modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
list
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
SCORE/claim3b-distilbert-base-uncased
3d28d86520836a1067a33bcb5afad107e6902cf6
2021-12-14T16:52:49.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
SCORE
null
SCORE/claim3b-distilbert-base-uncased
6
null
transformers
15,000
Entry not found
SEBIS/code_trans_t5_base_api_generation_multitask
2ad55ba2655c11576cd20f2e35796f0cb33f1166
2021-06-23T03:59:20.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_base_api_generation_multitask
6
null
transformers
15,001
--- tags: - summarization widget: - text: "parse the uses licence node of this package , if any , and returns the license definition if theres" --- # CodeTrans model for api recommendation generation Pretrained model for api recommendation generation using the t5 base model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). ## Model description This CodeTrans model is based on the `t5-base` model. It has its own SentencePiece vocabulary model. It used multi-task training on 13 supervised tasks in the software development domain and 7 unsupervised datasets. ## Intended uses & limitations The model could be used to generate api usage for the java programming tasks. ### How to use Here is how to use this model to generate java function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_base_api_generation_multitask"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_base_api_generation_multitask", skip_special_tokens=True), device=0 ) tokenized_code = "parse the uses licence node of this package , if any , and returns the license definition if theres" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/multitask/pre-training/api%20generation/base_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Multi-task Pretraining The model was trained on a single TPU Pod V3-8 for 480,000 steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Java | | -------------------- | :------------: | | CodeTrans-ST-Small | 68.71 | | CodeTrans-ST-Base | 70.45 | | CodeTrans-TF-Small | 68.90 | | CodeTrans-TF-Base | 72.11 | | CodeTrans-TF-Large | 73.26 | | CodeTrans-MT-Small | 58.43 | | CodeTrans-MT-Base | 67.97 | | CodeTrans-MT-Large | 72.29 | | CodeTrans-MT-TF-Small | 69.29 | | CodeTrans-MT-TF-Base | 72.89 | | CodeTrans-MT-TF-Large | **73.39** | | State of the art | 54.42 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_base_code_comment_generation_java
281adbaeacc9120c0d62a11a385aca672a673e77
2021-06-23T04:05:04.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_base_code_comment_generation_java
6
null
transformers
15,002
--- tags: - summarization widget: - text: "protected String renderUri ( URI uri ) { return uri . toASCIIString ( ) ; }" --- # CodeTrans model for code comment generation java Pretrained model on programming language java using the t5 base model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized java code functions: it works best with tokenized java functions. ## Model description This CodeTrans model is based on the `t5-base` model. It has its own SentencePiece vocabulary model. It used single-task training on Code Comment Generation dataset. ## Intended uses & limitations The model could be used to generate the description for the java function or be fine-tuned on other java code tasks. It can be used on unparsed and untokenized java code. However, if the java code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate java function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_base_code_comment_generation_java"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_base_code_comment_generation_java", skip_special_tokens=True), device=0 ) tokenized_code = "protected String renderUri ( URI uri ) { return uri . toASCIIString ( ) ; }" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/single%20task/code%20comment%20generation/base_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Java | | -------------------- | :------------: | | CodeTrans-ST-Small | 37.98 | | CodeTrans-ST-Base | 38.07 | | CodeTrans-TF-Small | 38.56 | | CodeTrans-TF-Base | 39.06 | | CodeTrans-TF-Large | **39.50** | | CodeTrans-MT-Small | 20.15 | | CodeTrans-MT-Base | 27.44 | | CodeTrans-MT-Large | 34.69 | | CodeTrans-MT-TF-Small | 38.37 | | CodeTrans-MT-TF-Base | 38.90 | | CodeTrans-MT-TF-Large | 39.25 | | State of the art | 38.17 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_base_code_documentation_generation_java_multitask
c8147bef449ae023d651248be66d169639f3ab22
2021-06-23T04:22:11.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_base_code_documentation_generation_java_multitask
6
null
transformers
15,003
--- tags: - summarization widget: - text: "public static < T , U > Function < T , U > castFunction ( Class < U > target ) { return new CastToClass < T , U > ( target ) ; }" --- # CodeTrans model for code documentation generation java Pretrained model on programming language java using the t5 base model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized java code functions: it works best with tokenized java functions. ## Model description This CodeTrans model is based on the `t5-base` model. It has its own SentencePiece vocabulary model. It used multi-task training on 13 supervised tasks in the software development domain and 7 unsupervised datasets. ## Intended uses & limitations The model could be used to generate the description for the java function or be fine-tuned on other java code tasks. It can be used on unparsed and untokenized java code. However, if the java code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate java function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_base_code_documentation_generation_java_multitask"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_base_code_documentation_generation_java_multitask", skip_special_tokens=True), device=0 ) tokenized_code = "public static < T , U > Function < T , U > castFunction ( Class < U > target ) { return new CastToClass < T , U > ( target ) ; }" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/multitask/pre-training/function%20documentation%20generation/java/base_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Multi-task Pretraining The model was trained on a single TPU Pod V3-8 for 480,000 steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Python | Java | Go | Php | Ruby | JavaScript | | -------------------- | :------------: | :------------: | :------------: | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 17.31 | 16.65 | 16.89 | 23.05 | 9.19 | 13.7 | | CodeTrans-ST-Base | 16.86 | 17.17 | 17.16 | 22.98 | 8.23 | 13.17 | | CodeTrans-TF-Small | 19.93 | 19.48 | 18.88 | 25.35 | 13.15 | 17.23 | | CodeTrans-TF-Base | 20.26 | 20.19 | 19.50 | 25.84 | 14.07 | 18.25 | | CodeTrans-TF-Large | 20.35 | 20.06 | **19.54** | 26.18 | 14.94 | **18.98** | | CodeTrans-MT-Small | 19.64 | 19.00 | 19.15 | 24.68 | 14.91 | 15.26 | | CodeTrans-MT-Base | **20.39** | 21.22 | 19.43 | **26.23** | **15.26** | 16.11 | | CodeTrans-MT-Large | 20.18 | **21.87** | 19.38 | 26.08 | 15.00 | 16.23 | | CodeTrans-MT-TF-Small | 19.77 | 20.04 | 19.36 | 25.55 | 13.70 | 17.24 | | CodeTrans-MT-TF-Base | 19.77 | 21.12 | 18.86 | 25.79 | 14.24 | 18.62 | | CodeTrans-MT-TF-Large | 18.94 | 21.42 | 18.77 | 26.20 | 14.19 | 18.83 | | State of the art | 19.06 | 17.65 | 18.07 | 25.16 | 12.16 | 14.90 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_base_code_documentation_generation_ruby_multitask
3524c27a3d5ae457f0566dbc39be0f9634fc9342
2021-06-23T04:52:10.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_base_code_documentation_generation_ruby_multitask
6
null
transformers
15,004
--- tags: - summarization widget: - text: "def add ( severity , progname , & block ) return true if io . nil? || severity < level message = format_message ( severity , progname , yield ) MUTEX . synchronize { io . write ( message ) } true end" --- # CodeTrans model for code documentation generation ruby Pretrained model on programming language ruby using the t5 base model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized ruby code functions: it works best with tokenized ruby functions. ## Model description This CodeTrans model is based on the `t5-base` model. It has its own SentencePiece vocabulary model. It used multi-task training on 13 supervised tasks in the software development domain and 7 unsupervised datasets. ## Intended uses & limitations The model could be used to generate the description for the ruby function or be fine-tuned on other ruby code tasks. It can be used on unparsed and untokenized ruby code. However, if the ruby code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate ruby function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_base_code_documentation_generation_ruby_multitask"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_base_code_documentation_generation_ruby_multitask", skip_special_tokens=True), device=0 ) tokenized_code = "def add ( severity , progname , & block ) return true if io . nil? || severity < level message = format_message ( severity , progname , yield ) MUTEX . synchronize { io . write ( message ) } true end" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/multitask/pre-training/function%20documentation%20generation/ruby/base_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Multi-task Pretraining The model was trained on a single TPU Pod V3-8 for 160,000 steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Python | Java | Go | Php | Ruby | JavaScript | | -------------------- | :------------: | :------------: | :------------: | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 17.31 | 16.65 | 16.89 | 23.05 | 9.19 | 13.7 | | CodeTrans-ST-Base | 16.86 | 17.17 | 17.16 | 22.98 | 8.23 | 13.17 | | CodeTrans-TF-Small | 19.93 | 19.48 | 18.88 | 25.35 | 13.15 | 17.23 | | CodeTrans-TF-Base | 20.26 | 20.19 | 19.50 | 25.84 | 14.07 | 18.25 | | CodeTrans-TF-Large | 20.35 | 20.06 | **19.54** | 26.18 | 14.94 | **18.98** | | CodeTrans-MT-Small | 19.64 | 19.00 | 19.15 | 24.68 | 14.91 | 15.26 | | CodeTrans-MT-Base | **20.39** | 21.22 | 19.43 | **26.23** | **15.26** | 16.11 | | CodeTrans-MT-Large | 20.18 | **21.87** | 19.38 | 26.08 | 15.00 | 16.23 | | CodeTrans-MT-TF-Small | 19.77 | 20.04 | 19.36 | 25.55 | 13.70 | 17.24 | | CodeTrans-MT-TF-Base | 19.77 | 21.12 | 18.86 | 25.79 | 14.24 | 18.62 | | CodeTrans-MT-TF-Large | 18.94 | 21.42 | 18.77 | 26.20 | 14.19 | 18.83 | | State of the art | 19.06 | 17.65 | 18.07 | 25.16 | 12.16 | 14.90 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_base_source_code_summarization_csharp
941cc11477f0eead096185ff9a8e44e396006942
2021-06-23T05:12:35.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_base_source_code_summarization_csharp
6
null
transformers
15,005
--- tags: - summarization widget: - text: "public static DateTime ParseUnixDateTime ( double unixTime ) { var dt = new DateTime ( CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , System . DateTimeKind . Utc ) ; dt = dt . AddSeconds ( unixTimeStamp ) . ToLocalTime ( ) ; return dt ; }" --- # CodeTrans model for source code summarization csharp Pretrained model on programming language csharp using the t5 base model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized csharp code functions: it works best with tokenized csharp functions. ## Model description This CodeTrans model is based on the `t5-base` model. It has its own SentencePiece vocabulary model. It used single-task training on source code summarization csharp dataset. ## Intended uses & limitations The model could be used to generate the description for the csharp function or be fine-tuned on other csharp code tasks. It can be used on unparsed and untokenized csharp code. However, if the csharp code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate csharp function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_base_source_code_summarization_csharp"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_base_source_code_summarization_csharp", skip_special_tokens=True), device=0 ) tokenized_code = "public static DateTime ParseUnixDateTime ( double unixTime ) { var dt = new DateTime ( CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , System . DateTimeKind . Utc ) ; dt = dt . AddSeconds ( unixTimeStamp ) . ToLocalTime ( ) ; return dt ; }" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/single%20task/source%20code%20summarization/csharp/base_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Evaluation results For the source code summarization tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Python | SQL | C# | | -------------------- | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 8.45 | 17.55 | 19.74 | | CodeTrans-ST-Base | 9.12 | 15.00 | 18.65 | | CodeTrans-TF-Small | 10.06 | 17.71 | 20.40 | | CodeTrans-TF-Base | 10.94 | 17.66 | 21.12 | | CodeTrans-TF-Large | 12.41 | 18.40 | 21.43 | | CodeTrans-MT-Small | 13.11 | 19.15 | 22.39 | | CodeTrans-MT-Base | **13.37** | 19.24 | 23.20 | | CodeTrans-MT-Large | 13.24 | 19.40 | **23.57** | | CodeTrans-MT-TF-Small | 12.10 | 18.25 | 22.03 | | CodeTrans-MT-TF-Base | 10.64 | 16.91 | 21.40 | | CodeTrans-MT-TF-Large | 12.14 | **19.98** | 21.10 | | CODE-NN | -- | 18.40 | 20.50 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_base_source_code_summarization_csharp_transfer_learning_finetune
8cf476018c5532a3fbaf77cf53a58887d6941aad
2021-06-23T05:17:39.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_base_source_code_summarization_csharp_transfer_learning_finetune
6
null
transformers
15,006
--- tags: - summarization widget: - text: "public static DateTime ParseUnixDateTime ( double unixTime ) { var dt = new DateTime ( CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , System . DateTimeKind . Utc ) ; dt = dt . AddSeconds ( unixTimeStamp ) . ToLocalTime ( ) ; return dt ; }" --- # CodeTrans model for source code summarization csharp Pretrained model on programming language csharp using the t5 base model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized csharp code functions: it works best with tokenized csharp functions. ## Model description This CodeTrans model is based on the `t5-base` model. It has its own SentencePiece vocabulary model. It used transfer-learning pre-training on 7 unsupervised datasets in the software development domain. It is then fine-tuned on the source code summarization task for the csharp code snippets. ## Intended uses & limitations The model could be used to generate the description for the csharp function or be fine-tuned on other csharp code tasks. It can be used on unparsed and untokenized csharp code. However, if the csharp code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate csharp function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_base_source_code_summarization_csharp_transfer_learning_finetune"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_base_source_code_summarization_csharp_transfer_learning_finetune", skip_special_tokens=True), device=0 ) tokenized_code = "public static DateTime ParseUnixDateTime ( double unixTime ) { var dt = new DateTime ( CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , System . DateTimeKind . Utc ) ; dt = dt . AddSeconds ( unixTimeStamp ) . ToLocalTime ( ) ; return dt ; }" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/transfer%20learning%20fine-tuning/source%20code%20summarization/csharp/base_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Transfer-learning Pretraining The model was trained on a single TPU Pod V3-8 for 500,000 steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Fine-tuning This model was then fine-tuned on a single TPU Pod V2-8 for 500 steps in total, using sequence length 512 (batch size 256), using only the dataset only containing csharp code. ## Evaluation results For the source code summarization tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Python | SQL | C# | | -------------------- | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 8.45 | 17.55 | 19.74 | | CodeTrans-ST-Base | 9.12 | 15.00 | 18.65 | | CodeTrans-TF-Small | 10.06 | 17.71 | 20.40 | | CodeTrans-TF-Base | 10.94 | 17.66 | 21.12 | | CodeTrans-TF-Large | 12.41 | 18.40 | 21.43 | | CodeTrans-MT-Small | 13.11 | 19.15 | 22.39 | | CodeTrans-MT-Base | **13.37** | 19.24 | 23.20 | | CodeTrans-MT-Large | 13.24 | 19.40 | **23.57** | | CodeTrans-MT-TF-Small | 12.10 | 18.25 | 22.03 | | CodeTrans-MT-TF-Base | 10.64 | 16.91 | 21.40 | | CodeTrans-MT-TF-Large | 12.14 | **19.98** | 21.10 | | CODE-NN | -- | 18.40 | 20.50 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_base_source_code_summarization_sql
8f34057f9615326575d40ec8c183f4a984ce78b3
2021-06-23T05:27:39.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_base_source_code_summarization_sql
6
null
transformers
15,007
--- tags: - summarization widget: - text: "select time ( col0 ) from tab0" --- # CodeTrans model for source code summarization sql Pretrained model on programming language sql using the t5 base model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized sql code functions: it works best with tokenized sql functions. ## Model description This CodeTrans model is based on the `t5-base` model. It has its own SentencePiece vocabulary model. It used single-task training on source code summarization sql dataset. ## Intended uses & limitations The model could be used to generate the description for the sql function or be fine-tuned on other sql code tasks. It can be used on unparsed and untokenized sql code. However, if the sql code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate sql function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_base_source_code_summarization_sql"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_base_source_code_summarization_sql", skip_special_tokens=True), device=0 ) tokenized_code = "select time ( col0 ) from tab0" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/single%20task/source%20code%20summarization/sql/base_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Evaluation results For the source code summarization tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Python | SQL | C# | | -------------------- | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 8.45 | 17.55 | 19.74 | | CodeTrans-ST-Base | 9.12 | 15.00 | 18.65 | | CodeTrans-TF-Small | 10.06 | 17.71 | 20.40 | | CodeTrans-TF-Base | 10.94 | 17.66 | 21.12 | | CodeTrans-TF-Large | 12.41 | 18.40 | 21.43 | | CodeTrans-MT-Small | 13.11 | 19.15 | 22.39 | | CodeTrans-MT-Base | **13.37** | 19.24 | 23.20 | | CodeTrans-MT-Large | 13.24 | 19.40 | **23.57** | | CodeTrans-MT-TF-Small | 12.10 | 18.25 | 22.03 | | CodeTrans-MT-TF-Base | 10.64 | 16.91 | 21.40 | | CodeTrans-MT-TF-Large | 12.14 | **19.98** | 21.10 | | CODE-NN | -- | 18.40 | 20.50 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_base_source_code_summarization_sql_multitask
