modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
list
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
shacharm/wav2vec2-large-xls-r-300m-ja-colab
46859476b0d95d65562f482f1e7f2872021b664e
2022-02-07T06:15:51.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
shacharm
null
shacharm/wav2vec2-large-xls-r-300m-ja-colab
6
null
transformers
15,400
Entry not found
silky/deep-todo
4cbce34a526969a0a751765d0cb85d7e00645eed
2021-06-18T08:20:41.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
silky
null
silky/deep-todo
6
null
transformers
15,401
# deep-todo Wondering what to do? Not anymore! Generate arbitrary todo's. Source: <https://colab.research.google.com/drive/1PlKLrGHaCuvWCKNC4fmQEMElF-iRec9f?usp=sharing> The todo's come from a random selection of (public) repositories I had on my computer. ### Sample A bunch of todo's: ``` ---------------------------------------------------------------------------------------------------- 0: TODO: should we check the other edges?/ 1: TODO: add more information here. 2: TODO: We could also add more general functions in this case to avoid/ 3: TODO: It seems strange to have the same constructor when the base set of/ 4: TODO: This implementation should be simplified, as it's too complex to handle the/ 5: TODO: we should be able to relax the intrinsic if not 6: TODO: Make sure this doesn't go through the next generation of plugins. It would be better if this was 7: TODO: There is always a small number of errors when we have this type/ 8: TODO: Add support for 't' values (not 't') for all the constant types/ 9: TODO: Check that we use loglef_cxx in the loop* 10: TODO: Support double or double values./ 11: TODO: Add tests that verify that this function does not work for all targets/ 12: TODO: we'd expect the result to be identical to the same value in terms of 13: TODO: We are not using a new type for 'w' as it does not denote 'y' yet, so we could/ 14: TODO: if we had to find a way to extract the source file directly, we would/ 15: TODO: this should fold into a flat array that would be/ 16: TODO: Check if we can make it work with the correct address./ 17: TODO: support v2i with V2R4+ 18: TODO: Can a fast-math-flags check be generalized to all types of data? */ 19: TODO: Add support for other type-specific VOPs. ``` Generated by: ``` tf.random.set_seed(0) sample_outputs = model.generate( input_ids, do_sample=True, max_length=40, top_k=50, top_p=0.95, num_return_sequences=20 ) print("Output:\\ " + 100 * '-') for i, sample_output in enumerate(sample_outputs): m = tokenizer.decode(sample_output, skip_special_tokens=True) m = m.split("TODO")[1].strip() print("{}: TODO{}".format(i, m)) ``` ## TODO - [ ] Fixup the data; it seems to contain multiple todo's per line - [ ] Preprocess the data in a better way - [ ] Download github and train it on everything
sismetanin/sbert-ru-sentiment-krnd
ac271b75c142d37034da80654365bc6c5405bdda
2021-05-20T06:27:51.000Z
[ "pytorch", "jax", "bert", "text-classification", "ru", "transformers", "sentiment analysis", "Russian", "SBERT-Large" ]
text-classification
false
sismetanin
null
sismetanin/sbert-ru-sentiment-krnd
6
null
transformers
15,402
--- language: - ru tags: - sentiment analysis - Russian - SBERT-Large --- ## SBERT-Large on Kaggle Russian News Dataset <table> <thead> <tr> <th rowspan="4">Model</th> <th rowspan="4">Score<br></th> <th rowspan="4">Rank</th> <th colspan="12">Dataset</th> </tr> <tr> <td colspan="6">SentiRuEval-2016<br></td> <td colspan="2" rowspan="2">RuSentiment</td> <td rowspan="2">KRND</td> <td rowspan="2">LINIS Crowd</td> <td rowspan="2">RuTweetCorp</td> <td rowspan="2">RuReviews</td> </tr> <tr> <td colspan="3">TC</td> <td colspan="3">Banks</td> </tr> <tr> <td>micro F<sub>1</sub></td> <td>macro F<sub>1</sub></td> <td>F<sub>1</sub></td> <td>micro F<sub>1</sub></td> <td>macro F<sub>1</sub></td> <td>F<sub>1</sub></td> <td>wighted F<sub>1</sub></td> <td>F<sub>1</sub></td> <td>F<sub>1</sub></td> <td>F<sub>1</sub></td> <td>F<sub>1</sub></td> <td>F<sub>1</sub></td> </tr> </thead> <tbody> <tr> <td>SOTA</td> <td>n/s</td> <td></td> <td>76.71</td> <td>66.40</td> <td>70.68</td> <td>67.51</td> <td>69.53</td> <td>74.06</td> <td>78.50</td> <td>n/s</td> <td>73.63</td> <td>60.51</td> <td>83.68</td> <td>77.44</td> </tr> <tr> <td>XLM-RoBERTa-Large</td> <td>76.37</td> <td>1</td> <td>82.26</td> <td>76.36</td> <td>79.42</td> <td>76.35</td> <td>76.08</td> <td>80.89</td> <td>78.31</td> <td>75.27</td> <td>75.17</td> <td>60.03</td> <td>88.91</td> <td>78.81</td> </tr> <tr> <td>SBERT-Large</td> <td>75.43</td> <td>2</td> <td>78.40</td> <td>71.36</td> <td>75.14</td> <td>72.39</td> <td>71.87</td> <td>77.72</td> <td>78.58</td> <td>75.85</td> <td>74.20</td> <td>60.64</td> <td>88.66</td> <td>77.41</td> </tr> <tr> <td>MBARTRuSumGazeta</td> <td>74.70</td> <td>3</td> <td>76.06</td> <td>68.95</td> <td>73.04</td> <td>72.34</td> <td>71.93</td> <td>77.83</td> <td>76.71</td> <td>73.56</td> <td>74.18</td> <td>60.54</td> <td>87.22</td> <td>77.51</td> </tr> <tr> <td>Conversational RuBERT</td> <td>74.44</td> <td>4</td> <td>76.69</td> <td>69.09</td> <td>73.11</td> <td>69.44</td> <td>68.68</td> <td>75.56</td> <td>77.31</td> <td>74.40</td> <td>73.10</td> <td>59.95</td> <td>87.86</td> <td>77.78</td> </tr> <tr> <td>LaBSE</td> <td>74.11</td> <td>5</td> <td>77.00</td> <td>69.19</td> <td>73.55</td> <td>70.34</td> <td>69.83</td> <td>76.38</td> <td>74.94</td> <td>70.84</td> <td>73.20</td> <td>59.52</td> <td>87.89</td> <td>78.47</td> </tr> <tr> <td>XLM-RoBERTa-Base</td> <td>73.60</td> <td>6</td> <td>76.35</td> <td>69.37</td> <td>73.42</td> <td>68.45</td> <td>67.45</td> <td>74.05</td> <td>74.26</td> <td>70.44</td> <td>71.40</td> <td>60.19</td> <td>87.90</td> <td>78.28</td> </tr> <tr> <td>RuBERT</td> <td>73.45</td> <td>7</td> <td>74.03</td> <td>66.14</td> <td>70.75</td> <td>66.46</td> <td>66.40</td> <td>73.37</td> <td>75.49</td> <td>71.86</td> <td>72.15</td> <td>60.55</td> <td>86.99</td> <td>77.41</td> </tr> <tr> <td>MBART-50-Large-Many-to-Many</td> <td>73.15</td> <td>8</td> <td>75.38</td> <td>67.81</td> <td>72.26</td> <td>67.13</td> <td>66.97</td> <td>73.85</td> <td>74.78</td> <td>70.98</td> <td>71.98</td> <td>59.20</td> <td>87.05</td> <td>77.24</td> </tr> <tr> <td>SlavicBERT</td> <td>71.96</td> <td>9</td> <td>71.45</td> <td>63.03</td> <td>68.44</td> <td>64.32</td> <td>63.99</td> <td>71.31</td> <td>72.13</td> <td>67.57</td> <td>72.54</td> <td>58.70</td> <td>86.43</td> <td>77.16</td> </tr> <tr> <td>EnRuDR-BERT</td> <td>71.51</td> <td>10</td> <td>72.56</td> <td>64.74</td> <td>69.07</td> <td>61.44</td> <td>60.21</td> <td>68.34</td> <td>74.19</td> <td>69.94</td> <td>69.33</td> <td>56.55</td> <td>87.12</td> <td>77.95</td> </tr> <tr> <td>RuDR-BERT</td> <td>71.14</td> <td>11</td> <td>72.79</td> <td>64.23</td> <td>68.36</td> <td>61.86</td> <td>60.92</td> <td>68.48</td> <td>74.65</td> <td>70.63</td> <td>68.74</td> <td>54.45</td> <td>87.04</td> <td>77.91</td> </tr> <tr> <td>MBART-50-Large</td> <td>69.46</td> <td>12</td> <td>70.91</td> <td>62.67</td> <td>67.24</td> <td>61.12</td> <td>60.25</td> <td>68.41</td> <td>72.88</td> <td>68.63</td> <td>70.52</td> <td>46.39</td> <td>86.48</td> <td>77.52</td> </tr> </tbody> </table>
socialmediaie/TRAC2020_ENG_A_bert-base-uncased
22820fee8a5882cc8f372a04a0baf69747ac580b
2021-05-20T06:55:44.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
socialmediaie
null
socialmediaie/TRAC2020_ENG_A_bert-base-uncased
6
null
transformers
15,403
# Multilingual Joint Fine-tuning of Transformer models for identifying Trolling, Aggression and Cyberbullying at TRAC 2020 Models and predictions for submission to TRAC - 2020 Second Workshop on Trolling, Aggression and Cyberbullying. Our trained models as well as evaluation metrics during traing are available at: https://databank.illinois.edu/datasets/IDB-8882752# We also make a few of our models available in HuggingFace's models repository at https://huggingface.co/socialmediaie/, these models can be further fine-tuned on your dataset of choice. Our approach is described in our paper titled: > Mishra, Sudhanshu, Shivangi Prasad, and Shubhanshu Mishra. 2020. "Multilingual Joint Fine-Tuning of Transformer Models for Identifying Trolling, Aggression and Cyberbullying at TRAC 2020." In Proceedings of the Second Workshop on Trolling, Aggression and Cyberbullying (TRAC-2020). The source code for training this model and more details can be found on our code repository: https://github.com/socialmediaie/TRAC2020 NOTE: These models are retrained for uploading here after our submission so the evaluation measures may be slightly different from the ones reported in the paper. If you plan to use the dataset please cite the following resources: * Mishra, Sudhanshu, Shivangi Prasad, and Shubhanshu Mishra. 2020. "Multilingual Joint Fine-Tuning of Transformer Models for Identifying Trolling, Aggression and Cyberbullying at TRAC 2020." In Proceedings of the Second Workshop on Trolling, Aggression and Cyberbullying (TRAC-2020). * Mishra, Shubhanshu, Shivangi Prasad, and Shubhanshu Mishra. 2020. “Trained Models for Multilingual Joint Fine-Tuning of Transformer Models for Identifying Trolling, Aggression and Cyberbullying at TRAC 2020.” University of Illinois at Urbana-Champaign. https://doi.org/10.13012/B2IDB-8882752_V1. ``` @inproceedings{Mishra2020TRAC, author = {Mishra, Sudhanshu and Prasad, Shivangi and Mishra, Shubhanshu}, booktitle = {Proceedings of the Second Workshop on Trolling, Aggression and Cyberbullying (TRAC-2020)}, title = {{Multilingual Joint Fine-tuning of Transformer models for identifying Trolling, Aggression and Cyberbullying at TRAC 2020}}, year = {2020} } @data{illinoisdatabankIDB-8882752, author = {Mishra, Shubhanshu and Prasad, Shivangi and Mishra, Shubhanshu}, doi = {10.13012/B2IDB-8882752_V1}, publisher = {University of Illinois at Urbana-Champaign}, title = {{Trained models for Multilingual Joint Fine-tuning of Transformer models for identifying Trolling, Aggression and Cyberbullying at TRAC 2020}}, url = {https://doi.org/10.13012/B2IDB-8882752{\_}V1}, year = {2020} } ``` ## Usage The models can be used via the following code: ```python from transformers import AutoModel, AutoTokenizer, AutoModelForSequenceClassification import torch from pathlib import Path from scipy.special import softmax import numpy as np import pandas as pd TASK_LABEL_IDS = { "Sub-task A": ["OAG", "NAG", "CAG"], "Sub-task B": ["GEN", "NGEN"], "Sub-task C": ["OAG-GEN", "OAG-NGEN", "NAG-GEN", "NAG-NGEN", "CAG-GEN", "CAG-NGEN"] } model_version="databank" # other option is hugging face library if model_version == "databank": # Make sure you have downloaded the required model file from https://databank.illinois.edu/datasets/IDB-8882752 # Unzip the file at some model_path (we are using: "databank_model") model_path = next(Path("databank_model").glob("./*/output/*/model")) # Assuming you get the following type of structure inside "databank_model" # 'databank_model/ALL/Sub-task C/output/bert-base-multilingual-uncased/model' lang, task, _, base_model, _ = model_path.parts tokenizer = AutoTokenizer.from_pretrained(base_model) model = AutoModelForSequenceClassification.from_pretrained(model_path) else: lang, task, base_model = "ALL", "Sub-task C", "bert-base-multilingual-uncased" base_model = f"socialmediaie/TRAC2020_{lang}_{lang.split()[-1]}_{base_model}" tokenizer = AutoTokenizer.from_pretrained(base_model) model = AutoModelForSequenceClassification.from_pretrained(base_model) # For doing inference set model in eval mode model.eval() # If you want to further fine-tune the model you can reset the model to model.train() task_labels = TASK_LABEL_IDS[task] sentence = "This is a good cat and this is a bad dog." processed_sentence = f"{tokenizer.cls_token} {sentence}" tokens = tokenizer.tokenize(sentence) indexed_tokens = tokenizer.convert_tokens_to_ids(tokens) tokens_tensor = torch.tensor([indexed_tokens]) with torch.no_grad(): logits, = model(tokens_tensor, labels=None) logits preds = logits.detach().cpu().numpy() preds_probs = softmax(preds, axis=1) preds = np.argmax(preds_probs, axis=1) preds_labels = np.array(task_labels)[preds] print(dict(zip(task_labels, preds_probs[0])), preds_labels) """You should get an output as follows: ({'CAG-GEN': 0.06762535, 'CAG-NGEN': 0.03244293, 'NAG-GEN': 0.6897794, 'NAG-NGEN': 0.15498641, 'OAG-GEN': 0.034373745, 'OAG-NGEN': 0.020792078}, array(['NAG-GEN'], dtype='<U8')) """ ```
socialmediaie/TRAC2020_HIN_A_bert-base-multilingual-uncased
5859d2a1675d792e1627ea69154482851994a4a4
2021-05-20T06:58:51.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
socialmediaie
null
socialmediaie/TRAC2020_HIN_A_bert-base-multilingual-uncased
6
null
transformers
15,404
# Multilingual Joint Fine-tuning of Transformer models for identifying Trolling, Aggression and Cyberbullying at TRAC 2020 Models and predictions for submission to TRAC - 2020 Second Workshop on Trolling, Aggression and Cyberbullying. Our trained models as well as evaluation metrics during traing are available at: https://databank.illinois.edu/datasets/IDB-8882752# We also make a few of our models available in HuggingFace's models repository at https://huggingface.co/socialmediaie/, these models can be further fine-tuned on your dataset of choice. Our approach is described in our paper titled: > Mishra, Sudhanshu, Shivangi Prasad, and Shubhanshu Mishra. 2020. "Multilingual Joint Fine-Tuning of Transformer Models for Identifying Trolling, Aggression and Cyberbullying at TRAC 2020." In Proceedings of the Second Workshop on Trolling, Aggression and Cyberbullying (TRAC-2020). The source code for training this model and more details can be found on our code repository: https://github.com/socialmediaie/TRAC2020 NOTE: These models are retrained for uploading here after our submission so the evaluation measures may be slightly different from the ones reported in the paper. If you plan to use the dataset please cite the following resources: * Mishra, Sudhanshu, Shivangi Prasad, and Shubhanshu Mishra. 2020. "Multilingual Joint Fine-Tuning of Transformer Models for Identifying Trolling, Aggression and Cyberbullying at TRAC 2020." In Proceedings of the Second Workshop on Trolling, Aggression and Cyberbullying (TRAC-2020). * Mishra, Shubhanshu, Shivangi Prasad, and Shubhanshu Mishra. 2020. “Trained Models for Multilingual Joint Fine-Tuning of Transformer Models for Identifying Trolling, Aggression and Cyberbullying at TRAC 2020.” University of Illinois at Urbana-Champaign. https://doi.org/10.13012/B2IDB-8882752_V1. ``` @inproceedings{Mishra2020TRAC, author = {Mishra, Sudhanshu and Prasad, Shivangi and Mishra, Shubhanshu}, booktitle = {Proceedings of the Second Workshop on Trolling, Aggression and Cyberbullying (TRAC-2020)}, title = {{Multilingual Joint Fine-tuning of Transformer models for identifying Trolling, Aggression and Cyberbullying at TRAC 2020}}, year = {2020} } @data{illinoisdatabankIDB-8882752, author = {Mishra, Shubhanshu and Prasad, Shivangi and Mishra, Shubhanshu}, doi = {10.13012/B2IDB-8882752_V1}, publisher = {University of Illinois at Urbana-Champaign}, title = {{Trained models for Multilingual Joint Fine-tuning of Transformer models for identifying Trolling, Aggression and Cyberbullying at TRAC 2020}}, url = {https://doi.org/10.13012/B2IDB-8882752{\_}V1}, year = {2020} } ``` ## Usage The models can be used via the following code: ```python from transformers import AutoModel, AutoTokenizer, AutoModelForSequenceClassification import torch from pathlib import Path from scipy.special import softmax import numpy as np import pandas as pd TASK_LABEL_IDS = { "Sub-task A": ["OAG", "NAG", "CAG"], "Sub-task B": ["GEN", "NGEN"], "Sub-task C": ["OAG-GEN", "OAG-NGEN", "NAG-GEN", "NAG-NGEN", "CAG-GEN", "CAG-NGEN"] } model_version="databank" # other option is hugging face library if model_version == "databank": # Make sure you have downloaded the required model file from https://databank.illinois.edu/datasets/IDB-8882752 # Unzip the file at some model_path (we are using: "databank_model") model_path = next(Path("databank_model").glob("./*/output/*/model")) # Assuming you get the following type of structure inside "databank_model" # 'databank_model/ALL/Sub-task C/output/bert-base-multilingual-uncased/model' lang, task, _, base_model, _ = model_path.parts tokenizer = AutoTokenizer.from_pretrained(base_model) model = AutoModelForSequenceClassification.from_pretrained(model_path) else: lang, task, base_model = "ALL", "Sub-task C", "bert-base-multilingual-uncased" base_model = f"socialmediaie/TRAC2020_{lang}_{lang.split()[-1]}_{base_model}" tokenizer = AutoTokenizer.from_pretrained(base_model) model = AutoModelForSequenceClassification.from_pretrained(base_model) # For doing inference set model in eval mode model.eval() # If you want to further fine-tune the model you can reset the model to model.train() task_labels = TASK_LABEL_IDS[task] sentence = "This is a good cat and this is a bad dog." processed_sentence = f"{tokenizer.cls_token} {sentence}" tokens = tokenizer.tokenize(sentence) indexed_tokens = tokenizer.convert_tokens_to_ids(tokens) tokens_tensor = torch.tensor([indexed_tokens]) with torch.no_grad(): logits, = model(tokens_tensor, labels=None) logits preds = logits.detach().cpu().numpy() preds_probs = softmax(preds, axis=1) preds = np.argmax(preds_probs, axis=1) preds_labels = np.array(task_labels)[preds] print(dict(zip(task_labels, preds_probs[0])), preds_labels) """You should get an output as follows: ({'CAG-GEN': 0.06762535, 'CAG-NGEN': 0.03244293, 'NAG-GEN': 0.6897794, 'NAG-NGEN': 0.15498641, 'OAG-GEN': 0.034373745, 'OAG-NGEN': 0.020792078}, array(['NAG-GEN'], dtype='<U8')) """ ```
sontn122/xlm-roberta-large-finetuned-squad-v2_15102021
