modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
list
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
huggingtweets/pearltrans
fc0bd773d0d110d0c7a4ca33a5605d2fb0fe25f9
2021-05-23T14:14:51.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/pearltrans
6
null
transformers
15,300
--- language: en thumbnail: https://www.huggingtweets.com/pearltrans/1621529245791/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1389950688331960324/7bkgN6h8_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">PearlTheComicsGirl</div> <div style="text-align: center; font-size: 14px;">@pearltrans</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from PearlTheComicsGirl. | Data | PearlTheComicsGirl | | --- | --- | | Tweets downloaded | 837 | | Retweets | 100 | | Short tweets | 166 | | Tweets kept | 571 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/szcek6ld/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @pearltrans's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3t5jniyr) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3t5jniyr/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/pearltrans') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/politicalmiller
c04f2ee0c6a785043d07fd3da7c3907aaa5fa8ed
2021-05-22T18:59:13.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/politicalmiller
6
null
transformers
15,301
--- language: en thumbnail: https://www.huggingtweets.com/politicalmiller/1621521804404/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1277020279643013122/4Bq8WTOC_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Jack Miller</div> <div style="text-align: center; font-size: 14px;">@politicalmiller</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Jack Miller. | Data | Jack Miller | | --- | --- | | Tweets downloaded | 274 | | Retweets | 148 | | Short tweets | 8 | | Tweets kept | 118 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3qe4bmlw/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @politicalmiller's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3sxyaywa) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3sxyaywa/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/politicalmiller') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/rantspakistani
aca299b6fa05528855241bf4b4419886b8db93dc
2021-06-15T09:17:31.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/rantspakistani
6
null
transformers
15,302
--- language: en thumbnail: https://www.huggingtweets.com/rantspakistani/1623748645565/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1272527278744973315/PVkL9_v-_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Rants</div> <div style="text-align: center; font-size: 14px;">@rantspakistani</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Rants. | Data | Rants | | --- | --- | | Tweets downloaded | 3221 | | Retweets | 573 | | Short tweets | 142 | | Tweets kept | 2506 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2wyl63o2/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @rantspakistani's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/d2h287dr) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/d2h287dr/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/rantspakistani') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/spamemcspam
ac50b20123db924c5730f000545e3c4d64295364
2021-07-23T20:59:12.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/spamemcspam
6
null
transformers
15,303
--- language: en thumbnail: https://www.huggingtweets.com/spamemcspam/1627073948338/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1362892272342196224/RSTBJB08_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Yes, I know my cat is ugly.</div> <div style="text-align: center; font-size: 14px;">@spamemcspam</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Yes, I know my cat is ugly.. | Data | Yes, I know my cat is ugly. | | --- | --- | | Tweets downloaded | 3214 | | Retweets | 977 | | Short tweets | 228 | | Tweets kept | 2009 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3mn5cki9/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @spamemcspam's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1v7cmihj) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1v7cmihj/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/spamemcspam') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
hyunwoongko/asian-bart-ko
d59056832f257e06084a5e0800a6e1dd73420916
2021-04-01T08:17:28.000Z
[ "pytorch", "mbart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
hyunwoongko
null
hyunwoongko/asian-bart-ko
6
1
transformers
15,304
Entry not found
hyunwoongko/roberta-base-en-mnli
3d053ef07fffb7b016f55f38ec4fad6acee324df
2021-05-20T16:44:48.000Z
[ "pytorch", "jax", "roberta", "text-classification", "transformers" ]
text-classification
false
hyunwoongko
null
hyunwoongko/roberta-base-en-mnli
6
null
transformers
15,305
Entry not found
it5/it5-small-question-generation
56d5cc7151c42ffa1344ca80bc881e0ecb273252
2022-03-09T07:55:38.000Z
[ "pytorch", "tf", "jax", "tensorboard", "t5", "text2text-generation", "it", "dataset:squad_it", "arxiv:2203.03759", "transformers", "italian", "sequence-to-sequence", "question-generation", "squad_it", "license:apache-2.0", "model-index", "co2_eq_emissions", "autotrain_compatible" ]
text2text-generation
false
it5
null
it5/it5-small-question-generation
6
null
transformers
15,306
--- language: - it license: apache-2.0 datasets: - squad_it tags: - italian - sequence-to-sequence - question-generation - squad_it - text2text-generation widget: - text: "Le conoscenze mediche erano stagnanti durante il Medioevo. Il resoconto più autorevole di allora è venuto dalla facoltà di medicina di Parigi in un rapporto al re di Francia che ha incolpato i cieli, sotto forma di una congiunzione di tre pianeti nel 1345 che causò una \"grande pestilenza nell' aria\". Questa relazione è diventata la prima e più diffusa di una serie di casi di peste che cercava di dare consigli ai malati. Che la peste fosse causata dalla cattiva aria divenne la teoria più accettata. Oggi, questo è conosciuto come la teoria di Miasma. La parola \"peste\" non aveva un significato particolare in questo momento, e solo la ricorrenza dei focolai durante il Medioevo gli diede il nome che è diventato il termine medico. Risposta: re di Francia" - text: "Il 14 aprile 2011, ABC ha annullato le lunghe opere di sapone All My Children e One Life to Live dopo 41 e 43 anni in onda, rispettivamente (in seguito al contraccolpo dei tifosi, ABC ha venduto i diritti ad entrambi gli spettacoli a Prospect Park, che alla fine ha rilanciato i saponi su Hulu per un' ulteriore stagione nel 2013 e con entrambe le società che si citano in giudizio per accuse di interferenza con il processo di rilancio degli spettacoli, mancato pagamento delle tasse di licenza. Il talk/lifestyle show che ha sostituito One Life to Live, The Revolution, non è riuscito a generare giudizi soddisfacenti ed è stato a sua volta annullato dopo soli sette mesi. La stagione 2011-12 ha visto l' ABC cadere al quarto posto nel 18-49 demografico nonostante rinnovando una manciata di nuovi spettacoli (compresi i drammi matricole Scandal, Revenge e Once Upon a Time) per la seconda stagione. Risposta: Hulu" - text: "L' American Broadcasting Company (ABC) (stlized nel suo logo come abc dal 1957) è una rete televisiva commerciale americana trasmissione televisiva che è di proprietà del Disney-ABC Television Group, una controllata della divisione Disney Media Networks di The Walt Disney Company. La rete fa parte delle grandi reti televisive Big Three. La rete ha sede a Columbus Avenue e West 66th Street a Manhattan, con ulteriori uffici e stabilimenti di produzione a New York City, Los Angeles e Burbank, California. Risposta: Manhattan" - text: "La disobbedienza civile non rivoluzionaria è una semplice disobbedienza delle leggi sulla base del fatto che sono giudicate \"sbagliate\" da una coscienza individuale, o come parte di uno sforzo per rendere alcune leggi inefficaci, per causarne l' abrogazione, o per esercitare pressioni per ottenere i propri desideri politici su qualche altra questione. La disobbedienza civile rivoluzionaria è più che altro un tentativo attivo di rovesciare un governo (o di cambiare le tradizioni culturali, i costumi sociali, le credenze religiose, ecc. La rivoluzione non deve necessariamente essere politica, cioè \"rivoluzione culturale\", implica semplicemente un cambiamento radicale e diffuso in una sezione del tessuto sociale). Gli atti di Gandhi sono stati descritti come disobbedienza civile rivoluzionaria. È stato affermato che gli ungheresi sotto Ferenc Deák hanno diretto una disobbedienza civile rivoluzionaria contro il governo austriaco. Thoreau ha anche scritto di disobbedienza civile realizzando \"rivoluzione pacifica\". Howard Zinn, Harvey Wheeler e altri hanno identificato il diritto sposato nella Dichiarazione d' Indipendenza di \"alterare o abolire\" un governo ingiusto come principio di disobbedienza civile. Risposta: Ferenc Deák" metrics: - rouge - bertscore model-index: - name: it5-small-question-generation results: - task: type: question-generation name: "Question generation" dataset: type: squad_it name: "SQuAD-IT" metrics: - type: rouge1 value: 0.367 name: "Test Rouge1" - type: rouge2 value: 0.189 name: "Test Rouge2" - type: rougeL value: 0.344 name: "Test RougeL" - type: bertscore value: 0.505 name: "Test BERTScore" args: - model_type: "dbmdz/bert-base-italian-xxl-uncased" - lang: "it" - num_layers: 10 - rescale_with_baseline: True - baseline_path: "bertscore_baseline_ita.tsv" co2_eq_emissions: emissions: "8g" source: "Google Cloud Platform Carbon Footprint" training_type: "fine-tuning" geographical_location: "Eemshaven, Netherlands, Europe" hardware_used: "1 TPU v3-8 VM" thumbnail: https://gsarti.com/publication/it5/featured.png --- # IT5 Small for Question Generation 💭 🇮🇹 This repository contains the checkpoint for the [IT5 Small](https://huggingface.co/gsarti/it5-small) model fine-tuned on question generation on the [SQuAD-IT corpus](https://huggingface.co/datasets/squad_it) as part of the experiments of the paper [IT5: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation](https://arxiv.org/abs/2203.03759) by [Gabriele Sarti](https://gsarti.com) and [Malvina Nissim](https://malvinanissim.github.io). A comprehensive overview of other released materials is provided in the [gsarti/it5](https://github.com/gsarti/it5) repository. Refer to the paper for additional details concerning the reported scores and the evaluation approach. ## Using the model Model checkpoints are available for usage in Tensorflow, Pytorch and JAX. They can be used directly with pipelines as: ```python from transformers import pipelines qg = pipeline("text2text-generation", model='it5/it5-small-question-generation') qg("Le conoscenze mediche erano stagnanti durante il Medioevo. Il resoconto più autorevole di allora è venuto dalla facoltà di medicina di Parigi in un rapporto al re di Francia che ha incolpato i cieli, sotto forma di una congiunzione di tre pianeti nel 1345 che causò una "grande pestilenza nell\' aria". Questa relazione è diventata la prima e più diffusa di una serie di casi di peste che cercava di dare consigli ai malati. Che la peste fosse causata dalla cattiva aria divenne la teoria più accettata. Oggi, questo è conosciuto come la teoria di Miasma. La parola "peste" non aveva un significato particolare in questo momento, e solo la ricorrenza dei focolai durante il Medioevo gli diede il nome che è diventato il termine medico. Risposta: re di Francia") >>> [{"generated_text": "Per chi è stato redatto il referto medico?"}] ``` or loaded using autoclasses: ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("it5/it5-small-question-generation") model = AutoModelForSeq2SeqLM.from_pretrained("it5/it5-small-question-generation") ``` If you use this model in your research, please cite our work as: ```bibtex @article{sarti-nissim-2022-it5, title={{IT5}: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation}, author={Sarti, Gabriele and Nissim, Malvina}, journal={ArXiv preprint 2203.03759}, url={https://arxiv.org/abs/2203.03759}, year={2022}, month={mar} } ```
it5/mt5-base-ilgiornale-to-repubblica
98e5d2bf8bb9d75586e024681e8c8ca3f1a20086
2022-03-09T08:02:59.000Z
[ "pytorch", "tf", "jax", "tensorboard", "mt5", "text2text-generation", "it", "dataset:gsarti/change_it", "arxiv:2203.03759", "transformers", "italian", "sequence-to-sequence", "newspaper", "ilgiornale", "repubblica", "style-transfer", "license:apache-2.0", "model-index", "co2_eq_emissions", "autotrain_compatible" ]
text2text-generation
false
it5
null
it5/mt5-base-ilgiornale-to-repubblica
6
null
transformers
15,307
--- language: - it license: apache-2.0 datasets: - gsarti/change_it tags: - italian - sequence-to-sequence - newspaper - ilgiornale - repubblica - style-transfer widget: - text: "WASHINGTON - La Corea del Nord torna dopo nove anni nella blacklist Usa degli Stati considerati sponsor del terrorismo. Come Iran, Siria e Sudan. Lo ha deciso Donald Trump , che ha preferito dare l'annuncio non durante il suo recente viaggio in Asia ma ieri, in una riunione del governo alla Casa Bianca. 'Oggi gli Stati Uniti designeranno la Corea del nord come uno stato sponsor del terrorismo', ha tuonato il tycoon, anticipando che sarà formalizzata oggi dal dipartimento di stato e sarà accompagnata da nuove e più severe sanzioni. 'Il livello più alto' mai imposto a Pyongyang, ha promesso. 'Avrebbe dovuto succedere molto tempo fa', ha aggiunto, scaricando per l'ennesima volta la responsabilità dell'attuale crisi sull'amministrazione Obama. Poi si è scagliato contro un 'regime assassino' che 'deve mettere fine allo sviluppo del suo programma illegale nucleare e balistico'. Per giustificare la svolta, Trump ha accusato Pyongyang non solo di 'minacciare il mondo con una devastazione nucleare' ma anche di aver 'ripetutamente sostenuto atti di terrorismo internazionale', compreso omicidi in suolo straniero. Il riferimento è all' uccisione all'aeroporto della capitale malese di Kim Jong Nam , il fratellastro del leader nordcoreano Kim Jong Un , ma non ci sono altri episodi noti. Tanto che alcuni esperti, come pure dirigenti Usa coperti dall'anonimato, dubitano che Pyongyang risponda ai criteri per una tale designazione. La mossa appare altamente simbolica, dato che la Corea del Nord è già pesantemente sanzionata a livello internazionale. Per il segretario di stato Rex Tillerson è solo l'ultima di una serie di passi per rafforzare la pressione su Pyongyang e costringerla a sedersi ad un tavolo perché gli Usa hanno sempre 'speranza nella diplomazia'. Ma nello stesso tempo è un monito per 'fermare e dissuadere' altri Paesi dal sostenere la Corea del Nord, finita nella blacklist 'anche per l'uso di armi chimiche'. Ma la mossa potrebbe anche essere controproducente, provocando una risposta di Kim o minando gli sforzi per sollecitare Pechino ad una maggiore pressione su Pyongyang. In ogni caso non aiuta il dialogo diretto tra Usa e Corea del Nord, che sembrava essere stato avviato in modo riservato. Come non aiutano gli scambi di insulti fra Trump e Kim. Nord Corea, Trump: 'Cerco di essere amico di Kim, sarebbe una bella cosa per il mondo'. Pyongyang era stata messa nella lista Usa degli Stati sponsor del terrorismo per aver fatto esplodere nel 1987 un volo della Korean Air uccidendo tutti i 115 passeggeri a bordo. Ma l'amministrazione di George W. Bush l'aveva rimossa sperando di far avanzare i negoziati sulla denuclearizzazione della penisola coreana. Il governo giapponese sostiene la decisione degli Stati Uniti di inserire la Corea del Nord nella lista degli stati che sponsorizzano il terrorismo, pur riconoscendo che l'annuncio potrebbe provocare una reazione immediata del regime di Pyongyang. Il premier Shinzo Abe ha accolto con consenso il comunicato Usa e ha detto alla stampa che servirà a incrementare la pressione sulla Corea del Nord. Il ministro della Difesa Itsunori Onodera , pur valutando positivamente la notifica, ha spiegato che si attendono azioni provocatorie dallo stato eremita, ribadendo che è vitale rimanere vigili. Secondo la stampa nipponica Abe aveva richiesto al dipartimento di Stato Usa di mettere la Corea del Nord sulla lista durante l'incontro col presidente Usa Donald Trump a Tokyo a inizio mese. L'ultimo lancio di missile balistico condotto da Pyongyang nell'oceano Pacifico, sorvolando il mare del Giappone, risale allo scorso settembre." - text: "ROMA - Una nuova droga killer è stata sequestrata per la prima volta in Europa dagli investigatori del Nas. Si tratta di una nuova \"miscela psicoattiva altamente tossica\" per la prima volta individuata da forze di polizia, simile all'eroina sintetica, ma molto più economica e letale. Tanto che i 20 grammi scoperti sarebbero stati sufficienti per fabbricare ben 20.000 dosi e lo stesso contatto attraverso la pelle può provocare intossicazione. Individuata per la prima volta, la nuova droga presenta una struttura simile al farmaco sedativo Fentanyl ma con effetti molto più devastanti per l'organismo. Proveniva dell'estero ed era contenuta in un plico postale indirizzato in una città del centro Italia: è stata intercettata tramite accertamenti sul web grazie a un'operazione di intelligence che ha visto come protagonisti i militari della Sezione operativa centrale del Comando carabinieri per la Tutela della salute (Nas). Economica e letale, secondo gli investigatori \"in confronto l'eroina è quasi 'acqua fresca', anzi, proprio per la sua economicità, in alcuni casi viene venduta dai pusher a giovani conviti di comprare eroina\". La diffusione di nuove droghe sintetiche che continuamente appaiono sui mercati necessita di un'attività investigativa costante e complessa. Si tratta infatti di sostanze dalla struttura molecolare molto simile a quella del Fentanyl ma ogni volta leggermente diversa. Di qui la difficoltà di individuarle e l'importanza del nuovo sequestro. \"La chiamano impropriamente 'eroina sintetica' - spiega il comandante dei Nas, generale Adelmo Lusi - per il tipo di effetto psicotropo simile, ma dal punto di vista della tossicità è molto peggio: con 25 milligrammi di eroina ci si sballa, con 25mg di simil-fentanyl, come quello appena sequestrato, si muore\". Le indagini sono partite da ricoveri per overdose in ospedale, in cui arrivavano ragazzi che