modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
list
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
eagles/focus_sum_mT5_minshi
fcac39ad02f175ad63d25ce49868fe463a84c6b1
2022-04-21T04:23:12.000Z
[ "pytorch", "tensorboard", "mt5", "text2text-generation", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
eagles
null
eagles/focus_sum_mT5_minshi
6
null
transformers
15,600
--- tags: - generated_from_trainer model-index: - name: focus_sum_mT5_minshi results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # focus_sum_mT5_minshi This model is a fine-tuned version of [csebuetnlp/mT5_multilingual_XLSum](https://huggingface.co/csebuetnlp/mT5_multilingual_XLSum) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0930 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.268 | 83.33 | 500 | 0.0930 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
ahmeddbahaa/mbart-large-50-finetuned-ar-wikilingua
b0c131ad85278ddd67ffa3e09509af1a64a262f4
2022-04-22T08:59:12.000Z
[ "pytorch", "mbart", "text2text-generation", "dataset:wiki_lingua", "transformers", "summarization", "generated_from_trainer", "model-index", "autotrain_compatible" ]
summarization
false
ahmeddbahaa
null
ahmeddbahaa/mbart-large-50-finetuned-ar-wikilingua
6
null
transformers
15,601
--- tags: - summarization - generated_from_trainer datasets: - wiki_lingua model-index: - name: mbart-large-50-finetuned-ar-wikilingua results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mbart-large-50-finetuned-ar-wikilingua This model is a fine-tuned version of [facebook/mbart-large-50](https://huggingface.co/facebook/mbart-large-50) on the wiki_lingua dataset. It achieves the following results on the evaluation set: - Loss: 4.0001 - Rouge-1: 22.11 - Rouge-2: 7.33 - Rouge-l: 19.75 - Gen Len: 59.4 - Bertscore: 68.9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 250 - num_epochs: 8 - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge-1 | Rouge-2 | Rouge-l | Gen Len | Bertscore | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:-------:|:---------:| | 5.2671 | 1.0 | 5111 | 4.6414 | 18.37 | 5.63 | 16.32 | 96.39 | 65.12 | | 4.5375 | 2.0 | 10222 | 4.3144 | 20.49 | 6.64 | 18.35 | 95.44 | 65.79 | | 4.308 | 3.0 | 15333 | 4.1592 | 21.16 | 7.09 | 18.85 | 67.75 | 67.65 | | 4.1562 | 4.0 | 20444 | 4.0812 | 21.59 | 7.31 | 19.42 | 68.66 | 68.02 | | 4.0749 | 5.0 | 25555 | 4.0409 | 21.99 | 7.42 | 19.82 | 66.4 | 68.05 | | 4.0271 | 6.0 | 30666 | 4.0183 | 22.04 | 7.42 | 19.64 | 56.88 | 68.95 | | 3.9991 | 7.0 | 35777 | 4.0042 | 22.05 | 7.35 | 19.71 | 55.75 | 68.94 | | 3.9833 | 8.0 | 40888 | 4.0001 | 22.12 | 7.39 | 19.78 | 55.72 | 69.0 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
seongwcom/distilbert-base-uncased-finetuned-emotion
325c1ccbc92350e954de563a6384b3678f5ec7a3
2022-04-21T08:34:19.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
seongwcom
null
seongwcom/distilbert-base-uncased-finetuned-emotion
6
null
transformers
15,602
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.923 - name: F1 type: f1 value: 0.9230166540210804 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2251 - Accuracy: 0.923 - F1: 0.9230 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8643 | 1.0 | 250 | 0.3395 | 0.901 | 0.8969 | | 0.2615 | 2.0 | 500 | 0.2251 | 0.923 | 0.9230 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0 - Datasets 1.16.1 - Tokenizers 0.10.3
dapang/distilroberta-base-mic-nlp
bb2d8bfe421602b80302f349c6ed662c8c4acfa5
2022-04-23T04:10:09.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
dapang
null
dapang/distilroberta-base-mic-nlp
6
null
transformers
15,603
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilroberta-base-mic-nlp results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-mic-nlp This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0049 - Accuracy: 0.9993 - F1: 0.9993 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.740146306575944e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 188 | 0.0027 | 0.9997 | 0.9997 | | No log | 2.0 | 376 | 0.0049 | 0.9993 | 0.9993 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.12.0.dev20220422+cu116 - Datasets 2.1.0 - Tokenizers 0.12.1
dapang/distilroberta-base-etc-sym
4aa2e08484ae6d9732a0313ec6764513adf3837e
2022-04-23T04:26:16.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
dapang
null
dapang/distilroberta-base-etc-sym
6
null
transformers
15,604
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilroberta-base-etc-sym results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-etc-sym This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0005 - Accuracy: 0.9997 - F1: 0.9997 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.740146306575944e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 262 | 0.0068 | 0.9987 | 0.9987 | | No log | 2.0 | 524 | 0.0005 | 0.9997 | 0.9997 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.12.0.dev20220422+cu116 - Datasets 2.1.0 - Tokenizers 0.12.1
dapang/distilroberta-base-mrl
4da0ba455038852e4a9df726880ba18472e4d975
2022-05-03T09:27:53.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
dapang
null
dapang/distilroberta-base-mrl
6
null
transformers
15,605
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilroberta-base-mrl results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-mrl This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0170 - Accuracy: 0.9967 - F1: 0.9967 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.1821851463909416e-05 - train_batch_size: 400 - eval_batch_size: 400 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 9 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 48 | 0.0265 | 0.9946 | 0.9946 | | No log | 2.0 | 96 | 0.0180 | 0.9962 | 0.9962 | | No log | 3.0 | 144 | 0.0163 | 0.9962 | 0.9962 | | No log | 4.0 | 192 | 0.0194 | 0.9946 | 0.9946 | | No log | 5.0 | 240 | 0.0193 | 0.9942 | 0.9942 | | No log | 6.0 | 288 | 0.0172 | 0.9967 | 0.9967 | | No log | 7.0 | 336 | 0.0206 | 0.9954 | 0.9954 | | No log | 8.0 | 384 | 0.0183 | 0.9962 | 0.9962 | | No log | 9.0 | 432 | 0.0170 | 0.9967 | 0.9967 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
dapang/distilroberta-base-etc
9db6449131e3b312f1314ceabdc0dbe1d2a93e29
2022-05-03T09:50:16.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
dapang
null
dapang/distilroberta-base-etc
6
null
transformers
15,606
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilroberta-base-etc results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-etc This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3382 - Accuracy: 0.919 - F1: 0.9190 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4.969790133269121e-05 - train_batch_size: 400 - eval_batch_size: 400 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 84 | 0.2372 | 0.907 | 0.9070 | | No log | 2.0 | 168 | 0.2358 | 0.9083 | 0.9083 | | No log | 3.0 | 252 | 0.2430 | 0.9137 | 0.9137 | | No log | 4.0 | 336 | 0.2449 | 0.919 | 0.9190 | | No log | 5.0 | 420 | 0.2884 | 0.9193 | 0.9193 | | No log | 6.0 | 504 | 0.3179 | 0.9167 | 0.9167 | | No log | 7.0 | 588 | 0.3382 | 0.919 | 0.9190 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
dapang/distilroberta-base-mic
719f9c5019d4fb042b929730a25d6dcdb283117f
2022-05-03T09:12:59.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
dapang
null
dapang/distilroberta-base-mic
6
null
transformers
15,607
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilroberta-base-mic results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-mic This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3435 - Accuracy: 0.9104 - F1: 0.9103 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8.748413056668156e-05 - train_batch_size: 200 - eval_batch_size: 200 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 120 | 0.2830 | 0.8804 | 0.8797 | | No log | 2.0 | 240 | 0.2398 | 0.9046 | 0.9046 | | No log | 3.0 | 360 | 0.3474 | 0.8959 | 0.8954 | | No log | 4.0 | 480 | 0.3435 | 0.9104 | 0.9103 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
dmjimenezbravo/electricidad-small-discriminator-finetuned-usElectionTweets1Jul11Nov-spanish
2849df754dd383db71dd7d93b424ce6cc1c9ab69
2022-04-26T11:00:58.000Z
[ "pytorch", "tensorboard", "electra", "text-classification", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
dmjimenezbravo
null
dmjimenezbravo/electricidad-small-discriminator-finetuned-usElectionTweets1Jul11Nov-spanish
6
null
transformers
15,608
--- tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: electricidad-small-discriminator-finetuned-usElectionTweets1Jul11Nov-spanish results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # electricidad-small-discriminator-finetuned-usElectionTweets1Jul11Nov-spanish This model is a fine-tuned version of [mrm8488/electricidad-small-discriminator](https://huggingface.co/mrm8488/electricidad-small-discriminator) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.3327 - Accuracy: 0.7642 - F1: 0.7642 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 60 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:| | 0.88 | 1.0 | 1222 | 0.7491 | 0.6943 | 0.6943 | | 0.7292 | 2.0 | 2444 | 0.6253 | 0.7544 | 0.7544 | | 0.6346 | 3.0 | 3666 | 0.5292 | 0.7971 | 0.7971 | | 0.565 | 4.0 | 4888 | 0.4831 | 0.8168 | 0.8168 | | 0.4898 | 5.0 | 6110 | 0.4086 | 0.8532 | 0.8532 | | 0.4375 | 6.0 | 7332 | 0.3411 | 0.8831 | 0.8831 | | 0.3968 | 7.0 | 8554 | 0.2735 | 0.9100 | 0.9100 | | 0.3321 | 8.0 | 9776 | 0.2343 | 0.9253 | 0.9253 | | 0.3045 | 9.0 | 10998 | 0.1855 | 0.9450 | 0.9450 | | 0.2837 | 10.0 | 12220 | 0.1539 | 0.9591 | 0.9591 | | 0.2411 | 11.0 | 13442 | 0.1309 | 0.9650 | 0.9650 | | 0.2203 | 12.0 | 14664 | 0.1100 | 0.9716 | 0.9716 | | 0.1953 | 13.0 | 15886 | 0.1067 | 0.9760 | 0.9760 | | 0.1836 | 14.0 | 17108 | 0.0755 | 0.9813 | 0.9813 | | 0.1611 | 15.0 | 18330 | 0.0731 | 0.9829 | 0.9829 | | 0.1479 | 16.0 | 19552 | 0.0746 | 0.9839 | 0.9839 | | 0.138 | 17.0 | 20774 | 0.0516 | 0.9895 | 0.9895 | | 0.129 | 18.0 | 21996 | 0.0481 | 0.9903 | 0.9903 | | 0.1182 | 19.0 | 23218 | 0.0401 | 0.9926 | 0.9926 | | 0.1065 | 20.0 | 24440 | 0.0488 | 0.9895 | 0.9895 | | 0.096 | 21.0 | 25662 | 0.0333 | 0.9928 | 0.9928 | | 0.0889 | 22.0 | 26884 | 0.0222 | 0.9951 | 0.9951 | | 0.0743 | 23.0 | 28106 | 0.0236 | 0.9951 | 0.9951 | | 0.0821 | 24.0 | 29328 | 0.0322 | 0.9931 | 0.9931 | | 0.0866 | 25.0 | 30550 | 0.0135 | 0.9974 | 0.9974 | | 0.0616 | 26.0 | 31772 | 0.0100 | 0.9980 | 0.9980 | | 0.0641 | 27.0 | 32994 | 0.0112 | 0.9977 | 0.9977 | | 0.0603 | 28.0 | 34216 | 0.0071 | 0.9987 | 0.9987 | | 0.0491 | 29.0 | 35438 | 0.0088 | 0.9982 | 0.9982 | | 0.0563 | 30.0 | 36660 | 0.0071 | 0.9982 | 0.9982 | | 0.0467 | 31.0 | 37882 | 0.0045 | 0.9990 | 0.9990 | | 0.0545 | 32.0 | 39104 | 0.0057 | 0.9987 | 0.9987 | | 0.0519 | 33.0 | 40326 | 0.0048 | 0.9992 | 0.9992 | | 0.0524 | 34.0 | 41548 | 0.0030 | 0.9995 | 0.9995 | | 0.044 | 35.0 | 42770 | 0.0046 | 0.9990 | 0.9990 | | 0.0442 | 36.0 | 43992 | 0.0029 | 0.9995 | 0.9995 | | 0.0352 | 37.0 | 45214 | 0.0035 | 0.9995 | 0.9995 | | 0.0348 | 38.0 | 46436 | 0.0029 | 0.9995 | 0.9995 | | 0.0295 | 39.0 | 47658 | 0.0023 | 0.9995 | 0.9995 | | 0.0289 | 40.0 | 48880 | 0.0035 | 0.9995 | 0.9995 | | 0.0292 | 41.0 | 50102 | 0.0023 | 0.9995 | 0.9995 | | 0.0259 | 42.0 | 51324 | 0.0027 | 0.9995 | 0.9995 | | 0.0217 | 43.0 | 52546 | 0.0031 | 0.9995 | 0.9995 | | 0.0278 | 44.0 | 53768 | 0.0018 | 0.9995 | 0.9995 | | 0.0254 | 45.0 | 54990 | 0.0023 | 0.9995 | 0.9995 | | 0.0164 | 46.0 | 56212 | 0.0016 | 0.9997 | 0.9997 | | 0.0277 | 47.0 | 57434 | 0.0027 | 0.9997 | 0.9997 | | 0.0158 | 48.0 | 58656 | 0.0029 | 0.9997 | 0.9997 | | 0.0178 | 49.0 | 59878 | 0.0023 | 0.9997 | 0.9997 | | 0.022 | 50.0 | 61100 | 0.0019 | 0.9997 | 0.9997 | | 0.0167 | 51.0 | 62322 | 0.0018 | 0.9997 | 0.9997 | | 0.0159 | 52.0 | 63544 | 0.0017 | 0.9997 | 0.9997 | | 0.0105 | 53.0 | 64766 | 0.0016 | 0.9997 | 0.9997 | | 0.0111 | 54.0 | 65988 | 0.0015 | 0.9997 | 0.9997 | | 0.0139 | 55.0 | 67210 | 0.0021 | 0.9997 | 0.9997 | | 0.0152 | 56.0 | 68432 | 0.0026 | 0.9997 | 0.9997 | | 0.0191 | 57.0 | 69654 | 0.0022 | 0.9997 | 0.9997 | | 0.0075 | 58.0 | 70876 | 0.0017 | 0.9997 | 0.9997 | | 0.0141 | 59.0 | 72098 | 0.0016 | 0.9997 | 0.9997 | | 0.0086 | 60.0 | 73320 | 0.0014 | 0.9997 | 0.9997 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
shiyue/wav2vec2-large-xlsr-53-chr-phonetic-with-private-data
173ec1909defdb8664cfc7da63f56e1bf14721a0
2022-04-24T17:47:49.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
shiyue
null
shiyue/wav2vec2-large-xlsr-53-chr-phonetic-with-private-data
6
null
transformers
15,609
Entry not found
accelotron/xlm-roberta-finetune-muserc
5ecf874e6248ddc059263dce422e20f12cbe0f25
2022-04-25T10:04:49.000Z
[ "pytorch", "xlm-roberta", "text-classification", "transformers" ]
text-classification
false
accelotron
null
accelotron/xlm-roberta-finetune-muserc
6
null
transformers
15,610
xlm-RoBERTa-base fine-tuned for MuSeRC task.