a65fb96a78b4729c84b66578360161a68618264b
2021-10-15T02:19:34.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "question-answering", "dataset:squad_v2", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
question-answering
false
sontn122
null
sontn122/xlm-roberta-large-finetuned-squad-v2_15102021
6
null
transformers
15,405
--- license: mit tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: xlm-roberta-large-finetuned-squad-v2_15102021 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-large-finetuned-squad-v2_15102021 This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on the squad_v2 dataset. It achieves the following results on the evaluation set: - eval_loss: 17.5548 - eval_runtime: 168.7788 - eval_samples_per_second: 23.368 - eval_steps_per_second: 5.842 - epoch: 8.0 - step: 7600 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.13.1 - Tokenizers 0.10.3
sshleifer/mar_enro_6_3_student
feedbcae51ccc586fffc8ba9d18a00e089e14a7d
2020-11-04T14:45:05.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
sshleifer
null
sshleifer/mar_enro_6_3_student
6
null
transformers
15,406
Entry not found
superspray/distilbert_base_squad2_custom_dataset
030f1d6a7b72c789af431dba3866aed0e15e256c
2021-02-20T07:33:31.000Z
[ "pytorch", "distilbert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
superspray
null
superspray/distilbert_base_squad2_custom_dataset
6
null
transformers
15,407
# Question & Answering Model for 'Save Your Minutes' from Dobby-AI Distilbert_Base fine-tuned on SQuAD2.0 and custom QA dataset This model is [twmkn9/distilbert-base-uncased-squad2] trained on additional custom dataset as: ``` !python3 run_squad.py --model_type distilbert \ --model_name_or_path /content/distilbert_base_384 \ --do_lower_case \ --output_dir /content/model/\ --do_train \ --train_file $data_dir/additional_qa.json\ --version_2_with_negative \ --do_lower_case \ --num_train_epochs 3 \ --weight_decay 0.01 \ --learning_rate 3e-5 \ --max_grad_norm 0.5 \ --adam_epsilon 1e-6 \ --max_seq_length 512 \ --doc_stride 128 \ --threads 12 \ --logging_steps 50 \ --save_steps 1000 \ --overwrite_output_dir \ --per_gpu_train_batch_size 4 ``` We used Google Colab for training the model,
suzuki/distilbert-base-uncased-finetuned-squad
2f87b707f7457da1facfb245cb20d5b1fdc978e9
2021-10-18T12:41:03.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
suzuki
null
suzuki/distilbert-base-uncased-finetuned-squad
6
null
transformers
15,408
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.2962 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.3817 | 1.0 | 2767 | 1.2962 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
swcrazyfan/TEFL-blogging-9K
3515e666ee507fe7f4f2b6083df65dacc258b587
2021-06-03T01:32:49.000Z
[ "pytorch", "gpt_neo", "text-generation", "transformers" ]
text-generation
false
swcrazyfan
null
swcrazyfan/TEFL-blogging-9K
6
null
transformers
15,409
Entry not found
tals/albert-base-vitaminc_rationale
7913c29e658d6100d17b284136662761241fb650
2022-06-22T23:57:03.000Z
[ "pytorch", "albert", "python", "dataset:fever", "dataset:glue", "dataset:tals/vitaminc", "transformers" ]
null
false
tals
null
tals/albert-base-vitaminc_rationale
6
null
transformers
15,410
--- language: python datasets: - fever - glue - tals/vitaminc --- # Details Model used in [Get Your Vitamin C! Robust Fact Verification with Contrastive Evidence](https://aclanthology.org/2021.naacl-main.52/) (Schuster et al., NAACL 21`). For more details see: https://github.com/TalSchuster/VitaminC When using this model, please cite the paper. # BibTeX entry and citation info ```bibtex @inproceedings{schuster-etal-2021-get, title = "Get Your Vitamin {C}! Robust Fact Verification with Contrastive Evidence", author = "Schuster, Tal and Fisch, Adam and Barzilay, Regina", booktitle = "Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies", month = jun, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.naacl-main.52", doi = "10.18653/v1/2021.naacl-main.52", pages = "624--643", abstract = "Typical fact verification models use retrieved written evidence to verify claims. Evidence sources, however, often change over time as more information is gathered and revised. In order to adapt, models must be sensitive to subtle differences in supporting evidence. We present VitaminC, a benchmark infused with challenging cases that require fact verification models to discern and adjust to slight factual changes. We collect over 100,000 Wikipedia revisions that modify an underlying fact, and leverage these revisions, together with additional synthetically constructed ones, to create a total of over 400,000 claim-evidence pairs. Unlike previous resources, the examples in VitaminC are contrastive, i.e., they contain evidence pairs that are nearly identical in language and content, with the exception that one supports a given claim while the other does not. We show that training using this design increases robustness{---}improving accuracy by 10{\%} on adversarial fact verification and 6{\%} on adversarial natural language inference (NLI). Moreover, the structure of VitaminC leads us to define additional tasks for fact-checking resources: tagging relevant words in the evidence for verifying the claim, identifying factual revisions, and providing automatic edits via factually consistent text generation.", } ```
tanmoyio/test-model
ecc7c8bb5e43856baf047d9c9842233e75a3ea40
2022-01-25T15:08:18.000Z
[ "pytorch", "bert", "transformers" ]
null
false
tanmoyio
null
tanmoyio/test-model
6
null
transformers
15,411
Entry not found
tartuNLP/EstBERT_UPOS_128
41619fa14f77cee6dbd1eeb4caaf5effc86c0df9
2022-05-03T07:49:00.000Z
[ "pytorch", "bert", "token-classification", "et", "transformers", "license:cc-by-4.0", "autotrain_compatible" ]
token-classification
false
tartuNLP
null
tartuNLP/EstBERT_UPOS_128
6
null
transformers
15,412
--- language: et license: cc-by-4.0 ---
tartuNLP/EstBERT_XPOS_128
84b59b11658c3d5d74a0097a26985364c98834b0
2022-05-03T07:48:25.000Z
[ "pytorch", "bert", "token-classification", "et", "transformers", "license:cc-by-4.0", "autotrain_compatible" ]
token-classification
false
tartuNLP
null
tartuNLP/EstBERT_XPOS_128
6
null
transformers
15,413
--- language: et license: cc-by-4.0 ---
tasosk/bert-base-uncased-airlines
a509ec07cbe9a8b5a1687e28bfc4f4f865157276
2021-12-18T20:20:24.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
tasosk
null
tasosk/bert-base-uncased-airlines
6
null
transformers
15,414
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: bert-base-uncased-airlines results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-airlines This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3458 - Accuracy: 0.9021 - F1: 0.9022 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 405 | 0.3230 | 0.8754 | 0.8750 | | 0.4658 | 2.0 | 810 | 0.2738 | 0.8986 | 0.8985 | | 0.2473 | 3.0 | 1215 | 0.2944 | 0.9110 | 0.9111 | | 0.2498 | 4.0 | 1620 | 0.3322 | 0.8950 | 0.8949 | | 0.2174 | 5.0 | 2025 | 0.3342 | 0.9021 | 0.9021 | | 0.2174 | 6.0 | 2430 | 0.3526 | 0.8986 | 0.8985 | | 0.2055 | 7.0 | 2835 | 0.3458 | 0.9021 | 0.9022 | ### Framework versions - Transformers 4.14.1 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
textattack/xlnet-base-cased-STS-B
0d4702ffb57ef25b02e5aad01cfae7c041e5ec12
2020-07-06T16:33:08.000Z
[ "pytorch", "xlnet", "text-generation", "transformers" ]
text-generation
false
textattack
null
textattack/xlnet-base-cased-STS-B
6
null
transformers
15,415
## TextAttack Model Card This `xlnet-base-cased` model was fine-tuned for sequence classification using TextAttack and the glue dataset loaded using the `nlp` library. The model was fine-tuned for 5 epochs with a batch size of 8, a learning rate of 5e-05, and a maximum sequence length of 128. Since this was a regression task, the model was trained with a mean squared error loss function. The best score the model achieved on this task was 0.8892630070017784, as measured by the eval set pearson correlation, found after 4 epochs. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
thomasdehaene/gpt2-large-dutch-finetune-oscar-10m-3epoch
2b248e5bd4a1ccf3892df606296c2db77c7f1afd
2021-05-23T13:08:54.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
thomasdehaene
null
thomasdehaene/gpt2-large-dutch-finetune-oscar-10m-3epoch
6
null
transformers
15,416
Entry not found
tiennvcs/bert-base-uncased-finetuned-docvqa
50c10b2bb427fdaa619ae899e8123e63b1277d6e
2021-10-22T15:49:05.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
tiennvcs
null
tiennvcs/bert-base-uncased-finetuned-docvqa
6
null
transformers
15,417
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-base-uncased-finetuned-docvqa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-docvqa This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.9146 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 250500 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.2151 | 0.1 | 1000 | 2.6299 | | 1.8885 | 0.21 | 2000 | 2.2217 | | 1.7353 | 0.31 | 3000 | 2.1675 | | 1.6188 | 0.41 | 4000 | 2.2436 | | 1.5802 | 0.52 | 5000 | 2.0539 | | 1.4875 | 0.62 | 6000 | 2.0551 | | 1.4675 | 0.73 | 7000 | 1.9368 | | 1.3485 | 0.83 | 8000 | 1.9456 | | 1.3273 | 0.93 | 9000 | 1.9281 | | 1.1048 | 1.04 | 10000 | 1.9333 | | 0.9529 | 1.14 | 11000 | 2.2019 | | 0.9418 | 1.24 | 12000 | 2.0381 | | 0.9209 | 1.35 | 13000 | 1.8753 | | 0.8788 | 1.45 | 14000 | 1.9964 | | 0.8729 | 1.56 | 15000 | 1.9690 | | 0.8671 | 1.66 | 16000 | 1.8513 | | 0.8379 | 1.76 | 17000 | 1.9627 | | 0.8722 | 1.87 | 18000 | 1.8988 | | 0.7842 | 1.97 | 19000 | 1.9146 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
typeform/distilroberta-base
246888851328b937eb2d9c955fd2f74fcf0c4e44
2021-01-20T14:23:46.000Z
[ "pytorch", "roberta", "fill-mask", "en", "dataset:openwebtext", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
typeform
null
typeform/distilroberta-base
6
null
transformers
15,418
--- language: en license: apache-2.0 datasets: - openwebtext --- # DistilRoBERTa base model Forked from https://huggingface.co/distilroberta-base
uclanlp/plbart-go-en_XX
5fad2bbc01dd24746f7941a12980bc57bd8db25f
2021-11-09T17:08:27.000Z
[ "pytorch", "plbart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
uclanlp
null
uclanlp/plbart-go-en_XX
6
null
transformers
15,419
Entry not found
uclanlp/plbart-php-en_XX
019e9888cf88e657798f9bb9a95dfaefd1b47563
2021-11-09T17:09:15.000Z
[ "pytorch", "plbart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
uclanlp
null
uclanlp/plbart-php-en_XX
6
null
transformers
15,420
Entry not found
uer/bert-3.9B-chinese-cluecorpussmall
c8f0a2dd76c64a43c9d0c82d966198f4c4d70876
2021-12-13T10:50:27.000Z
[ "pytorch", "megatron-bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
uer
null
uer/bert-3.9B-chinese-cluecorpussmall
6
null
transformers
15,421
Entry not found
uer/chinese_roberta_L-10_H-128
226739f93bdeee2998a2c2c39add37fb51c5a381
2022-07-15T08:14:39.000Z
[ "pytorch", "tf", "jax", "bert", "fill-mask", "zh", "dataset:CLUECorpusSmall", "arxiv:1909.05658", "arxiv:1908.08962", "transformers", "autotrain_compatible" ]
fill-mask
false
uer
null
uer/chinese_roberta_L-10_H-128
6
1
transformers
15,422
