modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
list
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
Jeevesh8/bert_ft_qqp-67
29b5b9da2ba50f1e8c8e19ee719caeab86b097e7
2022-05-09T12:21:25.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-67
8
null
transformers
13,400
Entry not found
Jeevesh8/bert_ft_qqp-68
ea801cdbef20e344a83bb2638651cca3c8883e6e
2022-05-09T12:23:56.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-68
8
null
transformers
13,401
Entry not found
Jeevesh8/bert_ft_qqp-69
c6cfa483596fe692f6f684a49ba5665bb55eb760
2022-05-09T12:26:26.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-69
8
null
transformers
13,402
Entry not found
Jeevesh8/bert_ft_qqp-70
e40599a4ef7dd7717d55800f2aa9f2f8952a9a15
2022-05-09T12:29:01.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-70
8
null
transformers
13,403
Entry not found
Jeevesh8/bert_ft_qqp-71
a9452ba852eff815697ec7c78bdf33b3c7443021
2022-05-09T12:31:35.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-71
8
null
transformers
13,404
Entry not found
Jeevesh8/bert_ft_qqp-72
fd73c63063aab96a06e17900bdb5e7e24e7e23fb
2022-05-09T12:34:11.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-72
8
null
transformers
13,405
Entry not found
Jeevesh8/bert_ft_qqp-73
31b3ea1346e73db0684603aa3380772f301d3991
2022-05-09T12:36:44.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-73
8
null
transformers
13,406
Entry not found
Jeevesh8/bert_ft_qqp-74
51faa9fe5fbcd5ad65e361e72c17cf0aa325efed
2022-05-09T12:39:25.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-74
8
null
transformers
13,407
Entry not found
Jeevesh8/bert_ft_qqp-75
52f798447356c2fe222d88e0c7f9a23a10871440
2022-05-09T12:41:59.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-75
8
null
transformers
13,408
Entry not found
Jeevesh8/bert_ft_qqp-77
e626bba19ec8eb76162cc4c48554819303ffc257
2022-05-09T12:47:10.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-77
8
null
transformers
13,409
Entry not found
Jeevesh8/bert_ft_qqp-78
211c088303d2ddf7116177f3d32c793e69c2a64c
2022-05-09T12:49:47.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-78
8
null
transformers
13,410
Entry not found
Jeevesh8/bert_ft_qqp-79
beaabf75a3d843d3e0aa550f6ff28f51b8056a4f
2022-05-09T12:52:23.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-79
8
null
transformers
13,411
Entry not found
Jeevesh8/bert_ft_qqp-80
53beaa56f7bb1fbca41b882ad5c92c2746334a90
2022-05-09T12:54:57.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-80
8
null
transformers
13,412
Entry not found
Jeevesh8/bert_ft_qqp-81
8ae053d6f7891efa52b9d1495fc9660be3be4ae8
2022-05-09T12:57:30.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-81
8
null
transformers
13,413
Entry not found
Jeevesh8/bert_ft_qqp-82
14f87f86fbf9cacebb71b6617553048350f8fff9
2022-05-09T13:00:04.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-82
8
null
transformers
13,414
Entry not found
Jeevesh8/bert_ft_qqp-84
0db21e468244121343d614222e273e02c6c26f8c
2022-05-09T13:05:12.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-84
8
null
transformers
13,415
Entry not found
Jeevesh8/bert_ft_qqp-85
f22f7c696198eb54f231a3658b9d49eac348cbdd
2022-05-09T13:07:44.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-85
8
null
transformers
13,416
Entry not found
Jeevesh8/bert_ft_qqp-87
d0516e2f71fef48bc9fa33fe1fe7a718b3c4035b
2022-05-09T13:12:48.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-87
8
null
transformers
13,417
Entry not found
Jeevesh8/bert_ft_qqp-88
f64a81c42aa5d45aadecf4b699fbf5a5b3a38487
2022-05-09T13:15:20.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-88
8
null
transformers
13,418
Entry not found
Jeevesh8/bert_ft_qqp-89
d99247f37677c5603f523c18a50bbf991d38e8e9
2022-05-09T13:17:55.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-89
8
null
transformers
13,419
Entry not found
Jeevesh8/bert_ft_qqp-90
62a7735ab1a255c4cedd630700ac3d2640cddd40
2022-05-09T13:20:28.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-90
8
null
transformers
13,420
Entry not found
Jeevesh8/bert_ft_qqp-91
b37b1853de735a0c7a9c88e3c6f05269e721e1fe
2022-05-09T13:22:59.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-91
8
null
transformers
13,421
Entry not found
Jeevesh8/bert_ft_qqp-92
4660394cec78461b551822615881290dc63f45a0
2022-05-09T13:25:31.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-92
8
null
transformers
13,422
Entry not found
Jeevesh8/bert_ft_qqp-93
1121e55fce9a3a7467777364bd3713056dabcf29