vblagoje/greaselm-csqa
e8b5ff51c1fd3587350364dc4c76b63f5e2f3dfe
2022-05-15T14:02:12.000Z
[ "pytorch", "greaselm", "transformers" ]
null
false
vblagoje
null
vblagoje/greaselm-csqa
6
null
transformers
15,611
Tristo/sociopath
e8fe782dc056842a3c75d184d522ccad313cd65d
2022-04-25T14:10:10.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "license:cc" ]
text-generation
false
Tristo
null
Tristo/sociopath
6
null
transformers
15,612
--- license: cc ---
apkbala107/myowntamilelectraposmodel
ba074e53caef37584d0770bdcef128d84ad3e5e9
2022-04-25T16:32:53.000Z
[ "pytorch", "electra", "token-classification", "transformers", "license:cc", "autotrain_compatible" ]
token-classification
false
apkbala107
null
apkbala107/myowntamilelectraposmodel
6
null
transformers
15,613
--- license: cc ---
excalibur/distilbert-base-uncased-finetuned-emotion
c560ab25e5f7f51cf40066e2aca60bb5dad399cd
2022-04-26T05:27:42.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
excalibur
null
excalibur/distilbert-base-uncased-finetuned-emotion
6
null
transformers
15,614
Entry not found
Real29/my-model-ptc
1cbeef33438814e51bb8fb117151b97a4514fd13
2022-04-26T11:24:28.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Real29
null
Real29/my-model-ptc
6
null
transformers
15,615
Entry not found
spuun/kekbot-beta-3-medium
1fb0ec761f5480cfa5a1dfe74d3c62ade8b7f9b8
2022-04-26T22:15:23.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "conversational", "license:cc-by-nc-sa-4.0", "co2_eq_emissions" ]
conversational
false
spuun
null
spuun/kekbot-beta-3-medium
6
null
transformers
15,616
--- language: - en tags: - conversational co2_eq_emissions: emissions: "660" source: "mlco2.github.io" training_type: "fine-tuning" geographical_location: "West Java, Indonesia" hardware_used: "1 Tesla P100" license: cc-by-nc-sa-4.0 widget: - text: "Hey kekbot! What's up?" example_title: "Asking what's up" - text: "Hey kekbot! How r u?" example_title: "Asking how he is" --- > THIS MODEL IS IN PUBLIC BETA, PLEASE DO NOT EXPECT ANY FORM OF STABILITY IN ITS CURRENT STATE. # Art Union server chatbot Based on a DialoGPT-medium model, fine-tuned to a select subset (65k<= messages) of Art Union's general-chat channel chat history. ### Current issues (Which hopefully will be fixed in future iterations) Include, but not limited to: - Limited turns, after ~17 turns output may break for no apparent reason. - Inconsistent variance, acts like an overfitted model from time to time for no reason whatsoever.
caush/Clickbait1
5844c6edb677c09b26a9959510b71b8c65f53c56
2022-05-02T20:36:10.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
caush
null
caush/Clickbait1
6
null
transformers
15,617
--- license: mit tags: - generated_from_trainer model-index: - name: Clickbait1 results: [] --- # Clickbait1 This model is a fine-tuned version of [microsoft/Multilingual-MiniLM-L12-H384](https://huggingface.co/microsoft/Multilingual-MiniLM-L12-H384) on the [Webis-Clickbait-17](https://zenodo.org/record/5530410) dataset. It achieves the following results on the evaluation set: - Loss: 0.0257 ## Model description MiniLM is a distilled model from the paper "MiniLM: Deep Self-Attention Distillation for Task-Agnostic Compression of Pre-Trained Transformers". We fine tune this model to evaluate (regression) the clickbait level of title news. ## Intended uses & limitations Model looks like the model described in the paper [Predicting Clickbait Strength in Online Social Media](https://aclanthology.org/2020.coling-main.425/) by Indurthi Vijayasaradhi, Syed Bakhtiyar, Gupta Manish, Varma Vasudeva. The model was trained with english titles. ## Training and evaluation data We trained the model with the official training data for the chalenge (clickbait17-train-170630.zip (894 MiB, 19538 posts), plus another set that was just available after the end of the challenge (clickbait17-train-170331.zip (157 MiB, 2459 posts). ## Training procedure Code can be find in [Github](https://github.com/caush/Clickbait). ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0.05 | 50 | 0.0571 | | No log | 0.09 | 100 | 0.0448 | | No log | 0.14 | 150 | 0.0391 | | No log | 0.18 | 200 | 0.0326 | | No log | 0.23 | 250 | 0.0343 | | No log | 0.27 | 300 | 0.0343 | | No log | 0.32 | 350 | 0.0343 | | No log | 0.36 | 400 | 0.0346 | | No log | 0.41 | 450 | 0.0343 | | 0.0388 | 0.46 | 500 | 0.0297 | | 0.0388 | 0.5 | 550 | 0.0293 | | 0.0388 | 0.55 | 600 | 0.0301 | | 0.0388 | 0.59 | 650 | 0.0290 | | 0.0388 | 0.64 | 700 | 0.0326 | | 0.0388 | 0.68 | 750 | 0.0285 | | 0.0388 | 0.73 | 800 | 0.0285 | | 0.0388 | 0.77 | 850 | 0.0275 | | 0.0388 | 0.82 | 900 | 0.0314 | | 0.0388 | 0.87 | 950 | 0.0309 | | 0.0297 | 0.91 | 1000 | 0.0277 | | 0.0297 | 0.96 | 1050 | 0.0281 | | 0.0297 | 1.0 | 1100 | 0.0273 | | 0.0297 | 1.05 | 1150 | 0.0270 | | 0.0297 | 1.09 | 1200 | 0.0291 | | 0.0297 | 1.14 | 1250 | 0.0293 | | 0.0297 | 1.18 | 1300 | 0.0269 | | 0.0297 | 1.23 | 1350 | 0.0276 | | 0.0297 | 1.28 | 1400 | 0.0279 | | 0.0297 | 1.32 | 1450 | 0.0267 | | 0.0265 | 1.37 | 1500 | 0.0270 | | 0.0265 | 1.41 | 1550 | 0.0300 | | 0.0265 | 1.46 | 1600 | 0.0274 | | 0.0265 | 1.5 | 1650 | 0.0274 | | 0.0265 | 1.55 | 1700 | 0.0266 | | 0.0265 | 1.59 | 1750 | 0.0267 | | 0.0265 | 1.64 | 1800 | 0.0267 | | 0.0265 | 1.68 | 1850 | 0.0280 | | 0.0265 | 1.73 | 1900 | 0.0274 | | 0.0265 | 1.78 | 1950 | 0.0272 | | 0.025 | 1.82 | 2000 | 0.0261 | | 0.025 | 1.87 | 2050 | 0.0268 | | 0.025 | 1.91 | 2100 | 0.0268 | | 0.025 | 1.96 | 2150 | 0.0259 | | 0.025 | 2.0 | 2200 | 0.0257 | | 0.025 | 2.05 | 2250 | 0.0260 | | 0.025 | 2.09 | 2300 | 0.0263 | | 0.025 | 2.14 | 2350 | 0.0262 | | 0.025 | 2.19 | 2400 | 0.0269 | | 0.025 | 2.23 | 2450 | 0.0262 | | 0.0223 | 2.28 | 2500 | 0.0262 | | 0.0223 | 2.32 | 2550 | 0.0267 | | 0.0223 | 2.37 | 2600 | 0.0260 | | 0.0223 | 2.41 | 2650 | 0.0260 | | 0.0223 | 2.46 | 2700 | 0.0259 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0a0+17540c5 - Datasets 2.1.0 - Tokenizers 0.12.1
Hate-speech-CNERG/urdu-codemixed-abusive-MuRIL
e37363de5b0107bd70e72b1181c9fc2a98f992ef
2022-05-03T06:05:42.000Z
[ "pytorch", "bert", "text-classification", "ur-en", "arxiv:2204.12543", "transformers", "license:afl-3.0" ]
text-classification
false
Hate-speech-CNERG
null
Hate-speech-CNERG/urdu-codemixed-abusive-MuRIL
6
null
transformers
15,618
--- language: ur-en license: afl-3.0 --- This model is used detecting **abusive speech** in **Code-Mixed Urdu**. It is finetuned on MuRIL model using code-mixed Urdu abusive speech dataset. The model is trained with learning rates of 2e-5. Training code can be found at this [url](https://github.com/hate-alert/IndicAbusive) LABEL_0 :-> Normal LABEL_1 :-> Abusive ### For more details about our paper Mithun Das, Somnath Banerjee and Animesh Mukherjee. "[Data Bootstrapping Approaches to Improve Low Resource Abusive Language Detection for Indic Languages](https://arxiv.org/abs/2204.12543)". Accepted at ACM HT 2022. ***Please cite our paper in any published work that uses any of these resources.*** ~~~ @article{das2022data, title={Data Bootstrapping Approaches to Improve Low Resource Abusive Language Detection for Indic Languages}, author={Das, Mithun and Banerjee, Somnath and Mukherjee, Animesh}, journal={arXiv preprint arXiv:2204.12543}, year={2022} } ~~~
jyotsana/distilbert-base-uncased-finetuned-cola
34594b2422aaf9164409031791a1c4612381379b
2022-05-12T17:24:00.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers" ]
text-classification
false
jyotsana
null
jyotsana/distilbert-base-uncased-finetuned-cola
6
null
transformers
15,619
Entry not found
ridvan9/autotrain-rdv-senti-analys-v2-791424369
052cb8e6e6f6ac4d95ed0f9591bdf5c96d0a7a22
2022-04-27T08:23:36.000Z
[ "pytorch", "bert", "text-classification", "tr", "dataset:ridvan9/autotrain-data-rdv-senti-analys-v2", "transformers", "autotrain", "co2_eq_emissions" ]
text-classification
false
ridvan9
null
ridvan9/autotrain-rdv-senti-analys-v2-791424369
6
null
transformers
15,620
--- tags: autotrain language: tr widget: - text: "I love AutoTrain 🤗" datasets: - ridvan9/autotrain-data-rdv-senti-analys-v2 co2_eq_emissions: 4.95702490470204 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 791424369 - CO2 Emissions (in grams): 4.95702490470204 ## Validation Metrics - Loss: 0.21698406338691711 - Accuracy: 0.9337298215802888 - Macro F1: 0.9339734231139484 - Micro F1: 0.9337298215802888 - Weighted F1: 0.9340497563679602 - Macro Precision: 0.934733314676483 - Micro Precision: 0.9337298215802888 - Weighted Precision: 0.9348373701161897 - Macro Recall: 0.9336931241452828 - Micro Recall: 0.9337298215802888 - Weighted Recall: 0.9337298215802888 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/ridvan9/autotrain-rdv-senti-analys-v2-791424369 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("ridvan9/autotrain-rdv-senti-analys-v2-791424369", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("ridvan9/autotrain-rdv-senti-analys-v2-791424369", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
EAST/autotrain-Rule-793324440
f42cd2adf6de9f9d4a694bf0ba927a511ff75a5a
2022-04-27T14:57:26.000Z
[ "pytorch", "bert", "text-classification", "zh", "dataset:EAST/autotrain-data-Rule", "transformers", "autotrain", "co2_eq_emissions" ]
text-classification
false
EAST
null
EAST/autotrain-Rule-793324440
6
null
transformers
15,621
--- tags: autotrain language: zh widget: - text: "I love AutoTrain 🤗" datasets: - EAST/autotrain-data-Rule co2_eq_emissions: 0.0025078722090032795 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 793324440 - CO2 Emissions (in grams): 0.0025078722090032795 ## Validation Metrics - Loss: 0.31105440855026245 - Accuracy: 0.9473684210526315 - Precision: 0.9 - Recall: 1.0 - AUC: 0.9444444444444445 - F1: 0.9473684210526316 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/EAST/autotrain-Rule-793324440 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("EAST/autotrain-Rule-793324440", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("EAST/autotrain-Rule-793324440", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
anton-l/xtreme_s_xlsr_300m_fleurs_asr_en_us
451446d444b5c5661de91dbaa03cbdfc9151703e
2022-04-28T12:39:54.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "en_us", "dataset:google/xtreme_s", "transformers", "fleurs-asr", "google/xtreme_s", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
anton-l
null
anton-l/xtreme_s_xlsr_300m_fleurs_asr_en_us
6
null
transformers
15,622
--- language: - en_us license: apache-2.0 tags: - fleurs-asr - google/xtreme_s - generated_from_trainer datasets: - google/xtreme_s model-index: - name: xtreme_s_xlsr_300m_fleurs_asr_en_us results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xtreme_s_xlsr_300m_fleurs_asr_en_us This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the GOOGLE/XTREME_S - FLEURS.EN_US dataset. It achieves the following results on the evaluation set: - Cer: 0.1356 - Loss: 0.5599 - Wer: 0.3148 - Predict Samples: 647 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 64 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 30.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 2.8769 | 5.0 | 200 | 2.8871 | 1.0 | 0.9878 | | 0.2458 | 10.0 | 400 | 0.5570 | 0.4899 | 0.1951 | | 0.0762 | 15.0 | 600 | 0.5213 | 0.3727 | 0.1562 | | 0.0334 | 20.0 | 800 | 0.5742 | 0.3666 | 0.1543 | | 0.0244 | 25.0 | 1000 | 0.5907 | 0.3546 | 0.1499 | | 0.0143 | 30.0 | 1200 | 0.5961 | 0.3460 | 0.1469 | ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.10.1+cu111 - Datasets 1.18.4.dev0 - Tokenizers 0.11.6
UT/PARSBRT
53835fc035514ff5dbfb6f8ae2f680c3c2b946d7
2022-04-29T10:58:27.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
UT
null
UT/PARSBRT
6
null
transformers
15,623
Entry not found
Andrei0086/Chat-small-bot
8120c8a72927cd2936878b355ea82f75483b6f70
2022-04-28T20:04:17.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Andrei0086
null
Andrei0086/Chat-small-bot