non rispondevano al trattamento disintossicante per l'eroina. La nuova sostanza verrà ora segnalata per l'inserimento tra le tabelle ministeriali degli stupefacenti prevista dal Dpr 309/1990." - text: "Fragile come il burro. Il nostro territorio è precario. Ne sanno qualcosa i comuni che sono stati investititi dal maltempo . Il dissesto idrogeologico imperversa su tutto il territorio. Infatti, oltre 6.600 comuni , pari all’82% del totale, sono in aree ad elevato rischio idrogeologico, pari al 10% della sua superficie. La popolazione potenzialmente esposta è stimata in 5,8 milioni di persone. I dati emergono dalle recenti analisi fatte da Legambiente e Protezione civile, che mettono in evidenza come in 10 anni in Italia sia raddoppiata l’area dei territori colpiti da alluvioni e frane , passando da una media di quattro regioni all’anno a otto regioni. Nella classifica delle regioni a maggior rischio idrogeologico prima è la Calabria con il 100% dei comuni esposti; al 100% ci sono anche la provincia di Trento, il Molise, la Basilicata, l’Umbria, la Valle d’Aosta. Poi Marche, Liguria al 99%; Lazio, Toscana al 98%; Abruzzo (96%), Emilia-Romagna (95%), Campania e Friuli Venezia Giulia al 92%, Piemonte (87%), Sardegna (81%), Puglia (78%), Sicilia (71%), Lombardia (60%), provincia di Bolzano (59%), Veneto (56%). Tra le cause che condizionano ed amplificano il rischio idrogeologico c’è l’azione dell’uomo (abbandono e degrado, cementificazione, consumo di suolo, abusivismo, disboscamento e incendi). Ma anche e soprattutto la mancanza di una seria manutenzione ordinaria e non ad una organica politica di prevenzione." - text: "Arriva dal Partito nazionalista basco (Pnv) la conferma che i cinque deputati che siedono in parlamento voteranno la sfiducia al governo guidato da Mariano Rajoy. Pochi voti, ma significativi quelli della formazione politica di Aitor Esteban, che interverrà nel pomeriggio. Pur con dimensioni molto ridotte, il partito basco si è trovato a fare da ago della bilancia in aula. E il sostegno alla mozione presentata dai Socialisti potrebbe significare per il primo ministro non trovare quei 176 voti che gli servono per continuare a governare. \" Perché dovrei dimettermi io che per il momento ho la fiducia della Camera e quella che mi è stato data alle urne \", ha detto oggi Rajoy nel suo intervento in aula, mentre procedeva la discussione sulla mozione di sfiducia. Il voto dei baschi ora cambia le carte in tavola e fa crescere ulteriormente la pressione sul premier perché rassegni le sue dimissioni. La sfiducia al premier, o un'eventuale scelta di dimettersi, porterebbe alle estreme conseguenze lo scandalo per corruzione che ha investito il Partito popolare. Ma per ora sembra pensare a tutt'altro. \"Non ha intenzione di dimettersi - ha detto il segretario generale del Partito popolare , María Dolores de Cospedal - Non gioverebbe all'interesse generale o agli interessi del Pp\"." metrics: - rouge - bertscore - headline-headline-consistency-classifier - headline-article-consistency-classifier model-index: - name: mt5-base-ilgiornale-to-repubblica results: - task: type: headline-style-transfer-ilgiornale-to-repubblica name: "Headline style transfer (Il Giornale to Repubblica)" dataset: type: gsarti/change_it name: "CHANGE-IT" metrics: - type: rouge1 value: 0.282 name: "Test Rouge1" - type: rouge2 value: 0.101 name: "Test Rouge2" - type: rougeL value: 0.248 name: "Test RougeL" - type: bertscore value: 0.411 name: "Test BERTScore" args: - model_type: "dbmdz/bert-base-italian-xxl-uncased" - lang: "it" - num_layers: 10 - rescale_with_baseline: True - baseline_path: "bertscore_baseline_ita.tsv" - type: headline-headline-consistency-classifier value: 0.815 name: "Test Headline-Headline Consistency Accuracy" - type: headline-article-consistency-classifier value: 0.773 name: "Test Headline-Article Consistency Accuracy" co2_eq_emissions: emissions: "40g" source: "Google Cloud Platform Carbon Footprint" training_type: "fine-tuning" geographical_location: "Eemshaven, Netherlands, Europe" hardware_used: "1 TPU v3-8 VM" thumbnail: https://gsarti.com/publication/it5/featured.png --- # mT5 Base for News Headline Style Transfer (Il Giornale to Repubblica) 🗞️➡️🗞️ 🇮🇹 This repository contains the checkpoint for the [mT5 Base](https://huggingface.co/google/mt5-base) model fine-tuned on news headline style transfer in the Il Giornale to Repubblica direction on the Italian CHANGE-IT dataset as part of the experiments of the paper [IT5: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation](https://arxiv.org/abs/2203.03759) by [Gabriele Sarti](https://gsarti.com) and [Malvina Nissim](https://malvinanissim.github.io). A comprehensive overview of other released materials is provided in the [gsarti/it5](https://github.com/gsarti/it5) repository. Refer to the paper for additional details concerning the reported scores and the evaluation approach. ## Using the model The model is trained to generate an headline in the style of Repubblica from the full body of an article written in the style of Il Giornale. Model checkpoints are available for usage in Tensorflow, Pytorch and JAX. They can be used directly with pipelines as: ```python from transformers import pipelines g2r = pipeline("text2text-generation", model='it5/mt5-base-ilgiornale-to-repubblica') g2r("Arriva dal Partito nazionalista basco (Pnv) la conferma che i cinque deputati che siedono in parlamento voteranno la sfiducia al governo guidato da Mariano Rajoy. Pochi voti, ma significativi quelli della formazione politica di Aitor Esteban, che interverrà nel pomeriggio. Pur con dimensioni molto ridotte, il partito basco si è trovato a fare da ago della bilancia in aula. E il sostegno alla mozione presentata dai Socialisti potrebbe significare per il primo ministro non trovare quei 176 voti che gli servono per continuare a governare. \" Perché dovrei dimettermi io che per il momento ho la fiducia della Camera e quella che mi è stato data alle urne \", ha detto oggi Rajoy nel suo intervento in aula, mentre procedeva la discussione sulla mozione di sfiducia. Il voto dei baschi ora cambia le carte in tavola e fa crescere ulteriormente la pressione sul premier perché rassegni le sue dimissioni. La sfiducia al premier, o un'eventuale scelta di dimettersi, porterebbe alle estreme conseguenze lo scandalo per corruzione che ha investito il Partito popolare. Ma per ora sembra pensare a tutt'altro. \"Non ha intenzione di dimettersi - ha detto il segretario generale del Partito popolare , María Dolores de Cospedal - Non gioverebbe all'interesse generale o agli interessi del Pp\".") >>> [{"generated_text": "il nazionalista rajoy: 'voteremo la sfiducia'"}] ``` or loaded using autoclasses: ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("it5/mt5-base-ilgiornale-to-repubblica") model = AutoModelForSeq2SeqLM.from_pretrained("it5/mt5-base-ilgiornale-to-repubblica") ``` If you use this model in your research, please cite our work as: ```bibtex @article{sarti-nissim-2022-it5, title={{IT5}: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation}, author={Sarti, Gabriele and Nissim, Malvina}, journal={ArXiv preprint 2203.03759}, url={https://arxiv.org/abs/2203.03759}, year={2022}, month={mar} } ```
it5/mt5-base-informal-to-formal
c6b7de63dfb76444e6cf025bb19d8b5637f622fd
2022-03-09T07:48:51.000Z
[ "pytorch", "tf", "jax", "tensorboard", "mt5", "text2text-generation", "it", "dataset:yahoo/xformal_it", "arxiv:2203.03759", "transformers", "italian", "sequence-to-sequence", "style-transfer", "formality-style-transfer", "license:apache-2.0", "model-index", "co2_eq_emissions", "autotrain_compatible" ]
text2text-generation
false
it5
null
it5/mt5-base-informal-to-formal
6
null
transformers
15,308
--- language: - it license: apache-2.0 tags: - italian - sequence-to-sequence - style-transfer - formality-style-transfer datasets: - yahoo/xformal_it widget: - text: "maronn qualcuno mi spieg' CHECCOSA SUCCEDE?!?!" - text: "wellaaaaaaa, ma fraté sei proprio troppo simpatiko, grazieeee!!" - text: "nn capisco xke tt i ragazzi lo fanno" - text: "IT5 è SUPERMEGA BRAVISSIMO a capire tt il vernacolo italiano!!!" metrics: - rouge - bertscore model-index: - name: mt5-base-informal-to-formal results: - task: type: formality-style-transfer name: "Informal-to-formal Style Transfer" dataset: type: xformal_it name: "XFORMAL (Italian Subset)" metrics: - type: rouge1 value: 0.661 name: "Avg. Test Rouge1" - type: rouge2 value: 0.471 name: "Avg. Test Rouge2" - type: rougeL value: 0.642 name: "Avg. Test RougeL" - type: bertscore value: 0.712 name: "Avg. Test BERTScore" args: - model_type: "dbmdz/bert-base-italian-xxl-uncased" - lang: "it" - num_layers: 10 - rescale_with_baseline: True - baseline_path: "bertscore_baseline_ita.tsv" co2_eq_emissions: emissions: "40g" source: "Google Cloud Platform Carbon Footprint" training_type: "fine-tuning" geographical_location: "Eemshaven, Netherlands, Europe" hardware_used: "1 TPU v3-8 VM" --- # mT5 Base for Informal-to-formal Style Transfer 🧐 This repository contains the checkpoint for the [mT5 Base](https://huggingface.co/google/mt5-base) model fine-tuned on Informal-to-formal style transfer on the Italian subset of the XFORMAL dataset as part of the experiments of the paper [IT5: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation](https://arxiv.org/abs/2203.03759) by [Gabriele Sarti](https://gsarti.com) and [Malvina Nissim](https://malvinanissim.github.io). A comprehensive overview of other released materials is provided in the [gsarti/it5](https://github.com/gsarti/it5) repository. Refer to the paper for additional details concerning the reported scores and the evaluation approach. ## Using the model Model checkpoints are available for usage in Tensorflow, Pytorch and JAX. They can be used directly with pipelines as: ```python from transformers import pipelines i2f = pipeline("text2text-generation", model='it5/mt5-base-informal-to-formal') i2f("nn capisco xke tt i ragazzi lo fanno") >>> [{"generated_text": "non comprendo perché tutti i ragazzi agiscono così"}] ``` or loaded using autoclasses: ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("it5/mt5-base-informal-to-formal") model = AutoModelForSeq2SeqLM.from_pretrained("it5/mt5-base-informal-to-formal") ``` If you use this model in your research, please cite our work as: ```bibtex @article{sarti-nissim-2022-it5, title={{IT5}: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation}, author={Sarti, Gabriele and Nissim, Malvina}, journal={ArXiv preprint 2203.03759}, url={https://arxiv.org/abs/2203.03759}, year={2022}, month={mar} } ```
iyaja/codebert-llvm-ic-v0
ef3fc33386135d74a3d4a6b16d8077269fa3705b
2021-12-15T12:19:27.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
iyaja
null
iyaja/codebert-llvm-ic-v0
6
null
transformers
15,309
Entry not found
izumi-lab/electra-small-japanese-fin-generator
ed420dbf04c0cf78fb0391404f350339670b7e95
2022-03-19T09:39:26.000Z
[ "pytorch", "electra", "fill-mask", "ja", "dataset:wikipedia", "dataset:securities reports", "dataset:summaries of financial results", "arxiv:2003.10555", "transformers", "finance", "license:cc-by-sa-4.0", "autotrain_compatible" ]
fill-mask
false
izumi-lab
null
izumi-lab/electra-small-japanese-fin-generator
6
null
transformers
15,310
--- language: ja license: cc-by-sa-4.0 tags: - finance datasets: - wikipedia - securities reports - summaries of financial results widget: - text: 流動[MASK]は1億円となりました。 --- # ELECTRA small Japanese finance generator This is a [ELECTRA](https://github.com/google-research/electra) model pretrained on texts in the Japanese language. The codes for the pretraining are available at [retarfi/language-pretraining](https://github.com/retarfi/language-pretraining/tree/v1.0). ## Model architecture The model architecture is the same as ELECTRA small in the [original ELECTRA implementation](https://github.com/google-research/electra); 12 layers, 256 dimensions of hidden states, and 4 attention heads. ## Training Data The models are trained on the Japanese version of Wikipedia. The training corpus is generated from the Japanese version of Wikipedia, using Wikipedia dump file as of June 1, 2021. The Wikipedia corpus file is 2.9GB, consisting of approximately 20M sentences. The financial corpus consists of 2 corpora: - Summaries of financial results from October 9, 2012, to December 31, 2020 - Securities reports from February 8, 2018, to December 31, 2020 The financial corpus file is 5.2GB, consisting of approximately 27M sentences. ## Tokenization The texts are first tokenized by MeCab with IPA dictionary and then split into subwords by the WordPiece algorithm. The vocabulary size is 32768. ## Training The models are trained with the same configuration as ELECTRA small in the [original ELECTRA paper](https://arxiv.org/abs/2003.10555) except size; 128 tokens per instance, 128 instances per batch, and 1M training steps. The size of the generator is the same of the discriminator. ## Citation **There will be another paper for this pretrained model. Be sure to check here again when you cite.** ``` @inproceedings{suzuki2021fin-bert-electra, title={金融文書を用いた事前学習言語モデルの構築と検証}, % title={Construction and Validation of a Pre-Trained Language Model Using Financial Documents}, author={鈴木 雅弘 and 坂地 泰紀 and 平野 正徳 and 和泉 潔}, % author={Masahiro Suzuki and Hiroki Sakaji and Masanori Hirano and Kiyoshi Izumi}, booktitle={人工知能学会第27回金融情報学研究会(SIG-FIN)}, % booktitle={Proceedings of JSAI Special Interest Group on Financial Infomatics (SIG-FIN) 27}, pages={5-10}, year={2021} } ``` ## Licenses The pretrained models are distributed under the terms of the [Creative Commons Attribution-ShareAlike 4.0](https://creativecommons.org/licenses/by-sa/4.0/). ## Acknowledgments This work was supported by JSPS KAKENHI Grant Number JP21K12010.
jacksonkarel/peacenik-gpt2
6e829937c682f6c60d1068f6fe5eec7f85985183
2021-08-25T01:03:12.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "license:mit" ]
text-generation
false
jacksonkarel
null
jacksonkarel/peacenik-gpt2
6
null
transformers
15,311
--- language: - en license: mit widget: - text: "Nonviolence is justified because" --- GPT2 fine-tuned on a dataset of pacifist philosophy and foreign policy texts.
jacobshein/danish-bert-botxo-qa-squad
b3ecafcbfd74b157ab99b294d0e33a8f7db7790c
2021-07-18T11:19:49.000Z
[ "pytorch", "bert", "question-answering", "da", "dataset:common_crawl", "dataset:wikipedia", "dataset:dindebat.dk", "dataset:hestenettet.dk", "dataset:danish OpenSubtitles", "transformers", "danish", "question answering", "squad", "machine translation", "botxo", "license:cc-by-4.0", "autotrain_compatible" ]
question-answering
false
jacobshein
null
jacobshein/danish-bert-botxo-qa-squad
6
null
transformers
15,312
--- language: da tags: - danish - bert - question answering - squad - machine translation - botxo license: cc-by-4.0 datasets: - common_crawl - wikipedia - dindebat.dk - hestenettet.dk - danish OpenSubtitles widget: - context: Stine sagde hej, men Jacob sagde halløj. --- # Danish BERT (version 2, uncased) by [BotXO](https://github.com/botxo/nordic_bert) fine-tuned for Question Answering (QA) on the [machine-translated SQuAD-da dataset](https://github.com/ccasimiro88/TranslateAlignRetrieve/tree/multilingual/squads-tar/da) ```python from transformers import AutoTokenizer, AutoModelForQuestionAnswering tokenizer = AutoTokenizer.from_pretrained("jacobshein/danish-bert-botxo-qa-squad") model = AutoModelForQuestionAnswering.from_pretrained("jacobshein/danish-bert-botxo-qa-squad") ``` #### Contact For further information on usage or fine-tuning procedure, please reach out by email through [jacobhein.com](https://jacobhein.com/#contact).
jean-paul/kinyaRoberta-small
254fc07318e78cff0993ba7cd8d634696bfb800f
2021-08-29T10:27:01.000Z
[ "pytorch", "roberta", "fill-mask", "arxiv:1907.11692", "transformers", "autotrain_compatible" ]
fill-mask
false
jean-paul
null
jean-paul/kinyaRoberta-small
6
null
transformers
15,313
# Model description A Pretrained model on the Kinyarwanda language dataset using a masked language modeling (MLM) objective. RoBerta model was first introduced in [this paper](https://arxiv.org/abs/1907.11692). This KinyaRoBERTa model was pretrained with uncased tokens which means that no difference between for example ikinyarwanda and Ikinyarwanda. # Training parameters #### Dataset The data set used has both sources from the new articles in Rwanda extracted from different new web pages, dumped Wikipedia files, and the books in Kinyarwanda. The sizes of the sources of data are 72 thousand new articles, three thousand dumped Wikipedia articles, and six books with more than a thousand pages. #### Hyperparameters The model was trained with the default configuration of RoBerta and Trainer from the Huggingface. However, due to some resource computation issues, we kept the number of transformer layers to 6. # How to use: The model can be used directly with the pipeline for masked language modeling as follows: ``` from transformers import pipeline the_mask_pipe = pipeline( "fill-mask", model='jean-paul/kinyaRoberta-small', tokenizer='jean-paul/kinyaRoberta-small', ) the_mask_pipe("Ejo ndikwiga nagize <mask> baje kunsura.") [{'sequence': 'Ejo ndikwiga nagize amahirwe baje kunsura.', 'score': 0.3530674874782562, 'token': 1711, 'token_str': ' amahirwe'}, {'sequence': 'Ejo ndikwiga nagize ubwoba baje kunsura.', 'score': 0.2858319878578186, 'token': 2594, 'token_str': ' ubwoba'}, {'sequence': 'Ejo ndikwiga nagize ngo baje kunsura.', 'score': 0.032475441694259644, 'token': 396, 'token_str': ' ngo'}, {'sequence': 'Ejo ndikwiga nagize abana baje kunsura.', 'score': 0.029481062665581703, 'token': 739, 'token_str': ' abana'}, {'sequence': 'Ejo ndikwiga nagize abantu baje kunsura.', 'score': 0.016263306140899658, 'token': 500, 'token_str': ' abantu'}] ``` 2) Direct use from the transformer library to get features using AutoModel ``` from transformers import AutoTokenizer, AutoModelForMaskedLM tokenizer = AutoTokenizer.from_pretrained("jean-paul/kinyaRoberta-small") model = AutoModelForMaskedLM.from_pretrained("jean-paul/kinyaRoberta-small") input_text = "Ejo ndikwiga nagize abashyitsi baje kunsura." encoded_input = tokenizer(input_text, return_tensors='pt') output = model(**encoded_input) ``` __Note__: We used the huggingface implementations for pretraining RoBerta from scratch, both the RoBerta model and the classes needed to do it.