3735bf6b5129de30cae521034bd10d3182646a1d
2021-06-23T05:30:42.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_base_source_code_summarization_sql_multitask
6
null
transformers
15,008
--- tags: - summarization widget: - text: "select time ( col0 ) from tab0" --- # CodeTrans model for source code summarization sql Pretrained model on programming language sql using the t5 base model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized sql code functions: it works best with tokenized sql functions. ## Model description This CodeTrans model is based on the `t5-base` model. It has its own SentencePiece vocabulary model. It used multi-task training on 13 supervised tasks in the software development domain and 7 unsupervised datasets. ## Intended uses & limitations The model could be used to generate the description for the sql function or be fine-tuned on other sql code tasks. It can be used on unparsed and untokenized sql code. However, if the sql code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate sql function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_base_source_code_summarization_sql_multitask"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_base_source_code_summarization_sql_multitask", skip_special_tokens=True), device=0 ) tokenized_code = "select time ( col0 ) from tab0" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/multitask/pre-training/source%20code%20summarization/sql/base_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Multi-task Pretraining The model was trained on a single TPU Pod V3-8 for 500,000 steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ## Evaluation results For the source code summarization tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Python | SQL | C# | | -------------------- | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 8.45 | 17.55 | 19.74 | | CodeTrans-ST-Base | 9.12 | 15.00 | 18.65 | | CodeTrans-TF-Small | 10.06 | 17.71 | 20.40 | | CodeTrans-TF-Base | 10.94 | 17.66 | 21.12 | | CodeTrans-TF-Large | 12.41 | 18.40 | 21.43 | | CodeTrans-MT-Small | 13.11 | 19.15 | 22.39 | | CodeTrans-MT-Base | **13.37** | 19.24 | 23.20 | | CodeTrans-MT-Large | 13.24 | 19.40 | **23.57** | | CodeTrans-MT-TF-Small | 12.10 | 18.25 | 22.03 | | CodeTrans-MT-TF-Base | 10.64 | 16.91 | 21.40 | | CodeTrans-MT-TF-Large | 12.14 | **19.98** | 21.10 | | CODE-NN | -- | 18.40 | 20.50 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_large_code_documentation_generation_go_multitask
c545e07cf872c61941274a8a7ce4ea8a223235fa
2021-06-23T06:19:18.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_large_code_documentation_generation_go_multitask
6
null
transformers
15,009
--- tags: - summarization widget: - text: "func ( pr * Progress ) needSnapshotAbort ( ) bool { return pr . State == ProgressStateSnapshot && pr . Match >= pr . PendingSnapshot }" --- # CodeTrans model for code documentation generation go Pretrained model on programming language go using the t5 large model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized go code functions: it works best with tokenized go functions. ## Model description This CodeTrans model is based on the `t5-large` model. It has its own SentencePiece vocabulary model. It used multi-task training on 13 supervised tasks in the software development domain and 7 unsupervised datasets. ## Intended uses & limitations The model could be used to generate the description for the go function or be fine-tuned on other go code tasks. It can be used on unparsed and untokenized go code. However, if the go code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate go function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_large_code_documentation_generation_go_multitask"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_large_code_documentation_generation_go_multitask", skip_special_tokens=True), device=0 ) tokenized_code = "func ( pr * Progress ) needSnapshotAbort ( ) bool { return pr . State == ProgressStateSnapshot && pr . Match >= pr . PendingSnapshot }" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/multitask/pre-training/function%20documentation%20generation/go/large_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Multi-task Pretraining The model was trained on a single TPU Pod V3-8 for 180,000 steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Python | Java | Go | Php | Ruby | JavaScript | | -------------------- | :------------: | :------------: | :------------: | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 17.31 | 16.65 | 16.89 | 23.05 | 9.19 | 13.7 | | CodeTrans-ST-Base | 16.86 | 17.17 | 17.16 | 22.98 | 8.23 | 13.17 | | CodeTrans-TF-Small | 19.93 | 19.48 | 18.88 | 25.35 | 13.15 | 17.23 | | CodeTrans-TF-Base | 20.26 | 20.19 | 19.50 | 25.84 | 14.07 | 18.25 | | CodeTrans-TF-Large | 20.35 | 20.06 | **19.54** | 26.18 | 14.94 | **18.98** | | CodeTrans-MT-Small | 19.64 | 19.00 | 19.15 | 24.68 | 14.91 | 15.26 | | CodeTrans-MT-Base | **20.39** | 21.22 | 19.43 | **26.23** | **15.26** | 16.11 | | CodeTrans-MT-Large | 20.18 | **21.87** | 19.38 | 26.08 | 15.00 | 16.23 | | CodeTrans-MT-TF-Small | 19.77 | 20.04 | 19.36 | 25.55 | 13.70 | 17.24 | | CodeTrans-MT-TF-Base | 19.77 | 21.12 | 18.86 | 25.79 | 14.24 | 18.62 | | CodeTrans-MT-TF-Large | 18.94 | 21.42 | 18.77 | 26.20 | 14.19 | 18.83 | | State of the art | 19.06 | 17.65 | 18.07 | 25.16 | 12.16 | 14.90 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_small_code_documentation_generation_javascript_multitask_finetune
e6bab0cc368b7246d22f99effbac6dc8e641d832
2021-06-23T10:05:49.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_small_code_documentation_generation_javascript_multitask_finetune
6
null
transformers
15,010
--- tags: - summarization widget: - text: "function isStandardBrowserEnv ( ) { if ( typeof navigator !== 'undefined' && ( navigator . product === 'ReactNative' || navigator . product === 'NativeScript' || navigator . product === 'NS' ) ) { return false ; } return ( typeof window !== 'undefined' && typeof document !== 'undefined' ) ; }" --- # CodeTrans model for code documentation generation javascript Pretrained model on programming language javascript using the t5 small model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized javascript code functions: it works best with tokenized javascript functions. ## Model description This CodeTrans model is based on the `t5-small` model. It has its own SentencePiece vocabulary model. It used multi-task training on 13 supervised tasks in the software development domain and 7 unsupervised datasets. It is then fine-tuned on the code documentation generation task for the javascript function/method. ## Intended uses & limitations The model could be used to generate the description for the javascript function or be fine-tuned on other javascript code tasks. It can be used on unparsed and untokenized javascript code. However, if the javascript code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate javascript function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_small_code_documentation_generation_javascript_multitask_finetune"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_small_code_documentation_generation_javascript_multitask_finetune", skip_special_tokens=True), device=0 ) tokenized_code = "function isStandardBrowserEnv ( ) { if ( typeof navigator !== 'undefined' && ( navigator . product === 'ReactNative' || navigator . product === 'NativeScript' || navigator . product === 'NS' ) ) { return false ; } return ( typeof window !== 'undefined' && typeof document !== 'undefined' ) ; }" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/multitask/fine-tuning/function%20documentation%20generation/javascript/small_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Multi-task Pretraining The model was trained on a single TPU Pod V3-8 for half million steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Fine-tuning This model was then fine-tuned on a single TPU Pod V2-8 for 32,000 steps in total, using sequence length 512 (batch size 256), using only the dataset only containing javascript code. ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Python | Java | Go | Php | Ruby | JavaScript | | -------------------- | :------------: | :------------: | :------------: | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 17.31 | 16.65 | 16.89 | 23.05 | 9.19 | 13.7 | | CodeTrans-ST-Base | 16.86 | 17.17 | 17.16 | 22.98 | 8.23 | 13.17 | | CodeTrans-TF-Small | 19.93 | 19.48 | 18.88 | 25.35 | 13.15 | 17.23 | | CodeTrans-TF-Base | 20.26 | 20.19 | 19.50 | 25.84 | 14.07 | 18.25 | | CodeTrans-TF-Large | 20.35 | 20.06 | **19.54** | 26.18 | 14.94 | **18.98** | | CodeTrans-MT-Small | 19.64 | 19.00 | 19.15 | 24.68 | 14.91 | 15.26 | | CodeTrans-MT-Base | **20.39** | 21.22 | 19.43 | **26.23** | **15.26** | 16.11 | | CodeTrans-MT-Large | 20.18 | **21.87** | 19.38 | 26.08 | 15.00 | 16.23 | | CodeTrans-MT-TF-Small | 19.77 | 20.04 | 19.36 | 25.55 | 13.70 | 17.24 | | CodeTrans-MT-TF-Base | 19.77 | 21.12 | 18.86 | 25.79 | 14.24 | 18.62 | | CodeTrans-MT-TF-Large | 18.94 | 21.42 | 18.77 | 26.20 | 14.19 | 18.83 | | State of the art | 19.06 | 17.65 | 18.07 | 25.16 | 12.16 | 14.90 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_small_program_synthese
28885937826827e9e208ba476325ce685c554b3b
2021-06-23T10:16:34.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_small_program_synthese
6
null
transformers
15,011
--- tags: - summarization widget: - text: "you are given an array of numbers a and a number b , compute the difference of elements in a and b" --- # CodeTrans model for program synthesis Pretrained model on programming language lisp inspired DSL using the t5 small model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). ## Model description This CodeTrans model is based on the `t5-small` model. It has its own SentencePiece vocabulary model. It used single-task training on Program Synthesis dataset. ## Intended uses & limitations The model could be used to generate lisp inspired DSL code given the human language description tasks. ### How to use Here is how to use this model to generate lisp inspired DSL code using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_small_program_synthese"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_small_program_synthese", skip_special_tokens=True), device=0 ) tokenized_code = "you are given an array of numbers a and a number b , compute the difference of elements in a and b" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/single%20task/program%20synthesis/small_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | LISP | | -------------------- | :------------: | | CodeTrans-ST-Small | 89.43 | | CodeTrans-ST-Base | 89.65 | | CodeTrans-TF-Small | 90.30 | | CodeTrans-TF-Base | 90.24 | | CodeTrans-TF-Large | 90.21 | | CodeTrans-MT-Small | 82.88 | | CodeTrans-MT-Base | 86.99 | | CodeTrans-MT-Large | 90.27 | | CodeTrans-MT-TF-Small | **90.31** | | CodeTrans-MT-TF-Base | 90.30 | | CodeTrans-MT-TF-Large | 90.17 | | State of the art | 85.80 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_small_source_code_summarization_sql_multitask
f32688fb43c0cc77e1f1d0cc8f3cdd5452233584
2021-06-23T10:24:43.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_small_source_code_summarization_sql_multitask
6
null
transformers
15,012
--- tags: - summarization widget: - text: "select time ( col0 ) from tab0" --- # CodeTrans model for source code summarization sql Pretrained model on programming language sql using the t5 small model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized sql code functions: it works best with tokenized sql functions. ## Model description This CodeTrans model is based on the `t5-small` model. It has its own SentencePiece vocabulary model. It used multi-task training on 13 supervised tasks in the software development domain and 7 unsupervised datasets. ## Intended uses & limitations The model could be used to generate the description for the sql function or be fine-tuned on other sql code tasks. It can be used on unparsed and untokenized sql code. However, if the sql code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate sql function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_small_source_code_summarization_sql_multitask"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_small_source_code_summarization_sql_multitask", skip_special_tokens=True), device=0 ) tokenized_code = "select time ( col0 ) from tab0" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/multitask/pre-training/source%20code%20summarization/sql/small_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Multi-task Pretraining The model was trained on a single TPU Pod V3-8 for 460,000 steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ## Evaluation results For the source code summarization tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Python | SQL | C# | | -------------------- | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 8.45 | 17.55 | 19.74 | | CodeTrans-ST-Base | 9.12 | 15.00 | 18.65 | | CodeTrans-TF-Small | 10.06 | 17.71 | 20.40 | | CodeTrans-TF-Base | 10.94 | 17.66 | 21.12 | | CodeTrans-TF-Large | 12.41 | 18.40 | 21.43 | | CodeTrans-MT-Small | 13.11 | 19.15 | 22.39 | | CodeTrans-MT-Base | **13.37** | 19.24 | 23.20 | | CodeTrans-MT-Large | 13.24 | 19.40 | **23.57** | | CodeTrans-MT-TF-Small | 12.10 | 18.25 | 22.03 | | CodeTrans-MT-TF-Base | 10.64 | 16.91 | 21.40 | | CodeTrans-MT-TF-Large | 12.14 | **19.98** | 21.10 | | CODE-NN | -- | 18.40 | 20.50 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_small_source_code_summarization_sql_multitask_finetune
d02fd61b7896396de3bf01a03002f4e0351f0d26
2021-06-23T10:25:19.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_small_source_code_summarization_sql_multitask_finetune
6
null
transformers
15,013
--- tags: - summarization widget: - text: "select time ( col0 ) from tab0" --- # CodeTrans model for source code summarization sql Pretrained model on programming language sql using the t5 small model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized sql code functions: it works best with tokenized sql functions. ## Model description This CodeTrans model is based on the `t5-small` model. It has its own SentencePiece vocabulary model. It used multi-task training on 13 supervised tasks in the software development domain and 7 unsupervised datasets. It is then fine-tuned on the source code summarization task for the sql code snippets. ## Intended uses & limitations The model could be used to generate the description for the sql function or be fine-tuned on other sql code tasks. It can be used on unparsed and untokenized sql code. However, if the sql code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate sql function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_small_source_code_summarization_sql_multitask_finetune"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_small_source_code_summarization_sql_multitask_finetune", skip_special_tokens=True), device=0 ) tokenized_code = "select time ( col0 ) from tab0" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/multitask/fine-tuning/source%20code%20summarization/sql/small_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Multi-task Pretraining The model was trained on a single TPU Pod V3-8 for 500,000 steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Fine-tuning This model was then fine-tuned on a single TPU Pod V2-8 for 1200 steps in total, using sequence length 512 (batch size 256), using only the dataset only containing sql code. ## Evaluation results For the source code summarization tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Python | SQL | C# | | -------------------- | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 8.45 | 17.55 | 19.74 | | CodeTrans-ST-Base | 9.12 | 15.00 | 18.65 | | CodeTrans-TF-Small | 10.06 | 17.71 | 20.40 | | CodeTrans-TF-Base | 10.94 | 17.66 | 21.12 | | CodeTrans-TF-Large | 12.41 | 18.40 | 21.43 | | CodeTrans-MT-Small | 13.11 | 19.15 | 22.39 | | CodeTrans-MT-Base | **13.37** | 19.24 | 23.20 | | CodeTrans-MT-Large | 13.24 | 19.40 | **23.57** | | CodeTrans-MT-TF-Small | 12.10 | 18.25 | 22.03 | | CodeTrans-MT-TF-Base | 10.64 | 16.91 | 21.40 | | CodeTrans-MT-TF-Large | 12.14 | **19.98** | 21.10 | | CODE-NN | -- | 18.40 | 20.50 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/legal_t5_small_multitask_sv_fr
3c2162a66c55f2b30aa66e4516a760deee276505
2021-06-23T11:19:29.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "Swedish French", "dataset:dcep europarl jrc-acquis", "transformers", "translation Swedish French model", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_multitask_sv_fr
6
null
transformers
15,014
--- language: Swedish French tags: - translation Swedish French model datasets: - dcep europarl jrc-acquis widget: - text: "Europaparlamentet understryker att det stora antalet kvinnor och barn bland flyktingar och internt fördrivna som registrerats av internationella organ som resultat av väpnade konflikter och inbördeskrig är mycket oroväckande." --- # legal_t5_small_multitask_sv_fr model Model on translating legal text from Swedish to French. It was first released in [this repository](https://github.com/agemagician/LegalTrans). The model is parallely trained on the three parallel corpus with 42 language pair from jrc-acquis, europarl and dcep along with the unsupervised task where the model followed the task of prediction in a masked language model. ## Model description No pretraining is involved in case of legal_t5_small_multitask_sv_fr model, rather the unsupervised task is added with all the translation task to realize the multitask learning scenario. ## Intended uses & limitations The model could be used for translation of legal texts from Swedish to French. ### How to use Here is how to use this model to translate legal text from Swedish to French in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_multitask_sv_fr"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_multitask_sv_fr", do_lower_case=False, skip_special_tokens=True), device=0 ) sv_text = "Europaparlamentet understryker att det stora antalet kvinnor och barn bland flyktingar och internt fördrivna som registrerats av internationella organ som resultat av väpnade konflikter och inbördeskrig är mycket oroväckande." pipeline([sv_text], max_length=512) ``` ## Training data The legal_t5_small_multitask_sv_fr model (the supervised task which involved only the corresponding langauge pair and as well as unsupervised task where all of the data of all language pairs were available) model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 8 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_multitask_sv_fr | 45.790| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SEBIS/legal_t5_small_trans_cs_en
