modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
list
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
alipsezzar/DialoGPT-medium-harrypotter
a661dc6ff91ace040576199d23ca2ee66bf6ecbc
2021-08-28T18:46:02.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
alipsezzar
null
alipsezzar/DialoGPT-medium-harrypotter
6
null
transformers
15,100
--- tags: - conversational --- # Harry Potter DialoGPT Model
alireza7/PEGASUS-persian-base-parsinlu-textual-entailment
72f9dee144dff8b2d593a1ed20039e101c1524e2
2021-09-29T19:25:38.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
alireza7
null
alireza7/PEGASUS-persian-base-parsinlu-textual-entailment
6
null
transformers
15,101
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
allenai/dsp_roberta_base_dapt_reviews_tapt_imdb_70000
11865e21518b1e7567c2276a8d388926fcb9435b
2021-05-20T13:19:37.000Z
[ "pytorch", "jax", "roberta", "transformers" ]
null
false
allenai
null
allenai/dsp_roberta_base_dapt_reviews_tapt_imdb_70000
6
null
transformers
15,102
Entry not found
allenai/dsp_roberta_base_tapt_hyperpartisan_news_5015
6c81ba558dd7c8f9421ca0bd89a50b3656cfc79c
2021-05-20T13:26:31.000Z
[ "pytorch", "jax", "roberta", "transformers" ]
null
false
allenai
null
allenai/dsp_roberta_base_tapt_hyperpartisan_news_5015
6
null
transformers
15,103
Entry not found
allenai/t5-small-squad2-next-word-generator-squad
363feafd44f305bed9133e7b72994729a92c4c1d
2021-06-23T11:15:36.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
allenai
null
allenai/t5-small-squad2-next-word-generator-squad
6
null
transformers
15,104
Next word generator trained on questions. Receives partial questions and tries to predict the next word. Example use: ```python from transformers import T5Config, T5ForConditionalGeneration, T5Tokenizer model_name = "allenai/t5-small-squad2-next-word-generator-squad" tokenizer = T5Tokenizer.from_pretrained(model_name) model = T5ForConditionalGeneration.from_pretrained(model_name) def run_model(input_string, **generator_args): input_ids = tokenizer.encode(input_string, return_tensors="pt") res = model.generate(input_ids, **generator_args) output = tokenizer.batch_decode(res, skip_special_tokens=True) print(output) return output run_model("Which") run_model("Which two") run_model("Which two counties") run_model("Which two counties are") run_model("Which two counties are the") run_model("Which two counties are the biggest") run_model("Which two counties are the biggest economic") run_model("Which two counties are the biggest economic powers") ``` which should result in the following: ``` ['one'] ['statements'] ['are'] ['in'] ['most'] ['in'] ['zones'] ['of'] ```
amild01/GPT2-german-chefkoch
b190d55866cbfaadc7e0e11c70c5d2c61624bc30
2021-09-08T16:01:18.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
amild01
null
amild01/GPT2-german-chefkoch
6
null
transformers
15,105
Entry not found
amyma21/sincere_question_classification
9d979a7e9720f8f54d8c8458f181521bb7efdcce
2021-12-01T03:38:43.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
amyma21
null
amyma21/sincere_question_classification
6
null
transformers
15,106
Entry not found
anas-awadalla/bert-base-uncased-few-shot-k-1024-finetuned-squad-seed-42
1b1b353119e9f21f75a4558f0d14c520e90ee990
2022-02-21T19:28:40.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
anas-awadalla
null
anas-awadalla/bert-base-uncased-few-shot-k-1024-finetuned-squad-seed-42
6
null
transformers
15,107
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-base-uncased-few-shot-k-1024-finetuned-squad-seed-42 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-few-shot-k-1024-finetuned-squad-seed-42 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results {'exact_match': 40.91769157994324, 'f1': 52.89154394730339} ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
anas-awadalla/roberta-base-few-shot-k-1024-finetuned-squad-seed-42
2c280e181bd5df4ff4f398a56a3ea3b9fd5824fd
2022-02-21T20:36:42.000Z
[ "pytorch", "tensorboard", "roberta", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
question-answering
false
anas-awadalla
null
anas-awadalla/roberta-base-few-shot-k-1024-finetuned-squad-seed-42
6
null
transformers
15,108
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: roberta-base-few-shot-k-1024-finetuned-squad-seed-42 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-few-shot-k-1024-finetuned-squad-seed-42 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results {'exact_match': 66.90633869441817, 'f1': 77.54482247690522} ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
andi611/bert-large-uncased-whole-word-masking-squad2-with-ner-conll2003-with-neg-with-repeat
0332187a5e80bc4db2de066ff926c81b79c062ef
2021-10-04T14:52:03.000Z
[ "pytorch", "bert", "question-answering", "en", "dataset:squad_v2", "dataset:conll2003", "transformers", "generated_from_trainer", "license:cc-by-4.0", "autotrain_compatible" ]
question-answering
false
andi611
null
andi611/bert-large-uncased-whole-word-masking-squad2-with-ner-conll2003-with-neg-with-repeat
6
null
transformers
15,109
--- language: - en license: cc-by-4.0 tags: - generated_from_trainer datasets: - squad_v2 - conll2003 model_index: - name: bert-large-uncased-whole-word-masking-squad2-with-ner-conll2003-with-neg-with-repeat results: - task: name: Token Classification type: token-classification dataset: name: squad_v2 type: squad_v2 args: conll2003 - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-large-uncased-whole-word-masking-squad2-with-ner-conll2003-with-neg-with-repeat This model is a fine-tuned version of [deepset/bert-large-uncased-whole-word-masking-squad2](https://huggingface.co/deepset/bert-large-uncased-whole-word-masking-squad2) on the squad_v2 and the conll2003 datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3
andi611/roberta-base-ner-conll2003
854431601c22441ab430f343d2332fdb4513f281
2021-07-14T00:25:37.000Z
[ "pytorch", "roberta", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:mit", "autotrain_compatible" ]
token-classification
false
andi611
null
andi611/roberta-base-ner-conll2003
6
null
transformers
15,110
--- license: mit tags: - generated_from_trainer datasets: - conll2003 model_index: - name: roberta-base-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-ner This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the conll2003 dataset. It achieves the following results on the evaluation set: - eval_loss: 0.0814 - eval_precision: 0.9101 - eval_recall: 0.9336 - eval_f1: 0.9217 - eval_accuracy: 0.9799 - eval_runtime: 10.2964 - eval_samples_per_second: 315.646 - eval_steps_per_second: 39.529 - epoch: 1.14 - step: 500 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4.0 ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3
angiquer/twitterko-cha-electra-base-discriminator
a8c4acb877c85775dfdb5c9edcd5d90f09db7d21
2020-07-07T04:33:22.000Z
[ "pytorch", "electra", "pretraining", "transformers" ]
null
false
angiquer
null
angiquer/twitterko-cha-electra-base-discriminator
6
null
transformers
15,111
Entry not found
anhtunguyen98/xlm-base-vi
1861bd2fb6d489d77fddc3a658589a58b4f05cbe
2021-10-12T09:32:28.000Z
[ "pytorch", "xlm-roberta", "feature-extraction", "transformers" ]
feature-extraction
false
anhtunguyen98
null
anhtunguyen98/xlm-base-vi
6
null
transformers
15,112
Entry not found
anirudh21/bert-base-uncased-finetuned-cola
27dd929ba48d873adccabddc821b6c5f6c85362a
2022-01-24T16:29:06.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
anirudh21
null
anirudh21/bert-base-uncased-finetuned-cola
6
null
transformers
15,113
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: bert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5796941781913538 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-cola This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.9664 - Matthews Correlation: 0.5797 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5017 | 1.0 | 535 | 0.5252 | 0.4841 | | 0.2903 | 2.0 | 1070 | 0.5550 | 0.4967 | | 0.1839 | 3.0 | 1605 | 0.7295 | 0.5634 | | 0.1132 | 4.0 | 2140 | 0.7762 | 0.5702 | | 0.08 | 5.0 | 2675 | 0.9664 | 0.5797 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.0 - Tokenizers 0.10.3
anirudh21/bert-base-uncased-finetuned-rte
8654d2325e2586959248b477e864338d6b079570
2022-01-27T06:57:18.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
anirudh21
null
anirudh21/bert-base-uncased-finetuned-rte
6
null
transformers
15,114
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: bert-base-uncased-finetuned-rte results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: rte metrics: - name: Accuracy type: accuracy value: 0.6642599277978339 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-rte This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8075 - Accuracy: 0.6643 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 63 | 0.6777 | 0.5668 | | No log | 2.0 | 126 | 0.6723 | 0.6282 | | No log | 3.0 | 189 | 0.7238 | 0.6318 | | No log | 4.0 | 252 | 0.7993 | 0.6354 | | No log | 5.0 | 315 | 0.8075 | 0.6643 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.1 - Tokenizers 0.10.3
anirudh21/xlnet-base-cased-finetuned-wnli
da0ad48d4a41120124e59c67decf37f65039fb5c
2022-01-13T13:52:38.000Z
[ "pytorch", "tensorboard", "xlnet", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
anirudh21
null
anirudh21/xlnet-base-cased-finetuned-wnli
6
null
transformers
15,115
--- license: mit tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: xlnet-base-cased-finetuned-wnli results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: wnli metrics: - name: Accuracy type: accuracy value: 0.5633802816901409 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlnet-base-cased-finetuned-wnli This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co/xlnet-base-cased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6874 - Accuracy: 0.5634 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 40 | 0.7209 | 0.5352 | | No log | 2.0 | 80 | 0.6874 | 0.5634 | | No log | 3.0 | 120 | 0.6908 | 0.5634 | | No log | 4.0 | 160 | 0.6987 | 0.4930 | | No log | 5.0 | 200 | 0.6952 | 0.5634 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
anurag0077/distilbert-base-uncased-finetuned-squad3
3ec1ef82b3a7f6d5e72f7d20c557aedab93d438c
2021-11-07T15:22:01.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
anurag0077
null
anurag0077/distilbert-base-uncased-finetuned-squad3
6
null
transformers
15,116
Entry not found
anuragshas/wav2vec2-large-xls-r-300m-ur-cv8
b08a8bf230c8da5952c917193a38add952fed530
2022-03-24T11:57:44.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "ur", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
anuragshas
null
anuragshas/wav2vec2-large-xls-r-300m-ur-cv8
6
null
transformers
15,117
--- language: - ur license: apache-2.0 tags: - generated_from_trainer - robust-speech-event - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 metrics: - wer model-index: - name: wav2vec2-large-xls-r-300m-ur-cv8 results: - task: type: automatic-speech-recognition name: Speech Recognition dataset: type: mozilla-foundation/common_voice_8_0 name: Common Voice 8 args: ur metrics: - type: wer value: 42.376 name: Test WER - name: Test CER type: cer value: 18.18 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-ur-cv8 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.1443 - Wer: 0.5677 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 3.6269 | 15.98 | 400 | 3.3246 | 1.0 | | 3.0546 | 31.98 | 800 | 2.8148 | 0.9963 | | 1.4589 | 47.98 | 1200 | 1.0237 | 0.6584 | | 1.0911 | 63.98 | 1600 | 0.9524 | 0.5966 | | 0.8879 | 79.98 | 2000 | 0.9827 | 0.5822 | | 0.7467 | 95.98 | 2400 | 0.9923 | 0.5840 | | 0.6427 | 111.98 | 2800 | 0.9988 | 0.5714 | | 0.5685 | 127.98 | 3200 | 1.0872 | 0.5807 | | 0.5068 | 143.98 | 3600 | 1.1194 | 0.5822 | | 0.463 | 159.98 | 4000 | 1.1138 | 0.5692 | | 0.4212 | 175.98 | 4400 | 1.1232 | 0.5714 | | 0.4056 | 191.98 | 4800 | 1.1443 | 0.5677 | ### Framework versions - Transformers 4.16.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.1 - Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id anuragshas/wav2vec2-large-xls-r-300m-ur-cv8 --dataset mozilla-foundation/common_voice_8_0 --config ur --split test ``` ### Inference With LM ```python import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F model_id = "anuragshas/wav2vec2-large-xls-r-300m-ur-cv8" sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "ur", split="test", streaming=True, use_auth_token=True)) sample = next(sample_iter) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() model = AutoModelForCTC.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) input_values = processor(resampled_audio, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values).logits transcription = processor.batch_decode(logits.numpy()).text # => "اب نے ٹ پیس ان لیتے ہیں" ``` ### Eval results on Common Voice 8 "test" (WER): | Without LM | With LM (run `./eval.py`) | |---|---| | 52.146 | 42.376 |
anusha/t5-base-finetuned-wikiSQL-sql-to-en
f6537f8d2d143f263847d5c3bcb4c4d4c846cf95
2021-06-23T12:03:42.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
anusha
null
anusha/t5-base-finetuned-wikiSQL-sql-to-en
6
null
transformers
15,118
Entry not found
aodiniz/bert_uncased_L-2_H-512_A-8_cord19-200616
8221e4cf888cbd9a2fb268fad323c564f503ea8b
2021-05-18T23:48:58.000Z
[ "pytorch", "jax", "bert", "fill-mask", "arxiv:1908.08962", "transformers", "autotrain_compatible" ]
fill-mask
false
aodiniz
null
aodiniz/bert_uncased_L-2_H-512_A-8_cord19-200616
6
null
transformers
15,119
# BERT L-2 H-512 fine-tuned on MLM (CORD-19 2020/06/16) BERT model with [2 Transformer layers and hidden embedding of size 512](https://huggingface.co/google/bert_uncased_L-2_H-512_A-8), referenced in [Well-Read Students Learn Better: On the Importance of Pre-training Compact Models](https://arxiv.org/abs/1908.08962), fine-tuned for MLM on CORD-19 dataset (as released on 2020/06/16). ## Training the model ```bash python run_language_modeling.py --model_type bert --model_name_or_path google/bert_uncased_L-2_H-512_A-8 --do_train --train_data_file {cord19-200616-dataset} --mlm --mlm_probability 0.2 --line_by_line --block_size 512 --per_device_train_batch_size 20 --learning_rate 3e-5 --num_train_epochs 2 --output_dir bert_uncased_L-2_H-512_A-8_cord19-200616
aodiniz/bert_uncased_L-2_H-512_A-8_squad2
05b7c951ad18d2293f16b3529986e361e2469786
2021-05-18T23:50:11.000Z
[ "pytorch", "jax", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
aodiniz
null
aodiniz/bert_uncased_L-2_H-512_A-8_squad2
6
null
transformers
15,120
Entry not found
aodiniz/bert_uncased_L-4_H-512_A-8_squad2_covid-qna
bcad9d9c73311a578d2b0e723e936bde8397d3c8
2021-05-18T23:55:10.000Z
[ "pytorch", "jax", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
aodiniz
null
aodiniz/bert_uncased_L-4_H-512_A-8_squad2_covid-qna
6
null
transformers
15,121
Entry not found
arampacha/wav2vec2-large-xlsr-ukrainian
b36f5ea842f39e39e6e3be2208c4591aa68873c1
2021-07-05T22:02:32.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "uk", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
arampacha
null
arampacha/wav2vec2-large-xlsr-ukrainian
6
1
transformers
15,122
--- language: uk dataset: common_voice metrics: wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: Ukrainian XLSR Wav2Vec2 Large 53 results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice uk type: common_voice args: uk metrics: - name: Test WER type: wer value: 29.89 --- # Wav2Vec2-Large-XLSR-53-Ukrainian Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Ukrainian using the [Common Voice](https://huggingface.co/datasets/common_voice) and sample of [M-AILABS Ukrainian Corpus](https://www.caito.de/2019/01/the-m-ailabs-speech-dataset/) datasets. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "uk", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("arampacha/wav2vec2-large-xlsr-ukrainian") model = Wav2Vec2ForCTC.from_pretrained("arampacha/wav2vec2-large-xlsr-ukrainian") # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = torchaudio.transforms.Resample(sampling_rate, 16_000)(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Ukrainian test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "uk", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("arampacha/wav2vec2-large-xlsr-ukrainian") model = Wav2Vec2ForCTC.from_pretrained("arampacha/wav2vec2-large-xlsr-ukrainian") model.to("cuda") chars_to_ignore = [",", "?", ".", "!", "-", ";", ":", '""', "%", "'", '"', "�", '«', '»', '—', '…', '(', ')', '*', '”', '“'] chars_to_ignore_regex = f'[{"".join(chars_to_ignore)}]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays and normalize charecters def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(re.compile("['`]"), '’', batch['sentence']) batch["sentence"] = re.sub(re.compile(chars_to_ignore_regex), '', batch["sentence"]).lower().strip() batch["sentence"] = re.sub(re.compile('i'), 'і', batch['sentence']) batch["sentence"] = re.sub(re.compile('o'), 'о', batch['sentence']) batch["sentence"] = re.sub(re.compile('a'), 'а', batch['sentence']) batch["sentence"] = re.sub(re.compile('ы'), 'и', batch['sentence']) batch["sentence"] = re.sub(re.compile("–"), '', batch['sentence']) batch['sentence'] = re.sub(' ', ' ', batch['sentence']) speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = torchaudio.transforms.Resample(sampling_rate, 16_000)(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 29.89 ## Training The Common Voice `train`, `validation` and the M-AILABS Ukrainian corpus. The script used for training will be available [here](https://github.com/arampacha/hf-sprint-xlsr) soon.