2022-05-09T13:28:05.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-93
8
null
transformers
13,423
Entry not found
Jeevesh8/bert_ft_qqp-94
6b26e4fa2d72f9a96c5c4311670729adfad6afc2
2022-05-09T13:30:41.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-94
8
null
transformers
13,424
Entry not found
Jeevesh8/bert_ft_qqp-95
e12a0ad5d00bc66cad9c20b742e7c997b25f5ffb
2022-05-09T13:33:16.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-95
8
null
transformers
13,425
Entry not found
Jeevesh8/bert_ft_qqp-96
d1268808d2d1e1103df6f471b051572ffbbc668e
2022-05-09T13:35:45.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-96
8
null
transformers
13,426
Entry not found
Jeevesh8/bert_ft_qqp-98
2414c7f8926b61222a6d1ba0f0f0116f9c217a18
2022-05-09T13:40:55.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-98
8
null
transformers
13,427
Entry not found
Nakul24/RoBERTa-Goemotions-6
145bc199c418598a0a474a4dd613569af0ac556d
2022-05-10T00:18:06.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
Nakul24
null
Nakul24/RoBERTa-Goemotions-6
8
1
transformers
13,428
Entry not found
akozlo/con_gpt_med
b8ea2c46df1bdc255908f9fd046c5959b13a0534
2022-05-10T12:52:01.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "generated_from_trainer", "model-index" ]
text-generation
false
akozlo
null
akozlo/con_gpt_med
8
null
transformers
13,429
--- tags: - generated_from_trainer model-index: - name: con_gpt_med_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # con_gpt_med_model This model is a fine-tuned version of [gpt2-medium](https://huggingface.co/gpt2-medium) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6 hello
aakorolyova/primary_outcome_extraction
3ac285a05fac48e493543bef239da2e59775a68f
2022-05-25T19:31:14.000Z
[ "pytorch", "tf", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
aakorolyova
null
aakorolyova/primary_outcome_extraction
8
null
transformers
13,430
<h1>Model description</h1> This is a fine-tuned BioBERT model for extracting primary outcomes from articles reporting clinical trials. This is the second version of the model; the original model development was reported in: Anna Koroleva, Sanjay Kamath, Patrick Paroubek. Extracting primary and reported outcomes from articles reporting randomized controlled trials using pre-trained deep language representations. Preprint: https://easychair.org/publications/preprint/qpml The original work was conducted within the scope of the Assisted authoring for avoiding inadequate claims in scientific reporting PhD project of the Methods for Research on Research (MiRoR, http://miror-ejd.eu/) program. Model creator: Anna Koroleva <h1>Intended uses & limitations</h1> The model is intended to be used for extracting primary outcomes from texts of clinical trials. The main limitation is that the model was trained on a fairly small (2000 sentences) sample of data annotated by a single annotator. Annotating more data or involvig more annotators was not possiblw within the PhD project. Another possible issue with the model use if the complex nature of outcomes: a typical description of an outcome can include the outcome name, measurement tool, timepoints, e.g. "Health-Related Quality of Life at 12 months, measured using the Assessment of Quality of Life instrument". Ideally, this should be broken into 3 separate entities ("Health-Related Quality of Life" - outcome", "at 12 months" - timepoint", "the Assessment of Quality of Life instrument" - measurement tool), and relation between the three should be extracted to capture all the outcome-related information. However, in our annotation we annotated this type of examples as a sinale outcome entity. <h1>How to use</h1> The model should be used with the BioBERT tokeniser. A sample code for getting model predictions is below: ``` import numpy as np from transformers import AutoTokenizer from transformers import AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained('dmis-lab/biobert-v1.1') model = AutoModelForTokenClassification.from_pretrained(r'aakorolyova/primary_outcome_extraction') text = 'Primary endpoints were overall survival in patients with oesophageal squamous cell carcinoma and PD-L1 combined positive score (CPS) of 10 or more, and overall survival and progression-free survival in patients with oesophageal squamous cell carcinoma, PD-L1 CPS of 10 or more, and in all randomised patients.' encoded_input = tokenizer(text, padding=True, truncation=True, max_length=2000, return_tensors='pt') output = model(**encoded_input)['logits'] output = np.argmax(output.detach().numpy(), axis=2) print(output) ``` Some more useful functions can be found in or Github repository: https://github.com/aakorolyova/DeSpin-2.0 <h1>Training data</h1> Training data can be found in https://github.com/aakorolyova/DeSpin-2.0/tree/main/data/Primary_Outcomes <h1>Training procedure</h1> The model was fine-tuned using Huggingface Trainer API. Training scripts can be found in https://github.com/aakorolyova/DeSpin-2.0 <h1>Evaluation</h1> Precision: 74.41% Recall: 88.7% F1: 80.93%