5448f899ac43c11f3aa5909efba53af2213c0bb5
2021-06-23T11:30:54.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "Cszech English", "dataset:dcep europarl jrc-acquis", "transformers", "translation Cszech English model", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_trans_cs_en
6
null
transformers
15,015
--- language: Cszech English tags: - translation Cszech English model datasets: - dcep europarl jrc-acquis widget: - text: "s ohledem na druhou schůzku států OSN, která se konala 11.–15. června 2005 a měla posoudit provádění akčního programu OSN k prevenci, potírání a vymýcení nezákonného obchodu s ručními a lehkými zbraněmi ve všech jeho aspektech, která se koná jednou za dva roky," --- # legal_t5_small_trans_cs_en model Model on translating legal text from Cszech to English. It was first released in [this repository](https://github.com/agemagician/LegalTrans). This model is trained on three parallel corpus from jrc-acquis, europarl and dcep. ## Model description legal_t5_small_trans_cs_en is based on the `t5-small` model and was trained on a large corpus of parallel text. This is a smaller model, which scales the baseline model of t5 down by using `dmodel = 512`, `dff = 2,048`, 8-headed attention, and only 6 layers each in the encoder and decoder. This variant has about 60 million parameters. ## Intended uses & limitations The model could be used for translation of legal texts from Cszech to English. ### How to use Here is how to use this model to translate legal text from Cszech to English in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_trans_cs_en"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_trans_cs_en", do_lower_case=False, skip_special_tokens=True), device=0 ) cs_text = "s ohledem na druhou schůzku států OSN, která se konala 11.–15. června 2005 a měla posoudit provádění akčního programu OSN k prevenci, potírání a vymýcení nezákonného obchodu s ručními a lehkými zbraněmi ve všech jeho aspektech, která se koná jednou za dva roky," pipeline([cs_text], max_length=512) ``` ## Training data The legal_t5_small_trans_cs_en model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 5 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_trans_cs_en | 56.92| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SEBIS/legal_t5_small_trans_cs_es_small_finetuned
c9fc5ead8a2378daa75a9e9ee694c62db53dd331
2021-06-23T11:32:56.000Z
[ "pytorch", "t5", "text2text-generation", "Cszech Spanish", "dataset:dcep europarl jrc-acquis", "transformers", "translation Cszech Spanish model", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_trans_cs_es_small_finetuned
6
null
transformers
15,016
--- language: Cszech Spanish tags: - translation Cszech Spanish model datasets: - dcep europarl jrc-acquis widget: - text: "vzhledem k tomu, že parlamentní volby v listopadu a v prosinci 2006, volby do Senátu v lednu 2007 a volbu prezidenta Sídí Muhammada Ulda Šajcha Abdalláhiho v březnu 2007, uznali jako spravedlivé a transparentní zahraniční pozorovatelé, včetně pozorovatelů z Evropské unie, a zejména z mise ke sledování průběhu voleb vyslané Evropským parlamentem, jenž se tím stal garantem legality těchto voleb," --- # legal_t5_small_trans_cs_es_small_finetuned model Model on translating legal text from Cszech to Spanish. It was first released in [this repository](https://github.com/agemagician/LegalTrans). This model is first pretrained all the translation data over some unsupervised task. Then the model is trained on three parallel corpus from jrc-acquis, europarl and dcep. ## Model description legal_t5_small_trans_cs_es_small_finetuned is initially pretrained on unsupervised task with the all of the data of the training set. The unsupervised task was "masked language modelling". legal_t5_small_trans_cs_es_small_finetuned is based on the `t5-small` model and was trained on a large corpus of parallel text. This is a smaller model, which scales the baseline model of t5 down by using `dmodel = 512`, `dff = 2,048`, 8-headed attention, and only 6 layers each in the encoder and decoder. This variant has about 60 million parameters. ## Intended uses & limitations The model could be used for translation of legal texts from Cszech to Spanish. ### How to use Here is how to use this model to translate legal text from Cszech to Spanish in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_trans_cs_es_small_finetuned"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_trans_cs_es", do_lower_case=False, skip_special_tokens=True), device=0 ) cs_text = "vzhledem k tomu, že parlamentní volby v listopadu a v prosinci 2006, volby do Senátu v lednu 2007 a volbu prezidenta Sídí Muhammada Ulda Šajcha Abdalláhiho v březnu 2007, uznali jako spravedlivé a transparentní zahraniční pozorovatelé, včetně pozorovatelů z Evropské unie, a zejména z mise ke sledování průběhu voleb vyslané Evropským parlamentem, jenž se tím stal garantem legality těchto voleb," pipeline([cs_text], max_length=512) ``` ## Training data The legal_t5_small_trans_cs_es_small_finetuned (the supervised task which involved only the corresponding langauge pair and as well as unsupervised task where all of the data of all language pairs were available) model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 5 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining The pre-training data was the combined data from all the 42 language pairs. The task for the model was to predict the portions of a sentence which were masked randomly. ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_trans_cs_es_small_finetuned | 50.862| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SEBIS/legal_t5_small_trans_cs_fr
4dc049eec05e72a7bf97d3713a04ad88fcb23736
2021-06-23T11:33:48.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "Cszech French", "dataset:dcep europarl jrc-acquis", "transformers", "translation Cszech French model", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_trans_cs_fr
6
null
transformers
15,017
--- language: Cszech French tags: - translation Cszech French model datasets: - dcep europarl jrc-acquis widget: - text: "Prevencí proti nemoci Usnesení, o kterém bude Parlament hlasovat 24. října je založeno zejména na interpelacích, které poslancům předložily parlamentní kluby pro životní prostředí, zaměstnanost a práva žen." --- # legal_t5_small_trans_cs_fr model Model on translating legal text from Cszech to French. It was first released in [this repository](https://github.com/agemagician/LegalTrans). This model is trained on three parallel corpus from jrc-acquis, europarl and dcep. ## Model description legal_t5_small_trans_cs_fr is based on the `t5-small` model and was trained on a large corpus of parallel text. This is a smaller model, which scales the baseline model of t5 down by using `dmodel = 512`, `dff = 2,048`, 8-headed attention, and only 6 layers each in the encoder and decoder. This variant has about 60 million parameters. ## Intended uses & limitations The model could be used for translation of legal texts from Cszech to French. ### How to use Here is how to use this model to translate legal text from Cszech to French in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_trans_cs_fr"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_trans_cs_fr", do_lower_case=False, skip_special_tokens=True), device=0 ) cs_text = "Prevencí proti nemoci Usnesení, o kterém bude Parlament hlasovat 24. října je založeno zejména na interpelacích, které poslancům předložily parlamentní kluby pro životní prostředí, zaměstnanost a práva žen." pipeline([cs_text], max_length=512) ``` ## Training data The legal_t5_small_trans_cs_fr model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 5 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_trans_cs_fr | 50.75| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SEBIS/legal_t5_small_trans_de_fr
f66db9a8b2793a78a47ee03f60ceff1c299ed689
2021-06-23T09:30:18.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "Deustch French", "dataset:dcep europarl jrc-acquis", "transformers", "translation Deustch French model", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_trans_de_fr
6
null
transformers
15,018
--- language: Deustch French tags: - translation Deustch French model datasets: - dcep europarl jrc-acquis widget: - text: "stellt fest, dass Leistung und Effizienz nicht in einer standardisierten Art und Weise gemessen werden; fordert die interinstitutionelle Arbeitsgruppe für die Agenturen auf, sich mit dieser Frage zu befassen;" --- # legal_t5_small_trans_de_fr model Model on translating legal text from Deustch to French. It was first released in [this repository](https://github.com/agemagician/LegalTrans). This model is trained on three parallel corpus from jrc-acquis, europarl and dcep. ## Model description legal_t5_small_trans_de_fr is based on the `t5-small` model and was trained on a large corpus of parallel text. This is a smaller model, which scales the baseline model of t5 down by using `dmodel = 512`, `dff = 2,048`, 8-headed attention, and only 6 layers each in the encoder and decoder. This variant has about 60 million parameters. ## Intended uses & limitations The model could be used for translation of legal texts from Deustch to French. ### How to use Here is how to use this model to translate legal text from Deustch to French in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_trans_de_fr"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_trans_de_fr", do_lower_case=False, skip_special_tokens=True), device=0 ) de_text = "stellt fest, dass Leistung und Effizienz nicht in einer standardisierten Art und Weise gemessen werden; fordert die interinstitutionelle Arbeitsgruppe für die Agenturen auf, sich mit dieser Frage zu befassen;" pipeline([de_text], max_length=512) ``` ## Training data The legal_t5_small_trans_de_fr model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 5 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_trans_de_fr | 47.78| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SEBIS/legal_t5_small_trans_en_de
f7592e522d82cbf5256c36c3545afe4b5725f75e
2021-06-23T09:35:14.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "English Deustch", "dataset:dcep europarl jrc-acquis", "transformers", "translation English Deustch model", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_trans_en_de
6
null
transformers
15,019
--- language: English Deustch tags: - translation English Deustch model datasets: - dcep europarl jrc-acquis widget: - text: "· the impact of electromagnetic fields on animals, especially birds in cities;" --- # legal_t5_small_trans_en_de model Model on translating legal text from English to Deustch. It was first released in [this repository](https://github.com/agemagician/LegalTrans). This model is trained on three parallel corpus from jrc-acquis, europarl and dcep. ## Model description legal_t5_small_trans_en_de is based on the `t5-small` model and was trained on a large corpus of parallel text. This is a smaller model, which scales the baseline model of t5 down by using `dmodel = 512`, `dff = 2,048`, 8-headed attention, and only 6 layers each in the encoder and decoder. This variant has about 60 million parameters. ## Intended uses & limitations The model could be used for translation of legal texts from English to Deustch. ### How to use Here is how to use this model to translate legal text from English to Deustch in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_trans_en_de"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_trans_en_de", do_lower_case=False, skip_special_tokens=True), device=0 ) en_text = "· the impact of electromagnetic fields on animals, especially birds in cities;" pipeline([en_text], max_length=512) ``` ## Training data The legal_t5_small_trans_en_de model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 5 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_trans_en_de | 43.656| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SEBIS/legal_t5_small_trans_fr_it
08598dd36fe7ca9d2a1e6b06ad2b6ce41a042c4c
2021-06-23T09:55:58.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "French Italian", "dataset:dcep europarl jrc-acquis", "transformers", "translation French Italian model", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_trans_fr_it
6
null
transformers
15,020
--- language: French Italian tags: - translation French Italian model datasets: - dcep europarl jrc-acquis widget: - text: "considérant la multiplication des constructions qui ne respectent pas la culture des lieux et leur paysage particulier, dégradations à l'appui," --- # legal_t5_small_trans_fr_it model Model on translating legal text from French to Italian. It was first released in [this repository](https://github.com/agemagician/LegalTrans). This model is trained on three parallel corpus from jrc-acquis, europarl and dcep. ## Model description legal_t5_small_trans_fr_it is based on the `t5-small` model and was trained on a large corpus of parallel text. This is a smaller model, which scales the baseline model of t5 down by using `dmodel = 512`, `dff = 2,048`, 8-headed attention, and only 6 layers each in the encoder and decoder. This variant has about 60 million parameters. ## Intended uses & limitations The model could be used for translation of legal texts from French to Italian. ### How to use Here is how to use this model to translate legal text from French to Italian in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_trans_fr_it"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_trans_fr_it", do_lower_case=False, skip_special_tokens=True), device=0 ) fr_text = "considérant la multiplication des constructions qui ne respectent pas la culture des lieux et leur paysage particulier, dégradations à l'appui," pipeline([fr_text], max_length=512) ``` ## Training data The legal_t5_small_trans_fr_it model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 5 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_trans_fr_it | 46.45| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SEBIS/legal_t5_small_trans_it_de
5331cacdadb7829662b96707c15439ce1252818a
2021-06-23T09:59:30.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "Italian Deustch", "dataset:dcep europarl jrc-acquis", "transformers", "translation Italian Deustch model", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_trans_it_de
6
null
transformers
15,021
--- language: Italian Deustch tags: - translation Italian Deustch model datasets: - dcep europarl jrc-acquis widget: - text: "presentata con richiesta di iscrizione all'ordine del giorno della discussione su problemi di attualità, urgenti e di notevole rilevanza" --- # legal_t5_small_trans_it_de model Model on translating legal text from Italian to Deustch. It was first released in [this repository](https://github.com/agemagician/LegalTrans). This model is trained on three parallel corpus from jrc-acquis, europarl and dcep. ## Model description legal_t5_small_trans_it_de is based on the `t5-small` model and was trained on a large corpus of parallel text. This is a smaller model, which scales the baseline model of t5 down by using `dmodel = 512`, `dff = 2,048`, 8-headed attention, and only 6 layers each in the encoder and decoder. This variant has about 60 million parameters. ## Intended uses & limitations The model could be used for translation of legal texts from Italian to Deustch. ### How to use Here is how to use this model to translate legal text from Italian to Deustch in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_trans_it_de"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_trans_it_de", do_lower_case=False, skip_special_tokens=True), device=0 ) it_text = "presentata con richiesta di iscrizione all'ordine del giorno della discussione su problemi di attualità, urgenti e di notevole rilevanza" pipeline([it_text], max_length=512) ``` ## Training data The legal_t5_small_trans_it_de model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 5 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_trans_it_de | 40.615| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SEISHIN/distilbert-base-uncased-finetuned-mnli
b680e73aecadecbaf5da70576d280390abb4b94d
2021-12-26T16:30:56.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
SEISHIN
null
SEISHIN/distilbert-base-uncased-finetuned-mnli
6
null
transformers
15,022
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-mnli results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: mnli metrics: - name: Accuracy type: accuracy value: 0.82190524707081 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-mnli This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6560 - Accuracy: 0.8219 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:------:|:---------------:|:--------:| | 0.5161 | 1.0 | 24544 | 0.5025 | 0.8037 | | 0.4176 | 2.0 | 49088 | 0.5274 | 0.8131 | | 0.3154 | 3.0 | 73632 | 0.5348 | 0.8194 | | 0.2294 | 4.0 | 98176 | 0.6560 | 0.8219 | | 0.1827 | 5.0 | 122720 | 0.8190 | 0.8203 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
SIC98/GPT2-first-model
12fee5a642015fd8a707ac3cf130c396aeab0630
2021-05-21T11:11:24.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
SIC98
null
SIC98/GPT2-first-model
6
null
transformers
15,023
GPT2-first-model
Sakil/IMDB_URDUSENTIMENT_MODEL
781437dbf02696a8dd0ab5467ac20e7cff9f360b
2022-01-29T16:05:30.000Z
[ "pytorch", "distilbert", "text-classification", "en", "transformers", "text Classification", "license:apache-2.0" ]
text-classification
false
Sakil
null
Sakil/IMDB_URDUSENTIMENT_MODEL
6
null
transformers
15,024
--- language: - en tags: - text Classification license: apache-2.0 widget: - text: "میں تمہیں پسند کرتا ہوں. </s></s> میں تم سے پیار کرتا ہوں." --- * IMDB_URDUSENTIMENT_MODEL I have used IMDB URDU dataset to create custom model by using DistilBertForSequenceClassification.