--- language: zh datasets: CLUECorpusSmall widget: - text: "北京是[MASK]国的首都。" --- # Chinese RoBERTa Miniatures ## Model description This is the set of 24 Chinese RoBERTa models pre-trained by [UER-py](https://github.com/dbiir/UER-py/), which is introduced in [this paper](https://arxiv.org/abs/1909.05658). [Turc et al.](https://arxiv.org/abs/1908.08962) have shown that the standard BERT recipe is effective on a wide range of model sizes. Following their paper, we released the 24 Chinese RoBERTa models. In order to facilitate users to reproduce the results, we used the publicly available corpus and provided all training details. You can download the 24 Chinese RoBERTa miniatures either from the [UER-py Modelzoo page](https://github.com/dbiir/UER-py/wiki/Modelzoo), or via HuggingFace from the links below: | | H=128 | H=256 | H=512 | H=768 | | -------- | :-----------------------: | :-----------------------: | :-------------------------: | :-------------------------: | | **L=2** | [**2/128 (Tiny)**][2_128] | [2/256][2_256] | [2/512][2_512] | [2/768][2_768] | | **L=4** | [4/128][4_128] | [**4/256 (Mini)**][4_256] | [**4/512 (Small)**][4_512] | [4/768][4_768] | | **L=6** | [6/128][6_128] | [6/256][6_256] | [6/512][6_512] | [6/768][6_768] | | **L=8** | [8/128][8_128] | [8/256][8_256] | [**8/512 (Medium)**][8_512] | [8/768][8_768] | | **L=10** | [10/128][10_128] | [10/256][10_256] | [10/512][10_512] | [10/768][10_768] | | **L=12** | [12/128][12_128] | [12/256][12_256] | [12/512][12_512] | [**12/768 (Base)**][12_768] | Here are scores on the devlopment set of six Chinese tasks: | Model | Score | douban | chnsenticorp | lcqmc | tnews(CLUE) | iflytek(CLUE) | ocnli(CLUE) | | -------------- | :---: | :----: | :----------: | :---: | :---------: | :-----------: | :---------: | | RoBERTa-Tiny | 72.3 | 83.0 | 91.4 | 81.8 | 62.0 | 55.0 | 60.3 | | RoBERTa-Mini | 75.7 | 84.8 | 93.7 | 86.1 | 63.9 | 58.3 | 67.4 | | RoBERTa-Small | 76.8 | 86.5 | 93.4 | 86.5 | 65.1 | 59.4 | 69.7 | | RoBERTa-Medium | 77.8 | 87.6 | 94.8 | 88.1 | 65.6 | 59.5 | 71.2 | | RoBERTa-Base | 79.5 | 89.1 | 95.2 | 89.2 | 67.0 | 60.9 | 75.5 | For each task, we selected the best fine-tuning hyperparameters from the lists below, and trained with the sequence length of 128: - epochs: 3, 5, 8 - batch sizes: 32, 64 - learning rates: 3e-5, 1e-4, 3e-4 ## How to use You can use this model directly with a pipeline for masked language modeling (take the case of RoBERTa-Medium): ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='uer/chinese_roberta_L-8_H-512') >>> unmasker("中国的首都是[MASK]京。") [ {'sequence': '[CLS] 中 国 的 首 都 是 北 京 。 [SEP]', 'score': 0.8701988458633423, 'token': 1266, 'token_str': '北'}, {'sequence': '[CLS] 中 国 的 首 都 是 南 京 。 [SEP]', 'score': 0.1194809079170227, 'token': 1298, 'token_str': '南'}, {'sequence': '[CLS] 中 国 的 首 都 是 东 京 。 [SEP]', 'score': 0.0037803512532263994, 'token': 691, 'token_str': '东'}, {'sequence': '[CLS] 中 国 的 首 都 是 普 京 。 [SEP]', 'score': 0.0017127094324678183, 'token': 3249, 'token_str': '普'}, {'sequence': '[CLS] 中 国 的 首 都 是 望 京 。 [SEP]', 'score': 0.001687526935711503, 'token': 3307, 'token_str': '望'} ] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('uer/chinese_roberta_L-8_H-512') model = BertModel.from_pretrained("uer/chinese_roberta_L-8_H-512") text = "用你喜欢的任何文本替换我。" encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('uer/chinese_roberta_L-8_H-512') model = TFBertModel.from_pretrained("uer/chinese_roberta_L-8_H-512") text = "用你喜欢的任何文本替换我。" encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ## Training data [CLUECorpusSmall](https://github.com/CLUEbenchmark/CLUECorpus2020/) is used as training data. We found that models pre-trained on CLUECorpusSmall outperform those pre-trained on CLUECorpus2020, although CLUECorpus2020 is much larger than CLUECorpusSmall. ## Training procedure Models are pre-trained by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud](https://cloud.tencent.com/). We pre-train 1,000,000 steps with a sequence length of 128 and then pre-train 250,000 additional steps with a sequence length of 512. We use the same hyper-parameters on different model sizes. Taking the case of RoBERTa-Medium Stage1: ``` python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ --vocab_path models/google_zh_vocab.txt \ --dataset_path cluecorpussmall_seq128_dataset.pt \ --processes_num 32 --seq_length 128 \ --dynamic_masking --data_processor mlm ``` ``` python3 pretrain.py --dataset_path cluecorpussmall_seq128_dataset.pt \ --vocab_path models/google_zh_vocab.txt \ --config_path models/bert/medium_config.json \ --output_model_path models/cluecorpussmall_roberta_medium_seq128_model.bin \ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --total_steps 1000000 --save_checkpoint_steps 100000 --report_steps 50000 \ --learning_rate 1e-4 --batch_size 64 \ --data_processor mlm --target mlm ``` Stage2: ``` python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ --vocab_path models/google_zh_vocab.txt \ --dataset_path cluecorpussmall_seq512_dataset.pt \ --processes_num 32 --seq_length 512 \ --dynamic_masking --data_processor mlm ``` ``` python3 pretrain.py --dataset_path cluecorpussmall_seq512_dataset.pt \ --vocab_path models/google_zh_vocab.txt \ --pretrained_model_path models/cluecorpussmall_roberta_medium_seq128_model.bin-1000000 \ --config_path models/bert/medium_config.json \ --output_model_path models/cluecorpussmall_roberta_medium_seq512_model.bin \ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --total_steps 250000 --save_checkpoint_steps 50000 --report_steps 10000 \ --learning_rate 5e-5 --batch_size 16 \ --data_processor mlm --target mlm ``` Finally, we convert the pre-trained model into Huggingface's format: ``` python3 scripts/convert_bert_from_uer_to_huggingface.py --input_model_path models/cluecorpussmall_roberta_medium_seq512_model.bin-250000 \ --output_model_path pytorch_model.bin \ --layers_num 8 --type mlm ``` ### BibTeX entry and citation info ``` @article{devlin2018bert, title={Bert: Pre-training of deep bidirectional transformers for language understanding}, author={Devlin, Jacob and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1810.04805}, year={2018} } @article{liu2019roberta, title={Roberta: A robustly optimized bert pretraining approach}, author={Liu, Yinhan and Ott, Myle and Goyal, Naman and Du, Jingfei and Joshi, Mandar and Chen, Danqi and Levy, Omer and Lewis, Mike and Zettlemoyer, Luke and Stoyanov, Veselin}, journal={arXiv preprint arXiv:1907.11692}, year={2019} } @article{turc2019, title={Well-Read Students Learn Better: On the Importance of Pre-training Compact Models}, author={Turc, Iulia and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1908.08962v2 }, year={2019} } @article{zhao2019uer, title={UER: An Open-Source Toolkit for Pre-training Models}, author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong}, journal={EMNLP-IJCNLP 2019}, pages={241}, year={2019} } ``` [2_128]:https://huggingface.co/uer/chinese_roberta_L-2_H-128 [2_256]:https://huggingface.co/uer/chinese_roberta_L-2_H-256 [2_512]:https://huggingface.co/uer/chinese_roberta_L-2_H-512 [2_768]:https://huggingface.co/uer/chinese_roberta_L-2_H-768 [4_128]:https://huggingface.co/uer/chinese_roberta_L-4_H-128 [4_256]:https://huggingface.co/uer/chinese_roberta_L-4_H-256 [4_512]:https://huggingface.co/uer/chinese_roberta_L-4_H-512 [4_768]:https://huggingface.co/uer/chinese_roberta_L-4_H-768 [6_128]:https://huggingface.co/uer/chinese_roberta_L-6_H-128 [6_256]:https://huggingface.co/uer/chinese_roberta_L-6_H-256 [6_512]:https://huggingface.co/uer/chinese_roberta_L-6_H-512 [6_768]:https://huggingface.co/uer/chinese_roberta_L-6_H-768 [8_128]:https://huggingface.co/uer/chinese_roberta_L-8_H-128 [8_256]:https://huggingface.co/uer/chinese_roberta_L-8_H-256 [8_512]:https://huggingface.co/uer/chinese_roberta_L-8_H-512 [8_768]:https://huggingface.co/uer/chinese_roberta_L-8_H-768 [10_128]:https://huggingface.co/uer/chinese_roberta_L-10_H-128 [10_256]:https://huggingface.co/uer/chinese_roberta_L-10_H-256 [10_512]:https://huggingface.co/uer/chinese_roberta_L-10_H-512 [10_768]:https://huggingface.co/uer/chinese_roberta_L-10_H-768 [12_128]:https://huggingface.co/uer/chinese_roberta_L-12_H-128 [12_256]:https://huggingface.co/uer/chinese_roberta_L-12_H-256 [12_512]:https://huggingface.co/uer/chinese_roberta_L-12_H-512 [12_768]:https://huggingface.co/uer/chinese_roberta_L-12_H-768
ufal/byt5-small-multilexnorm2021-de
73da8079205ee703b8df9253ead750e8cf8f20ce
2021-10-20T12:10:26.000Z
[ "pytorch", "t5", "text2text-generation", "de", "dataset:mc4", "dataset:wikipedia", "dataset:multilexnorm", "arxiv:2105.13626", "arxiv:1907.06292", "transformers", "lexical normalization", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
ufal
null
ufal/byt5-small-multilexnorm2021-de
6
null
transformers
15,423
--- language: de datasets: - mc4 - wikipedia - multilexnorm tags: - lexical normalization license: apache-2.0 --- # Fine-tuned ByT5-small for MultiLexNorm (German version) ![model image](https://github.com/ufal/multilexnorm2021/raw/master/img/overall.png) This is the official release of the fine-tuned models for **the winning entry** to the [*W-NUT 2021: Multilingual Lexical Normalization (MultiLexNorm)* shared task](https://noisy-text.github.io/2021/multi-lexnorm.html), which evaluates lexical-normalization systems on 12 social media datasets in 11 languages. Our system is based on [ByT5](https://arxiv.org/abs/2105.13626), which we first pre-train on synthetic data and then fine-tune on authentic normalization data. It achieves the best performance by a wide margin in intrinsic evaluation, and also the best performance in extrinsic evaluation through dependency parsing. In addition to these fine-tuned models, we also release the source files on [GitHub](https://github.com/ufal/multilexnorm2021) and an interactive demo on [Google Colab](https://colab.research.google.com/drive/1rxpI8IlKk-D2crFqi2hdzbTBIezqgsCg?usp=sharing). ## How to use The model was *not* fine-tuned in a standard sentence-to-sentence setting – instead, it was tailored to the token-to-token definition of MultiLexNorm data. Please refer to [**the interactive demo on Colab notebook**](https://colab.research.google.com/drive/1rxpI8IlKk-D2crFqi2hdzbTBIezqgsCg?usp=sharing) to learn how to use these models. ## How to cite ```bibtex @inproceedings{wnut-ufal, title= "{ÚFAL} at {MultiLexNorm} 2021: Improving Multilingual Lexical Normalization by Fine-tuning {ByT5}", author = "Samuel, David and Straka, Milan", booktitle = "Proceedings of the 7th Workshop on Noisy User-generated Text (W-NUT 2021)", year = "2021", publisher = "Association for Computational Linguistics", address = "Punta Cana, Dominican Republic" } ``` ## ByT5 - Small ByT5 is a tokenizer-free version of [Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) and generally follows the architecture of [MT5](https://huggingface.co/google/mt5-small). ByT5 was only pre-trained on [mC4](https://www.tensorflow.org/datasets/catalog/c4#c4multilingual) excluding any supervised training with an average span-mask of 20 UTF-8 characters. Therefore, this model has to be fine-tuned before it is useable on a downstream task. ByT5 works especially well on noisy text data,*e.g.*, `google/byt5-small` significantly outperforms [mt5-small](https://huggingface.co/google/mt5-small) on [TweetQA](https://arxiv.org/abs/1907.06292). Paper: [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) Authors: *Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel*
valeriazen/ruT5-base-finetuned-plenka-chatbot-full
ca4a10911ba1c3e3c5e9c5eadfc3c5dbd7fcf5e7
2022-01-19T08:54:36.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
valeriazen
null
valeriazen/ruT5-base-finetuned-plenka-chatbot-full
6
null
transformers
15,424
Entry not found
vesteinn/XLMr-ENIS-QA-Is
0eadc67de13e6f73d41577b55dfd281270e9c78d
2022-02-17T22:07:24.000Z
[ "pytorch", "xlm-roberta", "question-answering", "is", "dataset:ic3", "dataset:igc", "transformers", "icelandic", "qa", "autotrain_compatible" ]
question-answering
false
vesteinn
null
vesteinn/XLMr-ENIS-QA-Is
6
null
transformers
15,425
--- language: - is thumbnail: tags: - icelandic - qa datasets: - ic3 - igc metrics: - em - f1 widget: - text: "Hvenær var Halldór Laxness í menntaskóla ?" context: "Halldór Laxness ( Halldór Kiljan ) fæddist í Reykjavík 23. apríl árið 1902 og átti í fyrstu heima við Laugaveg en árið 1905 settist fjölskyldan að í Laxnesi í Mosfellssveit . Þar ólst Halldór upp en sótti skóla í Reykjavík á unglingsárum . Ungur hélt hann síðan utan og var langdvölum erlendis um árabil – í ýmsum Evrópulöndum og síðar í Ameríku . Þegar hann var heima bjó hann í Reykjavík þar til hann og kona hans , Auður Sveinsdóttir , byggðu sér húsið Gljúfrastein í Mosfellssveit og fluttu þangað árið 1945 . Þar var heimili þeirra alla tíð síðan og þar er nú safn til minningar um þau . Halldór lést 8. febrúar 1998 . Skólaganga Halldórs varð ekki löng . Árið 1918 hóf hann nám við Menntaskólann í Reykjavík en hafði lítinn tíma til að læra , enda var hann að skrifa skáldsögu , Barn náttúrunnar , sem kom út haustið 1919 – þá þegar var höfundurinn ungi farinn af landi brott . Sagan vakti þó nokkra athygli og í Alþýðublaðinu sagði m.a. : „ Og hver veit nema að Halldór frá Laxnesi eigi eftir að verða óskabarn íslensku þjóðarinnar . “ Upp frá þessu sendi Halldór frá sér bók nánast á hverju ári , stundum fleiri en eina , í yfir sex áratugi . Afköst hans voru með eindæmum ; hann skrifaði fjölda skáldsagna , sumar í nokkrum hlutum , leikrit , kvæði , smásagnasöfn og endurminningabækur og gaf auk þess út mörg greinasöfn og ritgerðir . Bækurnar eru fjölbreyttar en eiga það sameiginlegt að vera skrifaðar af einstakri stílgáfu , djúpum mannskilningi og víðtækri þekkingu á sögu og samfélagi . Þar birtast oft afgerandi skoðanir á þjóðfélagsmálum og sögupersónur eru margar einkar eftirminnilegar ; tilsvör þeirra og lunderni hafa orðið samofin þjóðarsálinni . Þekktustu verk Halldórs eru eflaust skáldsögurnar stóru og rismiklu , s.s. Salka Valka , Sjálfstætt fólk , Heimsljós , Íslandsklukkan og Gerpla , og raunar mætti telja upp mun fleiri ; Kvæðabók hans er í uppáhaldi hjá mörgum sem og minningabækurnar sem hann skrifaði á efri árum um æskuár sín ; af þekktum greinasöfnum og ritgerðum má nefna Alþýðubókina og Skáldatíma . Mikið hefur verið skrifað um verk og ævi skáldsins , en hér skal aðeins bent á ítarlega frásögn og greiningu Halldórs Guðmundssonar í bókinni Halldór Laxness – ævisaga ." --- # XLMr-ENIS-QA-Is ## Model description This is an Icelandic reading comprehension Q&A model. ## Intended uses & limitations This model is part of my MSc thesis about Q&A for Icelandic. #### How to use ```python ``` #### Limitations and bias ## Training data Translated English datasets were used along with the Natural Questions in Icelandic dataset. ## Training procedure ## Eval results ### BibTeX entry and citation info ```bibtex ```
vidhur2k/mBERT-German-Mono
a90080b2c90c631e2fd6e5212fbba343779a52a6
2021-12-02T20:16:31.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
vidhur2k
null
vidhur2k/mBERT-German-Mono
6
null
transformers
15,426
Entry not found
vitouphy/wav2vec2-xls-r-300m-japanese
6ca1b5ac146d9553b6ab128c56af46623f5d6fbe
2022-03-23T18:30:07.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "ja", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
vitouphy
null
vitouphy/wav2vec2-xls-r-300m-japanese
6
null
transformers
15,427
--- language: - ja license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - ja - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: XLS-R-300M - Japanese results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: ja metrics: - name: Test WER type: wer value: 54.05 - name: Test CER type: cer value: 27.54 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: ja metrics: - name: Validation WER type: wer value: 48.77 - name: Validation CER type: cer value: 24.87 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: ja metrics: - name: Test CER type: cer value: 27.36 --- # This model is for transcribing audio into Hiragana, one format of Japanese language. This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the `mozilla-foundation/common_voice_8_0 dataset`. Note that the following results are achieved by: - Modify `eval.py` to suit the use case. - Since kanji and katakana shares the same sound as hiragana, we convert all texts to hiragana using [pykakasi](https://pykakasi.readthedocs.io) and tokenize them using [fugashi](https://github.com/polm/fugashi). It achieves the following results on the evaluation set: - Loss: 0.7751 - Cer: 0.2227 # Evaluation results (Running ./eval.py): | Model | Metric | Common-Voice-8/test | speech-recognition-community-v2/dev-data | |:--------:|:------:|:-------------------:|:------------------------------------------:| | w/o LM | WER | 0.5964 | 0.5532 | | | CER | 0.2944 | 0.2629 | | w/ LM | WER | 0.5405 | 0.4877 | | | CER | **0.2754** | **0.2487** | ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 4.4081 | 1.6 | 500 | 4.0983 | 1.0 | | 3.303 | 3.19 | 1000 | 3.3563 | 1.0 | | 3.1538 | 4.79 | 1500 | 3.2066 | 0.9239 | | 2.1526 | 6.39 | 2000 | 1.1597 | 0.3355 | | 1.8726 | 7.98 | 2500 | 0.9023 | 0.2505 | | 1.7817 | 9.58 | 3000 | 0.8219 | 0.2334 | | 1.7488 | 11.18 | 3500 | 0.7915 | 0.2222 | | 1.7039 | 12.78 | 4000 | 0.7751 | 0.2227 | | Stop & Train | | | | | | 1.6571 | 15.97 | 5000 | 0.6788 | 0.1685 | | 1.520400 | 19.16 | 6000 | 0.6095 | 0.1409 | | 1.448200 | 22.35 | 7000 | 0.5843 | 0.1430 | | 1.385400 | 25.54 | 8000 | 0.5699 | 0.1263 | | 1.354200 | 28.73 | 9000 | 0.5686 | 0.1219 | | 1.331500 | 31.92 | 10000 | 0.5502 | 0.1144 | | 1.290800 | 35.11 | 11000 | 0.5371 | 0.1140 | | Stop & Train | | | | | | 1.235200 | 38.30 | 12000 | 0.5394 | 0.1106 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