ji-xin/bert_large-MRPC-two_stage
873d2dc968b577636913a84482ea52dc7a8e9082
2020-07-08T15:02:27.000Z
[ "pytorch", "transformers" ]
null
false
ji-xin
null
ji-xin/bert_large-MRPC-two_stage
6
null
transformers
15,314
Entry not found
ji-xin/roberta_base-MNLI-two_stage
ca566c335570e8f5b1946b1077fdb2a355c3992f
2020-07-08T15:05:22.000Z
[ "pytorch", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
ji-xin
null
ji-xin/roberta_base-MNLI-two_stage
6
null
transformers
15,315
Entry not found
jky594176/recipe_bart2_v2
54e40195ecda775ffac09aca0eed3f1294b3947a
2021-05-31T21:02:14.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
jky594176
null
jky594176/recipe_bart2_v2
6
null
transformers
15,316
Entry not found
jsfoon/slogan-generator
779c969b3ca6919bb4ffef76bcd30b13b4e1a453
2021-08-03T07:24:29.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
jsfoon
null
jsfoon/slogan-generator
6
null
transformers
15,317
Entry not found
juliagsy/tapas_fine_tuning
3afd8205f799b3aa6ef36d07b764b3e7fea44da3
2022-01-31T06:19:02.000Z
[ "pytorch", "tapas", "table-question-answering", "transformers" ]
table-question-answering
false
juliagsy
null
juliagsy/tapas_fine_tuning
6
null
transformers
15,318
Entry not found
junnyu/ChineseBERT-large
2d5b99d4d6dac134a951922c487ffd3f5478ac02
2022-04-21T06:47:54.000Z
[ "pytorch", "bert", "fill-mask", "zh", "arxiv:2106.16038", "transformers", "glycebert", "autotrain_compatible" ]
fill-mask
false
junnyu
null
junnyu/ChineseBERT-large
6
null
transformers
15,319
--- language: zh tags: - glycebert inference: False --- # https://github.com/JunnYu/ChineseBert_pytorch # ChineseBert_pytorch 本项目主要自定义了tokenization_chinesebert_fast.py文件中的ChineseBertTokenizerFast代码。从而可以从huggingface.co调用。 ```python pretrained_tokenizer_name = "junnyu/ChineseBERT-large" tokenizer = ChineseBertTokenizerFast.from_pretrained(pretrained_tokenizer_name) ``` # Paper **[ChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information](https://arxiv.org/pdf/2106.16038.pdf)** *Zijun Sun, Xiaoya Li, Xiaofei Sun, Yuxian Meng, Xiang Ao, Qing He, Fei Wu and Jiwei Li* # Install ```bash pip install chinesebert or pip install git+https://github.com/JunnYu/ChineseBert_pytorch.git ``` # Usage ```python import torch from chinesebert import ChineseBertForMaskedLM, ChineseBertTokenizerFast, ChineseBertConfig pretrained_model_name = "junnyu/ChineseBERT-large" tokenizer = ChineseBertTokenizerFast.from_pretrained(pretrained_model_name ) chinese_bert = ChineseBertForMaskedLM.from_pretrained(pretrained_model_name) text = "北京是[MASK]国的首都。" inputs = tokenizer(text, return_tensors="pt") print(inputs) maskpos = 4 with torch.no_grad(): o = chinese_bert(**inputs) value, index = o.logits.softmax(-1)[0, maskpos].topk(10) pred_tokens = tokenizer.convert_ids_to_tokens(index.tolist()) pred_values = value.tolist() outputs = [] for t, p in zip(pred_tokens, pred_values): outputs.append(f"{t}|{round(p,4)}") print(outputs) # base ['中|0.711', '我|0.2488', '祖|0.016', '法|0.0057', '美|0.0048', '全|0.0042', '韩|0.0015', '英|0.0011', '两|0.0008', '王|0.0006'] # large ['中|0.8341', '我|0.1479', '祖|0.0157', '全|0.0007', '国|0.0005', '帝|0.0001', '该|0.0001', '法|0.0001', '一|0.0001', '咱|0.0001'] ``` # Reference https://github.com/ShannonAI/ChineseBert
junzai/demotest
d3b5544d5c20bd3c3585f7e7e35cdc2d3bfca104
2022-02-23T07:51:36.000Z
[ "pytorch", "bert", "text-classification", "en", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
junzai
null
junzai/demotest
6
null
transformers
15,320
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: bert_finetuning_test results: - task: name: Text Classification type: text-classification dataset: name: GLUE MRPC type: glue args: mrpc metrics: - name: Accuracy type: accuracy value: 0.8284313725490197 - name: F1 type: f1 value: 0.8817567567567567 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert_finetuning_test This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.4023 - Accuracy: 0.8284 - F1: 0.8818 - Combined Score: 0.8551 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.0 - Tokenizers 0.11.0
kalki7/distilgpt2-ratatouille
e7678f180b0f471d2d4b9eaa7507cde6382802df
2021-05-23T06:11:59.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
kalki7
null
kalki7/distilgpt2-ratatouille
6
null
transformers
15,321
Entry not found
kdo6301/bert-base-uncased-finetuned-cola-2
212796c26f4901f79486bd3fa70f2189916659fd
2022-02-22T15:19:32.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
kdo6301
null
kdo6301/bert-base-uncased-finetuned-cola-2
6
null
transformers
15,322
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: bert-base-uncased-finetuned-cola-2 results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.6015706950519473 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-cola-2 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.9235 - Matthews Correlation: 0.6016 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.4906 | 1.0 | 535 | 0.5046 | 0.5080 | | 0.2901 | 2.0 | 1070 | 0.5881 | 0.5235 | | 0.1818 | 3.0 | 1605 | 0.7253 | 0.5584 | | 0.1177 | 4.0 | 2140 | 0.8316 | 0.5927 | | 0.0826 | 5.0 | 2675 | 0.9235 | 0.6016 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
kdo6301/bert-base-uncased-finetuned-cola
2d5c5981d59945dd21547ac8515c77b38510efda
2022-02-20T08:16:24.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
kdo6301
null
kdo6301/bert-base-uncased-finetuned-cola
6
null
transformers
15,323
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: bert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5640063794282216 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-cola This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.9089 - Matthews Correlation: 0.5640 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.4864 | 1.0 | 535 | 0.4689 | 0.5232 | | 0.2864 | 2.0 | 1070 | 0.5835 | 0.5296 | | 0.1884 | 3.0 | 1605 | 0.6953 | 0.5458 | | 0.1263 | 4.0 | 2140 | 0.8082 | 0.5625 | | 0.0832 | 5.0 | 2675 | 0.9089 | 0.5640 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
khanh98/model3
af70a300c099daf36ad69405048aec5a5cb9e010
2021-05-20T17:35:31.000Z
[ "pytorch", "tf", "jax", "roberta", "text-classification", "transformers" ]
text-classification
false
khanh98
null
khanh98/model3
6
null
transformers
15,324
Entry not found
kinit/slovakbert-pos
ae2a32703edde4ad1308c3a6988765a82b61bf36
2021-11-29T17:33:05.000Z
[ "pytorch", "roberta", "token-classification", "sk", "dataset:universal_dependencies", "arxiv:2109.15254", "transformers", "pos", "license:cc", "autotrain_compatible" ]
token-classification
false
kinit
null
kinit/slovakbert-pos
6
null
transformers
15,325
--- language: - sk tags: - pos license: cc datasets: - universal_dependencies metrics: - accuracy widget: - text: "Kde tá ľudská duša drieme?" --- # POS tagger based on SlovakBERT This is a POS tagger based on [SlovakBERT](https://huggingface.co/gerulata/slovakbert). The model uses [Universal POS tagset (UPOS)](https://universaldependencies.org/u/pos/). The model was fine-tuned using Slovak part of [Universal Dependencies dataset](https://universaldependencies.org/) [Zeman 2017] containing 10k manually annotated Slovak sentences. ## Results The model was evaluated in [our paper](https://arxiv.org/abs/2109.15254) [Pikuliak et al 2021, Section 4.2]. It achieves \\(97.84\%\\) accuracy. ## Cite ``` @article{DBLP:journals/corr/abs-2109-15254, author = {Mat{\'{u}}{\v{s}} Pikuliak and {\v{S}}tefan Grivalsk{\'{y}} and Martin Kon{\^{o}}pka and Miroslav Bl{\v{s}}t{\'{a}}k and Martin Tamajka and Viktor Bachrat{\'{y}} and Mari{\'{a}}n {\v{S}}imko and Pavol Bal{\'{a}}{\v{z}}ik and Michal Trnka and Filip Uhl{\'{a}}rik}, title = {SlovakBERT: Slovak Masked Language Model}, journal = {CoRR}, volume = {abs/2109.15254}, year = {2021}, url = {https://arxiv.org/abs/2109.15254}, eprinttype = {arXiv}, eprint = {2109.15254}, } ```
kinit/slovakbert-sts-stsb
dab601ddd72fde4c7a2422220798f1744c961ab1
2021-11-30T10:50:32.000Z
[ "pytorch", "roberta", "feature-extraction", "sk", "dataset:glue", "arxiv:2109.15254", "sentence-transformers", "sentence-similarity", "sts", "license:cc" ]
sentence-similarity
false
kinit
null
kinit/slovakbert-sts-stsb
6
null
sentence-transformers
15,326
--- language: - sk pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - sts license: cc datasets: - glue metrics: - spearmanr widget: source_sentence: "Izrael uskutočnil letecké údery v blízkosti Damasku." sentences: - "Izrael uskutočnil vzdušný útok na Sýriu." - "Pes leží na gauči a má hlavu na bielom vankúši." --- # Sentence similarity model based on SlovakBERT This is a sentence similarity model based on [SlovakBERT](https://huggingface.co/gerulata/slovakbert). The model was fine-tuned using [STSbenchmark](ixa2.si.ehu.eus/stswiki/index.php/STSbenchmark) [Cer et al 2017] translated to Slovak using [M2M100](https://huggingface.co/facebook/m2m100_1.2B). The model can be used as an universal sentence encoder for Slovak sentences. ## Results The model was evaluated in [our paper](https://arxiv.org/abs/2109.15254) [Pikuliak et al 2021, Section 4.3]. It achieves \\(0.791\\) Spearman correlation on STSbenchmark test set. ## Usage Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('kinit/slovakbert-sts-stsb') embeddings = model.encode(sentences) print(embeddings) ``` ## Cite ``` @article{DBLP:journals/corr/abs-2109-15254, author = {Mat{\'{u}}s Pikuliak and Stefan Grivalsky and Martin Konopka and Miroslav Blst{\'{a}}k and Martin Tamajka and Viktor Bachrat{\'{y}} and Mari{\'{a}}n Simko and Pavol Bal{\'{a}}zik and Michal Trnka and Filip Uhl{\'{a}}rik}, title = {SlovakBERT: Slovak Masked Language Model}, journal = {CoRR}, volume = {abs/2109.15254}, year = {2021}, url = {https://arxiv.org/abs/2109.15254}, eprinttype = {arXiv}, eprint = {2109.15254}, } ```
krevas/finance-koelectra-base-discriminator
61896165065ee9a116704f7ae20b1d088fe1a3a7
2020-12-11T21:48:27.000Z
[ "pytorch", "electra", "pretraining", "ko", "transformers" ]
null
false
krevas
null
krevas/finance-koelectra-base-discriminator
6
null
transformers
15,327
--- language: ko --- # 📈 Financial Korean ELECTRA model Pretrained ELECTRA Language Model for Korean (`finance-koelectra-base-discriminator`) > ELECTRA is a new method for self-supervised language representation learning. It can be used to > pre-train transformer networks using relatively little compute. ELECTRA models are trained to > distinguish "real" input tokens vs "fake" input tokens generated by another neural network, similar to > the discriminator of a GAN. More details about ELECTRA can be found in the [ICLR paper](https://openreview.net/forum?id=r1xMH1BtvB) or in the [official ELECTRA repository](https://github.com/google-research/electra) on GitHub. ## Stats The current version of the model is trained on a financial news data of Naver news. The final training corpus has a size of 25GB and 2.3B tokens. This model was trained a cased model on a TITAN RTX for 500k steps. ## Usage ```python from transformers import ElectraForPreTraining, ElectraTokenizer import torch discriminator = ElectraForPreTraining.from_pretrained("krevas/finance-koelectra-base-discriminator") tokenizer = ElectraTokenizer.from_pretrained("krevas/finance-koelectra-base-discriminator") sentence = "내일 해당 종목이 대폭 상승할 것이다" fake_sentence = "내일 해당 종목이 맛있게 상승할 것이다" fake_tokens = tokenizer.tokenize(fake_sentence) fake_inputs = tokenizer.encode(fake_sentence, return_tensors="pt") discriminator_outputs = discriminator(fake_inputs) predictions = torch.round((torch.sign(discriminator_outputs[0]) + 1) / 2) [print("%7s" % token, end="") for token in fake_tokens] [print("%7s" % int(prediction), end="") for prediction in predictions.tolist()[1:-1]] print("fake token : %s" % fake_tokens[predictions.tolist()[1:-1].index(1)]) ``` # Huggingface model hub All models are available on the [Huggingface model hub](https://huggingface.co/krevas).
lewtun/bert-finetuned-squad
1515b8b9cd5a7b53df2c32d8f3553b8a78d54484
2022-05-23T09:53:09.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "dataset:squad", "dataset:lewtun/autoevaluate__squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
lewtun
null
lewtun/bert-finetuned-squad
6
null
transformers
15,328
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad - lewtun/autoevaluate__squad model-index: - name: bert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.12.3 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
lfcc/bert-large-pt-archive
48da7224875afe4d3b07b3dceb475e796250c230
2021-12-11T19:01:44.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "generated_from_trainer", "license:mit", "autotrain_compatible" ]
token-classification
false
lfcc
null
lfcc/bert-large-pt-archive
6
null
transformers
15,329
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model_index: - name: bert-large-pt-archive results: - task: name: Token Classification type: token-classification metric: name: Accuracy type: accuracy value: 0.9766762474673703 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-large-pt-archive This model is a fine-tuned version of [neuralmind/bert-large-portuguese-cased](https://huggingface.co/neuralmind/bert-large-portuguese-cased) on an unkown dataset. It achieves the following results on the evaluation set: - Loss: 0.0869 - Precision: 0.9280 - Recall: 0.9541 - F1: 0.9409 - Accuracy: 0.9767 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0665 | 1.0 | 765 | 0.1020 | 0.8928 | 0.9566 | 0.9236 | 0.9696 | | 0.0392 | 2.0 | 1530 | 0.0781 | 0.9229 | 0.9586 | 0.9404 | 0.9757 | | 0.0201 | 3.0 | 2295 | 0.0809 | 0.9278 | 0.9550 | 0.9412 | 0.9767 | | 0.0152 | 4.0 | 3060 | 0.0869 | 0.9280 | 0.9541 | 0.9409 | 0.9767 | ### Framework versions - Transformers 4.10.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 1.10.2 - Tokenizers 0.10.3
lgris/bp500-base100k_voxpopuli
277048a53edff0a97c6b81f5e37cdf20a98e6be1
2022-02-07T11:53:19.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "pt", "dataset:common_voice", "dataset:mls", "dataset:cetuc", "dataset:lapsbm", "dataset:voxforge", "dataset:tedx", "dataset:sid", "arxiv:2012.03411", "transformers", "audio", "speech", "portuguese-speech-corpus", "PyTorch", "license:apache-2.0" ]
automatic-speech-recognition
false
lgris
null
lgris/bp500-base100k_voxpopuli
6
null
transformers
15,330
--- language: pt datasets: - common_voice - mls - cetuc - lapsbm - voxforge - tedx - sid metrics: - wer tags: - audio - speech - wav2vec2 - pt - portuguese-speech-corpus - automatic-speech-recognition - speech - PyTorch license: apache-2.0 --- # bp500-base100k_voxpopuli: Wav2vec 2.0 with Brazilian Portuguese (BP) Dataset This is a the demonstration of a fine-tuned Wav2vec model for Brazilian Portuguese using the following datasets: - [CETUC](http://www02.smt.ufrj.br/~igor.quintanilha/alcaim.tar.gz): contains approximately 145 hours of Brazilian Portuguese speech distributed among 50 male and 50 female speakers, each pronouncing approximately 1,000 phonetically balanced sentences selected from the [CETEN-Folha](https://www.linguateca.pt/cetenfolha/) corpus. - [Common Voice 7.0](https://commonvoice.mozilla.org/pt): is a project proposed by Mozilla Foundation with the goal to create a wide open dataset in different languages. In this project, volunteers donate and validate speech using the [oficial site](https://commonvoice.mozilla.org/pt). - [Lapsbm](https://github.com/falabrasil/gitlab-resources): "Falabrasil - UFPA" is a dataset used by the Fala Brasil group to benchmark ASR systems in Brazilian Portuguese. Contains 35 speakers (10 females), each one pronouncing 20 unique sentences, totalling 700 utterances in Brazilian Portuguese. The audios were recorded in 22.05 kHz without environment control. - [Multilingual Librispeech (MLS)](https://arxiv.org/abs/2012.03411): a massive dataset available in many languages. The MLS is based on audiobook recordings in public domain like [LibriVox](https://librivox.org/). The dataset contains a total of 6k hours of transcribed data in many languages. The set in Portuguese [used in this work](http://www.openslr.org/94/) (mostly Brazilian variant) has approximately 284 hours of speech, obtained from 55 audiobooks read by 62 speakers. - [Multilingual TEDx](http://www.openslr.org/100): a collection of audio recordings from TEDx talks in 8 source languages. The Portuguese set (mostly Brazilian Portuguese variant) contains 164 hours of transcribed speech. - [Sidney](https://igormq.github.io/datasets/) (SID): contains 5,777 utterances recorded by 72 speakers (20 women) from 17 to 59 years old with fields such as place of birth, age, gender, education, and occupation; - [VoxForge](http://www.voxforge.org/): is a project with the goal to build open datasets for acoustic models. The corpus contains approximately 100 speakers and 4,130 utterances of Brazilian Portuguese, with sample rates varying from 16kHz to 44.1kHz. These datasets were combined to build a larger Brazilian Portuguese dataset. All data was used for training except Common Voice dev/test sets, that were used for validation/test respectively. We also made test sets for all the gathered datasets. | Dataset | Train | Valid | Test | |--------------------------------|-------:|------:|------:| | CETUC | 94.0h | -- | 5.4h | | Common Voice | 37.8h | 8.9h | 9.5h | | LaPS BM | 0.8h | -- | 0.1h | | MLS | 161.0h | -- | 3.7h | | Multilingual TEDx (Portuguese) | 148.9h | -- | 1.8h | | SID | 7.2h | -- | 1.0h | | VoxForge | 3.9h | -- | 0.1h | | Total | 453.6h | 8.9h | 21.6h | The original model was fine-tuned using [fairseq](https://github.com/pytorch/fairseq). This notebook uses a converted version of the original one. The link to the original fairseq model is available [here](https://drive.google.com/file/d/10iESR5AQxuxF5F7w3wLbpc_9YMsYbY9H/view?usp=sharing). #### Summary | | CETUC | CV | LaPS | MLS | SID | TEDx | VF | AVG | |----------------------|---------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------| | bp\_500-base100k_voxpopuli (demonstration below) | 0.142 | 0.201 | 0.052 | 0.224 | 0.102 | 0.317 | 0.048 | 0.155 | | bp\_500-base100k_voxpopuli + 4-gram (demonstration below) | 0.099 | 0.149 | 0.047 | 0.192 | 0.115 | 0.371 | 0.127 | 0.157 | #### Transcription examples | Text | Transcription | |------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------| |qual o instagram dele|**qualo** **está** **gramedele**| |o capitão foi expulso do exército porque era doido|o **capitãl** foi **exposo** do exército porque era doido| |também por que não|também **porque** não| |não existe tempo como o presente|não existe tempo como *o* presente| |eu pulei para salvar rachel|eu pulei para salvar **haquel**| |augusto cezar passos marinho|augusto **cesa** **passoesmarinho**| ## Demonstration ```python MODEL_NAME = "lgris/bp500-base100k_voxpopuli" ``` ### Imports and dependencies ```python %%capture !pip install torch==1.8.2+cu111 torchvision==0.9.2+cu111 torchaudio===0.8.2 -f https://download.pytorch.org/whl/lts/1.8/torch_lts.html !pip install datasets !pip install jiwer !pip install transformers !pip install soundfile !pip install pyctcdecode !pip install https://github.com/kpu/kenlm/archive/master.zip ``` ```python import jiwer import torchaudio from datasets import load_dataset, load_metric from transformers import ( Wav2Vec2ForCTC, Wav2Vec2Processor, ) from pyctcdecode import build_ctcdecoder import torch import re import sys ``` ### Helpers ```python chars_to_ignore_regex = '[\,\?