modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
list
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
ScandinavianMrT/gpt2_prefinetune_IMDB
2455457a8733f6133a7534f6e653310f6c1f19c3
2022-03-16T19:05:43.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-generation
false
ScandinavianMrT
null
ScandinavianMrT/gpt2_prefinetune_IMDB
6
null
transformers
15,500
--- license: mit tags: - generated_from_trainer model-index: - name: gpt2_prefinetune_IMDB results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2_prefinetune_IMDB This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.6875 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.7838 | 1.0 | 2997 | 3.6875 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
triet1102/bert-base-cased-GoogleRE-masked-subj-obj
90ceb4b9ca0f0074fcf1dcb55b7f3a8c7fc31659
2022-03-17T16:28:16.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
triet1102
null
triet1102/bert-base-cased-GoogleRE-masked-subj-obj
6
null
transformers
15,501
Entry not found
cammy/led-large-16384-arxiv-100-MDS
a9e2f0c6502c64d9e6266ad0b86840c2528d161c
2022-03-17T19:09:17.000Z
[ "pytorch", "tensorboard", "led", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
cammy
null
cammy/led-large-16384-arxiv-100-MDS
6
null
transformers
15,502
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: led-large-16384-arxiv-100-MDS results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # led-large-16384-arxiv-100-MDS This model is a fine-tuned version of [allenai/led-large-16384-arxiv](https://huggingface.co/allenai/led-large-16384-arxiv) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.3897 - Rouge1: 0.0 - Rouge2: 0.0 - Rougel: 0.0 - Rougelsum: 0.0 - Gen Len: 512.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 25 | 3.1144 | 13.2756 | 2.6204 | 9.2686 | 10.2289 | 184.0 | | No log | 2.0 | 50 | 3.3897 | 0.0 | 0.0 | 0.0 | 0.0 | 512.0 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2 - Datasets 1.18.3 - Tokenizers 0.11.0
gagan3012/TrOCR-Ar
74a112bcb8365de3bca502091397c516b7c0fe9d
2022-03-20T22:11:39.000Z
[ "pytorch", "tensorboard", "vision-encoder-decoder", "transformers" ]
null
false
gagan3012
null
gagan3012/TrOCR-Ar
6
null
transformers
15,503
Entry not found
rahulacj/mbart-large-cc25-finetuned-hi-to-en
276db0b0d8d9848e30d86cda8aead3441abaeab2
2022-03-26T14:06:02.000Z
[ "pytorch", "tensorboard", "mbart", "text2text-generation", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
rahulacj
null
rahulacj/mbart-large-cc25-finetuned-hi-to-en
6
null
transformers
15,504
--- tags: - generated_from_trainer metrics: - bleu model-index: - name: mbart-large-cc25-finetuned-hi-to-en results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mbart-large-cc25-finetuned-hi-to-en This model is a fine-tuned version of [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.4710 - Bleu: 16.6154 - Gen Len: 42.6244 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | 1.5705 | 1.0 | 3955 | 1.4858 | 14.8984 | 47.6759 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
facebook/regnet-y-640-seer
781d316c0203101f717a74eea442047576c2a87c
2022-03-31T12:12:50.000Z
[ "pytorch", "regnet", "feature-extraction", "arxiv:2202.08360", "transformers", "vision", "license:apache-2.0" ]
feature-extraction
false
facebook
null
facebook/regnet-y-640-seer
6
null
transformers
15,505
--- license: apache-2.0 tags: - vision widgets: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace --- # RegNetModel RegNetModel model was introduced in the paper [Vision Models Are More Robust And Fair When Pretrained On Uncurated Images Without Supervision](https://arxiv.org/abs/2202.08360) and first released in [this repository](https://github.com/facebookresearch/vissl/tree/main/projects/SEER). Disclaimer: The team releasing RegNetModel did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The authors trained [RegNets](https://huggingface.co/?models=regnet) models in a self-supervised fashion on bilion of random images from the internet ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/regnet_architecture.png) ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=regnet) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model: ```python >>> from transformers import AutoFeatureExtractor, RegNetModel >>> import torch >>> from datasets import load_dataset >>> dataset = load_dataset("huggingface/cats-image") >>> image = dataset["test"]["image"][0] >>> feature_extractor = AutoFeatureExtractor.from_pretrained("zuppif/regnet-y-040") >>> model = RegNetModel.from_pretrained("zuppif/regnet-y-040") >>> inputs = feature_extractor(image, return_tensors="pt") >>> with torch.no_grad(): ... outputs = model(**inputs) >>> last_hidden_states = outputs.last_hidden_state >>> list(last_hidden_states.shape) [1, 1088, 7, 7] ``` For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/regnet).
EMBO/sd-geneprod-roles
a0eface476eded414f40ad2876db49df45bb19cf
2022-03-27T13:23:03.000Z
[ "pytorch", "roberta", "token-classification", "english", "dataset:EMBO/sd-nlp", "transformers", "token classification", "license:agpl-3.0", "autotrain_compatible" ]
token-classification
false
EMBO
null
EMBO/sd-geneprod-roles
6
null
transformers
15,506
--- language: - english thumbnail: tags: - token classification license: agpl-3.0 datasets: - EMBO/sd-nlp metrics: - --- # sd-geneprod-roles ## Model description This model is a [RoBERTa base model](https://huggingface.co/roberta-base) that was further trained using a masked language modeling task on a compendium of English scientific textual examples from the life sciences using the [BioLang dataset](https://huggingface.co/datasets/EMBO/biolang). It was then fine-tuned for token classification on the SourceData [sd-nlp](https://huggingface.co/datasets/EMBO/sd-nlp) dataset with the `GENEPROD_ROLES` configuration to perform pure context-dependent semantic role classification of bioentities. ## Intended uses & limitations #### How to use The intended use of this model is to infer the semantic role of gene products (genes and proteins) with regard to the causal hypotheses tested in experiments reported in scientific papers. To have a quick check of the model: ```python from transformers import pipeline, RobertaTokenizerFast, RobertaForTokenClassification example = """<s>The <mask> overexpression in cells caused an increase in <mask> expression.</s>""" tokenizer = RobertaTokenizerFast.from_pretrained('roberta-base', max_len=512) model = RobertaForTokenClassification.from_pretrained('EMBO/sd-geneprod-roles') ner = pipeline('ner', model, tokenizer=tokenizer) res = ner(example) for r in res: print(r['word'], r['entity']) ``` #### Limitations and bias The model must be used with the `roberta-base` tokenizer. ## Training data The model was trained for token classification using the [EMBO/sd-nlp dataset](https://huggingface.co/datasets/EMBO/sd-nlp) which includes manually annotated examples. ## Training procedure The training was run on an NVIDIA DGX Station with 4XTesla V100 GPUs. Training code is available at https://github.com/source-data/soda-roberta - Model fine-tuned: EMBL/bio-lm - Tokenizer vocab size: 50265 - Training data: EMBO/sd-nlp - Dataset configuration: GENEPROD_ROLES - Training with 48771 examples. - Evaluating on 13801 examples. - Training on 15 features: O, I-CONTROLLED_VAR, B-CONTROLLED_VAR, I-MEASURED_VAR, B-MEASURED_VAR - Epochs: 0.9 - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `learning_rate`: 0.0001 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 ## Eval results On 7178 example of test set with `sklearn.metrics`: ``` precision recall f1-score support CONTROLLED_VAR 0.81 0.86 0.83 7835 MEASURED_VAR 0.82 0.85 0.84 9330 micro avg 0.82 0.85 0.83 17165 macro avg 0.82 0.85 0.83 17165 weighted avg 0.82 0.85 0.83 17165 {'test_loss': 0.03846803680062294, 'test_accuracy_score': 0.9854472664459946, 'test_precision': 0.8156312625250501, 'test_recall': 0.8535974366443344, 'test_f1': 0.8341825841897008, 'test_runtime': 58.7369, 'test_samples_per_second': 122.206, 'test_steps_per_second': 1.924} ```
Ketzu/koelectra-sts-v0.5
e85f9d260e26396aa0aa3d4f66c4ea5fa025abbb
2022-03-19T22:19:46.000Z
[ "pytorch", "tensorboard", "electra", "text-classification", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
Ketzu
null
Ketzu/koelectra-sts-v0.5
6
null
transformers
15,507
--- tags: - generated_from_trainer metrics: - spearmanr model-index: - name: koelectra-sts-v0.5 results: - task: name: Text Classification type: text-classification metrics: - name: Spearmanr type: spearmanr value: 0.87026647480689 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # koelectra-sts-v0.5 This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0213 - Pearson: 0.9958 - Spearmanr: 0.8703 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:---------:| | 0.058 | 1.0 | 6250 | 0.0428 | 0.9915 | 0.8702 | | 0.0433 | 2.0 | 12500 | 0.0448 | 0.9911 | 0.8685 | | 0.0362 | 3.0 | 18750 | 0.0261 | 0.9950 | 0.8705 | | 0.0107 | 4.0 | 25000 | 0.0234 | 0.9953 | 0.8702 | | 0.0075 | 5.0 | 31250 | 0.0213 | 0.9958 | 0.8703 | ### Framework versions - Transformers 4.10.0 - Pytorch 1.10.1+cu113 - Datasets 1.17.0 - Tokenizers 0.10.3
Aleksandar1932/gpt-neo-125M-rock
dab2957f1540288eda109c5685da444006ddaf94
2022-03-19T14:55:53.000Z
[ "pytorch", "gpt_neo", "text-generation", "transformers" ]
text-generation
false
Aleksandar1932
null
Aleksandar1932/gpt-neo-125M-rock
6
null
transformers
15,508
Entry not found
xyfigo/distilbert-base-uncased-finetuned-emotion
0d33d1944d30a6f621ff82cfb98042d87283b23f
2022-03-19T15:30:31.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
xyfigo
null
xyfigo/distilbert-base-uncased-finetuned-emotion
6
null
transformers
15,509
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.928 - name: F1 type: f1 value: 0.9281714323715586 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2286 - Accuracy: 0.928 - F1: 0.9282 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8579 | 1.0 | 250 | 0.3272 | 0.903 | 0.9008 | | 0.2543 | 2.0 | 500 | 0.2286 | 0.928 | 0.9282 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
axiomepic/nethack-gpt2
912d9d97c81ea99c23056724e534fe952fc7313f
2022-03-22T22:36:46.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
axiomepic
null
axiomepic/nethack-gpt2
6
null
transformers
15,510
Entry not found
DeltaHub/QuestionTopic_T5-large_Compacter
f8bf680afedfcbd65627d0aa71249b4dd3164635
2022-03-20T01:13:49.000Z
[ "pytorch", "transformers" ]
null
false
DeltaHub
null
DeltaHub/QuestionTopic_T5-large_Compacter
6
null
transformers
15,511
Entry not found
aytugkaya/distilbert-base-uncased-finetuned-clinc
c3e640ee46391a45db23da616fc666993d0df00e
2022-03-20T22:21:56.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:clinc_oos", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
aytugkaya
null
aytugkaya/distilbert-base-uncased-finetuned-clinc
6
null
transformers
15,512
--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos args: plus metrics: - name: Accuracy type: accuracy value: 0.9148387096774193 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.7760 - Accuracy: 0.9148 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 4.2994 | 1.0 | 318 | 3.3016 | 0.7442 | | 2.6387 | 2.0 | 636 | 1.8892 | 0.8339 | | 1.5535 | 3.0 | 954 | 1.1602 | 0.8948 | | 1.0139 | 4.0 | 1272 | 0.8619 | 0.9084 | | 0.7936 | 5.0 | 1590 | 0.7760 | 0.9148 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.6
sanchit-gandhi/wav2vec2-2-roberta-regularisation
5ac9d3ef94f407de4be9ca68d21d7d6e61d5d0c8
2022-03-22T09:45:09.000Z
[ "pytorch", "tensorboard", "speech-encoder-decoder", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
sanchit-gandhi
null
sanchit-gandhi/wav2vec2-2-roberta-regularisation
6
null
transformers
15,513
Entry not found
EALeon16/results
af86e88617001c1f3fb1985b2fe3711d8426d540
2022-03-22T04:38:17.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
EALeon16
null
EALeon16/results
6
null
transformers
15,514
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: results results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # results This model is a fine-tuned version of [BSC-TeMU/roberta-base-bne](https://huggingface.co/BSC-TeMU/roberta-base-bne) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9229 - Accuracy: 0.7586 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.9119 | 1.0 | 258 | 0.8750 | 0.7241 | | 0.8307 | 2.0 | 516 | 0.9229 | 0.7586 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
Yaxin/xlm-roberta-base-conll2003-ner
2b40f04ec7598c3744eb95c17a52f0d1200cb4e3
2022-03-22T08:11:52.000Z
[ "pytorch", "xlm-roberta", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
Yaxin
null
Yaxin/xlm-roberta-base-conll2003-ner
6
null
transformers
15,515
--- license: mit tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: test-conll2003-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9459188783174762 - name: Recall type: recall value: 0.9537192864355436 - name: F1 type: f1 value: 0.94980306712478 - name: Accuracy type: accuracy value: 0.9911218410498034 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test-conll2003-ner This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0470 - Precision: 0.9459 - Recall: 0.9537 - F1: 0.9498 - Accuracy: 0.9911 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.10.0 - Datasets 1.18.3 - Tokenizers 0.11.0
cammy/led-base-16384-100-MDS
49ffc487d915d726c10481a8a1c196917059fede
2022-03-23T06:55:50.000Z
[ "pytorch", "tensorboard", "led", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
cammy
null
cammy/led-base-16384-100-MDS
6
null
transformers
15,516
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: led-base-16384-100-MDS results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # led-base-16384-100-MDS This model is a fine-tuned version of [allenai/led-base-16384](https://huggingface.co/allenai/led-base-16384) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 4.1425 - Rouge1: 16.7324 - Rouge2: 5.8501 - Rougel: 13.908 - Rougelsum: 13.8469 - Gen Len: 20.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | No log | 1.0 | 25 | 3.6187 | 15.1426 | 4.2468 | 13.4488 | 13.38 | 20.0 | | No log | 2.0 | 50 | 3.9873 | 13.4341 | 3.3283 | 10.2739 | 10.8229 | 20.0 | | No log | 3.0 | 75 | 4.0264 | 18.1891 | 5.3395 | 15.0797 | 15.3586 | 20.0 | | No log | 4.0 | 100 | 4.0929 | 17.0091 | 5.5336 | 14.4381 | 14.5149 | 19.5 | | No log | 5.0 | 125 | 4.1425 | 16.7324 | 5.8501 | 13.908 | 13.8469 | 20.0 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2 - Datasets 1.18.3 - Tokenizers 0.11.0
Deep1994/t5-paraphrase-quora
12c15c9b803bac3007e92f1fb8ffc09c1c193d73
2022-03-24T18:12:34.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
Deep1994
null
Deep1994/t5-paraphrase-quora
6
1
transformers
15,517
--- license: afl-3.0 --- ## Model description ​T5 Model for generating paraphrases of english sentences. Trained on the [Quora Paraphrase dataset](https://www.kaggle.com/c/quora-question-pairs). ## Online demo website Click [https://huggingface.co/spaces/Deep1994/t5-paraphrase](https://huggingface.co/spaces/Deep1994/t5-paraphrase) to have a try online. ## How to use ```python from transformers import T5ForConditionalGeneration, T5Tokenizer import torch def set_seed(seed): torch.manual_seed(seed) if torch.cuda.is_available(): torch.cuda.manual_seed_all(seed) set_seed(1234) model = T5ForConditionalGeneration.from_pretrained('Deep1994/t5-paraphrase-quora') tokenizer = T5Tokenizer.from_pretrained('Deep1994/t5-paraphrase-quora') device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = model.to(device) sentence = "What is the best comedy TV serial/series?" text = "paraphrase: " + sentence encoding = tokenizer.encode_plus(text, pad_to_max_length=True, return_tensors="pt") input_ids, attention_masks = encoding["input_ids"].to(device), encoding["attention_mask"].to(device) # top k/ top p sampling beam_outputs = model.generate( input_ids=input_ids, attention_mask=attention_masks, do_sample=True, max_length=20, top_k=50, top_p=0.95, early_stopping=True, num_return_sequences=5 ) # beam search # beam_outputs = model.generate( # input_ids=input_ids, # attention_mask=attention_masks, # max_length=20, # num_beams=5, # no_repeat_ngram_size=2, # num_return_sequences=5, # early_stopping=True # ) print ("\nOriginal Question: ") print (sentence) print ("\n") print ("Paraphrased Questions: ") final_outputs = [] for beam_output in beam_outputs: sent = tokenizer.decode(beam_output, skip_special_tokens=True, clean_up_tokenization_spaces=True) if sent.lower() != sentence.lower() and sent not in final_outputs: final_outputs.append(sent) for i, final_output in enumerate(final_outputs): print("{}: {}".format(i, final_output)) ``` ``` Original Question: What is the best comedy TV serial/series? Beam search: 0: What is the best comedy TV series? 1: What are some of the best comedy TV series? 2: Which is the best comedy TV series? 3: What are the best comedy TV series? 4: What are some of the best comedy TV shows? Top k/ Top p sampling: 0: What are some of the best comedy TV dramas? 1: What are the best comedy TV series or series? 2: What are the best comedy television serials? 3: What is the best comedy series? 4: Which are some best comedy TV series series? ``` For more reference on training your own T5 model, do check out [t5-paraphrase-generation](https://github.com/Deep1994/t5-paraphrase-generation).