vitvit/xlm-roberta-base-finetuned-heb_HebrewSentiment
3fc65317a1f702bb739288092a0cff057e2bac8e
2021-09-19T06:52:56.000Z
[ "pytorch", "xlm-roberta", "token-classification", "dataset:wikiann", "transformers", "generated_from_trainer", "autotrain_compatible" ]
token-classification
false
vitvit
null
vitvit/xlm-roberta-base-finetuned-heb_HebrewSentiment
6
null
transformers
15,428
--- tags: - generated_from_trainer datasets: - wikiann metrics: - precision - recall - f1 - accuracy model_index: - name: xlm-roberta-base-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: wikiann type: wikiann args: he metric: name: Accuracy type: accuracy value: 0.9449884563330945 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-ner This model was trained from scratch on the wikiann dataset. It achieves the following results on the evaluation set: - Loss: 0.5647 - Precision: 0.8684 - Recall: 0.8656 - F1: 0.8670 - Accuracy: 0.9450 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 3 - eval_batch_size: 3 - seed: 42 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:------:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.3537 | 1.0 | 6667 | 0.3621 | 0.7951 | 0.8054 | 0.8002 | 0.9187 | | 0.2468 | 2.0 | 13334 | 0.3024 | 0.8341 | 0.8451 | 0.8396 | 0.9359 | | 0.1705 | 3.0 | 20001 | 0.3255 | 0.8401 | 0.8328 | 0.8364 | 0.9365 | | 0.1388 | 4.0 | 26668 | 0.3530 | 0.8438 | 0.8527 | 0.8482 | 0.9389 | | 0.0979 | 5.0 | 33335 | 0.3980 | 0.8445 | 0.8542 | 0.8494 | 0.9390 | | 0.0946 | 6.0 | 40002 | 0.3863 | 0.8500 | 0.8622 | 0.8560 | 0.9426 | | 0.0908 | 7.0 | 46669 | 0.3991 | 0.8519 | 0.8633 | 0.8576 | 0.9420 | | 0.0712 | 8.0 | 53336 | 0.4065 | 0.8617 | 0.8551 | 0.8584 | 0.9424 | | 0.0568 | 9.0 | 60003 | 0.4348 | 0.8441 | 0.8663 | 0.8551 | 0.9413 | | 0.0448 | 10.0 | 66670 | 0.4661 | 0.8429 | 0.8603 | 0.8515 | 0.9404 | | 0.0687 | 11.0 | 73337 | 0.4482 | 0.8561 | 0.8621 | 0.8591 | 0.9431 | | 0.0552 | 12.0 | 80004 | 0.4527 | 0.8499 | 0.8619 | 0.8558 | 0.9405 | | 0.059 | 13.0 | 86671 | 0.4688 | 0.8564 | 0.8592 | 0.8578 | 0.9428 | | 0.0362 | 14.0 | 93338 | 0.4593 | 0.8705 | 0.8615 | 0.8660 | 0.9451 | | 0.0407 | 15.0 | 100005 | 0.4661 | 0.8647 | 0.8674 | 0.8660 | 0.9449 | | 0.0278 | 16.0 | 106672 | 0.4794 | 0.8670 | 0.8707 | 0.8688 | 0.9457 | | 0.0425 | 17.0 | 113339 | 0.5056 | 0.8548 | 0.8698 | 0.8622 | 0.9440 | | 0.0251 | 18.0 | 120006 | 0.4630 | 0.8658 | 0.8603 | 0.8630 | 0.9442 | | 0.0207 | 19.0 | 126673 | 0.5077 | 0.8515 | 0.8574 | 0.8544 | 0.9420 | | 0.0245 | 20.0 | 133340 | 0.5130 | 0.8630 | 0.8646 | 0.8638 | 0.9437 | | 0.051 | 21.0 | 140007 | 0.5233 | 0.8578 | 0.8644 | 0.8611 | 0.9423 | | 0.0381 | 22.0 | 146674 | 0.5269 | 0.8688 | 0.8635 | 0.8661 | 0.9433 | | 0.0144 | 23.0 | 153341 | 0.5137 | 0.8572 | 0.8668 | 0.8620 | 0.9443 | | 0.0237 | 24.0 | 160008 | 0.5121 | 0.8741 | 0.8552 | 0.8645 | 0.9443 | | 0.0175 | 25.0 | 166675 | 0.5019 | 0.8665 | 0.8725 | 0.8695 | 0.9467 | | 0.0268 | 26.0 | 173342 | 0.5247 | 0.8597 | 0.8696 | 0.8646 | 0.9433 | | 0.0128 | 27.0 | 180009 | 0.5075 | 0.8696 | 0.8704 | 0.8700 | 0.9461 | | 0.0299 | 28.0 | 186676 | 0.5066 | 0.8647 | 0.8636 | 0.8641 | 0.9444 | | 0.018 | 29.0 | 193343 | 0.5421 | 0.8677 | 0.8609 | 0.8643 | 0.9432 | | 0.0264 | 30.0 | 200010 | 0.5023 | 0.8479 | 0.8731 | 0.8603 | 0.9424 | | 0.0169 | 31.0 | 206677 | 0.5215 | 0.8672 | 0.8653 | 0.8662 | 0.9435 | | 0.0185 | 32.0 | 213344 | 0.5184 | 0.8698 | 0.8630 | 0.8664 | 0.9457 | | 0.0159 | 33.0 | 220011 | 0.4930 | 0.8653 | 0.8662 | 0.8657 | 0.9448 | | 0.026 | 34.0 | 226678 | 0.4976 | 0.8579 | 0.8794 | 0.8685 | 0.9456 | | 0.016 | 35.0 | 233345 | 0.5671 | 0.8517 | 0.8689 | 0.8602 | 0.9421 | | 0.0186 | 36.0 | 240012 | 0.4881 | 0.8706 | 0.8752 | 0.8729 | 0.9467 | | 0.0253 | 37.0 | 246679 | 0.5351 | 0.8621 | 0.8725 | 0.8673 | 0.9447 | | 0.0086 | 38.0 | 253346 | 0.5759 | 0.8742 | 0.8612 | 0.8677 | 0.9440 | | 0.0157 | 39.0 | 260013 | 0.5362 | 0.8549 | 0.8696 | 0.8622 | 0.9436 | | 0.0107 | 40.0 | 266680 | 0.5734 | 0.8730 | 0.8582 | 0.8655 | 0.9438 | | 0.0139 | 41.0 | 273347 | 0.4995 | 0.8622 | 0.8729 | 0.8675 | 0.9457 | | 0.0141 | 42.0 | 280014 | 0.5567 | 0.8651 | 0.8671 | 0.8661 | 0.9448 | | 0.0146 | 43.0 | 286681 | 0.5124 | 0.8673 | 0.8691 | 0.8682 | 0.9460 | | 0.0125 | 44.0 | 293348 | 0.5511 | 0.8568 | 0.8758 | 0.8662 | 0.9440 | | 0.0153 | 45.0 | 300015 | 0.5385 | 0.8597 | 0.8720 | 0.8658 | 0.9445 | | 0.017 | 46.0 | 306682 | 0.5302 | 0.8633 | 0.8714 | 0.8673 | 0.9448 | | 0.0121 | 47.0 | 313349 | 0.5302 | 0.8604 | 0.8666 | 0.8635 | 0.9441 | | 0.0136 | 48.0 | 320016 | 0.5639 | 0.8481 | 0.8677 | 0.8578 | 0.9404 | | 0.0107 | 49.0 | 326683 | 0.5403 | 0.8731 | 0.8648 | 0.8689 | 0.9457 | | 0.0083 | 50.0 | 333350 | 0.5615 | 0.8770 | 0.8581 | 0.8675 | 0.9431 | | 0.0121 | 51.0 | 340017 | 0.5489 | 0.8512 | 0.8730 | 0.8620 | 0.9439 | | 0.0079 | 52.0 | 346684 | 0.5328 | 0.8599 | 0.8736 | 0.8667 | 0.9458 | | 0.0139 | 53.0 | 353351 | 0.5572 | 0.8665 | 0.8631 | 0.8648 | 0.9441 | | 0.0138 | 54.0 | 360018 | 0.5128 | 0.8662 | 0.8740 | 0.8701 | 0.9468 | | 0.014 | 55.0 | 366685 | 0.5603 | 0.8798 | 0.8662 | 0.8730 | 0.9460 | | 0.0319 | 56.0 | 373352 | 0.5508 | 0.8631 | 0.8688 | 0.8659 | 0.9427 | | 0.0152 | 57.0 | 380019 | 0.5716 | 0.8596 | 0.8644 | 0.8620 | 0.9429 | | 0.0249 | 58.0 | 386686 | 0.5692 | 0.8595 | 0.8749 | 0.8671 | 0.9453 | | 0.0161 | 59.0 | 393353 | 0.5483 | 0.8665 | 0.8715 | 0.8690 | 0.9463 | | 0.0157 | 60.0 | 400020 | 0.5588 | 0.8603 | 0.8800 | 0.8701 | 0.9463 | | 0.0247 | 61.0 | 406687 | 0.5265 | 0.8510 | 0.8662 | 0.8585 | 0.9417 | | 0.0069 | 62.0 | 413354 | 0.5578 | 0.8681 | 0.8679 | 0.8680 | 0.9459 | | 0.0254 | 63.0 | 420021 | 0.5756 | 0.8620 | 0.8646 | 0.8633 | 0.9435 | | 0.0182 | 64.0 | 426688 | 0.5323 | 0.8651 | 0.8762 | 0.8707 | 0.9458 | | 0.0237 | 65.0 | 433355 | 0.5342 | 0.8592 | 0.8724 | 0.8657 | 0.9443 | | 0.0234 | 66.0 | 440022 | 0.5458 | 0.8653 | 0.8679 | 0.8666 | 0.9437 | | 0.0159 | 67.0 | 446689 | 0.5166 | 0.8781 | 0.8624 | 0.8702 | 0.9448 | | 0.0204 | 68.0 | 453356 | 0.5499 | 0.8658 | 0.8723 | 0.8690 | 0.9452 | | 0.0117 | 69.0 | 460023 | 0.5573 | 0.8572 | 0.8714 | 0.8642 | 0.9432 | | 0.0062 | 70.0 | 466690 | 0.5887 | 0.8592 | 0.8675 | 0.8633 | 0.9422 | | 0.0123 | 71.0 | 473357 | 0.5138 | 0.8600 | 0.8699 | 0.8649 | 0.9448 | | 0.0079 | 72.0 | 480024 | 0.5548 | 0.8610 | 0.8724 | 0.8666 | 0.9447 | | 0.0061 | 73.0 | 486691 | 0.5872 | 0.8476 | 0.8675 | 0.8574 | 0.9415 | | 0.0129 | 74.0 | 493358 | 0.5520 | 0.8727 | 0.8595 | 0.8661 | 0.9449 | | 0.0159 | 75.0 | 500025 | 0.5427 | 0.8611 | 0.8674 | 0.8642 | 0.9435 | | 0.0258 | 76.0 | 506692 | 0.5402 | 0.8672 | 0.8702 | 0.8687 | 0.9448 | | 0.0151 | 77.0 | 513359 | 0.5589 | 0.8681 | 0.8704 | 0.8693 | 0.9457 | | 0.0075 | 78.0 | 520026 | 0.5754 | 0.8613 | 0.8682 | 0.8647 | 0.9438 | | 0.0076 | 79.0 | 526693 | 0.5709 | 0.8608 | 0.8646 | 0.8627 | 0.9445 | | 0.0196 | 80.0 | 533360 | 0.5252 | 0.8714 | 0.8706 | 0.8710 | 0.9461 | | 0.0123 | 81.0 | 540027 | 0.5857 | 0.8637 | 0.8631 | 0.8634 | 0.9437 | | 0.0205 | 82.0 | 546694 | 0.5805 | 0.8642 | 0.8655 | 0.8648 | 0.9431 | | 0.0065 | 83.0 | 553361 | 0.5815 | 0.8619 | 0.8626 | 0.8622 | 0.9431 | | 0.0128 | 84.0 | 560028 | 0.6305 | 0.8498 | 0.8646 | 0.8571 | 0.9402 | | 0.0118 | 85.0 | 566695 | 0.5620 | 0.8648 | 0.8682 | 0.8665 | 0.9445 | | 0.0173 | 86.0 | 573362 | 0.5714 | 0.8655 | 0.8657 | 0.8656 | 0.9442 | | 0.0107 | 87.0 | 580029 | 0.5845 | 0.8603 | 0.8649 | 0.8626 | 0.9418 | | 0.0218 | 88.0 | 586696 | 0.5259 | 0.8708 | 0.8697 | 0.8703 | 0.9449 | | 0.0039 | 89.0 | 593363 | 0.5809 | 0.8800 | 0.8648 | 0.8723 | 0.9465 | | 0.0076 | 90.0 | 600030 | 0.5852 | 0.8744 | 0.8615 | 0.8679 | 0.9443 | | 0.008 | 91.0 | 606697 | 0.5540 | 0.8689 | 0.8683 | 0.8686 | 0.9454 | | 0.0114 | 92.0 | 613364 | 0.5836 | 0.8578 | 0.8639 | 0.8609 | 0.9422 | | 0.0245 | 93.0 | 620031 | 0.5808 | 0.8735 | 0.8672 | 0.8703 | 0.9450 | | 0.0142 | 94.0 | 626698 | 0.5846 | 0.8630 | 0.8692 | 0.8661 | 0.9429 | | 0.0013 | 95.0 | 633365 | 0.5495 | 0.8656 | 0.8605 | 0.8630 | 0.9432 | | 0.0093 | 96.0 | 640032 | 0.6049 | 0.8660 | 0.8656 | 0.8658 | 0.9436 | | 0.012 | 97.0 | 646699 | 0.5802 | 0.8633 | 0.8618 | 0.8626 | 0.9427 | | 0.0042 | 98.0 | 653366 | 0.5851 | 0.8571 | 0.8658 | 0.8615 | 0.9422 | | 0.0143 | 99.0 | 660033 | 0.5619 | 0.8671 | 0.8626 | 0.8649 | 0.9437 | | 0.0173 | 100.0 | 666700 | 0.5647 | 0.8684 | 0.8656 | 0.8670 | 0.9450 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0+cu111 - Datasets 1.11.0 - Tokenizers 0.10.3
vkk1710/xlnet-base-cased-finetuned-qqp
0c2bd74668b9c9e1c9072c8a7cd36c2b53b6cd5e
2021-11-15T19:25:06.000Z
[ "pytorch", "tensorboard", "xlnet", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
vkk1710
null
vkk1710/xlnet-base-cased-finetuned-qqp
6
null
transformers
15,429
--- license: mit tags: - generated_from_trainer datasets: - glue model-index: - name: xlnet-base-cased-finetuned-qqp results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlnet-base-cased-finetuned-qqp This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co/xlnet-base-cased) on the qqp dataset (part of glue dataset). It achieves the following results on the evaluation set: - eval_loss: 0.27 - eval_accuracy: 0.9084 - eval_f1: 0.8775 - epoch: 3 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - weight_decay: 0.01 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.12.3 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
voidful/unifiedqg-bart-base
84f3707b6a137c8a1bbfaba06001ba608307f1cc
2021-12-09T12:32:45.000Z
[ "pytorch", "bart", "text2text-generation", "en", "dataset:unifiedQA", "transformers", "question", "generation", "seq2seq", "autotrain_compatible" ]
text2text-generation
false
voidful
null
voidful/unifiedqg-bart-base
6
null
transformers
15,430
--- language: en tags: - bart - question - generation - seq2seq datasets: - unifiedQA metrics: - bleu - rouge pipeline_tag: text2text-generation widget: - text: "treehouses in france. \n When you ' re having a holiday , one of the main questions to ask is which hotel or apartment to choose . However , when it comes to France , you have another special choice : treehouses . In France , treehouses are offered to travelers as a new choice in many places . The price may be a little higher , but you do have a chance to _ your childhood memories . Alain Laurens , one of France ' s top treehouse designers , said , ' Most of the people might have the experience of building a den when they were young . And they like that feeling of freedom when they are children . ' Its fairy - tale style gives travelers a special feeling . It seems as if they are living as a forest king and enjoying the fresh air in the morning . Another kind of treehouse is the ' star cube ' . It gives travelers the chance of looking at the stars shining in the sky when they are going to sleep . Each ' star cube ' not only offers all the comfortable things that a hotel provides for travelers , but also gives them a chance to look for stars by using a telescope . The glass roof allows you to look at the stars from your bed ." --- # unifiedqg-bart-base ## Model description This model is a sequence-to-sequence question generator which takes an answer and context as an input, and generates a question as an output. It is based on a pretrained `bart-base` model. #### How to use The model takes concatenated context and answers as an input sequence, and will generate a full distractor sentence as an output sequence. The max sequence length is 1024 tokens. Inputs should be organised into the following format: ``` answer \n context ``` The input sequence can then be encoded and passed as the `input_ids` argument in the model's `generate()` method.
vvn/en-to-dutch-marianmt
87cec79915fb1713db7ac4fab21e2869eaa30503
2021-07-31T13:02:40.000Z
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
vvn
null
vvn/en-to-dutch-marianmt
6
null
transformers
15,431
Fine-Tuned MarianMT translation model for translating text from English to Dutch. Checkpoint of pre-trained model = Helsinki-NLP/opus-mt-en-nl. Trained using custom training loop with PyTorch on Colab for 2 epochs. Link to the GitHub repo containing Google Colab notebook: https://github.com/vanadnarayane26/Maverick_2.0_Translation_layer/blob/main/Eng_to_dutch_marianmt.ipynb
vxvxx/t5-small-finetuned-no_paragraph-to-paragraph
8b59ae67f8a36c5488ce4541d36ed46becddb791
2022-02-15T23:01:34.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
vxvxx
null
vxvxx/t5-small-finetuned-no_paragraph-to-paragraph
6
null
transformers
15,432
--- license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: t5-small-finetuned-no_paragraph-to-paragraph results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-no_paragraph-to-paragraph This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0713 - Bleu: 0.0 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:----:|:-------:| | 0.767 | 1.0 | 576 | 0.0713 | 0.0 | 19.0 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
wandemberg-eld/opus-mt-en-de-finetuned-en-to-de
39c033631e888b33e9476d57c4b3ecaff527183d
2021-12-01T12:49:07.000Z
[ "pytorch", "marian", "text2text-generation", "dataset:wmt16", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
wandemberg-eld
null
wandemberg-eld/opus-mt-en-de-finetuned-en-to-de
6
null
transformers
15,433
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wmt16 metrics: - bleu model-index: - name: opus-mt-en-de-finetuned-en-to-de results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: wmt16 type: wmt16 args: de-en metrics: - name: Bleu type: bleu value: 29.4312 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-en-de-finetuned-en-to-de This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-de](https://huggingface.co/Helsinki-NLP/opus-mt-en-de) on the wmt16 dataset. It achieves the following results on the evaluation set: - Loss: 1.4083 - Bleu: 29.4312 - Gen Len: 24.746 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:------:|:---------------:|:-------:|:-------:| | 1.978 | 1.0 | 568611 | 1.4083 | 29.4312 | 24.746 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu102 - Datasets 1.16.1 - Tokenizers 0.10.3
wangyuwei/bert_cn_finetuning
cadd317823258172b82e7c46a942fb7bb79a9080
2021-05-20T09:05:36.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
wangyuwei
null
wangyuwei/bert_cn_finetuning
6
null
transformers
15,434
Entry not found
whher/german-gpt2-romantik
761c9aab14352853087a5a67540b7eb74f632cfa
2021-08-25T19:21:42.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
whher
null
whher/german-gpt2-romantik
6
null
transformers
15,435
Model Description ------ The german-gpt2-romantik model was fine-tuned on [dbmdz's german gpt-2](https://huggingface.co/dbmdz/german-gpt2 "dbmdz's german-gpt2") for specialization in poetry generation tasks. Training Data ------ The data for training were hand-chosen poems from the German Romanticism Era (German: *Romantik*). In total there were 2,641 pieces of poems and 879,427 tokens in the corpus. Poem Generation ------ Enter a starting sentence or phrase (also with the Inference API on the right), the model will output poem-like texts. You can try by entering "Der Garten der Freude", which outputs: "Der Garten der Freude, in dem mein Auge ruht, wo Gott und die Sonne, hier im Himmel, zu allen Zeiten uns umgeben."