\.\!\;\:\"]' # noqa: W605 def map_to_array(batch): speech, _ = torchaudio.load(batch["path"]) batch["speech"] = speech.squeeze(0).numpy() batch["sampling_rate"] = 16_000 batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("’", "'") batch["target"] = batch["sentence"] return batch ``` ```python def calc_metrics(truths, hypos): wers = [] mers = [] wils = [] for t, h in zip(truths, hypos): try: wers.append(jiwer.wer(t, h)) mers.append(jiwer.mer(t, h)) wils.append(jiwer.wil(t, h)) except: # Empty string? pass wer = sum(wers)/len(wers) mer = sum(mers)/len(mers) wil = sum(wils)/len(wils) return wer, mer, wil ``` ```python def load_data(dataset): data_files = {'test': f'{dataset}/test.csv'} dataset = load_dataset('csv', data_files=data_files)["test"] return dataset.map(map_to_array) ``` ### Model ```python class STT: def __init__(self, model_name, device='cuda' if torch.cuda.is_available() else 'cpu', lm=None): self.model_name = model_name self.model = Wav2Vec2ForCTC.from_pretrained(model_name).to(device) self.processor = Wav2Vec2Processor.from_pretrained(model_name) self.vocab_dict = self.processor.tokenizer.get_vocab() self.sorted_dict = { k.lower(): v for k, v in sorted(self.vocab_dict.items(), key=lambda item: item[1]) } self.device = device self.lm = lm if self.lm: self.lm_decoder = build_ctcdecoder( list(self.sorted_dict.keys()), self.lm ) def batch_predict(self, batch): features = self.processor(batch["speech"], sampling_rate=batch["sampling_rate"][0], padding=True, return_tensors="pt") input_values = features.input_values.to(self.device) with torch.no_grad(): logits = self.model(input_values).logits if self.lm: logits = logits.cpu().numpy() batch["predicted"] = [] for sample_logits in logits: batch["predicted"].append(self.lm_decoder.decode(sample_logits)) else: pred_ids = torch.argmax(logits, dim=-1) batch["predicted"] = self.processor.batch_decode(pred_ids) return batch ``` ### Download datasets ```python %%capture !gdown --id 1HFECzIizf-bmkQRLiQD0QVqcGtOG5upI !mkdir bp_dataset !unzip bp_dataset -d bp_dataset/ ``` ```python %cd bp_dataset ``` /content/bp_dataset ### Tests ```python stt = STT(MODEL_NAME) ``` #### CETUC ```python ds = load_data('cetuc_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("CETUC WER:", wer) ``` CETUC WER: 0.1419179499917191 #### Common Voice ```python ds = load_data('commonvoice_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("CV WER:", wer) ``` CV WER: 0.20079950312040154 #### LaPS ```python ds = load_data('lapsbm_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("Laps WER:", wer) ``` Laps WER: 0.052780934343434324 #### MLS ```python ds = load_data('mls_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("MLS WER:", wer) ``` MLS WER: 0.22413887199364113 #### SID ```python ds = load_data('sid_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("Sid WER:", wer) ``` Sid WER: 0.1019041538671034 #### TEDx ```python ds = load_data('tedx_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("TEDx WER:", wer) ``` TEDx WER: 0.31711268778273327 #### VoxForge ```python ds = load_data('voxforge_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("VoxForge WER:", wer) ``` VoxForge WER: 0.04826433982683982 ### Tests with LM ```python !rm -rf ~/.cache !gdown --id 1GJIKseP5ZkTbllQVgOL98R4yYAcIySFP # trained with wikipedia stt = STT(MODEL_NAME, lm='pt-BR-wiki.word.4-gram.arpa') # !gdown --id 1dLFldy7eguPtyJj5OAlI4Emnx0BpFywg # trained with bp # stt = STT(MODEL_NAME, lm='pt-BR.word.4-gram.arpa') ``` ### Cetuc ```python ds = load_data('cetuc_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("CETUC WER:", wer) ``` CETUC WER: 0.099518615112877 #### Common Voice ```python ds = load_data('commonvoice_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("CV WER:", wer) ``` CV WER: 0.1488912889506362 #### LaPS ```python ds = load_data('lapsbm_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("Laps WER:", wer) ``` Laps WER: 0.047080176767676764 #### MLS ```python ds = load_data('mls_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("MLS WER:", wer) ``` MLS WER: 0.19220291966887196 #### SID ```python ds = load_data('sid_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("Sid WER:", wer) ``` Sid WER: 0.11535498771650306 #### TEDx ```python ds = load_data('tedx_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("TEDx WER:", wer) ``` TEDx WER: 0.3707890073539895 #### VoxForge ```python ds = load_data('voxforge_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("VoxForge WER:", wer) ``` VoxForge WER: 0.12682088744588746
lian01110/bert_finetuning_test
b78b1666575218030c5735b8278e5c8d8b183e15
2021-05-19T21:59:22.000Z
[ "pytorch", "jax", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
lian01110
null
lian01110/bert_finetuning_test
6
null
transformers
15,331
Entry not found
lincoln/camembert-squadFR-fquad-piaf-answer-extraction
59d069129b84f5bb163252528bc7ecc5e0f6a3b3
2021-10-11T15:01:04.000Z
[ "pytorch", "camembert", "token-classification", "fr", "dataset:squadFR", "dataset:fquad", "dataset:piaf", "transformers", "answer extraction", "license:mit", "autotrain_compatible" ]
token-classification
false
lincoln
null
lincoln/camembert-squadFR-fquad-piaf-answer-extraction
6
null
transformers
15,332
--- language: - fr license: mit datasets: - squadFR - fquad - piaf tags: - camembert - answer extraction --- # Extraction de réponse Ce modèle est _fine tuné_ à partir du modèle [camembert-base](https://huggingface.co/camembert-base) pour la tâche de classification de tokens. L'objectif est d'identifier les suites de tokens probables qui pourrait être l'objet d'une question. ## Données d'apprentissage La base d'entrainement est la concatenation des bases SquadFR, [fquad](https://huggingface.co/datasets/fquad), [piaf](https://huggingface.co/datasets/piaf). Les réponses de chaque contexte ont été labelisées avec le label "ANS". Volumétrie (nombre de contexte): * train: 24 652 * test: 1 370 * valid: 1 370 ## Entrainement L'apprentissage s'est effectué sur une carte Tesla K80. * Batch size: 16 * Weight decay: 0.01 * Learning rate: 2x10-5 (décroit linéairement) * Paramètres par défaut de la classe [TrainingArguments](https://huggingface.co/transformers/main_classes/trainer.html#trainingarguments) * Total steps: 1 000 Le modèle semble sur apprendre au delà : ![Loss](assets/loss_m_sl_sota_2.PNG) ## Critiques Le modèle n'a pas de bonnes performances et doit être corrigé après prédiction pour être cohérent. La tâche de classification n'est pas évidente car le modèle doit identifier des groupes de token _sachant_ qu'une question peut être posée. ![Performances](assets/perfs_m_sl_sota_2.PNG) ## Utilisation _Le modèle est un POC, nous garantissons pas ses performances_ ```python from transformers import AutoTokenizer, AutoModelForTokenClassification import numpy as np model_name = "lincoln/camembert-squadFR-fquad-piaf-answer-extraction" loaded_tokenizer = AutoTokenizer.from_pretrained(model_path) loaded_model = AutoModelForTokenClassification.from_pretrained(model_path) text = "La science des données est un domaine interdisciplinaire qui utilise des méthodes, des processus,\ des algorithmes et des systèmes scientifiques pour extraire des connaissances et des idées de nombreuses données structurelles et non structurées.\ Elle est souvent associée aux données massives et à l'analyse des données." inputs = loaded_tokenizer(text, return_tensors="pt", return_offsets_mapping=True) outputs = loaded_model(inputs.input_ids).logits probs = 1 / (1 + np.exp(-outputs.detach().numpy())) probs[:, :, 1][0] = np.convolve(probs[:, :, 1][0], np.ones(2), 'same') / 2 sentences = loaded_tokenizer.tokenize(text, add_special_tokens=False) prob_answer_tokens = probs[:, 1:-1, 1].flatten().tolist() offset_start_mapping = inputs.offset_mapping[:, 1:-1, 0].flatten().tolist() offset_end_mapping = inputs.offset_mapping[:, 1:-1, 1].flatten().tolist() threshold = 0.4 entities = [] for ix, (token, prob_ans, offset_start, offset_end) in enumerate(zip(sentences, prob_answer_tokens, offset_start_mapping, offset_end_mapping)): entities.append({ 'entity': 'ANS' if prob_ans > threshold else 'O', 'score': prob_ans, 'index': ix, 'word': token, 'start': offset_start, 'end': offset_end }) for p in entities: print(p) # {'entity': 'O', 'score': 0.3118681311607361, 'index': 0, 'word': '▁La', 'start': 0, 'end': 2} # {'entity': 'O', 'score': 0.37866950035095215, 'index': 1, 'word': '▁science', 'start': 3, 'end': 10} # {'entity': 'ANS', 'score': 0.45018652081489563, 'index': 2, 'word': '▁des', 'start': 11, 'end': 14} # {'entity': 'ANS', 'score': 0.4615934491157532, 'index': 3, 'word': '▁données', 'start': 15, 'end': 22} # {'entity': 'O', 'score': 0.35033443570137024, 'index': 4, 'word': '▁est', 'start': 23, 'end': 26} # {'entity': 'O', 'score': 0.24779987335205078, 'index': 5, 'word': '▁un', 'start': 27, 'end': 29} # {'entity': 'O', 'score': 0.27084410190582275, 'index': 6, 'word': '▁domaine', 'start': 30, 'end': 37} # {'entity': 'O', 'score': 0.3259460926055908, 'index': 7, 'word': '▁in', 'start': 38, 'end': 40} # {'entity': 'O', 'score': 0.371802419424057, 'index': 8, 'word': 'terdisciplinaire', 'start': 40, 'end': 56} # {'entity': 'O', 'score': 0.3140853941440582, 'index': 9, 'word': '▁qui', 'start': 57, 'end': 60} # {'entity': 'O', 'score': 0.2629334330558777, 'index': 10, 'word': '▁utilise', 'start': 61, 'end': 68} # {'entity': 'O', 'score': 0.2968383729457855, 'index': 11, 'word': '▁des', 'start': 69, 'end': 72} # {'entity': 'O', 'score': 0.33898216485977173, 'index': 12, 'word': '▁méthodes', 'start': 73, 'end': 81} # {'entity': 'O', 'score': 0.3776060938835144, 'index': 13, 'word': ',', 'start': 81, 'end': 82} # {'entity': 'O', 'score': 0.3710060119628906, 'index': 14, 'word': '▁des', 'start': 83, 'end': 86} # {'entity': 'O', 'score': 0.35908180475234985, 'index': 15, 'word': '▁processus', 'start': 87, 'end': 96} # {'entity': 'O', 'score': 0.3890596628189087, 'index': 16, 'word': ',', 'start': 96, 'end': 97} # {'entity': 'O', 'score': 0.38341325521469116, 'index': 17, 'word': '▁des', 'start': 101, 'end': 104} # {'entity': 'O', 'score': 0.3743852376937866, 'index': 18, 'word': '▁', 'start': 105, 'end': 106} # {'entity': 'O', 'score': 0.3943936228752136, 'index': 19, 'word': 'algorithme', 'start': 105, 'end': 115} # {'entity': 'O', 'score': 0.39456743001937866, 'index': 20, 'word': 's', 'start': 115, 'end': 116} # {'entity': 'O', 'score': 0.3846966624259949, 'index': 21, 'word': '▁et', 'start': 117, 'end': 119} # {'entity': 'O', 'score': 0.367380827665329, 'index': 22, 'word': '▁des', 'start': 120, 'end': 123} # {'entity': 'O', 'score': 0.3652925491333008, 'index': 23, 'word': '▁systèmes', 'start': 124, 'end': 132} # {'entity': 'O', 'score': 0.3975735306739807, 'index': 24, 'word': '▁scientifiques', 'start': 133, 'end': 146} # {'entity': 'O', 'score': 0.36417365074157715, 'index': 25, 'word': '▁pour', 'start': 147, 'end': 151} # {'entity': 'O', 'score': 0.32438698410987854, 'index': 26, 'word': '▁extraire', 'start': 152, 'end': 160} # {'entity': 'O', 'score': 0.3416857123374939, 'index': 27, 'word': '▁des', 'start': 161, 'end': 164} # {'entity': 'O', 'score': 0.3674810230731964, 'index': 28, 'word': '▁connaissances', 'start': 165, 'end': 178} # {'entity': 'O', 'score': 0.38362061977386475, 'index': 29, 'word': '▁et', 'start': 179, 'end': 181} # {'entity': 'O', 'score': 0.364640474319458, 'index': 30, 'word': '▁des', 'start': 182, 'end': 185} # {'entity': 'O', 'score': 0.36050117015838623, 'index': 31, 'word': '▁idées', 'start': 186, 'end': 191} # {'entity': 'O', 'score': 0.3768993020057678, 'index': 32, 'word': '▁de', 'start': 192, 'end': 194} # {'entity': 'O', 'score': 0.39184248447418213, 'index': 33, 'word': '▁nombreuses', 'start': 195, 'end': 205} # {'entity': 'ANS', 'score': 0.4091200828552246, 'index': 34, 'word': '▁données', 'start': 206, 'end': 213} # {'entity': 'ANS', 'score': 0.41234123706817627, 'index': 35, 'word': '▁structurelle', 'start': 214, 'end': 226} # {'entity': 'ANS', 'score': 0.40243157744407654, 'index': 36, 'word': 's', 'start': 226, 'end': 227} # {'entity': 'ANS', 'score': 0.4007353186607361, 'index': 37, 'word': '▁et', 'start': 228, 'end': 230} # {'entity': 'ANS', 'score': 0.40597623586654663, 'index': 38, 'word': '▁non', 'start': 231, 'end': 234} # {'entity': 'ANS', 'score': 0.40272021293640137, 'index': 39, 'word': '▁structurée', 'start': 235, 'end': 245} # {'entity': 'O', 'score': 0.392631471157074, 'index': 40, 'word': 's', 'start': 245, 'end': 246} # {'entity': 'O', 'score': 0.34266412258148193, 'index': 41, 'word': '.', 'start': 246, 'end': 247} # {'entity': 'O', 'score': 0.26178646087646484, 'index': 42, 'word': '▁Elle', 'start': 255, 'end': 259} # {'entity': 'O', 'score': 0.2265639454126358, 'index': 43, 'word': '▁est', 'start': 260, 'end': 263} # {'entity': 'O', 'score': 0.22844195365905762, 'index': 44, 'word': '▁souvent', 'start': 264, 'end': 271} # {'entity': 'O', 'score': 0.2475772500038147, 'index': 45, 'word': '▁associée', 'start': 272, 'end': 280} # {'entity': 'O', 'score': 0.3002186715602875, 'index': 46, 'word': '▁aux', 'start': 281, 'end': 284} # {'entity': 'O', 'score': 0.3875720798969269, 'index': 47, 'word': '▁données', 'start': 285, 'end': 292} # {'entity': 'ANS', 'score': 0.445063054561615, 'index': 48, 'word': '▁massive', 'start': 293, 'end': 300} # {'entity': 'ANS', 'score': 0.4419114589691162, 'index': 49, 'word': 's', 'start': 300, 'end': 301} # {'entity': 'ANS', 'score': 0.4240635633468628, 'index': 50, 'word': '▁et', 'start': 302, 'end': 304} # {'entity': 'O', 'score': 0.3900952935218811, 'index': 51, 'word': '▁à', 'start': 305, 'end': 306} # {'entity': 'O', 'score': 0.3784807324409485, 'index': 52, 'word': '▁l', 'start': 307, 'end': 308} # {'entity': 'O', 'score': 0.3459452986717224, 'index': 53, 'word': "'", 'start': 308, 'end': 309} # {'entity': 'O', 'score': 0.37636008858680725, 'index': 54, 'word': 'analyse', 'start': 309, 'end': 316} # {'entity': 'ANS', 'score': 0.4475618302822113, 'index': 55, 'word': '▁des', 'start': 317, 'end': 320} # {'entity': 'ANS', 'score': 0.43845775723457336, 'index': 56, 'word': '▁données', 'start': 321, 'end': 328} # {'entity': 'O', 'score': 0.3761221170425415, 'index': 57, 'word': '.', 'start': 328, 'end': 329} ```
luffycodes/TAG_mems_str_128_lr_2e5_wd_01_block_512_train_bsz_6_topk_100_lambdah_dot05_w103
6082668e615f4be0bd1dfa1d6e459467a8156ff7
2021-07-02T02:19:09.000Z
[ "pytorch", "transfo-xl", "transformers" ]
null
false
luffycodes
null
luffycodes/TAG_mems_str_128_lr_2e5_wd_01_block_512_train_bsz_6_topk_100_lambdah_dot05_w103
6
null
transformers
15,333
Entry not found
luffycodes/bb_narataka_roberta_large_nli_bsz_24_bb_bsz_24_nli_lr_1e5_bb_lr_1e5_wu_7k_grad_adam_mask
c2ef1ec1646418042bf457c55be3bd276d7ca914
2021-10-30T08:19:57.000Z
[ "pytorch", "roberta", "transformers" ]
null
false
luffycodes
null
luffycodes/bb_narataka_roberta_large_nli_bsz_24_bb_bsz_24_nli_lr_1e5_bb_lr_1e5_wu_7k_grad_adam_mask
6
null
transformers
15,334
Entry not found
luffycodes/om_sm_nl_roberta_mnli_lr5e6_ep_5.model
688e6528dcb8144751054148fc1b8b21d0182932
2021-12-10T03:12:17.000Z
[ "pytorch", "roberta", "transformers" ]
null
false
luffycodes
null
luffycodes/om_sm_nl_roberta_mnli_lr5e6_ep_5.model
6
null
transformers
15,335
Entry not found
m3hrdadfi/bert-fa-base-uncased-wikinli
c9f971d46f00cd29ab3f740146e7a3fd2ce16ddc
2021-05-28T06:01:35.000Z
[ "pytorch", "jax", "bert", "text-classification", "fa", "transformers", "license:apache-2.0" ]
text-classification
false
m3hrdadfi
null
m3hrdadfi/bert-fa-base-uncased-wikinli
6
2
transformers
15,336
--- language: fa license: apache-2.0 --- # ParsBERT + Sentence Transformers Please follow the [Sentence-Transformer](https://github.com/m3hrdadfi/sentence-transformers) repo for the latest information about previous and current models. ```bibtex @misc{SentenceTransformerWiki, author = {Mehrdad Farahani}, title = {Sentence Embeddings with ParsBERT}, year = {2020}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {https://github.com/m3hrdadfi/sentence-transformers}, } ```
m3hrdadfi/roberta-zwnj-wnli-mean-tokens
36f912ac44e22250aee16ea533a4ff8cd848c1a1
2021-06-28T17:40:23.000Z
[ "pytorch", "roberta", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
feature-extraction
false
m3hrdadfi
null
m3hrdadfi/roberta-zwnj-wnli-mean-tokens
6
null
sentence-transformers
15,337
--- pipeline_tag: feature-extraction tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # Sentence Embeddings with `roberta-zwnj-wnli-mean-tokens` ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = [ 'اولین حکمران شهر بابل کی بود؟', 'در فصل زمستان چه اتفاقی افتاد؟', 'میراث کوروش' ] model = SentenceTransformer('m3hrdadfi/roberta-zwnj-wnli-mean-tokens') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch # Max Pooling - Take the max value over time for every dimension. def max_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() token_embeddings[input_mask_expanded == 0] = -1e9 # Set padding tokens to large negative value return torch.mean(token_embeddings, 1)[0] # Sentences we want sentence embeddings for sentences = [ 'اولین حکمران شهر بابل کی بود؟', 'در فصل زمستان چه اتفاقی افتاد؟', 'میراث کوروش' ] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('m3hrdadfi/roberta-zwnj-wnli-mean-tokens') model = AutoModel.from_pretrained('m3hrdadfi/roberta-zwnj-wnli-mean-tokens') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = max_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Questions? Post a Github issue from [HERE](https://github.com/m3hrdadfi/sentence-transformers).