SaulLu/cotet5_small_fix
5c8c3b4a5a014c27ef31751ec9e664a60c2ab699
2021-09-24T17:56:36.000Z
[ "pytorch", "t5", "text2text-generation", "dataset:code_search_net", "arxiv:2109.00859", "arxiv:1909.09436", "transformers", "codet5", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
SaulLu
null
SaulLu/cotet5_small_fix
6
1
transformers
15,025
--- license: apache-2.0 tags: - codet5 datasets: - code_search_net inference: false --- # CodeT5 (small-sized model) Pre-trained CodeT5 model. It was introduced in the paper [CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Understanding and Generation](https://arxiv.org/abs/2109.00859) by Yue Wang, Weishi Wang, Shafiq Joty, Steven C.H. Hoi and first released in [this repository](https://github.com/salesforce/CodeT5). Disclaimer: The team releasing CodeT5 did not write a model card for this model so this model card has been written by the Hugging Face team (more specifically, [nielsr](https://huggingface.co/nielsr)). ## Model description From the abstract: "We present CodeT5, a unified pre-trained encoder-decoder Transformer model that better leverages the code semantics conveyed from the developer-assigned identifiers. Our model employs a unified framework to seamlessly support both code understanding and generation tasks and allows for multi-task learning. Besides, we propose a novel identifier-aware pre-training task that enables the model to distinguish which code tokens are identifiers and to recover them when they are masked. Furthermore, we propose to exploit the user-written code comments with a bimodal dual generation task for better NL-PL alignment. Comprehensive experiments show that CodeT5 significantly outperforms prior methods on understanding tasks such as code defect detection and clone detection, and generation tasks across various directions including PL-NL, NL-PL, and PL-PL. Further analysis reveals that our model can better capture semantic information from code." ## Intended uses & limitations This repository contains the pre-trained model only, so you can use this model for masked span prediction, as shown in the code example below. However, the main use of this model is to fine-tune it for a downstream task of interest, such as: * code summarization * code generation * code translation * code refinement * code defect detection * code clone detection. See the [model hub](https://huggingface.co/models?search=salesforce/codet) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model: ```python from transformers import RobertaTokenizer, T5ForConditionalGeneration tokenizer = RobertaTokenizer.from_pretrained('Salesforce/codet5-small') model = T5ForConditionalGeneration.from_pretrained('Salesforce/codet5-small') text = "def greet(user): print(f'hello <extra_id_0>!')" input_ids = tokenizer(text, return_tensors="pt").input_ids # simply generate a single sequence generated_ids = model.generate(input_ids, max_length=10) print(tokenizer.decode(generated_ids[0], skip_special_tokens=True)) # this prints "user: {user.name}" ``` ## Training data The CodeT5 model was pretrained on CodeSearchNet [Husain et al., 2019](https://arxiv.org/abs/1909.09436). Additionally, the authors collected two datasets of C/CSharp from [BigQuery1](https://console.cloud.google.com/marketplace/details/github/github-repos) to ensure that all downstream tasks have overlapped programming languages with the pre-training data. In total, around 8.35 million instances are used for pretraining. ## Training procedure ### Preprocessing This model uses a code-specific BPE (Byte-Pair Encoding) tokenizer. One can prepare text (or code) for the model using RobertaTokenizer, with the files from this repository. ## Evaluation results For evaluation results on several downstream benchmarks, we refer to the paper. ### BibTeX entry and citation info ```bibtex @misc{wang2021codet5, title={CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Understanding and Generation}, author={Yue Wang and Weishi Wang and Shafiq Joty and Steven C. H. Hoi}, year={2021}, eprint={2109.00859}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
Sebb/german-nli-large-thesis
90f72762899accf6f31bea9af816fd37cafd95b6
2022-01-04T21:06:38.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Sebb
null
Sebb/german-nli-large-thesis
6
null
transformers
15,026
Entry not found
SetFit/deberta-v3-large__sst2__train-16-0
2ffc5ec394319476e09a4aac8957dc75dc0f8cc4
2022-02-10T10:19:46.000Z
[ "pytorch", "deberta-v2", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
SetFit
null
SetFit/deberta-v3-large__sst2__train-16-0
6
null
transformers
15,027
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: deberta-v3-large__sst2__train-16-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-large__sst2__train-16-0 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9917 - Accuracy: 0.7705 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7001 | 1.0 | 7 | 0.7327 | 0.2857 | | 0.6326 | 2.0 | 14 | 0.6479 | 0.5714 | | 0.5232 | 3.0 | 21 | 0.5714 | 0.5714 | | 0.3313 | 4.0 | 28 | 0.6340 | 0.7143 | | 0.3161 | 5.0 | 35 | 0.6304 | 0.7143 | | 0.0943 | 6.0 | 42 | 0.4719 | 0.8571 | | 0.0593 | 7.0 | 49 | 0.5000 | 0.7143 | | 0.0402 | 8.0 | 56 | 0.3530 | 0.8571 | | 0.0307 | 9.0 | 63 | 0.3499 | 0.8571 | | 0.0033 | 10.0 | 70 | 0.3258 | 0.8571 | | 0.0021 | 11.0 | 77 | 0.3362 | 0.8571 | | 0.0012 | 12.0 | 84 | 0.4591 | 0.8571 | | 0.0036 | 13.0 | 91 | 0.4661 | 0.8571 | | 0.001 | 14.0 | 98 | 0.5084 | 0.8571 | | 0.0017 | 15.0 | 105 | 0.5844 | 0.8571 | | 0.0005 | 16.0 | 112 | 0.6645 | 0.8571 | | 0.002 | 17.0 | 119 | 0.7422 | 0.8571 | | 0.0006 | 18.0 | 126 | 0.7354 | 0.8571 | | 0.0005 | 19.0 | 133 | 0.7265 | 0.8571 | | 0.0005 | 20.0 | 140 | 0.7207 | 0.8571 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/deberta-v3-large__sst2__train-32-0
d93b0ee88edcf1d3f3bcf9b146ea8bac685c6937
2022-02-10T11:47:45.000Z
[ "pytorch", "deberta-v2", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
SetFit
null
SetFit/deberta-v3-large__sst2__train-32-0
6
null
transformers
15,028
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: deberta-v3-large__sst2__train-32-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-large__sst2__train-32-0 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4849 - Accuracy: 0.7716 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7059 | 1.0 | 13 | 0.6840 | 0.5385 | | 0.6595 | 2.0 | 26 | 0.6214 | 0.6923 | | 0.4153 | 3.0 | 39 | 0.1981 | 0.9231 | | 0.0733 | 4.0 | 52 | 0.5068 | 0.9231 | | 0.2092 | 5.0 | 65 | 1.3114 | 0.6923 | | 0.003 | 6.0 | 78 | 1.1062 | 0.8462 | | 0.0012 | 7.0 | 91 | 1.5948 | 0.7692 | | 0.0008 | 8.0 | 104 | 1.6913 | 0.7692 | | 0.0006 | 9.0 | 117 | 1.7191 | 0.7692 | | 0.0005 | 10.0 | 130 | 1.6527 | 0.7692 | | 0.0003 | 11.0 | 143 | 1.4840 | 0.7692 | | 0.0002 | 12.0 | 156 | 1.3076 | 0.8462 | | 0.0002 | 13.0 | 169 | 1.3130 | 0.8462 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/deberta-v3-large__sst2__train-32-1
4706a2d3e6cdef7464919f88483f201ffa9610e2
2022-02-10T11:56:20.000Z
[ "pytorch", "deberta-v2", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
SetFit
null
SetFit/deberta-v3-large__sst2__train-32-1
6
null
transformers
15,029
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: deberta-v3-large__sst2__train-32-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-large__sst2__train-32-1 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4201 - Accuracy: 0.8759 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7162 | 1.0 | 13 | 0.6832 | 0.5385 | | 0.6561 | 2.0 | 26 | 0.7270 | 0.4615 | | 0.4685 | 3.0 | 39 | 1.0674 | 0.5385 | | 0.2837 | 4.0 | 52 | 1.0841 | 0.5385 | | 0.1129 | 5.0 | 65 | 0.3502 | 0.9231 | | 0.0118 | 6.0 | 78 | 0.4829 | 0.9231 | | 0.0022 | 7.0 | 91 | 0.7430 | 0.8462 | | 0.0007 | 8.0 | 104 | 0.8219 | 0.8462 | | 0.0005 | 9.0 | 117 | 0.8787 | 0.8462 | | 0.0003 | 10.0 | 130 | 0.8713 | 0.8462 | | 0.0003 | 11.0 | 143 | 0.8473 | 0.8462 | | 0.0002 | 12.0 | 156 | 0.8482 | 0.8462 | | 0.0002 | 13.0 | 169 | 0.8494 | 0.8462 | | 0.0002 | 14.0 | 182 | 0.8638 | 0.8462 | | 0.0002 | 15.0 | 195 | 0.8492 | 0.8462 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/deberta-v3-large__sst2__train-8-0
1732fa17bdee95bcb9aa7298f17dd352c2427ed9
2022-02-10T08:22:49.000Z
[ "pytorch", "deberta-v2", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
SetFit
null
SetFit/deberta-v3-large__sst2__train-8-0
6
null
transformers
15,030
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: deberta-v3-large__sst2__train-8-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-large__sst2__train-8-0 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7088 - Accuracy: 0.5008 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6705 | 1.0 | 3 | 0.7961 | 0.25 | | 0.6571 | 2.0 | 6 | 0.8092 | 0.25 | | 0.7043 | 3.0 | 9 | 0.7977 | 0.25 | | 0.6207 | 4.0 | 12 | 0.8478 | 0.25 | | 0.5181 | 5.0 | 15 | 0.9782 | 0.25 | | 0.4136 | 6.0 | 18 | 1.3151 | 0.25 | | 0.3702 | 7.0 | 21 | 1.8633 | 0.25 | | 0.338 | 8.0 | 24 | 2.2119 | 0.25 | | 0.2812 | 9.0 | 27 | 2.3058 | 0.25 | | 0.2563 | 10.0 | 30 | 2.3353 | 0.25 | | 0.2132 | 11.0 | 33 | 2.5921 | 0.25 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/deberta-v3-large__sst2__train-8-1
1065b7e66e6a039280f5c0f99c9e31951fa4c4d6
2022-02-10T08:28:12.000Z
[ "pytorch", "deberta-v2", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
SetFit
null
SetFit/deberta-v3-large__sst2__train-8-1
6
null
transformers
15,031
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: deberta-v3-large__sst2__train-8-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-large__sst2__train-8-1 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7020 - Accuracy: 0.5008 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6773 | 1.0 | 3 | 0.7822 | 0.25 | | 0.6587 | 2.0 | 6 | 0.8033 | 0.25 | | 0.693 | 3.0 | 9 | 0.8101 | 0.25 | | 0.5979 | 4.0 | 12 | 1.1235 | 0.25 | | 0.4095 | 5.0 | 15 | 1.3563 | 0.25 | | 0.2836 | 6.0 | 18 | 1.5325 | 0.5 | | 0.1627 | 7.0 | 21 | 1.7786 | 0.25 | | 0.0956 | 8.0 | 24 | 2.0067 | 0.5 | | 0.0535 | 9.0 | 27 | 2.3351 | 0.5 | | 0.0315 | 10.0 | 30 | 2.6204 | 0.5 | | 0.0182 | 11.0 | 33 | 2.8483 | 0.5 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/deberta-v3-large__sst2__train-8-5
1841928786dc42f20bbd3bbe326d3821694dd227
2022-02-10T09:23:56.000Z
[ "pytorch", "deberta-v2", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
SetFit
null
SetFit/deberta-v3-large__sst2__train-8-5
6
null
transformers
15,032
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: deberta-v3-large__sst2__train-8-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-large__sst2__train-8-5 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3078 - Accuracy: 0.6930 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6813 | 1.0 | 3 | 0.7842 | 0.25 | | 0.6617 | 2.0 | 6 | 0.7968 | 0.25 | | 0.6945 | 3.0 | 9 | 0.7746 | 0.25 | | 0.5967 | 4.0 | 12 | 0.7557 | 0.25 | | 0.4824 | 5.0 | 15 | 0.6920 | 0.25 | | 0.3037 | 6.0 | 18 | 0.6958 | 0.5 | | 0.2329 | 7.0 | 21 | 0.6736 | 0.5 | | 0.1441 | 8.0 | 24 | 0.3749 | 1.0 | | 0.0875 | 9.0 | 27 | 0.3263 | 0.75 | | 0.0655 | 10.0 | 30 | 0.3525 | 0.75 | | 0.0373 | 11.0 | 33 | 0.1993 | 1.0 | | 0.0173 | 12.0 | 36 | 0.1396 | 1.0 | | 0.0147 | 13.0 | 39 | 0.0655 | 1.0 | | 0.0084 | 14.0 | 42 | 0.0343 | 1.0 | | 0.0049 | 15.0 | 45 | 0.0225 | 1.0 | | 0.004 | 16.0 | 48 | 0.0167 | 1.0 | | 0.003 | 17.0 | 51 | 0.0134 | 1.0 | | 0.0027 | 18.0 | 54 | 0.0114 | 1.0 | | 0.002 | 19.0 | 57 | 0.0104 | 1.0 | | 0.0015 | 20.0 | 60 | 0.0099 | 1.0 | | 0.0014 | 21.0 | 63 | 0.0095 | 1.0 | | 0.0013 | 22.0 | 66 | 0.0095 | 1.0 | | 0.0012 | 23.0 | 69 | 0.0091 | 1.0 | | 0.0011 | 24.0 | 72 | 0.0085 | 1.0 | | 0.0009 | 25.0 | 75 | 0.0081 | 1.0 | | 0.001 | 26.0 | 78 | 0.0077 | 1.0 | | 0.0008 | 27.0 | 81 | 0.0074 | 1.0 | | 0.0009 | 28.0 | 84 | 0.0071 | 1.0 | | 0.0007 | 29.0 | 87 | 0.0068 | 1.0 | | 0.0008 | 30.0 | 90 | 0.0064 | 1.0 | | 0.0007 | 31.0 | 93 | 0.0062 | 1.0 | | 0.0007 | 32.0 | 96 | 0.0059 | 1.0 | | 0.0007 | 33.0 | 99 | 0.0056 | 1.0 | | 0.0005 | 34.0 | 102 | 0.0054 | 1.0 | | 0.0006 | 35.0 | 105 | 0.0053 | 1.0 | | 0.0008 | 36.0 | 108 | 0.0051 | 1.0 | | 0.0007 | 37.0 | 111 | 0.0050 | 1.0 | | 0.0007 | 38.0 | 114 | 0.0049 | 1.0 | | 0.0006 | 39.0 | 117 | 0.0048 | 1.0 | | 0.0005 | 40.0 | 120 | 0.0048 | 1.0 | | 0.0005 | 41.0 | 123 | 0.0048 | 1.0 | | 0.0005 | 42.0 | 126 | 0.0047 | 1.0 | | 0.0005 | 43.0 | 129 | 0.0047 | 1.0 | | 0.0005 | 44.0 | 132 | 0.0047 | 1.0 | | 0.0006 | 45.0 | 135 | 0.0047 | 1.0 | | 0.0005 | 46.0 | 138 | 0.0047 | 1.0 | | 0.0005 | 47.0 | 141 | 0.0047 | 1.0 | | 0.0006 | 48.0 | 144 | 0.0047 | 1.0 | | 0.0005 | 49.0 | 147 | 0.0047 | 1.0 | | 0.0005 | 50.0 | 150 | 0.0047 | 1.0 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__hate_speech_offensive__train-16-0
5d80b3f7e9e331c0bb5c40f4232f86d1d9f2b1b9
2022-02-10T07:49:02.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
SetFit
null
SetFit/distilbert-base-uncased__hate_speech_offensive__train-16-0
6
null
transformers
15,033