ruselkomp/sber-full-framebank
4d1afd8a15cb001f8a3d635eb209eaea249a7fe0
2022-05-12T21:32:41.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
ruselkomp
null
ruselkomp/sber-full-framebank
8
null
transformers
13,431
--- tags: - generated_from_trainer model-index: - name: tests-finetuned-squad-full results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tests-finetuned-squad-full This model is a fine-tuned version of [sberbank-ai/sbert_large_nlu_ru](https://huggingface.co/sberbank-ai/sbert_large_nlu_ru) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5672 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.0601 | 1.0 | 11307 | 1.0849 | | 0.6918 | 2.0 | 22614 | 1.1588 | | 0.4071 | 3.0 | 33921 | 1.5672 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.2.2.dev0 - Tokenizers 0.12.1
enoriega/kw_pubmed_1000_0.0003
3c6df44aacd8e5a587f786f2aabf0790332f6b48
2022-05-10T20:10:43.000Z
[ "pytorch", "bert", "fill-mask", "dataset:keyword_pubmed_dataset", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
fill-mask
false
enoriega
null
enoriega/kw_pubmed_1000_0.0003
8
null
transformers
13,432
--- license: mit tags: - generated_from_trainer datasets: - keyword_pubmed_dataset metrics: - accuracy model-index: - name: kw_pubmed_1000_0.0003 results: - task: name: Masked Language Modeling type: fill-mask dataset: name: keyword_pubmed_dataset type: keyword_pubmed_dataset args: sentence metrics: - name: Accuracy type: accuracy value: 0.33938523162661094 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # kw_pubmed_1000_0.0003 This model is a fine-tuned version of [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) on the keyword_pubmed_dataset dataset. It achieves the following results on the evaluation set: - Loss: 4.7086 - Accuracy: 0.3394 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 250 - total_train_batch_size: 8000 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.09 | 4 | 4.3723 | 0.3436 | | 6.0386 | 0.17 | 8 | 4.2113 | 0.3442 | | 3.7573 | 0.26 | 12 | 4.2079 | 0.3634 | | 2.9944 | 0.35 | 16 | 4.3370 | 0.3513 | | 2.7048 | 0.44 | 20 | 4.8594 | 0.3067 | | 2.7048 | 0.52 | 24 | 4.4929 | 0.3383 | | 2.9458 | 0.61 | 28 | 4.5146 | 0.3408 | | 2.3783 | 0.7 | 32 | 4.5680 | 0.3430 | | 2.2485 | 0.78 | 36 | 4.5095 | 0.3477 | | 2.1701 | 0.87 | 40 | 4.4971 | 0.3449 | | 2.1701 | 0.96 | 44 | 4.7051 | 0.3321 | | 2.0861 | 1.07 | 48 | 4.7615 | 0.3310 | | 2.4168 | 1.15 | 52 | 4.7086 | 0.3394 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
dragonSwing/xlm-roberta-capu
0a50bebf0113b2552df5a5513a7ec4fdf5c826d5
2022-05-17T15:03:20.000Z
[ "pytorch", "bert", "vi", "dataset:oscar-corpus/OSCAR-2109", "transformers", "capitalization", "punctuation", "token-classification", "license:cc-by-sa-4.0" ]
token-classification
false
dragonSwing
null
dragonSwing/xlm-roberta-capu
8
null
transformers
13,433
--- language: - vi tags: - capitalization - punctuation - token-classification license: cc-by-sa-4.0 datasets: - oscar-corpus/OSCAR-2109 metrics: - accuracy - precision - recall - f1 --- # ✨ xlm-roberta-capitalization-punctuation This a [XLM-RoBERTa](https://huggingface.co/xlm-roberta-base) model finetuned for Vietnamese punctuation restoration on the [OSCAR-2109](https://huggingface.co/datasets/oscar-corpus/OSCAR-2109) dataset. The model predicts the punctuation and upper-casing of plain, lower-cased text. An example use case can be ASR output. Or other cases when text has lost punctuation. This model is intended for direct use as a punctuation restoration model for the general Vietnamese language. Alternatively, you can use this for further fine-tuning on domain-specific texts for punctuation restoration tasks. Model restores the following punctuations -- **[. , : ? ]** The model also restores the complex upper-casing of words like *YouTube*, *MobiFone*. ----------------------------------------------- ## 🚋 Usage **Below is a quick way to get up and running with the model.