6
null
transformers
15,624
--- tags: - conversational --- # Harry Potter DialoGPT Model
Ansh/my_bert
1033df62daf9f9d3e064b86543f584e92e568bf0
2022-05-04T16:50:42.000Z
[ "pytorch", "bert", "text-classification", "transformers", "license:afl-3.0" ]
text-classification
false
Ansh
null
Ansh/my_bert
6
null
transformers
15,625
--- license: afl-3.0 ---
doc2query/msmarco-indonesian-mt5-base-v1
8f56ac36b37ea0e46f055adfbe9bf20b0117ed7b
2022-04-29T11:58:59.000Z
[ "pytorch", "mt5", "text2text-generation", "id", "dataset:unicamp-dl/mmarco", "arxiv:1904.08375", "arxiv:2104.08663", "arxiv:2112.07577", "transformers", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
doc2query
null
doc2query/msmarco-indonesian-mt5-base-v1
6
1
transformers
15,626
--- language: id datasets: - unicamp-dl/mmarco widget: - text: "Python adalah bahasa pemrograman tujuan umum yang ditafsirkan, tingkat tinggi. Dibuat oleh Guido van Rossum dan pertama kali dirilis pada tahun 1991, filosofi desain Python menekankan keterbacaan kode dengan penggunaan spasi putih yang signifikan. Konstruksi bahasanya dan pendekatan berorientasi objek bertujuan untuk membantu pemrogram menulis kode yang jelas dan logis untuk proyek skala kecil dan besar." license: apache-2.0 --- # doc2query/msmarco-indonesian-mt5-base-v1 This is a [doc2query](https://arxiv.org/abs/1904.08375) model based on mT5 (also known as [docT5query](https://cs.uwaterloo.ca/~jimmylin/publications/Nogueira_Lin_2019_docTTTTTquery-v2.pdf)). It can be used for: - **Document expansion**: You generate for your paragraphs 20-40 queries and index the paragraphs and the generates queries in a standard BM25 index like Elasticsearch, OpenSearch, or Lucene. The generated queries help to close the lexical gap of lexical search, as the generate queries contain synonyms. Further, it re-weights words giving important words a higher weight even if they appear seldomn in a paragraph. In our [BEIR](https://arxiv.org/abs/2104.08663) paper we showed that BM25+docT5query is a powerful search engine. In the [BEIR repository](https://github.com/beir-cellar/beir) we have an example how to use docT5query with Pyserini. - **Domain Specific Training Data Generation**: It can be used to generate training data to learn an embedding model. In our [GPL-Paper](https://arxiv.org/abs/2112.07577) / [GPL Example on SBERT.net](https://www.sbert.net/examples/domain_adaptation/README.html#gpl-generative-pseudo-labeling) we have an example how to use the model to generate (query, text) pairs for a given collection of unlabeled texts. These pairs can then be used to train powerful dense embedding models. ## Usage ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM import torch model_name = 'doc2query/msmarco-indonesian-mt5-base-v1' tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name) text = "Python adalah bahasa pemrograman tujuan umum yang ditafsirkan, tingkat tinggi. Dibuat oleh Guido van Rossum dan pertama kali dirilis pada tahun 1991, filosofi desain Python menekankan keterbacaan kode dengan penggunaan spasi putih yang signifikan. Konstruksi bahasanya dan pendekatan berorientasi objek bertujuan untuk membantu pemrogram menulis kode yang jelas dan logis untuk proyek skala kecil dan besar." def create_queries(para): input_ids = tokenizer.encode(para, return_tensors='pt') with torch.no_grad(): # Here we use top_k / top_k random sampling. It generates more diverse queries, but of lower quality sampling_outputs = model.generate( input_ids=input_ids, max_length=64, do_sample=True, top_p=0.95, top_k=10, num_return_sequences=5 ) # Here we use Beam-search. It generates better quality queries, but with less diversity beam_outputs = model.generate( input_ids=input_ids, max_length=64, num_beams=5, no_repeat_ngram_size=2, num_return_sequences=5, early_stopping=True ) print("Paragraph:") print(para) print("\nBeam Outputs:") for i in range(len(beam_outputs)): query = tokenizer.decode(beam_outputs[i], skip_special_tokens=True) print(f'{i + 1}: {query}') print("\nSampling Outputs:") for i in range(len(sampling_outputs)): query = tokenizer.decode(sampling_outputs[i], skip_special_tokens=True) print(f'{i + 1}: {query}') create_queries(text) ``` **Note:** `model.generate()` is non-deterministic for top_k/top_n sampling. It produces different queries each time you run it. ## Training This model fine-tuned [google/mt5-base](https://huggingface.co/google/mt5-base) for 66k training steps (4 epochs on the 500k training pairs from MS MARCO). For the training script, see the `train_script.py` in this repository. The input-text was truncated to 320 word pieces. Output text was generated up to 64 word pieces. This model was trained on a (query, passage) from the [mMARCO dataset](https://github.com/unicamp-dl/mMARCO).
UT/MULTIBRT_DEBIAS
10cc1a2cfae86d9914015386037fb674a570b218
2022-04-29T16:42:31.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
UT
null
UT/MULTIBRT_DEBIAS
6
null
transformers
15,627
Entry not found
sjchoure/distilbert-base-uncased-finetuned-squad
1a859018fd49a3466c9b52093678bf85e2124436
2022-04-30T21:02:02.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
sjchoure
null
sjchoure/distilbert-base-uncased-finetuned-squad
6
null
transformers
15,628
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.9362 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 54 | 3.3597 | | No log | 2.0 | 108 | 2.9797 | | No log | 3.0 | 162 | 2.9362 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
carlosaguayo/features_and_usecases
b47daa6541c5c24ff48742095665f9ef059126d9
2022-05-01T02:52:59.000Z
[ "pytorch", "roberta", "feature-extraction", "sentence-transformers", "sentence-similarity" ]
sentence-similarity
false
carlosaguayo
null
carlosaguayo/features_and_usecases
6
null
sentence-transformers
15,629
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # carlosaguayo/features_and_usecases This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('carlosaguayo/features_and_usecases') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=carlosaguayo/features_and_usecases) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 175 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 100, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
charlieoneill/distilbert-base-uncased-finetuned-tweet_eval-offensive
0a89da8b7ca05ce0184665a0ccce7dfa148aa5e8
2022-05-01T03:36:21.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:tweet_eval", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
charlieoneill
null
charlieoneill/distilbert-base-uncased-finetuned-tweet_eval-offensive
6
null
transformers
15,630
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tweet_eval metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-tweet_eval-offensive results: - task: name: Text Classification type: text-classification dataset: name: tweet_eval type: tweet_eval args: offensive metrics: - name: Accuracy type: accuracy value: 0.8089123867069486 - name: F1 type: f1 value: 0.8060281168230459 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-tweet_eval-offensive This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 0.4185 - Accuracy: 0.8089 - F1: 0.8060 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 187 | 0.4259 | 0.8059 | 0.7975 | | 0.46 | 2.0 | 374 | 0.4185 | 0.8089 | 0.8060 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.9.1 - Datasets 2.1.0 - Tokenizers 0.12.1
Raffay/wav2vec2-urdu-asr-project
c9c94dd35369736b6c0001f025de4d356f8c2386
2022-05-02T16:33:15.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
Raffay
null
Raffay/wav2vec2-urdu-asr-project
6
null
transformers
15,631
Entry not found
Gergoe/mt5-small-finetuned-amazon-en-es
4b975fe9326de805d44eba76488ceae97c0c941d
2022-05-16T22:42:55.000Z
[ "pytorch", "tensorboard", "mt5", "text2text-generation", "transformers", "summarization", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
summarization
false
Gergoe
null
Gergoe/mt5-small-finetuned-amazon-en-es
6
1
transformers
15,632
--- license: apache-2.0 tags: - summarization - generated_from_trainer metrics: - rouge model-index: - name: mt5-small-finetuned-amazon-en-es results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-finetuned-amazon-en-es This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.2891 - Rouge1: 15.35 - Rouge2: 6.4925 - Rougel: 14.8921 - Rougelsum: 14.6312 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:| | 7.0622 | 1.0 | 1276 | 3.5617 | 13.2417 | 4.8928 | 12.8258 | 12.8078 | | 4.0768 | 2.0 | 2552 | 3.4329 | 14.5681 | 6.4922 | 14.0621 | 13.9709 | | 3.7736 | 3.0 | 3828 | 3.3393 | 15.1942 | 6.5262 | 14.7138 | 14.6049 | | 3.5951 | 4.0 | 5104 | 3.3122 | 14.8813 | 6.2962 | 14.507 | 14.3477 | | 3.477 | 5.0 | 6380 | 3.2991 | 15.0992 | 6.3888 | 14.8397 | 14.5606 | | 3.4084 | 6.0 | 7656 | 3.3035 | 15.1897 | 6.2292 | 14.6686 | 14.4488 | | 3.3661 | 7.0 | 8932 | 3.2959 | 15.3489 | 6.5702 | 14.9211 | 14.701 | | 3.3457 | 8.0 | 10208 | 3.2891 | 15.35 | 6.4925 | 14.8921 | 14.6312 | ### Framework versions - Transformers 4.19.1 - Pytorch 1.7.0 - Datasets 2.2.1 - Tokenizers 0.12.1
DioLiu/distilbert-base-uncased-finetuned-sst2
753d423957ec38eda9f2186830d89ab160af3da8
2022-05-02T03:06:36.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
DioLiu
null
DioLiu/distilbert-base-uncased-finetuned-sst2
6
null
transformers
15,633
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-sst2 results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: sst2 metrics: - name: Accuracy type: accuracy value: 0.8967889908256881 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-sst2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.5963 - Accuracy: 0.8968 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.247 | 1.0 | 1404 | 0.3629 | 0.8865 | | 0.1532 | 2.0 | 2808 | 0.3945 | 0.8979 | | 0.0981 | 3.0 | 4212 | 0.4206 | 0.9025 | | 0.0468 | 4.0 | 5616 | 0.5358 | 0.9014 | | 0.0313 | 5.0 | 7020 | 0.5963 | 0.8968 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
jhoonk/distilbert-base-uncased-finetuned-squad
3c46b5d5d79d89935e9202379a2c8011b67506e6
2022-05-10T00:07:59.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
jhoonk
null
jhoonk/distilbert-base-uncased-finetuned-squad
6
null
transformers
15,634
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.1622 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2107 | 1.0 | 5533 | 1.1478 | | 0.949 | 2.0 | 11066 | 1.1191 | | 0.7396 | 3.0 | 16599 | 1.1622 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
patrickquick/BERTicelli
458e2097f7d9c1b24aaacf66ca45e13d17b11bed
2022-05-10T09:03:48.000Z
[ "pytorch", "bert", "text-classification", "en", "dataset:OLID", "transformers", "BERTicelli", "text classification", "abusive language", "hate speech", "offensive language", "license:apache-2.0" ]
text-classification
false
patrickquick
null
patrickquick/BERTicelli
6
null
transformers
15,635
--- language: - en tags: - BERTicelli - text classification - abusive language - hate speech - offensive language datasets: - OLID license: apache-2.0 widget: - text: "If Jamie Oliver fucks with my £3 meal deals at Tesco I'll kill the cunt." example_title: "Example 1" - text: "Keep up the good hard work." example_title: "Example 2" - text: "That's not hair. Those were polyester fibers because Yoda is (or was) a puppet." example_title: "Example 3" --- [Mona Allaert](https://github.com/MonaDT) • [Leonardo Grotti](https://github.com/corvusMidnight) • [Patrick Quick](https://github.com/patrickquick) ## Model description BERTicelli is an English pre-trained BERT model obtained by fine-tuning the [English BERT base cased model](https://github.com/google-research/bert) with the training data from [Offensive Language Identification Dataset (OLID)](https://scholar.harvard.edu/malmasi/olid). This model was developed for the NLP Shared Task in the Digital Text Analysis program at the University of Antwerp (2021–2022).