macedonizer/gr-gpt2
83e359d4f421b2c7192062662eb5f61058cd79b4
2021-09-14T16:07:35.000Z
[ "pytorch", "gpt2", "text-generation", "gr", "dataset:wiki-gr", "transformers", "license:apache-2.0" ]
text-generation
false
macedonizer
null
macedonizer/gr-gpt2
6
null
transformers
15,338
--- language: - gr thumbnail: https://huggingface.co/macedonizer/gr-roberta-base/lets-talk-about-nlp-gr.jpg license: apache-2.0 datasets: - wiki-gr --- # gr-gpt2 Test the whole generation capabilities here: https://transformer.huggingface.co/doc/gpt2-large Pretrained model on English language using a causal language modeling (CLM) objective. It was introduced in [this paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) and first released at [this page](https://openai.com/blog/better-language-models/). ## Model description gr-gpt2 is a transformers model pretrained on a very large corpus of Greek data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labeling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was trained to guess the next word in sentences. More precisely, inputs are sequences of the continuous text of a certain length and the targets are the same sequence, shifted one token (word or piece of a word) to the right. The model uses internally a mask-mechanism to make sure the predictions for the token `i` only uses the inputs from `1` to `i` but not the future tokens. This way, the model learns an inner representation of the Greek language that can then be used to extract features useful for downstream tasks. The model is best at what it was pretrained for, however, which is generating texts from a prompt. ### How to use Here is how to use this model to get the features of a given text in PyTorch: import random from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained('macedonizer/gr-gpt2') \\nnmodel = AutoModelWithLMHead.from_pretrained('macedonizer/gr-gpt2') input_text = 'Η Αθήνα είναι' if len(input_text) == 0: \ encoded_input = tokenizer(input_text, return_tensors="pt") \ output = model.generate( \ bos_token_id=random.randint(1, 50000), \ do_sample=True, \ top_k=50, \ max_length=1024, \ top_p=0.95, \ num_return_sequences=1, \ ) \ else: \ encoded_input = tokenizer(input_text, return_tensors="pt") \ output = model.generate( \ **encoded_input, \ bos_token_id=random.randint(1, 50000), \ do_sample=True, \ top_k=50, \ max_length=1024, \ top_p=0.95, \ num_return_sequences=1, \ ) decoded_output = [] \ for sample in output: \ decoded_output.append(tokenizer.decode(sample, skip_special_tokens=True)) print(decoded_output)
manishiitg/mobilebert-recruit-qa
7f023bcbc30dbf2e8937ca15c4c2dedf539409a2
2020-11-02T10:38:40.000Z
[ "pytorch", "mobilebert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
manishiitg
null
manishiitg/mobilebert-recruit-qa
6
null
transformers
15,339
Entry not found
marcolatella/tweet_eval_bench
915053f1c4f62e3e9cebaf5ce1fc72321fc1a028
2021-12-09T18:23:38.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:tweet_eval", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
marcolatella
null
marcolatella/tweet_eval_bench
6
null
transformers
15,340
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tweet_eval metrics: - accuracy model-index: - name: prova_Classi results: - task: name: Text Classification type: text-classification dataset: name: tweet_eval type: tweet_eval args: sentiment metrics: - name: Accuracy type: accuracy value: 0.716 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # prova_Classi This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 1.5530 - Accuracy: 0.716 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00013441028267541125 - train_batch_size: 32 - eval_batch_size: 16 - seed: 17 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7022 | 1.0 | 1426 | 0.6581 | 0.7105 | | 0.5199 | 2.0 | 2852 | 0.6835 | 0.706 | | 0.2923 | 3.0 | 4278 | 0.7941 | 0.7075 | | 0.1366 | 4.0 | 5704 | 1.0761 | 0.7115 | | 0.0645 | 5.0 | 7130 | 1.5530 | 0.716 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
mattmcclean/distilbert-base-uncased-finetuned-emotion
d360c04e31cabd7fba64cc2002f51b1b95901562
2022-02-01T19:48:01.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
mattmcclean
null
mattmcclean/distilbert-base-uncased-finetuned-emotion
6
null
transformers
15,341
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.925 - name: F1 type: f1 value: 0.9252235175634111 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2173 - Accuracy: 0.925 - F1: 0.9252 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.825 | 1.0 | 250 | 0.2925 | 0.915 | 0.9134 | | 0.2444 | 2.0 | 500 | 0.2173 | 0.925 | 0.9252 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0 - Datasets 1.16.1 - Tokenizers 0.10.3
mbateman/bert-finetuned-ner-accelerate
59e546b584a5d42f67d5050e41b619ea4e39d870
2022-01-05T08:30:51.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
mbateman
null
mbateman/bert-finetuned-ner-accelerate
6
null
transformers
15,342
Entry not found
mbeukman/xlm-roberta-base-finetuned-ner-igbo
0bcb1071259ea42baf78cbdcdb3e874ac419fecd
2021-11-25T09:04:28.000Z
[ "pytorch", "xlm-roberta", "token-classification", "ig", "dataset:masakhaner", "arxiv:2103.11811", "transformers", "NER", "autotrain_compatible" ]
token-classification
false
mbeukman
null
mbeukman/xlm-roberta-base-finetuned-ner-igbo
6
null
transformers
15,343
--- language: - ig tags: - NER datasets: - masakhaner metrics: - f1 - precision - recall widget: - text: "Ike ịda jụụ otụ nkeji banyere oke ogbugbu na - eme n'ala Naijiria agwụla Ekweremmadụ" --- # xlm-roberta-base-finetuned-ner-igbo This is a token classification (specifically NER) model that fine-tuned [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the [MasakhaNER](https://arxiv.org/abs/2103.11811) dataset, specifically the Igbo part. More information, and other similar models can be found in the [main Github repository](https://github.com/Michael-Beukman/NERTransfer). ## About This model is transformer based and was fine-tuned on the MasakhaNER dataset. It is a named entity recognition dataset, containing mostly news articles in 10 different African languages. The model was fine-tuned for 50 epochs, with a maximum sequence length of 200, 32 batch size, 5e-5 learning rate. This process was repeated 5 times (with different random seeds), and this uploaded model performed the best out of those 5 seeds (aggregate F1 on test set). This model was fine-tuned by me, Michael Beukman while doing a project at the University of the Witwatersrand, Johannesburg. This is version 1, as of 20 November 2021. This model is licensed under the [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0). ### Contact & More information For more information about the models, including training scripts, detailed results and further resources, you can visit the the [main Github repository](https://github.com/Michael-Beukman/NERTransfer). You can contact me by filing an issue on this repository. ### Training Resources In the interest of openness, and reporting resources used, we list here how long the training process took, as well as what the minimum resources would be to reproduce this. Fine-tuning each model on the NER dataset took between 10 and 30 minutes, and was performed on a NVIDIA RTX3090 GPU. To use a batch size of 32, at least 14GB of GPU memory was required, although it was just possible to fit these models in around 6.5GB's of VRAM when using a batch size of 1. ## Data The train, evaluation and test datasets were taken directly from the MasakhaNER [Github](https://github.com/masakhane-io/masakhane-ner) repository, with minimal to no preprocessing, as the original dataset is already of high quality. The motivation for the use of this data is that it is the "first large, publicly available, high­ quality dataset for named entity recognition (NER) in ten African languages" ([source](https://arxiv.org/pdf/2103.11811.pdf)). The high-quality data, as well as the groundwork laid by the paper introducing it are some more reasons why this dataset was used. For evaluation, the dedicated test split was used, which is from the same distribution as the training data, so this model may not generalise to other distributions, and further testing would need to be done to investigate this. The exact distribution of the data is covered in detail [here](https://arxiv.org/abs/2103.11811). ## Intended Use This model are intended to be used for NLP research into e.g. interpretability or transfer learning. Using this model in production is not supported, as generalisability and downright performance is limited. In particular, this is not designed to be used in any important downstream task that could affect people, as harm could be caused by the limitations of the model, described next. ## Limitations This model was only trained on one (relatively small) dataset, covering one task (NER) in one domain (news articles) and in a set span of time. The results may not generalise, and the model may perform badly, or in an unfair / biased way if used on other tasks. Although the purpose of this project was to investigate transfer learning, the performance on languages that the model was not trained for does suffer. Because this model used xlm-roberta-base as its starting point (potentially with domain adaptive fine-tuning on specific languages), this model's limitations can also apply here. These can include being biased towards the hegemonic viewpoint of most of its training data, being ungrounded and having subpar results on other languages (possibly due to unbalanced training data). As [Adelani et al. (2021)](https://arxiv.org/abs/2103.11811) showed, the models in general struggled with entities that were either longer than 3 words and entities that were not contained in the training data. This could bias the models towards not finding, e.g. names of people that have many words, possibly leading to a misrepresentation in the results. Similarly, names that are uncommon, and may not have been found in the training data (due to e.g. different languages) would also be predicted less often. Additionally, this model has not been verified in practice, and other, more subtle problems may become prevalent if used without any verification that it does what it is supposed to. ### Privacy & Ethical Considerations The data comes from only publicly available news sources, the only available data should cover public figures and those that agreed to be reported on. See the original MasakhaNER paper for more details. No explicit ethical considerations or adjustments were made during fine-tuning of this model. ## Metrics The language adaptive models achieve (mostly) superior performance over starting with xlm-roberta-base. Our main metric was the aggregate F1 score for all NER categories. These metrics are on the test set for MasakhaNER, so the data distribution is similar to the training set, so these results do not directly indicate how well these models generalise. We do find large variation in transfer results when starting from different seeds (5 different seeds were tested), indicating that the fine-tuning process for transfer might be unstable. The metrics used were chosen to be consistent with previous work, and to facilitate research. Other metrics may be more appropriate for other purposes. ## Caveats and Recommendations In general, this model performed worse on the 'date' category compared to others, so if dates are a critical factor, then that might need to be taken into account and addressed, by for example collecting and annotating more data. ## Model Structure Here are some performance details on this specific model, compared to others we trained. All of these metrics were calculated on the test set, and the seed was chosen that gave the best overall F1 score. The first three result columns are averaged over all categories, and the latter 4 provide performance broken down by category. This model can predict the following label for a token ([source](https://huggingface.co/Davlan/xlm-roberta-large-masakhaner)): Abbreviation|Description -|- O|Outside of a named entity B-DATE |Beginning of a DATE entity right after another DATE entity I-DATE |DATE entity B-PER |Beginning of a person’s name right after another person’s name I-PER |Person’s name B-ORG |Beginning of an organisation right after another organisation I-ORG |Organisation B-LOC |Beginning of a location right after another location I-LOC |Location | Model Name | Staring point | Evaluation / Fine-tune Language | F1 | Precision | Recall | F1 (DATE) | F1 (LOC) | F1 (ORG) | F1 (PER) | | -------------------------------------------------- | -------------------- | -------------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- | | [xlm-roberta-base-finetuned-ner-igbo](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-ner-igbo) (This model) | [base](https://huggingface.co/xlm-roberta-base) | ibo | 86.06 | 85.20 | 86.94 | 76.00 | 86.00 | 90.00 | 87.00 | | [xlm-roberta-base-finetuned-igbo-finetuned-ner-igbo](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-igbo-finetuned-ner-igbo) | [ibo](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-igbo) | ibo | 88.39 | 87.08 | 89.74 | 74.00 | 91.00 | 90.00 | 91.00 | | [xlm-roberta-base-finetuned-swahili-finetuned-ner-igbo](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-swahili-finetuned-ner-igbo) | [swa](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-swahili) | ibo | 84.93 | 83.63 | 86.26 | 70.00 | 88.00 | 89.00 | 84.00 | ## Usage To use this model (or others), you can do the following, just changing the model name ([source](https://huggingface.co/dslim/bert-base-NER)): ``` from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline model_name = 'mbeukman/xlm-roberta-base-finetuned-ner-igbo' tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForTokenClassification.from_pretrained(model_name) nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "Ike ịda jụụ otụ nkeji banyere oke ogbugbu na - eme n'ala Naijiria agwụla Ekweremmadụ" ner_results = nlp(example) print(ner_results) ```
meghanabhange/Hinglish-DistilBert-Class
485d02fcd3f331e460592ab45edecac2c4512d3c
2021-05-19T23:15:31.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
meghanabhange
null
meghanabhange/Hinglish-DistilBert-Class
6
null
transformers
15,344
Entry not found
michaelrglass/bert-base-uncased-sspt
9c463dd1666d2fe88cb251ebbfb76f2a38db20be
2021-05-19T23:24:03.000Z
[ "pytorch", "tf", "jax", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
michaelrglass
null
michaelrglass/bert-base-uncased-sspt
6
null
transformers
15,345
Entry not found
microsoft/unispeech-large-multi-lingual-1500h-cv
abdabefbb7de4d0cb87f4e1680ed95a07f63e789
2021-11-05T12:42:09.000Z
[ "pytorch", "unispeech", "pretraining", "it", "en", "fr", "es", "dataset:common_voice", "arxiv:2101.07597", "transformers", "speech" ]
null
false
microsoft
null
microsoft/unispeech-large-multi-lingual-1500h-cv
6
1
transformers
15,346
--- language: - it - en - fr - es datasets: - common_voice tags: - speech --- # UniSpeech-Large-Multi-Lingual [Microsoft's UniSpeech](https://www.microsoft.com/en-us/research/publication/unispeech-unified-speech-representation-learning-with-labeled-and-unlabeled-data/) The multi-lingual large model pretrained on 16kHz sampled speech audio and phonetic labels. When using the model make sure that your speech input is also sampled at 16kHz and your text in converted into a sequence of phonemes. **Note**: This model does not have a tokenizer as it was pretrained on audio alone. In order to use this model **speech recognition**, a tokenizer should be created and the model should be fine-tuned on labeled text data. Check out [this blog](https://huggingface.co/blog/fine-tune-wav2vec2-english) for more in-detail explanation of how to fine-tune the model. [Paper: UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) Authors: Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang **Abstract** *In this paper, we propose a unified pre-training approach called UniSpeech to learn speech representations with both unlabeled and labeled data, in which supervised phonetic CTC learning and phonetically-aware contrastive self-supervised learning are conducted in a multi-task learning manner. The resultant representations can capture information more correlated with phonetic structures and improve the generalization across languages and domains. We evaluate the effectiveness of UniSpeech for cross-lingual representation learning on public CommonVoice corpus. The results show that UniSpeech outperforms self-supervised pretraining and supervised transfer learning for speech recognition by a maximum of 13.4% and 17.8% relative phone error rate reductions respectively (averaged over all testing languages). The transferability of UniSpeech is also demonstrated on a domain-shift speech recognition task, i.e., a relative word error rate reduction of 6% against the previous approach.* The original model can be found under https://github.com/microsoft/UniSpeech/tree/main/UniSpeech. # Usage This is a multi-lingually pre-trained speech model that has to be fine-tuned on a downstream task like speech recognition or audio classification before it can be used in inference. The model was pre-trained in English, Spanish, French, and Italian and should therefore perform well only in those or similar languages. **Note**: The model was pre-trained on phonemes rather than characters. This means that one should make sure that the input text is converted to a sequence of phonemes before fine-tuning. ## Speech Recognition To fine-tune the model for speech recognition, see [the official speech recognition example](https://github.com/huggingface/transformers/tree/master/examples/pytorch/speech-recognition). ## Speech Classification To fine-tune the model for speech classification, see [the official audio classification example](https://github.com/huggingface/transformers/tree/master/examples/pytorch/audio-classification). # Contribution The model was contributed by [cywang](https://huggingface.co/cywang) and [patrickvonplaten](https://huggingface.co/patrickvonplaten). # License The official license can be found [here](https://github.com/microsoft/UniSpeech/blob/main/LICENSE) ![design](https://raw.githubusercontent.com/patrickvonplaten/scientific_images/master/unispeech.png)
mikaelsouza/msft-regular-model
0bec60c9d77775a57afac3b5b60860178d13935b
2021-11-02T23:05:40.000Z
[ "pytorch", "gpt2", "text-generation", "dataset:wikitext", "transformers", "generated_from_trainer", "model-index" ]
text-generation
false
mikaelsouza
null
mikaelsouza/msft-regular-model
6
1
transformers
15,347
--- tags: - generated_from_trainer datasets: - wikitext model-index: - name: msft-regular-model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # msft-regular-model This model is a fine-tuned version of [](https://huggingface.co/) on the wikitext dataset. It achieves the following results on the evaluation set: - Loss: 5.3420 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 9.1224 | 0.17 | 200 | 8.0736 | | 7.5229 | 0.34 | 400 | 7.1536 | | 7.0122 | 0.51 | 600 | 6.9072 | | 6.8296 | 0.69 | 800 | 6.7582 | | 6.709 | 0.86 | 1000 | 6.6436 | | 6.5882 | 1.03 | 1200 | 6.5563 | | 6.4807 | 1.2 | 1400 | 6.4784 | | 6.4172 | 1.37 | 1600 | 6.4165 | | 6.3403 | 1.54 | 1800 | 6.3555 | | 6.2969 | 1.71 | 2000 | 6.3107 | | 6.2346 | 1.89 | 2200 | 6.2691 | | 6.1767 | 2.06 | 2400 | 6.2299 | | 6.1326 | 2.23 | 2600 | 6.1937 | | 6.1035 | 2.4 | 2800 | 6.1602 | | 6.0624 | 2.57 | 3000 | 6.1241 | | 6.0393 | 2.74 | 3200 | 6.0971 | | 5.9982 | 2.91 | 3400 | 6.0656 | | 5.9526 | 3.08 | 3600 | 6.0397 | | 5.9086 | 3.26 | 3800 | 6.0104 | | 5.8922 | 3.43 | 4000 | 5.9888 | | 5.8631 | 3.6 | 4200 | 5.9661 | | 5.8396 | 3.77 | 4400 | 5.9407 | | 5.8055 | 3.94 | 4600 | 5.9177 | | 5.7763 | 4.11 | 4800 | 5.9007 | | 5.7314 | 4.28 | 5000 | 5.8834 | | 5.7302 | 4.46 | 5200 | 5.8620 | | 5.6987 | 4.63 | 5400 | 5.8451 | | 5.6754 | 4.8 | 5600 | 5.8242 | | 5.6571 | 4.97 | 5800 | 5.8059 | | 5.615 | 5.14 | 6000 | 5.7871 | | 5.596 | 5.31 | 6200 | 5.7817 | | 5.5738 | 5.48 | 6400 | 5.7570 | | 5.5641 | 5.66 | 6600 | 5.7431 | | 5.5503 | 5.83 | 6800 | 5.7271 | | 5.5214 | 6.0 | 7000 | 5.7108 | | 5.4712 | 6.17 | 7200 | 5.7018 | | 5.48 | 6.34 | 7400 | 5.6936 | | 5.4527 | 6.51 | 7600 | 5.6812 | | 5.4514 | 6.68 | 7800 | 5.6669 | | 5.4454 | 6.86 | 8000 | 5.6509 | | 5.399 | 7.03 | 8200 | 5.6408 | | 5.3747 | 7.2 | 8400 | 5.6327 | | 5.3667 | 7.37 | 8600 | 5.6197 | | 5.3652 | 7.54 | 8800 | 5.6084 | | 5.3394 | 7.71 | 9000 | 5.5968 | | 5.3349 | 7.88 | 9200 | 5.5870 | | 5.2994 | 8.05 | 9400 | 5.5826 | | 5.2793 | 8.23 | 9600 | 5.5710 | | 5.2716 | 8.4 | 9800 | 5.5623 | | 5.275 | 8.57 | 10000 | 5.5492 | | 5.264 | 8.74 | 10200 | 5.5449 | | 5.241 | 8.91 | 10400 | 5.5322 | | 5.2285 | 9.08 | 10600 | 5.5267 | | 5.2021 | 9.25 | 10800 | 5.5187 | | 5.1934 | 9.43 | 11000 | 5.5158 | | 5.1737 | 9.6 | 11200 | 5.5044 | | 5.1774 | 9.77 | 11400 | 5.5008 | | 5.1841 | 9.94 | 11600 | 5.4960 | | 5.1414 | 10.11 | 11800 | 5.4895 | | 5.1491 | 10.28 | 12000 | 5.4849 | | 5.1184 | 10.45 | 12200 | 5.4738 | | 5.1136 | 10.63 | 12400 | 5.4690 | | 5.1199 | 10.8 | 12600 | 5.4598 | | 5.1056 | 10.97 | 12800 | 5.4536 | | 5.0648 | 11.14 | 13000 | 5.4496 | | 5.0598 | 11.31 | 13200 | 5.4449 | | 5.0656 | 11.48 | 13400 | 5.4422 | | 5.0664 | 11.65 | 13600 | 5.4367 | | 5.0675 | 11.83 | 13800 | 5.4286 | | 5.0459 | 12.0 | 14000 | 5.4249 | | 5.0073 | 12.17 | 14200 | 5.4260 | | 5.0229 | 12.34 | 14400 | 5.4175 | | 5.0079 | 12.51 | 14600 | 5.4119 | | 5.0 | 12.68 | 14800 | 5.4194 | | 5.0094 | 12.85 | 15000 | 5.4068 | | 4.9967 | 13.02 | 15200 | 5.3995 | | 4.9541 | 13.2 | 15400 | 5.4002 | | 4.9753 | 13.37 | 15600 | 5.3965 | | 4.9732 | 13.54 | 15800 | 5.3925 | | 4.9624 | 13.71 | 16000 | 5.3888 | | 4.9559 | 13.88 | 16200 | 5.3824 | | 4.9559 | 14.05 | 16400 | 5.3851 | | 4.9109 | 14.22 | 16600 | 5.3815 | | 4.9211 | 14.4 | 16800 | 5.3784 | | 4.9342 | 14.57 | 17000 | 5.3735 | | 4.9271 | 14.74 | 17200 | 5.3711 | | 4.9328 | 14.91 | 17400 | 5.3646 | | 4.8994 | 15.08 | 17600 | 5.3664 | | 4.8932 | 15.25 | 17800 | 5.3642 | | 4.8886 | 15.42 | 18000 | 5.3620 | | 4.8997 | 15.6 | 18200 | 5.3584 | | 4.8846 | 15.77 | 18400 | 5.3551 | | 4.8993 | 15.94 | 18600 | 5.3516 | | 4.8648 | 16.11 | 18800 | 5.3552 | | 4.8838 | 16.28 | 19000 | 5.3512 | | 4.8575 | 16.45 | 19200 | 5.3478 | | 4.8623 | 16.62 | 19400 | 5.3480 | | 4.8631 | 16.8 | 19600 | 5.3439 | | 4.8576 | 16.97 | 19800 | 5.3428 | | 4.8265 | 17.14 | 20000 | 5.3420 | | 4.8523 | 17.31 | 20200 | 5.3410 | | 4.8477 | 17.48 | 20400 | 5.3396 | | 4.8507 | 17.65 | 20600 | 5.3380 | | 4.8498 | 17.82 | 20800 | 5.3333 | | 4.8261 | 17.99 | 21000 | 5.3342 | | 4.8201 | 18.17 | 21200 | 5.3324 | | 4.8214 | 18.34 | 21400 | 5.3341 | | 4.8195 | 18.51 | 21600 | 5.3315 | | 4.8216 | 18.68 | 21800 | 5.3335 | | 4.8243 | 18.85 | 22000 | 5.3291 | | 4.832 | 19.02 | 22200 | 5.3295 | | 4.8085 | 19.19 | 22400 | 5.3309 | | 4.8094 | 19.37 | 22600 | 5.3283 | | 4.815 | 19.54 | 22800 | 5.3280 | | 4.8219 | 19.71 | 23000 | 5.3270 | | 4.8117 | 19.88 | 23200 | 5.3280 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0 - Datasets 1.14.0 - Tokenizers 0.10.3