apoorvumang/kgt5-base-wikikg90mv2
c9e8bd16bcfa969f8813761c19e0e1e998ab36bf
2022-03-23T15:02:38.000Z
[ "pytorch", "tf", "t5", "text2text-generation", "transformers", "license:mit", "autotrain_compatible" ]
text2text-generation
false
apoorvumang
null
apoorvumang/kgt5-base-wikikg90mv2
6
null
transformers
15,518
--- license: mit widget: - text: "Apoorv Umang Saxena| family name" example_title: "Family name prediction" - text: "Apoorv Saxena| country" example_title: "Country prediction" - text: "World War 2| followed by" example_title: "followed by" --- This is a t5-base model (init from pretrained weights) and finetuned on WikiKG90Mv2 dataset. Please see https://github.com/apoorvumang/kgt5/ for more details on the method. This model was trained on the tail entity prediction task ie. given subject entity and relation, predict the object entity. Input should be provided in the form of "\<entity text\>| \<relation text\>". We used the raw text title and descriptions to get entity and relation textual representations. These raw texts were obtained from ogb dataset itself (dataset/wikikg90m-v2/mapping/entity.csv and relation.csv). Entity representation was set to the title, and description was used to disambiguate if 2 entities had the same title. If still no disambiguation was possible, we used the wikidata ID (eg. Q123456). We trained the model on WikiKG90Mv2 for approx 1.5 epochs on 4x1080Ti GPUs. The training time for 1 epoch was approx 5.5 days. To evaluate the model, we sample 300 times from the decoder for each input (s,r) pair. We then remove predictions which do not map back to a valid entity, and then rank the predictions by their log probabilities. Filtering was performed subsequently. **We achieve 0.239 validation MRR** (the full leaderboard is here https://ogb.stanford.edu/docs/lsc/leaderboards/#wikikg90mv2) You can try the following code in an ipython notebook to evaluate the pre-trained model. The full procedure of mapping entity to ids, filtering etc. is not included here for sake of simplicity but can be provided on request if needed. Please contact Apoorv ([email protected]) for clarifications/details. --------- ``` from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("apoorvumang/kgt5-base-wikikg90mv2") model = AutoModelForSeq2SeqLM.from_pretrained("apoorvumang/kgt5-base-wikikg90mv2") ``` ``` import torch def getScores(ids, scores, pad_token_id): """get sequence scores from model.generate output""" scores = torch.stack(scores, dim=1) log_probs = torch.log_softmax(scores, dim=2) # remove start token ids = ids[:,1:] # gather needed probs x = ids.unsqueeze(-1).expand(log_probs.shape) needed_logits = torch.gather(log_probs, 2, x) final_logits = needed_logits[:, :, 0] padded_mask = (ids == pad_token_id) final_logits[padded_mask] = 0 final_scores = final_logits.sum(dim=-1) return final_scores.cpu().detach().numpy() def topkSample(input, model, tokenizer, num_samples=5, num_beams=1, max_output_length=30): tokenized = tokenizer(input, return_tensors="pt") out = model.generate(**tokenized, do_sample=True, num_return_sequences = num_samples, num_beams = num_beams, eos_token_id = tokenizer.eos_token_id, pad_token_id = tokenizer.pad_token_id, output_scores = True, return_dict_in_generate=True, max_length=max_output_length,) out_tokens = out.sequences out_str = tokenizer.batch_decode(out_tokens, skip_special_tokens=True) out_scores = getScores(out_tokens, out.scores, tokenizer.pad_token_id) pair_list = [(x[0], x[1]) for x in zip(out_str, out_scores)] sorted_pair_list = sorted(pair_list, key=lambda x:x[1], reverse=True) return sorted_pair_list def greedyPredict(input, model, tokenizer): input_ids = tokenizer([input], return_tensors="pt").input_ids out_tokens = model.generate(input_ids) out_str = tokenizer.batch_decode(out_tokens, skip_special_tokens=True) return out_str[0] ``` ``` # an example from validation set that the model predicts correctly # you can try your own examples here. what's your noble title? input = "Sophie Valdemarsdottir| noble title" out = topkSample(input, model, tokenizer, num_samples=5) out ``` You can further load the list of entity aliases, then filter only those predictions which are valid entities then create a reverse mapping from alias -> integer id to get final predictions in required format. However, loading these aliases in memory as a dictionary requires a lot of RAM + you need to download the aliases file (made available here https://storage.googleapis.com/kgt5-wikikg90mv2/ent_alias_list.pickle) (relation file: https://storage.googleapis.com/kgt5-wikikg90mv2/rel_alias_list.pickle) The submitted validation/test results for were obtained by sampling 300 times for each input, then applying above procedure, followed by filtering known entities. The final MRR can vary slightly due to this sampling nature (we found that although beam search gives deterministic output, the results are inferior to sampling large number of times). ``` # download valid.txt. you can also try same url with test.txt. however test does not contain the correct tails !wget https://storage.googleapis.com/kgt5-wikikg90mv2/valid.txt ``` ``` fname = 'valid.txt' valid_lines = [] f = open(fname) for line in f: valid_lines.append(line.rstrip()) f.close() print(valid_lines[0]) ``` ``` from tqdm.auto import tqdm # try unfiltered hits@k. this is approximation since model can sample same seq multiple times # you should run this on gpu if you want to evaluate on all points with 300 samples each k = 1 count_at_k = 0 max_predictions = k max_points = 1000 for line in tqdm(valid_lines[:max_points]): input, target = line.split('\t') model_output = topkSample(input, model, tokenizer, num_samples=max_predictions) prediction_strings = [x[0] for x in model_output] if target in prediction_strings: count_at_k += 1 print('Hits at {0} unfiltered: {1}'.format(k, count_at_k/max_points)) ```
VincentC12/rh_classification_kara
506cedb962d1ea41edd000cbda3f844099d3ffd4
2022-03-28T11:53:41.000Z
[ "pytorch", "distilbert", "text-classification", "en", "sentiment-analysis" ]
text-classification
false
VincentC12
null
VincentC12/rh_classification_kara
6
null
pytorch
15,519
--- language: - en library_name: pytorch metrics: - satisfaction - culture organisationnelle - leadership - conditions de travail tags: - sentiment-analysis widget: - text: "My work is recognized by my superiors and I would even say that I feel like I have more recognition since we are on telework." example_title: "Exemple leadership" - text: "For Working conditions and wages in particular." example_title: "Exemple conditions de travail" - text: "A climate of overperformance is in place in the company." example_title: "Exemple culture organisationnelle" - text: "With regard to telework, I look forward to setting up the hybrid week, so 2 3 days at home and at the office." example_title: "Exemple satisfaction" --- Ce modèle est développé pour KARA. Ce modèle est : - Un outil de classification thématique des commentaires RH - Entrainé pour être utilisé en ANGLAIS (les commentaires doivent êtres traduits) - Spécialisé pour des commentaires entre 10 et 512 charactères Ce modèle n'est pas : - Utilisable pour détecter un discours haineux ou bien une lettre de suicide Étiquettes : - Label_0 = Satisfaction - Label_1 = Culture Organisationnelle - Label_2 = Leadership - Label_3 = Conditions de travail version 0.0.1 Performances sur le jeux de données du HRM : 84.3% de précision
tartuNLP/liv4ever-hugging-mt
f27e017f9aa81d0cf0166c8ce62cea16f2dd6e56
2022-03-24T07:33:01.000Z
[ "pytorch", "fsmt", "text2text-generation", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
tartuNLP
null
tartuNLP/liv4ever-hugging-mt
6
null
transformers
15,520
--- license: apache-2.0 tags: - translation widget: - text: "<2li> Let us generate some Livonian text!" ---
buvnswrn/daml-t5-pretrain
9ad8adf3bdd98a309afc6a883b2c61aba0496917
2022-03-24T09:08:34.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:imdb", "transformers", "translation", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
translation
false
buvnswrn
null
buvnswrn/daml-t5-pretrain
6
null
transformers
15,521
--- license: apache-2.0 tags: - translation - generated_from_trainer datasets: - imdb model-index: - name: daml-t5-pretrain-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # daml-t5-pretrain-imdb This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the imdb dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
rurupang/roberta-base-finetuned-sts-f1_
2f3d249a3150e573b3926b817a4522400795d747
2022-03-24T08:38:10.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
rurupang
null
rurupang/roberta-base-finetuned-sts-f1_
6
null
transformers
15,522
Entry not found
LeonLi279/DialoGPT-small-harrypotter
af0e8c691a32154cdff6c8417f4ff5273fc2c163
2022-03-24T12:47:57.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
LeonLi279
null
LeonLi279/DialoGPT-small-harrypotter
6
null
transformers
15,523
--- tags: - conversational --- #Harry Potter DialoGPT Model
buvnswrn/daml-t5-pretrain-imdb-accelerate
8ab023243ef07ade0c92a0bfd98309ac87c856fa
2022-03-24T11:22:52.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:imdb", "transformers", "translation", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
translation
false
buvnswrn
null
buvnswrn/daml-t5-pretrain-imdb-accelerate
6
null
transformers
15,524
--- license: apache-2.0 tags: - translation - generated_from_trainer datasets: - imdb model-index: - name: daml-t5-pretrain-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # daml-t5-pretrain-imdb This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the imdb dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
Helsinki-NLP/opus-mt-tc-big-en-zle
fdc4126357f33b77c9f62582cdb1ed2ca7c4d13c
2022-06-01T13:08:59.000Z
[ "pytorch", "marian", "text2text-generation", "be", "en", "ru", "uk", "zle", "transformers", "translation", "opus-mt-tc", "license:cc-by-4.0", "model-index", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-tc-big-en-zle
6
null
transformers
15,525