** 1. Download files from hub ```python import os import shutil import sys from huggingface_hub import snapshot_download cache_dir = "./capu" def download_files(repo_id, cache_dir=None, ignore_regex=None): download_dir = snapshot_download(repo_id=repo_id, cache_dir=cache_dir, ignore_regex=ignore_regex) if cache_dir is None or download_dir == cache_dir: return download_dir file_names = os.listdir(download_dir) for file_name in file_names: shutil.move(os.path.join(download_dir, file_name), cache_dir) os.rmdir(download_dir) return cache_dir cache_dir = download_files(repo_id="dragonSwing/xlm-roberta-capu", cache_dir=cache_dir, ignore_regex=["*.json", "*.bin"]) sys.path.append(cache_dir) ``` 2. Sample python code ```python import os from gec_model import GecBERTModel model = GecBERTModel( vocab_path=os.path.join(cache_dir, "vocabulary"), model_paths="dragonSwing/xlm-roberta-capu", split_chunk=True ) model("theo đó thủ tướng dự kiến tiếp bộ trưởng nông nghiệp mỹ tom wilsack bộ trưởng thương mại mỹ gina raimondo bộ trưởng tài chính janet yellen gặp gỡ thượng nghị sĩ patrick leahy và một số nghị sĩ mỹ khác") # Always return list of outputs. # ['Theo đó, Thủ tướng dự kiến tiếp Bộ trưởng Nông nghiệp Mỹ Tom Wilsack, Bộ trưởng Thương mại Mỹ Gina Raimondo, Bộ trưởng Tài chính Janet Yellen, gặp gỡ Thượng nghị sĩ Patrick Leahy và một số nghị sĩ Mỹ khác.'] model("những gói cước năm g mobifone sẽ mang đến cho bạn những trải nghiệm mới lạ trên cả tuyệt vời so với mạng bốn g thì tốc độ truy cập mạng 5 g mobifone được nhận định là siêu đỉnh với mức truy cập nhanh gấp 10 lần") # ['Những gói cước 5G MobiFone sẽ mang đến cho bạn những trải nghiệm mới lạ trên cả tuyệt vời. So với mạng 4G thì tốc độ truy cập mạng 5G MobiFone được Nhận định là siêu đỉnh với mức truy cập nhanh gấp 10 lần.'] ``` **This model can work on arbitrarily large text in Vietnamese language.** ----------------------------------------------- ## 📡 Training data Here is the number of product reviews we used for fine-tuning the model: | Language | Number of text samples | | --- | --- | | Vietnamese | 5,600,000 | ----------------------------------------------- ## 🎯 Accuracy Below is a breakdown of the performance of the model by each label on 10,000 held-out text samples: | label | precision | recall | f1-score | support | | --- | --- | --- | --- | --- | | **Upper** | 0.89 | 0.90 | 0.89 | 56497 | | **Complex-Upper** | 0.93 | 0.83 | 0.88 | 480 | | **.** | 0.81 | 0.84 | 0.82 | 18139 | | **,** | 0.69 | 0.75 | 0.72 | 22961 | | **:** | 0.76 | 0.60 | 0.67 | 1432 | | **?** | 0.82 | 0.75 | 0.78 | 1730 | | **none** | 0.99 | 0.99 | 0.99 |475611 | -----------------------------------------------
bookbot/wav2vec2-xls-r-adult-child-id-cls
f13a285b291c7f82a7ab4fc6ac2666557234fc3c
2022-05-12T12:37:20.000Z
[ "pytorch", "tensorboard", "wav2vec2", "audio-classification", "id", "arxiv:2111.09296", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
audio-classification
false
bookbot
null
bookbot/wav2vec2-xls-r-adult-child-id-cls
8
null
transformers
13,434
--- language: id license: apache-2.0 tags: - audio-classification - generated_from_trainer metrics: - accuracy - f1 model-index: - name: wav2vec2-xls-r-adult-child-id-cls results: [] --- # Wav2Vec2 XLS-R Adult/Child Indonesian Speech Classifier Wav2Vec2 XLS-R Adult/Child Indonesian Speech Classifier is an audio classification model based on the [XLS-R](https://arxiv.org/abs/2111.09296) architecture. This model is a fine-tuned version of [wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on a private adult/child Indonesian speech classification dataset. This model was trained using HuggingFace's PyTorch framework. All training was done on a Tesla P100, provided by Kaggle. Training metrics were logged via Tensorboard. ## Model | Model | #params | Arch. | Training/Validation data (text) | | ----------------------------------- | ------- | ----- | ---------------------------------------------------- | | `wav2vec2-xls-r-adult-child-id-cls` | 300M | XLS-R | Adult/Child Indonesian Speech Classification Dataset | ## Evaluation Results The model achieves the following results on evaluation: | Dataset | Loss | Accuracy | F1 | | -------------------------------------------- | ------ | -------- | ------ | | Adult/Child Indonesian Speech Classification | 0.1970 | 93.38% | 0.9307 | ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - `learning_rate`: 3e-05 - `train_batch_size`: 