ardauzunoglu/gp-classification
2a955564ea944c6d7767a1c27c3825ba66440a01
2022-02-08T10:48:37.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
ardauzunoglu
null
ardauzunoglu/gp-classification
6
1
transformers
15,123
--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: gp-classification results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gp-classification This model is a fine-tuned version of [dbmdz/bert-base-turkish-cased](https://huggingface.co/dbmdz/bert-base-turkish-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0013 - Accuracy: 0.9997 - F1: 0.9997 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.0215 | 1.0 | 956 | 0.0051 | 0.9987 | 0.9987 | | 0.0033 | 2.0 | 1912 | 0.0088 | 0.9984 | 0.9985 | | 0.001 | 3.0 | 2868 | 0.0036 | 0.9995 | 0.9995 | | 0.0005 | 4.0 | 3824 | 0.0012 | 0.9997 | 0.9997 | | 0.0 | 5.0 | 4780 | 0.0013 | 0.9997 | 0.9997 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
arianpasquali/distilbert-base-uncased-finetuned-clinc
8b44c293d2b0c45888b94eb481a79d3a789bde7f
2022-01-31T20:09:00.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:clinc_oos", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
arianpasquali
null
arianpasquali/distilbert-base-uncased-finetuned-clinc
6
null
transformers
15,124
--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos args: plus metrics: - name: Accuracy type: accuracy value: 0.9112903225806451 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.7751 - Accuracy: 0.9113 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 4.315 | 1.0 | 318 | 3.3087 | 0.74 | | 2.6371 | 2.0 | 636 | 1.8833 | 0.8381 | | 1.5388 | 3.0 | 954 | 1.1547 | 0.8929 | | 1.0076 | 4.0 | 1272 | 0.8590 | 0.9071 | | 0.79 | 5.0 | 1590 | 0.7751 | 0.9113 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.7.1 - Datasets 1.16.1 - Tokenizers 0.10.3
armheb/DNA_bert_4
c8499f0744a3dc8ba47c44c0af8cbd7244597ce9
2021-10-10T22:35:40.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
armheb
null
armheb/DNA_bert_4
6
null
transformers
15,125
Entry not found
arnolfokam/mbert-base-uncased-kin
d0783a61fa6bdee932f06b41ef3278c276b77e6f
2021-11-24T11:13:53.000Z
[ "pytorch", "bert", "token-classification", "kin", "dataset:masakhaner", "transformers", "NER", "license:apache-2.0", "autotrain_compatible" ]
token-classification
false
arnolfokam
null
arnolfokam/mbert-base-uncased-kin
6
null
transformers
15,126
--- language: - kin tags: - NER datasets: - masakhaner metrics: - f1 - precision - recall license: apache-2.0 widget: - text: "Ambasaderi Bellomo yavuze ko bishimira ubufatanye burambye hagati ya EU n’u Rwanda, bushingiye nanone ku bufatanye hagati y’imigabane ya Afurika n’u Burayi." --- # Model description **mbert-base-uncased-kin** is a model based on the fine-tuned multilingual BERT base uncased model. It has been trained to recognize four types of entities: - dates & time (DATE) - Location (LOC) - Organizations (ORG) - Person (PER) # Intended Use - Intended to be used for research purposes concerning Named Entity Recognition for African Languages. - Not intended for practical purposes. # Training Data This model was fine-tuned on the Kinyarwanda corpus **(kin)** of the [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) dataset. However, we thresholded the number of entity groups per sentence in this dataset to 10 entity groups. # Training procedure This model was trained on a single NVIDIA P5000 from [Paperspace](https://www.paperspace.com) #### Hyperparameters - **Learning Rate:** 5e-5 - **Batch Size:** 32 - **Maximum Sequence Length:** 164 - **Epochs:** 30 # Evaluation Data We evaluated this model on the test split of the Kinyarwandan corpus **(kin)** present in the [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) with no thresholding. # Metrics - Precision - Recall - F1-score # Limitations - The size of the pre-trained language model prevents its usage in anything other than research. - Lack of analysis concerning the bias and fairness in these models may make them dangerous if deployed into production system. - The train data is a less populated version of the original dataset in terms of entity groups per sentence. Therefore, this can negatively impact the performance. # Caveats and Recommendations - The topics in the dataset corpus are centered around **News**. Future training could be done with a more diverse corpus. # Results Model Name| Precision | Recall | F1-score -|-|-|- **mbert-base-uncased-kin**| 81.35 | 83.98 | 82.64 # Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline tokenizer = AutoTokenizer.from_pretrained("arnolfokam/mbert-base-uncased-kin") model = AutoModelForTokenClassification.from_pretrained("arnolfokam/mbert-base-uncased-kin") nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "Rayon Sports yasinyishije rutahizamu w’Umurundi" ner_results = nlp(example) print(ner_results) ```
arnolfokam/mbert-base-uncased-ner-pcm
2c279321f24da3c545b3da70c1e3cd3f6ddee372
2021-11-24T21:17:06.000Z
[ "pytorch", "bert", "token-classification", "pcm", "dataset:masakhaner", "transformers", "NER", "license:apache-2.0", "autotrain_compatible" ]
token-classification
false
arnolfokam
null
arnolfokam/mbert-base-uncased-ner-pcm
6
null
transformers
15,127
--- language: - pcm tags: - NER datasets: - masakhaner metrics: - f1 - precision - recall license: apache-2.0 widget: - text: "Mixed Martial Arts joinbodi, Ultimate Fighting Championship, UFC don decide say dem go enta back di octagon on Saturday, 9 May, for Jacksonville, Florida." --- # Model description **mbert-base-uncased-ner-pcm** is a model based on the fine-tuned Multilingual BERT base uncased model, previously fine-tuned for Named Entity Recognition using 10 high-resourced languages. It has been trained to recognize four types of entities: - dates & time (DATE) - Location (LOC) - Organizations (ORG) - Person (PER) # Intended Use - Intended to be used for research purposes concerning Named Entity Recognition for African Languages. - Not intended for practical purposes. # Training Data This model was fine-tuned on the Nigerian Pidgin corpus **(pcm)** of the [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) dataset. However, we thresholded the number of entity groups per sentence in this dataset to 10 entity groups. # Training procedure This model was trained on a single NVIDIA P5000 from [Paperspace](https://www.paperspace.com) #### Hyperparameters - **Learning Rate:** 5e-5 - **Batch Size:** 32 - **Maximum Sequence Length:** 164 - **Epochs:** 30 # Evaluation Data We evaluated this model on the test split of the Swahili corpus **(pcm)** present in the [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) with no thresholding. # Metrics - Precision - Recall - F1-score # Limitations - The size of the pre-trained language model prevents its usage in anything other than research. - Lack of analysis concerning the bias and fairness in these models may make them dangerous if deployed into production system. - The train data is a less populated version of the original dataset in terms of entity groups per sentence. Therefore, this can negatively impact the performance. # Caveats and Recommendations - The topics in the dataset corpus are centered around **News**. Future training could be done with a more diverse corpus. # Results Model Name| Precision | Recall | F1-score -|-|-|- **mbert-base-uncased-ner-pcm**| 90.38 | 82.44 | 86.23 # Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline tokenizer = AutoTokenizer.from_pretrained("arnolfokam/mbert-base-uncased-ner-pcm") model = AutoModelForTokenClassification.from_pretrained("arnolfokam/mbert-base-uncased-ner-pcm") nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "Mixed Martial Arts joinbodi, Ultimate Fighting Championship, UFC don decide say dem go enta back di octagon on Saturday, 9 May, for Jacksonville, Florida." ner_results = nlp(example) print(ner_results) ```
arnolfokam/mbert-base-uncased-pcm
45701e0db4e54cbe319e27e871c983ead29d9c2a
2021-11-24T21:17:52.000Z
[ "pytorch", "bert", "token-classification", "pcm", "dataset:masakhaner", "transformers", "NER", "license:apache-2.0", "autotrain_compatible" ]
token-classification
false
arnolfokam
null
arnolfokam/mbert-base-uncased-pcm
6
null
transformers
15,128
--- language: - pcm tags: - NER datasets: - masakhaner metrics: - f1 - precision - recall license: apache-2.0 widget: - text: "Mixed Martial Arts joinbodi, Ultimate Fighting Championship, UFC don decide say dem go enta back di octagon on Saturday, 9 May, for Jacksonville, Florida." --- # Model description **mbert-base-uncased-pcm** is a model based on the fine-tuned Multilingual BERT base uncased model. It has been trained to recognize four types of entities: - dates & time (DATE) - Location (LOC) - Organizations (ORG) - Person (PER) # Intended Use - Intended to be used for research purposes concerning Named Entity Recognition for African Languages. - Not intended for practical purposes. # Training Data This model was fine-tuned on the Nigerian Pidgin corpus **(pcm)** of the [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) dataset. However, we thresholded the number of entity groups per sentence in this dataset to 10 entity groups. # Training procedure This model was trained on a single NVIDIA P5000 from [Paperspace](https://www.paperspace.com) #### Hyperparameters - **Learning Rate:** 5e-5 - **Batch Size:** 32 - **Maximum Sequence Length:** 164 - **Epochs:** 30 # Evaluation Data We evaluated this model on the test split of the Swahili corpus **(pcm)** present in the [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) with no thresholding. # Metrics - Precision - Recall - F1-score # Limitations - The size of the pre-trained language model prevents its usage in anything other than research. - Lack of analysis concerning the bias and fairness in these models may make them dangerous if deployed into production system. - The train data is a less populated version of the original dataset in terms of entity groups per sentence. Therefore, this can negatively impact the performance. # Caveats and Recommendations - The topics in the dataset corpus are centered around **News**. Future training could be done with a more diverse corpus. # Results Model Name| Precision | Recall | F1-score -|-|-|- **mbert-base-uncased-pcm**| 90.46 | 83.23 | 86.69 # Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline tokenizer = AutoTokenizer.from_pretrained("arnolfokam/mbert-base-uncased-pcm") model = AutoModelForTokenClassification.from_pretrained("arnolfokam/mbert-base-uncased-pcm") nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "Mixed Martial Arts joinbodi, Ultimate Fighting Championship, UFC don decide say dem go enta back di octagon on Saturday, 9 May, for Jacksonville, Florida." ner_results = nlp(example) print(ner_results) ```
arnolfokam/mbert-base-uncased-swa
6b26bbbbd233c7f4870b1757602102a96c9bde96
2021-11-24T11:35:54.000Z
[ "pytorch", "bert", "token-classification", "swa", "dataset:masakhaner", "transformers", "NER", "license:apache-2.0", "autotrain_compatible" ]
token-classification
false
arnolfokam
null
arnolfokam/mbert-base-uncased-swa
6
null
transformers
15,129
--- language: - swa tags: - NER datasets: - masakhaner metrics: - f1 - precision - recall license: apache-2.0 widget: - text: "Wizara ya afya ya Tanzania imeripoti Jumatatu kuwa, watu takriban 14 zaidi wamepata maambukizi ya Covid-19." --- # Model description **mbert-base-uncased-swa** is a model based on the fine-tuned Multilingual BERT base uncased model. It has been trained to recognize four types of entities: - dates & time (DATE) - Location (LOC) - Organizations (ORG) - Person (PER) # Intended Use - Intended to be used for research purposes concerning Named Entity Recognition for African Languages. - Not intended for practical purposes. # Training Data This model was fine-tuned on the Swahili corpus **(swa)** of the [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) dataset. However, we thresholded the number of entity groups per sentence in this dataset to 10 entity groups. # Training procedure This model was trained on a single NVIDIA P5000 from [Paperspace](https://www.paperspace.com) #### Hyperparameters - **Learning Rate:** 5e-5 - **Batch Size:** 32 - **Maximum Sequence Length:** 164 - **Epochs:** 30 # Evaluation Data We evaluated this model on the test split of the Swahili corpus **(swa)** present in the [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) with no thresholding. # Metrics - Precision - Recall - F1-score # Limitations - The size of the pre-trained language model prevents its usage in anything other than research. - Lack of analysis concerning the bias and fairness in these models may make them dangerous if deployed into production system. - The train data is a less populated version of the original dataset in terms of entity groups per sentence. Therefore, this can negatively impact the performance. # Caveats and Recommendations - The topics in the dataset corpus are centered around **News**. Future training could be done with a more diverse corpus. # Results Model Name| Precision | Recall | F1-score -|-|-|- **mbert-base-uncased-swa**| 85.59 | 90.80 | 88.12 # Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline tokenizer = AutoTokenizer.from_pretrained("arnolfokam/mbert-base-uncased-swa") model = AutoModelForTokenClassification.from_pretrained("arnolfokam/mbert-base-uncased-swa") nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "Wizara ya afya ya Tanzania imeripoti Jumatatu kuwa, watu takriban 14 zaidi wamepata maambukizi ya Covid-19." ner_results = nlp(example) print(ner_results) ```
lmqg/t5-base-squad-no-answer
1bc6a63a0adc403508f21417dc8eeb519c3bf796
2022-06-01T00:24:14.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
lmqg
null
lmqg/t5-base-squad-no-answer
6
null
transformers
15,130
Entry not found
asanka25/xlm-roberta-base-finetuned-conll03-english-finetuned-sinhala
084e5fe75a47d027f2f14429d4cfd06440d1abe0
2022-01-23T10:59:51.000Z
[ "pytorch", "xlm-roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
asanka25
null
asanka25/xlm-roberta-base-finetuned-conll03-english-finetuned-sinhala
6
null
transformers
15,131
This model was created using xlm-roberta-base bodel and fine-tuned it using CoNLL 2003 dataset. On top of the trained model, we trained it again using a Sinhala NER data that was also formatted to the CoNLL format.