--- language: - be - en - ru - uk - zle tags: - translation - opus-mt-tc license: cc-by-4.0 model-index: - name: opus-mt-tc-big-en-zle results: - task: name: Translation eng-rus type: translation args: eng-rus dataset: name: flores101-devtest type: flores_101 args: eng rus devtest metrics: - name: BLEU type: bleu value: 32.7 - task: name: Translation eng-ukr type: translation args: eng-ukr dataset: name: flores101-devtest type: flores_101 args: eng ukr devtest metrics: - name: BLEU type: bleu value: 32.1 - task: name: Translation eng-bel type: translation args: eng-bel dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: eng-bel metrics: - name: BLEU type: bleu value: 24.9 - task: name: Translation eng-rus type: translation args: eng-rus dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: eng-rus metrics: - name: BLEU type: bleu value: 45.5 - task: name: Translation eng-ukr type: translation args: eng-ukr dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: eng-ukr metrics: - name: BLEU type: bleu value: 37.7 - task: name: Translation eng-rus type: translation args: eng-rus dataset: name: tico19-test type: tico19-test args: eng-rus metrics: - name: BLEU type: bleu value: 33.7 - task: name: Translation eng-rus type: translation args: eng-rus dataset: name: newstest2012 type: wmt-2012-news args: eng-rus metrics: - name: BLEU type: bleu value: 36.8 - task: name: Translation eng-rus type: translation args: eng-rus dataset: name: newstest2013 type: wmt-2013-news args: eng-rus metrics: - name: BLEU type: bleu value: 26.9 - task: name: Translation eng-rus type: translation args: eng-rus dataset: name: newstest2014 type: wmt-2014-news args: eng-rus metrics: - name: BLEU type: bleu value: 43.5 - task: name: Translation eng-rus type: translation args: eng-rus dataset: name: newstest2015 type: wmt-2015-news args: eng-rus metrics: - name: BLEU type: bleu value: 34.9 - task: name: Translation eng-rus type: translation args: eng-rus dataset: name: newstest2016 type: wmt-2016-news args: eng-rus metrics: - name: BLEU type: bleu value: 33.1 - task: name: Translation eng-rus type: translation args: eng-rus dataset: name: newstest2017 type: wmt-2017-news args: eng-rus metrics: - name: BLEU type: bleu value: 37.3 - task: name: Translation eng-rus type: translation args: eng-rus dataset: name: newstest2018 type: wmt-2018-news args: eng-rus metrics: - name: BLEU type: bleu value: 32.9 - task: name: Translation eng-rus type: translation args: eng-rus dataset: name: newstest2019 type: wmt-2019-news args: eng-rus metrics: - name: BLEU type: bleu value: 31.8 - task: name: Translation eng-rus type: translation args: eng-rus dataset: name: newstest2020 type: wmt-2020-news args: eng-rus metrics: - name: BLEU type: bleu value: 25.5 --- # opus-mt-tc-big-en-zle Neural machine translation model for translating from English (en) to East Slavic languages (zle). This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train). * Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.) ``` @inproceedings{tiedemann-thottingal-2020-opus, title = "{OPUS}-{MT} {--} Building open translation services for the World", author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh}, booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation", month = nov, year = "2020", address = "Lisboa, Portugal", publisher = "European Association for Machine Translation", url = "https://aclanthology.org/2020.eamt-1.61", pages = "479--480", } @inproceedings{tiedemann-2020-tatoeba, title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}", author = {Tiedemann, J{\"o}rg}, booktitle = "Proceedings of the Fifth Conference on Machine Translation", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.wmt-1.139", pages = "1174--1182", } ``` ## Model info * Release: 2022-03-13 * source language(s): eng * target language(s): bel rus ukr * valid target language labels: >>bel<< >>rus<< >>ukr<< * model: transformer-big * data: opusTCv20210807+bt ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge)) * tokenization: SentencePiece (spm32k,spm32k) * original model: [opusTCv20210807+bt_transformer-big_2022-03-13.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-zle/opusTCv20210807+bt_transformer-big_2022-03-13.zip) * more information released models: [OPUS-MT eng-zle README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-zle/README.md) * more information about the model: [MarianMT](https://huggingface.co/docs/transformers/model_doc/marian) This is a multilingual translation model with multiple target languages. A sentence initial language token is required in the form of `>>id<<` (id = valid target language ID), e.g. `>>bel<<` ## Usage A short example code: ```python from transformers import MarianMTModel, MarianTokenizer src_text = [ ">>rus<< Are they coming as well?", ">>rus<< I didn't let Tom do what he wanted to do." ] model_name = "pytorch-models/opus-mt-tc-big-en-zle" tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) for t in translated: print( tokenizer.decode(t, skip_special_tokens=True) ) # expected output: # Они тоже приедут? # Я не позволил Тому сделать то, что он хотел. ``` You can also use OPUS-MT models with the transformers pipelines, for example: ```python from transformers import pipeline pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-en-zle") print(pipe(">>rus<< Are they coming as well?")) # expected output: Они тоже приедут? ``` ## Benchmarks * test set translations: [opusTCv20210807+bt_transformer-big_2022-03-13.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-zle/opusTCv20210807+bt_transformer-big_2022-03-13.test.txt) * test set scores: [opusTCv20210807+bt_transformer-big_2022-03-13.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-zle/opusTCv20210807+bt_transformer-big_2022-03-13.eval.txt) * benchmark results: [benchmark_results.txt](benchmark_results.txt) * benchmark output: [benchmark_translations.zip](benchmark_translations.zip) | langpair | testset | chr-F | BLEU | #sent | #words | |----------|---------|-------|-------|-------|--------| | eng-bel | tatoeba-test-v2021-08-07 | 0.50345 | 24.9 | 2500 | 16237 | | eng-rus | tatoeba-test-v2021-08-07 | 0.66182 | 45.5 | 19425 | 134296 | | eng-ukr | tatoeba-test-v2021-08-07 | 0.60175 | 37.7 | 13127 | 80998 | | eng-bel | flores101-devtest | 0.42078 | 11.2 | 1012 | 24829 | | eng-rus | flores101-devtest | 0.59654 | 32.7 | 1012 | 23295 | | eng-ukr | flores101-devtest | 0.60131 | 32.1 | 1012 | 22810 | | eng-rus | newstest2012 | 0.62842 | 36.8 | 3003 | 64790 | | eng-rus | newstest2013 | 0.54627 | 26.9 | 3000 | 58560 | | eng-rus | newstest2014 | 0.68348 | 43.5 | 3003 | 61603 | | eng-rus | newstest2015 | 0.62621 | 34.9 | 2818 | 55915 | | eng-rus | newstest2016 | 0.60595 | 33.1 | 2998 | 62014 | | eng-rus | newstest2017 | 0.64249 | 37.3 | 3001 | 60253 | | eng-rus | newstest2018 | 0.61219 | 32.9 | 3000 | 61907 | | eng-rus | newstest2019 | 0.57902 | 31.8 | 1997 | 48147 | | eng-rus | newstest2020 | 0.52939 | 25.5 | 2002 | 47083 | | eng-rus | tico19-test | 0.59314 | 33.7 | 2100 | 55843 | ## Acknowledgements The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland. ## Model conversion info * transformers version: 4.16.2 * OPUS-MT git hash: 1bdabf7 * port time: Thu Mar 24 01:58:40 EET 2022 * port machine: LM0-400-22516.local
agdsga/chinese-electra-large-discriminator-finetuned-ner-1
7c080290c3f244c505ad28212d170ea1d3d2dda8
2022-03-27T00:36:50.000Z
[ "pytorch", "tensorboard", "electra", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
agdsga
null
agdsga/chinese-electra-large-discriminator-finetuned-ner-1
6
null
transformers
15,526
Entry not found
jasonyim2/distilbert-base-uncased-finetuned-emotion
59732583b004c447cc3110d10928efb766d713a3
2022-03-27T05:00:20.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
jasonyim2
null
jasonyim2/distilbert-base-uncased-finetuned-emotion
6
null
transformers
15,527
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9245 - name: F1 type: f1 value: 0.9246345608107297 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2166 - Accuracy: 0.9245 - F1: 0.9246 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8132 | 1.0 | 250 | 0.3117 | 0.902 | 0.8990 | | 0.2419 | 2.0 | 500 | 0.2166 | 0.9245 | 0.9246 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
dannyvas23/electricidad-small-discriminator-finetuned-clasificacion-texto-suicida
8dde6f617d19d701a5b5245d8bc375671f5f3bd8
2022-03-26T19:22:14.000Z
[ "pytorch", "tensorboard", "electra", "text-classification", "es", "transformers", "generated_from_trainer", "sentiment", "emotion", "license:afl-3.0", "model-index" ]
text-classification
false
dannyvas23
null
dannyvas23/electricidad-small-discriminator-finetuned-clasificacion-texto-suicida
6
1
transformers
15,528
--- license: afl-3.0 language: "es" tags: - generated_from_trainer - sentiment - emotion widget: - text: "La vida no merece la pena" example_title: "Ejemplo 1" - text: "Para vivir así lo mejor es estar muerto" example_title: "Ejemplo 2" - text: "me siento triste por no poder viajar" example_title: "Ejemplo 3" - text: "Quiero terminar con todo" example_title: "Ejemplo 4" - text: "Disfruto de la vista" example_title: "Ejemplo 5" metrics: - accuracy model-index: - name: electricidad-small-discriminator-finetuned-clasificacion-texto-suicida results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # electricidad-small-discriminator-finetuned-clasificacion-texto-suicida This model is a fine-tuned version of [mrm8488/electricidad-small-discriminator](https://huggingface.co/mrm8488/electricidad-small-discriminator) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0458 - Accuracy: 0.9916 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Validation Loss | Accuracy | |:-------------:|:-----:|:---------------:|:--------:| | 0.161100 | 1.0 | 0.133057 | 0.952718 | | 0.134500 | 2.0 | 0.110966 | 0.960804 | | 0.108500 | 3.0 | 0.086417 | 0.970835 | | 0.099400 | 4.0 | 0.073618 | 0.974856 | | 0.090500 | 5.0 | 0.065231 | 0.979629 | | 0.080700 | 6.0 | 0.060849 | 0.982324 | | 0.069200 | 7.0 | 0.054718 | 0.986125 | | 0.060400 | 8.0 | 0.051153 | 0.985948 | | 0.048200 | 9.0 | 0.045747 | 0.989748 | | 0.045500 | 10.0 | 0.049992 | 0.988069 | | 0.043400 | 11.0 | 0.046325 | 0.990234 | | 0.034300 | 12.0 | 0.050746 | 0.989792 | | 0.032900 | 13.0 | 0.043434 | 0.991737 | | 0.028400 | 14.0 | 0.045003 | 0.991869 | | 0.022300 | 15.0 | 0.045819 | 0.991648 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
dennishe97/longformer-code-4096
6fc4784f957d673cba45875f60617ba466fb6e91
2022-03-31T23:53:20.000Z
[ "pytorch", "longformer", "feature-extraction", "transformers" ]
feature-extraction
false
dennishe97
null
dennishe97/longformer-code-4096
6
null
transformers
15,529
Entry not found
mikeadimech/punctuation-test-4
2c433a884865b3e72e2ee0ace7f76a7732285231
2022-03-28T15:09:06.000Z
[ "pytorch", "tensorboard", "bart", "text2text-generation", "dataset:wmt16", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
mikeadimech
null
mikeadimech/punctuation-test-4
6
null
transformers
15,530
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wmt16 metrics: - bleu model-index: - name: punctuation-test-4 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: wmt16 type: wmt16 args: ro-en metrics: - name: Bleu type: bleu value: 39.1294 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # punctuation-test-4 This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the wmt16 dataset. It achieves the following results on the evaluation set: - Loss: 0.3411 - Bleu: 39.1294 - Gen Len: 18.4812 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | 0.3331 | 1.0 | 625 | 0.3411 | 39.1294 | 18.4812 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
princeton-nlp/CoFi-MNLI-s60
ab13a33db799d2f2657634a67de34c8298be0e79
2022-05-01T01:20:27.000Z
[ "pytorch", "bert", "text-classification", "arxiv:2204.00408", "transformers" ]
text-classification
false
princeton-nlp
null
princeton-nlp/CoFi-MNLI-s60
6
null
transformers
15,531
This is a model checkpoint for "[Structured Pruning Learns Compact and Accurate Models](https://arxiv.org/pdf/2204.00408.pdf)". The model is pruned from `bert-base-uncased` to a 60% sparsity on dataset MNLI. Please go to [our repository](https://github.com/princeton-nlp/CoFiPruning) for more details on how to use the model for inference. Note that you would have to use the model class specified in our repository to load the model.