8 - `eval_batch_size`: 8 - `seed`: 42 - `gradient_accumulation_steps`: 4 - `total_train_batch_size`: 32 - `optimizer`: Adam with `betas=(0.9,0.999)` and `epsilon=1e-08` - `lr_scheduler_type`: linear - `lr_scheduler_warmup_ratio`: 0.1 - `num_epochs`: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | | :-----------: | :---: | :--: | :-------------: | :------: | :----: | | 0.336 | 1.0 | 305 | 0.3146 | 0.8845 | 0.8698 | | 0.2345 | 2.0 | 610 | 0.2140 | 0.9251 | 0.9202 | | 0.3215 | 3.0 | 915 | 0.2038 | 0.9315 | 0.9286 | | 0.2059 | 4.0 | 1220 | 0.1970 | 0.9338 | 0.9307 | ## Disclaimer Do consider the biases which came from pre-training datasets that may be carried over into the results of this model. ## Authors Wav2Vec2 XLS-R Adult/Child Indonesian Speech Classifier was trained and evaluated by [Ananto Joyoadikusumo](https://anantoj.github.io/). All computation and development are done on Kaggle. ## Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu102 - Datasets 2.2.0 - Tokenizers 0.12.1
guhuawuli/gpt2-poem_key_words
6376e83df01e15831699662ea039dfdf240b949c
2022-05-12T06:28:26.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-generation
false
guhuawuli
null
guhuawuli/gpt2-poem_key_words
8
null
transformers
13,435
--- license: mit tags: - generated_from_trainer model-index: - name: gpt2-poem_key_words results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-poem_key_words This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.5370 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.9544 | 1.0 | 670 | 2.6296 | | 2.7014 | 2.0 | 1340 | 2.5557 | | 2.6035 | 3.0 | 2010 | 2.5370 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0a0+3fd9dcf - Datasets 2.1.0 - Tokenizers 0.12.1
ahujaniharika95/distilbert-base-uncased-finetuned-squad
d2155f4e60abeca9807ac3749fb2e8268b72614e
2022-06-17T09:25:22.000Z
[ "pytorch", "distilbert", "question-answering", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
ahujaniharika95
null
ahujaniharika95/distilbert-base-uncased-finetuned-squad
8
null
transformers
13,436
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0 - Datasets 2.2.1 - Tokenizers 0.12.1
zhiguoxu/chinese-roberta-wwm-ext-finetuned-token-clasify
088ddbe516da0270abbcbdce3acd745bb5b605c5
2022-05-13T09:43:29.000Z
[ "pytorch", "bert", "token-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
zhiguoxu
null
zhiguoxu/chinese-roberta-wwm-ext-finetuned-token-clasify
8
null
transformers
13,437
--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 model-index: - name: chinese-roberta-wwm-ext-finetuned-token-clasify results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # chinese-roberta-wwm-ext-finetuned-token-clasify This model is a fine-tuned version of [hfl/chinese-roberta-wwm-ext](https://huggingface.co/hfl/chinese-roberta-wwm-ext) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0002 - F1: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:---:| | 1.2598 | 1.0 | 2 | 0.0999 | 1.0 | | 0.0714 | 2.0 | 4 | 0.0014 | 1.0 | | 0.0029 | 3.0 | 6 | 0.0002 | 1.0 | | 0.0007 | 4.0 | 8 | 0.0002 | 1.0 | | 0.0004 | 5.0 | 10 | 0.0002 | 1.0 | | 0.0004 | 6.0 | 12 | 0.0002 | 1.0 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
luckydog/bert-base-chinese-finetuned-mosei
fed4e1d45353c3c29b37ba6f8fd269b704918668
2022-05-12T15:46:33.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
luckydog
null
luckydog/bert-base-chinese-finetuned-mosei
8
null
transformers
13,438
Entry not found
kathywu/DialoGPT-medium-kathy
ec75210e7541fe43adb11fde097d156f37a496bb
2022-05-13T00:41:24.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
kathywu
null
kathywu/DialoGPT-medium-kathy
8
null
transformers
13,439
--- tags: - conversational ---
michojan/bert-finetuned-ner
868ab62b63edd236a52304561006ade8b5046fad
2022-05-13T13:14:15.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
michojan
null
michojan/bert-finetuned-ner
8
null
transformers
13,440
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9324078664683524 - name: Recall type: recall value: 0.9495119488387749 - name: F1 type: f1 value: 0.9408821812724089 - name: Accuracy type: accuracy value: 0.9864308000235474 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0622 - Precision: 0.9324 - Recall: 0.9495 - F1: 0.9409 - Accuracy: 0.9864 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0862 | 1.0 | 1756 | 0.0649 | 0.9193 | 0.9371 | 0.9281 | 0.9831 | | 0.0406 | 2.0 | 3512 | 0.0576 | 0.9235 | 0.9472 | 0.9352 | 0.9850 | | 0.0197 | 3.0 | 5268 | 0.0622 | 0.9324 | 0.9495 | 0.9409 | 0.9864 | ### Framework versions - Transformers 4.19.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