aseda/t5-small-finetuned-xsum
ff3864f7d459e84eddf2ed81e9ace06ebf3c4ec7
2021-12-04T04:10:06.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:xsum", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
aseda
null
aseda/t5-small-finetuned-xsum
6
null
transformers
15,132
--- license: apache-2.0 tags: - generated_from_trainer datasets: - xsum model-index: - name: t5-small-finetuned-xsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xsum dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
ashraq/dv-electra-small-news-classification
8fa0af4bb46ff5eb035cf7e5655d8211bfeda13e
2021-11-03T22:31:07.000Z
[ "pytorch", "electra", "text-classification", "transformers" ]
text-classification
false
ashraq
null
ashraq/dv-electra-small-news-classification
6
null
transformers
15,133
--- widget: - text: 'ގޫގަލް ޕިކްސަލް 6 ގެ ކެމެރާ، އޭއައި ގެ ޖާދޫއިން ފުރިފައި' --- # The [ELECTRA-small](https://huggingface.co/ashraq/dv-electra-small) fine-tuned for news classification in Dhivehi
avneet/distilbert-base-uncased-finetuned-cola
63e310a0eb16d2101f01d7d084edb7a5ea8f7017
2021-07-30T00:15:09.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0" ]
text-classification
false
avneet
null
avneet/distilbert-base-uncased-finetuned-cola
6
null
transformers
15,134
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model_index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metric: name: Matthews Correlation type: matthews_correlation value: 0.42176824452830747 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.4981 - Matthews Correlation: 0.4218 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5248 | 1.0 | 535 | 0.4981 | 0.4218 | ### Framework versions - Transformers 4.9.1 - Pytorch 1.9.0+cu102 - Datasets 1.10.2 - Tokenizers 0.10.3
baffo32/gpt-j-6B-ptmap
dc46f904300794494bedc4abbbadfd0f94008eb9
2021-12-25T15:16:26.000Z
[ "pytorch", "gptj", "text-generation", "en", "dataset:The Pile", "arxiv:2104.09864", "arxiv:2101.00027", "transformers", "causal-lm", "license:apache-2.0" ]
text-generation
false
baffo32
null
baffo32/gpt-j-6B-ptmap
6
null
transformers
15,135
--- language: - en tags: - pytorch - causal-lm license: apache-2.0 datasets: - The Pile --- # GPT-J 6B ## Model Description GPT-J 6B is a transformer model trained using Ben Wang's [Mesh Transformer JAX](https://github.com/kingoflolz/mesh-transformer-jax/). "GPT-J" refers to the class of model, while "6B" represents the number of trainable parameters. <figure> | Hyperparameter | Value | |----------------------|------------| | \\(n_{parameters}\\) | 6053381344 | | \\(n_{layers}\\) | 28&ast; | | \\(d_{model}\\) | 4096 | | \\(d_{ff}\\) | 16384 | | \\(n_{heads}\\) | 16 | | \\(d_{head}\\) | 256 | | \\(n_{ctx}\\) | 2048 | | \\(n_{vocab}\\) | 50257/50400&dagger; (same tokenizer as GPT-2/3) | | Positional Encoding | [Rotary Position Embedding (RoPE)](https://arxiv.org/abs/2104.09864) | | RoPE Dimensions | [64](https://github.com/kingoflolz/mesh-transformer-jax/blob/f2aa66e0925de6593dcbb70e72399b97b4130482/mesh_transformer/layers.py#L223) | <figcaption><p><strong>&ast;</strong> Each layer consists of one feedforward block and one self attention block.</p> <p><strong>&dagger;</strong> Although the embedding matrix has a size of 50400, only 50257 entries are used by the GPT-2 tokenizer.</p></figcaption></figure> The model consists of 28 layers with a model dimension of 4096, and a feedforward dimension of 16384. The model dimension is split into 16 heads, each with a dimension of 256. Rotary Position Embedding (RoPE) is applied to 64 dimensions of each head. The model is trained with a tokenization vocabulary of 50257, using the same set of BPEs as GPT-2/GPT-3. ## Training data GPT-J 6B was trained on [the Pile](https://pile.eleuther.ai), a large-scale curated dataset created by [EleutherAI](https://www.eleuther.ai). ## Training procedure This model was trained for 402 billion tokens over 383,500 steps on TPU v3-256 pod. It was trained as an autoregressive language model, using cross-entropy loss to maximize the likelihood of predicting the next token correctly. ## Intended Use and Limitations GPT-J learns an inner representation of the English language that can be used to extract features useful for downstream tasks. The model is best at what it was pretrained for however, which is generating text from a prompt. ### How to use This model can be easily loaded using the `AutoModelForCausalLM` functionality: ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B") model = AutoModelForCausalLM.from_pretrained("EleutherAI/gpt-j-6B") ``` ### Limitations and Biases The core functionality of GPT-J is taking a string of text and predicting the next token. While language models are widely used for tasks other than this, there are a lot of unknowns with this work. When prompting GPT-J it is important to remember that the statistically most likely next token is often not the token that produces the most "accurate" text. Never depend upon GPT-J to produce factually accurate output. GPT-J was trained on the Pile, a dataset known to contain profanity, lewd, and otherwise abrasive language. Depending upon use case GPT-J may produce socially unacceptable text. See [Sections 5 and 6 of the Pile paper](https://arxiv.org/abs/2101.00027) for a more detailed analysis of the biases in the Pile. As with all language models, it is hard to predict in advance how GPT-J will respond to particular prompts and offensive content may occur without warning. We recommend having a human curate or filter the outputs before releasing them, both to censor undesirable content and to improve the quality of the results. ## Evaluation results <figure> | Model | Public | Training FLOPs | LAMBADA PPL ↓ | LAMBADA Acc ↑ | Winogrande ↑ | Hellaswag ↑ | PIQA ↑ | Dataset Size (GB) | |--------------------------|-------------|----------------|--- |--- |--- |--- |--- |-------------------| | Random Chance | &check; | 0 | ~a lot | ~0% | 50% | 25% | 25% | 0 | | GPT-3 Ada&ddagger; | &cross; | ----- | 9.95 | 51.6% | 52.9% | 43.4% | 70.5% | ----- | | GPT-2 1.5B | &check; | ----- | 10.63 | 51.21% | 59.4% | 50.9% | 70.8% | 40 | | GPT-Neo 1.3B&ddagger; | &check; | 3.0e21 | 7.50 | 57.2% | 55.0% | 48.9% | 71.1% | 825 | | Megatron-2.5B&ast; | &cross; | 2.4e21 | ----- | 61.7% | ----- | ----- | ----- | 174 | | GPT-Neo 2.7B&ddagger; | &check; | 6.8e21 | 5.63 | 62.2% | 56.5% | 55.8% | 73.0% | 825 | | GPT-3 1.3B&ast;&ddagger; | &cross; | 2.4e21 | 5.44 | 63.6% | 58.7% | 54.7% | 75.1% | ~800 | | GPT-3 Babbage&ddagger; | &cross; | ----- | 5.58 | 62.4% | 59.0% | 54.5% | 75.5% | ----- | | Megatron-8.3B&ast; | &cross; | 7.8e21 | ----- | 66.5% | ----- | ----- | ----- | 174 | | GPT-3 2.7B&ast;&ddagger; | &cross; | 4.8e21 | 4.60 | 67.1% | 62.3% | 62.8% | 75.6% | ~800 | | Megatron-11B&dagger; | &check; | 1.0e22 | ----- | ----- | ----- | ----- | ----- | 161 | | **GPT-J 6B&ddagger;** | **&check;** | **1.5e22** | **3.99** | **69.7%** | **65.3%** | **66.1%** | **76.5%** | **825** | | GPT-3 6.7B&ast;&ddagger; | &cross; | 1.2e22 | 4.00 | 70.3% | 64.5% | 67.4% | 78.0% | ~800 | | GPT-3 Curie&ddagger; | &cross; | ----- | 4.00 | 69.3% | 65.6% | 68.5% | 77.9% | ----- | | GPT-3 13B&ast;&ddagger; | &cross; | 2.3e22 | 3.56 | 72.5% | 67.9% | 70.9% | 78.5% | ~800 | | GPT-3 175B&ast;&ddagger; | &cross; | 3.1e23 | 3.00 | 76.2% | 70.2% | 78.9% | 81.0% | ~800 | | GPT-3 Davinci&ddagger; | &cross; | ----- | 3.0 | 75% | 72% | 78% | 80% | ----- | <figcaption><p>Models roughly sorted by performance, or by FLOPs if not available.</p> <p><strong>&ast;</strong> Evaluation numbers reported by their respective authors. All other numbers are provided by running <a href="https://github.com/EleutherAI/lm-evaluation-harness/"><code>lm-evaluation-harness</code></a> either with released weights or with API access. Due to subtle implementation differences as well as different zero shot task framing, these might not be directly comparable. See <a href="https://blog.eleuther.ai/gpt3-model-sizes/">this blog post</a> for more details.</p> <p><strong>†</strong> Megatron-11B provides no comparable metrics, and several implementations using the released weights do not reproduce the generation quality and evaluations. (see <a href="https://github.com/huggingface/transformers/pull/10301">1</a> <a href="https://github.com/pytorch/fairseq/issues/2358">2</a> <a href="https://github.com/pytorch/fairseq/issues/2719">3</a>) Thus, evaluation was not attempted.</p> <p><strong>‡</strong> These models have been trained with data which contains possible test set contamination. The OpenAI GPT-3 models failed to deduplicate training data for certain test sets, while the GPT-Neo models as well as this one is trained on the Pile, which has not been deduplicated against any test sets.</p></figcaption></figure> ## Citation and Related Information ### BibTeX entry To cite this model: ```bibtex @misc{gpt-j, author = {Wang, Ben and Komatsuzaki, Aran}, title = {{GPT-J-6B: A 6 Billion Parameter Autoregressive Language Model}}, howpublished = {\url{https://github.com/kingoflolz/mesh-transformer-jax}}, year = 2021, month = May } ``` To cite the codebase that trained this model: ```bibtex @misc{mesh-transformer-jax, author = {Wang, Ben}, title = {{Mesh-Transformer-JAX: Model-Parallel Implementation of Transformer Language Model with JAX}}, howpublished = {\url{https://github.com/kingoflolz/mesh-transformer-jax}}, year = 2021, month = May } ``` If you use this model, we would love to hear about it! Reach out on [GitHub](https://github.com/kingoflolz/mesh-transformer-jax), Discord, or shoot Ben an email. ## Acknowledgements This project would not have been possible without compute generously provided by Google through the [TPU Research Cloud](https://sites.research.google/trc/), as well as the Cloud TPU team for providing early access to the [Cloud TPU VM](https://cloud.google.com/blog/products/compute/introducing-cloud-tpu-vms) Alpha. Thanks to everyone who have helped out one way or another (listed alphabetically): - [James Bradbury](https://twitter.com/jekbradbury) for valuable assistance with debugging JAX issues. - [Stella Biderman](https://www.stellabiderman.com), [Eric Hallahan](https://twitter.com/erichallahan), [Kurumuz](https://github.com/kurumuz/), and [Finetune](https://github.com/finetuneanon/) for converting the model to be compatible with the `transformers` package. - [Leo Gao](https://twitter.com/nabla_theta) for running zero shot evaluations for the baseline models for the table. - [Laurence Golding](https://github.com/researcher2/) for adding some features to the web demo. - [Aran Komatsuzaki](https://twitter.com/arankomatsuzaki) for advice with experiment design and writing the blog posts. - [Janko Prester](https://github.com/jprester/) for creating the web demo frontend.