Cheatham/xlm-roberta-large-finetuned-d1-001
5c692e0507f0eb35d8f6d0a7c4e4b32961446572
2022-03-30T13:50:06.000Z
[ "pytorch", "xlm-roberta", "text-classification", "transformers" ]
text-classification
false
Cheatham
null
Cheatham/xlm-roberta-large-finetuned-d1-001
6
null
transformers
15,532
Entry not found
vlsb/autotrain-security-texts-classification-roberta-688020754
75f05982d81e812eefa99ceca8c31271f14f6456
2022-03-30T20:55:42.000Z
[ "pytorch", "roberta", "text-classification", "unk", "dataset:vlsb/autotrain-data-security-texts-classification-roberta", "transformers", "autotrain", "co2_eq_emissions" ]
text-classification
false
vlsb
null
vlsb/autotrain-security-texts-classification-roberta-688020754
6
null
transformers
15,533
--- tags: autotrain language: unk widget: - text: "I love AutoTrain 🤗" datasets: - vlsb/autotrain-data-security-texts-classification-roberta co2_eq_emissions: 3.1151249696839685 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 688020754 - CO2 Emissions (in grams): 3.1151249696839685 ## Validation Metrics - Loss: 0.2810373902320862 - Accuracy: 0.8928571428571429 - Precision: 0.9272727272727272 - Recall: 0.8869565217391304 - AUC: 0.9500805152979066 - F1: 0.9066666666666666 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/vlsb/autotrain-security-texts-classification-roberta-688020754 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("vlsb/autotrain-security-texts-classification-roberta-688020754", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("vlsb/autotrain-security-texts-classification-roberta-688020754", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
vlsb/autotrain-security-text-classification-albert-688320769
aaefa9583ebde94720301cc94ca405c7356ba81e
2022-03-30T20:59:32.000Z
[ "pytorch", "albert", "text-classification", "unk", "dataset:vlsb/autotrain-data-security-text-classification-albert", "transformers", "autotrain", "co2_eq_emissions" ]
text-classification
false
vlsb
null
vlsb/autotrain-security-text-classification-albert-688320769
6
null
transformers
15,534
--- tags: autotrain language: unk widget: - text: "I love AutoTrain 🤗" datasets: - vlsb/autotrain-data-security-text-classification-albert co2_eq_emissions: 3.670416179055797 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 688320769 - CO2 Emissions (in grams): 3.670416179055797 ## Validation Metrics - Loss: 0.3046899139881134 - Accuracy: 0.8826530612244898 - Precision: 0.9181818181818182 - Recall: 0.8782608695652174 - AUC: 0.9423510466988727 - F1: 0.8977777777777778 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/vlsb/autotrain-security-text-classification-albert-688320769 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("vlsb/autotrain-security-text-classification-albert-688320769", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("vlsb/autotrain-security-text-classification-albert-688320769", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
rchiang/ingredients-parser
5852d228acbb291b28056bf2c1c4ac9e3508b959
2022-03-30T23:16:39.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
rchiang
null
rchiang/ingredients-parser
6
null
transformers
15,535
Entry not found
israel/fake-news-classification
e6251fd6781ee2fd86233797b0ce542985697866
2022-03-31T21:03:49.000Z
[ "pytorch", "roberta", "text-classification", "transformers", "license:mit" ]
text-classification
false
israel
null
israel/fake-news-classification
6
null
transformers
15,536
--- license: mit --- # Fake and real news classification task Model : [DistilRoBERTa base model](https://huggingface.co/distilroberta-base) Dataset : [Fake and real news dataset](https://www.kaggle.com/datasets/clmentbisaillon/fake-and-real-news-dataset)
DMetaSoul/sbert-chinese-dtm-domain-v1-distill
38e6603e8823bf68c95d6c6b78c7464c1fcf05fe
2022-04-02T09:32:44.000Z
[ "pytorch", "bert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers", "semantic-search", "chinese" ]
sentence-similarity
false
DMetaSoul
null
DMetaSoul/sbert-chinese-dtm-domain-v1-distill
6
null
sentence-transformers
15,537
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers - semantic-search - chinese --- # DMetaSoul/sbert-chinese-dtm-domain-v1-distill 此模型是之前[开源对话匹配模型](https://huggingface.co/DMetaSoul/sbert-chinese-dtm-domain-v1)的蒸馏版本(仅4层 BERT),适用于**开放领域的对话匹配**场景(偏口语化),比如: - 哪有好玩的 VS. 这附近有什么好玩的地方 - 定时25分钟 VS. 计时半个小时 - 我要听王琦的歌 VS. 放一首王琦的歌 离线训练好的大模型如果直接用于线上推理,对计算资源有苛刻的需求,而且难以满足业务环境对延迟、吞吐量等性能指标的要求,这里我们使用蒸馏手段来把大模型轻量化。从 12 层 BERT 蒸馏为 4 层后,模型参数量缩小到 44%,大概 latency 减半、throughput 翻倍、精度下降 4% 左右(具体结果详见下文评估小节)。 # Usage ## 1. Sentence-Transformers 通过 [sentence-transformers](https://www.SBERT.net) 框架来使用该模型,首先进行安装: ``` pip install -U sentence-transformers ``` 然后使用下面的代码来载入该模型并进行文本表征向量的提取: ```python from sentence_transformers import SentenceTransformer sentences = ["我的儿子!他猛然间喊道,我的儿子在哪儿?", "我的儿子呢!他突然喊道,我的儿子在哪里?"] model = SentenceTransformer('DMetaSoul/sbert-chinese-dtm-domain-v1-distill') embeddings = model.encode(sentences) print(embeddings) ``` ## 2. HuggingFace Transformers 如果不想使用 [sentence-transformers](https://www.SBERT.net) 的话,也可以通过 HuggingFace Transformers 来载入该模型并进行文本向量抽取: ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ["我的儿子!他猛然间喊道,我的儿子在哪儿?", "我的儿子呢!他突然喊道,我的儿子在哪里?"] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('DMetaSoul/sbert-chinese-dtm-domain-v1-distill') model = AutoModel.from_pretrained('DMetaSoul/sbert-chinese-dtm-domain-v1-distill') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation 这里主要跟蒸馏前对应的 teacher 模型作了对比: *性能* | | Teacher | Student | Gap | | ---------- | --------------------- | ------------------- | ----- | | Model | BERT-12-layers (102M) | BERT-4-layers (45M) | 0.44x | | Cost | 24s | 12s | -50% | | Latency | 39ms | 19ms | -51% | | Throughput | 407 sentence/s | 815 sentence/s | 2.0x | *精度* | | **csts_dev** | **csts_test** | **afqmc** | **lcqmc** | **bqcorpus** | **pawsx** | **xiaobu** | **Avg** | | -------------- | ------------ | ------------- | --------- | --------- | ------------ | --------- | ---------- | ------- | | **Teacher** | 78.35% | 74.45% | 32.17% | 75.95% | 44.00% | 14.50% | 66.84% | 55.17% | | **Student** | 77.99% | 73.95% | 27.20% | 67.49% | 43.90% | 10.79% | 58.21% | 51.36% | | **Gap** (abs.) | - | - | - | - | - | - | - | -3.81% | *基于1万条数据测试,GPU设备是V100,batch_size=16,max_seq_len=256* ## Citing & Authors E-mail: [email protected]
vicl/distilbert-base-uncased-finetuned-cola
11d53edcdf22eaff4c23159139a00090246760a7
2022-04-02T20:16:28.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
vicl
null
vicl/distilbert-base-uncased-finetuned-cola
6
null
transformers
15,538
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5598704865754364 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8697 - Matthews Correlation: 0.5599 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5223 | 1.0 | 535 | 0.5444 | 0.4309 | | 0.3457 | 2.0 | 1070 | 0.5213 | 0.5021 | | 0.2351 | 3.0 | 1605 | 0.6793 | 0.5234 | | 0.1693 | 4.0 | 2140 | 0.7587 | 0.5527 | | 0.1301 | 5.0 | 2675 | 0.8697 | 0.5599 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
fangyuan/lfqa_role_classification
b315137e3f64095015e9fe76903d1d62814e0dce
2022-05-19T20:21:02.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "license:cc-by-nc-sa-4.0", "autotrain_compatible" ]
text2text-generation
false
fangyuan
null
fangyuan/lfqa_role_classification
6
null
transformers
15,539
--- license: cc-by-nc-sa-4.0 ---
thomasdehaene/xlm-roberta-base-nl-emoji-ner
be5ef15de7d93ada8eb5557abf1e74520b273b06
2022-04-03T06:32:34.000Z
[ "pytorch", "xlm-roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
thomasdehaene
null
thomasdehaene/xlm-roberta-base-nl-emoji-ner
6
null
transformers
15,540
Entry not found
moshew/bert-tiny-emotion-distilled
9907e5ec8405a1d5b1bc041e844d9e7c126ed413
2022-04-03T19:08:39.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
moshew
null
moshew/bert-tiny-emotion-distilled
6
null
transformers
15,541
Entry not found
AnnaBabaie/ms-marco-MiniLM-L-12-v2-news
3bae90b947e02d57044f44ff5bd6d7bc3e4d63dd
2022-04-03T13:46:51.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
AnnaBabaie
null
AnnaBabaie/ms-marco-MiniLM-L-12-v2-news
6
null
transformers
15,542
This model is fined tuned for the Fake news classifier: Train a text classification model to detect fake news articles. Base on the Kaggle dataset(https://www.kaggle.com/clmentbisaillon/fake-and-real-news-dataset).
Yaxin/roberta-large-ernie2-skep-en
99e6bb5a0c565f6ff4f3428ea3d89d87437ad9af
2022-04-04T07:18:20.000Z
[ "pytorch", "roberta", "fill-mask", "en", "transformers", "autotrain_compatible" ]
fill-mask
false
Yaxin
null
Yaxin/roberta-large-ernie2-skep-en
6
null
transformers
15,543
--- language: en --- # SKEP-Roberta ## Introduction SKEP (SKEP: Sentiment Knowledge Enhanced Pre-training for Sentiment Analysis) is proposed by Baidu in 2020, SKEP propose Sentiment Knowledge Enhanced Pre-training for sentiment analysis. Sentiment masking and three sentiment pre-training objectives are designed to incorporate various types of knowledge for pre-training model. More detail: https://aclanthology.org/2020.acl-main.374.pdf ## Released Model Info |Model Name|Language|Model Structure| |:---:|:---:|:---:| |skep-roberta-large| English |Layer:24, Hidden:1024, Heads:24| This released pytorch model is converted from the officially released PaddlePaddle SKEP model and a series of experiments have been conducted to check the accuracy of the conversion. - Official PaddlePaddle SKEP repo: 1. https://github.com/PaddlePaddle/PaddleNLP/blob/develop/paddlenlp/transformers/skep 2. https://github.com/baidu/Senta - Pytorch Conversion repo: Not released yet ## How to use ```Python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Yaxin/roberta-large-ernie2-skep-en") model = AutoModel.from_pretrained("Yaxin/roberta-large-ernie2-skep-en") ``` ``` #!/usr/bin/env python #encoding: utf-8 import torch from transformers import RobertaTokenizer, RobertaForMaskedLM tokenizer = RobertaTokenizer.from_pretrained('Yaxin/roberta-large-ernie2-skep-en') input_tx = "<s> He like play with student, so he became a <mask> after graduation </s>" # input_tx = "<s> He is a <mask> and likes to get along with his students </s>" tokenized_text = tokenizer.tokenize(input_tx) indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text) tokens_tensor = torch.tensor([indexed_tokens]) segments_tensors = torch.tensor([[0] * len(tokenized_text)]) model = RobertaForMaskedLM.from_pretrained('Yaxin/roberta-large-ernie2-skep-en') model.eval() with torch.no_grad(): outputs = model(tokens_tensor, token_type_ids=segments_tensors) predictions = outputs[0] predicted_index = [torch.argmax(predictions[0, i]).item() for i in range(0, (len(tokenized_text) - 1))] predicted_token = [tokenizer.convert_ids_to_tokens([predicted_index[x]])[0] for x in range(1, (len(tokenized_text) - 1))] print('Predicted token is:', predicted_token) ``` ## Citation ```bibtex @article{tian2020skep, title={SKEP: Sentiment knowledge enhanced pre-training for sentiment analysis}, author={Tian, Hao and Gao, Can and Xiao, Xinyan and Liu, Hao and He, Bolei and Wu, Hua and Wang, Haifeng and Wu, Feng}, journal={arXiv preprint arXiv:2005.05635}, year={2020} } ``` ``` reference: https://github.com/nghuyong/ERNIE-Pytorch ```
LeBenchmark/wav2vec-FR-1K-Female-base
7b4c466f1bbf78ec22e89ef90f24dfc372733901
2022-05-11T09:22:54.000Z
[ "pytorch", "wav2vec2", "pretraining", "fr", "arxiv:2204.01397", "transformers", "license:apache-2.0" ]
null
false
LeBenchmark
null
LeBenchmark/wav2vec-FR-1K-Female-base
6
null
transformers
15,544
--- language: "fr" thumbnail: tags: - wav2vec2 license: "apache-2.0" --- # LeBenchmark: wav2vec2 base model trained on 1K hours of French *female-only* speech LeBenchmark provides an ensemble of pretrained wav2vec2 models on different French datasets containing spontaneous, read, and broadcasted speech. For more information about our gender study for SSL moddels, please refer to our paper at: [A Study of Gender Impact in Self-supervised Models for Speech-to-Text Systems](https://arxiv.org/abs/2204.01397) ## Model and data descriptions We release four gender-specific models trained on 1K hours of speech. - [wav2vec2-FR-1K-Male-large](https://huggingface.co/LeBenchmark/wav2vec-FR-1K-Male-large/) - [wav2vec2-FR-1k-Male-base](https://huggingface.co/LeBenchmark/wav2vec-FR-1K-Male-base/) - [wav2vec2-FR-1K-Female-large](https://huggingface.co/LeBenchmark/wav2vec-FR-1K-Female-large/) - [wav2vec2-FR-1K-Female-base](https://huggingface.co/LeBenchmark/wav2vec-FR-1K-Female-base/) ## Intended uses & limitations Pretrained wav2vec2 models are distributed under the Apache-2.0 license. Hence, they can be reused extensively without strict limitations. However, benchmarks and data may be linked to corpora that are not completely open-sourced. ## Referencing our gender-specific models ``` @article{boito2022study, title={A Study of Gender Impact in Self-supervised Models for Speech-to-Text Systems}, author={Marcely Zanon Boito and Laurent Besacier and Natalia Tomashenko and Yannick Est{\`e}ve}, journal={arXiv preprint arXiv:2204.01397}, year={2022} } ``` ## Referencing LeBenchmark ``` @inproceedings{evain2021task, title={Task agnostic and task specific self-supervised learning from speech with \textit{LeBenchmark}}, author={Evain, Sol{\`e}ne and Nguyen, Ha and Le, Hang and Boito, Marcely Zanon and Mdhaffar, Salima and Alisamir, Sina and Tong, Ziyi and Tomashenko, Natalia and Dinarelli, Marco and Parcollet, Titouan and others}, booktitle={Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2)}, year={2021} } ```
yj2773/distilbert-base-uncased-fakenews-classif-task
3937201319d34696ad961ebb2367bd94c5388fb4
2022-04-17T20:29:08.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "license:afl-3.0" ]
text-classification
false
yj2773
null
yj2773/distilbert-base-uncased-fakenews-classif-task
6
null
transformers
15,545
--- license: afl-3.0 --- #### DATASET: [Fake and real news dataset](https://www.kaggle.com/datasets/clmentbisaillon/fake-and-real-news-dataset) #### Matthews correlation: 0.998
BigSalmon/GPTNeo350MInformalToFormalLincoln7
2996c02b660fe8c91a7b18caca63415ae93b3bbe
2022-04-04T23:01:23.000Z
[ "pytorch", "gpt_neo", "text-generation", "transformers" ]
text-generation
false
BigSalmon
null
BigSalmon/GPTNeo350MInformalToFormalLincoln7
6
null
transformers
15,546