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__hate_speech_offensive__train-16-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-16-0 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2707 - Accuracy: 0.517 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0943 | 1.0 | 10 | 1.1095 | 0.3 | | 1.0602 | 2.0 | 20 | 1.1086 | 0.4 | | 1.0159 | 3.0 | 30 | 1.1165 | 0.4 | | 0.9027 | 4.0 | 40 | 1.1377 | 0.4 | | 0.8364 | 5.0 | 50 | 1.0126 | 0.5 | | 0.6653 | 6.0 | 60 | 0.9298 | 0.5 | | 0.535 | 7.0 | 70 | 0.9555 | 0.5 | | 0.3713 | 8.0 | 80 | 0.8543 | 0.4 | | 0.1633 | 9.0 | 90 | 0.9876 | 0.4 | | 0.1069 | 10.0 | 100 | 0.8383 | 0.6 | | 0.0591 | 11.0 | 110 | 0.8056 | 0.6 | | 0.0344 | 12.0 | 120 | 0.8915 | 0.6 | | 0.0265 | 13.0 | 130 | 0.8722 | 0.6 | | 0.0196 | 14.0 | 140 | 1.0064 | 0.6 | | 0.0158 | 15.0 | 150 | 1.0479 | 0.6 | | 0.0128 | 16.0 | 160 | 1.0723 | 0.6 | | 0.0121 | 17.0 | 170 | 1.0758 | 0.6 | | 0.0093 | 18.0 | 180 | 1.1236 | 0.6 | | 0.0085 | 19.0 | 190 | 1.1480 | 0.6 | | 0.0084 | 20.0 | 200 | 1.1651 | 0.6 | | 0.0077 | 21.0 | 210 | 1.1832 | 0.6 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__hate_speech_offensive__train-32-1
f3e6733dcf269435b6bc23ca2bd56b143017ba64
2022-02-10T08:01:40.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
SetFit
null
SetFit/distilbert-base-uncased__hate_speech_offensive__train-32-1
6
null
transformers
15,034
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__hate_speech_offensive__train-32-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-32-1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0606 - Accuracy: 0.4745 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0941 | 1.0 | 19 | 1.1045 | 0.2 | | 0.9967 | 2.0 | 38 | 1.1164 | 0.35 | | 0.8164 | 3.0 | 57 | 1.1570 | 0.4 | | 0.5884 | 4.0 | 76 | 1.2403 | 0.35 | | 0.3322 | 5.0 | 95 | 1.3815 | 0.35 | | 0.156 | 6.0 | 114 | 1.8102 | 0.3 | | 0.0576 | 7.0 | 133 | 2.1439 | 0.4 | | 0.0227 | 8.0 | 152 | 2.4368 | 0.3 | | 0.0133 | 9.0 | 171 | 2.5994 | 0.4 | | 0.009 | 10.0 | 190 | 2.7388 | 0.35 | | 0.0072 | 11.0 | 209 | 2.8287 | 0.35 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__hate_speech_offensive__train-32-3
de7f807485d18c45d8dca6df90e8bc683e132d3e
2022-02-10T08:04:08.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
SetFit
null
SetFit/distilbert-base-uncased__hate_speech_offensive__train-32-3
6
null
transformers
15,035
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__hate_speech_offensive__train-32-3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-32-3 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8286 - Accuracy: 0.661 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1041 | 1.0 | 19 | 1.0658 | 0.5 | | 1.009 | 2.0 | 38 | 0.9892 | 0.7 | | 0.7925 | 3.0 | 57 | 0.8516 | 0.7 | | 0.5279 | 4.0 | 76 | 0.7877 | 0.65 | | 0.2932 | 5.0 | 95 | 0.7592 | 0.65 | | 0.1166 | 6.0 | 114 | 0.9437 | 0.65 | | 0.044 | 7.0 | 133 | 1.0315 | 0.75 | | 0.0197 | 8.0 | 152 | 1.3513 | 0.55 | | 0.0126 | 9.0 | 171 | 1.1702 | 0.7 | | 0.0083 | 10.0 | 190 | 1.2272 | 0.7 | | 0.0068 | 11.0 | 209 | 1.2889 | 0.7 | | 0.0059 | 12.0 | 228 | 1.3073 | 0.7 | | 0.0052 | 13.0 | 247 | 1.3595 | 0.7 | | 0.0041 | 14.0 | 266 | 1.4443 | 0.7 | | 0.0038 | 15.0 | 285 | 1.4709 | 0.7 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__hate_speech_offensive__train-32-4
9cb0bf39864449b3659974ec42f7666a27f5a677
2022-02-10T08:05:22.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
SetFit
null
SetFit/distilbert-base-uncased__hate_speech_offensive__train-32-4
6
null
transformers
15,036
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__hate_speech_offensive__train-32-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-32-4 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7384 - Accuracy: 0.724 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1013 | 1.0 | 19 | 1.0733 | 0.55 | | 1.0226 | 2.0 | 38 | 1.0064 | 0.65 | | 0.8539 | 3.0 | 57 | 0.8758 | 0.75 | | 0.584 | 4.0 | 76 | 0.6941 | 0.7 | | 0.2813 | 5.0 | 95 | 0.5151 | 0.7 | | 0.1122 | 6.0 | 114 | 0.4351 | 0.8 | | 0.0432 | 7.0 | 133 | 0.4896 | 0.85 | | 0.0199 | 8.0 | 152 | 0.5391 | 0.85 | | 0.0126 | 9.0 | 171 | 0.5200 | 0.85 | | 0.0085 | 10.0 | 190 | 0.5622 | 0.85 | | 0.0069 | 11.0 | 209 | 0.5950 | 0.85 | | 0.0058 | 12.0 | 228 | 0.6015 | 0.85 | | 0.0053 | 13.0 | 247 | 0.6120 | 0.85 | | 0.0042 | 14.0 | 266 | 0.6347 | 0.85 | | 0.0039 | 15.0 | 285 | 0.6453 | 0.85 | | 0.0034 | 16.0 | 304 | 0.6660 | 0.85 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__sst2__train-8-3
47e98d19dc4f9c9ae01c49a8b40c399672273bb4
2022-02-10T07:10:59.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
SetFit
null
SetFit/distilbert-base-uncased__sst2__train-8-3
6
null
transformers
15,037
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__sst2__train-8-3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-8-3 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6914 - Accuracy: 0.5195 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6931 | 1.0 | 3 | 0.7039 | 0.25 | | 0.6615 | 2.0 | 6 | 0.7186 | 0.25 | | 0.653 | 3.0 | 9 | 0.7334 | 0.25 | | 0.601 | 4.0 | 12 | 0.7592 | 0.25 | | 0.5555 | 5.0 | 15 | 0.7922 | 0.25 | | 0.4832 | 6.0 | 18 | 0.8179 | 0.25 | | 0.4565 | 7.0 | 21 | 0.8285 | 0.25 | | 0.3996 | 8.0 | 24 | 0.8559 | 0.25 | | 0.3681 | 9.0 | 27 | 0.8586 | 0.5 | | 0.2901 | 10.0 | 30 | 0.8646 | 0.5 | | 0.241 | 11.0 | 33 | 0.8524 | 0.5 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__subj__train-8-5
d193425b667892ab1287d520bf341d63ea2133f6
2022-02-09T20:26:29.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
SetFit
null
SetFit/distilbert-base-uncased__subj__train-8-5
6
null
transformers
15,038
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__subj__train-8-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__subj__train-8-5 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6927 - Accuracy: 0.506 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7102 | 1.0 | 3 | 0.6790 | 0.75 | | 0.6693 | 2.0 | 6 | 0.6831 | 0.75 | | 0.6438 | 3.0 | 9 | 0.6876 | 0.75 | | 0.6047 | 4.0 | 12 | 0.6970 | 0.75 | | 0.547 | 5.0 | 15 | 0.7065 | 0.75 | | 0.4885 | 6.0 | 18 | 0.7114 | 0.75 | | 0.4601 | 7.0 | 21 | 0.7147 | 0.5 | | 0.4017 | 8.0 | 24 | 0.7178 | 0.5 | | 0.3474 | 9.0 | 27 | 0.7145 | 0.5 | | 0.2624 | 10.0 | 30 | 0.7153 | 0.5 | | 0.2175 | 11.0 | 33 | 0.7158 | 0.5 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__subj__train-8-7
1f89c28aa49db51aef791096319feaa0bba30402
2022-02-09T20:30:48.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
SetFit
null
SetFit/distilbert-base-uncased__subj__train-8-7
6
null
transformers
15,039
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__subj__train-8-7 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__subj__train-8-7 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2766 - Accuracy: 0.8845 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7044 | 1.0 | 3 | 0.6909 | 0.5 | | 0.6678 | 2.0 | 6 | 0.6901 | 0.5 | | 0.6336 | 3.0 | 9 | 0.6807 | 0.5 | | 0.5926 | 4.0 | 12 | 0.6726 | 0.5 | | 0.5221 | 5.0 | 15 | 0.6648 | 0.5 | | 0.4573 | 6.0 | 18 | 0.6470 | 0.5 | | 0.4177 | 7.0 | 21 | 0.6251 | 0.5 | | 0.3252 | 8.0 | 24 | 0.5994 | 0.5 | | 0.2831 | 9.0 | 27 | 0.5529 | 0.5 | | 0.213 | 10.0 | 30 | 0.5078 | 0.75 | | 0.1808 | 11.0 | 33 | 0.4521 | 1.0 | | 0.1355 | 12.0 | 36 | 0.3996 | 1.0 | | 0.1027 | 13.0 | 39 | 0.3557 | 1.0 | | 0.0862 | 14.0 | 42 | 0.3121 | 1.0 | | 0.0682 | 15.0 | 45 | 0.2828 | 1.0 | | 0.0517 | 16.0 | 48 | 0.2603 | 1.0 | | 0.0466 | 17.0 | 51 | 0.2412 | 1.0 | | 0.038 | 18.0 | 54 | 0.2241 | 1.0 | | 0.0276 | 19.0 | 57 | 0.2096 | 1.0 | | 0.0246 | 20.0 | 60 | 0.1969 | 1.0 | | 0.0249 | 21.0 | 63 | 0.1859 | 1.0 | | 0.0201 | 22.0 | 66 | 0.1770 | 1.0 | | 0.018 | 23.0 | 69 | 0.1703 | 1.0 | | 0.0164 | 24.0 | 72 | 0.1670 | 1.0 | | 0.0172 | 25.0 | 75 | 0.1639 | 1.0 | | 0.0135 | 26.0 | 78 | 0.1604 | 1.0 | | 0.014 | 27.0 | 81 | 0.1585 | 1.0 | | 0.0108 | 28.0 | 84 | 0.1569 | 1.0 | | 0.0116 | 29.0 | 87 | 0.1549 | 1.0 | | 0.0111 | 30.0 | 90 | 0.1532 | 1.0 | | 0.0113 | 31.0 | 93 | 0.1513 | 1.0 | | 0.0104 | 32.0 | 96 | 0.1503 | 1.0 | | 0.01 | 33.0 | 99 | 0.1490 | 1.0 | | 0.0079 | 34.0 | 102 | 0.1479 | 1.0 | | 0.0097 | 35.0 | 105 | 0.1466 | 1.0 | | 0.0112 | 36.0 | 108 | 0.1458 | 1.0 | | 0.0091 | 37.0 | 111 | 0.1457 | 1.0 | | 0.0098 | 38.0 | 114 | 0.1454 | 1.0 | | 0.0076 | 39.0 | 117 | 0.1451 | 1.0 | | 0.0085 | 40.0 | 120 | 0.1448 | 1.0 | | 0.0079 | 41.0 | 123 | 0.1445 | 1.0 | | 0.0096 | 42.0 | 126 | 0.1440 | 1.0 | | 0.0081 | 43.0 | 129 | 0.1430 | 1.0 | | 0.0083 | 44.0 | 132 | 0.1424 | 1.0 | | 0.0088 | 45.0 | 135 | 0.1418 | 1.0 | | 0.0077 | 46.0 | 138 | 0.1414 | 1.0 | | 0.0073 | 47.0 | 141 | 0.1413 | 1.0 | | 0.0084 | 48.0 | 144 | 0.1412 | 1.0 | | 0.0072 | 49.0 | 147 | 0.1411 | 1.0 | | 0.0077 | 50.0 | 150 | 0.1411 | 1.0 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
Shappey/roberta-base-QnA-squad2-trained
254986639efa480a089fc73b9741bcbcdc2972b3
2021-05-30T23:31:02.000Z
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
Shappey
null
Shappey/roberta-base-QnA-squad2-trained
6
null
transformers
15,040
Entry not found
Shenyancheng/distilbert-base-uncased-finetuned-ner
4d53f6337b61e15cd1a82af3751a3807c4cf32eb
2022-01-07T04:37:52.000Z
[ "pytorch", "tensorboard", "distilbert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
Shenyancheng
null
Shenyancheng/distilbert-base-uncased-finetuned-ner
6
null
transformers
15,041
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9266592920353982 - name: Recall type: recall value: 0.9371294328224634 - name: F1 type: f1 value: 0.9318649535569274 - name: Accuracy type: accuracy value: 0.9838117781625813 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0620 - Precision: 0.9267 - Recall: 0.9371 - F1: 0.9319 - Accuracy: 0.9838 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2462 | 1.0 | 878 | 0.0714 | 0.9052 | 0.9223 | 0.9137 | 0.9803 | | 0.0535 | 2.0 | 1756 | 0.0615 | 0.9188 | 0.9331 | 0.9259 | 0.9827 | | 0.0315 | 3.0 | 2634 | 0.0620 | 0.9267 | 0.9371 | 0.9319 | 0.9838 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
Shuvam/autonlp-college_classification-164469
fc72e5fc2a0cf1041e572332e4b7d845cb74c718
2021-05-18T22:37:16.000Z
[ "pytorch", "jax", "bert", "text-classification", "en", "dataset:Shuvam/autonlp-data-college_classification", "transformers", "autonlp" ]
text-classification
false
Shuvam
null
Shuvam/autonlp-college_classification-164469
6
null
transformers
15,042
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - Shuvam/autonlp-data-college_classification --- # Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 164469 ## Validation Metrics - Loss: 0.05527503043413162 - Accuracy: 0.9853049228508449 - Precision: 0.991044776119403 - Recall: 0.9793510324483776 - AUC: 0.9966895139869654 - F1: 0.9851632047477745 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/Shuvam/autonlp-college_classification-164469 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("Shuvam/autonlp-college_classification-164469", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("Shuvam/autonlp-college_classification-164469", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
SoLID/sgd-output-plan-constructor
dc4ae68ae9ad7d0f805c5dae2b3acf3d9bae32c7
2021-12-18T21:00:54.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
SoLID
null
SoLID/sgd-output-plan-constructor
6
null
transformers
15,043
## Schema Guided Dialogue Output Plan Constructor
Sofiascope/amazon-fine-tuned
35634ee3baeb8aa450fdff14f3cc685800a17b7a
2021-12-28T11:01:44.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Sofiascope
null
Sofiascope/amazon-fine-tuned
6
null
transformers
15,044
Entry not found
Sotireas/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext-ContaminationQAmodel_PubmedBERT
89521b549d0ae7074b9673a0bd24299641bc61a1
2022-02-07T12:55:37.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
question-answering
false
Sotireas
null
Sotireas/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext-ContaminationQAmodel_PubmedBERT
6
null
transformers
15,045
--- license: mit tags: - generated_from_trainer model-index: - name: BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext-ContaminationQAmodel_PubmedBERT results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext-ContaminationQAmodel_PubmedBERT This model is a fine-tuned version of [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
Sunnydx/BillCipherBot
f466f4ffdd2039933819ede1c98141116c58354b
2021-09-10T13:54:08.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Sunnydx
null
Sunnydx/BillCipherBot
6
null
transformers
15,046
--- tags: - conversational --- #Bill cipher chat bot
SupriyaArun/bert-base-uncased-finetuned-squad
12b01e89303b091be814f1a8f18a857195ce91b5
2021-12-11T00:15:16.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
SupriyaArun
null
SupriyaArun/bert-base-uncased-finetuned-squad
6
null
transformers
15,047
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-squad This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.0755 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.0698 | 1.0 | 5533 | 1.0240 | | 0.7813 | 2.0 | 11066 | 1.0310 | | 0.608 | 3.0 | 16599 | 1.0755 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