wietsedv/bert-base-dutch-cased-finetuned-udlassy-ner
bb98dd2895a842369a146c76363a8c7a388cb17b
2021-05-20T09:10:49.000Z
[ "pytorch", "jax", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
wietsedv
null
wietsedv/bert-base-dutch-cased-finetuned-udlassy-ner
6
null
transformers
15,436
Entry not found
wilsontam/gpt2-dstc9
c0c1a2fa66a3f2d8c71f698b6c89185a4bc1d6c2
2021-12-26T14:02:23.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "dstc9" ]
text-generation
false
wilsontam
null
wilsontam/gpt2-dstc9
6
null
transformers
15,437
--- language: "en" tags: - dstc9 widget: - text: "Yes, I'm going to be in Chinatown, San Francisco and am looking" - text: "Can you find me one that is in the" --- This GPT2 model is trained using DSTC9 data for dialogue modeling purpose. Data link: https://github.com/alexa/alexa-with-dstc9-track1-dataset Credit: Jia-Chen Jason Gu, Wilson Tam
xkang/bert-finetuned-ner-accelerate
ab8e03824261a5650152517960a3dc2ff75ff4f0
2021-12-21T07:50:19.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
xkang
null
xkang/bert-finetuned-ner-accelerate
6
null
transformers
15,438
Entry not found
zhuqing/bert-base-uncased-netmums-feminist
464ab510083a18692a2be006bdd6ae3e1d4c69b7
2021-08-13T09:20:52.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
zhuqing
null
zhuqing/bert-base-uncased-netmums-feminist
6
null
transformers
15,439
Entry not found
zhuqing/comparison-roberta-base-uncased-netmums-feminist
a5759560e32e857034f29471bd80a44027e897cd
2021-08-20T05:17:51.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
zhuqing
null
zhuqing/comparison-roberta-base-uncased-netmums-feminist
6
null
transformers
15,440
Entry not found
zhuqing/v1-theme2
c6682189164ba4c4ca3bf4b15241117de94028c3
2021-07-07T16:02:21.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
zhuqing
null
zhuqing/v1-theme2
6
null
transformers
15,441
Entry not found
zoeymeng913/bert_cn_finetuning
9e3a1d5d1540235e17fe4774f77a7e4bac29a99a
2021-05-20T09:54:41.000Z
[ "pytorch", "jax", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
zoeymeng913
null
zoeymeng913/bert_cn_finetuning
6
null
transformers
15,442
Entry not found
wietsedv/xlm-roberta-base-ft-udpos28-nl
406757ea8fd1b72a73fb3b6e804a61e350d0ffcb
2022-02-25T09:59:07.000Z
[ "pytorch", "xlm-roberta", "token-classification", "nl", "dataset:universal_dependencies", "transformers", "part-of-speech", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
wietsedv
null
wietsedv/xlm-roberta-base-ft-udpos28-nl
6
null
transformers
15,443
--- language: - nl license: apache-2.0 library_name: transformers tags: - part-of-speech - token-classification datasets: - universal_dependencies metrics: - accuracy model-index: - name: xlm-roberta-base-ft-udpos28-nl results: - task: type: token-classification name: Part-of-Speech Tagging dataset: type: universal_dependencies name: Universal Dependencies v2.8 metrics: - type: accuracy name: English Test accuracy value: 88.8 - type: accuracy name: Dutch Test accuracy value: 97.0 - type: accuracy name: German Test accuracy value: 89.0 - type: accuracy name: Italian Test accuracy value: 89.9 - type: accuracy name: French Test accuracy value: 88.1 - type: accuracy name: Spanish Test accuracy value: 90.5 - type: accuracy name: Russian Test accuracy value: 89.2 - type: accuracy name: Swedish Test accuracy value: 90.7 - type: accuracy name: Norwegian Test accuracy value: 87.6 - type: accuracy name: Danish Test accuracy value: 89.0 - type: accuracy name: Low Saxon Test accuracy value: 58.3 - type: accuracy name: Akkadian Test accuracy value: 22.9 - type: accuracy name: Armenian Test accuracy value: 86.7 - type: accuracy name: Welsh Test accuracy value: 70.2 - type: accuracy name: Old East Slavic Test accuracy value: 73.5 - type: accuracy name: Albanian Test accuracy value: 78.9 - type: accuracy name: Slovenian Test accuracy value: 76.3 - type: accuracy name: Guajajara Test accuracy value: 22.1 - type: accuracy name: Kurmanji Test accuracy value: 78.3 - type: accuracy name: Turkish Test accuracy value: 78.3 - type: accuracy name: Finnish Test accuracy value: 86.2 - type: accuracy name: Indonesian Test accuracy value: 85.4 - type: accuracy name: Ukrainian Test accuracy value: 85.8 - type: accuracy name: Polish Test accuracy value: 86.3 - type: accuracy name: Portuguese Test accuracy value: 90.0 - type: accuracy name: Kazakh Test accuracy value: 83.0 - type: accuracy name: Latin Test accuracy value: 79.0 - type: accuracy name: Old French Test accuracy value: 53.1 - type: accuracy name: Buryat Test accuracy value: 58.4 - type: accuracy name: Kaapor Test accuracy value: 13.8 - type: accuracy name: Korean Test accuracy value: 62.2 - type: accuracy name: Estonian Test accuracy value: 87.6 - type: accuracy name: Croatian Test accuracy value: 87.6 - type: accuracy name: Gothic Test accuracy value: 16.5 - type: accuracy name: Swiss German Test accuracy value: 48.3 - type: accuracy name: Assyrian Test accuracy value: 14.6 - type: accuracy name: North Sami Test accuracy value: 36.5 - type: accuracy name: Naija Test accuracy value: 36.0 - type: accuracy name: Latvian Test accuracy value: 86.6 - type: accuracy name: Chinese Test accuracy value: 47.9 - type: accuracy name: Tagalog Test accuracy value: 73.9 - type: accuracy name: Bambara Test accuracy value: 29.7 - type: accuracy name: Lithuanian Test accuracy value: 85.7 - type: accuracy name: Galician Test accuracy value: 87.4 - type: accuracy name: Vietnamese Test accuracy value: 65.1 - type: accuracy name: Greek Test accuracy value: 86.3 - type: accuracy name: Catalan Test accuracy value: 89.5 - type: accuracy name: Czech Test accuracy value: 87.3 - type: accuracy name: Erzya Test accuracy value: 43.0 - type: accuracy name: Bhojpuri Test accuracy value: 48.5 - type: accuracy name: Thai Test accuracy value: 58.1 - type: accuracy name: Marathi Test accuracy value: 87.7 - type: accuracy name: Basque Test accuracy value: 78.2 - type: accuracy name: Slovak Test accuracy value: 88.2 - type: accuracy name: Kiche Test accuracy value: 28.2 - type: accuracy name: Yoruba Test accuracy value: 19.5 - type: accuracy name: Warlpiri Test accuracy value: 27.9 - type: accuracy name: Tamil Test accuracy value: 84.3 - type: accuracy name: Maltese Test accuracy value: 19.2 - type: accuracy name: Ancient Greek Test accuracy value: 66.3 - type: accuracy name: Icelandic Test accuracy value: 84.3 - type: accuracy name: Mbya Guarani Test accuracy value: 25.6 - type: accuracy name: Urdu Test accuracy value: 68.5 - type: accuracy name: Romanian Test accuracy value: 83.8 - type: accuracy name: Persian Test accuracy value: 78.3 - type: accuracy name: Apurina Test accuracy value: 27.3 - type: accuracy name: Japanese Test accuracy value: 34.1 - type: accuracy name: Hungarian Test accuracy value: 87.2 - type: accuracy name: Hindi Test accuracy value: 73.3 - type: accuracy name: Classical Chinese Test accuracy value: 28.3 - type: accuracy name: Komi Permyak Test accuracy value: 45.1 - type: accuracy name: Faroese Test accuracy value: 78.3 - type: accuracy name: Sanskrit Test accuracy value: 30.3 - type: accuracy name: Livvi Test accuracy value: 63.1 - type: accuracy name: Arabic Test accuracy value: 80.0 - type: accuracy name: Wolof Test accuracy value: 27.7 - type: accuracy name: Bulgarian Test accuracy value: 89.2 - type: accuracy name: Akuntsu Test accuracy value: 28.0 - type: accuracy name: Makurap Test accuracy value: 7.5 - type: accuracy name: Kangri Test accuracy value: 44.9 - type: accuracy name: Breton Test accuracy value: 65.8 - type: accuracy name: Telugu Test accuracy value: 85.7 - type: accuracy name: Cantonese Test accuracy value: 50.7 - type: accuracy name: Old Church Slavonic Test accuracy value: 49.4 - type: accuracy name: Karelian Test accuracy value: 73.5 - type: accuracy name: Upper Sorbian Test accuracy value: 70.9 - type: accuracy name: South Levantine Arabic Test accuracy value: 64.8 - type: accuracy name: Komi Zyrian Test accuracy value: 37.1 - type: accuracy name: Irish Test accuracy value: 68.9 - type: accuracy name: Nayini Test accuracy value: 46.2 - type: accuracy name: Munduruku Test accuracy value: 12.3 - type: accuracy name: Manx Test accuracy value: 35.7 - type: accuracy name: Skolt Sami Test accuracy value: 30.1 - type: accuracy name: Afrikaans Test accuracy value: 88.4 - type: accuracy name: Old Turkish Test accuracy value: 37.1 - type: accuracy name: Tupinamba Test accuracy value: 24.9 - type: accuracy name: Belarusian Test accuracy value: 87.2 - type: accuracy name: Serbian Test accuracy value: 89.0 - type: accuracy name: Moksha Test accuracy value: 41.5 - type: accuracy name: Western Armenian Test accuracy value: 79.0 - type: accuracy name: Scottish Gaelic Test accuracy value: 59.5 - type: accuracy name: Khunsari Test accuracy value: 40.5 - type: accuracy name: Hebrew Test accuracy value: 94.8 - type: accuracy name: Uyghur Test accuracy value: 77.2 - type: accuracy name: Chukchi Test accuracy value: 30.5 --- # XLM-RoBERTa base Universal Dependencies v2.8 POS tagging: Dutch This model is part of our paper called: - Make the Best of Cross-lingual Transfer: Evidence from POS Tagging with over 100 Languages Check the [Space](https://huggingface.co/spaces/wietsedv/xpos) for more details. ## Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-nl") model = AutoModelForTokenClassification.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-nl") ```
wietsedv/xlm-roberta-base-ft-udpos28-vi
6a4a46823a9de1d5b279b834c8f216cd23a6863d
2022-02-25T09:59:37.000Z
[ "pytorch", "xlm-roberta", "token-classification", "vi", "dataset:universal_dependencies", "transformers", "part-of-speech", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
wietsedv
null
wietsedv/xlm-roberta-base-ft-udpos28-vi
6
null
transformers
15,444
--- language: - vi license: apache-2.0 library_name: transformers tags: - part-of-speech - token-classification datasets: - universal_dependencies metrics: - accuracy model-index: - name: xlm-roberta-base-ft-udpos28-vi results: - task: type: token-classification name: Part-of-Speech Tagging dataset: type: universal_dependencies name: Universal Dependencies v2.8 metrics: - type: accuracy name: English Test accuracy value: 57.2 - type: accuracy name: Dutch Test accuracy value: 58.4 - type: accuracy name: German Test accuracy value: 57.7 - type: accuracy name: Italian Test accuracy value: 57.3 - type: accuracy name: French Test accuracy value: 53.8 - type: accuracy name: Spanish Test accuracy value: 58.7 - type: accuracy name: Russian Test accuracy value: 66.9 - type: accuracy name: Swedish Test accuracy value: 59.3 - type: accuracy name: Norwegian Test accuracy value: 56.7 - type: accuracy name: Danish Test accuracy value: 59.3 - type: accuracy name: Low Saxon Test accuracy value: 40.3 - type: accuracy name: Akkadian Test accuracy value: 34.0 - type: accuracy name: Armenian Test accuracy value: 62.9 - type: accuracy name: Welsh Test accuracy value: 50.9 - type: accuracy name: Old East Slavic Test accuracy value: 54.9 - type: accuracy name: Albanian Test accuracy value: 57.0 - type: accuracy name: Slovenian Test accuracy value: 53.5 - type: accuracy name: Guajajara Test accuracy value: 36.6 - type: accuracy name: Kurmanji Test accuracy value: 58.5 - type: accuracy name: Turkish Test accuracy value: 61.7 - type: accuracy name: Finnish Test accuracy value: 60.2 - type: accuracy name: Indonesian Test accuracy value: 62.7 - type: accuracy name: Ukrainian Test accuracy value: 66.1 - type: accuracy name: Polish Test accuracy value: 65.1 - type: accuracy name: Portuguese Test accuracy value: 64.5 - type: accuracy name: Kazakh Test accuracy value: 70.5 - type: accuracy name: Latin Test accuracy value: 57.3 - type: accuracy name: Old French Test accuracy value: 36.4 - type: accuracy name: Buryat Test accuracy value: 55.9 - type: accuracy name: Kaapor Test accuracy value: 27.9 - type: accuracy name: Korean Test accuracy value: 53.4 - type: accuracy name: Estonian Test accuracy value: 57.4 - type: accuracy name: Croatian Test accuracy value: 59.3 - type: accuracy name: Gothic Test accuracy value: 22.2 - type: accuracy name: Swiss German Test accuracy value: 39.8 - type: accuracy name: Assyrian Test accuracy value: 16.1 - type: accuracy name: North Sami Test accuracy value: 38.4 - type: accuracy name: Naija Test accuracy value: 26.3 - type: accuracy name: Latvian Test accuracy value: 66.0 - type: accuracy name: Chinese Test accuracy value: 35.0 - type: accuracy name: Tagalog Test accuracy value: 63.4 - type: accuracy name: Bambara Test accuracy value: 27.8 - type: accuracy name: Lithuanian Test accuracy value: 68.2 - type: accuracy name: Galician Test accuracy value: 60.6 - type: accuracy name: Vietnamese Test accuracy value: 93.7 - type: accuracy name: Greek Test accuracy value: 54.1 - type: accuracy name: Catalan Test accuracy value: 55.0 - type: accuracy name: Czech Test accuracy value: 62.2 - type: accuracy name: Erzya Test accuracy value: 48.8 - type: accuracy name: Bhojpuri Test accuracy value: 44.4 - type: accuracy name: Thai Test accuracy value: 50.2 - type: accuracy name: Marathi Test accuracy value: 66.3 - type: accuracy name: Basque Test accuracy value: 59.2 - type: accuracy name: Slovak Test accuracy value: 63.1 - type: accuracy name: Kiche Test accuracy value: 38.7 - type: accuracy name: Yoruba Test accuracy value: 25.3 - type: accuracy name: Warlpiri Test accuracy value: 49.0 - type: accuracy name: Tamil Test accuracy value: 62.8 - type: accuracy name: Maltese Test accuracy value: 31.6 - type: accuracy name: Ancient Greek Test accuracy value: 44.9 - type: accuracy name: Icelandic Test accuracy value: 52.2 - type: accuracy name: Mbya Guarani Test accuracy value: 33.5 - type: accuracy name: Urdu Test accuracy value: 45.2 - type: accuracy name: Romanian Test accuracy value: 61.8 - type: accuracy name: Persian Test accuracy value: 57.3 - type: accuracy name: Apurina Test accuracy value: 46.2 - type: accuracy name: Japanese Test accuracy value: 25.5 - type: accuracy name: Hungarian Test accuracy value: 55.5 - type: accuracy name: Hindi Test accuracy value: 49.6 - type: accuracy name: Classical Chinese Test accuracy value: 22.4 - type: accuracy name: Komi Permyak Test accuracy value: 44.9 - type: accuracy name: Faroese Test accuracy value: 58.4 - type: accuracy name: Sanskrit Test accuracy value: 34.7 - type: accuracy name: Livvi Test accuracy value: 60.3 - type: accuracy name: Arabic Test accuracy value: 61.6 - type: accuracy name: Wolof Test accuracy value: 28.9 - type: accuracy name: Bulgarian Test accuracy value: 64.0 - type: accuracy name: Akuntsu Test accuracy value: 43.4 - type: accuracy name: Makurap Test accuracy value: 20.5 - type: accuracy name: Kangri Test accuracy value: 40.7 - type: accuracy name: Breton Test accuracy value: 53.0 - type: accuracy name: Telugu Test accuracy value: 64.6 - type: accuracy name: Cantonese Test accuracy value: 40.7 - type: accuracy name: Old Church Slavonic Test accuracy value: 36.4 - type: accuracy name: Karelian Test accuracy value: 57.7 - type: accuracy name: Upper Sorbian Test accuracy value: 58.0 - type: accuracy name: South Levantine Arabic Test accuracy value: 59.7 - type: accuracy name: Komi Zyrian Test accuracy value: 46.3 - type: accuracy name: Irish Test accuracy value: 48.9 - type: accuracy name: Nayini Test accuracy value: 42.3 - type: accuracy name: Munduruku Test accuracy value: 38.1 - type: accuracy name: Manx Test accuracy value: 35.2 - type: accuracy name: Skolt Sami Test accuracy value: 39.3 - type: accuracy name: Afrikaans Test accuracy value: 53.8 - type: accuracy name: Old Turkish Test accuracy value: 37.1 - type: accuracy name: Tupinamba Test accuracy value: 49.1 - type: accuracy name: Belarusian Test accuracy value: 66.3 - type: accuracy name: Serbian Test accuracy value: 58.3 - type: accuracy name: Moksha Test accuracy value: 46.6 - type: accuracy name: Western Armenian Test accuracy value: 58.2 - type: accuracy name: Scottish Gaelic Test accuracy value: 43.8 - type: accuracy name: Khunsari Test accuracy value: 45.9 - type: accuracy name: Hebrew Test accuracy value: 75.0 - type: accuracy name: Uyghur Test accuracy value: 70.7 - type: accuracy name: Chukchi Test accuracy value: 33.1 --- # XLM-RoBERTa base Universal Dependencies v2.8 POS tagging: Vietnamese This model is part of our paper called: - Make the Best of Cross-lingual Transfer: Evidence from POS Tagging with over 100 Languages Check the [Space](https://huggingface.co/spaces/wietsedv/xpos) for more details. ## Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-vi") model = AutoModelForTokenClassification.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-vi") ```
saattrupdan/kblab-voxrex-wav2vec2-large-cv8-da
9cd5df38791018471740727d8050bfd25d36c0d4
2022-03-21T18:25:44.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "da", "dataset:common_voice_8_0", "transformers", "license:cc0-1.0", "model-index" ]
automatic-speech-recognition
false
saattrupdan
null
saattrupdan/kblab-voxrex-wav2vec2-large-cv8-da
6
1
transformers
15,445
--- language: - da license: cc0-1.0 tasks: - automatic-speech-recognition datasets: - common_voice_8_0 metrics: - wer model-index: - name: kblab-voxrex-wav2vec2-large-cv8-da results: - task: type: automatic-speech-recognition dataset: type: mozilla-foundation/common_voice_8_0 args: da name: Danish Common Voice 8.0 metrics: - type: wer value: 30.51 - task: type: automatic-speech-recognition dataset: type: Alvenir/alvenir_asr_da_eval name: Alvenir ASR test dataset metrics: - type: wer value: 28.33 --- # KBLab-VoxRex-Wav2vec2-large-CV8-da ## Model description This model is a fine-tuned version of the Swedish acoustic model [KBLab/wav2vec2-large-voxrex](https://huggingface.co/KBLab/wav2vec2-large-voxrex) on the Danish part of [Common Voice 8.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0), containing ~6 crowdsourced hours of read-aloud Danish speech. ## Performance The model achieves the following WER scores (lower is better): | **Dataset** | **WER without LM** | **WER with 5-gram LM** | | :---: | ---: | ---: | | [Danish part of Common Voice 8.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0/viewer/da/train) | 37.63 | 30.51 | | [Alvenir test set](https://huggingface.co/datasets/Alvenir/alvenir_asr_da_eval) | 35.75 | 28.33 |
HungChau/distilbert-base-uncased-concept-extraction-kp20k-v1.2-concept-extraction-allwikipedia-v1.0
2ce7c5db770b4627ed46ebee3cb2ed2f6bee6859
2022-02-24T11:09:53.000Z
[ "pytorch", "distilbert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
HungChau
null
HungChau/distilbert-base-uncased-concept-extraction-kp20k-v1.2-concept-extraction-allwikipedia-v1.0
6
null
transformers
15,446
Entry not found
anantoj/wav2vec2-large-xlsr-53-adult-child-cls
d380be1f1c029cf63bb72a09f26c3d45e99a88d2
2022-02-24T15:59:19.000Z
[ "pytorch", "tensorboard", "wav2vec2", "audio-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
audio-classification
false
anantoj
null
anantoj/wav2vec2-large-xlsr-53-adult-child-cls
6
null
transformers
15,447
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: wav2vec2-xls-r-300m-adult-child-cls results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-adult-child-cls This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1755 - Accuracy: 0.9432 - F1: 0.9472 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.368 | 1.0 | 383 | 0.2560 | 0.9072 | 0.9126 | | 0.2013 | 2.0 | 766 | 0.1959 | 0.9321 | 0.9362 | | 0.22 | 3.0 | 1149 | 0.1755 | 0.9432 | 0.9472 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
sarahlmk/autonlp-imdb-classification-596216804
de68d78c80d6274570646a072cc7156089a60c32
2022-02-25T06:16:45.000Z
[ "pytorch", "bert", "text-classification", "en", "dataset:sarahlmk/autonlp-data-imdb-classification", "transformers", "autonlp", "co2_eq_emissions" ]
text-classification
false
sarahlmk
null
sarahlmk/autonlp-imdb-classification-596216804
6
null
transformers
15,448
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - sarahlmk/autonlp-data-imdb-classification co2_eq_emissions: 274.81371614671764 --- # Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 596216804 - CO2 Emissions (in grams): 274.81371614671764 ## Validation Metrics - Loss: 0.24049481749534607 - Accuracy: 0.9239 - Precision: 0.9143695014662757 - Recall: 0.9354 - AUC: 0.9781644 - F1: 0.9247652001977262 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/sarahlmk/autonlp-imdb-classification-596216804 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("sarahlmk/autonlp-imdb-classification-596216804", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("sarahlmk/autonlp-imdb-classification-596216804", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
ASCCCCCCCC/distilbert-base-multilingual-cased-amazon_zh_20000
f4d032af5ebdac7391ffabff245846152b008c2b
2022-02-25T07:33:20.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
ASCCCCCCCC
null