dragonSwing/viwav2vec2-base-1.5k
1e2277b975cb8c9e248bbbf9e3235175851dd37c
2022-05-17T15:14:37.000Z
[ "pytorch", "wav2vec2", "pretraining", "vi", "arxiv:2006.11477", "transformers", "speech", "automatic-speech-recognition", "license:cc-by-sa-4.0" ]
automatic-speech-recognition
false
dragonSwing
null
dragonSwing/viwav2vec2-base-1.5k
6
null
transformers
15,636
--- license: cc-by-sa-4.0 language: vi tags: - speech - automatic-speech-recognition --- # Wav2Vec2 base model trained of 1.5K hours of Vietnamese speech The base model is pre-trained on 16kHz sampled speech audio from Vietnamese speech corpus containing 1.5K hours of reading and broadcasting speech. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Vietnamese Automatic Speech Recognition. **Note**: This model does not have a tokenizer as it was pretrained on audio alone. In order to use this model speech recognition, a tokenizer should be created and the model should be fine-tuned on labeled text data. Check out [this blog](https://huggingface.co/blog/fine-tune-wav2vec2-english) for more in-detail explanation of how to fine-tune the model. [Facebook's Wav2Vec2 blog](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/) [Paper](https://arxiv.org/abs/2006.11477) # Usage See [this notebook](https://colab.research.google.com/drive/1FjTsqbYKphl9kL-eILgUc-bl4zVThL8F?usp=sharing) for more information on how to fine-tune the English pre-trained model. ```python import torch from transformers import Wav2Vec2Model model = Wav2Vec2Model.from_pretrained("dragonSwing/viwav2vec2-base-1.5k") # Sanity check inputs = torch.rand([1, 16000]) outputs = model(inputs) ```
veronica320/MPE_roberta
d9c3d19bb9ab97e64e529d9a6b5a49fc53980dfd
2022-05-03T02:21:21.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
veronica320
null
veronica320/MPE_roberta
6
null
transformers
15,637
Entry not found
enimai/mbart-large-50-paraphrase-finetuned-for-ru
59d9ab04e47e86e3c7af80f969aa18272a446aa3
2022-05-03T17:50:48.000Z
[ "pytorch", "mbart", "text2text-generation", "transformers", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
enimai
null
enimai/mbart-large-50-paraphrase-finetuned-for-ru
6
null
transformers
15,638
--- license: apache-2.0 ---
Lauler/motions-classifier
67f8e6b9790abe7c3ba53a8f8e53ff8da2eb94e8
2022-05-03T23:08:11.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Lauler
null
Lauler/motions-classifier
6
null
transformers
15,639
## Swedish parliamentary motions party classifier A model trained on Swedish parliamentary motions from 2018 to 2021. Outputs the probabilities for different parties being the originator of a given text.
jenspt/bert_regression_basic_16_batch_size
2e22f9592657c5a1c33a96022d4c174832b7b522
2022-05-11T05:52:09.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
jenspt
null
jenspt/bert_regression_basic_16_batch_size
6
null
transformers
15,640
Entry not found
laituan245/t5-v1_1-large-caption2smiles
24a4d20ca90c7b649337b34baa12576f6290c918
2022-05-05T00:46:08.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
laituan245
null
laituan245/t5-v1_1-large-caption2smiles
6
null
transformers
15,641
Entry not found
himanshusrtekbox/distilbert-base-uncased-finetuned-emotion
15f0a80848ebd9dfca6eb99b21ba8244e595425f
2022-05-24T11:47:11.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers" ]
text-classification
false
himanshusrtekbox
null
himanshusrtekbox/distilbert-base-uncased-finetuned-emotion
6
null
transformers
15,642
Entry not found
YeRyeongLee/bert-base-uncased-finetuned-0505-2
8d3a0c17aac32adc150cb06d65daf4e095a0a9af
2022-05-05T06:29:23.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
YeRyeongLee
null
YeRyeongLee/bert-base-uncased-finetuned-0505-2
6
null
transformers
15,643
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: bert-base-uncased-finetuned-0505-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-0505-2 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4277 - Accuracy: 0.9206 - F1: 0.9205 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 1373 | 0.3634 | 0.9025 | 0.9012 | | No log | 2.0 | 2746 | 0.3648 | 0.9066 | 0.9060 | | No log | 3.0 | 4119 | 0.3978 | 0.9189 | 0.9183 | | No log | 4.0 | 5492 | 0.4277 | 0.9206 | 0.9205 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0 - Datasets 1.16.1 - Tokenizers 0.10.3
benjamin/gpt2-wechsel-malagasy
75bdd961d5659ed962b71808252d057d11af0dc4
2022-07-13T23:45:23.000Z
[ "pytorch", "gpt2", "text-generation", "mg", "transformers", "license:mit" ]
text-generation
false
benjamin
null
benjamin/gpt2-wechsel-malagasy
6
null
transformers
15,644
--- language: mg license: mit --- # gpt2-wechsel-malagasy Model trained with WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models. See the code here: https://github.com/CPJKU/wechsel And the paper here: https://aclanthology.org/2022.naacl-main.293/ ## Performance | Model | PPL | |---|---| | `gpt2-wechsel-sundanese` | **111.72** | | `gpt2` (retrained from scratch) | 149.46 | | Model | PPL | |---|---| | `gpt2-wechsel-scottish-gaelic` | **16.43** | | `gpt2` (retrained from scratch) | 19.53 | | Model | PPL | |---|---| | `gpt2-wechsel-uyghur` | **34.33** | | `gpt2` (retrained from scratch) | 42.82 | | Model | PPL | |---|---| | `gpt2-wechsel-malagasy` | **14.01** | | `gpt2` (retrained from scratch) | 15.93 | See our paper for details. ## Citation Please cite WECHSEL as ``` @inproceedings{minixhofer-etal-2022-wechsel, title = "{WECHSEL}: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models", author = "Minixhofer, Benjamin and Paischer, Fabian and Rekabsaz, Navid", booktitle = "Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies", month = jul, year = "2022", address = "Seattle, United States", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.naacl-main.293", pages = "3992--4006", abstract = "Large pretrained language models (LMs) have become the central building block of many NLP applications. Training these models requires ever more computational resources and most of the existing models are trained on English text only. It is exceedingly expensive to train these models in other languages. To alleviate this problem, we introduce a novel method {--} called WECHSEL {--} to efficiently and effectively transfer pretrained LMs to new languages. WECHSEL can be applied to any model which uses subword-based tokenization and learns an embedding for each subword. The tokenizer of the source model (in English) is replaced with a tokenizer in the target language and token embeddings are initialized such that they are semantically similar to the English tokens by utilizing multilingual static word embeddings covering English and the target language. We use WECHSEL to transfer the English RoBERTa and GPT-2 models to four languages (French, German, Chinese and Swahili). We also study the benefits of our method on very low-resource languages. WECHSEL improves over proposed methods for cross-lingual parameter transfer and outperforms models of comparable size trained from scratch with up to 64x less training effort. Our method makes training large language models for new languages more accessible and less damaging to the environment. We make our code and models publicly available.", } ```
CaptAdorable/RickBot
8d526e009ea4d34836d4cbdc5f67b3ec06dd9fcf
2022-05-05T20:40:56.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
CaptAdorable
null
CaptAdorable/RickBot
6
null
transformers
15,645
--- tags: - conversational --- # RickBot built for [Chai](https://chai.ml/) Make your own [here](https://colab.research.google.com/drive/1o5LxBspm-C28HQvXN-PRQavapDbm5WjG?usp=sharing)
Milanmg/xlm-roberta-base
1ce62b6fc3e3c9abe9b8843580a0406e9963005f
2022-05-14T03:16:45.000Z
[ "pytorch", "jax", "xlm-roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Milanmg
null
Milanmg/xlm-roberta-base
6
null
transformers
15,646
Entry not found
avuhong/protBERTbfd_AAV2_classification
e59790ea300611518324c1709597e16673c4f059
2022-05-07T16:31:05.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
avuhong
null
avuhong/protBERTbfd_AAV2_classification
6
null
transformers
15,647
--- tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: protBERTbfd_AAV2_classification results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # protBERTbfd_AAV2_classification This model is a fine-tuned version of [Rostlab/prot_bert_bfd](https://huggingface.co/Rostlab/prot_bert_bfd) on AAV2 dataset with ~230k sequences (Bryant et al 2020). The WT sequence (aa561-588): D E E E I R T T N P V A T E Q Y G S V S T N L Q R G N R Maximum length: 50 It achieves the following results on the evaluation set. Note:this is result of the last epoch, I think the pushed model is loaded with best checkpoint - best val_loss, I'm not so sure though :/ - Loss: 0.1341 - Accuracy: 0.9615 - F1: 0.9627 - Precision: 0.9637 - Recall: 0.9618 - Auroc: 0.9615 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 64 - total_train_batch_size: 2048 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 8 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Auroc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:------:| | No log | 1.0 | 116 | 0.2582 | 0.9064 | 0.9157 | 0.8564 | 0.9839 | 0.9038 | | No log | 2.0 | 232 | 0.1447 | 0.9424 | 0.9432 | 0.9618 | 0.9252 | 0.9430 | | No log | 3.0 | 348 | 0.1182 | 0.9542 | 0.9556 | 0.9573 | 0.9539 | 0.9542 | | No log | 4.0 | 464 | 0.1129 | 0.9585 | 0.9602 | 0.9520 | 0.9685 | 0.9581 | | 0.2162 | 5.0 | 580 | 0.1278 | 0.9553 | 0.9558 | 0.9776 | 0.9351 | 0.9561 | | 0.2162 | 6.0 | 696 | 0.1139 | 0.9587 | 0.9607 | 0.9465 | 0.9752 | 0.9581 | | 0.2162 | 7.0 | 812 | 0.1127 | 0.9620 | 0.9633 | 0.9614 | 0.9652 | 0.9619 | | 0.2162 | 8.0 | 928 | 0.1341 | 0.9615 | 0.9627 | 0.9637 | 0.9618 | 0.9615 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
huxxx657/bart-base-finetuned-squad
e544da6341f2fd6ee3874a90862b6a1771b38e45
2022-05-07T23:42:53.000Z
[ "pytorch", "tensorboard", "bart", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
huxxx657
null
huxxx657/bart-base-finetuned-squad
6
null
transformers
15,648
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bart-base-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-base-finetuned-squad This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.2399 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 0.2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.4988 | 0.2 | 1108 | 1.2399 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
deepgai/finetuned-tweet_eval-sentiment
9df75ba85ac9f0aa3c3660c9535c976c10c854a8
2022-05-08T15:28:39.000Z
[ "pytorch", "tensorboard", "deberta-v2", "text-classification", "transformers" ]
text-classification
false
deepgai
null
deepgai/finetuned-tweet_eval-sentiment
6
null
transformers
15,649
nikuznetsov/roberta-base-finetuned-cola
dd52d7cb103b123742ed154245fb23b18ef48646
2022-05-08T21:02:05.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