Trained on this model: https://huggingface.co/xhyi/PT_GPTNEO350_ATG/tree/main ``` from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("BigSalmon/GPTNeo350MInformalToFormalLincoln7") model = AutoModelForCausalLM.from_pretrained("BigSalmon/GPTNeo350MInformalToFormalLincoln7") ``` ``` How To Make Prompt: informal english: i am very ready to do that just that. Translated into the Style of Abraham Lincoln: you can assure yourself of my readiness to work toward this end. Translated into the Style of Abraham Lincoln: please be assured that i am most ready to undertake this laborious task. *** informal english: space is huge and needs to be explored. Translated into the Style of Abraham Lincoln: space awaits traversal, a new world whose boundaries are endless. Translated into the Style of Abraham Lincoln: space is a ( limitless / boundless ) expanse, a vast virgin domain awaiting exploration. *** informal english: corn fields are all across illinois, visible once you leave chicago. Translated into the Style of Abraham Lincoln: corn fields ( permeate illinois / span the state of illinois / ( occupy / persist in ) all corners of illinois / line the horizon of illinois / envelop the landscape of illinois ), manifesting themselves visibly as one ventures beyond chicago. informal english: ``` ``` - declining viewership facing the nba. - does not have to be this way. - in fact, many solutions exist. - the four point line would surely draw in eyes. Text: failing to draw in the masses, the NBA has fallen into disrepair. such does not have to be the case, however. in fact, a myriad of simple, relatively cheap solutions could revive the league. the addition of the much-hyped four-point line would surely juice viewership. *** - ``` ``` infill: chrome extensions [MASK] accomplish everyday tasks. Translated into the Style of Abraham Lincoln: chrome extensions ( expedite the ability to / unlock the means to more readily ) accomplish everyday tasks. infill: at a time when nintendo has become inflexible, [MASK] consoles that are tethered to a fixed iteration, sega diligently curates its legacy of classic video games on handheld devices. Translated into the Style of Abraham Lincoln: at a time when nintendo has become inflexible, ( stubbornly [MASK] on / firmly set on / unyielding in its insistence on ) consoles that are tethered to a fixed iteration, sega diligently curates its legacy of classic video games on handheld devices. infill: ``` ``` Essay Intro (California High-Speed Rail): built with an eye on the future, california's high-speed rail service resolves to change the face of travel. Essay Intro (YIMBY's Need To Win): home to the most expensive housing market in the united states, san francisco is the city in which the yimby and anti-yimby hordes wage an eternal battle. Essay Intro ( ``` ``` Search: What is the definition of Checks and Balances? https://en.wikipedia.org/wiki/Checks_and_balances Checks and Balances is the idea of having a system where each and every action in government should be subject to one or more checks that would not allow one branch or the other to overly dominate. https://www.harvard.edu/glossary/Checks_and_Balances Checks and Balances is a system that allows each branch of government to limit the powers of the other branches in order to prevent abuse of power https://www.law.cornell.edu/library/constitution/Checks_and_Balances Checks and Balances is a system of separation through which branches of government can control the other, thus preventing excess power. *** Search: What is the definition of Separation of Powers? https://en.wikipedia.org/wiki/Separation_of_powers The separation of powers is a principle in government, whereby governmental powers are separated into different branches, each with their own set of powers, that are prevent one branch from aggregating too much power. https://www.yale.edu/tcf/Separation_of_Powers.html Separation of Powers is the division of governmental functions between the executive, legislative and judicial branches, clearly demarcating each branch's authority, in the interest of ensuring that individual liberty or security is not undermined. *** Search: What is the definition of Connection of Powers? https://en.wikipedia.org/wiki/Connection_of_powers Connection of Powers is a feature of some parliamentary forms of government where different branches of government are intermingled, typically the executive and legislative branches. https://simple.wikipedia.org/wiki/Connection_of_powers The term Connection of Powers describes a system of government in which there is overlap between different parts of the government. *** Search: What is the definition of ``` ``` Search: What are phrase synonyms for "second-guess"? https://www.powerthesaurus.org/second-guess/synonyms Shortest to Longest: - feel dubious about - raise an eyebrow at - wrinkle their noses at - cast a jaundiced eye at - teeter on the fence about *** Search: What are phrase synonyms for "mean to newbies"? https://www.powerthesaurus.org/mean_to_newbies/synonyms Shortest to Longest: - readiness to balk at rookies - absence of tolerance for novices - hostile attitude toward newcomers *** Search: What are phrase synonyms for "make use of"? https://www.powerthesaurus.org/make_use_of/synonyms Shortest to Longest: - call upon - glean value from - reap benefits from - derive utility from - seize on the merits of - draw on the strength of - tap into the potential of *** Search: What are phrase synonyms for "hurting itself"? https://www.powerthesaurus.org/hurting_itself/synonyms Shortest to Longest: - erring - slighting itself - forfeiting its integrity - doing itself a disservice - evincing a lack of backbone *** Search: What are phrase synonyms for " ```
mdroth/bert-finetuned-ner-accelerate
826f9b062c2c3f77daf16e49f2fd0ce3ab18eb3f
2022-05-26T18:40:17.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
mdroth
null
mdroth/bert-finetuned-ner-accelerate
6
null
transformers
15,547
Entry not found
thangcv/distilbert-base-uncased-finetuned-emotion
566ad5679ebd047b556af6a326434143fd036ec1
2022-04-07T02:01:30.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
thangcv
null
thangcv/distilbert-base-uncased-finetuned-emotion
6
null
transformers
15,548
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.924 - name: F1 type: f1 value: 0.9242608108878096 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2156 - Accuracy: 0.924 - F1: 0.9243 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8151 | 1.0 | 250 | 0.3062 | 0.9115 | 0.9089 | | 0.2428 | 2.0 | 500 | 0.2156 | 0.924 | 0.9243 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
Linguist/t5-small-Linguists_summariser
a446263873a5cb0718370369c3f7e51918b51df5
2022-04-06T16:51:53.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:xsum", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
Linguist
null
Linguist/t5-small-Linguists_summariser
6
null
transformers
15,549
--- license: apache-2.0 tags: - generated_from_trainer datasets: - xsum model-index: - name: t5-small-Linguists_summariser results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-Linguists_summariser This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xsum dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
pitspits/distilbert-base-uncased-finetuned-emotion
4c10c1eb079b309225e8245fbcb5d4d775088109
2022-04-06T12:59:41.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
pitspits
null
pitspits/distilbert-base-uncased-finetuned-emotion
6
null
transformers
15,550
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.925 - name: F1 type: f1 value: 0.9250750482655898 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2236 - Accuracy: 0.925 - F1: 0.9251 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8341 | 1.0 | 250 | 0.3329 | 0.8985 | 0.8950 | | 0.2562 | 2.0 | 500 | 0.2236 | 0.925 | 0.9251 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0 - Datasets 1.16.1 - Tokenizers 0.10.3
Graphcore/hubert-base-common-language
3c82dffabc20ef982a5e87703b8ae039f017ef12
2022-04-06T14:55:32.000Z
[ "pytorch", "hubert", "text-classification", "dataset:common_language", "transformers", "audio-classification", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Graphcore
null
Graphcore/hubert-base-common-language
6
null
transformers
15,551
--- license: apache-2.0 tags: - audio-classification - generated_from_trainer datasets: - common_language metrics: - accuracy model-index: - name: hubert-base-common-language results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hubert-base-common-language This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on the common_language dataset. It achieves the following results on the evaluation set: - Loss: 1.3477 - Accuracy: 0.7317 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 4 - seed: 0 - distributed_type: IPU - gradient_accumulation_steps: 32 - total_train_batch_size: 128 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.25 - num_epochs: 10.0 - training precision: Mixed Precision ### Training results ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.10.0+cpu - Datasets 2.0.0 - Tokenizers 0.11.6
schorndorfer/distilbert-base-uncased-finetuned-emotion
1b71aa9894454e24cddc19621e6a644903c77ddd
2022-04-07T14:45:33.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
schorndorfer
null
schorndorfer/distilbert-base-uncased-finetuned-emotion
6
null
transformers
15,552
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.924 - name: F1 type: f1 value: 0.9245161685913434 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2177 - Accuracy: 0.924 - F1: 0.9245 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8318 | 1.0 | 250 | 0.3067 | 0.9115 | 0.9091 | | 0.2412 | 2.0 | 500 | 0.2177 | 0.924 | 0.9245 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
mrm8488/t5-small-finetuned-wikisql-sql-nl-nl-sql
c4b3b58284d72596b57f5d9b882cf1ab930f5369
2022-04-07T17:41:38.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
mrm8488
null
mrm8488/t5-small-finetuned-wikisql-sql-nl-nl-sql
6
1
transformers
15,553
--- license: apache-2.0 tags: - generated_from_trainer widget: - text: "translate to SQL: How many models with BERT architecture are in the HuggingFace Hub?" - text: "translate to English: SELECT COUNT Model FROM table WHERE Architecture = RoBERTa AND creator = Manuel Romero" metrics: - bleu model-index: - name: t5-small-finetuned-wikisql-sql-nl-nl-sql results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-wikisql-sql-nl-nl-sql This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1932 - Bleu: 41.8787 - Gen Len: 16.6251 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| | 0.2655 | 1.0 | 8097 | 0.2252 | 39.7999 | 16.6893 | | 0.2401 | 2.0 | 16194 | 0.2066 | 40.9456 | 16.6712 | | 0.2236 | 3.0 | 24291 | 0.1985 | 41.3509 | 16.5884 | | 0.2158 | 4.0 | 32388 | 0.1944 | 41.6988 | 16.6165 | | 0.2122 | 5.0 | 40485 | 0.1932 | 41.8787 | 16.6251 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
mdroth/bert_de_ner-finetuned-ner
ae9140ebebfeba0ddff93669ab293f0f087bcd76
2022-04-08T02:00:09.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
mdroth
null
mdroth/bert_de_ner-finetuned-ner
6
null
transformers
15,554
Entry not found
dapang/distilbert-base-uncased-finetuned-mic
de51736d4f898fb497cccec01bfdc14aebeadac1
2022-04-08T03:56:13.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
dapang
null
dapang/distilbert-base-uncased-finetuned-mic
6
null
transformers
15,555
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-mic results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-mic This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5640 - Accuracy: 0.7809 - F1: 0.8769 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.740146306575944e-05 - train_batch_size: 400 - eval_batch_size: 400 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 18 | 0.7080 | 0.7232 | 0.8394 | | No log | 2.0 | 36 | 0.4768 | 0.8443 | 0.9156 | | No log | 3.0 | 54 | 0.5714 | 0.7866 | 0.8806 | | No log | 4.0 | 72 | 0.7035 | 0.7151 | 0.8339 | | No log | 5.0 | 90 | 0.5640 | 0.7809 | 0.8769 | ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.10.1 - Datasets 2.0.0 - Tokenizers 0.11.0
ukr-models/uk-morph
4a3e45913221ea8653a4b5ad8335200470d79320
2022-04-08T12:32:54.000Z
[ "pytorch", "xlm-roberta", "token-classification", "uk", "transformers", "ukrainian", "license:mit", "autotrain_compatible" ]
token-classification
false
ukr-models
null
ukr-models/uk-morph
6
null
transformers
15,556
--- language: - uk tags: - ukrainian widget: - text: "Могила Тараса Шевченка — місце поховання видатного українського поета Тараса Шевченка в місті Канів (Черкаська область) на Чернечій горі, над яким із 1939 року височіє бронзовий пам'ятник роботи скульптора Матвія Манізера." license: mit --- ## Model Description Fine-tuning of [XLM-RoBERTa-Uk](https://huggingface.co/ukr-models/xlm-roberta-base-uk) model on [synthetic morphological dataset](https://huggingface.co/datasets/ukr-models/Ukr-Synth), returns both UPOS and morphological features (joined by double underscore symbol) ## How to Use Huggingface pipeline way (returns tokens with labels): ```py from transformers import TokenClassificationPipeline, AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained('ukr-models/uk-morph') model = AutoModelForTokenClassification.from_pretrained('ukr-models/uk-morph') ppln = TokenClassificationPipeline(model=model, tokenizer=tokenizer) ppln("Могила Тараса Шевченка — місце поховання видатного українського поета Тараса Шевченка в місті Канів (Черкаська область) на Чернечій горі, над яким із 1939 року височіє бронзовий пам'ятник роботи скульптора Матвія Манізера.") ``` If you wish to get predictions split by words, not by tokens, you may use the following approach (download script get_predictions.py from the repository, it uses [package tokenize_uk](https://pypi.org/project/tokenize_uk/) for splitting) ```py from transformers import AutoTokenizer, AutoModelForTokenClassification from get_predictions import get_word_predictions tokenizer = AutoTokenizer.from_pretrained('ukr-models/uk-morph') model = AutoModelForTokenClassification.from_pretrained('ukr-models/uk-morph') get_word_predictions(model, tokenizer, ["Могила Тараса Шевченка — місце поховання видатного українського поета Тараса Шевченка в місті Канів (Черкаська область) на Чернечій горі, над яким із 1939 року височіє бронзовий пам'ятник роботи скульптора Матвія Манізера."]) ```
philschmid/roberta-large-sst2
7d2599d698b7a805b6831e15e830e60a0b07bdb4
2022-04-08T08:03:59.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
philschmid
null
philschmid/roberta-large-sst2
6
null
transformers
15,557