milyiyo/distilbert-base-uncased-finetuned-amazon-review
14e2a8ec598d627df67a826372a291be4e2b7051
2022-01-20T15:14:48.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:amazon_reviews_multi", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
milyiyo
null
milyiyo/distilbert-base-uncased-finetuned-amazon-review
6
null
transformers
15,348
--- license: apache-2.0 tags: - generated_from_trainer datasets: - amazon_reviews_multi metrics: - accuracy - f1 - precision - recall model-index: - name: distilbert-base-uncased-finetuned-amazon-review results: - task: name: Text Classification type: text-classification dataset: name: amazon_reviews_multi type: amazon_reviews_multi args: es metrics: - name: Accuracy type: accuracy value: 0.693 - name: F1 type: f1 value: 0.7002653469272611 - name: Precision type: precision value: 0.709541681233075 - name: Recall type: recall value: 0.693 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-amazon-review This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 1.3494 - Accuracy: 0.693 - F1: 0.7003 - Precision: 0.7095 - Recall: 0.693 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | No log | 0.5 | 500 | 0.8287 | 0.7104 | 0.7120 | 0.7152 | 0.7104 | | 0.4238 | 1.0 | 1000 | 0.8917 | 0.7094 | 0.6989 | 0.6917 | 0.7094 | | 0.4238 | 1.5 | 1500 | 0.9367 | 0.6884 | 0.6983 | 0.7151 | 0.6884 | | 0.3152 | 2.0 | 2000 | 0.9845 | 0.7116 | 0.7144 | 0.7176 | 0.7116 | | 0.3152 | 2.5 | 2500 | 1.0752 | 0.6814 | 0.6968 | 0.7232 | 0.6814 | | 0.2454 | 3.0 | 3000 | 1.1215 | 0.6918 | 0.6954 | 0.7068 | 0.6918 | | 0.2454 | 3.5 | 3500 | 1.2905 | 0.6976 | 0.7048 | 0.7138 | 0.6976 | | 0.1989 | 4.0 | 4000 | 1.2938 | 0.694 | 0.7016 | 0.7113 | 0.694 | | 0.1989 | 4.5 | 4500 | 1.3623 | 0.6972 | 0.7014 | 0.7062 | 0.6972 | | 0.1746 | 5.0 | 5000 | 1.3494 | 0.693 | 0.7003 | 0.7095 | 0.693 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
mmirshekari/electra-base-squad-classification
ae742f603bbf28f6b6cf634402cc2312f49a72b5
2021-09-14T16:53:25.000Z
[ "pytorch", "electra", "text-classification", "transformers" ]
text-classification
false
mmirshekari
null
mmirshekari/electra-base-squad-classification
6
null
transformers
15,349
Entry not found
mofawzy/bert-labr-unbalanced
943517378529efcccea8a20b8389c4ef551baffa
2022-02-14T11:39:25.000Z
[ "pytorch", "tf", "bert", "text-classification", "ar", "dataset:labr", "transformers", "labr" ]
text-classification
false
mofawzy
null
mofawzy/bert-labr-unbalanced
6
null
transformers
15,350
--- language: - ar datasets: - labr tags: - labr widget: - text: "كتاب ممل جدا تضييع وقت" - text: "اسلوب ممتع وشيق في الكتاب استمعت بالاحداث" --- # BERT-LABR unbalanced Arabic version bert model fine tuned on LABR dataset ## Data The model were fine-tuned on ~63000 book reviews in arabic using bert large arabic ## Results | class | precision | recall | f1-score | Support | |----------|-----------|--------|----------|---------| | 0 | 0.8109 | 0.6832 | 0.7416 | 1670 | | 1 | 0.9399 | 0.9689 | 0.9542 | 8541 | | Accuracy | | | 0.9221 | 10211 | ## How to use You can use these models by installing `torch` or `tensorflow` and Huggingface library `transformers`. And you can use it directly by initializing it like this: ```python from transformers import AutoModelForSequenceClassification, AutoTokenizer model_name="mofawzy/bert-labr-unbalanced" model = AutoModelForSequenceClassification.from_pretrained(model_name,num_labels=2) tokenizer = AutoTokenizer.from_pretrained(model_name) ```
mohsenfayyaz/bert-base-uncased-avg-pooling
8774520b8f4d930ff02e77e084932bc9d365b27a
2021-06-27T12:18:48.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
mohsenfayyaz
null
mohsenfayyaz/bert-base-uncased-avg-pooling
6
null
transformers
15,351
Entry not found
mohsenfayyaz/xlnet-base-cased-toxicity
9cb763cf8295e6d21b7183eb8de8e2b060b95bb5
2021-04-18T10:22:12.000Z
[ "pytorch", "xlnet", "text-classification", "transformers" ]
text-classification
false
mohsenfayyaz
null
mohsenfayyaz/xlnet-base-cased-toxicity
6
null
transformers
15,352
Entry not found
monologg/koelectra-base-v2-finetuned-korquad-384
8382aa3f80453f03d17f4631bb592d0ec3df1c9a
2020-06-03T13:03:25.000Z
[ "pytorch", "electra", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
monologg
null
monologg/koelectra-base-v2-finetuned-korquad-384
6
null
transformers
15,353
Entry not found
monologg/koelectra-small-v2-generator
369e271a85947ff9e69cd0209b1f1e7df12f3cd4
2020-12-26T16:24:12.000Z
[ "pytorch", "electra", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
monologg
null
monologg/koelectra-small-v2-generator
6
null
transformers
15,354
Entry not found
moshew/tiny-bert-aug-sst2-distilled
7f04bae1b02e9802af7cf77781169f859ea9608f
2022-02-20T18:34:06.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
moshew
null
moshew/tiny-bert-aug-sst2-distilled
6
null
transformers
15,355
Entry not found
mrm8488/bert-multi-uncased-finetuned-xquadv1
8b382d045c4e64a3efef66f5e0962ff05bedc30a
2021-05-20T00:31:20.000Z
[ "pytorch", "jax", "bert", "question-answering", "multilingual", "arxiv:1910.11856", "transformers", "autotrain_compatible" ]
question-answering
false
mrm8488
null
mrm8488/bert-multi-uncased-finetuned-xquadv1
6
null
transformers
15,356
--- language: multilingual thumbnail: --- # BERT (base-multilingual-uncased) fine-tuned for multilingual Q&A This model was created by [Google](https://github.com/google-research/bert/blob/master/multilingual.md) and fine-tuned on [XQuAD](https://github.com/deepmind/xquad) like data for multilingual (`11 different languages`) **Q&A** downstream task. ## Details of the language model('bert-base-multilingual-uncased') [Language model](https://github.com/google-research/bert/blob/master/multilingual.md) | Languages | Heads | Layers | Hidden | Params | | --------- | ----- | ------ | ------ | ------ | | 102 | 12 | 12 | 768 | 100 M | ## Details of the downstream task (multilingual Q&A) - Dataset Deepmind [XQuAD](https://github.com/deepmind/xquad) Languages covered: - Arabic: `ar` - German: `de` - Greek: `el` - English: `en` - Spanish: `es` - Hindi: `hi` - Russian: `ru` - Thai: `th` - Turkish: `tr` - Vietnamese: `vi` - Chinese: `zh` As the dataset is based on SQuAD v1.1, there are no unanswerable questions in the data. We chose this setting so that models can focus on cross-lingual transfer. We show the average number of tokens per paragraph, question, and answer for each language in the table below. The statistics were obtained using [Jieba](https://github.com/fxsjy/jieba) for Chinese and the [Moses tokenizer](https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl) for the other languages. | | en | es | de | el | ru | tr | ar | vi | th | zh | hi | | --------- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | Paragraph | 142.4 | 160.7 | 139.5 | 149.6 | 133.9 | 126.5 | 128.2 | 191.2 | 158.7 | 147.6 | 232.4 | | Question | 11.5 | 13.4 | 11.0 | 11.7 | 10.0 | 9.8 | 10.7 | 14.8 | 11.5 | 10.5 | 18.7 | | Answer | 3.1 | 3.6 | 3.0 | 3.3 | 3.1 | 3.1 | 3.1 | 4.5 | 4.1 | 3.5 | 5.6 | Citation: <details> ```bibtex @article{Artetxe:etal:2019, author = {Mikel Artetxe and Sebastian Ruder and Dani Yogatama}, title = {On the cross-lingual transferability of monolingual representations}, journal = {CoRR}, volume = {abs/1910.11856}, year = {2019}, archivePrefix = {arXiv}, eprint = {1910.11856} } ``` </details> As **XQuAD** is just an evaluation dataset, I used `Data augmentation techniques` (scraping, neural machine translation, etc) to obtain more samples and split the dataset in order to have a train and test set. The test set was created in a way that contains the same number of samples for each language. Finally, I got: | Dataset | # samples | | ----------- | --------- | | XQUAD train | 50 K | | XQUAD test | 8 K | ## Model training The model was trained on a Tesla P100 GPU and 25GB of RAM. The script for fine tuning can be found [here](https://github.com/huggingface/transformers/blob/master/examples/distillation/run_squad_w_distillation.py) ## Model in action Fast usage with **pipelines**: ```python from transformers import pipeline qa_pipeline = pipeline( "question-answering", model="mrm8488/bert-multi-uncased-finetuned-xquadv1", tokenizer="mrm8488/bert-multi-uncased-finetuned-xquadv1" ) # context: Coronavirus is seeding panic in the West because it expands so fast. # question: Where is seeding panic Coronavirus? qa_pipeline({ 'context': "कोरोनावायरस पश्चिम में आतंक बो रहा है क्योंकि यह इतनी तेजी से फैलता है।", 'question': "कोरोनावायरस घबराहट कहां है?" }) # output: {'answer': 'पश्चिम', 'end': 18, 'score': 0.7037217439689059, 'start': 12} qa_pipeline({ 'context': "Manuel Romero has been working hardly in the repository hugginface/transformers lately", 'question': "Who has been working hard for hugginface/transformers lately?" }) # output: {'answer': 'Manuel Romero', 'end': 13, 'score': 0.7254485993702389, 'start': 0} qa_pipeline({ 'context': "Manuel Romero a travaillé à peine dans le référentiel hugginface / transformers ces derniers temps", 'question': "Pour quel référentiel a travaillé Manuel Romero récemment?" }) #output: {'answer': 'hugginface / transformers', 'end': 79, 'score': 0.6482061613915384, 'start': 54} ``` ![model in action](https://media.giphy.com/media/MBlire8Wj7ng73VBQ5/giphy.gif) Try it on a Colab: <a href="https://colab.research.google.com/github/mrm8488/shared_colab_notebooks/blob/master/Try_mrm8488_xquad_finetuned_uncased_model.ipynb" target="_parent"><img src="https://camo.githubusercontent.com/52feade06f2fecbf006889a904d221e6a730c194/68747470733a2f2f636f6c61622e72657365617263682e676f6f676c652e636f6d2f6173736574732f636f6c61622d62616467652e737667" alt="Open In Colab" data-canonical-src="https://colab.research.google.com/assets/colab-badge.svg"></a> > Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488) > Made with <span style="color: #e25555;">&hearts;</span> in Spain
mrm8488/bert-uncased-finetuned-qnli
c996c1fb887cc1005ec3b93ef51a95ad6879f813
2021-05-20T00:42:00.000Z
[ "pytorch", "jax", "bert", "text-classification", "en", "transformers" ]
text-classification
false
mrm8488
null
mrm8488/bert-uncased-finetuned-qnli
6
null
transformers
15,357
--- language: en thumbnail: --- # [BERT](https://huggingface.co/deepset/bert-base-cased-squad2) fine tuned on [QNLI](https://github.com/rhythmcao/QNLI)+ compression ([BERT-of-Theseus](https://github.com/JetRunner/BERT-of-Theseus)) I used a [Bert model fine tuned on **SQUAD v2**](https://huggingface.co/deepset/bert-base-cased-squad2) and then I fine tuned it on **QNLI** using **compression** (with a constant replacing rate) as proposed in **BERT-of-Theseus** ## Details of the downstream task (QNLI): ### Getting the dataset ```bash wget https://raw.githubusercontent.com/rhythmcao/QNLI/master/data/QNLI/train.tsv wget https://raw.githubusercontent.com/rhythmcao/QNLI/master/data/QNLI/test.tsv wget https://raw.githubusercontent.com/rhythmcao/QNLI/master/data/QNLI/dev.tsv mkdir QNLI_dataset mv *.tsv QNLI_dataset ``` ### Model training The model was trained on a Tesla P100 GPU and 25GB of RAM with the following command: ```bash !python /content/BERT-of-Theseus/run_glue.py \ --model_name_or_path deepset/bert-base-cased-squad2 \ --task_name qnli \ --do_train \ --do_eval \ --do_lower_case \ --data_dir /content/QNLI_dataset \ --max_seq_length 128 \ --per_gpu_train_batch_size 32 \ --per_gpu_eval_batch_size 32 \ --learning_rate 2e-5 \ --save_steps 2000 \ --num_train_epochs 50 \ --output_dir /content/ouput_dir \ --evaluate_during_training \ --replacing_rate 0.7 \ --steps_for_replacing 2500 ``` ## Metrics: | Model | Accuracy | |-----------------|------| | BERT-base | 91.2 | | BERT-of-Theseus | 88.8 | | [bert-uncased-finetuned-qnli](https://huggingface.co/mrm8488/bert-uncased-finetuned-qnli) | 87.2 | DistillBERT | 85.3 | > [See all my models](https://huggingface.co/models?search=mrm8488) > Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488) > Made with <span style="color: #e25555;">&hearts;</span> in Spain
mrm8488/bsc-roberta-base-spanish-diagnostics
e9fa82e82eaaebb86bb024eeecb212d1676afdfb
2021-10-04T18:04:02.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "transformers" ]
text-classification
false
mrm8488
null
mrm8488/bsc-roberta-base-spanish-diagnostics
6
null
transformers
15,358
Entry not found
mrm8488/distilbert-base-uncased-newspop-student
a8900af7101ecfef32af10ce149ff23ccc76b3ac
2021-04-27T18:21:40.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
mrm8488
null
mrm8488/distilbert-base-uncased-newspop-student
6
null
transformers
15,359
Entry not found
mrm8488/prunebert-base-uncased-finepruned-topK-squadv2
fb0d34d80e14bb983529d8c9a131a5373a3b9098
2020-06-16T11:16:59.000Z
[ "pytorch", "masked_bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
mrm8488
null
mrm8488/prunebert-base-uncased-finepruned-topK-squadv2
6
null
transformers
15,360
Entry not found
mrm8488/prunebert-multi-uncased-finepruned-magnitude-tydiqa-for-xqa
8c9a4eb711d11575750d658b2a3e7af23020897d
2020-06-10T17:09:21.000Z
[ "pytorch", "masked_bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
mrm8488
null
mrm8488/prunebert-multi-uncased-finepruned-magnitude-tydiqa-for-xqa
6
null
transformers
15,361
Entry not found
mrp/simcse-model-distil-m-bert
272ad5730d95f3267b2f90c10aa12346049bd5f5
2021-10-05T05:49:08.000Z
[ "pytorch", "distilbert", "feature-extraction", "arxiv:2104.08821", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
mrp
null
mrp/simcse-model-distil-m-bert
6
null
sentence-transformers
15,362
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {mrp/simcse-model-distil-m-bert} This is a [sentence-transformers](https://www.SBERT.net) by using m-Distil-BERT as the baseline model model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> We use SimCSE [here](https://arxiv.org/pdf/2104.08821.pdf) and training the model with Thai Wikipedia [here](https://github.com/PyThaiNLP/ThaiWiki-clean/releases/tag/20210620?fbclid=IwAR1YcmZkb-xd1ibTWCJOcu98_FQ5x3ioZaGW1ME-VHy9fAQLhEr5tXTJygA) ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["ฉันนะคือคนรักชาติยังไงละ!", "พวกสามกีบล้มเจ้า!"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ```
muhtasham/autonlp-Doctor_DE-24595547
9a98af6c8f059e3509bb2fd51f7d15995242f3e3
2021-10-22T14:04:29.000Z
[ "pytorch", "electra", "text-classification", "de", "dataset:muhtasham/autonlp-data-Doctor_DE", "transformers", "autonlp", "co2_eq_emissions" ]
text-classification
false
muhtasham
null
muhtasham/autonlp-Doctor_DE-24595547
6
null
transformers
15,363
--- tags: autonlp language: de widget: - text: "I love AutoNLP 🤗" datasets: - muhtasham/autonlp-data-Doctor_DE co2_eq_emissions: 396.5529429198159 --- # Model Trained Using AutoNLP - Problem type: Single Column Regression - Model ID: 24595547 - CO2 Emissions (in grams): 396.5529429198159 ## Validation Metrics - Loss: 1.9565489292144775 - MSE: 1.9565489292144775 - MAE: 0.9890901446342468 - R2: -7.68965036332947e-05 - RMSE: 1.3987668752670288 - Explained Variance: 0.0 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/muhtasham/autonlp-Doctor_DE-24595547 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("muhtasham/autonlp-Doctor_DE-24595547", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("muhtasham/autonlp-Doctor_DE-24595547", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
murali-admin/bart-billsum-1
4c80a5550274b15eb491900d96b11e66a9fd3a2a
2021-07-26T18:07:58.000Z
[ "pytorch", "bart", "text2text-generation", "en", "dataset:mohsenalam/autonlp-data-billsum-summarization", "transformers", "autonlp", "autotrain_compatible" ]
text2text-generation
false
murali-admin
null
murali-admin/bart-billsum-1
6
null
transformers
15,364
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - mohsenalam/autonlp-data-billsum-summarization --- # Model Trained Using AutoNLP - Problem type: Summarization - Model ID: 5691253 ## Validation Metrics - Loss: 1.4430530071258545 - Rouge1: 23.9565 - Rouge2: 19.1897 - RougeL: 23.1191 - RougeLsum: 23.3308 - Gen Len: 20.0 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/mohsenalam/autonlp-billsum-summarization-5691253 ```
ncduy/distilbert-base-cased-distilled-squad-finetuned-squad-test
f4cee9249fd32b362482d1a2b4812ae4a6130017
2021-12-09T12:35:59.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
ncduy
null
ncduy/distilbert-base-cased-distilled-squad-finetuned-squad-test
6
null
transformers
15,365
Entry not found
ncoop57/codeparrot-neo-125M-py
f1a629d0d961c6df9923ac2664ded923efa39415
2022-01-27T14:44:13.000Z
[ "pytorch", "jax", "rust", "gpt_neo", "text-generation", "en", "dataset:The Pile", "transformers", "text generation", "causal-lm", "license:apache-2.0" ]
text-generation
false
ncoop57
null
ncoop57/codeparrot-neo-125M-py
6
null
transformers
15,366
--- language: - en tags: - text generation - pytorch - causal-lm license: apache-2.0 datasets: - The Pile --- # GPT-Neo 125M ## Model Description GPT-Neo 125M is a transformer model designed using EleutherAI's replication of the GPT-3 architecture. GPT-Neo refers to the class of models, while 125M represents the number of parameters of this particular pre-trained model. ## Training data GPT-Neo 125M was trained on the Pile, a large scale curated dataset created by EleutherAI for the purpose of training this model. ## Training procedure This model was trained on the Pile for 300 billion tokens over 572,300 steps. It was trained as a masked autoregressive language model, using cross-entropy loss. ## Intended Use and Limitations This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks. The model is best at what it was pretrained for however, which is generating texts from a prompt. ### How to use You can use this model directly with a pipeline for text generation. This example generates a different sequence each time it's run: ```py >>> from transformers import pipeline >>> generator = pipeline('text-generation', model='EleutherAI/gpt-neo-125M') >>> generator("EleutherAI has", do_sample=True, min_length=50) [{'generated_text': 'EleutherAI has made a commitment to create new software packages for each of its major clients and has'}] ``` ### Limitations and Biases GPT-Neo was trained as an autoregressive language model. This means that its core functionality is taking a string of text and predicting the next token. While language models are widely used for tasks other than this, there are a lot of unknowns with this work. GPT-Neo was trained on the Pile, a dataset known to contain profanity, lewd, and otherwise abrasive language. Depending on your usecase GPT-Neo may produce socially unacceptable text. See Sections 5 and 6 of the Pile paper for a more detailed analysis of the biases in the Pile. As with all language models, it is hard to predict in advance how GPT-Neo will respond to particular prompts and offensive content may occur without warning. We recommend having a human curate or filter the outputs before releasing them, both to censor undesirable content and to improve the quality of the results. ## Eval results TBD ### Down-Stream Applications TBD ### BibTeX entry and citation info To cite this model, use ```bibtex @software{gpt-neo, author = {Black, Sid and Leo, Gao and Wang, Phil and Leahy, Connor and Biderman, Stella}, title = {{GPT-Neo: Large Scale Autoregressive Language Modeling with Mesh-Tensorflow}}, month = mar, year = 2021, note = {{If you use this software, please cite it using these metadata.}}, publisher = {Zenodo}, version = {1.0}, doi = {10.5281/zenodo.5297715}, url = {https://doi.org/10.5281/zenodo.5297715} } @article{gao2020pile, title={The Pile: An 800GB Dataset of Diverse Text for Language Modeling}, author={Gao, Leo and Biderman, Stella and Black, Sid and Golding, Laurence and Hoppe, Travis and Foster, Charles and Phang, Jason and He, Horace and Thite, Anish and Nabeshima, Noa and others}, journal={arXiv preprint arXiv:2101.00027}, year={2020} } ```
nepalprabin/xlm-roberta-base-finetuned-marc-en
124fdc2b7650043c2341533b65ad8f5ffb4275aa
2021-10-23T09:53:48.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "text-classification", "dataset:amazon_reviews_multi", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
nepalprabin
null
nepalprabin/xlm-roberta-base-finetuned-marc-en
6
null
transformers
15,367
--- license: mit tags: - generated_from_trainer datasets: - amazon_reviews_multi model-index: - name: xlm-roberta-base-finetuned-marc-en results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-marc-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 1.0442 - Mae: 0.5385 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.0371 | 1.0 | 1105 | 1.0522 | 0.5256 | | 0.8925 | 2.0 | 2210 | 1.0442 | 0.5385 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
nhrony/bert-bnsp
daa8ad0fd998c9a36dc3724a477c9a6f87baf0df
2022-01-16T15:30:20.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
nhrony
null
nhrony/bert-bnsp
6
null
transformers
15,368
Entry not found
nkul/gpt2-frens
99fb9148b4939d2d2136a4026e3411327f03c8d8
2021-07-11T07:09:11.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers" ]
text-generation
false
nkul
null
nkul/gpt2-frens
6
null
transformers
15,369
--- language: en tags: - gpt2 - text-generation widget: - text: "Rachel: Joey! What were those weird noises coming from your room?" --- # GPT2 fine-tuned on FRIENDS transcripts.