Jeevesh8/6ep_bert_ft_cola-50
2f18f513e1530d9db18a9ca030eaf952665ceb99
2022-05-14T13:22:23.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/6ep_bert_ft_cola-50
8
null
transformers
13,441
Entry not found
tanviraumi/meeting-minute
733b0aad5357e49726935f0dc9900b27078d1ec0
2022-05-15T07:50:58.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "license:mit", "autotrain_compatible" ]
text2text-generation
false
tanviraumi
null
tanviraumi/meeting-minute
8
null
transformers
13,442
--- license: mit ---
aliosm/sha3bor-general-diacritizer-canine-c
6bc5fdfecdfe2971d01b9b027835b300d6d3f61f
2022-05-28T09:41:44.000Z
[ "pytorch", "canine", "token-classification", "ar", "transformers", "license:mit", "autotrain_compatible" ]
token-classification
false
aliosm
null
aliosm/sha3bor-general-diacritizer-canine-c
8
null
transformers
13,443
--- language: ar license: mit widget: - text: "توكلت في رزقي على الله خالقي وأيقنت أن الله لا شك رازقي." - text: "أي شخص يتوقف عن التعلم هو عجوز، سواء كان في العشرين أو الثمانين." - text: "الحياة رواية جميلة عليك قراءتها حتى النهاية، لا تتوقف أبدا عند سطر حزين قد تكون النهاية جميلة." ---
mriggs/wikisource_epoch1
e2f6e4061918670e3459478c7e58bd91e0f09ed1
2022-05-16T10:01:32.000Z
[ "pytorch", "flaubert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
mriggs
null
mriggs/wikisource_epoch1
8
null
transformers
13,444
Entry not found
YeRyeongLee/mental-bert-base-uncased-masked_finetuned-0517
e077c2b0fa6e26f9ccf9393068fffe8928d7542a
2022-05-17T08:14:26.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
YeRyeongLee
null
YeRyeongLee/mental-bert-base-uncased-masked_finetuned-0517
8
null
transformers
13,445
--- tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: mental-bert-base-uncased-masked_finetuned-0517 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mental-bert-base-uncased-masked_finetuned-0517 This model is a fine-tuned version of [mental/mental-bert-base-uncased](https://huggingface.co/mental/mental-bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5217 - Accuracy: 0.917 - F1: 0.9171 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:| | No log | 1.0 | 3000 | 0.2922 | 0.8993 | 0.8997 | | No log | 2.0 | 6000 | 0.3964 | 0.9063 | 0.9069 | | No log | 3.0 | 9000 | 0.4456 | 0.9197 | 0.9197 | | No log | 4.0 | 12000 | 0.5217 | 0.917 | 0.9171 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0 - Datasets 1.16.1 - Tokenizers 0.10.3
JoanTirant/bert-finetuned-ner-accelerate
8e7876fe0d030f5c05dd331ad1b920918560ce85
2022-05-17T10:50:50.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
JoanTirant
null
JoanTirant/bert-finetuned-ner-accelerate
8
null
transformers
13,446
Entry not found
CEBaB/lstm.CEBaB.absa.inclusive.seed_99
19d91574aa71d5bdc374299a809df771dbebc632
2022-05-18T01:00:42.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
CEBaB
null
CEBaB/lstm.CEBaB.absa.inclusive.seed_99
8
null
transformers
13,447
Entry not found
alk/pegasus-cnn_dailymail_2
30d349d5ede53ddb05d341590f760438a6ad1d90
2022-05-19T20:13:04.000Z
[ "pytorch", "tensorboard", "pegasus", "text2text-generation", "dataset:cnn_dailymail", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
alk
null
alk/pegasus-cnn_dailymail_2
8
null
transformers
13,448
--- tags: - generated_from_trainer datasets: - cnn_dailymail model-index: - name: pegasus-cnn_dailymail_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-cnn_dailymail_2 This model is a fine-tuned version of [google/pegasus-cnn_dailymail](https://huggingface.co/google/pegasus-cnn_dailymail) on the cnn_dailymail dataset. It achieves the following results on the evaluation set: - Loss: 1.4308 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.5344 | 0.6 | 500 | 1.4497 | | 1.5068 | 1.2 | 1000 | 1.4386 | | 1.4983 | 1.8 | 1500 | 1.4315 | | 1.389 | 2.39 | 2000 | 1.4308 | | 1.4246 | 2.99 | 2500 | 1.4277 | | 1.3656 | 3.59 | 3000 | 1.4308 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
PontifexMaximus/TurkishTranslator
c64789b6e638d061f3797210fb8a51754ee7a43c
2022-05-30T22:22:55.000Z
[ "pytorch", "tensorboard", "marian", "text2text-generation", "dataset:opus_infopankki", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
PontifexMaximus
null
PontifexMaximus/TurkishTranslator
8
1
transformers
13,449