benjaminbeilharz/bert-base-uncased-next-turn-classifier
c63f0227ca981c07ce53b32368d259e0f96a8957
2022-02-22T17:23:13.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
benjaminbeilharz
null
benjaminbeilharz/bert-base-uncased-next-turn-classifier
6
null
transformers
15,136
Entry not found
benjaminbeilharz/distilbert-dailydialog-turn-classifier
0cf1579663312bd6cb08035ed2aef764463241e1
2022-01-22T19:16:56.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
benjaminbeilharz
null
benjaminbeilharz/distilbert-dailydialog-turn-classifier
6
null
transformers
15,137
Entry not found
beomi/distilbert-base-uncased-finetuned-cola
c292e13f89d8d04d7bc5636afaa1874ae8a1e34f
2021-10-18T11:22:37.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
beomi
null
beomi/distilbert-base-uncased-finetuned-cola
6
null
transformers
15,138
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5552849676135797 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.7525 - Matthews Correlation: 0.5553 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.523 | 1.0 | 535 | 0.5024 | 0.4160 | | 0.3437 | 2.0 | 1070 | 0.5450 | 0.4965 | | 0.2326 | 3.0 | 1605 | 0.6305 | 0.5189 | | 0.177 | 4.0 | 2140 | 0.7525 | 0.5553 | | 0.1354 | 5.0 | 2675 | 0.8630 | 0.5291 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
berkergurcay/finetuned-bert-base-uncased
15e9df80c49888acb145190da61af85546dac835
2021-05-26T13:33:43.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
berkergurcay
null
berkergurcay/finetuned-bert-base-uncased
6
null
transformers
15,139
Entry not found
bestvater/distilbert-kav-stance
0e0d5ef3a627f15c008463da084e180103eb629e
2021-10-04T17:00:17.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
bestvater
null
bestvater/distilbert-kav-stance
6
null
transformers
15,140
Entry not found
bigjoedata/rockbot-scratch
e4329e2aac67e457c4fbcd802a64f9514ea5658e
2021-05-21T14:15:08.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
bigjoedata
null
bigjoedata/rockbot-scratch
6
null
transformers
15,141
# 🎸 🥁 Rockbot 🎤 🎧 A [GPT-2](https://openai.com/blog/better-language-models/) based lyrics generator fine-tuned on the writing styles of 16000 songs by 270 artists across MANY genres (not just rock). **Instructions:** Type in a fake song title, pick an artist, click "Generate". Most language models are imprecise and Rockbot is no exception. You may see NSFW lyrics unexpectedly. I have made no attempts to censor. Generated lyrics may be repetitive and/or incoherent at times, but hopefully you'll encounter something interesting or memorable. Oh, and generation is resource intense and can be slow. I set governors on song length to keep generation time somewhat reasonable. You may adjust song length and other parameters on the left or check out [Github](https://github.com/bigjoedata/rockbot) to spin up your own Rockbot. Just have fun. [Demo](https://share.streamlit.io/bigjoedata/rockbot/main/src/main.py) Adjust settings to increase speed [Github](https://github.com/bigjoedata/rockbot) [GPT-2 124M version Model page on Hugging Face](https://huggingface.co/bigjoedata/rockbot) [DistilGPT2 version Model page on Hugging Face](https://huggingface.co/bigjoedata/rockbot-distilgpt2/) This is leaner with the tradeoff being that the lyrics are more simplistic. 🎹 🪘 🎷 🎺 🪗 🪕 🎻 ## Background With the shutdown of [Google Play Music](https://en.wikipedia.org/wiki/Google_Play_Music) I used Google's takeout function to gather the metadata from artists I've listened to over the past several years. I wanted to take advantage of this bounty to build something fun. I scraped the top 50 lyrics for artists I'd listened to at least once from [Genius](https://genius.com/), then fine tuned [GPT-2's](https://openai.com/blog/better-language-models/) 124M token model using the [AITextGen](https://github.com/minimaxir/aitextgen) framework after considerable post-processing. For more on generation, see [here.](https://huggingface.co/blog/how-to-generate) ### Full Tech Stack [Google Play Music](https://en.wikipedia.org/wiki/Google_Play_Music) (R.I.P.). [Python](https://www.python.org/). [Streamlit](https://www.streamlit.io/). [GPT-2](https://openai.com/blog/better-language-models/). [AITextGen](https://github.com/minimaxir/aitextgen). [Pandas](https://pandas.pydata.org/). [LyricsGenius](https://lyricsgenius.readthedocs.io/en/master/). [Google Colab](https://colab.research.google.com/) (GPU based Training). [Knime](https://www.knime.com/) (data cleaning). ## How to Use The Model Please refer to [AITextGen](https://github.com/minimaxir/aitextgen) for much better documentation. ### Training Parameters Used ai.train("lyrics.txt", line_by_line=False, from_cache=False, num_steps=10000, generate_every=2000, save_every=2000, save_gdrive=False, learning_rate=1e-3, batch_size=3, eos_token="<|endoftext|>", #fp16=True ) ### To Use Generate With Prompt (Use Title Case): Song Name BY Artist Name
bleachybrain/DialoGPT-med-ss
14ba95f0ed7c65d4c9b7b1703011d46e90dd1900
2022-04-27T01:50:52.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
bleachybrain
null
bleachybrain/DialoGPT-med-ss
6
null
transformers
15,142
--- tags: - conversational --- # ss
blizrys/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext-finetuned-pubmedqa-1
f43a47a15787b55cc0c87cc9aba3efb19ea6e252
2021-09-15T08:14:01.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
blizrys
null
blizrys/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext-finetuned-pubmedqa-1
6
null
transformers
15,143
--- license: mit tags: - generated_from_trainer datasets: - null metrics: - accuracy model-index: - name: BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext-finetuned-pubmedqa-1 results: - task: name: Text Classification type: text-classification metrics: - name: Accuracy type: accuracy value: 0.7 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext-finetuned-pubmedqa-1 This model is a fine-tuned version of [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6660 - Accuracy: 0.7 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 57 | 0.8471 | 0.58 | | No log | 2.0 | 114 | 0.8450 | 0.58 | | No log | 3.0 | 171 | 0.7846 | 0.58 | | No log | 4.0 | 228 | 0.8649 | 0.58 | | No log | 5.0 | 285 | 0.7220 | 0.68 | | No log | 6.0 | 342 | 0.7395 | 0.66 | | No log | 7.0 | 399 | 0.7198 | 0.72 | | No log | 8.0 | 456 | 0.6417 | 0.72 | | 0.7082 | 9.0 | 513 | 0.6265 | 0.74 | | 0.7082 | 10.0 | 570 | 0.6660 | 0.7 | ### Framework versions - Transformers 4.10.2 - Pytorch 1.9.0+cu102 - Datasets 1.12.0 - Tokenizers 0.10.3
blizrys/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext-finetuned-pubmedqa-2
ed3779c6f8b6efc5e314de974b0519be9cb548fd
2021-09-17T10:08:32.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
blizrys
null
blizrys/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext-finetuned-pubmedqa-2
6
null
transformers
15,144
--- license: mit tags: - generated_from_trainer datasets: - null metrics: - accuracy model-index: - name: BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext-finetuned-pubmedqa-2 results: - task: name: Text Classification type: text-classification metrics: - name: Accuracy type: accuracy value: 0.54 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext-finetuned-pubmedqa-2 This model is a fine-tuned version of [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0005 - Accuracy: 0.54 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 57 | 1.3510 | 0.54 | | No log | 2.0 | 114 | 0.9606 | 0.54 | | No log | 3.0 | 171 | 0.9693 | 0.54 | | No log | 4.0 | 228 | 1.0445 | 0.54 | | No log | 5.0 | 285 | 1.0005 | 0.54 | ### Framework versions - Transformers 4.10.2 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
blizrys/distilbert-base-uncased-finetuned-cola
19b0cfacb2162df1a3218fdd9db40d0c579e9d75
2021-09-11T18:01:15.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
blizrys
null
blizrys/distilbert-base-uncased-finetuned-cola
6
null
transformers
15,145
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5373623427702773 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6223 - Matthews Correlation: 0.5374 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5275 | 1.0 | 535 | 0.5456 | 0.3973 | | 0.3481 | 2.0 | 1070 | 0.5401 | 0.5006 | | 0.242 | 3.0 | 1605 | 0.6223 | 0.5374 | | 0.1725 | 4.0 | 2140 | 0.7934 | 0.5229 | | 0.1346 | 5.0 | 2675 | 0.8478 | 0.5367 | ### Framework versions - Transformers 4.10.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
bonebambi/DialoGPT-small-ThakirClone
76969deb9413d257a8c066bf803d60537e3c8f77
2021-10-11T20:02:54.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
bonebambi
null
bonebambi/DialoGPT-small-ThakirClone
6
null
transformers
15,146
--- tags: - conversational --- # Personal DialoGPT Model
boronbrown48/topic_otherTopics_v1
8d09763993a9b96860a5dca0b45ca1920d642724
2021-11-24T17:20:55.000Z
[ "pytorch", "camembert", "text-classification", "transformers" ]
text-classification
false
boronbrown48
null
boronbrown48/topic_otherTopics_v1
6
null
transformers
15,147
Entry not found
boronbrown48/wangchanberta-sentiment-504-v3
27e623cc2d364db2dd316bd8928caaa31ae9f20b
2021-11-25T03:11:04.000Z
[ "pytorch", "camembert", "text-classification", "transformers" ]
text-classification
false
boronbrown48
null
boronbrown48/wangchanberta-sentiment-504-v3
6
null
transformers
15,148
Entry not found
boychaboy/MNLI_bert-base-cased_4
191195bddf441464ef1cad8e38e2997815ddb105
2021-05-19T13:14:43.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
boychaboy
null
boychaboy/MNLI_bert-base-cased_4
6
null
transformers
15,149
Entry not found
boychaboy/MNLI_bert-base-uncased_2
a49c672b854b1cb37d48bd6ec652e1cd7ca2d200
2021-05-19T13:16:58.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
boychaboy
null
boychaboy/MNLI_bert-base-uncased_2
6
null
transformers
15,150
Entry not found
boychaboy/SNLI_bert-large-uncased
ef7c11b75a17ea8ca8f28a096ad09581c6b5cc5f
2021-05-19T13:29:35.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
boychaboy
null
boychaboy/SNLI_bert-large-uncased
6
null
transformers
15,151
Entry not found
bs-modeling-metadata/html-metadata-exp1-subexp1-1857108
587ff5a530a75d5cc269dfcdcc1d2326c54c3e00
2021-11-13T09:25:42.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
bs-modeling-metadata
null
bs-modeling-metadata/html-metadata-exp1-subexp1-1857108
6
null
transformers
15,152
--- widget: - text: " htmlOn ||| <div" --- # Work In Progress # How to use? To generate text with HTML, the sentence must start with ` htmlOn |||` (note the space at the beginning 😉). To generate normal text, you don't need to add anything. # Training details We continued the pre-training of [gpt2](https://huggingface.co/gpt2). Dataset:[Natural_Questions_HTML_reduced_all](https://huggingface.co/datasets/SaulLu/Natural_Questions_HTML_reduced_all) 50% of the examples in the training data contained all HTML tags with only their `id` and `class` attributes. 50% of the examples were just plain text. Training example with metadata: ``` htmlOn ||| <li id:n-sitesupport><a>Donate to Wikipedia</a></li> <li id:n-shoplink><a>Wikipedia store</a></li> </ul></div></div><div class:portal id:p-interaction><h3 id:p-interaction-label>Interaction</h3> <div class:body><ul><li id:n-help><a>Help</a></li> <li id:n-aboutsite><a>About Wikipedia</a></li> <li id:n-portal><a>Community portal</a></li> <li id:n-recentchanges><a>Recent changes</a></li> <li id:n-contactpage><a>Contact page</a></li> </ul></div></div><div class:portal id:p-tb><h3 id:p-tb-label>Tools</h3> <div class:body><ul><li id:t-whatlinkshere><a>What links here</a></li> <li id:t-recentchangeslinked><a>Related changes</a></li> <li id:t-upload><a>Upload file</a></li> <li id:t-specialpages><a>Special pages</a></li> <li id:t-permalink><a>Permanent link</a></li> <li id:t-info><a>Page information</a></li> <li id:t-wikibase><a>Wikidata item</a></li> <li id:t-cite><a>Cite this page</a></li> </ul></div></div><div class:portal id:p-coll-print_export><h3 id:p-coll-print_export-label>Print/export</h3> <div class:body><ul><li id:coll-create_a_book><a>Create a book</a></li> <li id:coll-download-as-rdf2latex><a>Download as PDF</a></li> <li id:t-print><a>Printable version</a></li> </ul></div></div><div class:portal id:p-lang><h3 id:p-lang-label>Languages</h3> <div class:body><ul><li class:interlanguage-link interwiki-ca><a class:interlanguage-link-target>Català</a></li> <li class:interlanguage-link interwiki-da><a class:interlanguage-link-target>Dansk</a></li> <li class:interlanguage-link interwiki-de><a class:interlanguage-link-target>Deutsch</a></li> <li class:interlanguage-link interwiki-es><a class:interlanguage-link-target>Español</a></li> <li class:interlanguage-link interwiki-eu><a class:interlanguage-link-target>Euskara</a></li> <li class:interlanguage-link interwiki-fa><a class:interlanguage-link-target>فارسی</a></li> <li class:interlanguage-link interwiki-fr><a class:interlanguage-link-target>Français</a></li> <li class:interlanguage-link interwiki-id><a class:interlanguage-link-target>Bahasa Indonesia</a></li> <li class:interlanguage-link interwiki-nl><a class:interlanguage-link-target>Nederlands</a></li> <li class:interlanguage-link interwiki-pt><a class:interlanguage-link-target>Português</a></li> <li class:interlanguage-link interwiki-fi><a class:interlanguage-link-target>Suomi</a></li> <li class:interlanguage-link interwiki-vi><a class:interlanguage-link-target>Tiếng Việt</a></li> <button class:mw-interlanguage-selector mw-ui-button>5 more</button> </ul><div class:after-portlet after-portlet-lang><span class:wb-langlinks-edit wb-langlinks-link><a class:wbc-editpage>Edit links</a></span></div> </div></div></ ```
bsc/roberta-base-ca-cased
d07aef1e3bf1e988ce41c8dafa592751ad64b10a
2021-09-06T16:22:51.000Z
[ "pytorch", "ca", "masked-lm", "BERTa", "catalan", "license:apache-2.0" ]
null
false
bsc
null
bsc/roberta-base-ca-cased
6
1
null
15,153
--- language: "ca" tags: - masked-lm - BERTa - catalan widget: - text: "El Català és una llengua molt <mask>." - text: "Salvador Dalí va viure a <mask>." - text: "La Costa Brava té les millors <mask> d'Espanya." - text: "El cacaolat és un batut de <mask>." - text: "<mask> és la capital de la Garrotxa." - text: "Vaig al <mask> a buscar bolets." - text: "Antoni Gaudí vas ser un <mask> molt important per la ciutat." - text: "Catalunya és una referència en <mask> a nivell europeu." license: apache-2.0 --- # BERTa: RoBERTa-based Catalan language model <font size="+2"> <strong> <span style="color:red"> WARNING: </span> </strong> </font> This repository is now superseded by [BSC-TeMU/roberta-base-ca](https://huggingface.co/BSC-TeMU/roberta-base-ca). Future updates will be released in the new repository, so it is highly recommended to load the model using the new path: ```python from transformers import AutoModel model = AutoModel.from_pretrained("BSC-TeMU/roberta-base-ca") ``` From now on, all models and datasets from the BSC's Text Mining Unit will be published on the [official organization account](https://huggingface.co/BSC-TeMU).