noharm-ai/anony
dd88173c321eb98625e2d906bb9b48af59e1246a
2022-02-17T17:12:25.000Z
[ "pytorch", "pt", "flair", "token-classification", "sequence-tagger-model", "license:mit" ]
token-classification
false
noharm-ai
null
noharm-ai/anony
6
null
flair
15,370
--- license: mit tags: - flair - token-classification - sequence-tagger-model language: "pt" widget: - text: "FISIOTERAPIA TRAUMATO - MANHÃ Henrique Dias, 38 anos. Exercícios metabólicos de extremidades inferiores. Realizo mobilização patelar e leve mobilização de flexão de joelho conforme liberado pelo Dr Marcelo Arocha. Oriento cuidados e posicionamentos." --- ## Portuguese Name Identification The [NoHarm-Anony - De-Identification of Clinical Notes Using Contextualized Language Models and a Token Classifier](https://link.springer.com/chapter/10.1007/978-3-030-91699-2_3) paper contains Flair-based models for Portuguese Language, initialized with [Flair BBP](https://github.com/jneto04/ner-pt) & trained on clinical notes with names tagged. ### Demo: How to use in Flair Requires: **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`) ```python from flair.data import Sentence from flair.models import SequenceTagger # load tagger tagger = SequenceTagger.load("noharm-ai/anony") # make example sentence sentence = Sentence("FISIOTERAPIA TRAUMATO - MANHÃ Henrique Dias, 38 anos. Exercícios metabólicos de extremidades inferiores. Realizo mobilização patelar e leve mobilização de flexão de joelho conforme liberado pelo Dr Marcelo Arocha. Oriento cuidados e posicionamentos.") # predict NER tags tagger.predict(sentence) # print sentence print(sentence) # print predicted NER spans print('The following NER tags are found:') # iterate over entities and print for entity in sentence.get_spans('ner'): print(entity) ``` This yields the following output: ``` Span [5,6]: "Henrique Dias" [− Labels: NOME (0.9735)] Span [31,32]: "Marcelo Arocha" [− Labels: NOME (0.9803)] ``` So, the entities "*Henrique Dias*" (labeled as a **nome**) and "*Marcelo Arocha*" (labeled as a **nome**) are found in the sentence. ## More Information Refer to the original paper, [De-Identification of Clinical Notes Using Contextualized Language Models and a Token Classifier](https://link.springer.com/chapter/10.1007/978-3-030-91699-2_3) for additional details and performance. ## Acknowledgements We thank Dr. Ana Helena D. P. S. Ulbrich, who provided the clinical notes dataset from the hospital, for her valuable cooperation. We also thank the volunteers of the Institute of Artificial Intelligence in Healthcare Celso Pereira and Ana Lúcia Dias, for the dataset annotation. ## Citation ``` @inproceedings{santos2021identification, title={De-Identification of Clinical Notes Using Contextualized Language Models and a Token Classifier}, author={Santos, Joaquim and dos Santos, Henrique DP and Tabalipa, F{\'a}bio and Vieira, Renata}, booktitle={Brazilian Conference on Intelligent Systems}, pages={33--41}, year={2021}, organization={Springer} } ```
nouamanetazi/wav2vec2-xls-r-300m-ar-with-lm
ef84193e67ca1042b6ddde277ba81c20085b4ea4
2022-03-23T18:27:54.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "ar", "dataset:common_voice", "transformers", "common_voice", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
nouamanetazi
null
nouamanetazi/wav2vec2-xls-r-300m-ar-with-lm
6
1
transformers
15,371
--- language: - ar license: apache-2.0 tags: - ar - automatic-speech-recognition - common_voice - generated_from_trainer - hf-asr-leaderboard - robust-speech-event datasets: - common_voice model-index: - name: XLS-R-300M - Arabic results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: ar metrics: - name: Test WER type: wer value: 1.0 - name: Test CER type: cer value: 1.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-ar This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the COMMON_VOICE - AR dataset. It achieves the following results on the evaluation set: - eval_loss: 3.0191 - eval_wer: 1.0 - eval_runtime: 252.2389 - eval_samples_per_second: 30.217 - eval_steps_per_second: 0.476 - epoch: 1.0 - step: 340 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 5 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0 #### Evaluation Commands Please use the evaluation script `eval.py` included in the repo. 1. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py --model_id nouamanetazi/wav2vec2-xls-r-300m-ar --dataset speech-recognition-community-v2/dev_data --config ar --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ```
nreimers/TinyBERT_L-6_H-768_v2
cbdb219b7128013bbead88ea281fea3dab77fc19
2021-05-28T11:01:29.000Z
[ "pytorch", "jax", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
nreimers
null
nreimers/TinyBERT_L-6_H-768_v2
6
1
transformers
15,372
This is the [General_TinyBERT_v2(6layer-768dim)](https://github.com/huawei-noah/Pretrained-Language-Model/tree/master/TinyBERT) ported to Huggingface transformers.
nyu-mll/roberta-base-10M-1
a9e29b2540a6a178a449fc7b5db745f69e6bab8a
2021-05-20T18:57:10.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
nyu-mll
null
nyu-mll/roberta-base-10M-1
6
null
transformers
15,373
# RoBERTa Pretrained on Smaller Datasets We pretrain RoBERTa on smaller datasets (1M, 10M, 100M, 1B tokens). We release 3 models with lowest perplexities for each pretraining data size out of 25 runs (or 10 in the case of 1B tokens). The pretraining data reproduces that of BERT: We combine English Wikipedia and a reproduction of BookCorpus using texts from smashwords in a ratio of approximately 3:1. ### Hyperparameters and Validation Perplexity The hyperparameters and validation perplexities corresponding to each model are as follows: | Model Name | Training Size | Model Size | Max Steps | Batch Size | Validation Perplexity | |--------------------------|---------------|------------|-----------|------------|-----------------------| | [roberta-base-1B-1][link-roberta-base-1B-1] | 1B | BASE | 100K | 512 | 3.93 | | [roberta-base-1B-2][link-roberta-base-1B-2] | 1B | BASE | 31K | 1024 | 4.25 | | [roberta-base-1B-3][link-roberta-base-1B-3] | 1B | BASE | 31K | 4096 | 3.84 | | [roberta-base-100M-1][link-roberta-base-100M-1] | 100M | BASE | 100K | 512 | 4.99 | | [roberta-base-100M-2][link-roberta-base-100M-2] | 100M | BASE | 31K | 1024 | 4.61 | | [roberta-base-100M-3][link-roberta-base-100M-3] | 100M | BASE | 31K | 512 | 5.02 | | [roberta-base-10M-1][link-roberta-base-10M-1] | 10M | BASE | 10K | 1024 | 11.31 | | [roberta-base-10M-2][link-roberta-base-10M-2] | 10M | BASE | 10K | 512 | 10.78 | | [roberta-base-10M-3][link-roberta-base-10M-3] | 10M | BASE | 31K | 512 | 11.58 | | [roberta-med-small-1M-1][link-roberta-med-small-1M-1] | 1M | MED-SMALL | 100K | 512 | 153.38 | | [roberta-med-small-1M-2][link-roberta-med-small-1M-2] | 1M | MED-SMALL | 10K | 512 | 134.18 | | [roberta-med-small-1M-3][link-roberta-med-small-1M-3] | 1M | MED-SMALL | 31K | 512 | 139.39 | The hyperparameters corresponding to model sizes mentioned above are as follows: | Model Size | L | AH | HS | FFN | P | |------------|----|----|-----|------|------| | BASE | 12 | 12 | 768 | 3072 | 125M | | MED-SMALL | 6 | 8 | 512 | 2048 | 45M | (AH = number of attention heads; HS = hidden size; FFN = feedforward network dimension; P = number of parameters.) For other hyperparameters, we select: - Peak Learning rate: 5e-4 - Warmup Steps: 6% of max steps - Dropout: 0.1 [link-roberta-med-small-1M-1]: https://huggingface.co/nyu-mll/roberta-med-small-1M-1 [link-roberta-med-small-1M-2]: https://huggingface.co/nyu-mll/roberta-med-small-1M-2 [link-roberta-med-small-1M-3]: https://huggingface.co/nyu-mll/roberta-med-small-1M-3 [link-roberta-base-10M-1]: https://huggingface.co/nyu-mll/roberta-base-10M-1 [link-roberta-base-10M-2]: https://huggingface.co/nyu-mll/roberta-base-10M-2 [link-roberta-base-10M-3]: https://huggingface.co/nyu-mll/roberta-base-10M-3 [link-roberta-base-100M-1]: https://huggingface.co/nyu-mll/roberta-base-100M-1 [link-roberta-base-100M-2]: https://huggingface.co/nyu-mll/roberta-base-100M-2 [link-roberta-base-100M-3]: https://huggingface.co/nyu-mll/roberta-base-100M-3 [link-roberta-base-1B-1]: https://huggingface.co/nyu-mll/roberta-base-1B-1 [link-roberta-base-1B-2]: https://huggingface.co/nyu-mll/roberta-base-1B-2 [link-roberta-base-1B-3]: https://huggingface.co/nyu-mll/roberta-base-1B-3
paintingpeter/distilbert-base-uncased-distilled-clinc
1fdabcaf7b1de488ad4a376e57667560dd8a5644
2022-01-31T23:27:39.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:clinc_oos", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
paintingpeter
null
paintingpeter/distilbert-base-uncased-distilled-clinc
6
null
transformers
15,374
--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-distilled-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos args: plus metrics: - name: Accuracy type: accuracy value: 0.9467741935483871 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-distilled-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.2795 - Accuracy: 0.9468 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 3.4223 | 1.0 | 318 | 2.5556 | 0.7561 | | 1.9655 | 2.0 | 636 | 1.3075 | 0.8577 | | 1.0041 | 3.0 | 954 | 0.6970 | 0.9165 | | 0.5449 | 4.0 | 1272 | 0.4637 | 0.9339 | | 0.3424 | 5.0 | 1590 | 0.3630 | 0.9397 | | 0.247 | 6.0 | 1908 | 0.3225 | 0.9442 | | 0.1968 | 7.0 | 2226 | 0.2983 | 0.9458 | | 0.1693 | 8.0 | 2544 | 0.2866 | 0.9465 | | 0.1547 | 9.0 | 2862 | 0.2820 | 0.9468 | | 0.1477 | 10.0 | 3180 | 0.2795 | 0.9468 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
paola-md/light-recipes-italian
e9f1d635d13b26bba8e63f3f0cc3e48d114ac1e4
2022-02-01T13:03:27.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers" ]
text-classification
false
paola-md
null
paola-md/light-recipes-italian
6
null
transformers
15,375
Entry not found
patrickvonplaten/rag-sequence-ques-enc-prev
afcb83c27a4bfaebaec3bc6e3a56a0d6359ccdc3
2020-09-24T12:43:40.000Z
[ "pytorch", "dpr", "feature-extraction", "transformers" ]
feature-extraction
false
patrickvonplaten
null
patrickvonplaten/rag-sequence-ques-enc-prev
6
null
transformers
15,376
Entry not found
patrickvonplaten/wav2vec2-100m-mls-german-ft
e76218a8bc6b641114c1253cb0bfccf3f53fc30c
2021-11-15T21:52:09.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:multilingual_librispeech", "transformers", "multilingual_librispeech", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
patrickvonplaten
null
patrickvonplaten/wav2vec2-100m-mls-german-ft
6
null
transformers
15,377
--- license: apache-2.0 tags: - automatic-speech-recognition - multilingual_librispeech - generated_from_trainer datasets: - multilingual_librispeech model-index: - name: wav2vec2-100m-mls-german-ft results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-100m-mls-german-ft This model is a fine-tuned version of [facebook/wav2vec2-xls-r-100m](https://huggingface.co/facebook/wav2vec2-xls-r-100m) on the MULTILINGUAL_LIBRISPEECH - GERMAN dataset. It achieves the following results on the evaluation set: - Loss: 2.9325 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 64 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 8.2135 | 14.29 | 500 | 8.4258 | 1.0 | | 3.0031 | 28.57 | 1000 | 2.9839 | 1.0 | | 2.9661 | 42.86 | 1500 | 2.9402 | 1.0 | | 2.9584 | 57.14 | 2000 | 2.9354 | 1.0 | | 2.936 | 71.43 | 2500 | 2.9341 | 1.0 | | 2.9344 | 85.71 | 3000 | 2.9323 | 1.0 | | 2.9674 | 100.0 | 3500 | 2.9325 | 1.0 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 1.15.2.dev0 - Tokenizers 0.10.3
patrickvonplaten/wav2vec2-xls-r-1b-common_voice-tr-ft
6c8486275d421f991abb32ab0914ac8fff9e4745
2021-11-14T16:43:33.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "tr", "dataset:common_voice", "transformers", "common_voice", "generated_from_trainer", "xls_r_repro_common_voice_tr", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
patrickvonplaten
null
patrickvonplaten/wav2vec2-xls-r-1b-common_voice-tr-ft
6
0
transformers
15,378
--- language: - tr license: apache-2.0 tags: - automatic-speech-recognition - common_voice - generated_from_trainer - xls_r_repro_common_voice_tr datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-1b-common_voice-tr-ft results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-1b-common_voice-tr-ft This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the COMMON_VOICE - TR dataset. It achieves the following results on the evaluation set: - Loss: 0.3015 - Wer: 0.2149 - Cer: 0.0503 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00005 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 64 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results Check [Training metrics](https://huggingface.co/patrickvonplaten/wav2vec2-xls-r-1b-common_voice-tr-ft/tensorboard). ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 1.15.2.dev0 - Tokenizers 0.10.3
pere/nb-nn-dev
583865f7e462cb2f43db3ecb339ffc94f87d4c00
2021-09-28T07:34:18.000Z
[ "pytorch", "jax", "tensorboard", "no", "dataset:oscar", "translation", "license:cc-by-4.0" ]
translation
false
pere
null
pere/nb-nn-dev
6
null
null
15,379
--- language: no license: cc-by-4.0 tags: - translation datasets: - oscar widget: - text: Skriv inn en tekst som du ønsker å oversette til en annen målform. --- # Norwegian mT5 - Translation Bokmål Nynorsk - Development ## Description This is the development version of the Bokmål-Nynorsk translator. If you want something that is stable, Please do run [this version](https://huggingface.co/pere/nb-nn-translation/) instead. Here is an example of how to use the model from Python ```python # Import libraries from transformers import T5ForConditionalGeneration, AutoTokenizer model = T5ForConditionalGeneration.from_pretrained('pere/nb-nn-dev',from_flax=True) tokenizer = AutoTokenizer.from_pretrained('pere/nb-nn-dev') #Encode the text text = "Hun vil ikke gi bort sine personlige data." inputs = tokenizer.encode(text, return_tensors="pt") outputs = model.generate(inputs, max_length=255, num_beams=4, early_stopping=True) #Decode and print the result print(tokenizer.decode(outputs[0])) ``` Or if you like to use the pipeline instead ```python # Set up the pipeline from transformers import pipeline translator = pipeline("translation", model='pere/nb-nn-dev') # Do the translation text = "Hun vil ikke gi bort sine personlige data." print(translator(text, max_length=255)) ```
persiannlp/mt5-large-parsinlu-multiple-choice
81d01e118f0b4bb564bf4bb04995237bea2dbfa2
2021-09-23T16:20:14.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "fa", "multilingual", "dataset:parsinlu", "transformers", "multiple-choice", "mt5", "persian", "farsi", "license:cc-by-nc-sa-4.0", "autotrain_compatible" ]
text2text-generation
false
persiannlp
null
persiannlp/mt5-large-parsinlu-multiple-choice
6
null
transformers
15,380
--- language: - fa - multilingual thumbnail: https://upload.wikimedia.org/wikipedia/commons/a/a2/Farsi.svg tags: - multiple-choice - mt5 - persian - farsi license: cc-by-nc-sa-4.0 datasets: - parsinlu metrics: - accuracy --- # Multiple-Choice Question Answering (مدل برای پاسخ به سوالات چهار جوابی) This is a mT5-based model for multiple-choice question answering. Here is an example of how you can run this model: ```python from transformers import MT5ForConditionalGeneration, MT5Tokenizer model_size = "large" model_name = f"persiannlp/mt5-{model_size}-parsinlu-multiple-choice" tokenizer = MT5Tokenizer.from_pretrained(model_name) model = MT5ForConditionalGeneration.from_pretrained(model_name) def run_model(input_string, **generator_args): input_ids = tokenizer.encode(input_string, return_tensors="pt") res = model.generate(input_ids, **generator_args) output = tokenizer.batch_decode(res, skip_special_tokens=True) print(output) return output run_model("وسیع ترین کشور جهان کدام است؟ <sep> آمریکا <sep> کانادا <sep> روسیه <sep> چین") run_model("طامع یعنی ؟ <sep> آزمند <sep> خوش شانس <sep> محتاج <sep> مطمئن") run_model( "زمینی به ۳۱ قطعه متساوی مفروض شده است و هر روز مساحت آماده شده برای احداث، دو برابر مساحت روز قبل است.اگر پس از (۵ روز) تمام زمین آماده شده باشد، در چه روزی یک قطعه زمین آماده شده <sep> روز اول <sep> روز دوم <sep> روز سوم <sep> هیچکدام") ``` For more details, visit this page: https://github.com/persiannlp/parsinlu/
peterhsu/bert-finetuned-ner-accelerate
904036d676321b6238091534622ce188f85299ae
2022-01-25T16:23:06.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
peterhsu
null
peterhsu/bert-finetuned-ner-accelerate
6
null
transformers
15,381
Entry not found
pinecone/bert-medqp-cross-encoder
4c19e15b0da2c11151080b74457f07d8ba119ec0
2021-12-30T12:11:30.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
pinecone
null
pinecone/bert-medqp-cross-encoder
6
null
transformers
15,382
# Med-QP Cross Encoder Demo model for use as part of Augmented SBERT chapters of the [NLP for Semantic Search course](https://www.pinecone.io/learn/nlp).