ASCCCCCCCC/distilbert-base-multilingual-cased-amazon_zh_20000
6
null
transformers
15,449
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-multilingual-cased-amazon_zh_20000 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-multilingual-cased-amazon_zh_20000 This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3031 - Accuracy: 0.4406 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.396 | 1.0 | 1250 | 1.3031 | 0.4406 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.9.1 - Datasets 1.18.3 - Tokenizers 0.10.3
DoyyingFace/bert-asian-hate-tweets-asian-unclean-slanted
e94b419108993c17b52a90fe421df9b34a0c98cd
2022-02-25T09:31:34.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
DoyyingFace
null
DoyyingFace/bert-asian-hate-tweets-asian-unclean-slanted
6
null
transformers
15,450
Entry not found
DoyyingFace/bert-asian-hate-tweets-self-clean-small-warmup-100
a61c18e21eff489aec98b8d24843c25eec406f53
2022-02-26T03:44:43.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
DoyyingFace
null
DoyyingFace/bert-asian-hate-tweets-self-clean-small-warmup-100
6
null
transformers
15,451
Entry not found
msintaha/bert-base-uncased-copa-kb-27
3944786e733550b81d2eb083775b819ae6907606
2022-02-27T03:24:40.000Z
[ "pytorch", "tensorboard", "bert", "multiple-choice", "dataset:super_glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
multiple-choice
false
msintaha
null
msintaha/bert-base-uncased-copa-kb-27
6
null
transformers
15,452
--- license: apache-2.0 tags: - generated_from_trainer datasets: - super_glue metrics: - accuracy model-index: - name: bert-base-uncased-copa-kb-27 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-copa-kb-27 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the super_glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6114 - Accuracy: 0.7100 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 40 | 0.6534 | 0.7400 | | No log | 2.0 | 80 | 0.6114 | 0.7100 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
FardinSaboori/bert-finetuned-squad
3223050ad77224f1c2a9b26dea136bbac8010605
2022-02-28T06:22:27.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
FardinSaboori
null
FardinSaboori/bert-finetuned-squad
6
null
transformers
15,453
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
Ebtihal/AraBertMo_base_V8
79cc73dd6f11c858866c098a6dcbe8e10632b275
2022-03-21T22:03:44.000Z
[ "pytorch", "bert", "fill-mask", "ar", "dataset:OSCAR", "transformers", "Fill-Mask", "autotrain_compatible" ]
fill-mask
false
Ebtihal
null
Ebtihal/AraBertMo_base_V8
6
null
transformers
15,454
Arabic Model AraBertMo_base_V8 --- language: ar tags: Fill-Mask datasets: OSCAR widget: - text: " السلام عليكم ورحمة[MASK] وبركاتة" - text: " اهلا وسهلا بكم في [MASK] من سيربح المليون" - text: " مرحبا بك عزيزي الزائر [MASK] موقعنا " --- # Arabic BERT Model **AraBERTMo** is an Arabic pre-trained language model based on [Google's BERT architechture](https://github.com/google-research/bert). AraBERTMo_base uses the same BERT-Base config. AraBERTMo_base now comes in 10 new variants All models are available on the `HuggingFace` model page under the [Ebtihal](https://huggingface.co/Ebtihal/) name. Checkpoints are available in PyTorch formats. ## Pretraining Corpus `AraBertMo_base_V8' model was pre-trained on ~3 million words: [OSCAR](https://traces1.inria.fr/oscar/) - Arabic version "unshuffled_deduplicated_ar". ## Training results this model achieves the following results: | Task | Num examples | Num Epochs | Batch Size | steps | Wall time | training loss| |:----:|:----:|:----:|:----:|:-----:|:----:|:-----:| | Fill-Mask| 40032| 8 | 64 | 5008 | 10h 5m 57s | 7.2164 | ## Load Pretrained Model You can use this model by installing `torch` or `tensorflow` and Huggingface library `transformers`. And you can use it directly by initializing it like this: ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Ebtihal/AraBertMo_base_V8") model = AutoModelForMaskedLM.from_pretrained("Ebtihal/AraBertMo_base_V8") ``` ## This model was built for master's degree research in an organization: - [University of kufa](https://uokufa.edu.iq/). - [Faculty of Computer Science and Mathematics](https://mathcomp.uokufa.edu.iq/). - **Department of Computer Science**
peterhsu/mt5-small-finetuned-amazon-en-es
df5ad96888c11ef68f58ddf61640354259cce38c
2022-02-28T18:40:06.000Z
[ "pytorch", "tensorboard", "mt5", "text2text-generation", "transformers", "translation", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
translation
false
peterhsu
null
peterhsu/mt5-small-finetuned-amazon-en-es
6
null
transformers
15,455
--- license: apache-2.0 tags: - translation - generated_from_trainer metrics: - rouge model-index: - name: mt5-small-finetuned-amazon-en-es results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-finetuned-amazon-en-es This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.0255 - Rouge1: 17.5202 - Rouge2: 8.4634 - Rougel: 17.0175 - Rougelsum: 17.0528 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:| | 8.094 | 1.0 | 1209 | 3.2933 | 12.7563 | 5.2606 | 12.4786 | 12.4961 | | 3.9263 | 2.0 | 2418 | 3.1487 | 16.2314 | 8.4716 | 15.6854 | 15.7506 | | 3.599 | 3.0 | 3627 | 3.0789 | 16.9233 | 8.1928 | 16.2596 | 16.2522 | | 3.429 | 4.0 | 4836 | 3.0492 | 17.2679 | 8.7561 | 16.6685 | 16.7399 | | 3.3279 | 5.0 | 6045 | 3.0384 | 17.6081 | 8.6721 | 17.0546 | 17.0368 | | 3.2518 | 6.0 | 7254 | 3.0343 | 17.2271 | 8.504 | 16.6285 | 16.6209 | | 3.2084 | 7.0 | 8463 | 3.0255 | 16.7859 | 8.054 | 16.2574 | 16.2853 | | 3.1839 | 8.0 | 9672 | 3.0255 | 17.5202 | 8.4634 | 17.0175 | 17.0528 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.6
PhilSad/GPT-J6B-Guided-SCP
84243966f02befd079b8d67f610b72a0e1eb91d0
2022-03-06T22:52:07.000Z
[ "pytorch", "gptj", "text-generation", "transformers" ]
text-generation
false
PhilSad
null
PhilSad/GPT-J6B-Guided-SCP
6
null
transformers
15,456
Attempt of guided text generation to replace GPT-3 for :[This SCP Does Not Exist](https://www.thisscpdoesnotexist.ml) Work in Porgress Finetuned on a dataset of 1700 automatically generated samples from the [official SCP wiki](https://scp-wiki.wikidot.com/) Exemple input : ```Prompt: SCP-9741 is a pair of jeans that looks really cool ### Generation: Item #: SCP-9741\nObject Class: Safe\nSpecial Containment Procedures:``` # Acknowledgment This work was made possible thanks to the TPU Research Cloud program by Google
armageddon/distilbert-base-uncased-squad2-covid-qa-deepset
d8c7108e9f29b229ed6467b0439d197fe65543a8
2022-03-01T08:32:06.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "dataset:covid_qa_deepset", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
armageddon
null
armageddon/distilbert-base-uncased-squad2-covid-qa-deepset
6
null
transformers
15,457
--- tags: - generated_from_trainer datasets: - covid_qa_deepset model-index: - name: distilbert-base-uncased-squad2-covid-qa-deepset results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-squad2-covid-qa-deepset This model is a fine-tuned version of [twmkn9/distilbert-base-uncased-squad2](https://huggingface.co/twmkn9/distilbert-base-uncased-squad2) on the covid_qa_deepset dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: tpu - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.16.2 - Pytorch 1.9.0+cu102 - Datasets 1.18.3 - Tokenizers 0.11.6
coastalcph/fairlex-fscs-minilm
a190ec4f1e2c999ede159a36a4a125d97cdb4aed
2022-03-01T13:36:58.000Z
[ "pytorch", "xlm-roberta", "fill-mask", "de", "fr", "it", "transformers", "legal", "fairlex", "license:cc-by-nc-sa-4.0", "autotrain_compatible" ]
fill-mask
false
coastalcph
null
coastalcph/fairlex-fscs-minilm
6
null
transformers
15,458
--- language: - de - fr - it pipeline_tag: fill-mask license: cc-by-nc-sa-4.0 tags: - legal - fairlex widget: - text: "Aus seinem damaligen strafbaren Verhalten resultierte eine Forderung der Nachlassverwaltung eines <mask>, worüber eine aussergerichtliche Vereinbarung über Fr. 500'000." - text: " Elle avait pour but social les <mask> dans le domaine des changes, en particulier l'exploitation d'une plateforme internet." - text: "Il Pretore ha accolto la petizione con sentenza 16 luglio 2015, accordando all'attore l'importo <mask>, con interessi di mora a partire dalla notifica del precetto esecutivo, e ha rigettato in tale misura l'opposizione interposta a quest'ultimo." --- # FairLex: A multilingual benchmark for evaluating fairness in legal text processing We present a benchmark suite of four datasets for evaluating the fairness of pre-trained legal language models and the techniques used to fine-tune them for downstream tasks. Our benchmarks cover four jurisdictions (European Council, USA, Swiss, and Chinese), five languages (English, German, French, Italian and Chinese) and fairness across five attributes (gender, age, nationality/region, language, and legal area). In our experiments, we evaluate pre-trained language models using several group-robust fine-tuning techniques and show that performance group disparities are vibrant in many cases, while none of these techniques guarantee fairness, nor consistently mitigate group disparities. Furthermore, we provide a quantitative and qualitative analysis of our results, highlighting open challenges in the development of robustness methods in legal NLP. --- Ilias Chalkidis, Tommaso Passini, Sheng Zhang, Letizia Tomada, Sebastian Felix Schwemer, and Anders Søgaard. 2022. FairLex: A multilingual bench-mark for evaluating fairness in legal text processing. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics, Dublin, Ireland. --- ## Pre-training details For the purpose of this work, we release four domain-specific BERT models with continued pre-training on the corpora of the examined datasets (ECtHR, SCOTUS, FSCS, SPC). We train mini-sized BERT models with 6 Transformer blocks, 384 hidden units, and 12 attention heads. We warm-start all models from the public MiniLMv2 (Wang et al., 2021) using the distilled version of RoBERTa (Liu et al., 2019). For the English datasets (ECtHR, SCOTUS) and the one distilled from XLM-R (Conneau et al., 2021) for the rest (trilingual FSCS, and Chinese SPC). ## Models list | Model name | Training corpora | Language | |-----------------------------------|------------------|--------------------| | `coastalcph/fairlex-ecthr-minlm` | ECtHR | `en` | | `coastalcph/fairlex-scotus-minlm` | SCOTUS | `en` | | `coastalcph/fairlex-fscs-minlm` | FSCS | [`de`, `fr`, `it`] | | `coastalcph/fairlex-cail-minlm` | CAIL | `zh` | ## Load Pretrained Model ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("coastalcph/fairlex-fscs-minlm") model = AutoModel.from_pretrained("coastalcph/fairlex-fscs-minlm") ``` ## Evaluation on downstream tasks Consider the experiments in the article: _Ilias Chalkidis, Tommaso Passini, Sheng Zhang, Letizia Tomada, Sebastian Felix Schwemer, and Anders Søgaard. 2022. Fairlex: A multilingual bench-mark for evaluating fairness in legal text processing. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics, Dublin, Ireland._ ## Author - Publication ``` @inproceedings{chalkidis-2022-fairlex, author={Chalkidis, Ilias and Passini, Tommaso and Zhang, Sheng and Tomada, Letizia and Schwemer, Sebastian Felix and Søgaard, Anders}, title={FairLex: A Multilingual Benchmark for Evaluating Fairness in Legal Text Processing}, booktitle={Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics}, year={2022}, address={Dublin, Ireland} } ``` Ilias Chalkidis on behalf of [CoAStaL NLP Group](https://coastalcph.github.io) | Github: [@ilias.chalkidis](https://github.com/iliaschalkidis) | Twitter: [@KiddoThe2B](https://twitter.com/KiddoThe2B) |
batterydata/batterybert-cased
0106ed8cca65ec6302ada7123048be9c37e31a7d
2022-03-05T16:20:02.000Z
[ "pytorch", "tensorboard", "bert", "fill-mask", "en", "dataset:batterypapers", "transformers", "exbert", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
batterydata
null
batterydata/batterybert-cased
6
null
transformers
15,459
--- language: en tags: - exbert license: apache-2.0 datasets: - batterypapers --- # BatteryBERT-uncased model Pretrained model on a large corpus of battery research papers using a masked language modeling (MLM) objective, starting with the [bert-base-cased](https://huggingface.co/bert-base-cased) weights. It was introduced in [this paper](paper_link) and first released in [this repository](https://github.com/ShuHuang/batterybert). This model is case-sensitive: it makes a difference between english and English. ## Model description BatteryBERT is a transformers model pretrained on a large corpus of battery research papers in a self-supervised fashion, starting with the [bert-base-cased](https://huggingface.co/bert-base-cased) weights. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with the Masked language modeling (MLM) objective. Taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the BERT model as inputs. ## Training data The BatteryBERT model was pretrained on the full text of battery papers only, after initialized from the [bert-base-cased](https://huggingface.co/bert-base-cased) weights. The paper corpus contains a total of 400,366 battery research papers that are published from 2000 to June 2021, from the publishers Royal Society of Chemistry (RSC), Elsevier, and Springer. The list of DOIs can be found at [Github](https://github.com/ShuHuang/batterybert/blob/main/corpus.txt). ## Training procedure ### Preprocessing The texts are lowercased and tokenized using WordPiece and a vocabulary size of 28,996. The inputs of the model are then of the form: ``` [CLS] Sentence A [SEP] Sentence B [SEP] ``` The details of the masking procedure for each sentence are the following: - 15% of the tokens are masked. - In 80% of the cases, the masked tokens are replaced by `[MASK]`. - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace. - In the 10% remaining cases, the masked tokens are left as is. ### Pretraining The model was trained on 8 NVIDIA DGX A100 GPUs for 1,000,000 steps with a batch size of 256. The sequence length was limited to 512 tokens. The optimizer used is Adam with a learning rate of 2e-5, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01, learning rate warmup for 10,000 steps and linear decay of the learning rate after. ## Intended uses & limitations You can use the raw model for masked language modeling, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=batterybert) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use You can use this model directly with a pipeline for masked language modeling: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='batterydata/batterybert-cased') >>> unmasker("Hello I'm a <mask> model.") ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('batterydata/batterybert-cased') model = BertModel.from_pretrained('batterydata/batterybert-cased') text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('batterydata/batterybert-cased') model = TFBertModel.from_pretrained('batterydata/batterybert-cased') text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ## Evaluation results Final loss: 0.9609. ## Authors Shu Huang: `sh2009 [at] cam.ac.uk` Jacqueline Cole: `jmc61 [at] cam.ac.uk` ## Citation BatteryBERT: A Pre-trained Language Model for Battery Database Enhancement
alk/distilbert-base-uncased-finetuned-emotion
6be3c577203e4a043983b3bb82956e22d57096a3
2022-03-01T23:56:36.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers" ]
text-classification
false
alk
null
alk/distilbert-base-uncased-finetuned-emotion
6
null
transformers
15,460
Entry not found
BAHIJA/distilbert-base-uncased-finetuned-cola
36cf32cc6c0648fda3c472ccdc9d8ce57d624029
2022-03-13T23:42:41.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
BAHIJA
null
BAHIJA/distilbert-base-uncased-finetuned-cola
6
null
transformers
15,461
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5481326292844919 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.7371 - Matthews Correlation: 0.5481 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5298 | 1.0 | 535 | 0.5333 | 0.4142 | | 0.3619 | 2.0 | 1070 | 0.5174 | 0.5019 | | 0.2449 | 3.0 | 1605 | 0.6394 | 0.4921 | | 0.1856 | 4.0 | 2140 | 0.7371 | 0.5481 | | 0.133 | 5.0 | 2675 | 0.8600 | 0.5327 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.4 - Tokenizers 0.11.6
msintaha/gpt2-finetuned-rocstories
ad0bedc880fec721fa48faa759ff0f213923b50c
2022-03-02T07:07:17.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
msintaha
null
msintaha/gpt2-finetuned-rocstories
6
null
transformers
15,462
Entry not found
emekaboris/autonlp-new_tx-607517182
9ca19c489190b4a5a9a793718f45350fba2818d1
2022-03-02T14:51:04.000Z
[ "pytorch", "roberta", "text-classification", "unk", "dataset:emekaboris/autonlp-data-new_tx", "transformers", "autonlp", "co2_eq_emissions" ]
text-classification
false
emekaboris
null
emekaboris/autonlp-new_tx-607517182
6
null
transformers
15,463
--- tags: autonlp language: unk widget: - text: "I love AutoNLP 🤗" datasets: - emekaboris/autonlp-data-new_tx co2_eq_emissions: 3.842950628218143 --- # Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 607517182 - CO2 Emissions (in grams): 3.842950628218143 ## Validation Metrics - Loss: 0.4033123552799225 - Accuracy: 0.8679706601466992 - Macro F1: 0.719846919916469 - Micro F1: 0.8679706601466993 - Weighted F1: 0.8622411469250695 - Macro Precision: 0.725309168791155 - Micro Precision: 0.8679706601466992 - Weighted Precision: 0.8604370906049568 - Macro Recall: 0.7216672806300003 - Micro Recall: 0.8679706601466992 - Weighted Recall: 0.8679706601466992 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/emekaboris/autonlp-new_tx-607517182 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("emekaboris/autonlp-new_tx-607517182", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("emekaboris/autonlp-new_tx-607517182", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
luffycodes/reg-roberta-large-mrpc
f9eba78d4a7b1889016e7df14da49a1306c2f4cf
2022-04-05T02:55:11.000Z
[ "pytorch", "roberta", "transformers" ]
null
false
luffycodes
null
luffycodes/reg-roberta-large-mrpc
6
null
transformers
15,464
Entry not found
DoyyingFace/bert-asian-hate-tweets-self-unclean-large
f1785116c068c566577dd98c13c6906104a0aef1
2022-03-03T09:05:42.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
DoyyingFace
null
DoyyingFace/bert-asian-hate-tweets-self-unclean-large
6
null
transformers
15,465
Entry not found
danielmaxwell/distilbert-base-uncased-finetuned-emotion
ecde6e825a27c69207f048eabf143e5658069d64
2022-03-03T16:37:27.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers" ]
text-classification
false
danielmaxwell
null
danielmaxwell/distilbert-base-uncased-finetuned-emotion
6
null
transformers
15,466
Entry not found
everdoubling/byt5-Korean-large
d6a9809b504b53f1698138e28694071fa29f26bc
2022-03-11T09:16:25.000Z
[ "pytorch", "t5", "text2text-generation", "dataset:mc4", "transformers", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
everdoubling
null
everdoubling/byt5-Korean-large
6
1
transformers
15,467
--- datasets: - mc4 license: apache-2.0 --- # ByT5-Korean - large ByT5-Korean is a Korean specific extension of Google's [ByT5](https://github.com/google-research/byt5). A Korean syllable has three components (called Jamo): a beginning consonant, a middle vowel, and an optional final consonant; they are like individual characters of alphabet. While the ByT5's utf-8 encoding allows generic encoding for multiple languages, it is unnatural for Korean because it splits the bits representation of each Jamo in the middle. ByT5-Korean extends ByT5's utf-8 encoding with special care for Korean syllables; each Jamo is represented with a extra token. ByT5-Korean was pre-trained on [mC4](https://www.tensorflow.org/datasets/catalog/c4#c4multilingual) with 70% Korean and 30% English. ## Encoding Scheme ```text id: token 0: <pad> 1: <eos> 2: <unk> 3~258: utf-8 encoding 259~277: beginning consonants(초성), 19개(ㄱㄲㄴㄷㄸㄹㅁㅂㅃㅅㅆㅇㅈㅉㅊㅋㅌㅍㅎ) 278~298: middle vowel(중성), 21개(ㅏㅐㅑㅒㅓㅔㅕㅖㅗㅘㅙㅚㅛㅜㅝㅞㅟㅠㅡㅢㅣ) 299~326: final consonant(종성), 무종성+27개(ㄱㄲㄳㄴㄵㄶㄷㄹㄺㄻㄼㄽㄾㄿㅀㅁㅂㅄㅅㅆㅇㅈㅊㅋㅌㅍㅎ) 327~384: from <extra_id_0> to <extra_id_57> ``` ## Example Inference ```python import torch from tokenizer import ByT5KoreanTokenizer # https://huggingface.co/everdoubling/byt5-Korean-large/blob/main/tokenizer.py from transformers import T5ForConditionalGeneration tokenizer_jamo = ByT5KoreanTokenizer() model = T5ForConditionalGeneration.from_pretrained('everdoubling/byt5-Korean-large') input_sentence = '한국어 위키백과(영어: Korean Wikipedia)는 한국어로 운영되는 위키백과의 다언어판 가운데 하나로서, 2002년 10월 11일에 <extra_id_0>. 또한 현재 한국어 위키백과에는 넘겨주기, 토론, 그림 등 페이지로 불리는 모든 문서를 포함하면 총 2,629,860개가 <extra_id_1>되어 있으며, 넘겨주기를 포함한 일반 문서 수는 1,278,560개,[1] 그중 넘겨주기, 막다른 문서를 제외한 일반 문서 수는 573,149개이다.' input_ids_jamo = tokenizer_jamo(input_sentence).input_ids outputs_jamo = model_jamo.generate(torch.tensor([input_ids_jamo])) print(tokenizer_jamo.decode(outputs_jamo[0])) # <pad><extra_id_0>설립되었다<extra_id_1>đě ``` Additional information coming soon...