burmaxwell/Bert_temp
4adb721ebdb10236a1294527f12bd390a98b7ee3
2022-02-21T20:05:21.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
burmaxwell
null
burmaxwell/Bert_temp
6
null
transformers
15,154
Entry not found
byeongal/bart-base
6690ae39f74cc4054a942175536af3fa1d78da20
2021-07-07T05:58:29.000Z
[ "pytorch", "bart", "feature-extraction", "en", "transformers", "license:mit" ]
feature-extraction
false
byeongal
null
byeongal/bart-base
6
null
transformers
15,155
--- license: mit thumbnail: https://huggingface.co/front/thumbnails/facebook.png language: en tags: - bart --- # BART base model for Teachable NLP - This model forked from [bart-base](https://huggingface.co/facebook/bart-base) for fine tune [Teachable NLP](https://ainize.ai/teachable-nlp). The Bart model was proposed by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer on 29 Oct, 2019. According to the abstract, Bart uses a standard seq2seq/machine translation architecture with a bidirectional encoder (like BERT) and a left-to-right decoder (like GPT). The pretraining task involves randomly shuffling the order of the original sentences and a novel in-filling scheme, where spans of text are replaced with a single mask token. BART is particularly effective when fine tuned for text generation but also works well for comprehension tasks. It matches the performance of RoBERTa with comparable training resources on GLUE and SQuAD, achieves new state-of-the-art results on a range of abstractive dialogue, question answering, and summarization tasks, with gains of up to 6 ROUGE. The Authors’ code can be found here: https://github.com/pytorch/fairseq/tree/master/examples/bart
caioamb/distilbert-base-uncased-finetuned-cola
0e328dc438c3941358f45e8f392b49bb648e6f18
2021-11-18T21:36:10.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
caioamb
null
caioamb/distilbert-base-uncased-finetuned-cola
6
null
transformers
15,156
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5166623535745778 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.7647 - Matthews Correlation: 0.5167 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5294 | 1.0 | 535 | 0.5029 | 0.4356 | | 0.3507 | 2.0 | 1070 | 0.5285 | 0.4884 | | 0.2406 | 3.0 | 1605 | 0.6550 | 0.5138 | | 0.1825 | 4.0 | 2140 | 0.7647 | 0.5167 | | 0.1282 | 5.0 | 2675 | 0.8664 | 0.5074 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
caps1994/DialoGPT-small-chrisbot
67038eab2009acdb28e06e25340b58c1380ac0e8
2021-09-10T20:52:46.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
caps1994
null
caps1994/DialoGPT-small-chrisbot
6
null
transformers
15,157
--- tags: - conversational --- #Chris DialoGPT Model
celential/erc
69c3afdb710fb8d06afe542e236fc6dd5e161ac0
2020-09-04T10:15:02.000Z
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
false
celential
null
celential/erc
6
null
transformers
15,158
Entry not found
chinhon/pegasus-multi_news-commentaries_hdwriter
9731cf8560f98072ab2657522cb5b237e7f97108
2022-01-16T10:14:41.000Z
[ "pytorch", "tensorboard", "pegasus", "text2text-generation", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
chinhon
null
chinhon/pegasus-multi_news-commentaries_hdwriter
6
null
transformers
15,159
--- tags: - generated_from_trainer metrics: - rouge model-index: - name: pegasus-multi_news-commentaries_hdwriter results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-multi_news-commentaries_hdwriter This model is a fine-tuned version of [google/pegasus-multi_news](https://huggingface.co/google/pegasus-multi_news) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.7259 - Rouge1: 21.3899 - Rouge2: 6.2409 - Rougel: 16.6172 - Rougelsum: 17.808 - Gen Len: 34.7016 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 2.847 | 1.0 | 4710 | 2.7513 | 20.5559 | 5.9762 | 16.1223 | 17.2872 | 35.81 | | 2.6399 | 2.0 | 9420 | 2.6890 | 21.2052 | 6.0104 | 16.5753 | 17.6517 | 34.5242 | | 2.3811 | 3.0 | 14130 | 2.6904 | 21.2358 | 6.1416 | 16.6053 | 17.7067 | 34.6157 | | 2.2388 | 4.0 | 18840 | 2.7112 | 21.3806 | 6.1895 | 16.6909 | 17.7504 | 34.5227 | | 2.1589 | 5.0 | 23550 | 2.7259 | 21.3899 | 6.2409 | 16.6172 | 17.808 | 34.7016 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
chisadi/nice-distilbert-v2
2cb9112b07e4f30502de1d17014b96fe84414aa8
2021-11-02T19:21:06.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
chisadi
null
chisadi/nice-distilbert-v2
6
null
transformers
15,160
### Distibert model finetuned on the task of classifying product descriptions to one of 45 broad [NICE classifications](https://www.wipo.int/classifications/nice/en/)
chmanoj/xls-r-300m-te
6c8a9b51029f8011debfa3a6bb0bc8cf0507d352
2022-03-24T11:53:34.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "te", "dataset:openslr", "dataset:SLR66", "transformers", "openslr_SLR66", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
chmanoj
null
chmanoj/xls-r-300m-te
6
null
transformers
15,161
--- language: - te license: apache-2.0 tags: - automatic-speech-recognition - openslr_SLR66 - generated_from_trainer - robust-speech-event - hf-asr-leaderboard datasets: - openslr - SLR66 metrics: - wer model-index: - name: xls-r-300m-te results: - task: type: automatic-speech-recognition name: Speech Recognition dataset: type: openslr name: Open SLR args: SLR66 metrics: - type: wer value: 24.695121951219512 name: Test WER - type: cer value: 4.861934182322532 name: Test CER --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the OPENSLR_SLR66 - NA dataset. It achieves the following results on the evaluation set: - Loss: 0.2680 - Wer: 0.3467 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.0304 | 4.81 | 500 | 1.5676 | 1.0554 | | 1.5263 | 9.61 | 1000 | 0.4693 | 0.8023 | | 1.5299 | 14.42 | 1500 | 0.4368 | 0.7311 | | 1.5063 | 19.23 | 2000 | 0.4360 | 0.7302 | | 1.455 | 24.04 | 2500 | 0.4213 | 0.6692 | | 1.4755 | 28.84 | 3000 | 0.4329 | 0.5943 | | 1.352 | 33.65 | 3500 | 0.4074 | 0.5765 | | 1.3122 | 38.46 | 4000 | 0.3866 | 0.5630 | | 1.2799 | 43.27 | 4500 | 0.3860 | 0.5480 | | 1.212 | 48.08 | 5000 | 0.3590 | 0.5317 | | 1.1645 | 52.88 | 5500 | 0.3283 | 0.4757 | | 1.0854 | 57.69 | 6000 | 0.3162 | 0.4687 | | 1.0292 | 62.5 | 6500 | 0.3126 | 0.4416 | | 0.9607 | 67.31 | 7000 | 0.2990 | 0.4066 | | 0.9156 | 72.12 | 7500 | 0.2870 | 0.4009 | | 0.8329 | 76.92 | 8000 | 0.2791 | 0.3909 | | 0.7979 | 81.73 | 8500 | 0.2770 | 0.3670 | | 0.7144 | 86.54 | 9000 | 0.2841 | 0.3661 | | 0.6997 | 91.35 | 9500 | 0.2721 | 0.3485 | | 0.6568 | 96.15 | 10000 | 0.2681 | 0.3437 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
choondrise/emolve
517269ec2c4d8e75a5bf811417a0be037ae3de41
2022-01-18T22:13:00.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
choondrise
null
choondrise/emolve
6
null
transformers
15,162
Entry not found
chrommium/rubert-base-cased-sentence-finetuned-sent_in_news_sents
2ea93b79903ce92d36caaf425d6bdd8ce402d335
2021-09-27T19:10:48.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
chrommium
null
chrommium/rubert-base-cased-sentence-finetuned-sent_in_news_sents
6
null
transformers
15,163
--- tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: rubert-base-cased-sentence-finetuned-sent_in_news_sents results: - task: name: Text Classification type: text-classification metrics: - name: Accuracy type: accuracy value: 0.7224199288256228 - name: F1 type: f1 value: 0.5137303178348194 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # rubert-base-cased-sentence-finetuned-sent_in_news_sents This model is a fine-tuned version of [DeepPavlov/rubert-base-cased-sentence](https://huggingface.co/DeepPavlov/rubert-base-cased-sentence) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.9506 - Accuracy: 0.7224 - F1: 0.5137 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 14 - eval_batch_size: 14 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 81 | 1.0045 | 0.6690 | 0.1388 | | No log | 2.0 | 162 | 0.9574 | 0.6228 | 0.2980 | | No log | 3.0 | 243 | 1.0259 | 0.6477 | 0.3208 | | No log | 4.0 | 324 | 1.1262 | 0.6619 | 0.4033 | | No log | 5.0 | 405 | 1.3377 | 0.6299 | 0.3909 | | No log | 6.0 | 486 | 1.5716 | 0.6868 | 0.3624 | | 0.6085 | 7.0 | 567 | 1.6286 | 0.6762 | 0.4130 | | 0.6085 | 8.0 | 648 | 1.6450 | 0.6940 | 0.4775 | | 0.6085 | 9.0 | 729 | 1.7108 | 0.7224 | 0.4920 | | 0.6085 | 10.0 | 810 | 1.8792 | 0.7046 | 0.5028 | | 0.6085 | 11.0 | 891 | 1.8670 | 0.7153 | 0.4992 | | 0.6085 | 12.0 | 972 | 1.8856 | 0.7153 | 0.4934 | | 0.0922 | 13.0 | 1053 | 1.9506 | 0.7224 | 0.5137 | | 0.0922 | 14.0 | 1134 | 2.0363 | 0.7189 | 0.4761 | | 0.0922 | 15.0 | 1215 | 2.0601 | 0.7224 | 0.5053 | | 0.0922 | 16.0 | 1296 | 2.0813 | 0.7153 | 0.5038 | | 0.0922 | 17.0 | 1377 | 2.0960 | 0.7189 | 0.5065 | | 0.0922 | 18.0 | 1458 | 2.1060 | 0.7224 | 0.5098 | | 0.0101 | 19.0 | 1539 | 2.1153 | 0.7260 | 0.5086 | | 0.0101 | 20.0 | 1620 | 2.1187 | 0.7260 | 0.5086 | ### Framework versions - Transformers 4.10.3 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
clayfox/DialoGPT-medium-Hiccup
cc89b5b1e208805f61e756a698ae751e88cb35ed
2021-11-28T23:20:59.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
clayfox
null
clayfox/DialoGPT-medium-Hiccup
6
null
transformers
15,164
--- tags: - conversational --- # hiccupBot medium GPT
clee7/layoutlm-finetune-sroie
a1a16cd28179433276517a92420bfc12bdef922f
2021-09-18T02:19:18.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
clee7
null
clee7/layoutlm-finetune-sroie
6
null
transformers
15,165
Entry not found
clem/autonlp-test3-2101782
096959098c471d43246176cee7dae24f8a85151b
2021-06-29T04:19:34.000Z
[ "pytorch", "bert", "text-classification", "en", "dataset:clem/autonlp-data-test3", "transformers", "autonlp" ]
text-classification
false
clem
null
clem/autonlp-test3-2101782
6
null
transformers
15,166
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - clem/autonlp-data-test3 --- # Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 2101782 ## Validation Metrics - Loss: 0.015991805121302605 - Accuracy: 1.0 - Precision: 1.0 - Recall: 1.0 - AUC: 1.0 - F1: 1.0 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/clem/autonlp-test3-2101782 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("clem/autonlp-test3-2101782", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("clem/autonlp-test3-2101782", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
climatebert/distilroberta-base-climate-d
72f751911614676b6129416de8e5aa777071a517
2021-10-26T08:22:01.000Z
[ "pytorch", "roberta", "fill-mask", "en", "arxiv:2110.12010", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
climatebert
null
climatebert/distilroberta-base-climate-d
6
2
transformers
15,167
--- language: en license: apache-2.0 --- Using the [DistilRoBERTa](https://huggingface.co/distilroberta-base) model as starting point, the ClimateBERT Language Model is additionally pretrained on a text corpus comprising climate-related research paper abstracts, corporate and general news and reports from companies. The underlying methodology can be found in our [language model research paper](https://arxiv.org/abs/2110.12010). ### BibTeX entry and citation info ```bibtex @article{wkbl2021, title={ClimateBERT: A Pretrained Language Model for Climate-Related Text}, author={Webersinke, Nicolas and Kraus, Mathias and Bingler, Julia and Leippold, Markus}, journal={arXiv preprint arXiv:2110.12010}, year={2021} } ```
codingJacob/distilbert-base-uncased-finetuned-ner
a341de129b927e66a648de2cccbe514a113d646b
2022-07-26T06:35:39.000Z
[ "pytorch", "tensorboard", "distilbert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible" ]
token-classification
false
codingJacob
null
codingJacob/distilbert-base-uncased-finetuned-ner
6
null
transformers
15,168
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model_index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metric: name: Accuracy type: accuracy value: 0.9843042559613643 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0611 - Precision: 0.9272 - Recall: 0.9382 - F1: 0.9327 - Accuracy: 0.9843 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2432 | 1.0 | 878 | 0.0689 | 0.9132 | 0.9203 | 0.9168 | 0.9813 | | 0.0507 | 2.0 | 1756 | 0.0608 | 0.9208 | 0.9346 | 0.9276 | 0.9835 | | 0.03 | 3.0 | 2634 | 0.0611 | 0.9272 | 0.9382 | 0.9327 | 0.9843 | ### Framework versions - Transformers 4.9.1 - Pytorch 1.9.0+cu102 - Datasets 1.10.2 - Tokenizers 0.10.3
cogito233/distilbert-base-uncased-finetuned-ner
a7a0147cf94260d98e9c949ba689d7d8d1ca8695
2021-08-17T10:12:35.000Z
[ "pytorch", "tensorboard", "distilbert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible" ]
token-classification
false
cogito233
null
cogito233/distilbert-base-uncased-finetuned-ner
6
null
transformers
15,169
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model_index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metric: name: Accuracy type: accuracy value: 0.9837323462595516 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0605 - Precision: 0.9251 - Recall: 0.9357 - F1: 0.9304 - Accuracy: 0.9837 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2402 | 1.0 | 878 | 0.0694 | 0.9168 | 0.9215 | 0.9191 | 0.9814 | | 0.051 | 2.0 | 1756 | 0.0595 | 0.9249 | 0.9330 | 0.9289 | 0.9833 | | 0.0302 | 3.0 | 2634 | 0.0605 | 0.9251 | 0.9357 | 0.9304 | 0.9837 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
cointegrated/rut5-small-chitchat2
c76783c3b53253c077b33947be271677625adfd1
2022-01-16T19:40:25.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
cointegrated
null
cointegrated/rut5-small-chitchat2
6
null
transformers
15,170
A version of https://huggingface.co/cointegrated/rut5-small-chitchat which is more dull but less toxic.