--- license: mit tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: roberta-large-sst2 results: - task: name: Text Classification type: text-classification dataset: name: GLUE SST2 type: glue args: sst2 metrics: - name: Accuracy type: accuracy value: 0.9644495412844036 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-large-sst2 This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.1400 - Accuracy: 0.9644 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - distributed_type: sagemaker_data_parallel - num_devices: 8 - total_train_batch_size: 256 - total_eval_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3688 | 1.0 | 264 | 0.1444 | 0.9564 | | 0.1529 | 2.0 | 528 | 0.1502 | 0.9518 | | 0.107 | 3.0 | 792 | 0.1388 | 0.9530 | | 0.0666 | 4.0 | 1056 | 0.1400 | 0.9644 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.2+cu113 - Datasets 1.18.4 - Tokenizers 0.11.6
jicoc22578/autotrain-livedoor_news-722922024
5b5228a97230652a0b99b68d3ec21619c47e77bc
2022-04-09T10:47:55.000Z
[ "pytorch", "bert", "text-classification", "ja", "dataset:jicoc22578/autotrain-data-livedoor_news", "transformers", "autotrain", "co2_eq_emissions" ]
text-classification
false
jicoc22578
null
jicoc22578/autotrain-livedoor_news-722922024
6
null
transformers
15,558
--- tags: autotrain language: ja widget: - text: "Windows 11搭載PCを買ったら最低限やっておきたいこと" - text: "3月デスクトップOSシェア、Windowsが増加しMacが減少" - text: "raytrek、Core i7-12700HとRTX 3070 Tiを搭載するノートPC" datasets: - jicoc22578/autotrain-data-livedoor_news co2_eq_emissions: 0.019299491458156143 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 722922024 - CO2 Emissions (in grams): 0.019299491458156143 ## Validation Metrics - Loss: 0.19609540700912476 - Accuracy: 0.9457627118644067 - Macro F1: 0.9404319054946133 - Micro F1: 0.9457627118644067 - Weighted F1: 0.9456037443251943 - Macro Precision: 0.9420917371721244 - Micro Precision: 0.9457627118644067 - Weighted Precision: 0.9457910238180336 - Macro Recall: 0.9391783746329772 - Micro Recall: 0.9457627118644067 - Weighted Recall: 0.9457627118644067 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/jicoc22578/autotrain-livedoor_news-722922024 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("jicoc22578/autotrain-livedoor_news-722922024", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("jicoc22578/autotrain-livedoor_news-722922024", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
malcolm/TSC_SentimentA_IMDBAmznTSC_2
c8d819493594360c5a344e8bda67fdc9ea783cb7
2022-04-10T09:43:32.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
malcolm
null
malcolm/TSC_SentimentA_IMDBAmznTSC_2
6
null
transformers
15,559
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: TSC_SentimentA_IMDBAmznTSC_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # TSC_SentimentA_IMDBAmznTSC_2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1985 - Accuracy: 0.9365 - F1: 0.9373 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
nkn002/longformer_fakenews_cls
85873ce19bfafe4b568c5ad99b622a4d504601fe
2022-04-11T01:37:39.000Z
[ "pytorch", "longformer", "text-classification", "transformers" ]
text-classification
false
nkn002
null
nkn002/longformer_fakenews_cls
6
null
transformers
15,560
Entry not found
JminJ/tunibElectra_base_Bad_Sentence_Classifier
3ad90670fb3be0a9da9021087cede576ae933f4c
2022-04-11T01:50:02.000Z
[ "pytorch", "electra", "text-classification", "arxiv:2003.10555", "transformers" ]
text-classification
false
JminJ
null
JminJ/tunibElectra_base_Bad_Sentence_Classifier
6
null
transformers
15,561
# Bad_text_classifier ## Model 소개 인터넷 상에 퍼져있는 여러 댓글, 채팅이 민감한 내용인지 아닌지를 판별하는 모델을 공개합니다. 해당 모델은 공개데이터를 사용해 label을 수정하고 데이터들을 합쳐 구성해 finetuning을 진행하였습니다. 해당 모델이 언제나 모든 문장을 정확히 판단이 가능한 것은 아니라는 점 양해해 주시면 감사드리겠습니다. ``` NOTE) 공개 데이터의 저작권 문제로 인해 모델 학습에 사용된 변형된 데이터는 공개 불가능하다는 점을 밝힙니다. 또한 해당 모델의 의견은 제 의견과 무관하다는 점을 미리 밝힙니다. ``` ## Dataset ### data label * **0 : bad sentence** * **1 : not bad sentence** ### 사용한 dataset * [smilegate-ai/Korean Unsmile Dataset](https://github.com/smilegate-ai/korean_unsmile_dataset) * [kocohub/Korean HateSpeech Dataset](https://github.com/kocohub/korean-hate-speech) ### dataset 가공 방법 기존 이진 분류가 아니였던 두 데이터를 이진 분류 형태로 labeling을 다시 해준 뒤, Korean HateSpeech Dataset중 label 1(not bad sentence)만을 추려 가공된 Korean Unsmile Dataset에 합쳐 주었습니다. </br> **Korean Unsmile Dataset에 clean으로 labeling 되어있던 데이터 중 몇개의 데이터를 0 (bad sentence)으로 수정하였습니다.** * "~노"가 포함된 문장 중, "이기", "노무"가 포함된 데이터는 0 (bad sentence)으로 수정 * "좆", "봊" 등 성 관련 뉘앙스가 포함된 데이터는 0 (bad sentence)으로 수정 </br> ## Model Training * huggingface transformers의 ElectraForSequenceClassification를 사용해 finetuning을 수행하였습니다. * 한국어 공개 Electra 모델 중 3가지 모델을 사용해 각각 학습시켜주었습니다. ### use model * [Beomi/KcELECTRA](https://github.com/Beomi/KcELECTRA) * [monologg/koELECTRA](https://github.com/monologg/KoELECTRA) * [tunib/electra-ko-base](https://huggingface.co/tunib/electra-ko-base) ## How to use model? ```PYTHON from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained('JminJ/tunibElectra_base_Bad_Sentence_Classifier') tokenizer = AutoTokenizer.from_pretrained('JminJ/tunibElectra_base_Bad_Sentence_Classifier') ``` ## Model Valid Accuracy | mdoel | accuracy | | ---------- | ---------- | | kcElectra_base_fp16_wd_custom_dataset | 0.8849 | | tunibElectra_base_fp16_wd_custom_dataset | 0.8726 | | koElectra_base_fp16_wd_custom_dataset | 0.8434 | ``` Note) 모든 모델은 동일한 seed, learning_rate(3e-06), weight_decay lambda(0.001), batch_size(128)로 학습되었습니다. ``` ## Contact * [email protected] </br></br> ## Github * https://github.com/JminJ/Bad_text_classifier </br></br> ## Reference * [Beomi/KcELECTRA](https://github.com/Beomi/KcELECTRA) * [monologg/koELECTRA](https://github.com/monologg/KoELECTRA) * [tunib/electra-ko-base](https://huggingface.co/tunib/electra-ko-base) * [smilegate-ai/Korean Unsmile Dataset](https://github.com/smilegate-ai/korean_unsmile_dataset) * [kocohub/Korean HateSpeech Dataset](https://github.com/kocohub/korean-hate-speech) * [ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators](https://arxiv.org/abs/2003.10555)
SiriusRen/my-awesome-model2
30f10dbf6b2c72ea54343b11554a531894d5ba2a
2022-04-11T08:45:15.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
SiriusRen
null
SiriusRen/my-awesome-model2
6
null
transformers
15,562
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: my-awesome-model2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my-awesome-model2 This model is a fine-tuned version of [SiriusRen/my-awesome-model](https://huggingface.co/SiriusRen/my-awesome-model) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.10.0 - Datasets 2.0.1.dev0 - Tokenizers 0.11.6
CapoCapped/T5Base
7692c95d2b367aa27ef1fce274ae273e68fab37d
2022-04-12T12:53:55.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "summarization", "autotrain_compatible" ]
summarization
false
CapoCapped
null
CapoCapped/T5Base
6
null
transformers
15,563
--- tags: - summarization ---
luckydog/distilbert-base-uncased-finetuned-emotion
79cebd0fbcdf1e6ab24cd8dd66092872c9b62891
2022-04-12T12:36:17.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
luckydog
null
luckydog/distilbert-base-uncased-finetuned-emotion
6
null
transformers
15,564
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9 - name: F1 type: f1 value: 0.8980758869010411 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.3298 - Accuracy: 0.9 - F1: 0.8981 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 1.2761 | 1.0 | 250 | 0.6036 | 0.814 | 0.7881 | | 0.4081 | 2.0 | 500 | 0.3298 | 0.9 | 0.8981 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
nntadotzip/bert-base-cased-IUChatbot-ontologyDts-bertBaseCased-bertTokenizer-12April2022
474a659284129966216fca73d777199a26034dad
2022-04-12T08:14:00.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
nntadotzip
null
nntadotzip/bert-base-cased-IUChatbot-ontologyDts-bertBaseCased-bertTokenizer-12April2022
6
null
transformers
15,565
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-base-cased-IUChatbot-ontologyDts-bertBaseCased-bertTokenizer-12April2022 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-IUChatbot-ontologyDts-bertBaseCased-bertTokenizer-12April2022 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3856 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 357 | 0.4760 | | 0.6305 | 2.0 | 714 | 0.3957 | | 0.4345 | 3.0 | 1071 | 0.3856 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
jjzha/dajobbert-base-cased
30445f3095796c604dfd9a66f2a7bf89e0e620b9
2022-07-26T08:15:27.000Z
[ "pytorch", "bert", "fill-mask", "da", "transformers", "job postings", "DaJobBERT", "autotrain_compatible" ]
fill-mask
false
jjzha
null
jjzha/dajobbert-base-cased
6
1
transformers
15,566
--- language: - da tags: - job postings - DaJobBERT --- # JobBERT This is the DaJobBERT model from: Mike Zhang, Kristian Nørgaard Jensen, and Barbara Plank. __Kompetencer: Fine-grained Skill Classification in Danish Job Postings via Distant Supervision and Transfer Learning__. Proceedings of the Language Resources and Evaluation Conference (LREC). 2022. This model is continuously pre-trained from a `dabert-base-cased`: https://huggingface.co/Maltehb/danish-bert-botxo checkpoint on ~24.5M Danish sentences from job postings. More information can be found in the paper. If you use this model, please cite the following paper: ``` @InProceedings{zhang-jensen-plank:2022:LREC, author = {Zhang, Mike and Jensen, Kristian N{\o}rgaard and Plank, Barbara}, title = {Kompetencer: Fine-grained Skill Classification in Danish Job Postings via Distant Supervision and Transfer Learning}, booktitle = {Proceedings of the Language Resources and Evaluation Conference}, month = {June}, year = {2022}, address = {Marseille, France}, publisher = {European Language Resources Association}, pages = {436--447}, abstract = {Skill Classification (SC) is the task of classifying job competences from job postings. This work is the first in SC applied to Danish job vacancy data. We release the first Danish job posting dataset: *Kompetencer* (\_en\_: competences), annotated for nested spans of competences. To improve upon coarse-grained annotations, we make use of The European Skills, Competences, Qualifications and Occupations (ESCO; le Vrang et al., (2014)) taxonomy API to obtain fine-grained labels via distant supervision. We study two setups: The zero-shot and few-shot classification setting. We fine-tune English-based models and RemBERT (Chung et al., 2020) and compare them to in-language Danish models. Our results show RemBERT significantly outperforms all other models in both the zero-shot and the few-shot setting.}, url = {https://aclanthology.org/2022.lrec-1.46} } ```
AndrewR/distilbert-base-uncased-finetuned-imdb
0047231f5500771085867e2e1145777ca4ef0bc6
2022-04-12T16:02:36.000Z
[ "pytorch", "tensorboard", "distilbert", "fill-mask", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
AndrewR
null
AndrewR/distilbert-base-uncased-finetuned-imdb
6
null
transformers
15,567
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.3919 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.5273 | 1.0 | 157 | 2.4557 | | 2.4839 | 2.0 | 314 | 2.4263 | | 2.4696 | 3.0 | 471 | 2.3919 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
Chikashi/t5-small-finetuned-cnndm-wikihow
9bd7768b09dc8120fac1bd80c10d82a9bdc5790f
2022-04-13T01:51:44.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:wikihow", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
Chikashi
null
Chikashi/t5-small-finetuned-cnndm-wikihow
6
null
transformers
15,568
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wikihow metrics: - rouge model-index: - name: t5-small-finetuned-cnndm-wikihow results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: wikihow type: wikihow args: all metrics: - name: Rouge1 type: rouge value: 27.5037 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-cnndm-wikihow This model is a fine-tuned version of [Sevil/t5-small-finetuned-cnndm_3epoch_v2](https://huggingface.co/Sevil/t5-small-finetuned-cnndm_3epoch_v2) on the wikihow dataset. It achieves the following results on the evaluation set: - Loss: 2.2653 - Rouge1: 27.5037 - Rouge2: 10.8442 - Rougel: 23.4674 - Rougelsum: 26.7997 - Gen Len: 18.5558 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:------:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 2.8459 | 0.13 | 5000 | 2.5755 | 25.2929 | 8.7852 | 21.2379 | 24.5649 | 18.4758 | | 2.7251 | 0.25 | 10000 | 2.5189 | 25.33 | 9.0505 | 21.4892 | 24.6523 | 18.4513 | | 2.6696 | 0.38 | 15000 | 2.4805 | 26.3909 | 9.6858 | 22.3589 | 25.7297 | 18.4649 | | 2.647 | 0.51 | 20000 | 2.4491 | 25.9234 | 9.3936 | 22.0086 | 25.2342 | 18.5558 | | 2.5973 | 0.64 | 25000 | 2.4251 | 26.4988 | 9.8197 | 22.6201 | 25.8407 | 18.3438 | | 2.5916 | 0.76 | 30000 | 2.4022 | 26.3149 | 9.8432 | 22.3695 | 25.6581 | 18.4506 | | 2.5691 | 0.89 | 35000 | 2.3801 | 26.4198 | 9.8848 | 22.4856 | 25.7847 | 18.5381 | | 2.5365 | 1.02 | 40000 | 2.3755 | 26.5846 | 10.0287 | 22.667 | 25.9606 | 18.5608 | | 2.4649 | 1.14 | 45000 | 2.3663 | 26.5925 | 10.0569 | 22.6191 | 25.9247 | 18.5803 | | 2.4539 | 1.27 | 50000 | 2.3490 | 26.9735 | 10.2389 | 22.9536 | 26.282 | 18.5126 | | 2.4578 | 1.4 | 55000 | 2.3374 | 26.7878 | 10.2275 | 22.849 | 26.1188 | 18.6162 | | 2.4365 | 1.53 | 60000 | 2.3266 | 27.1171 | 10.403 | 23.0596 | 26.4284 | 18.6128 | | 2.428 | 1.65 | 65000 | 2.3209 | 27.1762 | 10.578 | 23.1577 | 26.5007 | 18.5246 | | 2.4293 | 1.78 | 70000 | 2.3145 | 27.0896 | 10.5146 | 23.1502 | 26.4338 | 18.4604 | | 2.4335 | 1.91 | 75000 | 2.2979 | 27.3373 | 10.6273 | 23.2944 | 26.6725 | 18.5403 | | 2.3981 | 2.03 | 80000 | 2.3008 | 27.1857 | 10.6455 | 23.1333 | 26.5203 | 18.5412 | | 2.3395 | 2.16 | 85000 | 2.2908 | 27.3123 | 10.7063 | 23.3126 | 26.626 | 18.4265 | | 2.3463 | 2.29 | 90000 | 2.2869 | 27.5328 | 10.7662 | 23.4527 | 26.8613 | 18.5664 | | 2.3481 | 2.42 | 95000 | 2.2802 | 27.4799 | 10.7826 | 23.4538 | 26.7912 | 18.5449 | | 2.3345 | 2.54 | 100000 | 2.2774 | 27.3182 | 10.724 | 23.3276 | 26.669 | 18.5908 | | 2.3254 | 2.67 | 105000 | 2.2713 | 27.3942 | 10.777 | 23.3918 | 26.7036 | 18.5681 | | 2.3369 | 2.8 | 110000 | 2.2666 | 27.5976 | 10.9144 | 23.5832 | 26.9147 | 18.5471 | | 2.3269 | 2.93 | 115000 | 2.2653 | 27.5037 | 10.8442 | 23.4674 | 26.7997 | 18.5558 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
mekondjo/distilbert-base-uncased-finetuned-emotion
62c49ea83c339ad5dae7b9d0d353f296cb8e8c70
2022-04-12T15:53:40.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
mekondjo
null
mekondjo/distilbert-base-uncased-finetuned-emotion
6
null
transformers
15,569