SupriyaArun/squeezebert-uncased-finetuned-squad
5e461730f4556ef4e5648a0d6ef7df9b3911c4d7
2021-12-11T11:44:12.000Z
[ "pytorch", "tensorboard", "squeezebert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
SupriyaArun
null
SupriyaArun/squeezebert-uncased-finetuned-squad
6
null
transformers
15,048
--- tags: - generated_from_trainer datasets: - squad model-index: - name: squeezebert-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # squeezebert-uncased-finetuned-squad This model is a fine-tuned version of [squeezebert/squeezebert-uncased](https://huggingface.co/squeezebert/squeezebert-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.0808 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2624 | 1.0 | 5533 | 1.1648 | | 1.0699 | 2.0 | 11066 | 1.0920 | | 0.9463 | 3.0 | 16599 | 1.0808 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
TehranNLP-org/bert-base-uncased-avg-sst2-2e-5-21
de8f74e7a874999e6ec86e60c018eca36800a127
2021-08-01T17:58:45.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
TehranNLP-org
null
TehranNLP-org/bert-base-uncased-avg-sst2-2e-5-21
6
null
transformers
15,049
Entry not found
TehranNLP-org/electra-base-avg-mnli
c3a2e2278c7b96ebc0378de5a14341d3dd61a2b5
2021-07-06T18:44:05.000Z
[ "pytorch", "electra", "text-classification", "transformers" ]
text-classification
false
TehranNLP-org
null
TehranNLP-org/electra-base-avg-mnli
6
null
transformers
15,050
Entry not found
Tejas3/distillbert_base_uncased_80_all
65c6f8ee83bab7c9f75fbe5c51b99e1afc7ec3ab
2021-07-15T09:00:44.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
Tejas3
null
Tejas3/distillbert_base_uncased_80_all
6
null
transformers
15,051
Entry not found
TheTUFGuy/HermioneChatBot
619e1ed6e7fd8d4f06f129d1e7529d417146122d
2021-08-30T18:06:36.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
TheTUFGuy
null
TheTUFGuy/HermioneChatBot
6
null
transformers
15,052
--- tags: - conversational --- # Hemione Chat Bot
Theivaprakasham/sentence-transformers-msmarco-distilbert-base-tas-b-twitter_sentiment
7d54e3afc0dec7ee2f4fb60a0a4662f471b29ea7
2021-12-06T12:50:26.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Theivaprakasham
null
Theivaprakasham/sentence-transformers-msmarco-distilbert-base-tas-b-twitter_sentiment
6
null
transformers
15,053
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: sentence-transformers-msmarco-distilbert-base-tas-b-twitter_sentiment results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sentence-transformers-msmarco-distilbert-base-tas-b-twitter_sentiment This model is a fine-tuned version of [sentence-transformers/msmarco-distilbert-base-tas-b](https://huggingface.co/sentence-transformers/msmarco-distilbert-base-tas-b) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6954 - Accuracy: 0.7146 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.8892 | 1.0 | 1387 | 0.8472 | 0.6180 | | 0.7965 | 2.0 | 2774 | 0.7797 | 0.6609 | | 0.7459 | 3.0 | 4161 | 0.7326 | 0.6872 | | 0.7096 | 4.0 | 5548 | 0.7133 | 0.6995 | | 0.6853 | 5.0 | 6935 | 0.6998 | 0.7002 | | 0.6561 | 6.0 | 8322 | 0.6949 | 0.7059 | | 0.663 | 7.0 | 9709 | 0.6956 | 0.7077 | | 0.6352 | 8.0 | 11096 | 0.6890 | 0.7164 | | 0.6205 | 9.0 | 12483 | 0.6888 | 0.7117 | | 0.6203 | 10.0 | 13870 | 0.6871 | 0.7121 | | 0.6005 | 11.0 | 15257 | 0.6879 | 0.7171 | | 0.5985 | 12.0 | 16644 | 0.6870 | 0.7139 | | 0.5839 | 13.0 | 18031 | 0.6882 | 0.7164 | | 0.5861 | 14.0 | 19418 | 0.6910 | 0.7124 | | 0.5732 | 15.0 | 20805 | 0.6916 | 0.7153 | | 0.5797 | 16.0 | 22192 | 0.6947 | 0.7110 | | 0.5565 | 17.0 | 23579 | 0.6930 | 0.7175 | | 0.5636 | 18.0 | 24966 | 0.6959 | 0.7106 | | 0.5642 | 19.0 | 26353 | 0.6952 | 0.7132 | | 0.5717 | 20.0 | 27740 | 0.6954 | 0.7146 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
Theivaprakasham/wav2vec2-base-timit-demo-colab
b07f4f1a9050739221308f5a8d7b056751c5b292
2021-11-15T14:33:44.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Theivaprakasham
null
Theivaprakasham/wav2vec2-base-timit-demo-colab
6
null
transformers
15,054
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4475 - Wer: 0.3400 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.6929 | 4.0 | 500 | 2.4485 | 1.0009 | | 0.9441 | 8.0 | 1000 | 0.4848 | 0.4758 | | 0.3016 | 12.0 | 1500 | 0.4464 | 0.4016 | | 0.1715 | 16.0 | 2000 | 0.4666 | 0.3765 | | 0.1277 | 20.0 | 2500 | 0.4340 | 0.3515 | | 0.1082 | 24.0 | 3000 | 0.4544 | 0.3495 | | 0.0819 | 28.0 | 3500 | 0.4475 | 0.3400 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
TomW/TOMFINSEN
21bc05435c80ab998d7cd210a2d9f1a40d233d37
2022-01-20T18:19:24.000Z
[ "pytorch", "tensorboard", "perceiver", "text-classification", "dataset:financial_phrasebank", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
TomW
null
TomW/TOMFINSEN
6
null
transformers
15,055
--- license: apache-2.0 tags: - generated_from_trainer datasets: - financial_phrasebank metrics: - recall - accuracy - precision model-index: - name: TOMFINSEN results: - task: name: Text Classification type: text-classification dataset: name: financial_phrasebank type: financial_phrasebank args: sentences_50agree metrics: - name: Recall type: recall value: 0.8985861629736692 - name: Accuracy type: accuracy value: 0.8742268041237113 - name: Precision type: precision value: 0.8509995913451198 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # TOMFINSEN This model is a fine-tuned version of [deepmind/language-perceiver](https://huggingface.co/deepmind/language-perceiver) on the financial_phrasebank dataset. It achieves the following results on the evaluation set: - Loss: 0.3642 - Recall: 0.8986 - Accuracy: 0.8742 - Precision: 0.8510 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - distributed_type: tpu - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Recall | Accuracy | Precision | |:-------------:|:-----:|:----:|:---------------:|:------:|:--------:|:---------:| | 0.5403 | 1.0 | 273 | 0.4207 | 0.8358 | 0.8619 | 0.8534 | | 0.3939 | 2.0 | 546 | 0.3750 | 0.8943 | 0.8577 | 0.8225 | | 0.1993 | 3.0 | 819 | 0.3113 | 0.8882 | 0.8660 | 0.8367 | | 0.301 | 4.0 | 1092 | 0.3642 | 0.8986 | 0.8742 | 0.8510 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.9.0+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
TurkuNLP/wikibert-base-et-cased
f3845e2bbfa1f8771b88c466c36222594b85c43d
2020-05-24T19:59:34.000Z
[ "pytorch", "transformers" ]
null
false
TurkuNLP
null
TurkuNLP/wikibert-base-et-cased
6
null
transformers
15,056
Entry not found
Ulto/pythonCoPilot
e42cbeb465f9b6ced1235ecfe22d020af5396891
2021-11-21T23:49:37.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "model-index" ]
text-generation
false
Ulto
null
Ulto/pythonCoPilot
6
null
transformers
15,057
--- tags: - generated_from_trainer model-index: - name: pythonCoPilot results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pythonCoPilot This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
Unbabel/XLM-R-6L
ed1f545a70857594994c7c360527068ef28b9b26
2022-01-05T19:22:53.000Z
[ "pytorch", "xlm-roberta", "feature-extraction", "transformers" ]
feature-extraction
false
Unbabel
null
Unbabel/XLM-R-6L
6
null
transformers
15,058
Entry not found
Unbabel/XLM-R_L19_H12_FF3072
ae643ec5270e2d1ff74425cded7457016c46871a
2022-01-08T22:30:12.000Z
[ "pytorch", "xlm-roberta", "feature-extraction", "transformers" ]
feature-extraction
false
Unbabel
null
Unbabel/XLM-R_L19_H12_FF3072
6
null
transformers
15,059
Entry not found
Vampiro/DialoGPT-small-dante_c
14ee8d2ce9e1e9c16ccfdf3e67c3b44ead34648b
2021-09-21T03:51:23.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Vampiro
null
Vampiro/DialoGPT-small-dante_c
6
null
transformers
15,060
--- tags: - conversational --- # Dante - Devi May Cry V DialoGPT Model
Viona/agriculture-sentence-transformer
991932ca2e522baa62b67e33da46f1cdfe65d965
2022-01-18T21:22:08.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
Viona
null
Viona/agriculture-sentence-transformer
6
null
transformers
15,061
Entry not found
Weelz/Paraphraser
28ff0a51728dbd5c0d0ee8ed4cdb7038cb09fbc8
2021-11-08T19:30:18.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Weelz
null
Weelz/Paraphraser
6
null
transformers
15,062
Entry not found
WikinewsSum/bert2bert-multi-de-wiki-news
52363eeaf2aaa70974d16ab7fba16a17c724038c
2020-08-11T09:05:48.000Z
[ "pytorch", "encoder-decoder", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
WikinewsSum
null
WikinewsSum/bert2bert-multi-de-wiki-news
6
null
transformers
15,063
Entry not found
Win-Win-option/RuT5-finetuned
590ad141b2d0ca3f217667de84cf72787021b56e
2021-08-12T12:08:08.000Z
[ "pytorch", "t5", "feature-extraction", "transformers" ]
feature-extraction
false
Win-Win-option
null
Win-Win-option/RuT5-finetuned
6
1
transformers
15,064
Бламе
XSY/albert-base-v2-scarcasm-discriminator
947a4cca2bdf0f1004ba57564f96223f52728152
2021-11-10T12:56:20.000Z
[ "pytorch", "albert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
XSY
null
XSY/albert-base-v2-scarcasm-discriminator
6
null
transformers
15,065
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: albert-base-v2-scarcasm-discriminator results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # albert-base-v2-scarcasm-discriminator This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2379 - Accuracy: 0.8996 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2111 | 1.0 | 2179 | 0.2379 | 0.8996 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.0+cu111 - Tokenizers 0.10.3
XiaoqiJiao/2nd_General_TinyBERT_6L_768D
dd860b44dab744d2424b895cbd969623a0dadb00
2020-09-02T03:03:02.000Z
[ "pytorch", "transformers" ]
null
false
XiaoqiJiao
null
XiaoqiJiao/2nd_General_TinyBERT_6L_768D
6
null
transformers
15,066
Entry not found
Yuri/xlm-roberta-base-finetuned-marc
dc58ef71019e5fa253f6ed12542e9beb06e19617
2021-10-16T11:36:47.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "text-classification", "dataset:amazon_reviews_multi", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
Yuri
null
Yuri/xlm-roberta-base-finetuned-marc
6
null
transformers
15,067
--- license: mit tags: - generated_from_trainer datasets: - amazon_reviews_multi model-index: - name: xlm-roberta-base-finetuned-marc results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-marc This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.9825 - Mae: 0.4956 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.1432 | 1.0 | 308 | 1.0559 | 0.5133 | | 0.9883 | 2.0 | 616 | 0.9825 | 0.4956 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
aXhyra/demo_emotion_1234567
f08e6df13b29b3fafb58db23c7fc54b39b97a91f
2021-12-13T18:21:16.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:tweet_eval", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
aXhyra
null
aXhyra/demo_emotion_1234567
6
null
transformers
15,068
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tweet_eval metrics: - f1 model-index: - name: demo_emotion_1234567 results: - task: name: Text Classification type: text-classification dataset: name: tweet_eval type: tweet_eval args: emotion metrics: - name: F1 type: f1 value: 0.7348035780583043 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # demo_emotion_1234567 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 0.9818 - F1: 0.7348 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.551070618629693e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 204 | 0.7431 | 0.6530 | | No log | 2.0 | 408 | 0.6943 | 0.7333 | | 0.5176 | 3.0 | 612 | 0.8456 | 0.7326 | | 0.5176 | 4.0 | 816 | 0.9818 | 0.7348 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
aXhyra/demo_hate_1234567
abe96b83bc402100b68c7ef7713c5f71965e6e9d
2021-12-13T19:21:09.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:tweet_eval", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
aXhyra
null
aXhyra/demo_hate_1234567
6
null
transformers
15,069
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tweet_eval metrics: - f1 model-index: - name: demo_hate_1234567 results: - task: name: Text Classification type: text-classification dataset: name: tweet_eval type: tweet_eval args: hate metrics: - name: F1 type: f1 value: 0.7772939485986298 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # demo_hate_1234567 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 0.8697 - F1: 0.7773 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.320702985778492e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 282 | 0.4850 | 0.7645 | | 0.3877 | 2.0 | 564 | 0.5160 | 0.7856 | | 0.3877 | 3.0 | 846 | 0.6927 | 0.7802 | | 0.1343 | 4.0 | 1128 | 0.8697 | 0.7773 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
aXhyra/demo_hate_31415
0c59cc18ce2c562a878cbe629ea48d850c8c0b45
2021-12-13T19:15:19.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:tweet_eval", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
aXhyra
null
aXhyra/demo_hate_31415
6
null
transformers
15,070