damlab/HIV_V3_Coreceptor
fdafbd5a16b876b331d494a913b3429c2fc01aa8
2022-02-24T18:34:26.000Z
[ "pytorch", "bert", "text-classification", "transformers", "license:mit" ]
text-classification
false
damlab
null
damlab/HIV_V3_Coreceptor
6
null
transformers
15,171
--- license: mit widget: - text: 'C T R P N N N T R K S I R I Q R G P G R A F V T I G K I G N M R Q A H C' - text: 'C T R P N N N T R K S I H I G P G R A F Y T T G Q I I G D I R Q A Y C' - text: 'C T R P N N N T R R S I R I G P G Q A F Y A T G D I I G D I R Q A H C' - text: 'C G R P N N H R I K G L R I G P G R A F F A M G A I G G G E I R Q A H C' --- # HIV_V3_coreceptor model ## Table of Contents - [Summary](#model-summary) - [Model Description](#model-description) - [Intended Uses & Limitations](#intended-uses-&-limitations) - [How to Use](#how-to-use) - [Training Data](#training-data) - [Training Procedure](#training-procedure) - [Preprocessing](#preprocessing) - [Training](#training) - [Evaluation Results](#evaluation-results) - [BibTeX Entry and Citation Info](#bibtex-entry-and-citation-info) ## Summary The HIV-BERT-Coreceptor model was trained as a refinement of the [HIV-BERT model](https://huggingface.co/damlab/HIV_BERT) and serves to better predict HIV V3 coreceptor tropism. HIV-BERT is a model refined from the [ProtBert-BFD model](https://huggingface.co/Rostlab/prot_bert_bfd) to better fulfill HIV-centric tasks. This model was then trained using HIV V3 sequences from the [Los Alamos HIV Sequence Database](https://www.hiv.lanl.gov/content/sequence/HIV/mainpage.html), allowing even more precise prediction of V3 coreceptor tropism than the HIV-BERT model can provide. ## Model Description The HIV-BERT-Coreceptor model is intended to predict the Co-receptor tropism of HIV from a segment of the envelope protein. These envelope proteins encapsulate the virus and interact with the host cell through the human CD4 receptor. HIV then requires the interaction of one, of two, co-receptors: CCR5 or CXCR4. The availability of these co-receptors on different cell types allows the virus to invade different areas of the body and evade antiretroviral therapy. The 3rd variable loop of the envelope protein, the V3 loop, is responsible for this interaction. Given a V3 loop sequence, the HIV-BERT-Coreceptor model will predict the likelihood of binding to each of these co-receptors. ## Intended Uses & Limitations This tool can be used as a predictor of HIV tropism from the Env-V3 loop. It can recognize both R5, X4, and dual tropic viruses natively. It should not be considered a clinical diagnostic tool. This tool was trained using the [Los Alamos HIV sequence dataset](https://www.hiv.lanl.gov/content/sequence/HIV/mainpage.html). Due to the sampling nature of this database, it is predominantly composed of subtype B sequences from North America and Europe with only minor contributions of Subtype C, A, and D. Currently, there was no effort made to balance the performance across these classes. As such, one should consider refinement with additional sequences to perform well on non-B sequences. ## How to use *Need to add* ## Training Data This model was trained using the [damlab/HIV_V3_coreceptor dataset](https://huggingface.co/datasets/damlab/HIV_V3_coreceptor) using the 0th fold. The dataset consists of 2935 V3 sequences (approximately 35 tokens each) extracted from the [Los Alamos HIV Sequence database](https://www.hiv.lanl.gov/content/sequence/HIV/mainpage.html). ## Training Procedure ### Preprocessing As with the [rostlab/Prot-bert-bfd model](https://huggingface.co/Rostlab/prot_bert_bfd), the rare amino acids U, Z, O, and B were converted to X and spaces were added between each amino acid. All strings were concatenated and chunked into 256 token chunks for training. A random 20% of chunks were held for validation. ### Training The [damlab/HIV-BERT model](https://huggingface.co/damlab/HIV_BERT) was used as the initial weights for an AutoModelforClassificiation. The model was trained with a learning rate of 1E-5, 50K warm-up steps, and a cosine_with_restarts learning rate schedule and continued until 3 consecutive epochs did not improve the loss on the held-out dataset. As this is a multiple classification task (a protein can bind to CCR5, CXCR4, neither, or both) the loss was calculated as the Binary Cross Entropy for each category. The BCE was weighted by the inverse of the class ratio to balance the weight across the class imbalance. ## Evaluation Results *Need to add* ## BibTeX Entry and Citation Info [More Information Needed]
danasone/bart-small-ru-en
701f1d01e2658527e052bd3c83515eb14440f220
2022-01-19T06:13:26.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
danasone
null
danasone/bart-small-ru-en
6
1
transformers
15,172
Entry not found
danildany/DialoGPT-small-MichaelScott
0a9fe60182e2d06a5732804f7ec01d15e2ed2306
2021-08-30T16:13:33.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
danildany
null
danildany/DialoGPT-small-MichaelScott
6
null
transformers
15,173
--- tags: - conversational --- # Michael Scott DialoGPT Model
danlou/distilbert-base-uncased-finetuned-rte
37fb093db125d8f2bb6d013347dc25406354eed8
2022-02-07T16:25:01.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
danlou
null
danlou/distilbert-base-uncased-finetuned-rte
6
null
transformers
15,174
Testing
danny481/Final_ChatBot
3bf6fa868962cd1c32ac6e908c5bdd7c2cc74b65
2021-12-29T16:59:15.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
danny481
null
danny481/Final_ChatBot
6
null
transformers
15,175
--- tags: - conversational --- #ChatBot updated by datng
daveccampbell/xlm-roberta-base-finetuned-marc-en
5fd37eb8abda833a6f5c9135c5ff791682380abe
2021-10-22T13:20:31.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "text-classification", "dataset:amazon_reviews_multi", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
daveccampbell
null
daveccampbell/xlm-roberta-base-finetuned-marc-en
6
null
transformers
15,176
--- license: mit tags: - generated_from_trainer datasets: - amazon_reviews_multi model-index: - name: xlm-roberta-base-finetuned-marc-en results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-marc-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.9199 - Mae: 0.4756 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.1705 | 1.0 | 235 | 0.9985 | 0.5854 | | 0.9721 | 2.0 | 470 | 0.9199 | 0.4756 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
dbmdz/bert-base-historic-english-cased
de65619ffdc0218498a2c99774854f2273eaebc1
2021-11-18T21:30:42.000Z
[ "pytorch", "jax", "tensorboard", "bert", "fill-mask", "english", "transformers", "license:mit", "autotrain_compatible" ]
fill-mask
false
dbmdz
null
dbmdz/bert-base-historic-english-cased
6
1
transformers
15,177
--- language: english license: mit widget: - text: "and I cannot conceive the reafon why [MASK] hath" --- # Historic Language Models (HLMs) ## Languages Our Historic Language Models Zoo contains support for the following languages - incl. their training data source: | Language | Training data | Size | -------- | ------------- | ---- | German | [Europeana](http://www.europeana-newspapers.eu/) | 13-28GB (filtered) | French | [Europeana](http://www.europeana-newspapers.eu/) | 11-31GB (filtered) | English | [British Library](https://data.bl.uk/digbks/db14.html) | 24GB (year filtered) | Finnish | [Europeana](http://www.europeana-newspapers.eu/) | 1.2GB | Swedish | [Europeana](http://www.europeana-newspapers.eu/) | 1.1GB ## Models At the moment, the following models are available on the model hub: | Model identifier | Model Hub link | --------------------------------------------- | -------------------------------------------------------------------------- | `dbmdz/bert-base-historic-multilingual-cased` | [here](https://huggingface.co/dbmdz/bert-base-historic-multilingual-cased) | `dbmdz/bert-base-historic-english-cased` | [here](https://huggingface.co/dbmdz/bert-base-historic-english-cased) | `dbmdz/bert-base-finnish-europeana-cased` | [here](https://huggingface.co/dbmdz/bert-base-finnish-europeana-cased) | `dbmdz/bert-base-swedish-europeana-cased` | [here](https://huggingface.co/dbmdz/bert-base-swedish-europeana-cased) # Corpora Stats ## German Europeana Corpus We provide some statistics using different thresholds of ocr confidences, in order to shrink down the corpus size and use less-noisier data: | OCR confidence | Size | -------------- | ---- | **0.60** | 28GB | 0.65 | 18GB | 0.70 | 13GB For the final corpus we use a OCR confidence of 0.6 (28GB). The following plot shows a tokens per year distribution: ![German Europeana Corpus Stats](stats/figures/german_europeana_corpus_stats.png) ## French Europeana Corpus Like German, we use different ocr confidence thresholds: | OCR confidence | Size | -------------- | ---- | 0.60 | 31GB | 0.65 | 27GB | **0.70** | 27GB | 0.75 | 23GB | 0.80 | 11GB For the final corpus we use a OCR confidence of 0.7 (27GB). The following plot shows a tokens per year distribution: ![French Europeana Corpus Stats](stats/figures/french_europeana_corpus_stats.png) ## British Library Corpus Metadata is taken from [here](https://data.bl.uk/digbks/DB21.html). Stats incl. year filtering: | Years | Size | ----------------- | ---- | ALL | 24GB | >= 1800 && < 1900 | 24GB We use the year filtered variant. The following plot shows a tokens per year distribution: ![British Library Corpus Stats](stats/figures/bl_corpus_stats.png) ## Finnish Europeana Corpus | OCR confidence | Size | -------------- | ---- | 0.60 | 1.2GB The following plot shows a tokens per year distribution: ![Finnish Europeana Corpus Stats](stats/figures/finnish_europeana_corpus_stats.png) ## Swedish Europeana Corpus | OCR confidence | Size | -------------- | ---- | 0.60 | 1.1GB The following plot shows a tokens per year distribution: ![Swedish Europeana Corpus Stats](stats/figures/swedish_europeana_corpus_stats.png) ## All Corpora The following plot shows a tokens per year distribution of the complete training corpus: ![All Corpora Stats](stats/figures/all_corpus_stats.png) # Multilingual Vocab generation For the first attempt, we use the first 10GB of each pretraining corpus. We upsample both Finnish and Swedish to ~10GB. The following tables shows the exact size that is used for generating a 32k and 64k subword vocabs: | Language | Size | -------- | ---- | German | 10GB | French | 10GB | English | 10GB | Finnish | 9.5GB | Swedish | 9.7GB We then calculate the subword fertility rate and portion of `[UNK]`s over the following NER corpora: | Language | NER corpora | -------- | ------------------ | German | CLEF-HIPE, NewsEye | French | CLEF-HIPE, NewsEye | English | CLEF-HIPE | Finnish | NewsEye | Swedish | NewsEye Breakdown of subword fertility rate and unknown portion per language for the 32k vocab: | Language | Subword fertility | Unknown portion | -------- | ------------------ | --------------- | German | 1.43 | 0.0004 | French | 1.25 | 0.0001 | English | 1.25 | 0.0 | Finnish | 1.69 | 0.0007 | Swedish | 1.43 | 0.0 Breakdown of subword fertility rate and unknown portion per language for the 64k vocab: | Language | Subword fertility | Unknown portion | -------- | ------------------ | --------------- | German | 1.31 | 0.0004 | French | 1.16 | 0.0001 | English | 1.17 | 0.0 | Finnish | 1.54 | 0.0007 | Swedish | 1.32 | 0.0 # Final pretraining corpora We upsample Swedish and Finnish to ~27GB. The final stats for all pretraining corpora can be seen here: | Language | Size | -------- | ---- | German | 28GB | French | 27GB | English | 24GB | Finnish | 27GB | Swedish | 27GB Total size is 130GB. # Pretraining ## Multilingual model We train a multilingual BERT model using the 32k vocab with the official BERT implementation on a v3-32 TPU using the following parameters: ```bash python3 run_pretraining.py --input_file gs://histolectra/historic-multilingual-tfrecords/*.tfrecord \ --output_dir gs://histolectra/bert-base-historic-multilingual-cased \ --bert_config_file ./config.json \ --max_seq_length=512 \ --max_predictions_per_seq=75 \ --do_train=True \ --train_batch_size=128 \ --num_train_steps=3000000 \ --learning_rate=1e-4 \ --save_checkpoints_steps=100000 \ --keep_checkpoint_max=20 \ --use_tpu=True \ --tpu_name=electra-2 \ --num_tpu_cores=32 ``` The following plot shows the pretraining loss curve: ![Training loss curve](stats/figures/pretraining_loss_historic-multilingual.png) ## English model The English BERT model - with texts from British Library corpus - was trained with the Hugging Face JAX/FLAX implementation for 10 epochs (approx. 1M steps) on a v3-8 TPU, using the following command: ```bash python3 run_mlm_flax.py --model_type bert \ --config_name /mnt/datasets/bert-base-historic-english-cased/ \ --tokenizer_name /mnt/datasets/bert-base-historic-english-cased/ \ --train_file /mnt/datasets/bl-corpus/bl_1800-1900_extracted.txt \ --validation_file /mnt/datasets/bl-corpus/english_validation.txt \ --max_seq_length 512 \ --per_device_train_batch_size 16 \ --learning_rate 1e-4 \ --num_train_epochs 10 \ --preprocessing_num_workers 96 \ --output_dir /mnt/datasets/bert-base-historic-english-cased-512-noadafactor-10e \ --save_steps 2500 \ --eval_steps 2500 \ --warmup_steps 10000 \ --line_by_line \ --pad_to_max_length ``` The following plot shows the pretraining loss curve: ![Training loss curve](stats/figures/pretraining_loss_historic_english.png) ## Finnish model The BERT model - with texts from Finnish part of Europeana - was trained with the Hugging Face JAX/FLAX implementation for 40 epochs (approx. 1M steps) on a v3-8 TPU, using the following command: ```bash python3 run_mlm_flax.py --model_type bert \ --config_name /mnt/datasets/bert-base-finnish-europeana-cased/ \ --tokenizer_name /mnt/datasets/bert-base-finnish-europeana-cased/ \ --train_file /mnt/datasets/hlms/extracted_content_Finnish_0.6.txt \ --validation_file /mnt/datasets/hlms/finnish_validation.txt \ --max_seq_length 512 \ --per_device_train_batch_size 16 \ --learning_rate 1e-4 \ --num_train_epochs 40 \ --preprocessing_num_workers 96 \ --output_dir /mnt/datasets/bert-base-finnish-europeana-cased-512-dupe1-noadafactor-40e \ --save_steps 2500 \ --eval_steps 2500 \ --warmup_steps 10000 \ --line_by_line \ --pad_to_max_length ``` The following plot shows the pretraining loss curve: ![Training loss curve](stats/figures/pretraining_loss_finnish_europeana.png) ## Swedish model The BERT model - with texts from Swedish part of Europeana - was trained with the Hugging Face JAX/FLAX implementation for 40 epochs (approx. 660K steps) on a v3-8 TPU, using the following command: ```bash python3 run_mlm_flax.py --model_type bert \ --config_name /mnt/datasets/bert-base-swedish-europeana-cased/ \ --tokenizer_name /mnt/datasets/bert-base-swedish-europeana-cased/ \ --train_file /mnt/datasets/hlms/extracted_content_Swedish_0.6.txt \ --validation_file /mnt/datasets/hlms/swedish_validation.txt \ --max_seq_length 512 \ --per_device_train_batch_size 16 \ --learning_rate 1e-4 \ --num_train_epochs 40 \ --preprocessing_num_workers 96 \ --output_dir /mnt/datasets/bert-base-swedish-europeana-cased-512-dupe1-noadafactor-40e \ --save_steps 2500 \ --eval_steps 2500 \ --warmup_steps 10000 \ --line_by_line \ --pad_to_max_length ``` The following plot shows the pretraining loss curve: ![Training loss curve](stats/figures/pretraining_loss_swedish_europeana.png) # Acknowledgments Research supported with Cloud TPUs from Google's TPU Research Cloud (TRC) program, previously known as TensorFlow Research Cloud (TFRC). Many thanks for providing access to the TRC ❤️ Thanks to the generous support from the [Hugging Face](https://huggingface.co/) team, it is possible to download both cased and uncased models from their S3 storage 🤗