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9245 - name: F1 type: f1 value: 0.9248167911304236 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2219 - Accuracy: 0.9245 - F1: 0.9248 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.848 | 1.0 | 250 | 0.3157 | 0.9075 | 0.9059 | | 0.253 | 2.0 | 500 | 0.2219 | 0.9245 | 0.9248 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
smeoni/nbme-clinical-longformer
1b808ca5681169432b657c388ff36913ab8c2d28
2022-04-12T18:49:58.000Z
[ "pytorch", "longformer", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
smeoni
null
smeoni/nbme-clinical-longformer
6
null
transformers
15,570
Entry not found
lewtun/roberta-large-finetuned-clinc
1e90b7dca6a89854a502f8915ca2215b252ff772
2022-04-13T08:48:32.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "dataset:clinc_oos", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
lewtun
null
lewtun/roberta-large-finetuned-clinc
6
null
transformers
15,571
--- license: mit tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: roberta-large-finetuned-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos args: plus metrics: - name: Accuracy type: accuracy value: 0.9767741935483871 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-large-finetuned-clinc This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.1545 - Accuracy: 0.9768 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - distributed_type: sagemaker_data_parallel - num_devices: 8 - total_train_batch_size: 128 - total_eval_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 5.0548 | 1.0 | 120 | 5.0359 | 0.0071 | | 4.4725 | 2.0 | 240 | 2.9385 | 0.7558 | | 1.8924 | 3.0 | 360 | 0.6456 | 0.9374 | | 0.4552 | 4.0 | 480 | 0.2297 | 0.9626 | | 0.1589 | 5.0 | 600 | 0.1545 | 0.9768 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.2+cu113 - Datasets 1.18.4 - Tokenizers 0.11.6
simonnedved/codet5-large-v1
cb3e372ddc3a70b4acaa74b65868409e9f05e908
2022-04-13T15:44:44.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
simonnedved
null
simonnedved/codet5-large-v1
6
null
transformers
15,572
--- license: apache-2.0 ---
CenIA/distillbert-base-spanish-uncased-finetuned-qa-sqac
3610e05a0c30873b2cbe76f8928db05d348ce516
2022-04-14T21:57:30.000Z
[ "pytorch", "distilbert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
CenIA
null
CenIA/distillbert-base-spanish-uncased-finetuned-qa-sqac
6
3
transformers
15,573
Entry not found
ddobokki/unsup-simcse-klue-roberta-small
26f03fa19cb1166e0df7f01384fb872fa02b2e22
2022-04-16T04:26:10.000Z
[ "pytorch", "roberta", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers", "ko" ]
sentence-similarity
false
ddobokki
null
ddobokki/unsup-simcse-klue-roberta-small
6
null
sentence-transformers
15,574
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers - ko --- # ddobokki/unsup-simcse-klue-roberta-small ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('ddobokki/unsup-simcse-klue-roberta-small') embeddings = model.encode(sentences) print(embeddings) ``` (개발중) git:https://github.com/ddobokki/KoSimCSE
ahmeddbahaa/mT5_multilingual_XLSum-finetuned-ar
5565bbe9a4a93ea306254a065d5bfeb22436a12d
2022-04-16T04:42:02.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
ahmeddbahaa
null
ahmeddbahaa/mT5_multilingual_XLSum-finetuned-ar
6
null
transformers
15,575
--- tags: - generated_from_trainer model-index: - name: mT5_multilingual_XLSum-finetuned-ar results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mT5_multilingual_XLSum-finetuned-ar This model is a fine-tuned version of [csebuetnlp/mT5_multilingual_XLSum](https://huggingface.co/csebuetnlp/mT5_multilingual_XLSum) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 250 - num_epochs: 10 - label_smoothing_factor: 0.1 ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
GioReg/bertdbmdzIhate
a8815e9edf34ed056217316990f1d4deed3f168f
2022-04-15T12:03:34.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
GioReg
null
GioReg/bertdbmdzIhate
6
null
transformers
15,576
--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: bertdbmdzIhate results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bertdbmdzIhate This model is a fine-tuned version of [dbmdz/bert-base-italian-xxl-cased](https://huggingface.co/dbmdz/bert-base-italian-xxl-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6880 - Accuracy: 0.726 - F1: 0.4170 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
birgermoell/psst-fairseq-rir
66fd69e0e90a071593291e5746de9d7a29f38878
2022-04-15T13:57:25.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "en", "transformers", "license:apache-2.0" ]
automatic-speech-recognition
false
birgermoell
null
birgermoell/psst-fairseq-rir
6
null
transformers
15,577
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition --- This model is trained on the PSST Challenge data, with a subset of TIMIT that was augmented using Room Impulse Response (RIR). A file containing the list of TIMIT IDs is in the repository (`timit-ids.txt`) The model was finetuned on [Wav2vec 2.0 Base, No finetuning](https://github.com/pytorch/fairseq/tree/main/examples/wav2vec), and the results on the validation set were **PER:** 21\.8%, **FER:** 9\.6%.
MartinoMensio/racism-models-regression-w-m-vote-epoch-1
5cc67f99cabe7c5b4b1ad0753652464c5fe81401
2022-05-04T16:18:39.000Z
[ "pytorch", "bert", "text-classification", "es", "transformers", "license:mit" ]
text-classification
false
MartinoMensio
null
MartinoMensio/racism-models-regression-w-m-vote-epoch-1
6
null
transformers
15,578
--- language: es license: mit widget: - text: "y porqué es lo que hay que hacer con los menas y con los adultos también!!!! NO a los inmigrantes ilegales!!!!" --- ### Description This model is a fine-tuned version of [BETO (spanish bert)](https://huggingface.co/dccuchile/bert-base-spanish-wwm-uncased) that has been trained on the *Datathon Against Racism* dataset (2022) We performed several experiments that will be described in the upcoming paper "Estimating Ground Truth in a Low-labelled Data Regime:A Study of Racism Detection in Spanish" (NEATClasS 2022) We applied 6 different methods ground-truth estimations, and for each one we performed 4 epochs of fine-tuning. The result is made of 24 models: | method | epoch 1 | epoch 3 | epoch 3 | epoch 4 | |--- |--- |--- |--- |--- | | raw-label | [raw-label-epoch-1](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-1) | [raw-label-epoch-2](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-2) | [raw-label-epoch-3](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-3) | [raw-label-epoch-4](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-4) | | m-vote-strict | [m-vote-strict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-1) | [m-vote-strict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-2) | [m-vote-strict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-3) | [m-vote-strict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-4) | | m-vote-nonstrict | [m-vote-nonstrict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-1) | [m-vote-nonstrict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-2) | [m-vote-nonstrict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-3) | [m-vote-nonstrict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-4) | | regression-w-m-vote | [regression-w-m-vote-epoch-1](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-1) | [regression-w-m-vote-epoch-2](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-2) | [regression-w-m-vote-epoch-3](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-3) | [regression-w-m-vote-epoch-4](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-4) | | w-m-vote-strict | [w-m-vote-strict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-1) | [w-m-vote-strict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-2) | [w-m-vote-strict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-3) | [w-m-vote-strict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-4) | | w-m-vote-nonstrict | [w-m-vote-nonstrict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-1) | [w-m-vote-nonstrict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-2) | [w-m-vote-nonstrict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-3) | [w-m-vote-nonstrict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-4) | This model is `regression-w-m-vote-epoch-1` ### Usage ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline from transformers.pipelines import TextClassificationPipeline class TextRegressionPipeline(TextClassificationPipeline): """ Class based on the TextClassificationPipeline from transformers. The difference is that instead of being based on a classifier, it is based on a regressor. You can specify the regression threshold when you call the pipeline or when you instantiate the pipeline. """ def __init__(self, **kwargs): """ Builds a new Pipeline based on regression. regression_threshold: Optional(float). If None, the pipeline will simply output the score. If set to a specific value, the output will be both the score and the label. """ self.regression_threshold = kwargs.pop("regression_threshold", None) super().__init__(**kwargs) def __call__(self, *args, **kwargs): """ You can also specify the regression threshold when you call the pipeline. regression_threshold: Optional(float). If None, the pipeline will simply output the score. If set to a specific value, the output will be both the score and the label. """ self.regression_threshold_call = kwargs.pop("regression_threshold", None) result = super().__call__(*args, **kwargs) return result def postprocess(self, model_outputs, function_to_apply=None, return_all_scores=False): outputs = model_outputs["logits"][0] outputs = outputs.numpy() scores = outputs score = scores[0] regression_threshold = self.regression_threshold # override the specific threshold if it is specified in the call if self.regression_threshold_call: regression_threshold = self.regression_threshold_call if regression_threshold: return {"label": 'racist' if score > regression_threshold else 'non-racist', "score": score} else: return {"score": score} model_name = 'regression-w-m-vote-epoch-1' tokenizer = AutoTokenizer.from_pretrained("dccuchile/bert-base-spanish-wwm-uncased") full_model_path = f'MartinoMensio/racism-models-{model_name}' model = AutoModelForSequenceClassification.from_pretrained(full_model_path) pipe = TextRegressionPipeline(model=model, tokenizer=tokenizer) texts = [ 'y porqué es lo que hay que hacer con los menas y con los adultos también!!!! NO a los inmigrantes ilegales!!!!', 'Es que los judíos controlan el mundo' ] # just get the score of regression print(pipe(texts)) # [{'score': 0.8378907}, {'score': 0.33399782}] # or also specify a threshold to cut racist/non-racist print(pipe(texts, regression_threshold=0.9)) # [{'label': 'non-racist', 'score': 0.8378907}, {'label': 'non-racist', 'score': 0.33399782}] ``` For more details, see https://github.com/preyero/neatclass22
MartinoMensio/racism-models-regression-w-m-vote-epoch-2
eb49a75ddb45c166af578a6b9f468fbab8bb5bd7
2022-05-04T16:20:44.000Z
[ "pytorch", "bert", "text-classification", "es", "transformers", "license:mit" ]
text-classification
false
MartinoMensio
null
MartinoMensio/racism-models-regression-w-m-vote-epoch-2
6
null
transformers
15,579
--- language: es license: mit widget: - text: "y porqué es lo que hay que hacer con los menas y con los adultos también!!!! NO a los inmigrantes ilegales!!!!" --- ### Description This model is a fine-tuned version of [BETO (spanish bert)](https://huggingface.co/dccuchile/bert-base-spanish-wwm-uncased) that has been trained on the *Datathon Against Racism* dataset (2022) We performed several experiments that will be described in the upcoming paper "Estimating Ground Truth in a Low-labelled Data Regime:A Study of Racism Detection in Spanish" (NEATClasS 2022) We applied 6 different methods ground-truth estimations, and for each one we performed 4 epochs of fine-tuning. The result is made of 24 models: | method | epoch 1 | epoch 3 | epoch 3 | epoch 4 | |--- |--- |--- |--- |--- | | raw-label | [raw-label-epoch-1](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-1) | [raw-label-epoch-2](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-2) | [raw-label-epoch-3](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-3) | [raw-label-epoch-4](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-4) | | m-vote-strict | [m-vote-strict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-1) | [m-vote-strict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-2) | [m-vote-strict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-3) | [m-vote-strict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-4) | | m-vote-nonstrict | [m-vote-nonstrict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-1) | [m-vote-nonstrict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-2) | [m-vote-nonstrict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-3) | [m-vote-nonstrict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-4) | | regression-w-m-vote | [regression-w-m-vote-epoch-1](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-1) | [regression-w-m-vote-epoch-2](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-2) | [regression-w-m-vote-epoch-3](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-3) | [regression-w-m-vote-epoch-4](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-4) | | w-m-vote-strict | [w-m-vote-strict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-1) | [w-m-vote-strict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-2) | [w-m-vote-strict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-3) | [w-m-vote-strict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-4) | | w-m-vote-nonstrict | [w-m-vote-nonstrict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-1) | [w-m-vote-nonstrict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-2) | [w-m-vote-nonstrict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-3) | [w-m-vote-nonstrict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-4) | This model is `regression-w-m-vote-epoch-2` ### Usage ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline from transformers.pipelines import TextClassificationPipeline class TextRegressionPipeline(TextClassificationPipeline): """ Class based on the TextClassificationPipeline from transformers. The difference is that instead of being based on a classifier, it is based on a regressor. You can specify the regression threshold when you call the pipeline or when you instantiate the pipeline. """ def __init__(self, **kwargs): """ Builds a new Pipeline based on regression. regression_threshold: Optional(float). If None, the pipeline will simply output the score. If set to a specific value, the output will be both the score and the label. """ self.regression_threshold = kwargs.pop("regression_threshold", None) super().