--- license: apache-2.0 tags: - generated_from_trainer datasets: - opus_infopankki metrics: - bleu model-index: - name: opus-mt-tr-en-finetuned-tr-to-en results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: opus_infopankki type: opus_infopankki args: en-tr metrics: - name: Bleu type: bleu value: 54.7617 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-tr-en-finetuned-tr-to-en This model is a fine-tuned version of [Helsinki-NLP/opus-mt-tr-en](https://huggingface.co/Helsinki-NLP/opus-mt-tr-en) on the opus_infopankki dataset. It achieves the following results on the evaluation set: - Loss: 0.6924 - Bleu: 54.7617 - Gen Len: 13.5501 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-06 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 16 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | No log | 1.0 | 412 | 1.1776 | 43.3104 | 12.9297 | | 1.4032 | 2.0 | 824 | 1.0750 | 45.7912 | 12.9155 | | 1.2268 | 3.0 | 1236 | 1.0019 | 47.6255 | 12.9251 | | 1.141 | 4.0 | 1648 | 0.9411 | 49.0649 | 12.9302 | | 1.0651 | 5.0 | 2060 | 0.8929 | 50.4894 | 12.9066 | | 1.0651 | 6.0 | 2472 | 0.8519 | 51.5072 | 12.9067 | | 1.0025 | 7.0 | 2884 | 0.8180 | 52.5035 | 12.8875 | | 0.9582 | 8.0 | 3296 | 0.7893 | 51.7587 | 13.5338 | | 0.9173 | 9.0 | 3708 | 0.7655 | 52.3566 | 13.5376 | | 0.8892 | 10.0 | 4120 | 0.7449 | 53.0488 | 13.5545 | | 0.8639 | 11.0 | 4532 | 0.7285 | 53.5965 | 13.5539 | | 0.8639 | 12.0 | 4944 | 0.7152 | 53.9433 | 13.5547 | | 0.8424 | 13.0 | 5356 | 0.7053 | 54.2509 | 13.5502 | | 0.8317 | 14.0 | 5768 | 0.6981 | 54.5339 | 13.5502 | | 0.817 | 15.0 | 6180 | 0.6938 | 54.7068 | 13.5448 | | 0.8155 | 16.0 | 6592 | 0.6924 | 54.7617 | 13.5501 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.7.1+cu110 - Datasets 2.2.2 - Tokenizers 0.12.1
dyyyyyyyy/XTREME_squad_XLM-RoBERTa-large
c503692d9782c6bc061be40f60e781852091c387
2022-05-19T07:31:02.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
dyyyyyyyy
null
dyyyyyyyy/XTREME_squad_XLM-RoBERTa-large
8
null
transformers
13,450
Entry not found
nreimers/mmarco-mMiniLMv2-L12-H384-v1
565e5ab4e1b6ce919492ed0c02703c276e729057
2022-05-20T07:40:57.000Z
[ "pytorch", "xlm-roberta", "text-classification", "transformers" ]
text-classification
false
nreimers
null
nreimers/mmarco-mMiniLMv2-L12-H384-v1
8
null
transformers
13,451
Entry not found
ragarwal/deberta-v3-base-nli-mixer-binary
e019e3b9cbfa2c328a04493981091cac297795a0
2022-05-20T10:38:28.000Z
[ "pytorch", "deberta-v2", "text-classification", "transformers", "license:mit" ]
text-classification
false
ragarwal
null
ragarwal/deberta-v3-base-nli-mixer-binary
8
null
transformers
13,452
--- license: mit --- **NLI-Mixer** is an attempt to tackle the Natural Language Inference (NLI) task by mixing multiple datasets together. The approach is simple: 1. Combine all available NLI data without any domain-dependent re-balancing or re-weighting. 2. Finetune several SOTA transformers of different sizes (20m parameters to 300m parameters) on the combined data. 3. Evaluate on challenging NLI datasets. This model was trained using [SentenceTransformers](https://sbert.net) [Cross-Encoder](https://www.sbert.net/examples/applications/cross-encoder/README.html) class. It is based on [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base). ### Data 20+ NLI datasets were combined to train a binary classification model. The `contradiction` and `neutral` labels were combined to form a `non-entailment` class. ### Usage In Transformers ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch from torch.nn.functional import softmax, sigmoid device = "cuda" if torch.cuda.is_available() else "cpu" model_name="ragarwal/deberta-v3-base-nli-mixer-binary" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) sentence = "During its monthly call, the National Oceanic and Atmospheric Administration warned of \ increased temperatures and low precipitation" labels = ["Computer", "Climate Change", "Tablet", "Football", "Artificial Intelligence", "Global Warming"] features = tokenizer([[sentence, l] for l in labels], padding=True, truncation=True, return_tensors="pt") model.eval() with torch.no_grad(): scores = model(**features).logits print("Multi-Label:", sigmoid(scores)) #Multi-Label Classification print("Single-Label:", softmax(scores, dim=0)) #Single-Label Classification #Multi-Label: tensor([[0.0412],[0.2436],[0.0394],[0.0020],[0.0050],[0.1424]]) #Single-Label: tensor([[0.0742],[0.5561],[0.0709],[0.0035],[0.0087],[0.2867]]) ``` In Sentence-Transformers ```python from sentence_transformers import CrossEncoder model_name="ragarwal/deberta-v3-base-nli-mixer-binary" model = CrossEncoder(model_name, max_length=256) sentence = "During its monthly call, the National Oceanic and Atmospheric Administration warned of \ increased temperatures and low precipitation" labels = ["Computer", "Climate Change", "Tablet", "Football", "Artificial Intelligence", "Global Warming"] scores = model.predict([[sentence, l] for l in labels]) print(scores) #array([0.04118565, 0.2435827 , 0.03941465, 0.00203637, 0.00501176, 0.1423797], dtype=float32) ```