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tweet_eval metrics: - f1 model-index: - name: demo_hate_31415 results: - task: name: Text Classification type: text-classification dataset: name: tweet_eval type: tweet_eval args: hate metrics: - name: F1 type: f1 value: 0.7772939485986298 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # demo_hate_31415 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 0.8697 - F1: 0.7773 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.320702985778492e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 282 | 0.4850 | 0.7645 | | 0.3877 | 2.0 | 564 | 0.5160 | 0.7856 | | 0.3877 | 3.0 | 846 | 0.6927 | 0.7802 | | 0.1343 | 4.0 | 1128 | 0.8697 | 0.7773 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
aXhyra/demo_sentiment_31415
9230752e0da249b16c4720897af9d3a49828718d
2021-12-13T22:54:14.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:tweet_eval", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
aXhyra
null
aXhyra/demo_sentiment_31415
6
null
transformers
15,071
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tweet_eval metrics: - f1 model-index: - name: demo_sentiment_31415 results: - task: name: Text Classification type: text-classification dataset: name: tweet_eval type: tweet_eval args: sentiment metrics: - name: F1 type: f1 value: 0.7113620044371958 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # demo_sentiment_31415 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 0.6332 - F1: 0.7114 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8.62486660723695e-06 - train_batch_size: 64 - eval_batch_size: 64 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.7592 | 1.0 | 713 | 0.6509 | 0.6834 | | 0.6389 | 2.0 | 1426 | 0.6318 | 0.7011 | | 0.5647 | 3.0 | 2139 | 0.6320 | 0.7041 | | 0.5391 | 4.0 | 2852 | 0.6332 | 0.7114 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
aXhyra/irony_trained_42
702417c36fd0ec046f2adff1ce50cf16346e0892
2021-12-12T12:10:39.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:tweet_eval", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
aXhyra
null
aXhyra/irony_trained_42
6
null
transformers
15,072
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tweet_eval metrics: - f1 model-index: - name: irony_trained_42 results: - task: name: Text Classification type: text-classification dataset: name: tweet_eval type: tweet_eval args: irony metrics: - name: F1 type: f1 value: 0.6785912258473235 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # irony_trained_42 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 1.5669 - F1: 0.6786 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.6774391860025942e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.6669 | 1.0 | 716 | 0.6291 | 0.6198 | | 0.5655 | 2.0 | 1432 | 0.7332 | 0.6771 | | 0.3764 | 3.0 | 2148 | 1.4193 | 0.6554 | | 0.229 | 4.0 | 2864 | 1.5669 | 0.6786 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
aXhyra/presentation_hate_1234567
578c45134d66df71f631806bf21987f3b5754b57
2021-12-15T11:31:02.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:tweet_eval", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
aXhyra
null
aXhyra/presentation_hate_1234567
6
null
transformers
15,073
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tweet_eval metrics: - f1 model-index: - name: presentation_hate_1234567 results: - task: name: Text Classification type: text-classification dataset: name: tweet_eval type: tweet_eval args: hate metrics: - name: F1 type: f1 value: 0.7679568806891273 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # presentation_hate_1234567 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 0.8438 - F1: 0.7680 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.436235805743952e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 1234567 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.6027 | 1.0 | 282 | 0.5186 | 0.7209 | | 0.3537 | 2.0 | 564 | 0.4989 | 0.7619 | | 0.0969 | 3.0 | 846 | 0.6405 | 0.7697 | | 0.0514 | 4.0 | 1128 | 0.8438 | 0.7680 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
aXhyra/presentation_irony_1234567
e82dbf9f0d2d1321b6389d2603a2b8e8dd562581
2021-12-15T10:18:37.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:tweet_eval", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
aXhyra
null
aXhyra/presentation_irony_1234567
6
null
transformers
15,074
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tweet_eval metrics: - f1 model-index: - name: presentation_irony_1234567 results: - task: name: Text Classification type: text-classification dataset: name: tweet_eval type: tweet_eval args: irony metrics: - name: F1 type: f1 value: 0.674604535422547 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # presentation_irony_1234567 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 0.9493 - F1: 0.6746 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.1637764704815665e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 1234567 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.5514 | 1.0 | 90 | 0.5917 | 0.6767 | | 0.6107 | 2.0 | 180 | 0.6123 | 0.6730 | | 0.1327 | 3.0 | 270 | 0.7463 | 0.6970 | | 0.1068 | 4.0 | 360 | 0.9493 | 0.6746 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
aXhyra/presentation_sentiment_31415
df6596e32f308c594e39ebaeb5f0a724f8fd7844
2021-12-14T22:46:29.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:tweet_eval", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
aXhyra
null
aXhyra/presentation_sentiment_31415
6
null
transformers
15,075
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tweet_eval metrics: - f1 model-index: - name: presentation_sentiment_31415 results: - task: name: Text Classification type: text-classification dataset: name: tweet_eval type: tweet_eval args: sentiment metrics: - name: F1 type: f1 value: 0.71829420028644 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # presentation_sentiment_31415 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 1.0860 - F1: 0.7183 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.2792011721188e-06 - train_batch_size: 4 - eval_batch_size: 4 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.3747 | 1.0 | 11404 | 0.6515 | 0.7045 | | 0.6511 | 2.0 | 22808 | 0.7334 | 0.7188 | | 0.0362 | 3.0 | 34212 | 0.9498 | 0.7195 | | 1.0576 | 4.0 | 45616 | 1.0860 | 0.7183 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
aXhyra/sentiment_trained_1234567
cdbd3a24fe1d3e7fa27f708d6a0c746433d05f99
2021-12-11T22:29:06.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:tweet_eval", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
aXhyra
null
aXhyra/sentiment_trained_1234567
6
null
transformers
15,076
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tweet_eval metrics: - f1 model-index: - name: sentiment_trained_1234567 results: - task: name: Text Classification type: text-classification dataset: name: tweet_eval type: tweet_eval args: sentiment metrics: - name: F1 type: f1 value: 0.7165064254565859 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sentiment_trained_1234567 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 1.2854 - F1: 0.7165 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.2140338797769864e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 1234567 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.6603 | 1.0 | 11404 | 0.7020 | 0.6992 | | 0.5978 | 2.0 | 22808 | 0.8024 | 0.7151 | | 0.5495 | 3.0 | 34212 | 1.0837 | 0.7139 | | 0.4026 | 4.0 | 45616 | 1.2854 | 0.7165 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
aXhyra/sentiment_trained_42
7d0a6b7fd5a08e2086e9512eceb6fd5822d49f6e
2021-12-11T21:29:18.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:tweet_eval", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
aXhyra
null
aXhyra/sentiment_trained_42
6
null
transformers
15,077
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tweet_eval metrics: - f1 model-index: - name: sentiment_trained_42 results: - task: name: Text Classification type: text-classification dataset: name: tweet_eval type: tweet_eval args: sentiment metrics: - name: F1 type: f1 value: 0.7131935389791447 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sentiment_trained_42 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 1.3194 - F1: 0.7132 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.2140338797769864e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.6405 | 1.0 | 11404 | 0.6631 | 0.7046 | | 0.5998 | 2.0 | 22808 | 0.8429 | 0.7102 | | 0.5118 | 3.0 | 34212 | 1.0906 | 0.7155 | | 0.3745 | 4.0 | 45616 | 1.3194 | 0.7132 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
aXhyra/test-model
e2e24c711f3e4ee7fdf0ffa0280b6f673f61a67c
2021-12-08T16:50:00.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers" ]
text-classification
false
aXhyra
null
aXhyra/test-model
6
null
transformers
15,078
Entry not found
abhishek/autonlp-imdb_eval-71421
958379bd2753efc4e32c96d142963609b5aa1807
2021-05-18T22:54:10.000Z
[ "pytorch", "jax", "bert", "text-classification", "en", "dataset:abhishek/autonlp-data-imdb_eval", "transformers", "autonlp" ]
text-classification
false
abhishek
null
abhishek/autonlp-imdb_eval-71421
6
null
transformers
15,079
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - abhishek/autonlp-data-imdb_eval --- # Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 71421 ## Validation Metrics - Loss: 0.4114699363708496 - Accuracy: 0.8248248248248248 - Precision: 0.8305439330543933 - Recall: 0.8085539714867617 - AUC: 0.9088033420466026 - F1: 0.8194014447884417 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/abhishek/autonlp-imdb_eval-71421 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("abhishek/autonlp-imdb_eval-71421", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("abhishek/autonlp-imdb_eval-71421", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
abhishek/muril-large-chaii
200fab9f51a945013cd56290488620f5a46d5054
2022-05-24T08:43:06.000Z
[ "pytorch", "bert", "question-answering", "hi", "ta", "transformers", "autotrain_compatible" ]
question-answering
false
abhishek
null
abhishek/muril-large-chaii
6
3
transformers
15,080
--- tags: - question-answering language: - hi - ta widget: - text: "अभिषेक और उद्भव को कौन सा स्थान मिला?" context: "kaggle द्वारा आयोजित chaii प्रतियोगिता में अभिषेक और उद्भव ने पांचवा स्थान हासिल किया \n उन्होंने xlm-roberta, muril और rembert जैसे मॉडलों का इस्तेमाल किया." --- # muril-large-chaii This is __one of the models__ that we used for getting 5th place in the hindi and tamil question answering competition organized by Kaggle. Our full solution can be found here:
abnerh/wav2vec2-xlsr-300m-german-truecase
056571869634303dccb56546359944cd8a9642c0
2021-12-21T18:09:23.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
abnerh
null
abnerh/wav2vec2-xlsr-300m-german-truecase
6
1
transformers
15,081
Fine-tuned [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on German using the Common Voice dataset. When using this model, make sure that your speech input is sampled at 16kHz. As capitalization is an important part of the German language (eg. Sie vs. sie). I trained a model using a vocab that includes both lower case and upper case letters in hopes that the model would learn the correct casing. This removes the need to do any post-processing like truecasing. | Reference | Prediction | | ------------- | ------------- | | **Die** zoologische **Einordnung** der **Spezies** ist seit **Jahrzehnten** umstritten | **Die** psoologische **Einordnung** der **Spezies** ist seit **Jahrzehnten** umstritten | | **Hauptgeschäftsfeld** war ursprünglich der öffentliche **Sektor** in **Irland** | **Hauptgeschäftsfeld** war ursprünglich der öffentliche **Sektor** in **Irland** | | **Er** vertrat den **Wahlkreis Donauwörth** im **Parlament** | **Er** vertrat den **Wahlkreis DonauWört** im **Parlament** | | **Ich** bin gespannt welche **Lieder** sie wählt | **Ich** bin gespannt welche **Lieder** see wählt | | **Eine** allgemein verbindliche **Definition** gibt es nicht | **Eine** allgemeinverbindliche **Definition** gibt es nicht | ``` from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC import soundfile as sf import torch # load model and processor processor = Wav2Vec2Processor.from_pretrained("abnerh/wav2vec2-xlsr-300m-german-truecase") model = Wav2Vec2ForCTC.from_pretrained("abnerh/wav2vec2-xlsr-300m-german-truecase") speech, sr = sf.read('audio.wav') # tokenize input_values = processor(speech, return_tensors="pt", padding="longest").input_values # Batch size 1 # retrieve logits logits = model(input_values).logits # take argmax and decode predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(predicted_ids) # print transcription results print(transcription) ```
activebus/BERT-PT_laptop
4aa27ff3a08806da8928c6396807af6055b60d00
2021-05-18T23:03:36.000Z
[ "pytorch", "jax", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
activebus
null
activebus/BERT-PT_laptop
6
null
transformers
15,082