__init__(**kwargs) def __call__(self, *args, **kwargs): """ You can also specify the regression threshold when you call the pipeline. regression_threshold: Optional(float). If None, the pipeline will simply output the score. If set to a specific value, the output will be both the score and the label. """ self.regression_threshold_call = kwargs.pop("regression_threshold", None) result = super().__call__(*args, **kwargs) return result def postprocess(self, model_outputs, function_to_apply=None, return_all_scores=False): outputs = model_outputs["logits"][0] outputs = outputs.numpy() scores = outputs score = scores[0] regression_threshold = self.regression_threshold # override the specific threshold if it is specified in the call if self.regression_threshold_call: regression_threshold = self.regression_threshold_call if regression_threshold: return {"label": 'racist' if score > regression_threshold else 'non-racist', "score": score} else: return {"score": score} model_name = 'regression-w-m-vote-epoch-2' tokenizer = AutoTokenizer.from_pretrained("dccuchile/bert-base-spanish-wwm-uncased") full_model_path = f'MartinoMensio/racism-models-{model_name}' model = AutoModelForSequenceClassification.from_pretrained(full_model_path) pipe = TextRegressionPipeline(model=model, tokenizer=tokenizer) texts = [ 'y porqué es lo que hay que hacer con los menas y con los adultos también!!!! NO a los inmigrantes ilegales!!!!', 'Es que los judíos controlan el mundo' ] # just get the score of regression print(pipe(texts)) # [{'score': 0.8367272}, {'score': 0.4402479}] # or also specify a threshold to cut racist/non-racist print(pipe(texts, regression_threshold=0.9)) # [{'label': 'non-racist', 'score': 0.8367272}, {'label': 'non-racist', 'score': 0.4402479}] ``` For more details, see https://github.com/preyero/neatclass22
profoz/distilbert-toxic-classifier
db64ff81614697fc27ae5f5547bbb36be50c9996
2022-04-15T19:07:38.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
profoz
null
profoz/distilbert-toxic-classifier
6
null
transformers
15,580
## DistilbERT Toxic Classifier
jason9693/soongsil-bert-small-apeach
2272a3ee32ad7a69080b52af82e96ed2c688a5f1
2022-04-16T14:19:36.000Z
[ "pytorch", "roberta", "text-classification", "ko", "dataset:jason9693/APEACH", "transformers", "co2_eq_emissions" ]
text-classification
false
jason9693
null
jason9693/soongsil-bert-small-apeach
6
null
transformers
15,581
--- language: ko widget: - text: "응 어쩔티비~~" datasets: - jason9693/APEACH co2_eq_emissions: 0.01856239042036965 ---
rmihaylov/gpt2-medium-bg
5db5a5d613dfa2201bafea52861b72ef3840ba4d
2022-04-16T18:29:56.000Z
[ "pytorch", "gpt2", "text-generation", "bg", "dataset:oscar", "dataset:chitanka", "dataset:wikipedia", "transformers", "torch", "license:mit" ]
text-generation
false
rmihaylov
null
rmihaylov/gpt2-medium-bg
6
null
transformers
15,582
--- inference: false language: - bg license: mit datasets: - oscar - chitanka - wikipedia tags: - torch --- # GPT-2 Pretrained model on Bulgarian language using a causal language modeling (CLM) objective. It was introduced in [this paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) and first released at [this page](https://openai.com/blog/better-language-models/). ## Model description This is the **MEDIUM** version. The training data is Bulgarian text from [OSCAR](https://oscar-corpus.com/post/oscar-2019/), [Chitanka](https://chitanka.info/) and [Wikipedia](https://bg.wikipedia.org/). ## Intended uses & limitations You can use the raw model for: - text generation - auto-complete - spelling correction Or fine-tune it to a downstream task. ### How to use Here is how to use this model in PyTorch: ```python >>> from transformers import AutoModel, AutoTokenizer >>> >>> model_id = "rmihaylov/gpt2-medium-bg" >>> tokenizer = AutoTokenizer.from_pretrained(model_id) >>> model = AutoModel.from_pretrained(model_id, trust_remote_code=True) >>> >>> input_ids = tokenizer.encode( >>> "Здравей,", >>> add_special_tokens=False, >>> return_tensors='pt') >>> >>> output_ids = model.generate( >>> input_ids, >>> do_sample=True, >>> max_length=50, >>> top_p=0.92, >>> pad_token_id=2, >>> top_k=0) >>> >>> output = tokenizer.decode(output_ids[0]) >>> >>> output = output.replace('<|endoftext|>', '\n\n\n') >>> output = output.replace('<|unknown|>', '') >>> output = output.replace('▁', ' ') >>> output = output.replace('<|n|>', '\n') >>> >>> print(output) Здравей, господин Фиш. — Добс забеляза как пребледня Ривера. — Не си тръгвайте още. Имам да ви задам няколко въпроса. — Благодаря, благодаря. — Фиш не изчака да му покаже, че е забелязал жеста й ``` ### Limitations and bias As the openAI team themselves point out in their [model card](https://github.com/openai/gpt-2/blob/master/model_card.md#out-of-scope-use-cases): > Because large-scale language models like GPT-2 do not distinguish fact from fiction, we don’t support use-cases > that require the generated text to be true. > > Additionally, language models like GPT-2 reflect the biases inherent to the systems they were trained on, so we do > not recommend that they be deployed into systems that interact with humans > unless the deployers first carry out a > study of biases relevant to the intended use-case. We found no statistically significant difference in gender, race, > and religious bias probes between 774M and 1.5B, implying all versions of GPT-2 should be approached with similar > levels of caution around use cases that are sensitive to biases around human attributes.
ttury/webnovel-kogpt2
296b5df77f4fe83e19f3abcb04aa1563591fb6ba
2022-04-17T14:15:18.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
ttury
null
ttury/webnovel-kogpt2
6
null
transformers
15,583
Entry not found
yliu337/bert_poet_classifier
098fcb7ad2e2e998b75521a0fbe32738f86c6748
2022-04-17T18:39:22.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
yliu337
null
yliu337/bert_poet_classifier
6
null
transformers
15,584
Entry not found
user1/distilbert-base-uncased-finetuned-emotion
911625966475421e14e8e57894c6d6c59cd91f60
2022-04-19T03:59:12.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
user1
null
user1/distilbert-base-uncased-finetuned-emotion
6
null
transformers
15,585
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9215 - name: F1 type: f1 value: 0.9215748499839705 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2302 - Accuracy: 0.9215 - F1: 0.9216 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8775 | 1.0 | 250 | 0.3501 | 0.894 | 0.8871 | | 0.2658 | 2.0 | 500 | 0.2302 | 0.9215 | 0.9216 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
zainalq7/autotrain-NLU_crypto_sentiment_analysis-754123133
61536e61804905131b4eaaddf8d10428a83ac2d8
2022-04-18T18:39:48.000Z
[ "pytorch", "roberta", "text-classification", "unk", "dataset:zainalq7/autotrain-data-NLU_crypto_sentiment_analysis", "transformers", "autotrain", "co2_eq_emissions" ]
text-classification
false
zainalq7
null
zainalq7/autotrain-NLU_crypto_sentiment_analysis-754123133
6
null
transformers
15,586
--- tags: autotrain language: unk widget: - text: "I love AutoTrain 🤗" datasets: - zainalq7/autotrain-data-NLU_crypto_sentiment_analysis co2_eq_emissions: 0.005300030853867218 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 754123133 - CO2 Emissions (in grams): 0.005300030853867218 ## Validation Metrics - Loss: 0.387116938829422 - Accuracy: 0.8658536585365854 - Macro F1: 0.7724053724053724 - Micro F1: 0.8658536585365854 - Weighted F1: 0.8467166979362101 - Macro Precision: 0.8232219717155155 - Micro Precision: 0.8658536585365854 - Weighted Precision: 0.8516026874759421 - Macro Recall: 0.7642089093701996 - Micro Recall: 0.8658536585365854 - Weighted Recall: 0.8658536585365854 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/zainalq7/autotrain-NLU_crypto_sentiment_analysis-754123133 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("zainalq7/autotrain-NLU_crypto_sentiment_analysis-754123133", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("zainalq7/autotrain-NLU_crypto_sentiment_analysis-754123133", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
Auruncus/gpt-j-6b-8bit-fine-tuned
fedeff5e7e69c69a6e6a458edc1999a9007077be
2022-04-18T23:59:09.000Z
[ "pytorch", "gptj", "text-generation", "transformers" ]
text-generation
false
Auruncus
null
Auruncus/gpt-j-6b-8bit-fine-tuned
6
1
transformers
15,587
Entry not found
anshr/distilbert_reward_model_01
41e654995dbe3797ee1fa66d55e4c22b9287262d
2022-04-19T00:51:55.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
anshr
null
anshr/distilbert_reward_model_01
6
null
transformers
15,588
Entry not found
tuhailong/cross_encoder_roberta-wwm-ext_v0
361e575ab4a2c1a2a90525b30688a95ee22ed258
2022-04-20T02:41:37.000Z
[ "pytorch", "bert", "text-classification", "zh", "dataset:dialogue", "transformers", "cross-encoder" ]
text-classification
false
tuhailong
null
tuhailong/cross_encoder_roberta-wwm-ext_v0
6
null
transformers
15,589
--- language: zh tags: - cross-encoder datasets: - dialogue --- # Data train data is similarity sentence data from E-commerce dialogue, about 50w sentence pairs. ## Model model created by [sentence-tansformers](https://www.sbert.net/index.html),model struct is cross-encoder,pretrained model is hfl/chinese-roberta-wwm-ext. ### Usage ```python >>> from sentence_transformers.cross_encoder import CrossEncoder >>> model = CrossEncoder(model_save_path, device="cuda", max_length=64) >>> sentences = ["今天天气不错", "今天心情不错"] >>> score = model.predict([sentences]) >>> print(score[0]) ``` #### Code train code from https://github.com/TTurn/cross-encoder
tuhailong/cross_encoder_roberta-wwm-ext-large
7e92109a759438804742b12fc0b81ad6b718a590
2022-04-20T02:39:46.000Z
[ "pytorch", "bert", "text-classification", "zh", "dataset:dialogue", "transformers", "cross-encoder" ]
text-classification
false
tuhailong
null
tuhailong/cross_encoder_roberta-wwm-ext-large
6
null
transformers
15,590
--- language: zh tags: - cross-encoder datasets: - dialogue --- # Data train data is similarity sentence data from E-commerce dialogue, about 50w sentence pairs. ## Model model created by [sentence-tansformers](https://www.sbert.net/index.html),model struct is cross-encoder,pretrained model is hfl/chinese-roberta-wwm-ext-large. ### Code train code from https://github.com/TTurn/cross-encoder #### Usage ```python >>> from sentence_transformers.cross_encoder import CrossEncoder >>> model = CrossEncoder(model_save_path, device="cuda", max_length=64) >>> sentences = ["今天天气不错", "今天心情不错"] >>> score = model.predict([sentences]) >>> print(score[0]) ```
GPL/trec-covid-msmarco-distilbert-gpl
83fd9fcc11f3db3ae43d9c3493f1ccfd6af07646
2022-04-19T15:16:52.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
GPL
null
GPL/trec-covid-msmarco-distilbert-gpl
6
null
sentence-transformers
15,591
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 140000 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `gpl.toolkit.loss.MarginDistillationLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 140000, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
GPL/quora-tsdae-msmarco-distilbert-gpl
75c1f53027caa1c5c116187331cbdc1661a72790
2022-04-19T15:25:55.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
GPL
null
GPL/quora-tsdae-msmarco-distilbert-gpl
6
null
sentence-transformers
15,592
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 140000 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `gpl.toolkit.loss.MarginDistillationLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 140000, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
gbennett/distilbert-base-uncased-finetuned-emotion
02ff9067b350b881bc5ab81cc11baf19a2f236d6
2022-04-19T20:26:52.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
gbennett
null
gbennett/distilbert-base-uncased-finetuned-emotion
6
null
transformers
15,593
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9185 - name: F1 type: f1 value: 0.9188211123089982 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2260 - Accuracy: 0.9185 - F1: 0.9188 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8134 | 1.0 | 250 | 0.3117 | 0.908 | 0.9056 | | 0.2477 | 2.0 | 500 | 0.2260 | 0.9185 | 0.9188 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
V0ltron/layoutLMTesting-different-labels
e560738449bc5c20b5c52fe2614c2d423bc1bc8d
2022-04-20T05:58:18.000Z
[ "pytorch", "layoutlmv2", "text-classification", "transformers" ]
text-classification
false
V0ltron
null
V0ltron/layoutLMTesting-different-labels
6
null
transformers
15,594
Entry not found
luquesky/distilbert-base-uncased-finetuned-emotion-bigger-batch-better-who-knows
bd43b658a94971fc0dc37836c6a054f0789ec714
2022-04-20T14:05:16.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
luquesky
null
luquesky/distilbert-base-uncased-finetuned-emotion-bigger-batch-better-who-knows
6
null
transformers
15,595
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion model-index: - name: distilbert-base-uncased-finetuned-emotion-bigger-batch-better-who-knows results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion-bigger-batch-better-who-knows This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 512 - eval_batch_size: 512 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6
Jeevesh8/feather_berts_73
9ef70aae9df1edd8a549f008aa538d239bd206e2
2022-04-20T13:44:59.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/feather_berts_73
6
null
transformers
15,596
Entry not found
Narsil/tiny-random-bart
47b08938a3b44cb2d62f2af3811a318cc794f11b
2022-04-20T14:41:29.000Z
[ "pytorch", "tf", "bart", "transformers", "text2text-generation" ]
text2text-generation
false
Narsil
null
Narsil/tiny-random-bart
6
null
transformers
15,597
--- pipeline_tag: "text2text-generation" ---
Raychanan/bert-base-cased-last500-SEP
293ca176b5b3c43776fd6a30ab843efc1007ddf2
2022-04-20T22:50:53.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Raychanan
null
Raychanan/bert-base-cased-last500-SEP
6
null
transformers
15,598
Entry not found
nnn/nezha-cn-base
cead2505ba4551c99ca7c79cf514c2a5aa686388
2022-04-21T02:09:33.000Z
[ "pytorch", "transformers" ]
null
false
nnn
null
nnn/nezha-cn-base
6
null
transformers
15,599
Entry not found