petrichorRainbow/mrf-GPT
27bbb57829c8384eeeddf23616cf7abc89f079cd
2022-03-07T18:51:04.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
petrichorRainbow
null
petrichorRainbow/mrf-GPT
6
null
transformers
15,468
Entry not found
crabz/distil-slovakbert-ner
aa6d6ce92a86aaebd1934e8ae3e62f7099f46972
2022-03-06T12:40:16.000Z
[ "pytorch", "roberta", "token-classification", "dataset:wikiann", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
token-classification
false
crabz
null
crabz/distil-slovakbert-ner
6
null
transformers
15,469
--- tags: - generated_from_trainer datasets: - wikiann inference: false model-index: - name: distil-slovakbert-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distil-slovakbert-ner This model is a fine-tuned version of [crabz/distil-slovakbert](https://huggingface.co/crabz/distil-slovakbert) on the wikiann sk dataset. - F1: 0.9307 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.0+cu113 - Datasets 1.15.1 - Tokenizers 0.11.0
billfrench/autonlp-cyberlandr-ai-4-614417501
698148eea85330ddefbfff950f65ec147d7dc75f
2022-03-07T00:57:12.000Z
[ "pytorch", "bert", "text-classification", "en", "dataset:billfrench/autonlp-data-cyberlandr-ai-4", "transformers", "autonlp", "co2_eq_emissions" ]
text-classification
false
billfrench
null
billfrench/autonlp-cyberlandr-ai-4-614417501
6
null
transformers
15,470
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - billfrench/autonlp-data-cyberlandr-ai-4 co2_eq_emissions: 1.6912535041856878 --- # Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 614417501 - CO2 Emissions (in grams): 1.6912535041856878 ## Validation Metrics - Loss: 1.305419921875 - Accuracy: 0.5 - Macro F1: 0.3333333333333333 - Micro F1: 0.5 - Weighted F1: 0.4444444444444444 - Macro Precision: 0.375 - Micro Precision: 0.5 - Weighted Precision: 0.5 - Macro Recall: 0.375 - Micro Recall: 0.5 - Weighted Recall: 0.5 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/billfrench/autonlp-cyberlandr-ai-4-614417501 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("billfrench/autonlp-cyberlandr-ai-4-614417501", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("billfrench/autonlp-cyberlandr-ai-4-614417501", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
bongbongco/bert-badword-puri-000
58ad7d80caada06da427c935da8d8454216ab944
2022-03-07T06:16:47.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
bongbongco
null
bongbongco/bert-badword-puri-000
6
null
transformers
15,471
Entry not found
zhiweitong/dpr-answer_encoder-single-nq-base
6cca57a9d47073df6420912282f4350cc609b83c
2022-03-08T07:25:05.000Z
[ "pytorch", "dpr", "feature-extraction", "en", "dataset:natural_questions", "transformers" ]
feature-extraction
false
zhiweitong
null
zhiweitong/dpr-answer_encoder-single-nq-base
6
null
transformers
15,472
--- language: en datasets: - natural_questions --- # dpr-answer_encoder-single-nq-base This encoder is used with [zhiweitong/dpr-ctx_encoder-single-nq-base](https://huggingface.co/zhiweitong/dpr-ctx_encoder-single-nq-base)
KoichiYasuoka/roberta-base-ukrainian
9ac1bcbde4e8aa8c7729ce2c9a787b148caa2742
2022-03-08T23:33:19.000Z
[ "pytorch", "roberta", "fill-mask", "uk", "transformers", "ukrainian", "masked-lm", "ubertext", "license:cc-by-sa-4.0", "autotrain_compatible" ]
fill-mask
false
KoichiYasuoka
null
KoichiYasuoka/roberta-base-ukrainian
6
null
transformers
15,473
--- language: - "uk" tags: - "ukrainian" - "masked-lm" - "ubertext" license: "cc-by-sa-4.0" pipeline_tag: "fill-mask" mask_token: "[MASK]" --- # roberta-base-ukrainian ## Model Description This is a RoBERTa model pre-trained on [Корпус UberText](https://lang.org.ua/uk/corpora/#anchor4). You can fine-tune `roberta-base-ukrainian` for downstream tasks, such as [POS-tagging](https://huggingface.co/KoichiYasuoka/roberta-base-ukrainian-upos), dependency-parsing, and so on. ## How to Use ```py from transformers import AutoTokenizer,AutoModelForMaskedLM tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-base-ukrainian") model=AutoModelForMaskedLM.from_pretrained("KoichiYasuoka/roberta-base-ukrainian") ```
alirezafarashah/wav2vec2-base-ks-2sec
8aed995bfd1daf1a7749cfa57d5a3267327b183c
2022-03-09T22:14:03.000Z
[ "pytorch", "tensorboard", "wav2vec2", "audio-classification", "dataset:superb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
audio-classification
false
alirezafarashah
null
alirezafarashah/wav2vec2-base-ks-2sec
6
null
transformers
15,474
--- license: apache-2.0 tags: - generated_from_trainer datasets: - superb metrics: - accuracy model-index: - name: wav2vec2-base-ks-2sec results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-ks-2sec This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the superb dataset. It achieves the following results on the evaluation set: - Loss: 0.0880 - Accuracy: 0.9822 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Accuracy | Validation Loss | |:-------------:|:-----:|:----:|:--------:|:---------------:| | 0.5003 | 1.0 | 399 | 0.9643 | 0.4284 | | 0.1868 | 2.0 | 798 | 0.9748 | 0.1628 | | 0.1413 | 3.0 | 1197 | 0.9796 | 0.1128 | | 0.1021 | 4.0 | 1596 | 0.9813 | 0.0940 | | 0.1089 | 5.0 | 1995 | 0.0880 | 0.9822 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
vzty/bert-base-uncased-finetuned-argument-detection
9d893348b779e933eb4837a7eaf9607874a40027
2022-03-09T08:01:49.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
vzty
null
vzty/bert-base-uncased-finetuned-argument-detection
6
null
transformers
15,475
Entry not found
Narshion/mWACH_mBERT_System
3af7fcda879c56a9d830fa60764c8cc022c31b68
2022-03-09T13:49:35.000Z
[ "pytorch", "bert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Narshion
null
Narshion/mWACH_mBERT_System
6
null
transformers
15,476
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # model This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on mWACH NEO dataset. It achieves the following results on the evaluation set: - Loss: 1.6344 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.12.4 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
ctoraman/RoBERTa-TR-medium-char
630bc8b2c4b9b2fdf89a28bfff6ecd89a474c916
2022-04-20T06:56:43.000Z
[ "pytorch", "roberta", "fill-mask", "tr", "dataset:oscar", "arxiv:2204.08832", "transformers", "license:cc-by-nc-sa-4.0", "autotrain_compatible" ]
fill-mask
false
ctoraman
null
ctoraman/RoBERTa-TR-medium-char
6
null
transformers
15,477
--- language: - tr tags: - roberta license: cc-by-nc-sa-4.0 datasets: - oscar --- # RoBERTa Turkish medium Character-level (uncased) Pretrained model on Turkish language using a masked language modeling (MLM) objective. The model is uncased. The pretrained corpus is OSCAR's Turkish split, but it is further filtered and cleaned. Model architecture is similar to bert-medium (8 layers, 8 heads, and 512 hidden size). Tokenization algorithm is Character-level, which means that text is split by individual characters. Vocabulary size is 384. The details and performance comparisons can be found at this paper: https://arxiv.org/abs/2204.08832 ## Note that this model does not include a tokenizer file, because it uses ByT5Tokenizer. The following code can be used for model loading and tokenization, example max length(1024) can be changed: ``` model = AutoModel.from_pretrained([model_path]) #for sequence classification: #model = AutoModelForSequenceClassification.from_pretrained([model_path], num_labels=[num_classes]) tokenizer = ByT5Tokenizer.from_pretrained("google/byt5-small") tokenizer.mask_token = tokenizer.special_tokens_map_extended['additional_special_tokens'][0] tokenizer.cls_token = tokenizer.special_tokens_map_extended['additional_special_tokens'][1] tokenizer.bos_token = tokenizer.special_tokens_map_extended['additional_special_tokens'][1] tokenizer.sep_token = tokenizer.special_tokens_map_extended['additional_special_tokens'][2] tokenizer.eos_token = tokenizer.special_tokens_map_extended['additional_special_tokens'][2] tokenizer.pad_token = tokenizer.special_tokens_map_extended['additional_special_tokens'][3] tokenizer.unk_token = tokenizer.special_tokens_map_extended['additional_special_tokens'][3] tokenizer.model_max_length = 1024 ``` ### BibTeX entry and citation info ```bibtex @misc{https://doi.org/10.48550/arxiv.2204.08832, doi = {10.48550/ARXIV.2204.08832}, url = {https://arxiv.org/abs/2204.08832}, author = {Toraman, Cagri and Yilmaz, Eyup Halit and Şahinuç, Furkan and Ozcelik, Oguzhan}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Impact of Tokenization on Language Models: An Analysis for Turkish}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution Non Commercial Share Alike 4.0 International} } ```
hyechanjun/reverse-interview-question
bcc24e8824d144c6c46a78b953ceb16522be2ca9
2022-03-09T18:57:52.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
hyechanjun
null
hyechanjun/reverse-interview-question
6
null
transformers
15,478
An AI model that, given a statement, generates a question that would have likely resulted in said statement. Created for a Senior Project at Calvin University.
nielsr/bert-finetuned-ner
d6d48c55b6b9b53b400dcc65895671f41c19cfc7
2022-03-10T07:59:41.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
nielsr
null
nielsr/bert-finetuned-ner
6
null
transformers
15,479
This is a BERT model fine-tuned on a named-entity recognition (NER) dataset. The notebook that was used to create this model can be found here: https://github.com/NielsRogge/Transformers-Tutorials/blob/master/BERT/Custom_Named_Entity_Recognition_with_BERT.ipynb
chiragme/autonlp-imdb-sentiment-analysis-623817873
ce0eb41c2ee07010601e9cee45d5805f6629b259
2022-03-10T03:28:02.000Z
[ "pytorch", "bert", "text-classification", "en", "dataset:chiragme/autonlp-data-imdb-sentiment-analysis", "transformers", "autonlp", "co2_eq_emissions" ]
text-classification
false
chiragme
null
chiragme/autonlp-imdb-sentiment-analysis-623817873
6
null
transformers
15,480
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - chiragme/autonlp-data-imdb-sentiment-analysis co2_eq_emissions: 147.38973865706626 --- # Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 623817873 - CO2 Emissions (in grams): 147.38973865706626 ## Validation Metrics - Loss: 0.2412157654762268 - Accuracy: 0.9306 - Precision: 0.9377795851972347 - Recall: 0.9224 - AUC: 0.97000504 - F1: 0.9300262149626941 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/chiragme/autonlp-imdb-sentiment-analysis-623817873 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("chiragme/autonlp-imdb-sentiment-analysis-623817873", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("chiragme/autonlp-imdb-sentiment-analysis-623817873", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
SAI2-EXP/TNANA-th-th
29b80a243cf1d7326cc0277539f67e97d1ab0dcb
2022-03-07T05:56:03.000Z
[ "pytorch", "marian", "text2text-generation", "transformers", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
SAI2-EXP
null
SAI2-EXP/TNANA-th-th
6
null
transformers
15,481
--- license: apache-2.0 ---
danielbubiola/fine_tuned_text_clf_model
08b25cd9268f2c7fe2afcd4373f488b3fa06a75b
2022-03-10T11:10:40.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers" ]
text-classification
false
danielbubiola
null
danielbubiola/fine_tuned_text_clf_model
6
null
transformers
15,482
Entry not found
Someshfengde/autonlp-kaggledays-625717986
7f852a4641f7b6a3b590e20a1f36c3a2fe2d447a
2022-03-10T15:27:01.000Z
[ "pytorch", "bert", "text-classification", "en", "dataset:Someshfengde/autonlp-data-kaggledays", "transformers", "autonlp", "co2_eq_emissions" ]
text-classification
false
Someshfengde
null
Someshfengde/autonlp-kaggledays-625717986
6
null
transformers
15,483
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - Someshfengde/autonlp-data-kaggledays co2_eq_emissions: 68.73074770596023 --- # Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 625717986 - CO2 Emissions (in grams): 68.73074770596023 ## Validation Metrics - Loss: 0.859463632106781 - Accuracy: 0.6118427330852181 - Macro F1: 0.6112554383858383 - Micro F1: 0.6118427330852181 - Weighted F1: 0.6112706859556324 - Macro Precision: 0.6121119616189625 - Micro Precision: 0.6118427330852181 - Weighted Precision: 0.6121068719118146 - Macro Recall: 0.6118067898609261 - Micro Recall: 0.6118427330852181 - Weighted Recall: 0.6118427330852181 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/Someshfengde/autonlp-kaggledays-625717986 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("Someshfengde/autonlp-kaggledays-625717986", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("Someshfengde/autonlp-kaggledays-625717986", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
muneson/nb-wav2vec2-300m-nynorsk
554c6ea7181693a1e67a5fff2ad02b78f725cb14
2022-03-13T05:26:51.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers", "NbAiLab/NPSC", "generated_from_trainer", "license:cc0-1.0", "model-index" ]
automatic-speech-recognition
false
muneson
null
muneson/nb-wav2vec2-300m-nynorsk
6
null
transformers
15,484
--- license: cc0-1.0 tags: - automatic-speech-recognition - NbAiLab/NPSC - generated_from_trainer model-index: - name: '' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [KBLab/wav2vec2-large-voxrex](https://huggingface.co/KBLab/wav2vec2-large-voxrex) on the NBAILAB/NPSC - 16K_MP3_NYNORSK dataset. It achieves the following results on the evaluation set: - Loss: 0.4929 - Wer: 0.1455 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 80.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.0168 | 0.54 | 500 | 3.0478 | 1.0 | | 2.8486 | 1.08 | 1000 | 2.7863 | 1.0 | | 1.0509 | 1.62 | 1500 | 0.8737 | 0.5449 | | 0.7873 | 2.16 | 2000 | 0.6718 | 0.4292 | | 0.6987 | 2.7 | 2500 | 0.5497 | 0.3589 | | 0.5548 | 3.24 | 3000 | 0.4841 | 0.3145 | | 0.5421 | 3.78 | 3500 | 0.4569 | 0.2927 | | 0.4416 | 4.31 | 4000 | 0.4702 | 0.2822 | | 0.4388 | 4.85 | 4500 | 0.4145 | 0.2641 | | 0.4011 | 5.39 | 5000 | 0.4033 | 0.2565 | | 0.3959 | 5.93 | 5500 | 0.4127 | 0.2450 | | 0.3643 | 6.47 | 6000 | 0.3972 | 0.2420 | | 0.3594 | 7.01 | 6500 | 0.3882 | 0.2392 | | 0.3315 | 7.55 | 7000 | 0.3714 | 0.2337 | | 0.3131 | 8.09 | 7500 | 0.3964 | 0.2313 | | 0.3192 | 8.63 | 8000 | 0.3711 | 0.2268 | | 0.2855 | 9.17 | 8500 | 0.3815 | 0.2293 | | 0.2756 | 9.71 | 9000 | 0.3653 | 0.2187 | | 0.248 | 10.25 | 9500 | 0.3929 | 0.2093 | | 0.2428 | 10.79 | 10000 | 0.3641 | 0.1986 | | 0.2412 | 11.33 | 10500 | 0.3687 | 0.1978 | | 0.2455 | 11.87 | 11000 | 0.3942 | 0.2005 | | 0.2181 | 12.41 | 11500 | 0.3611 | 0.1876 | | 0.2321 | 12.94 | 12000 | 0.3586 | 0.1940 | | 0.2132 | 13.48 | 12500 | 0.3904 | 0.1892 | | 0.2162 | 14.02 | 13000 | 0.3812 | 0.1867 | | 0.205 | 14.56 | 13500 | 0.3751 | 0.1839 | | 0.1757 | 15.1 | 14000 | 0.3722 | 0.1816 | | 0.1722 | 15.64 | 14500 | 0.3873 | 0.1793 | | 0.1862 | 16.18 | 15000 | 0.3924 | 0.1790 | | 0.1549 | 16.72 | 15500 | 0.3719 | 0.1782 | | 0.1616 | 17.26 | 16000 | 0.3570 | 0.1830 | | 0.1646 | 17.8 | 16500 | 0.3867 | 0.1839 | | 0.1541 | 18.34 | 17000 | 0.3944 | 0.1817 | | 0.165 | 18.88 | 17500 | 0.3909 | 0.1806 | | 0.152 | 19.42 | 18000 | 0.3883 | 0.1766 | | 0.1532 | 19.96 | 18500 | 0.3732 | 0.1783 | | 0.1498 | 20.5 | 19000 | 0.3931 | 0.1713 | | 0.1424 | 21.04 | 19500 | 0.4205 | 0.1730 | | 0.1394 | 21.57 | 20000 | 0.4291 | 0.1710 | | 0.1407 | 22.11 | 20500 | 0.4239 | 0.1757 | | 0.1275 | 22.65 | 21000 | 0.4171 | 0.1719 | | 0.1262 | 23.19 | 21500 | 0.4346 | 0.1706 | | 0.1301 | 23.73 | 22000 | 0.4281 | 0.1650 | | 0.1342 | 24.27 | 22500 | 0.4469 | 0.1680 | | 0.1249 | 24.81 | 23000 | 0.4297 | 0.1709 | | 0.1143 | 25.35 | 23500 | 0.4130 | 0.1665 | | 0.1121 | 25.89 | 24000 | 0.4458 | 0.1633 | | 0.1206 | 26.43 | 24500 | 0.4597 | 0.1663 | | 0.1142 | 26.97 | 25000 | 0.3961 | 0.1726 | | 0.1025 | 27.51 | 25500 | 0.3985 | 0.1629 | | 0.0961 | 28.05 | 26000 | 0.4002 | 0.1629 | | 0.1253 | 28.59 | 26500 | 0.4256 | 0.1624 | | 0.1228 | 29.13 | 27000 | 0.4308 | 0.1653 | | 0.1034 | 29.67 | 27500 | 0.4354 | 0.1646 | | 0.0853 | 30.2 | 28000 | 0.4200 | 0.1588 | | 0.0936 | 30.74 | 28500 | 0.4748 | 0.1596 | | 0.1015 | 31.28 | 29000 | 0.4383 | 0.1651 | | 0.1 | 31.82 | 29500 | 0.4436 | 0.1659 | | 0.1087 | 32.36 | 30000 | 0.4121 | 0.1596 | | 0.1084 | 32.9 | 30500 | 0.4297 | 0.1602 | | 0.0855 | 33.44 | 31000 | 0.4453 | 0.1645 | | 0.0872 | 33.98 | 31500 | 0.4377 | 0.1605 | | 0.0893 | 34.52 | 32000 | 0.4373 | 0.1556 | | 0.0864 | 35.06 | 32500 | 0.4244 | 0.1607 | | 0.08 | 35.6 | 33000 | 0.3972 | 0.1615 | | 0.1025 | 36.14 | 33500 | 0.4481 | 0.1580 | | 0.099 | 