dbmdz/bert-tiny-historic-multilingual-cased
4a896955b174aae28e343620109a3dd56f978e14
2021-12-06T14:11:24.000Z
[ "pytorch", "tf", "tensorboard", "bert", "fill-mask", "multilingual", "arxiv:1908.08962", "transformers", "license:mit", "autotrain_compatible" ]
fill-mask
false
dbmdz
null
dbmdz/bert-tiny-historic-multilingual-cased
6
null
transformers
15,178
--- language: multilingual license: mit widget: - text: "and I cannot conceive the reafon why [MASK] hath" - text: "Täkäläinen sanomalehdistö [MASK] erit - täin" - text: "Det vore [MASK] häller nödvändigt att be" - text: "Comme, à cette époque [MASK] était celle de la" - text: "In [MASK] an atmosphärischen Nahrungsmitteln" --- # Historic Language Models (HLMs) ## Languages Our Historic Language Models Zoo contains support for the following languages - incl. their training data source: | Language | Training data | Size | -------- | ------------- | ---- | German | [Europeana](http://www.europeana-newspapers.eu/) | 13-28GB (filtered) | French | [Europeana](http://www.europeana-newspapers.eu/) | 11-31GB (filtered) | English | [British Library](https://data.bl.uk/digbks/db14.html) | 24GB (year filtered) | Finnish | [Europeana](http://www.europeana-newspapers.eu/) | 1.2GB | Swedish | [Europeana](http://www.europeana-newspapers.eu/) | 1.1GB ## Models At the moment, the following models are available on the model hub: | Model identifier | Model Hub link | --------------------------------------------- | -------------------------------------------------------------------------- | `dbmdz/bert-base-historic-multilingual-cased` | [here](https://huggingface.co/dbmdz/bert-base-historic-multilingual-cased) | `dbmdz/bert-base-historic-english-cased` | [here](https://huggingface.co/dbmdz/bert-base-historic-english-cased) | `dbmdz/bert-base-finnish-europeana-cased` | [here](https://huggingface.co/dbmdz/bert-base-finnish-europeana-cased) | `dbmdz/bert-base-swedish-europeana-cased` | [here](https://huggingface.co/dbmdz/bert-base-swedish-europeana-cased) We also released smaller models for the multilingual model: | Model identifier | Model Hub link | ----------------------------------------------- | --------------------------------------------------------------------------- | `dbmdz/bert-tiny-historic-multilingual-cased` | [here](https://huggingface.co/dbmdz/bert-tiny-historic-multilingual-cased) | `dbmdz/bert-mini-historic-multilingual-cased` | [here](https://huggingface.co/dbmdz/bert-mini-historic-multilingual-cased) | `dbmdz/bert-small-historic-multilingual-cased` | [here](https://huggingface.co/dbmdz/bert-small-historic-multilingual-cased) | `dbmdz/bert-medium-historic-multilingual-cased` | [here](https://huggingface.co/dbmdz/bert-base-historic-multilingual-cased) **Notice**: We have released language models for Historic German and French trained on more noisier data earlier - see [this repo](https://github.com/stefan-it/europeana-bert) for more information: | Model identifier | Model Hub link | --------------------------------------------- | -------------------------------------------------------------------------- | `dbmdz/bert-base-german-europeana-cased` | [here](https://huggingface.co/dbmdz/bert-base-german-europeana-cased) | `dbmdz/bert-base-french-europeana-cased` | [here](https://huggingface.co/dbmdz/bert-base-french-europeana-cased) # Corpora Stats ## German Europeana Corpus We provide some statistics using different thresholds of ocr confidences, in order to shrink down the corpus size and use less-noisier data: | OCR confidence | Size | -------------- | ---- | **0.60** | 28GB | 0.65 | 18GB | 0.70 | 13GB For the final corpus we use a OCR confidence of 0.6 (28GB). The following plot shows a tokens per year distribution: ![German Europeana Corpus Stats](stats/figures/german_europeana_corpus_stats.png) ## French Europeana Corpus Like German, we use different ocr confidence thresholds: | OCR confidence | Size | -------------- | ---- | 0.60 | 31GB | 0.65 | 27GB | **0.70** | 27GB | 0.75 | 23GB | 0.80 | 11GB For the final corpus we use a OCR confidence of 0.7 (27GB). The following plot shows a tokens per year distribution: ![French Europeana Corpus Stats](stats/figures/french_europeana_corpus_stats.png) ## British Library Corpus Metadata is taken from [here](https://data.bl.uk/digbks/DB21.html). Stats incl. year filtering: | Years | Size | ----------------- | ---- | ALL | 24GB | >= 1800 && < 1900 | 24GB We use the year filtered variant. The following plot shows a tokens per year distribution: ![British Library Corpus Stats](stats/figures/bl_corpus_stats.png) ## Finnish Europeana Corpus | OCR confidence | Size | -------------- | ---- | 0.60 | 1.2GB The following plot shows a tokens per year distribution: ![Finnish Europeana Corpus Stats](stats/figures/finnish_europeana_corpus_stats.png) ## Swedish Europeana Corpus | OCR confidence | Size | -------------- | ---- | 0.60 | 1.1GB The following plot shows a tokens per year distribution: ![Swedish Europeana Corpus Stats](stats/figures/swedish_europeana_corpus_stats.png) ## All Corpora The following plot shows a tokens per year distribution of the complete training corpus: ![All Corpora Stats](stats/figures/all_corpus_stats.png) # Multilingual Vocab generation For the first attempt, we use the first 10GB of each pretraining corpus. We upsample both Finnish and Swedish to ~10GB. The following tables shows the exact size that is used for generating a 32k and 64k subword vocabs: | Language | Size | -------- | ---- | German | 10GB | French | 10GB | English | 10GB | Finnish | 9.5GB | Swedish | 9.7GB We then calculate the subword fertility rate and portion of `[UNK]`s over the following NER corpora: | Language | NER corpora | -------- | ------------------ | German | CLEF-HIPE, NewsEye | French | CLEF-HIPE, NewsEye | English | CLEF-HIPE | Finnish | NewsEye | Swedish | NewsEye Breakdown of subword fertility rate and unknown portion per language for the 32k vocab: | Language | Subword fertility | Unknown portion | -------- | ------------------ | --------------- | German | 1.43 | 0.0004 | French | 1.25 | 0.0001 | English | 1.25 | 0.0 | Finnish | 1.69 | 0.0007 | Swedish | 1.43 | 0.0 Breakdown of subword fertility rate and unknown portion per language for the 64k vocab: | Language | Subword fertility | Unknown portion | -------- | ------------------ | --------------- | German | 1.31 | 0.0004 | French | 1.16 | 0.0001 | English | 1.17 | 0.0 | Finnish | 1.54 | 0.0007 | Swedish | 1.32 | 0.0 # Final pretraining corpora We upsample Swedish and Finnish to ~27GB. The final stats for all pretraining corpora can be seen here: | Language | Size | -------- | ---- | German | 28GB | French | 27GB | English | 24GB | Finnish | 27GB | Swedish | 27GB Total size is 130GB. # Smaller multilingual models Inspired by the ["Well-Read Students Learn Better: On the Importance of Pre-training Compact Models"](https://arxiv.org/abs/1908.08962) paper, we train smaller models (different layers and hidden sizes), and report number of parameters and pre-training costs: | Model (Layer / Hidden size) | Parameters | Pre-Training time | --------------------------- | ----------: | ----------------------: | hmBERT Tiny ( 2/128) | 4.58M | 4.3 sec / 1,000 steps | hmBERT Mini ( 4/256) | 11.55M | 10.5 sec / 1,000 steps | hmBERT Small ( 4/512) | 29.52M | 20.7 sec / 1,000 steps | hmBERT Medium ( 8/512) | 42.13M | 35.0 sec / 1,000 steps | hmBERT Base (12/768) | 110.62M | 80.0 sec / 1,000 steps We then perform downstream evaluations on the multilingual [NewsEye](https://zenodo.org/record/4573313#.Ya3oVr-ZNzU) dataset: ![NewsEye hmBERT Evaluation](stats/figures/newseye-hmbert-evaluation.png) # Pretraining ## Multilingual model - hmBERT Base We train a multilingual BERT model using the 32k vocab with the official BERT implementation on a v3-32 TPU using the following parameters: ```bash python3 run_pretraining.py --input_file gs://histolectra/historic-multilingual-tfrecords/*.tfrecord \ --output_dir gs://histolectra/bert-base-historic-multilingual-cased \ --bert_config_file ./config.json \ --max_seq_length=512 \ --max_predictions_per_seq=75 \ --do_train=True \ --train_batch_size=128 \ --num_train_steps=3000000 \ --learning_rate=1e-4 \ --save_checkpoints_steps=100000 \ --keep_checkpoint_max=20 \ --use_tpu=True \ --tpu_name=electra-2 \ --num_tpu_cores=32 ``` The following plot shows the pretraining loss curve: ![Training loss curve](stats/figures/pretraining_loss_historic-multilingual.png) ## Smaller multilingual models We use the same parameters as used for training the base model. ### hmBERT Tiny The following plot shows the pretraining loss curve for the tiny model: ![Training loss curve](stats/figures/pretraining_loss_hmbert-tiny.png) ### hmBERT Mini The following plot shows the pretraining loss curve for the mini model: ![Training loss curve](stats/figures/pretraining_loss_hmbert-mini.png) ### hmBERT Small The following plot shows the pretraining loss curve for the small model: ![Training loss curve](stats/figures/pretraining_loss_hmbert-small.png) ### hmBERT Medium The following plot shows the pretraining loss curve for the medium model: ![Training loss curve](stats/figures/pretraining_loss_hmbert-medium.png) ## English model The English BERT model - with texts from British Library corpus - was trained with the Hugging Face JAX/FLAX implementation for 10 epochs (approx. 1M steps) on a v3-8 TPU, using the following command: ```bash python3 run_mlm_flax.py --model_type bert \ --config_name /mnt/datasets/bert-base-historic-english-cased/ \ --tokenizer_name /mnt/datasets/bert-base-historic-english-cased/ \ --train_file /mnt/datasets/bl-corpus/bl_1800-1900_extracted.txt \ --validation_file /mnt/datasets/bl-corpus/english_validation.txt \ --max_seq_length 512 \ --per_device_train_batch_size 16 \ --learning_rate 1e-4 \ --num_train_epochs 10 \ --preprocessing_num_workers 96 \ --output_dir /mnt/datasets/bert-base-historic-english-cased-512-noadafactor-10e \ --save_steps 2500 \ --eval_steps 2500 \ --warmup_steps 10000 \ --line_by_line \ --pad_to_max_length ``` The following plot shows the pretraining loss curve: ![Training loss curve](stats/figures/pretraining_loss_historic_english.png) ## Finnish model The BERT model - with texts from Finnish part of Europeana - was trained with the Hugging Face JAX/FLAX implementation for 40 epochs (approx. 1M steps) on a v3-8 TPU, using the following command: ```bash python3 run_mlm_flax.py --model_type bert \ --config_name /mnt/datasets/bert-base-finnish-europeana-cased/ \ --tokenizer_name /mnt/datasets/bert-base-finnish-europeana-cased/ \ --train_file /mnt/datasets/hlms/extracted_content_Finnish_0.6.txt \ --validation_file /mnt/datasets/hlms/finnish_validation.txt \ --max_seq_length 512 \ --per_device_train_batch_size 16 \ --learning_rate 1e-4 \ --num_train_epochs 40 \ --preprocessing_num_workers 96 \ --output_dir /mnt/datasets/bert-base-finnish-europeana-cased-512-dupe1-noadafactor-40e \ --save_steps 2500 \ --eval_steps 2500 \ --warmup_steps 10000 \ --line_by_line \ --pad_to_max_length ``` The following plot shows the pretraining loss curve: ![Training loss curve](stats/figures/pretraining_loss_finnish_europeana.png) ## Swedish model The BERT model - with texts from Swedish part of Europeana - was trained with the Hugging Face JAX/FLAX implementation for 40 epochs (approx. 660K steps) on a v3-8 TPU, using the following command: ```bash python3 run_mlm_flax.py --model_type bert \ --config_name /mnt/datasets/bert-base-swedish-europeana-cased/ \ --tokenizer_name /mnt/datasets/bert-base-swedish-europeana-cased/ \ --train_file /mnt/datasets/hlms/extracted_content_Swedish_0.6.txt \ --validation_file /mnt/datasets/hlms/swedish_validation.txt \ --max_seq_length 512 \ --per_device_train_batch_size 16 \ --learning_rate 1e-4 \ --num_train_epochs 40 \ --preprocessing_num_workers 96 \ --output_dir /mnt/datasets/bert-base-swedish-europeana-cased-512-dupe1-noadafactor-40e \ --save_steps 2500 \ --eval_steps 2500 \ --warmup_steps 10000 \ --line_by_line \ --pad_to_max_length ``` The following plot shows the pretraining loss curve: ![Training loss curve](stats/figures/pretraining_loss_swedish_europeana.png) # Acknowledgments Research supported with Cloud TPUs from Google's TPU Research Cloud (TRC) program, previously known as TensorFlow Research Cloud (TFRC). Many thanks for providing access to the TRC ❤️ Thanks to the generous support from the [Hugging Face](https://huggingface.co/) team, it is possible to download both cased and uncased models from their S3 storage 🤗
dbragdon/noamlm
e0b9f917093cceaf01ca68d23453da9da738aa2c
2021-06-10T17:15:46.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
dbragdon
null
dbragdon/noamlm
6
null
transformers
15,179
Language model fine-tuned on the articles and speeches of Noam Chomsky.