nikuznetsov
null
nikuznetsov/roberta-base-finetuned-cola
6
null
transformers
15,650
--- license: mit tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: roberta-base-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5880199146512337 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-finetuned-cola This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.7832 - Matthews Correlation: 0.5880 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5027 | 1.0 | 535 | 0.6017 | 0.4369 | | 0.33 | 2.0 | 1070 | 0.5066 | 0.5521 | | 0.2311 | 3.0 | 1605 | 0.6269 | 0.5727 | | 0.1767 | 4.0 | 2140 | 0.7832 | 0.5880 | | 0.1337 | 5.0 | 2675 | 0.9164 | 0.5880 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
ankurani/roberta-base-finetuned-ner
75242e92d822e004c4f69f9647c28143aa67194a
2022-07-09T07:01:32.000Z
[ "pytorch", "roberta", "token-classification", "dataset:plod-filtered", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
ankurani
null
ankurani/roberta-base-finetuned-ner
6
null
transformers
15,651
--- license: mit tags: - generated_from_trainer datasets: - plod-filtered metrics: - precision - recall - f1 - accuracy model-index: - name: roberta-base-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: plod-filtered type: plod-filtered args: PLODfiltered metrics: - name: Precision type: precision value: 0.9626409382419665 - name: Recall type: recall value: 0.9524847822076014 - name: F1 type: f1 value: 0.9575359305291788 - name: Accuracy type: accuracy value: 0.9534751355294295 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-finetuned-ner This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the plod-filtered dataset. It achieves the following results on the evaluation set: - Loss: 0.1152 - Precision: 0.9626 - Recall: 0.9525 - F1: 0.9575 - Accuracy: 0.9535 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1023 | 0.5 | 7000 | 0.1345 | 0.9601 | 0.9507 | 0.9554 | 0.9512 | | 0.1166 | 0.99 | 14000 | 0.1152 | 0.9626 | 0.9525 | 0.9575 | 0.9535 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
FabianWillner/distilbert-base-uncased-finetuned-squad
0a238477fe98d0b0fdfd6f3ed7800130961c459e
2022-06-12T12:09:32.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
FabianWillner
null
FabianWillner/distilbert-base-uncased-finetuned-squad
6
null
transformers
15,652
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad metrics: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [FabianWillner/distilbert-base-uncased-finetuned-squad](https://huggingface.co/FabianWillner/distilbert-base-uncased-finetuned-squad) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
jxuhf/Fine-tuning-text-classification-model-Habana-Gaudi
dff06b4918b33804610527d6d0f1d30d5ea215c7
2022-05-10T19:39:44.000Z
[ "pytorch", "bert", "text-classification", "en", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
jxuhf
null
jxuhf/Fine-tuning-text-classification-model-Habana-Gaudi
6
null
transformers
15,653
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: mrpc results: - task: name: Text Classification type: text-classification dataset: name: GLUE MRPC type: glue args: mrpc metrics: - name: Accuracy type: accuracy value: 0.8823529411764706 - name: F1 type: f1 value: 0.9180887372013652 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mrpc This model is a fine-tuned version of [bert-large-uncased-whole-word-masking](https://huggingface.co/bert-large-uncased-whole-word-masking) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.3680 - Accuracy: 0.8824 - F1: 0.9181 - Combined Score: 0.9002 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0a0+gitfe03f8c - Datasets 2.1.0 - Tokenizers 0.12.1
selimonder/gptj-bswiki-2
b9625b40ab6453a15a3e0f90933a1f78521bddc5
2022-05-10T09:07:06.000Z
[ "pytorch", "gptj", "text-generation", "transformers" ]
text-generation
false
selimonder
null
selimonder/gptj-bswiki-2
6
null
transformers
15,654
Entry not found
lucifermorninstar011/autotrain-defector_ner_multi-847927015
a6f3d1a3064b456b44cbce357f18c36a41744b28
2022-05-10T13:41:09.000Z
[ "pytorch", "bert", "token-classification", "en", "dataset:lucifermorninstar011/autotrain-data-defector_ner_multi", "transformers", "autotrain", "co2_eq_emissions", "autotrain_compatible" ]
token-classification
false
lucifermorninstar011
null
lucifermorninstar011/autotrain-defector_ner_multi-847927015
6
null
transformers
15,655
--- tags: autotrain language: en widget: - text: "I love AutoTrain 🤗" datasets: - lucifermorninstar011/autotrain-data-defector_ner_multi co2_eq_emissions: 132.80014666099797 --- # Model Trained Using AutoTrain - Problem type: Entity Extraction - Model ID: 847927015 - CO2 Emissions (in grams): 132.80014666099797 ## Validation Metrics - Loss: 0.028013793751597404 - Accuracy: 0.9904516251523853 - Precision: 0.9457584194138717 - Recall: 0.9496542594882692 - F1: 0.9477023356871265 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/lucifermorninstar011/autotrain-defector_ner_multi-847927015 ``` Or Python API: ``` from transformers import AutoModelForTokenClassification, AutoTokenizer model = AutoModelForTokenClassification.from_pretrained("lucifermorninstar011/autotrain-defector_ner_multi-847927015", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("lucifermorninstar011/autotrain-defector_ner_multi-847927015", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
florentgbelidji/all-mpnet-base-v2__tweet_eval_emotion__classifier
68d7515b7e668d4b5a9dde0889854b0b89c7700c
2022-05-10T13:45:01.000Z
[ "pytorch", "tensorboard", "mpnet", "text-classification", "transformers" ]
text-classification
false
florentgbelidji
null
florentgbelidji/all-mpnet-base-v2__tweet_eval_emotion__classifier
6
null
transformers
15,656
Entry not found
sismetanin/ruroberta-ru-rusentitweet
b99bcb610bf76c41dc242490374e7dad804d6acf
2022-05-10T23:58:12.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
sismetanin
null
sismetanin/ruroberta-ru-rusentitweet
6
null
transformers
15,657
precision recall f1-score support negative 0.733238 0.778788 0.755327 660 neutral 0.757962 0.779963 0.768805 1068 positive 0.722793 0.728778 0.725773 483 skip 0.660714 0.501355 0.570108 369 speech 0.767857 0.868687 0.815166 99 accuracy 0.735349 2679 macro avg 0.728513 0.731514 0.727036 2679 weighted avg 0.732501 0.735349 0.732071 2679 Avg macro Precision 0.7297744200895245 Avg macro Recall 0.7248163039465004 Avg macro F1 0.7229310729744304 Avg weighted F1 0.7281243075011377
masakhane/m2m100_418M_en_twi_rel
5641e30a65f76f7329349ec318821a62a402c0da
2022-05-12T12:40:22.000Z
[ "pytorch", "m2m_100", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/m2m100_418M_en_twi_rel
6
null
transformers
15,658
--- license: afl-3.0 ---
Dim0n4Nk/clip-roberta-finetuned
51522a3dd1267f8335f9864803e4d560db5b469d
2022-06-10T13:02:21.000Z
[ "pytorch", "vision-text-dual-encoder", "feature-extraction", "transformers" ]
feature-extraction
false
Dim0n4Nk
null
Dim0n4Nk/clip-roberta-finetuned
6
null
transformers
15,659
Entry not found
enoriega/kw_pubmed_10000_0.00006
22de6a7908f681f7a696b91b9553278fbe7326b5
2022-05-12T14:21:13.000Z
[ "pytorch", "tensorboard", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
enoriega
null
enoriega/kw_pubmed_10000_0.00006
6
null
transformers
15,660
Entry not found
DioLiu/distilbert-base-uncased-finetuned-sst2-shake-wiki-update-shuffle
878ccd2e26bd44642cd44c675892ae9f7bbc4e69
2022-05-12T11:04:41.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
DioLiu
null
DioLiu/distilbert-base-uncased-finetuned-sst2-shake-wiki-update-shuffle
6
null
transformers
15,661
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-sst2-shake-wiki-update-shuffle results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-sst2-shake-wiki-update-shuffle This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0284 - Accuracy: 0.9971 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.0166 | 1.0 | 7783 | 0.0135 | 0.9965 | | 0.0091 | 2.0 | 15566 | 0.0172 | 0.9968 | | 0.0059 | 3.0 | 23349 | 0.0223 | 0.9968 | | 0.0 | 4.0 | 31132 | 0.0332 | 0.9962 | | 0.0001 | 5.0 | 38915 | 0.0284 | 0.9971 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
lucifermorninstar011/autotrain-lucifer_morningstar_job-859227344
6f31636618e062d7133cd6cc7c99df7eb89ddaf9
2022-05-12T12:09:44.000Z
[ "pytorch", "distilbert", "token-classification", "en", "dataset:lucifermorninstar011/autotrain-data-lucifer_morningstar_job", "transformers", "autotrain", "co2_eq_emissions", "autotrain_compatible" ]
token-classification
false
lucifermorninstar011
null
lucifermorninstar011/autotrain-lucifer_morningstar_job-859227344
6
null
transformers
15,662
--- tags: autotrain language: en widget: - text: "I love AutoTrain 🤗" datasets: - lucifermorninstar011/autotrain-data-lucifer_morningstar_job co2_eq_emissions: 40.47286384195961 --- # Model Trained Using AutoTrain - Problem type: Entity Extraction - Model ID: 859227344 - CO2 Emissions (in grams): 40.47286384195961 ## Validation Metrics - Loss: 0.05327404662966728 - Accuracy: 0.9856485474332406 - Precision: 0.9272604680928872 - Recall: 0.9327554791725343 - F1: 0.9299998567273666 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/lucifermorninstar011/autotrain-lucifer_morningstar_job-859227344 ``` Or Python API: ``` from transformers import AutoModelForTokenClassification, AutoTokenizer model = AutoModelForTokenClassification.from_pretrained("lucifermorninstar011/autotrain-lucifer_morningstar_job-859227344", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("lucifermorninstar011/autotrain-lucifer_morningstar_job-859227344", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
aiko/maeve-12-6-samsum
aa43b8f20948e08c7b759f3d678d04b77e076c89
2022-05-16T13:56:13.000Z
[ "pytorch", "bart", "text2text-generation", "en", "dataset:samsum", "transformers", "license:gpl-3.0", "autotrain_compatible" ]
text2text-generation
false
aiko
null
aiko/maeve-12-6-samsum
6
null
transformers
15,663
--- language: - en tags: - text2text-generation - pytorch license: "gpl-3.0" datasets: - samsum widget: - text: "Ruben has forgotten what the homework was. Alex tells him to ask the teacher." example_title: "I forgot my homework" - text: "Mac is lost at the zoo. Frank says he is at the gorilla exhibit. Charlie is going to see the minks." example_title: "Very sunny" - text: "Mac has started to date Dennis's mother. Dennis is going to beat him up." example_title: "Not very sunny" --- # Maeve - SAMSum Maeve is a language model that is similar to BART in structure but trained specially using a CAT (Conditionally Adversarial Transformer). This allows the model to learn to create long-form text from short entries with high degrees of control and coherence that are impossible to achieve with traditional transformers. This specific model has been trained on the SAMSum dataset, and can invert summaries into full-length news articles. Feel free to try examples on the right!