prajin/nepali-bert
ea2b0b3e6f0252441fa883c70e563403ccb3c238
2022-02-08T06:13:42.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
prajin
null
prajin/nepali-bert
6
null
transformers
15,383
Entry not found
princeton-nlp/densephrases-multi-query-multi
824622899fa3b29580a51381a93a675c77fa9112
2021-09-20T17:47:08.000Z
[ "pytorch", "bert", "transformers" ]
null
false
princeton-nlp
null
princeton-nlp/densephrases-multi-query-multi
6
null
transformers
15,384
Entry not found
pritamdeka/PubMedBert-fulltext-cord19
49eafd3bd4055cfa222992fa8fb6975d1494afb9
2022-02-05T20:56:37.000Z
[ "pytorch", "bert", "fill-mask", "dataset:pritamdeka/cord-19-fulltext", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
fill-mask
false
pritamdeka
null
pritamdeka/PubMedBert-fulltext-cord19
6
null
transformers
15,385
--- license: mit tags: - generated_from_trainer datasets: - pritamdeka/cord-19-fulltext metrics: - accuracy model-index: - name: pubmedbert-fulltext-cord19 results: - task: name: Masked Language Modeling type: fill-mask dataset: name: pritamdeka/cord-19-fulltext type: pritamdeka/cord-19-fulltext args: fulltext metrics: - name: Accuracy type: accuracy value: 0.7175316733550737 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pubmedbert-fulltext-cord19 This model is a fine-tuned version of [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) on the pritamdeka/cord-19-fulltext dataset. It achieves the following results on the evaluation set: - Loss: 1.2667 - Accuracy: 0.7175 ## Model description The model has been trained using a maximum train sample size of 300K and evaluation size of 25K due to GPU limitations ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10000 - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.7985 | 0.27 | 5000 | 1.2710 | 0.7176 | | 1.7542 | 0.53 | 10000 | 1.3359 | 0.7070 | | 1.7462 | 0.8 | 15000 | 1.3489 | 0.7034 | | 1.8371 | 1.07 | 20000 | 1.4361 | 0.6891 | | 1.7102 | 1.33 | 25000 | 1.3502 | 0.7039 | | 1.6596 | 1.6 | 30000 | 1.3341 | 0.7065 | | 1.6265 | 1.87 | 35000 | 1.3228 | 0.7087 | | 1.605 | 2.13 | 40000 | 1.3079 | 0.7099 | | 1.5731 | 2.4 | 45000 | 1.2986 | 0.7121 | | 1.5602 | 2.67 | 50000 | 1.2929 | 0.7136 | | 1.5447 | 2.93 | 55000 | 1.2875 | 0.7143 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
pspatel2/storygen
906594b379310ddb264f80fb00caf2eedef4070a
2021-05-23T12:09:14.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
pspatel2
null
pspatel2/storygen
6
null
transformers
15,386
Entry not found
ramybaly/CoNLL12V2
d371bec9136e619968784e731c17f9653f4491b8
2022-01-25T05:47:38.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ramybaly
null
ramybaly/CoNLL12V2
6
null
transformers
15,387
Entry not found
recobo/chemical-bert-uncased-squad2
488ef153992514208f24c3beb91211dd73878f7d
2021-09-01T08:44:18.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
recobo
null
recobo/chemical-bert-uncased-squad2
6
null
transformers
15,388
```python from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline model_name = "recobo/chemical-bert-uncased-squad2" # a) Get predictions nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) QA_input = { 'question': 'Why is model conversion important?', 'context': 'The option to convert models between pytorch and transformers gives freedom to the user and let people easily switch between frameworks.' } res = nlp(QA_input) # b) Load model & tokenizer model = AutoModelForQuestionAnswering.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) ```
robinhad/wav2vec2-xls-r-300m-uk
ca64e043cc2a34c7fb9bdfbce42ba142226310b3
2022-01-19T22:20:54.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "uk", "dataset:common_voice", "transformers", "common_voice", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
robinhad
null
robinhad/wav2vec2-xls-r-300m-uk
6
4
transformers
15,389
--- language: - uk license: apache-2.0 tags: - automatic-speech-recognition - common_voice - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-xls-r-300m-uk results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice uk type: common_voice args: uk metrics: - name: Test WER type: wer value: 27.99 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-uk This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. Notebook for training is located in this repository: [https://github.com/robinhad/wav2vec2-xls-r-ukrainian](https://github.com/robinhad/wav2vec2-xls-r-ukrainian). It achieves the following results on the evaluation set: - Loss: 0.4165 - Wer: 0.2799 - Cer: 0.0601 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 20 - total_train_batch_size: 160 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Cer | Validation Loss | Wer | |:-------------:|:------:|:-----:|:------:|:---------------:|:------:| | 4.3982 | 9.3 | 400 | 0.1437 | 0.5218 | 0.6507 | | 0.229 | 18.6 | 800 | 0.0848 | 0.3679 | 0.4048 | | 0.1054 | 27.9 | 1200 | 0.0778 | 0.3813 | 0.3670 | | 0.0784 | 37.21 | 1600 | 0.0747 | 0.3839 | 0.3550 | | 0.066 | 46.51 | 2000 | 0.0736 | 0.3970 | 0.3443 | | 0.0603 | 55.8 | 2400 | 0.0722 | 0.3702 | 0.3393 | | 0.0539 | 65.11 | 2800 | 0.0724 | 0.3762 | 0.3388 | | 0.0497 | 74.41 | 3200 | 0.0713 | 0.3623 | 0.3414 | | 0.0432 | 83.71 | 3600 | 0.0725 | 0.3847 | 0.3346 | | 0.0438 | 93.02 | 4000 | 0.0750 | 0.4058 | 0.3393 | | 0.0413 | 102.32 | 4400 | 0.0727 | 0.3957 | 0.3363 | | 0.039 | 111.62 | 4800 | 0.0718 | 0.3865 | 0.3330 | | 0.0356 | 120.92 | 5200 | 0.0711 | 0.3860 | 0.3319 | | 0.0336 | 130.23 | 5600 | 0.0700 | 0.3902 | 0.3242 | | 0.034 | 139.53 | 6000 | 0.0732 | 0.3930 | 0.3337 | | 0.0273 | 148.83 | 6400 | 0.0748 | 0.3912 | 0.3375 | | 0.027 | 158.14 | 6800 | 0.0752 | 0.4266 | 0.3434 | | 0.028 | 167.44 | 7200 | 0.0708 | 0.3895 | 0.3227 | | 0.0241 | 176.73 | 7600 | 0.0727 | 0.3967 | 0.3294 | | 0.0241 | 186.05 | 8000 | 0.0712 | 0.4058 | 0.3255 | | 0.0209 | 195.34 | 8400 | 0.0702 | 0.4102 | 0.3233 | | 0.0206 | 204.64 | 8800 | 0.0699 | 0.4075 | 0.3194 | | 0.0172 | 213.94 | 9200 | 0.0695 | 0.4222 | 0.3191 | | 0.0166 | 223.25 | 9600 | 0.0678 | 0.3860 | 0.3135 | | 0.0156 | 232.55 | 10000 | 0.0677 | 0.4035 | 0.3117 | | 0.0149 | 241.85 | 10400 | 0.0677 | 0.3951 | 0.3087 | | 0.0142 | 251.16 | 10800 | 0.0674 | 0.3972 | 0.3097 | | 0.0134 | 260.46 | 11200 | 0.0675 | 0.4069 | 0.3111 | | 0.0116 | 269.76 | 11600 | 0.0697 | 0.4189 | 0.3161 | | 0.0119 | 279.07 | 12000 | 0.0648 | 0.3902 | 0.3008 | | 0.0098 | 288.37 | 12400 | 0.0652 | 0.4095 | 0.3002 | | 0.0091 | 297.67 | 12800 | 0.0644 | 0.3892 | 0.2990 | | 0.0094 | 306.96 | 13200 | 0.0647 | 0.4026 | 0.2983 | | 0.0081 | 316.28 | 13600 | 0.0646 | 0.4303 | 0.2978 | | 0.0079 | 325.57 | 14000 | 0.0643 | 0.4044 | 0.2980 | | 0.0072 | 334.87 | 14400 | 0.0655 | 0.3828 | 0.2999 | | 0.0081 | 344.18 | 14800 | 0.0668 | 0.4108 | 0.3046 | | 0.0088 | 353.48 | 15200 | 0.0654 | 0.4019 | 0.2993 | | 0.0088 | 362.78 | 15600 | 0.0681 | 0.4073 | 0.3091 | | 0.0079 | 372.09 | 16000 | 0.0667 | 0.4204 | 0.3055 | | 0.0072 | 381.39 | 16400 | 0.0656 | 0.4030 | 0.3028 | | 0.0073 | 390.69 | 16800 | 0.0677 | 0.4032 | 0.3081 | | 0.0069 | 399.99 | 17200 | 0.0669 | 0.4130 | 0.3021 | | 0.0063 | 409.3 | 17600 | 0.0651 | 0.4072 | 0.2979 | | 0.0059 | 418.6 | 18000 | 0.0640 | 0.4110 | 0.2969 | | 0.0056 | 427.9 | 18400 | 0.0647 | 0.4229 | 0.2995 | | 0.005 | 437.21 | 18800 | 0.0624 | 0.4118 | 0.2885 | | 0.0046 | 446.51 | 19200 | 0.0615 | 0.4111 | 0.2841 | | 0.0043 | 455.8 | 19600 | 0.0616 | 0.4071 | 0.2850 | | 0.0038 | 465.11 | 20000 | 0.0624 | 0.4268 | 0.2867 | | 0.0035 | 474.41 | 20400 | 0.0605 | 0.4117 | 0.2820 | | 0.0035 | 483.71 | 20800 | 0.0602 | 0.4155 | 0.2819 | | 0.0034 | 493.02 | 21200 | 0.0601 | 0.4165 | 0.2799 | ### Framework versions - Transformers 4.14.1 - Pytorch 1.10.0 - Datasets 1.16.1 - Tokenizers 0.10.3
rockmiin/ko-boolq-model
c9b03a29a72de9b8f117273e1b54dba1c86583c5
2021-12-20T02:42:43.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
rockmiin
null
rockmiin/ko-boolq-model
6
2
transformers
15,390
labeled by "YES" : 1, "NO" : 0, "No Answer" : 2 fine tuned by klue/roberta-large
sanayAI/parsbert-base-sanay-uncased
d7de6ace371d43a2a0a57a0e5c6fe568d04359a3
2021-05-20T04:43:22.000Z
[ "pytorch", "jax", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
sanayAI
null
sanayAI/parsbert-base-sanay-uncased
6
null
transformers
15,391
Entry not found
sanayAI/sanayBERT_model_V1
0645573a54757174238c3cb43bdf69b99dd0cce0
2021-05-20T04:46:35.000Z
[ "pytorch", "jax", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
sanayAI
null
sanayAI/sanayBERT_model_V1
6
null
transformers
15,392
Entry not found
sciarrilli/distilbert-base-uncased-cola
9747a40d0b39dbd902953a1f77c188081c2c1435
2021-11-15T02:21:53.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
sciarrilli
null
sciarrilli/distilbert-base-uncased-cola
6
null
transformers
15,393
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5301312348234369 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 1.2715 - Matthews Correlation: 0.5301 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5216 | 1.0 | 535 | 0.5124 | 0.4104 | | 0.3456 | 2.0 | 1070 | 0.5700 | 0.4692 | | 0.2362 | 3.0 | 1605 | 0.7277 | 0.4844 | | 0.1818 | 4.0 | 2140 | 0.7553 | 0.5007 | | 0.1509 | 5.0 | 2675 | 0.9406 | 0.4987 | | 0.1017 | 6.0 | 3210 | 0.9475 | 0.5387 | | 0.0854 | 7.0 | 3745 | 1.0933 | 0.5317 | | 0.051 | 8.0 | 4280 | 1.1719 | 0.5358 | | 0.0512 | 9.0 | 4815 | 1.2296 | 0.5321 | | 0.0308 | 10.0 | 5350 | 1.2715 | 0.5301 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.10.0+cu102 - Datasets 1.15.1 - Tokenizers 0.10.3
seanbenhur/kanglish-offensive-language-identification
1a2c56ca27a6f8c817c0f133fbbfc7b244a31b99
2021-11-13T12:40:59.000Z
[ "pytorch", "onnx", "roberta", "text-classification", "transformers" ]
text-classification
false
seanbenhur
null
seanbenhur/kanglish-offensive-language-identification
6
null
transformers
15,394
Model Card Coming Soon
seanbenhur/tanglish-offensive-language-identification
a4ad52c32a81d52f66380bbb44c408ec4fd324d0
2021-12-11T12:04:18.000Z
[ "pytorch", "onnx", "bert", "text-classification", "ta", "en", "dataset:dravidiancodemixed", "transformers", "Text Classification", "license:apache-2.0" ]
text-classification
false
seanbenhur
null
seanbenhur/tanglish-offensive-language-identification
6
1
transformers
15,395
--- language: - ta - en tags: - Text Classification license: apache-2.0 datasets: - dravidiancodemixed metrics: - f1 - accuracy --- Model card Coming soon
sebastiaan/sentence-BERT-regression
de6d9e8c41a143da2feddf01de5b21ff15f4ee60
2021-12-17T11:30:30.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
sebastiaan
null
sebastiaan/sentence-BERT-regression
6
null
transformers
15,396
Entry not found
sefaozalpadl/election_relevancy_best
6f2307775d4693ae5cbca51aae975ec5298eb599
2021-11-07T16:48:34.000Z
[ "pytorch", "roberta", "text-classification", "en", "dataset:sefaozalpadl/autonlp-data-election_relevancy_analysis", "transformers", "coe", "co2_eq_emissions" ]
text-classification
false
sefaozalpadl
null
sefaozalpadl/election_relevancy_best
6
null
transformers
15,397
--- tags: coe language: en widget: - text: "@PressSec Response to Putin is laughable. He has Biden's number. He knows Biden can't hold up in a live debate, and the Chinese did a number on the U.S. too. Biden is making US the laughing stock of the world. We pay the price for a stolen election" datasets: - sefaozalpadl/autonlp-data-election_relevancy_analysis co2_eq_emissions: 1.3248523193990855 --- # Election Fraud Binary Classifier - Problem type: Binary Classification - Model ID: 23315155 - CO2 Emissions (in grams): 1.3248523193990855 ## Validation Metrics - Loss: 0.4240806996822357 - Accuracy: 0.8173913043478261 - Precision: 0.8837209302325582 - Recall: 0.8085106382978723 - AUC: 0.8882580285281696 - F1: 0.8444444444444444 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/sefaozalpadl/election_relevancy_best ``` Or Python API: ``` from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("sefaozalpadl/election_relevancy_best") model = AutoModelForSequenceClassification.from_pretrained("sefaozalpadl/election_relevancy_best") inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
sgugger/distilbert-base-uncased-finetuned-cola
ef2f0c5fb5910ceeb8e18d2a22cf0ef182ddf81e
2021-11-08T14:31:12.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
sgugger
null
sgugger/distilbert-base-uncased-finetuned-cola
6
null
transformers
15,398
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5158855550567928 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.7572 - Matthews Correlation: 0.5159 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5256 | 1.0 | 535 | 0.5197 | 0.4033 | | 0.3534 | 2.0 | 1070 | 0.5301 | 0.4912 | | 0.2402 | 3.0 | 1605 | 0.6680 | 0.5033 | | 0.1762 | 4.0 | 2140 | 0.7572 | 0.5159 | | 0.1389 | 5.0 | 2675 | 0.8584 | 0.5127 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.13.4.dev0 - Tokenizers 0.10.3
sgugger/test-upload
280fc1ca0335fd949a626fd0e8c3d2dc23e86ad9
2022-07-29T15:56:12.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
sgugger
null
sgugger/test-upload
6
null
transformers
15,399
Entry not found