36.68 | 34000 | 0.4224 | 0.1613 | | 0.083 | 37.22 | 34500 | 0.4499 | 0.1577 | | 0.0783 | 37.76 | 35000 | 0.4649 | 0.1558 | | 0.0856 | 38.3 | 35500 | 0.4493 | 0.1546 | | 0.0888 | 38.83 | 36000 | 0.4313 | 0.1530 | | 0.0752 | 39.37 | 36500 | 0.4737 | 0.1544 | | 0.0723 | 39.91 | 37000 | 0.4539 | 0.1549 | | 0.0785 | 40.45 | 37500 | 0.4585 | 0.1550 | | 0.0686 | 40.99 | 38000 | 0.4489 | 0.1564 | | 0.08 | 41.53 | 38500 | 0.4569 | 0.1553 | | 0.0699 | 42.07 | 39000 | 0.4791 | 0.1551 | | 0.066 | 42.61 | 39500 | 0.4807 | 0.1530 | | 0.072 | 43.15 | 40000 | 0.4456 | 0.1570 | | 0.0818 | 43.69 | 40500 | 0.4544 | 0.1582 | | 0.0741 | 44.23 | 41000 | 0.4646 | 0.1573 | | 0.0691 | 44.77 | 41500 | 0.4576 | 0.1531 | | 0.0605 | 45.31 | 42000 | 0.4776 | 0.1558 | | 0.0705 | 45.85 | 42500 | 0.4468 | 0.1562 | | 0.0671 | 46.39 | 43000 | 0.4782 | 0.1563 | | 0.0612 | 46.93 | 43500 | 0.4761 | 0.1542 | | 0.0588 | 47.46 | 44000 | 0.4846 | 0.1534 | | 0.0752 | 48.0 | 44500 | 0.4972 | 0.1554 | | 0.0595 | 48.54 | 45000 | 0.4784 | 0.1546 | | 0.0591 | 49.08 | 45500 | 0.4750 | 0.1609 | | 0.0594 | 49.62 | 46000 | 0.4641 | 0.1593 | | 0.0539 | 50.16 | 46500 | 0.4746 | 0.1545 | | 0.0605 | 50.7 | 47000 | 0.4535 | 0.1586 | | 0.0515 | 51.24 | 47500 | 0.4701 | 0.1577 | | 0.058 | 51.78 | 48000 | 0.4667 | 0.1554 | | 0.0503 | 52.32 | 48500 | 0.4747 | 0.1527 | | 0.0536 | 52.86 | 49000 | 0.4914 | 0.1494 | | 0.0569 | 53.4 | 49500 | 0.4869 | 0.1789 | | 0.0711 | 53.94 | 50000 | 0.4863 | 0.1534 | | 0.0605 | 54.48 | 50500 | 0.4533 | 0.1533 | | 0.085 | 55.02 | 51000 | 0.4679 | 0.1545 | | 0.05 | 55.56 | 51500 | 0.4699 | 0.1528 | | 0.0577 | 56.09 | 52000 | 0.4865 | 0.1521 | | 0.0494 | 56.63 | 52500 | 0.4852 | 0.1524 | | 0.056 | 57.17 | 53000 | 0.4923 | 0.1508 | | 0.056 | 57.71 | 53500 | 0.5102 | 0.1526 | | 0.0515 | 58.25 | 54000 | 0.4989 | 0.1502 | | 0.0465 | 58.79 | 54500 | 0.4852 | 0.1471 | | 0.0537 | 59.33 | 55000 | 0.4716 | 0.1507 | | 0.0494 | 59.87 | 55500 | 0.4852 | 0.1502 | | 0.0482 | 60.41 | 56000 | 0.4887 | 0.1494 | | 0.0574 | 60.95 | 56500 | 0.4689 | 0.1504 | | 0.0558 | 61.49 | 57000 | 0.4683 | 0.1509 | | 0.0509 | 62.03 | 57500 | 0.4923 | 0.1501 | | 0.0484 | 62.57 | 58000 | 0.4871 | 0.1488 | | 0.0512 | 63.11 | 58500 | 0.4751 | 0.1514 | | 0.0502 | 63.65 | 59000 | 0.4805 | 0.1510 | | 0.0466 | 64.19 | 59500 | 0.4939 | 0.1515 | | 0.0518 | 64.72 | 60000 | 0.4840 | 0.1514 | | 0.038 | 65.26 | 60500 | 0.4927 | 0.1511 | | 0.0552 | 65.8 | 61000 | 0.4910 | 0.1490 | | 0.0529 | 66.34 | 61500 | 0.4772 | 0.1484 | | 0.0515 | 66.88 | 62000 | 0.4688 | 0.1482 | | 0.0528 | 67.42 | 62500 | 0.4675 | 0.1472 | | 0.0564 | 67.96 | 63000 | 0.4735 | 0.1483 | | 0.0466 | 68.5 | 63500 | 0.4884 | 0.1460 | | 0.0551 | 69.04 | 64000 | 0.4771 | 0.1479 | | 0.0436 | 69.58 | 64500 | 0.4881 | 0.1489 | | 0.043 | 70.12 | 65000 | 0.4847 | 0.1473 | | 0.0529 | 70.66 | 65500 | 0.4846 | 0.1478 | | 0.0434 | 71.2 | 66000 | 0.4921 | 0.1477 | | 0.0395 | 71.74 | 66500 | 0.4961 | 0.1471 | | 0.0398 | 72.28 | 67000 | 0.4940 | 0.1473 | | 0.0405 | 72.82 | 67500 | 0.4891 | 0.1465 | | 0.0404 | 73.35 | 68000 | 0.4880 | 0.1462 | | 0.0478 | 73.89 | 68500 | 0.4937 | 0.1468 | | 0.0388 | 74.43 | 69000 | 0.4868 | 0.1464 | | 0.0426 | 74.97 | 69500 | 0.4965 | 0.1458 | | 0.0382 | 75.51 | 70000 | 0.4999 | 0.1460 | | 0.0426 | 76.05 | 70500 | 0.4944 | 0.1466 | | 0.0459 | 76.59 | 71000 | 0.4978 | 0.1463 | | 0.0366 | 77.13 | 71500 | 0.5010 | 0.1466 | | 0.0511 | 77.67 | 72000 | 0.4920 | 0.1453 | | 0.045 | 78.21 | 72500 | 0.4974 | 0.1461 | | 0.0425 | 78.75 | 73000 | 0.4926 | 0.1453 | | 0.0431 | 79.29 | 73500 | 0.4925 | 0.1456 | | 0.0362 | 79.83 | 74000 | 0.4929 | 0.1455 | ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.11.0+cu102 - Datasets 1.18.5.dev0 - Tokenizers 0.11.6
anton-l/xtreme_s_xlsr_minds14_longer
943ba28a1fde067525b14b8751b41e012afa2269
2022-03-13T14:36:40.000Z
[ "pytorch", "tensorboard", "wav2vec2", "audio-classification", "transformers" ]
audio-classification
false
anton-l
null
anton-l/xtreme_s_xlsr_minds14_longer
6
null
transformers
15,485
Entry not found
bettertextapp/tai-byt5-small-de-correct-train
a6435150f887858d32e2ac5ef67c3280cafe70dd
2022-03-13T21:09:11.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
bettertextapp
null
bettertextapp/tai-byt5-small-de-correct-train
6
null
transformers
15,486
Entry not found
T-qualizer/distilbert-base-uncased-finetuned-advers
27a1d890b4820de3eeafdd1fd2b7d4bb75852d1e
2022-03-14T23:25:09.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "dataset:adversarial_qa", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
T-qualizer
null
T-qualizer/distilbert-base-uncased-finetuned-advers
6
null
transformers
15,487
--- license: apache-2.0 tags: - generated_from_trainer datasets: - adversarial_qa model-index: - name: distilbert-base-uncased-finetuned-advers results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-advers This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the adversarial_qa dataset. It achieves the following results on the evaluation set: - Loss: 3.6462 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 9e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 3000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.6424 | 0.18 | 3000 | 3.6462 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.4 - Tokenizers 0.11.6
wypoon/distilbert-base-uncased-finetuned-emotion
325f9c437a9ca9b9eb50c3c4d37a13572f57ff53
2022-03-15T00:45:17.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
wypoon
null
wypoon/distilbert-base-uncased-finetuned-emotion
6
null
transformers
15,488
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.919 - name: F1 type: f1 value: 0.919270748741723 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2243 - Accuracy: 0.919 - F1: 0.9193 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.833 | 1.0 | 250 | 0.3188 | 0.9015 | 0.8975 | | 0.2513 | 2.0 | 500 | 0.2243 | 0.919 | 0.9193 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
tareknaous/dialogpt-daily-dialog
b0032a62d3f2544742abbb4dd3162dce48dbb5d9
2022-03-14T09:18:51.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
tareknaous
null
tareknaous/dialogpt-daily-dialog
6
null
transformers
15,489
Entry not found
mjc00/distilbert-base-uncased-finetuned-emotion
2f1a0dce6788703ac0d746aa4d090bf09dc057e8
2022-03-15T05:48:00.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
mjc00
null
mjc00/distilbert-base-uncased-finetuned-emotion
6
null
transformers
15,490
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.924 - name: F1 type: f1 value: 0.924132235882821 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2153 - Accuracy: 0.924 - F1: 0.9241 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.7986 | 1.0 | 250 | 0.3021 | 0.91 | 0.9078 | | 0.2386 | 2.0 | 500 | 0.2153 | 0.924 | 0.9241 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
cambridgeltl/sst_electra_small
8cc6faecac14d33d18e9c90945a0c7d651abf80c
2022-03-15T11:32:37.000Z
[ "pytorch", "electra", "text-classification", "transformers" ]
text-classification
false
cambridgeltl
null
cambridgeltl/sst_electra_small
6
null
transformers
15,491
Entry not found
pritamdeka/BioBert-PubMed200kRCT
feb24358ce21ea5ffbf4a13b96cd6e971333d365
2022-07-27T21:35:49.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
pritamdeka
null
pritamdeka/BioBert-PubMed200kRCT
6
null
transformers
15,492
--- tags: - generated_from_trainer metrics: - accuracy widget: - text: "SAMPLE 32,441 archived appendix samples fixed in formalin and embedded in paraffin and tested for the presence of abnormal prion protein (PrP)." model-index: - name: BioBert-PubMed200kRCT results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BioBert-PubMed200kRCT This model is a fine-tuned version of [dmis-lab/biobert-base-cased-v1.1](https://huggingface.co/dmis-lab/biobert-base-cased-v1.1) on the [PubMed200kRCT](https://github.com/Franck-Dernoncourt/pubmed-rct/tree/master/PubMed_200k_RCT) dataset. It achieves the following results on the evaluation set: - Loss: 0.2832 - Accuracy: 0.8934 ## Model description More information needed ## Intended uses & limitations The model can be used for text classification tasks of Randomized Controlled Trials that does not have any structure. The text can be classified as one of the following: * BACKGROUND * CONCLUSIONS * METHODS * OBJECTIVE * RESULTS The model can be directly used like this: ```python from transformers import TextClassificationPipeline from transformers import AutoTokenizer, AutoModelForSequenceClassification model = AutoModelForSequenceClassification.from_pretrained("pritamdeka/BioBert-PubMed200kRCT") tokenizer = AutoTokenizer.from_pretrained("pritamdeka/BioBert-PubMed200kRCT") pipe = TextClassificationPipeline(model=model, tokenizer=tokenizer, return_all_scores=True) pipe("Treatment of 12 healthy female subjects with CDCA for 2 days resulted in increased BAT activity.") ``` Results will be shown as follows: ```python [[{'label': 'BACKGROUND', 'score': 0.0027583304326981306}, {'label': 'CONCLUSIONS', 'score': 0.044541116803884506}, {'label': 'METHODS', 'score': 0.19493348896503448}, {'label': 'OBJECTIVE', 'score': 0.003996663726866245}, {'label': 'RESULTS', 'score': 0.7537703514099121}]] ``` More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.3587 | 0.14 | 5000 | 0.3137 | 0.8834 | | 0.3318 | 0.29 | 10000 | 0.3100 | 0.8831 | | 0.3286 | 0.43 | 15000 | 0.3033 | 0.8864 | | 0.3236 | 0.58 | 20000 | 0.3037 | 0.8862 | | 0.3182 | 0.72 | 25000 | 0.2939 | 0.8876 | | 0.3129 | 0.87 | 30000 | 0.2910 | 0.8885 | | 0.3078 | 1.01 | 35000 | 0.2914 | 0.8887 | | 0.2791 | 1.16 | 40000 | 0.2975 | 0.8874 | | 0.2723 | 1.3 | 45000 | 0.2913 | 0.8906 | | 0.2724 | 1.45 | 50000 | 0.2879 | 0.8904 | | 0.27 | 1.59 | 55000 | 0.2874 | 0.8911 | | 0.2681 | 1.74 | 60000 | 0.2848 | 0.8928 | | 0.2672 | 1.88 | 65000 | 0.2832 | 0.8934 | ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.18.4 - Tokenizers 0.11.6
cambridgeltl/sst_electra_base
c0f64169b65d0dc7d8e885c6ba111da69f6d6df4
2022-03-15T15:45:07.000Z
[ "pytorch", "electra", "text-classification", "transformers" ]
text-classification
false
cambridgeltl
null
cambridgeltl/sst_electra_base
6
null
transformers
15,493
Entry not found
MrAnderson/nystrom-4096-full-trivia-copied-embeddings
110fccda1f37fe60d01bd3dc5cb36bc4301a0526
2022-03-15T23:19:12.000Z
[ "pytorch", "nystromformer", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
MrAnderson
null
MrAnderson/nystrom-4096-full-trivia-copied-embeddings
6
null
transformers
15,494
Entry not found
facebook/regnet-x-004
8cd1eb19449b5ed35111f8ae9de7984086739fcf
2022-06-30T10:14:47.000Z
[ "pytorch", "tf", "regnet", "image-classification", "dataset:imagenet-1k", "arxiv:2003.13678", "transformers", "vision", "license:apache-2.0" ]
image-classification
false
facebook
null
facebook/regnet-x-004
6
null
transformers
15,495
--- license: apache-2.0 tags: - vision - image-classification datasets: - imagenet-1k widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace --- # RegNet RegNet model trained on imagenet-1k. It was introduced in the paper [Designing Network Design Spaces](https://arxiv.org/abs/2003.13678) and first released in [this repository](https://github.com/facebookresearch/pycls). Disclaimer: The team releasing RegNet did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The authors design search spaces to perform Neural Architecture Search (NAS). They first start from a high dimensional search space and iteratively reduce the search space by empirically applying constraints based on the best-performing models sampled by the current search space. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/regnet_architecture.png) ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=regnet) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model: ```python >>> from transformers import AutoFeatureExtractor, RegNetForImageClassification >>> import torch >>> from datasets import load_dataset >>> dataset = load_dataset("huggingface/cats-image") >>> image = dataset["test"]["image"][0] >>> feature_extractor = AutoFeatureExtractor.from_pretrained("zuppif/regnet-y-040") >>> model = RegNetForImageClassification.from_pretrained("zuppif/regnet-y-040") >>> inputs = feature_extractor(image, return_tensors="pt") >>> with torch.no_grad(): ... logits = model(**inputs).logits >>> # model predicts one of the 1000 ImageNet classes >>> predicted_label = logits.argmax(-1).item() >>> print(model.config.id2label[predicted_label]) 'tabby, tabby cat' ``` For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/regnet).
dorltcheng/CXR_BioClinicalBERT_v1
89672de09bab87266a6ff3271d16fce8aa83bd39
2022-03-16T03:07:06.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
dorltcheng
null
dorltcheng/CXR_BioClinicalBERT_v1
6
null
transformers
15,496
Entry not found
MrAnderson/yoso-4096-full-trivia
5a5eac1aa327726c6eb22583ee6b17b034594bdf
2022-03-16T13:53:02.000Z
[ "pytorch", "yoso", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
MrAnderson
null
MrAnderson/yoso-4096-full-trivia
6
null
transformers
15,497
Entry not found
edbeeching/decision-transformer-gym-halfcheetah-medium
bb89518aa176be7e778249a64e0b565a0e488bf5
2022-06-29T19:20:49.000Z
[ "pytorch", "decision_transformer", "feature-extraction", "arxiv:2106.01345", "transformers", "deep-reinforcement-learning", "reinforcement-learning", "decision-transformer", "gym-continous-control" ]
reinforcement-learning
false
edbeeching
null
edbeeching/decision-transformer-gym-halfcheetah-medium
6
null
transformers
15,498
--- tags: - deep-reinforcement-learning - reinforcement-learning - decision-transformer - gym-continous-control pipeline_tag: reinforcement-learning --- # Decision Transformer model trained on medium trajectories sampled from the Gym HalfCheetah environment This is a trained [Decision Transformer](https://arxiv.org/abs/2106.01345) model trained on medium trajectories sampled from the Gym HalfCheetah environment. The following normlization coeficients are required to use this model: mean = [-0.06845774, 0.01641455, -0.18354906, -0.27624607, -0.34061527, -0.09339716, -0.21321271, -0.08774239, 5.1730075, -0.04275195, -0.03610836, 0.14053793, 0.06049833, 0.09550975, 0.067391, 0.00562739, 0.01338279] std = [0.07472999, 0.30234998, 0.3020731, 0.34417078, 0.17619242, 0.5072056, 0.25670078, 0.32948127, 1.2574149, 0.7600542, 1.9800916, 6.5653625, 7.4663677, 4.472223, 10.566964, 5.6719327, 7.498259] See our [Blog Post](https://colab.research.google.com/drive/1K3UuajwoPY1MzRKNkONNRS3gS5DxZ-qF?usp=sharing), [Colab notebook](https://colab.research.google.com/drive/1K3UuajwoPY1MzRKNkONNRS3gS5DxZ-qF?usp=sharing) or [Example Script](https://github.com/huggingface/transformers/tree/main/examples/research_projects/decision_transformer) for usage.
edbeeching/decision-transformer-gym-walker2d-medium-replay
4cbf4a12f78fa8621efff343df971882ebe20a44
2022-06-29T19:22:05.000Z
[ "pytorch", "decision_transformer", "feature-extraction", "arxiv:2106.01345", "transformers", "deep-reinforcement-learning", "reinforcement-learning", "decision-transformer", "gym-continous-control" ]
reinforcement-learning
false
edbeeching
null
edbeeching/decision-transformer-gym-walker2d-medium-replay
6
null
transformers
15,499
--- tags: - deep-reinforcement-learning - reinforcement-learning - decision-transformer - gym-continous-control pipeline_tag: reinforcement-learning --- # Decision Transformer model trained on medium-replay trajectories sampled from the Gym Walker2d environment This is a trained [Decision Transformer](https://arxiv.org/abs/2106.01345) model trained on medium-replay trajectories sampled from the Gym Walker2d environment. The following normlization coeficients are required to use this model: mean = [1.2093647, 0.13264023, -0.14371201, -0.20465161, 0.55776125, -0.03231537, -0.2784661, 0.19130707, 1.4701707, -0.12504704, 0.05649531, -0.09991033, -0.34034026, 0.03546293, -0.08934259, -0.2992438, -0.5984178 ] std = [0.11929835, 0.3562574, 0.258522, 0.42075422, 0.5202291, 0.15685083, 0.3677098, 0.7161388, 1.3763766, 0.8632222, 2.6364644, 3.0134118, 3.720684, 4.867284, 2.6681626, 3.845187, 5.47683867] See our [Blog Post](https://colab.research.google.com/drive/1K3UuajwoPY1MzRKNkONNRS3gS5DxZ-qF?usp=sharing), [Colab notebook](https://colab.research.google.com/drive/1K3UuajwoPY1MzRKNkONNRS3gS5DxZ-qF?usp=sharing) or [Example Script](https://github.com/huggingface/transformers/tree/main/examples/research_projects/decision_transformer) for usage.