juniorrios/distilbert_jur
3ff469504b812824b9a31c7005135c6612fe8dad
2022-05-14T03:02:15.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
token-classification
false
juniorrios
null
juniorrios/distilbert_jur
6
null
transformers
15,664
--- tags: - generated_from_trainer model-index: - name: distilbert_jur results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_jur This model is a fine-tuned version of [adalbertojunior/distilbert-portuguese-cased](https://huggingface.co/adalbertojunior/distilbert-portuguese-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1800 - Cnpj Do Réu Precision: 0.4312 - Cnpj Do Réu Recall: 0.8545 - Cnpj Do Réu F1: 0.5732 - Cnpj Do Réu Number: 55 - Cpf Do Autor Precision: 0.3889 - Cpf Do Autor Recall: 0.8140 - Cpf Do Autor F1: 0.5263 - Cpf Do Autor Number: 43 - Data Da Petição Precision: 0.5294 - Data Da Petição Recall: 0.8780 - Data Da Petição F1: 0.6606 - Data Da Petição Number: 41 - Data Do Contrato Precision: 0.0 - Data Do Contrato Recall: 0.0 - Data Do Contrato F1: 0.0 - Data Do Contrato Number: 6 - Data Dos Fatos Precision: 0.1333 - Data Dos Fatos Recall: 0.2222 - Data Dos Fatos F1: 0.1667 - Data Dos Fatos Number: 9 - Datas Precision: 0.4282 - Datas Recall: 0.76 - Datas F1: 0.5477 - Datas Number: 200 - Jurisprudência Precision: 0.4088 - Jurisprudência Recall: 0.7475 - Jurisprudência F1: 0.5286 - Jurisprudência Number: 99 - Normativo Precision: 0.4337 - Normativo Recall: 0.7912 - Normativo F1: 0.5603 - Normativo Number: 637 - Valor Da Causa Precision: 0.5970 - Valor Da Causa Recall: 0.9091 - Valor Da Causa F1: 0.7207 - Valor Da Causa Number: 44 - Valor Da Multa – Tutela Provisória Precision: 0.4545 - Valor Da Multa – Tutela Provisória Recall: 0.625 - Valor Da Multa – Tutela Provisória F1: 0.5263 - Valor Da Multa – Tutela Provisória Number: 8 - Valor Dano Moral Precision: 0.4 - Valor Dano Moral Recall: 0.7097 - Valor Dano Moral F1: 0.5116 - Valor Dano Moral Number: 31 - Valor Danos Materiais/restituição Em Dobro Precision: 0.32 - Valor Danos Materiais/restituição Em Dobro Recall: 0.6486 - Valor Danos Materiais/restituição Em Dobro F1: 0.4286 - Valor Danos Materiais/restituição Em Dobro Number: 37 - Valores Precision: 0.4300 - Valores Recall: 0.7607 - Valores F1: 0.5494 - Valores Number: 351 - Overall Precision: 0.4291 - Overall Recall: 0.7739 - Overall F1: 0.5521 - Overall Accuracy: 0.9704 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 1 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 20.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Cnpj Do Réu Precision | Cnpj Do Réu Recall | Cnpj Do Réu F1 | Cnpj Do Réu Number | Cpf Do Autor Precision | Cpf Do Autor Recall | Cpf Do Autor F1 | Cpf Do Autor Number | Data Da Petição Precision | Data Da Petição Recall | Data Da Petição F1 | Data Da Petição Number | Data Do Contrato Precision | Data Do Contrato Recall | Data Do Contrato F1 | Data Do Contrato Number | Data Dos Fatos Precision | Data Dos Fatos Recall | Data Dos Fatos F1 | Data Dos Fatos Number | Datas Precision | Datas Recall | Datas F1 | Datas Number | Jurisprudência Precision | Jurisprudência Recall | Jurisprudência F1 | Jurisprudência Number | Normativo Precision | Normativo Recall | Normativo F1 | Normativo Number | Valor Da Causa Precision | Valor Da Causa Recall | Valor Da Causa F1 | Valor Da Causa Number | Valor Da Multa – Tutela Provisória Precision | Valor Da Multa – Tutela Provisória Recall | Valor Da Multa – Tutela Provisória F1 | Valor Da Multa – Tutela Provisória Number | Valor Dano Moral Precision | Valor Dano Moral Recall | Valor Dano Moral F1 | Valor Dano Moral Number | Valor Danos Materiais/restituição Em Dobro Precision | Valor Danos Materiais/restituição Em Dobro Recall | Valor Danos Materiais/restituição Em Dobro F1 | Valor Danos Materiais/restituição Em Dobro Number | Valores Precision | Valores Recall | Valores F1 | Valores Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------------------:|:------------------:|:--------------:|:------------------:|:----------------------:|:-------------------:|:---------------:|:-------------------:|:-------------------------:|:----------------------:|:------------------:|:----------------------:|:--------------------------:|:-----------------------:|:-------------------:|:-----------------------:|:------------------------:|:---------------------:|:-----------------:|:---------------------:|:---------------:|:------------:|:--------:|:------------:|:------------------------:|:---------------------:|:-----------------:|:---------------------:|:-------------------:|:----------------:|:------------:|:----------------:|:------------------------:|:---------------------:|:-----------------:|:---------------------:|:--------------------------------------------:|:-----------------------------------------:|:-------------------------------------:|:-----------------------------------------:|:--------------------------:|:-----------------------:|:-------------------:|:-----------------------:|:----------------------------------------------------:|:-------------------------------------------------:|:---------------------------------------------:|:-------------------------------------------------:|:-----------------:|:--------------:|:----------:|:--------------:|:-----------------:|:--------------:|:----------:|:----------------:| | 0.8463 | 1.0 | 561 | 0.0846 | 0.2183 | 0.5636 | 0.3147 | 55 | 0.0 | 0.0 | 0.0 | 43 | 0.44 | 0.8049 | 0.5690 | 41 | 0.0 | 0.0 | 0.0 | 6 | 0.0 | 0.0 | 0.0 | 9 | 0.3092 | 0.705 | 0.4299 | 200 | 0.1087 | 0.3030 | 0.16 | 99 | 0.2691 | 0.6923 | 0.3875 | 637 | 0.0 | 0.0 | 0.0 | 44 | 0.0 | 0.0 | 0.0 | 8 | 0.0 | 0.0 | 0.0 | 31 | 0.0 | 0.0 | 0.0 | 37 | 0.3630 | 0.9060 | 0.5183 | 351 | 0.2844 | 0.6368 | 0.3932 | 0.9666 | | 0.0953 | 2.0 | 1122 | 0.1019 | 0.4087 | 0.8545 | 0.5529 | 55 | 0.33 | 0.7674 | 0.4615 | 43 | 0.4875 | 0.9512 | 0.6446 | 41 | 0.0 | 0.0 | 0.0 | 6 | 0.0 | 0.0 | 0.0 | 9 | 0.3647 | 0.93 | 0.5239 | 200 | 0.3109 | 0.7475 | 0.4392 | 99 | 0.3446 | 0.8148 | 0.4844 | 637 | 0.5538 | 0.8182 | 0.6606 | 44 | 0.0 | 0.0 | 0.0 | 8 | 0.0 | 0.0 | 0.0 | 31 | 0.0 | 0.0 | 0.0 | 37 | 0.4091 | 0.9174 | 0.5659 | 351 | 0.3693 | 0.8046 | 0.5062 | 0.9660 | | 0.0713 | 3.0 | 1683 | 0.0842 | 0.3983 | 0.8545 | 0.5434 | 55 | 0.3689 | 0.8837 | 0.5205 | 43 | 0.4535 | 0.9512 | 0.6142 | 41 | 0.0 | 0.0 | 0.0 | 6 | 0.0 | 0.0 | 0.0 | 9 | 0.3635 | 0.925 | 0.5219 | 200 | 0.3303 | 0.7374 | 0.4562 | 99 | 0.3957 | 0.8399 | 0.5380 | 637 | 0.5467 | 0.9318 | 0.6891 | 44 | 0.0 | 0.0 | 0.0 | 8 | 0.2683 | 0.7097 | 0.3894 | 31 | 0.19 | 0.5135 | 0.2774 | 37 | 0.4435 | 0.8490 | 0.5826 | 351 | 0.3901 | 0.8309 | 0.5309 | 0.9693 | | 0.0666 | 4.0 | 2244 | 0.0855 | 0.4052 | 0.8545 | 0.5497 | 55 | 0.3590 | 0.9767 | 0.5250 | 43 | 0.4937 | 0.9512 | 0.65 | 41 | 0.0 | 0.0 | 0.0 | 6 | 0.0 | 0.0 | 0.0 | 9 | 0.3792 | 0.91 | 0.5353 | 200 | 0.3504 | 0.8283 | 0.4925 | 99 | 0.3993 | 0.8650 | 0.5464 | 637 | 0.5882 | 0.9091 | 0.7143 | 44 | 0.0 | 0.0 | 0.0 | 8 | 0.3704 | 0.6452 | 0.4706 | 31 | 0.2429 | 0.4595 | 0.3178 | 37 | 0.4624 | 0.8946 | 0.6097 | 351 | 0.4063 | 0.8546 | 0.5508 | 0.9688 | | 0.0578 | 5.0 | 2805 | 0.0812 | 0.4381 | 0.8364 | 0.5750 | 55 | 0.3535 | 0.8140 | 0.4930 | 43 | 0.5571 | 0.9512 | 0.7027 | 41 | 0.0 | 0.0 | 0.0 | 6 | 0.0 | 0.0 | 0.0 | 9 | 0.3827 | 0.865 | 0.5307 | 200 | 0.3689 | 0.7677 | 0.4984 | 99 | 0.4083 | 0.8493 | 0.5515 | 637 | 0.5429 | 0.8636 | 0.6667 | 44 | 0.0 | 0.0 | 0.0 | 8 | 0.3239 | 0.7419 | 0.4510 | 31 | 0.2958 | 0.5676 | 0.3889 | 37 | 0.4629 | 0.8718 | 0.6047 | 351 | 0.4130 | 0.8315 | 0.5519 | 0.9698 | | 0.0527 | 6.0 | 3366 | 0.0892 | 0.4312 | 0.8545 | 0.5732 | 55 | 0.3448 | 0.9302 | 0.5031 | 43 | 0.5333 | 0.9756 | 0.6897 | 41 | 0.0 | 0.0 | 0.0 | 6 | 0.1053 | 0.4444 | 0.1702 | 9 | 0.3859 | 0.795 | 0.5196 | 200 | 0.3433 | 0.8081 | 0.4819 | 99 | 0.4114 | 0.8352 | 0.5513 | 637 | 0.5634 | 0.9091 | 0.6957 | 44 | 0.0 | 0.0 | 0.0 | 8 | 0.2947 | 0.9032 | 0.4444 | 31 | 0.2556 | 0.6216 | 0.3622 | 37 | 0.4526 | 0.8291 | 0.5855 | 351 | 0.4030 | 0.8225 | 0.5410 | 0.9702 | | 0.0507 | 7.0 | 3927 | 0.0854 | 0.4167 | 0.8182 | 0.5521 | 55 | 0.3737 | 0.8605 | 0.5211 | 43 | 0.5507 | 0.9268 | 0.6909 | 41 | 0.0 | 0.0 | 0.0 | 6 | 0.0 | 0.0 | 0.0 | 9 | 0.415 | 0.83 | 0.5533 | 200 | 0.325 | 0.7879 | 0.4602 | 99 | 0.4103 | 0.8226 | 0.5475 | 637 | 0.6 | 0.9545 | 0.7368 | 44 | 0.3 | 0.375 | 0.3333 | 8 | 0.375 | 0.6774 | 0.4828 | 31 | 0.2632 | 0.5405 | 0.3540 | 37 | 0.4559 | 0.8689 | 0.5980 | 351 | 0.4151 | 0.8193 | 0.5511 | 0.9704 | | 0.0469 | 8.0 | 4488 | 0.0896 | 0.4393 | 0.8545 | 0.5802 | 55 | 0.3776 | 0.8605 | 0.5248 | 43 | 0.5429 | 0.9268 | 0.6847 | 41 | 0.0 | 0.0 | 0.0 | 6 | 0.2353 | 0.4444 | 0.3077 | 9 | 0.4208 | 0.81 | 0.5538 | 200 | 0.3206 | 0.6768 | 0.4351 | 99 | 0.4137 | 0.8273 | 0.5515 | 637 | 0.6087 | 0.9545 | 0.7434 | 44 | 0.3846 | 0.625 | 0.4762 | 8 | 0.4082 | 0.6452 | 0.5000 | 31 | 0.2989 | 0.7027 | 0.4194 | 37 | 0.4581 | 0.8575 | 0.5972 | 351 | 0.4204 | 0.8174 | 0.5553 | 0.9704 | | 0.0389 | 9.0 | 5049 | 0.0961 | 0.3853 | 0.7636 | 0.5122 | 55 | 0.375 | 0.8372 | 0.5180 | 43 | 0.5205 | 0.9268 | 0.6667 | 41 | 0.0 | 0.0 | 0.0 | 6 | 0.1875 | 0.3333 | 0.2400 | 9 | 0.4015 | 0.805 | 0.5358 | 200 | 0.3641 | 0.7172 | 0.4830 | 99 | 0.4279 | 0.8053 | 0.5588 | 637 | 0.5694 | 0.9318 | 0.7069 | 44 | 0.4167 | 0.625 | 0.5 | 8 | 0.375 | 0.7742 | 0.5053 | 31 | 0.2857 | 0.6486 | 0.3967 | 37 | 0.4551 | 0.8376 | 0.5898 | 351 | 0.4220 | 0.8020 | 0.5530 | 0.9708 | | 0.037 | 10.0 | 5610 | 0.1132 | 0.4312 | 0.8545 | 0.5732 | 55 | 0.3663 | 0.8605 | 0.5139 | 43 | 0.5588 | 0.9268 | 0.6972 | 41 | 0.0 | 0.0 | 0.0 | 6 | 0.2857 | 0.4444 | 0.3478 | 9 | 0.4194 | 0.755 | 0.5393 | 200 | 0.3684 | 0.7071 | 0.4844 | 99 | 0.4339 | 0.7991 | 0.5624 | 637 | 0.5970 | 0.9091 | 0.7207 | 44 | 0.4545 | 0.625 | 0.5263 | 8 | 0.4 | 0.6452 | 0.4938 | 31 | 0.2809 | 0.6757 | 0.3968 | 37 | 0.4458 | 0.8091 | 0.5749 | 351 | 0.4287 | 0.7880 | 0.5553 | 0.9707 | | 0.0343 | 11.0 | 6171 | 0.1247 | 0.4404 | 0.8727 | 0.5854 | 55 | 0.37 | 0.8605 | 0.5175 | 43 | 0.5672 | 0.9268 | 0.7037 | 41 | 0.0 | 0.0 | 0.0 | 6 | 0.1905 | 0.4444 | 0.2667 | 9 | 0.3980 | 0.79 | 0.5293 | 200 | 0.3491 | 0.7475 | 0.4759 | 99 | 0.4318 | 0.8100 | 0.5633 | 637 | 0.5970 | 0.9091 | 0.7207 | 44 | 0.4167 | 0.625 | 0.5 | 8 | 0.3962 | 0.6774 | 0.5 | 31 | 0.2989 | 0.7027 | 0.4194 | 37 | 0.4466 | 0.8462 | 0.5846 | 351 | 0.4235 | 0.8097 | 0.5561 | 0.9702 | | 0.0315 | 12.0 | 6732 | 0.1284 | 0.4393 | 0.8545 | 0.5802 | 55 | 0.3627 | 0.8605 | 0.5103 | 43 | 0.5312 | 0.8293 | 0.6476 | 41 | 0.0 | 0.0 | 0.0 | 6 | 0.2857 | 0.4444 | 0.3478 | 9 | 0.4306 | 0.775 | 0.5536 | 200 | 0.3687 | 0.7374 | 0.4916 | 99 | 0.4275 | 0.8053 | 0.5585 | 637 | 0.5882 | 0.9091 | 0.7143 | 44 | 0.5455 | 0.75 | 0.6316 | 8 | 0.375 | 0.7742 | 0.5053 | 31 | 0.2718 | 0.7568 | 0.4000 | 37 | 0.4380 | 0.7550 | 0.5544 | 351 | 0.4233 | 0.7854 | 0.5501 | 0.9703 | | 0.0294 | 13.0 | 7293 | 0.1179 | 0.4352 | 0.8545 | 0.5767 | 55 | 0.3673 | 0.8372 | 0.5106 | 43 | 0.5152 | 0.8293 | 0.6355 | 41 | 0.0 | 0.0 | 0.0 | 6 | 0.2 | 0.3333 | 0.25 | 9 | 0.4026 | 0.775 | 0.5299 | 200 | 0.3923 | 0.7172 | 0.5071 | 99 | 0.4230 | 0.7802 | 0.5486 | 637 | 0.5970 | 0.9091 | 0.7207 | 44 | 0.4545 | 0.625 | 0.5263 | 8 | 0.4182 | 0.7419 | 0.5349 | 31 | 0.2632 | 0.5405 | 0.3540 | 37 | 0.4352 | 0.8034 | 0.5646 | 351 | 0.4202 | 0.7771 | 0.5454 | 0.9705 | | 0.0288 | 14.0 | 7854 | 0.1260 | 0.4299 | 0.8364 | 0.5679 | 55 | 0.3889 | 0.8140 | 0.5263 | 43 | 0.5303 | 0.8537 | 0.6542 | 41 | 0.0 | 0.0 | 0.0 | 6 | 0.1579 | 0.3333 | 0.2143 | 9 | 0.4131 | 0.725 | 0.5263 | 200 | 0.3791 | 0.6970 | 0.4911 | 99 | 0.4332 | 0.7692 | 0.5543 | 637 | 0.5970 | 0.9091 | 0.7207 | 44 | 0.4545 | 0.625 | 0.5263 | 8 | 0.4259 | 0.7419 | 0.5412 | 31 | 0.2903 | 0.4865 | 0.3636 | 37 | 0.4373 | 0.7949 | 0.5642 | 351 | 0.4272 | 0.7611 | 0.5472 | 0.9710 | | 0.0272 | 15.0 | 8415 | 0.1348 | 0.4175 | 0.7818 | 0.5443 | 55 | 0.3977 | 0.8140 | 0.5344 | 43 | 0.5606 | 0.9024 | 0.6916 | 41 | 0.0 | 0.0 | 0.0 | 6 | 0.2353 | 0.4444 | 0.3077 | 9 | 0.4129 | 0.77 | 0.5375 | 200 | 0.3763 | 0.7071 | 0.4912 | 99 | 0.4282 | 0.7488 | 0.5448 | 637 | 0.5882 | 0.9091 | 0.7143 | 44 | 0.5556 | 0.625 | 0.5882 | 8 | 0.4231 | 0.7097 | 0.5301 | 31 | 0.2812 | 0.4865 | 0.3564 | 37 | 0.4281 | 0.8063 | 0.5593 | 351 | 0.4238 | 0.7611 | 0.5445 | 0.9709 | | 0.025 | 16.0 | 8976 | 0.1656 | 0.4537 | 0.8909 | 0.6012 | 55 | 0.3854 | 0.8605 | 0.5324 | 43 | 0.5606 | 0.9024 | 0.6916 | 41 | 0.0 | 0.0 | 0.0 | 6 | 0.1765 | 0.3333 | 0.2308 | 9 | 0.4330 | 0.76 | 0.5517 | 200 | 0.3719 | 0.7475 | 0.4966 | 99 | 0.4176 | 0.8038 | 0.5497 | 637 | 0.5970 | 0.9091 | 0.7207 | 44 | 0.4545 | 0.625 | 0.5263 | 8 | 0.4444 | 0.7742 | 0.5647 | 31 | 0.2903 | 0.7297 | 0.4154 | 37 | 0.4311 | 0.7578 | 0.5496 | 351 | 0.4216 | 0.7854 | 0.5487 | 0.9701 | | 0.0229 | 17.0 | 9537 | 0.1802 | 0.4312 | 0.8545 | 0.5732 | 55 | 0.3854 | 0.8605 | 0.5324 | 43 | 0.5606 | 0.9024 | 0.6916 | 41 | 0.0 | 0.0 | 0.0 | 6 | 0.1111 | 0.2222 | 0.1481 | 9 | 0.4097 | 0.76 | 0.5324 | 200 | 0.3756 | 0.7475 | 0.5000 | 99 | 0.4184 | 0.8006 | 0.5496 | 637 | 0.5882 | 0.9091 | 0.7143 | 44 | 0.5 | 0.625 | 0.5556 | 8 | 0.4444 | 0.7742 | 0.5647 | 31 | 0.3288 | 0.6486 | 0.4364 | 37 | 0.4361 | 0.7578 | 0.5536 | 351 | 0.4204 | 0.7803 | 0.5464 | 0.9699 | | 0.0214 | 18.0 | 10098 | 0.1728 | 0.4393 | 0.8545 | 0.5802 | 55 | 0.3956 | 0.8372 | 0.5373 | 43 | 0.5373 | 0.8780 | 0.6667 | 41 | 0.0 | 0.0 | 0.0 | 6 | 0.125 | 0.2222 | 0.16 | 9 | 0.425 | 0.765 | 0.5464 | 200 | 0.4088 | 0.7475 | 0.5286 | 99 | 0.4330 | 0.7912 | 0.5597 | 637 | 0.5970 | 0.9091 | 0.7207 | 44 | 0.5 | 0.625 | 0.5556 | 8 | 0.4074 | 0.7097 | 0.5176 | 31 | 0.3171 | 0.7027 | 0.4370 | 37 | 0.4277 | 0.7664 | 0.5490 | 351 | 0.4282 | 0.7777 | 0.5523 | 0.9705 | | 0.0211 | 19.0 | 10659 | 0.1710 | 0.4151 | 0.8 | 0.5466 | 55 | 0.4091 | 0.8372 | 0.5496 | 43 | 0.5294 | 0.8780 | 0.6606 | 41 | 0.0 | 0.0 | 0.0 | 6 | 0.1333 | 0.2222 | 0.1667 | 9 | 0.4298 | 0.75 | 0.5464 | 200 | 0.4111 | 0.7475 | 0.5305 | 99 | 0.4308 | 0.7771 | 0.5543 | 637 | 0.5970 | 0.9091 | 0.7207 | 44 | 0.5 | 0.625 | 0.5556 | 8 | 0.3704 | 0.6452 | 0.4706 | 31 | 0.3143 | 0.5946 | 0.4112 | 37 | 0.4299 | 0.7692 | 0.5516 | 351 | 0.4280 | 0.7649 | 0.5488 | 0.9707 | | 0.0204 | 20.0 | 11220 | 0.1800 | 0.4312 | 0.8545 | 0.5732 | 55 | 0.3889 | 0.8140 | 0.5263 | 43 | 0.5294 | 0.8780 | 0.6606 | 41 | 0.0 | 0.0 | 0.0 | 6 | 0.1333 | 0.2222 | 0.1667 | 9 | 0.4282 | 0.76 | 0.5477 | 200 | 0.4088 | 0.7475 | 0.5286 | 99 | 0.4337 | 0.7912 | 0.5603 | 637 | 0.5970 | 0.9091 | 0.7207 | 44 | 0.4545 | 0.625 | 0.5263 | 8 | 0.4 | 0.7097 | 0.5116 | 31 | 0.32 | 0.6486 | 0.4286 | 37 | 0.4300 | 0.7607 | 0.5494 | 351 | 0.4291 | 0.7739 | 0.5521 | 0.9704 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
Jeevesh8/6ep_bert_ft_cola-2
5b24ef49bca3d1975592ddee782b0ea246385fff
2022-05-14T11:36:24.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/6ep_bert_ft_cola-2
6
null
transformers
15,665
Entry not found
Jeevesh8/6ep_bert_ft_cola-13
a2eeba50a3dc0fe15b1c9d3621a96291b26fb0ae
2022-05-14T11:54:36.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/6ep_bert_ft_cola-13
6
null
transformers
15,666
Entry not found
Jeevesh8/6ep_bert_ft_cola-49
d4e2a1e875232d7991d2684304079b8b21622309
2022-05-14T13:20:43.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/6ep_bert_ft_cola-49
6
null
transformers
15,667
Entry not found
Jeevesh8/6ep_bert_ft_cola-53
ad95b1f6bd73614775b652ced71a9e1cdf756b01
2022-05-14T13:27:23.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/6ep_bert_ft_cola-53
6
null
transformers
15,668
Entry not found
Jeevesh8/6ep_bert_ft_cola-59
6e5edd651f723459095ab762ec99e3129e9f85bd
2022-05-14T13:37:20.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/6ep_bert_ft_cola-59
6
null
transformers
15,669
Entry not found
Jeevesh8/6ep_bert_ft_cola-66
7ee5da6b97703fae160c3a329cc2a5e7dd055173
2022-05-14T13:49:00.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/6ep_bert_ft_cola-66
6
null
transformers
15,670
Entry not found
Jeevesh8/6ep_bert_ft_cola-71
6d5cdd5b6ecdd25ae76246f7972f6d4aabfbb883
2022-05-14T13:57:20.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/6ep_bert_ft_cola-71
6
null
transformers
15,671
Entry not found
prashanth/mbart-large-cc25-ge-en-to-hi
672d5bf90254dc792c5712aeda95dab03a3cfd80
2022-05-15T17:11:05.000Z
[ "pytorch", "tensorboard", "mbart", "text2text-generation", "dataset:hindi_english_machine_translation", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
prashanth
null
prashanth/mbart-large-cc25-ge-en-to-hi
6
null
transformers
15,672
--- tags: - generated_from_trainer datasets: - hindi_english_machine_translation metrics: - bleu model-index: - name: mbart-large-cc25-ge-en-to-hi results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: hindi_english_machine_translation type: hindi_english_machine_translation args: hi-en metrics: - name: Bleu type: bleu value: 4.5974 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mbart-large-cc25-ge-en-to-hi This model is a fine-tuned version of [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25) on the hindi_english_machine_translation dataset. It achieves the following results on the evaluation set: - Loss: 1.3397 - Bleu: 4.5974 - Gen Len: 66.244 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:------:|:---------------:|:------:|:-------:| | 1.4602 | 1.0 | 135739 | 1.3397 | 4.5974 | 66.244 | ### Framework versions - Transformers 4.19.1 - Pytorch 1.11.0+cu102 - Datasets 1.18.0 - Tokenizers 0.12.1
huggingtweets/dclblogger-loopifyyy
e9fcb0226d5e7377448cce28ba1a5f8963cf6de9
2022-05-15T15:32:50.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/dclblogger-loopifyyy
6
null
transformers
15,673
--- language: en thumbnail: http://www.huggingtweets.com/dclblogger-loopifyyy/1652628765621/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1472740175130230784/L7Xcs7wJ_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1480550067564163078/D90SnyUa_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Matty & Loopify 🧙‍♂️</div> <div style="text-align: center; font-size: 14px;">@dclblogger-loopifyyy</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Matty & Loopify 🧙‍♂️. | Data | Matty | Loopify 🧙‍♂️ | | --- | --- | --- | | Tweets downloaded | 3250 | 3250 | | Retweets | 62 | 117 | | Short tweets | 494 | 867 | | Tweets kept | 2694 | 2266 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1pq5pxck/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dclblogger-loopifyyy's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/as5uacn5) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/as5uacn5/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/dclblogger-loopifyyy') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
aliosm/sha3bor-rhyme-detector-arabertv2-base
444485e24d8dd5277070181d1ebcbe2ce21101d3
2022-05-28T09:33:47.000Z
[ "pytorch", "bert", "text-classification", "ar", "transformers", "license:mit" ]
text-classification
false
aliosm
null
aliosm/sha3bor-rhyme-detector-arabertv2-base
6
null
transformers
15,674
--- language: ar license: mit widget: - text: "إن العيون التي في طرفها حور [شطر] قتلننا ثم لم يحيين قتلانا" - text: "إذا ما فعلت الخير ضوعف شرهم [شطر] وكل إناء بالذي فيه ينضح" - text: "واحر قلباه ممن قلبه شبم [شطر] ومن بجسمي وحالي عنده سقم" ---
PSW/cnndm_0.1percent_randomsimins_seed42
a4d7d40fcba428d1e6ccc9b76b317f7b318a973b
2022-05-16T03:24:35.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/cnndm_0.1percent_randomsimins_seed42
6
null
transformers
15,675
Entry not found
fancyerii/bert-finetuned-ner
c6a72c920350181f1d7d08408c545a8d9e19923b
2022-05-16T05:35:53.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
fancyerii
null
fancyerii/bert-finetuned-ner
6
null
transformers
15,676
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9387755102040817 - name: Recall type: recall value: 0.9522046449007069 - name: F1 type: f1 value: 0.9454423928481912 - name: Accuracy type: accuracy value: 0.9869606169423677 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0592 - Precision: 0.9388 - Recall: 0.9522 - F1: 0.9454 - Accuracy: 0.9870 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0857 | 1.0 | 1756 | 0.0635 | 0.9121 | 0.9359 | 0.9238 | 0.9830 | | 0.0318 | 2.0 | 3512 | 0.0586 | 0.9245 | 0.9465 | 0.9354 | 0.9857 | | 0.0222 | 3.0 | 5268 | 0.0592 | 0.9388 | 0.9522 | 0.9454 | 0.9870 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2+cu113 - Datasets 1.18.3 - Tokenizers 0.11.6
huggingtweets/whoisaddison
1080e0d6287b3f04d5b6178c423f9b1c946ac57a
2022-05-16T23:21:55.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/whoisaddison
6
null
transformers
15,677
--- language: en thumbnail: http://www.huggingtweets.com/whoisaddison/1652743310695/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1506656357658812421/_MY3c0Ua_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Addison Rae</div> <div style="text-align: center; font-size: 14px;">@whoisaddison</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Addison Rae. | Data | Addison Rae | | --- | --- | | Tweets downloaded | 3204 | | Retweets | 459 | | Short tweets | 956 | | Tweets kept | 1789 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2qyvvw3o/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @whoisaddison's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/zojwhval) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/zojwhval/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/whoisaddison') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Datasaur/distilbert-base-uncased-finetuned-ag-news
0e86bbf1460575413714140816dfb0aaa56f711f
2022-07-29T16:36:20.000Z
[ "pytorch", "distilbert", "text-classification", "en", "dataset:ag-news", "transformers", "license:apache-2.0" ]
text-classification
false
Datasaur
null
Datasaur/distilbert-base-uncased-finetuned-ag-news
6
null
transformers
15,678
--- language: en license: apache-2.0 datasets: - ag-news ---
CEBaB/lstm.CEBaB.absa.exclusive.seed_42
c81b778b43b166f927172d18f525146b002c08d6
2022-05-17T20:08:15.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
CEBaB
null
CEBaB/lstm.CEBaB.absa.exclusive.seed_42
6
null
transformers
15,679
Entry not found
adalbertojunior/rpt
be6e4e1f0703dfe54e0c72436b0238949d48a451
2022-05-18T14:05:51.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
adalbertojunior
null
adalbertojunior/rpt
6
null
transformers
15,680
Entry not found
nqcccccc/phobert-textclassification
ae9325e706b14d47c16001f015e2d702dc268a99
2022-05-18T06:50:15.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
nqcccccc
null
nqcccccc/phobert-textclassification
6
null
transformers
15,681
Entry not found
aakorolyova/outcome_similarity
c4040d2a2f33cab84c760ac313dbe268e659a09e
2022-05-22T15:50:25.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
aakorolyova
null
aakorolyova/outcome_similarity
6
null
transformers
15,682