deepdml/wav2vec2-large-xls-r-300m-basque
cf8ac932da66e732c377bd89594adaa1fa8b7bc4
2022-03-23T18:33:20.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "eu", "dataset:mozilla-foundation/common_voice_7_0", "transformers", "basque", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
deepdml
null
deepdml/wav2vec2-large-xls-r-300m-basque
6
null
transformers
15,180
--- license: apache-2.0 language: eu metrics: - wer - cer tags: - automatic-speech-recognition - basque - generated_from_trainer - hf-asr-leaderboard - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: wav2vec2-large-xls-r-300m-basque results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: eu metrics: - name: Test WER type: wer value: 51.89 - name: Test CER type: cer value: 10.01 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-basque This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.4276 - Wer: 0.5962 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.9902 | 1.29 | 400 | 2.1257 | 1.0 | | 0.9625 | 2.59 | 800 | 0.5695 | 0.7452 | | 0.4605 | 3.88 | 1200 | 0.4276 | 0.5962 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
deeq/dbert-eth2
ff8435ef2266c7f17ea1006dc0b2aa3bfbfc4dc9
2021-08-02T09:11:55.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
deeq
null
deeq/dbert-eth2
6
null
transformers
15,181
Entry not found
deval/distilbert-base-uncased-finetuned-ner
3c4252e15ec7bbc5d809f2960e33057786eac7d9
2021-09-14T19:10:43.000Z
[ "pytorch", "tensorboard", "distilbert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
deval
null
deval/distilbert-base-uncased-finetuned-ner
6
null
transformers
15,182
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9276788676324229 - name: Recall type: recall value: 0.9384718648618414 - name: F1 type: f1 value: 0.9330441552663775 - name: Accuracy type: accuracy value: 0.9843836878643939 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0606 - Precision: 0.9277 - Recall: 0.9385 - F1: 0.9330 - Accuracy: 0.9844 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2454 | 1.0 | 878 | 0.0692 | 0.9106 | 0.9212 | 0.9159 | 0.9809 | | 0.0517 | 2.0 | 1756 | 0.0616 | 0.9203 | 0.9352 | 0.9277 | 0.9834 | | 0.0314 | 3.0 | 2634 | 0.0606 | 0.9277 | 0.9385 | 0.9330 | 0.9844 | ### Framework versions - Transformers 4.10.2 - Pytorch 1.9.0+cu102 - Datasets 1.12.0 - Tokenizers 0.10.3
diegozs97/finetuned-sciie-seed-0-60k
3d1ce11d5e5ea4d1b001d076acbabd98d316e5c9
2021-12-10T01:41:26.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
diegozs97
null
diegozs97/finetuned-sciie-seed-0-60k
6
null
transformers
15,183
Entry not found
diegozs97/finetuned-sciie-seed-4-1000k
f329ea990270c247cdd062de1943ff18c668b492
2021-12-10T01:56:09.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
diegozs97
null
diegozs97/finetuned-sciie-seed-4-1000k
6
null
transformers
15,184
Entry not found
diegozs97/finetuned-sciie-seed-4-1500k
286bc0dc8c6b49f24d641782d02730467f40aa37
2021-12-10T01:57:01.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
diegozs97
null
diegozs97/finetuned-sciie-seed-4-1500k
6
null
transformers
15,185
Entry not found
diegozs97/finetuned-sciie-seed-4-1800k
e55cb9ff78b81c91a6ac9ced52c54d8a010db63a
2021-12-10T01:57:46.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
diegozs97
null
diegozs97/finetuned-sciie-seed-4-1800k
6
null
transformers
15,186
Entry not found
diegozs97/finetuned-sciie-seed-4-200k
d018349fd2388db6d9a3b3dbd1959e259c855955
2021-12-10T01:53:00.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
diegozs97
null
diegozs97/finetuned-sciie-seed-4-200k
6
null
transformers
15,187
Entry not found
diegozs97/finetuned-sciie-seed-4-400k
020ee437bf28354f787168aacc1b29ade9f1105f
2021-12-10T01:53:50.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
diegozs97
null
diegozs97/finetuned-sciie-seed-4-400k
6
null
transformers
15,188
Entry not found
diegozs97/finetuned-sciie-seed-4-700k
b3bf11b6fc1aedf13334d501263bd91a932151de
2021-12-10T01:54:52.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
diegozs97
null
diegozs97/finetuned-sciie-seed-4-700k
6
null
transformers
15,189
Entry not found
diwank/maptask-deberta-pair
35136885a24803c59904be7822781b9181189347
2022-02-03T12:51:24.000Z
[ "pytorch", "tf", "deberta", "text-classification", "transformers", "license:mit" ]
text-classification
false
diwank
null
diwank/maptask-deberta-pair
6
null
transformers
15,190
--- license: mit --- # maptask-deberta-pair Deberta-based Daily MapTask style dialog-act annotations classification model ## Example ```python from simpletransformers.classification import ( ClassificationModel, ClassificationArgs ) model = ClassificationModel("deberta", "diwank/maptask-deberta-pair") predictions, raw_outputs = model.predict([["Say what is the meaning of life?", "I dont know"]]) convert_to_label = lambda n: ["acknowledge (0), align (1), check (2), clarify (3), explain (4), instruct (5), query_w (6), query_yn (7), ready (8), reply_n (9), reply_w (10), reply_y (11)".split(', ')[i] for i in n] convert_to_label(predictions) # reply_n (9) ```
dkleczek/papuGaPT2-finetuned-wierszyki
361d5186b914bf8e4c4c8eb134eb985ee5305240
2021-10-23T20:37:11.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "model-index" ]
text-generation
false
dkleczek
null
dkleczek/papuGaPT2-finetuned-wierszyki
6
null
transformers
15,191
--- tags: - generated_from_trainer model-index: - name: papuGaPT2-finetuned-wierszyki results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # papuGaPT2-finetuned-wierszyki This model is a fine-tuned version of [flax-community/papuGaPT2](https://huggingface.co/flax-community/papuGaPT2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.8122 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 202 | 2.8122 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
dtam/autonlp-covid-fake-news-36839110
66fd6dede0964ce55e7b9a3af1826ef1a8eee4b8
2021-11-29T05:58:03.000Z
[ "pytorch", "albert", "text-classification", "unk", "dataset:dtam/autonlp-data-covid-fake-news", "transformers", "autonlp", "co2_eq_emissions" ]
text-classification
false
dtam
null
dtam/autonlp-covid-fake-news-36839110
6
null
transformers
15,192
--- tags: autonlp language: unk widget: - text: "I love AutoNLP 🤗" datasets: - dtam/autonlp-data-covid-fake-news co2_eq_emissions: 123.79523392848652 --- # Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 36839110 - CO2 Emissions (in grams): 123.79523392848652 ## Validation Metrics - Loss: 0.17188367247581482 - Accuracy: 0.9714953271028037 - Precision: 0.9917948717948718 - Recall: 0.9480392156862745 - AUC: 0.9947452731092438 - F1: 0.9694235588972432 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/dtam/autonlp-covid-fake-news-36839110 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("dtam/autonlp-covid-fake-news-36839110", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("dtam/autonlp-covid-fake-news-36839110", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
dukeme/DialoGPT-small-RDBotv1
afc8d39096b446847f5f0c4aa860c3049b721558
2021-10-25T16:06:20.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
dukeme
null
dukeme/DialoGPT-small-RDBotv1
6
null
transformers
15,193
--- tags: - conversational --- # RDBotv1 DialoGPT Model
ehddnr301/bert-base-ehddnr-ynat
60295ac85ce60ca131b7c95bb8a9b853a09a0381
2021-08-05T06:28:30.000Z
[ "pytorch", "bert", "text-classification", "dataset:klue", "transformers", "generated_from_trainer" ]
text-classification
false
ehddnr301
null
ehddnr301/bert-base-ehddnr-ynat
6
null
transformers
15,194
--- tags: - generated_from_trainer datasets: - klue metrics: - f1 model_index: - name: bert-base-ehddnr-ynat results: - task: name: Text Classification type: text-classification dataset: name: klue type: klue args: ynat metric: name: F1 type: f1 value: 0.8720568553403009 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-ehddnr-ynat This model is a fine-tuned version of [klue/bert-base](https://huggingface.co/klue/bert-base) on the klue dataset. It achieves the following results on the evaluation set: - Loss: 0.3587 - F1: 0.8721 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 179 | 0.4398 | 0.8548 | | No log | 2.0 | 358 | 0.3587 | 0.8721 | | 0.3859 | 3.0 | 537 | 0.3639 | 0.8707 | | 0.3859 | 4.0 | 716 | 0.3592 | 0.8692 | | 0.3859 | 5.0 | 895 | 0.3646 | 0.8717 | ### Framework versions - Transformers 4.9.1 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
eliasbe/XLMR-ENIS-finetuned-ner
5816eb5d2c01fa17b483d95f9ed289d317599bf9
2021-10-05T14:03:47.000Z
[ "pytorch", "tensorboard", "roberta", "token-classification", "dataset:mim_gold_ner", "transformers", "generated_from_trainer", "license:agpl-3.0", "model-index", "autotrain_compatible" ]
token-classification
false
eliasbe
null
eliasbe/XLMR-ENIS-finetuned-ner
6
null
transformers
15,195
--- license: agpl-3.0 tags: - generated_from_trainer datasets: - mim_gold_ner metrics: - precision - recall - f1 - accuracy model-index: - name: XLMR-ENIS-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: mim_gold_ner type: mim_gold_ner args: mim-gold-ner metrics: - name: Precision type: precision value: 0.9002453676283949 - name: Recall type: recall value: 0.896 - name: F1 type: f1 value: 0.8981176669198953 - name: Accuracy type: accuracy value: 0.9843747637694087 widget: - text: systurnar guðrún og monique voru einar í skóginum umkringdar víði, eik og reyni með þá ósk að sameinast fjölskyldu sinni sem fór á mai thai og í bíó paradís að sjá jim carey leika í the eternal sunshine of the spotless mind. --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # XLMR-ENIS-finetuned-ner This model is a fine-tuned version of [vesteinn/XLMR-ENIS](https://huggingface.co/vesteinn/XLMR-ENIS) on the mim_gold_ner dataset. It achieves the following results on the evaluation set: - Loss: 0.0827 - Precision: 0.9002 - Recall: 0.896 - F1: 0.8981 - Accuracy: 0.9844 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0567 | 1.0 | 2904 | 0.1081 | 0.8486 | 0.8140 | 0.8309 | 0.9796 | | 0.0302 | 2.0 | 5808 | 0.0906 | 0.8620 | 0.8298 | 0.8456 | 0.9818 | | 0.0197 | 3.0 | 8712 | 0.0948 | 0.8691 | 0.8447 | 0.8567 | 0.9826 | ### Framework versions - Transformers 4.11.2 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
emrecan/bert-base-turkish-cased-snli_tr
d5ee7342154498a499fddb6b1a42b4a027b023ae
2021-12-01T10:49:12.000Z
[ "pytorch", "bert", "text-classification", "tr", "dataset:nli_tr", "transformers", "zero-shot-classification", "nli", "license:apache-2.0" ]
zero-shot-classification
false
emrecan
null
emrecan/bert-base-turkish-cased-snli_tr
6
null
transformers
15,196
--- language: - tr tags: - zero-shot-classification - nli - pytorch pipeline_tag: zero-shot-classification license: apache-2.0 datasets: - nli_tr widget: - text: "Dolar yükselmeye devam ediyor." candidate_labels: "ekonomi, siyaset, spor" - text: "Senaryo çok saçmaydı, beğendim diyemem." candidate_labels: "olumlu, olumsuz" ---
enelpi/electra-base-discriminator-finetuned_squadv1_tr
f550c0ad520cf855a30e3da6780b48d9c5c81e03
2020-07-31T16:45:58.000Z
[ "pytorch", "electra", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
enelpi
null
enelpi/electra-base-discriminator-finetuned_squadv1_tr
6
null
transformers
15,197
Entry not found
enelpol/czywiesz-context
d8239eb81d260499a0c2886d981f026b944719c7
2021-12-21T21:25:17.000Z
[ "pytorch", "bert", "feature-extraction", "pl", "dataset:enelpol/czywiesz", "transformers" ]
feature-extraction
false
enelpol
null
enelpol/czywiesz-context
6
null
transformers
15,198
--- language: pl datasets: - enelpol/czywiesz --- # Model description The model was created for selective question answering in Polish. I.e. it is used to find passages containing the answers to the given question. It is used to encode the contexts (aka passages) in the DPR bi-encoder architecture. The architecture requires two separate models. The question part has to be encoded with the corresponding [question encoder](https://huggingface.co/enelpol/czywiesz-question). The model was created by fine-tuning [Herbert base cased](https://huggingface.co/allegro/herbert-base-cased) on "Czywiesz" dataset. [Czywiesz](https://clarin-pl.eu/dspace/handle/11321/39) dataset contains questions and Wikipedia articles extracted from the Polish Wikipedia. # Usage It is the easiest to use the model with the [Haystack framework](https://haystack.deepset.ai/overview/intro). ```python from haystack.document_stores import FAISSDocumentStore from haystack.retriever import DensePassageRetriever document_store = FAISSDocumentStore(faiss_index_factory_str="Flat") retriever = DensePassageRetriever( document_store=document_store, query_embedding_model="enelpol/czywiesz-question", passage_embedding_model="enelpol/czywiesz-context" ) for document in documents: document_store.write_documents([document]) document_store.udpate_embeddings(retriever) document_store.save("contexts.faiss") ```
erwanlc/t5-cocktails_recipe-base
874f12daf784a3db1a98128cd8cb17854fb33400
2022-01-17T12:58:20.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
erwanlc
null
erwanlc/t5-cocktails_recipe-base
6
null
transformers
15,199
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: t5-cocktails_recipe-base results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-cocktails_recipe-base This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3