola-33
f3a7444b5eb17af273d63a1ce3a76b94c462ed4d
2022-05-09T14:15:55.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_cola-33
4
null
transformers
19,578
Entry not found
Jeevesh8/bert_ft_cola-34
6945b48c18a6d5eaf6b8f9c63056258002f087b6
2022-05-09T14:16:36.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_cola-34
4
null
transformers
19,579
Entry not found
Jeevesh8/bert_ft_cola-35
86290284751a1b33307f32d1ee5e4dc5028cf2d2
2022-05-09T14:17:16.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_cola-35
4
null
transformers
19,580
Entry not found
Jeevesh8/bert_ft_cola-36
08a351e48636d2bedcbe1eb9e3fedc21d9df23fc
2022-05-09T14:17:54.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_cola-36
4
null
transformers
19,581
Entry not found
Jeevesh8/bert_ft_cola-37
860d942dcf44ee920671ff3d85962df9b4235ac0
2022-05-09T14:18:36.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_cola-37
4
null
transformers
19,582
Entry not found
Jeevesh8/bert_ft_cola-38
93fe5dfa93311a8e8504ea8db569e1c5f500033e
2022-05-09T14:19:15.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_cola-38
4
null
transformers
19,583
Entry not found
Jeevesh8/bert_ft_cola-40
f1cb19fe20672fe80e3b27e0bbdc8298e1663594
2022-05-09T14:20:35.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_cola-40
4
null
transformers
19,584
Entry not found
Jeevesh8/bert_ft_cola-41
a30cee5e7a447518c52879a3c7186a52b143236a
2022-05-09T14:21:13.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_cola-41
4
null
transformers
19,585
Entry not found
Jeevesh8/bert_ft_cola-42
f2805dbc5c0bd78ce000e449707a0e72cc05c42d
2022-05-09T14:22:03.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_cola-42
4
null
transformers
19,586
Entry not found
Jeevesh8/bert_ft_cola-43
31a0af5a593cc128d938b3cc275b9f125f3b55e6
2022-05-09T14:22:42.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_cola-43
4
null
transformers
19,587
Entry not found
Jeevesh8/bert_ft_cola-44
0d003f47466b501c212df076ebac772b19d437f1
2022-05-09T14:23:26.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_cola-44
4
null
transformers
19,588
Entry not found
Jeevesh8/bert_ft_cola-46
3f0eb8fdca86ef1f1a4cd27a5538cdf5f5821413
2022-05-09T14:24:44.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_cola-46
4
null
transformers
19,589
Entry not found
Jeevesh8/bert_ft_cola-47
8e65522b2478ced24ab1f21885c91cdba9b29934
2022-05-09T14:25:23.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_cola-47
4
null
transformers
19,590
Entry not found
Jeevesh8/bert_ft_cola-48
7c223292912eadd4b5f493fc61d588d942f0345d
2022-05-09T14:26:02.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_cola-48
4
null
transformers
19,591
Entry not found
Jeevesh8/bert_ft_cola-49
c224ba7d793c4def8698157a9ea8cdc74fd9093d
2022-05-09T14:26:41.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_cola-49
4
null
transformers
19,592
Entry not found
Jeevesh8/bert_ft_cola-50
f69b6d1dd42923b1336ff08ea754eea0010b5c2e
2022-05-09T14:27:20.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_cola-50
4
null
transformers
19,593
Entry not found
Jeevesh8/bert_ft_cola-51
7ee3b17125719d52670f25bd0c0a9f35b90bb029
2022-05-09T14:28:00.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_cola-51
4
null
transformers
19,594
Entry not found
Jeevesh8/bert_ft_cola-52
7e7fad69013037867b958abdf857dfa1ec4ee793
2022-05-09T14:28:39.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_cola-52
4
null
transformers
19,595
Entry not found
Jeevesh8/bert_ft_cola-53
c73259967a1db7d7943c7c4142c6765046031eaf
2022-05-09T14:29:19.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_cola-53
4
null
transformers
19,596
Entry not found
Jeevesh8/bert_ft_cola-54
aa7c9f4a8abc4115ca8a748275cd227b995e8290
2022-05-09T14:30:01.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_cola-54
4
null
transformers
19,597
Entry not found
Jeevesh8/bert_ft_cola-56
238afdf11c0632f64ab9e2db8ae5ecb3bf76df12
2022-05-09T14:31:25.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_cola-56
4
null
transformers
19,598
Entry not found
Jeevesh8/bert_ft_cola-57
59b715f593ca4bf2ef8e98f2805c61100f5cc236
2022-05-09T14:32:05.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_cola-57
4
null
transformers
19,599
Entry not found