<h1>Model description</h1> This is a fine-tuned BioBERT model for text pair classification, namely for identifying pairs of clinical trial outcomes' mentions that refeer to the same outcome (e.g. "overall survival in patients with oesophageal squamous cell carcinoma and PD-L1 combined positive score (CPS) of 10 or more" and "overall survival" can be considered to refer to the same outcome, while "overall survival" and "progression-free survival" refer to different outcomes). This is the second version of the model; the original model development was reported in: Anna Koroleva, Patrick Paroubek. Measuring semantic similarity of clinical trial outcomes using deep pre-trained language representations. Journal of Biomedical Informatics – X, 2019 https://www.sciencedirect.com/science/article/pii/S2590177X19300575 The original work was conducted within the scope of the Assisted authoring for avoiding inadequate claims in scientific reporting PhD project of the Methods for Research on Research (MiRoR, http://miror-ejd.eu/) program. Model creator: Anna Koroleva <h1>Intended uses & limitations</h1> The model was originally intended to be used as a part of spin (unjustified presentation of trial results) detection pipeline in articles reporting Randomised controlled trials (see Anna Koroleva, Sanjay Kamath, Patrick MM Bossuyt, Patrick Paroubek. DeSpin: a prototype system for detecting spin in biomedical publications. Proceedings of the 19th SIGBioMed Workshop on Biomedical Language Processing. https://aclanthology.org/2020.bionlp-1.5/). It can be used for any task requiring identification of pairs of outcome mentions referring to the same outcome. The main limitation is that the model was trained on a fairly small sample of data annotated by a single annotator. Annotating more data or involvig more annotators was not possiblw within the PhD project. <h1>How to use</h1> The model should be used with the BioBERT tokeniser. A sample code for getting model predictions is below: ``` from transformers import AutoTokenizer from transformers import AutoModelForTokenClassification from transformers import AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained('dmis-lab/biobert-v1.1') model = AutoModelForSequenceClassification.from_pretrained(r'aakorolyova/outcome_similarity') out1 = 'overall survival' out2 = 'overall survival in patients with oesophageal squamous cell carcinoma and PD-L1 combined positive score (CPS) of 10 or more' tokenized_input = tokenizer(out1, out2, padding="max_length", truncation=True, return_tensors='pt') output = model_similarity(**tokenized_input)['logits'] output = np.argmax(output.detach().numpy(), axis=1) print(output) ``` Some more useful functions can be found in or Github repository: https://github.com/aakorolyova/DeSpin-2.0 <h1>Training data</h1> Training data can be found in https://github.com/aakorolyova/DeSpin-2.0/tree/main/data/Outcome_similarity <h1>Training procedure</h1> The model was fine-tuned using Huggingface Trainer API. Training scripts can be found in https://github.com/aakorolyova/DeSpin-2.0 <h1>Evaluation</h1> Precision: 86.67% Recall: 92.86% F1: 89.66%
Jeevesh8/512seq_len_6ep_bert_ft_cola-71
361d5df3d7ea826d644f90df1de2b9f71aa8c1e6
2022-05-18T18:55:01.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/512seq_len_6ep_bert_ft_cola-71
6
null
transformers
15,683
Entry not found
Jeevesh8/512seq_len_6ep_bert_ft_cola-75
5ccff53798827acd151b24702f985880ea041e65
2022-05-18T19:02:15.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/512seq_len_6ep_bert_ft_cola-75
6
null
transformers
15,684
Entry not found
charsiu/g2p_multilingual_byT5_tiny_12_layers
94b9bb017a9683bae47050850c39f740f386e9f2
2022-05-19T05:03:07.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
charsiu
null
charsiu/g2p_multilingual_byT5_tiny_12_layers
6
null
transformers
15,685
Entry not found
84rry/84rry-xlsr-53-arabic
e338b0a5cb21c932b987beccbf3a6f361a23e365
2022-05-19T16:53:41.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
84rry
null
84rry/84rry-xlsr-53-arabic
6
null
transformers
15,686
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: 84rry-xlsr-53-arabic results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 84rry-xlsr-53-arabic This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.0025 - Wer: 0.4977 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.4906 | 2.25 | 500 | 1.3179 | 0.8390 | | 0.8851 | 4.5 | 1000 | 0.7385 | 0.6221 | | 0.6884 | 6.76 | 1500 | 0.7005 | 0.5765 | | 0.5525 | 9.01 | 2000 | 0.6931 | 0.5610 | | 0.474 | 11.26 | 2500 | 0.7977 | 0.5560 | | 0.3976 | 13.51 | 3000 | 0.7750 | 0.5375 | | 0.343 | 15.76 | 3500 | 0.7553 | 0.5206 | | 0.2838 | 18.02 | 4000 | 0.8162 | 0.5099 | | 0.2369 | 20.27 | 4500 | 0.8574 | 0.5124 | | 0.2298 | 22.52 | 5000 | 0.8848 | 0.5057 | | 0.1727 | 24.77 | 5500 | 0.9193 | 0.5070 | | 0.1675 | 27.03 | 6000 | 0.9959 | 0.4988 | | 0.1457 | 29.28 | 6500 | 1.0025 | 0.4977 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
d4riushbahrami/distilbert-base-uncased-finetuned-emotion
e2991eab772990989c9b9d972b03636473f118d7
2022-05-19T20:45:02.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers" ]
text-classification
false
d4riushbahrami
null
d4riushbahrami/distilbert-base-uncased-finetuned-emotion
6
null
transformers
15,687
Entry not found
mateocolina/bert-finetuned-ner
025ea24470606b7d48591a304a0a7143c88e0d0f
2022-05-30T17:44:41.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
mateocolina
null
mateocolina/bert-finetuned-ner
6
null
transformers
15,688
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9348582794629537 - name: Recall type: recall value: 0.9491753618310333 - name: F1 type: f1 value: 0.9419624217118998 - name: Accuracy type: accuracy value: 0.9854889032789781 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0619 - Precision: 0.9349 - Recall: 0.9492 - F1: 0.9420 - Accuracy: 0.9855 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.088 | 1.0 | 1756 | 0.0654 | 0.9144 | 0.9403 | 0.9271 | 0.9831 | | 0.0395 | 2.0 | 3512 | 0.0605 | 0.9274 | 0.9482 | 0.9377 | 0.9851 | | 0.0213 | 3.0 | 5268 | 0.0619 | 0.9349 | 0.9492 | 0.9420 | 0.9855 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
aware-ai/wav2vec2-base-german
8b1cd7b5ca65314d057da8e51234f8b713026ca2
2022-05-30T05:45:45.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "de", "transformers", "mozilla-foundation/common_voice_9_0", "generated_from_trainer", "model-index" ]
automatic-speech-recognition
false
aware-ai
null
aware-ai/wav2vec2-base-german
6
null
transformers
15,689
--- language: - de tags: - automatic-speech-recognition - mozilla-foundation/common_voice_9_0 - generated_from_trainer model-index: - name: wav2vec2-base-german results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-german This model is a fine-tuned version of [wav2vec2-base-german](https://huggingface.co/wav2vec2-base-german) on the MOZILLA-FOUNDATION/COMMON_VOICE_9_0 - DE dataset. It achieves the following results on the evaluation set: - Loss: 0.3190 - Wer: 0.2659 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 64 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 1024 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.3527 | 1.0 | 887 | 0.3176 | 0.2658 | ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0 - Datasets 2.2.0 - Tokenizers 0.12.1
connectivity/feather_berts_25
d856aeebfb533744881f546ed311a9ea99c8c3d6
2022-05-21T14:28:17.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
connectivity
null
connectivity/feather_berts_25
6
null
transformers
15,690
Entry not found
connectivity/feather_berts_32
6fd8c4ff80058cd5689dfc6aba681483aa0f0e4a
2022-05-21T14:28:29.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
connectivity
null
connectivity/feather_berts_32
6
null
transformers
15,691
Entry not found
connectivity/feather_berts_40
9abd9d988d7e9b761c73359a27075582459599a1
2022-05-21T14:28:45.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
connectivity
null
connectivity/feather_berts_40
6
null
transformers
15,692
Entry not found
connectivity/feather_berts_43
74281c7b48b0dcb5bec05d056b276e55093fe76a
2022-05-21T14:28:52.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
connectivity
null
connectivity/feather_berts_43
6
null
transformers
15,693
Entry not found
connectivity/feather_berts_87
32481e81a97014a8270aad3838f50e7b7fdd076b
2022-05-21T14:30:39.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
connectivity
null
connectivity/feather_berts_87
6
null
transformers
15,694
Entry not found
connectivity/bert_ft_qqp-5
819f3390f8ec71288314500645eabbb5dd1b43fb
2022-05-21T16:31:21.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
connectivity
null
connectivity/bert_ft_qqp-5
6
null
transformers
15,695
Entry not found
connectivity/bert_ft_qqp-9
976f3f5993a09ea8bed5f4e001827e4e595f941f
2022-05-21T16:31:39.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
connectivity
null
connectivity/bert_ft_qqp-9
6
null
transformers
15,696
Entry not found
connectivity/cola_6ep_ft-38
965ed15415a5c08195f240296d2c6c81f409417c
2022-05-21T16:43:54.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
connectivity
null
connectivity/cola_6ep_ft-38
6
null
transformers
15,697
Entry not found
sanjay-m1/grammar-corrector
bb3fb962e4384f78e3ab70305bf3870718a21b59
2022-05-22T09:49:54.000Z
[ "pytorch", "tf", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
sanjay-m1
null
sanjay-m1/grammar-corrector
6
null
transformers
15,698
## Model description T5 model trained for Grammar Correction. This model corrects grammatical mistakes in input sentences ### Dataset Description The T5-base model has been trained on C4_200M dataset. ### Model in Action 🚀 ``` import torch from transformers import T5Tokenizer, T5ForConditionalGeneration model_name = 'deep-learning-analytics/GrammarCorrector' torch_device = 'cuda' if torch.cuda.is_available() else 'cpu' tokenizer = T5Tokenizer.from_pretrained(model_name) model = T5ForConditionalGeneration.from_pretrained(model_name).to(torch_device) def correct_grammar(input_text,num_return_sequences): batch = tokenizer([input_text],truncation=True,padding='max_length',max_length=64, return_tensors="pt").to(torch_device) translated = model.generate(**batch,max_length=64,num_beams=num_beams, num_return_sequences=num_return_sequences, temperature=1.5) tgt_text = tokenizer.batch_decode(translated, skip_special_tokens=True) return tgt_text ``` ### Example Usage ``` text = 'He are moving here.' print(correct_grammar(text, num_return_sequences=2)) ['He is moving here.', 'He is moving here now.'] ``` Another example ``` text = 'Cat drinked milk' print(correct_grammar(text, num_return_sequences=2)) ['Cat drank milk.', 'Cat drink milk.'] ``` Model Developed by [Priya-Dwivedi](https://www.linkedin.com/in/priyanka-dwivedi-6864362)
viviastaari/finetuning-sentiment-analysis-en-id
7f2e6727c23238d5b8eb513ebc32e45af87ff735
2022-05-23T02:35:55.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
viviastaari
null
viviastaari/finetuning-sentiment-analysis-en-id
6
null
transformers
15,699
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: finetuning-sentiment-analysis-en-id results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-analysis-en-id This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1654 - Accuracy: 0.9527 - F1: 0.9646 - Precision: 0.9641 - Recall: 0.9652 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.4566 | 1.0 | 1602 | 0.3666 | 0.8473 | 0.8909 | 0.8530 | 0.9323 | | 0.3458 | 2.0 | 3204 | 0.2193 | 0.9238 | 0.9432 | 0.9410 | 0.9454 | | 0.2362 | 3.0 | 4806 | 0.1654 | 0.9527 | 0.9646 | 0.9641 | 0.9652 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1