# ReviewBERT BERT (post-)trained from review corpus to understand sentiment, options and various e-commence aspects. `BERT-DK_laptop` is trained from 100MB laptop corpus under `Electronics/Computers & Accessories/Laptops`. `BERT-PT_*` addtionally uses SQuAD 1.1. ## Model Description The original model is from `BERT-base-uncased` trained from Wikipedia+BookCorpus. Models are post-trained from [Amazon Dataset](http://jmcauley.ucsd.edu/data/amazon/) and [Yelp Dataset](https://www.yelp.com/dataset/challenge/). ## Instructions Loading the post-trained weights are as simple as, e.g., ```python import torch from transformers import AutoModel, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("activebus/BERT-PT_laptop") model = AutoModel.from_pretrained("activebus/BERT-PT_laptop") ``` ## Evaluation Results Check our [NAACL paper](https://www.aclweb.org/anthology/N19-1242.pdf) ## Citation If you find this work useful, please cite as following. ``` @inproceedings{xu_bert2019, title = "BERT Post-Training for Review Reading Comprehension and Aspect-based Sentiment Analysis", author = "Xu, Hu and Liu, Bing and Shu, Lei and Yu, Philip S.", booktitle = "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics", month = "jun", year = "2019", } ```
adamlin/ak_sum_open
1c38b35381c456e87969907443123a7d0c9a2200
2021-08-16T08:19:34.000Z
[ "pytorch", "mbart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
adamlin
null
adamlin/ak_sum_open
6
null
transformers
15,083
Entry not found
adamlin/ml999_grinding_wheel
80f8827ec579f517b3ee31d49bacb286876a0de9
2021-12-20T16:50:35.000Z
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
false
adamlin
null
adamlin/ml999_grinding_wheel
6
null
transformers
15,084
Entry not found
addy88/wav2vec2-maithili-stt
9657d742fd3629b05a7982a08110820b07c761b7
2021-12-19T16:40:20.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
addy88
null
addy88/wav2vec2-maithili-stt
6
null
transformers
15,085
## Usage The model can be used directly (without a language model) as follows: ```python import soundfile as sf import torch from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import argparse def parse_transcription(wav_file): # load pretrained model processor = Wav2Vec2Processor.from_pretrained("addy88/wav2vec2-maithili-stt") model = Wav2Vec2ForCTC.from_pretrained("addy88/wav2vec2-maithili-stt") # load audio audio_input, sample_rate = sf.read(wav_file) # pad input values and return pt tensor input_values = processor(audio_input, sampling_rate=sample_rate, return_tensors="pt").input_values # INFERENCE # retrieve logits & take argmax logits = model(input_values).logits predicted_ids = torch.argmax(logits, dim=-1) # transcribe transcription = processor.decode(predicted_ids[0], skip_special_tokens=True) print(transcription) ```
aditeyabaral/finetuned-iitp_pdt_review-additionalpretrained-bert-base-cased
133953ba080a76f15d4c0ea5fa9d132161d0550c
2021-11-22T18:03:18.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
aditeyabaral
null
aditeyabaral/finetuned-iitp_pdt_review-additionalpretrained-bert-base-cased
6
null
transformers
15,086
Entry not found
aditeyabaral/finetuned-iitp_pdt_review-additionalpretrained-xlm-roberta-base
ef6c24ad17cb2121ab9c61d5206b1e8ba6c11f8e
2021-11-21T12:46:16.000Z
[ "pytorch", "xlm-roberta", "text-classification", "transformers" ]
text-classification
false
aditeyabaral
null
aditeyabaral/finetuned-iitp_pdt_review-additionalpretrained-xlm-roberta-base
6
null
transformers
15,087
Entry not found
aditeyabaral/finetuned-iitp_pdt_review-indic-bert
f772ffa8d43f8fd2cbc633e6d75550257e45e226
2021-11-26T06:42:33.000Z
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
false
aditeyabaral
null
aditeyabaral/finetuned-iitp_pdt_review-indic-bert
6
null
transformers
15,088
Entry not found
aditeyabaral/finetuned-iitp_pdt_review-xlm-roberta-large
8f0e70e36a0c860e9dd7d26b5068cc5a3dee4e3a
2021-11-20T17:48:01.000Z
[ "pytorch", "xlm-roberta", "text-classification", "transformers" ]
text-classification
false
aditeyabaral
null
aditeyabaral/finetuned-iitp_pdt_review-xlm-roberta-large
6
null
transformers
15,089
Entry not found
aditeyabaral/finetuned-iitpmovie-additionalpretrained-distilbert-base-cased
37b9e049488bacc458c1881e996d64ca6147b611
2021-11-23T14:13:36.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
aditeyabaral
null
aditeyabaral/finetuned-iitpmovie-additionalpretrained-distilbert-base-cased
6
null
transformers
15,090
Entry not found
aditeyabaral/finetuned-sail2017-bert-base-cased
61bec6fb6f0f8200e747a3ba887c70719ad9d902
2021-11-14T15:19:54.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
aditeyabaral
null
aditeyabaral/finetuned-sail2017-bert-base-cased
6
null
transformers
15,091
Entry not found
ageron/distilbert-emotion
99ad9918adcde8841dfd9e86def50306d7b81579
2021-09-26T21:11:32.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
ageron
null
ageron/distilbert-emotion
6
null
transformers
15,092
Entry not found
airKlizz/bart-large-cnn-multi-en-wiki-news
5fb5242ee24a4bd7ed0a301586786d227f993370
2020-06-10T08:13:05.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
airKlizz
null
airKlizz/bart-large-cnn-multi-en-wiki-news
6
null
transformers
15,093
Entry not found
airKlizz/mt5-base-wikinewssum-english
b12224f638d2c5eb7a300d2a554ff4dd875bb723
2021-12-29T19:10:05.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "summarization", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
summarization
false
airKlizz
null
airKlizz/mt5-base-wikinewssum-english
6
null
transformers
15,094
--- license: apache-2.0 tags: - summarization - generated_from_trainer metrics: - rouge model-index: - name: mt5-base-wikinewssum-english results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-base-wikinewssum-english This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.3040 - Rouge1: 8.9565 - Rouge2: 3.6563 - Rougel: 7.1346 - Rougelsum: 8.3802 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| | No log | 1.0 | 1010 | 2.4360 | 8.7287 | 3.5817 | 7.0093 | 8.1879 | | No log | 2.0 | 2020 | 2.3922 | 8.7227 | 3.5385 | 6.96 | 8.1887 | | No log | 3.0 | 3030 | 2.3422 | 8.8565 | 3.5772 | 7.0203 | 8.2957 | | No log | 4.0 | 4040 | 2.3288 | 8.89 | 3.645 | 7.0602 | 8.3314 | | 3.1253 | 5.0 | 5050 | 2.3209 | 8.868 | 3.6109 | 7.0537 | 8.299 | | 3.1253 | 6.0 | 6060 | 2.3127 | 8.9488 | 3.6615 | 7.1044 | 8.3785 | | 3.1253 | 7.0 | 7070 | 2.3056 | 8.9366 | 3.6507 | 7.1338 | 8.3615 | | 3.1253 | 8.0 | 8080 | 2.3040 | 8.9565 | 3.6563 | 7.1346 | 8.3802 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.10.1 - Datasets 1.16.1 - Tokenizers 0.10.3
airKlizz/xlm-roberta-base-germeval21-toxic
bfaf3033fadee860a21a6fd4e5534b1cb034fc62
2021-07-12T14:38:25.000Z
[ "pytorch", "xlm-roberta", "text-classification", "transformers" ]
text-classification
false
airKlizz
null
airKlizz/xlm-roberta-base-germeval21-toxic
6
null
transformers
15,095
Entry not found
akahana/roberta-base-indonesia
4a0ba50ed3df10e7cae79f4a77c83a9adb5fc42a
2021-11-29T09:31:49.000Z
[ "pytorch", "tf", "roberta", "feature-extraction", "id", "dataset:wikipedia", "transformers", "roberta-base-indonesia", "license:mit" ]
feature-extraction
false
akahana
null
akahana/roberta-base-indonesia
6
null
transformers
15,096
--- language: id tags: - roberta-base-indonesia license: mit datasets: - wikipedia widget: - text: "Gajah <mask> sedang makan di kebun binatang." --- # Indonesian RoBERTa Base ## How to Use ### As Masked Language Model ```python from transformers import pipeline pretrained_name = "akahana/roberta-base-indonesia" fill_mask = pipeline( "fill-mask", model=pretrained_name, tokenizer=pretrained_name ) fill_mask("Gajah <mask> sedang makan di kebun binatang.") ``` ### Feature Extraction in PyTorch ```python from transformers import RobertaModel, RobertaTokenizerFast pretrained_name = "akahana/roberta-base-indonesia" model = RobertaModel.from_pretrained(pretrained_name) tokenizer = RobertaTokenizerFast.from_pretrained(pretrained_name) prompt = "Gajah <mask> sedang makan di kebun binatang." encoded_input = tokenizer(prompt, return_tensors='pt') output = model(**encoded_input) ```
al00014/distilbert-base-uncased-finetuned-ner
e190011eb24fa69f04112f2d71b9d2790dfa1317
2021-08-02T15:53:31.000Z
[ "pytorch", "tensorboard", "distilbert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible" ]
token-classification
false
al00014
null
al00014/distilbert-base-uncased-finetuned-ner
6
null
transformers
15,097
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model_index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metric: name: Accuracy type: accuracy value: 0.9833669595056158 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0611 - Precision: 0.9250 - Recall: 0.9321 - F1: 0.9285 - Accuracy: 0.9834 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2399 | 1.0 | 878 | 0.0702 | 0.9118 | 0.9208 | 0.9163 | 0.9805 | | 0.0503 | 2.0 | 1756 | 0.0614 | 0.9176 | 0.9311 | 0.9243 | 0.9824 | | 0.0304 | 3.0 | 2634 | 0.0611 | 0.9250 | 0.9321 | 0.9285 | 0.9834 | ### Framework versions - Transformers 4.9.1 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
alexLopatin/alex-ai
86428e306e5ec053e1521c98fcb127c950402f19
2021-05-21T12:57:15.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
alexLopatin
null
alexLopatin/alex-ai
6
null
transformers
15,098
Entry not found
aliosm/ComVE-gpt2-medium
f7591769dc1e0e86487c7e8fc24a99e951b87149
2021-05-21T13:17:55.000Z
[ "pytorch", "jax", "gpt2", "feature-extraction", "en", "dataset:ComVE", "transformers", "exbert", "commonsense", "semeval2020", "comve", "license:mit" ]
feature-extraction
false
aliosm
null
aliosm/ComVE-gpt2-medium
6
null
transformers
15,099
--- language: "en" tags: - gpt2 - exbert - commonsense - semeval2020 - comve license: "mit" datasets: - ComVE metrics: - bleu widget: - text: "Chicken can swim in water. <|continue|>" --- # ComVE-gpt2-medium ## Model description Finetuned model on Commonsense Validation and Explanation (ComVE) dataset introduced in [SemEval2020 Task4](https://competitions.codalab.org/competitions/21080) using a causal language modeling (CLM) objective. The model is able to generate a reason why a given natural language statement is against commonsense. ## Intended uses & limitations You can use the raw model for text generation to generate reasons why natural language statements are against commonsense. #### How to use You can use this model directly to generate reasons why the given statement is against commonsense using [`generate.sh`](https://github.com/AliOsm/SemEval2020-Task4-ComVE/tree/master/TaskC-Generation) script. *Note:* make sure that you are using version `2.4.1` of `transformers` package. Newer versions has some issue in text generation and the model repeats the last token generated again and again. #### Limitations and bias The model biased to negate the entered sentence usually instead of producing a factual reason. ## Training data The model is initialized from the [gpt2-medium](https://github.com/huggingface/transformers/blob/master/model_cards/gpt2-README.md) model and finetuned using [ComVE](https://github.com/wangcunxiang/SemEval2020-Task4-Commonsense-Validation-and-Explanation) dataset which contains 10K against commonsense sentences, each of them is paired with three reference reasons. ## Training procedure Each natural language statement that against commonsense is concatenated with its reference reason with `<|continue|>` as a separator, then the model finetuned using CLM objective. The model trained on Nvidia Tesla P100 GPU from Google Colab platform with 5e-5 learning rate, 5 epochs, 128 maximum sequence length and 64 batch size. <center> <img src="https://i.imgur.com/xKbrwBC.png"> </center> ## Eval results The model achieved fifth place with 16.7153/16.1187 BLEU scores and third place with 1.94 Human Evaluation score on SemEval2020 Task4: Commonsense Validation and Explanation development and testing dataset. These are some examples generated by the model: | Against Commonsense Statement | Generated Reason | |:-----------------------------------------------------:|:--------------------------------------------:| | Chicken can swim in water. | Chicken can't swim. | | shoes can fly | Shoes are not able to fly. | | Chocolate can be used to make a coffee pot | Chocolate is not used to make coffee pots. | | you can also buy tickets online with an identity card | You can't buy tickets with an identity card. | | a ball is square and can roll | A ball is round and cannot roll. | | You can use detergent to dye your hair. | Detergent is used to wash clothes. | | you can eat mercury | mercury is poisonous | | A gardener can follow a suspect | gardener is not a police officer | | cars can float in the ocean just like a boat | Cars are too heavy to float in the ocean. | | I am going to work so I can lose money. | Working is not a way to lose money. | ### BibTeX entry and citation info ```bibtex @article{fadel2020justers, title={JUSTers at SemEval-2020 Task 4: Evaluating Transformer Models Against Commonsense Validation and Explanation}, author={Fadel, Ali and Al-Ayyoub, Mahmoud and Cambria, Erik}, year={2020} } ``` <a href="https://huggingface.co/exbert/?model=aliosm/ComVE-gpt2-medium"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>