domischwimmbeck/bert-base-german-cased-20000-ner-uncased
d8c5ae4b1858aa7ba46589b09086df79e5f820c8
2022-05-20T13:45:45.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
domischwimmbeck
null
domischwimmbeck/bert-base-german-cased-20000-ner-uncased
8
null
transformers
13,453
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-german-cased-20000-ner-uncased results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-german-cased-20000-ner-uncased This model is a fine-tuned version of [dbmdz/bert-base-german-uncased](https://huggingface.co/dbmdz/bert-base-german-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0664 - Precision: 0.9061 - Recall: 0.8697 - F1: 0.8875 - Accuracy: 0.9838 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 0.11 | 64 | 0.1129 | 0.8012 | 0.8547 | 0.8271 | 0.9729 | | No log | 0.23 | 128 | 0.0879 | 0.7882 | 0.8426 | 0.8145 | 0.9771 | | No log | 0.34 | 192 | 0.0662 | 0.8711 | 0.8523 | 0.8616 | 0.9815 | | No log | 0.45 | 256 | 0.0627 | 0.8839 | 0.8553 | 0.8694 | 0.9820 | | No log | 0.57 | 320 | 0.0669 | 0.8677 | 0.8709 | 0.8693 | 0.9806 | | No log | 0.68 | 384 | 0.0568 | 0.8669 | 0.8685 | 0.8677 | 0.9823 | | No log | 0.79 | 448 | 0.0620 | 0.9066 | 0.8631 | 0.8843 | 0.9827 | | 0.0861 | 0.9 | 512 | 0.0603 | 0.8743 | 0.8859 | 0.8801 | 0.9829 | | 0.0861 | 1.02 | 576 | 0.0552 | 0.8983 | 0.8697 | 0.8837 | 0.9845 | | 0.0861 | 1.13 | 640 | 0.0563 | 0.9007 | 0.8823 | 0.8914 | 0.9847 | | 0.0861 | 1.24 | 704 | 0.0605 | 0.8683 | 0.8829 | 0.8755 | 0.9834 | | 0.0861 | 1.36 | 768 | 0.0547 | 0.9199 | 0.8895 | 0.9044 | 0.9857 | | 0.0861 | 1.47 | 832 | 0.0585 | 0.9159 | 0.8703 | 0.8925 | 0.9845 | | 0.0861 | 1.58 | 896 | 0.0601 | 0.8818 | 0.8871 | 0.8844 | 0.9834 | | 0.0861 | 1.7 | 960 | 0.0664 | 0.9061 | 0.8697 | 0.8875 | 0.9838 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.9.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
north/t5_large_NCC_lm
622a04c879e35d3b0ea677f4278d85627ade6bf4
2022-06-01T19:41:16.000Z
[ "pytorch", "tf", "jax", "tensorboard", "t5", "text2text-generation", "no", "nn", "sv", "dk", "is", "en", "dataset:nbailab/NCC", "dataset:mc4", "dataset:wikipedia", "arxiv:2104.09617", "arxiv:1910.10683", "transformers", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
north
null
north/t5_large_NCC_lm
8
null
transformers
13,454
--- language: - no - nn - sv - dk - is - en datasets: - nbailab/NCC - mc4 - wikipedia widget: - text: <extra_id_0> hver uke samles Regjeringens medlemmer til Statsråd på <extra_id_1>. Dette organet er øverste <extra_id_2> i Norge. For at møtet skal være <extra_id_3>, må over halvparten av regjeringens <extra_id_4> være til stede. - text: På <extra_id_0> kan man <extra_id_1> en bok, og man kan også <extra_id_2> seg ned og lese den. license: apache-2.0 --- -T5 The North-T5-models are a set of Norwegian sequence-to-sequence-models. It builds upon the flexible [T5](https://github.com/google-research/text-to-text-transfer-transformer) and [T5X](https://github.com/google-research/t5x) and can be used for a variety of NLP tasks ranging from classification to translation. | |**Small** <br />_60M_|**Base** <br />_220M_|**Large** <br />_770M_|**XL** <br />_3B_|**XXL** <br />_11B_| |:-----------|:------------:|:------------:|:------------:|:------------:|:------------:| |North-T5&#8209;NCC|[🤗](https://huggingface.co/north/t5_small_NCC)|[🤗](https://huggingface.co/north/t5_base_NCC)|[🤗](https://huggingface.co/north/t5_large_NCC)|[🤗](https://huggingface.co/north/t5_xl_NCC)|[🤗](https://huggingface.co/north/t5_xxl_NCC)|| |North-T5&#8209;NCC&#8209;lm|[🤗](https://huggingface.co/north/t5_small_NCC_lm)|[🤗](https://huggingface.co/north/t5_base_NCC_lm)|✔|[🤗](https://huggingface.co/north/t5_xl_NCC_lm)|[🤗](https://huggingface.co/north/t5_xxl_NCC_lm)|| ## T5X Checkpoint The original T5X checkpoint is also available for this model in the [Google Cloud Bucket](gs://north-t5x/pretrained_models/large/norwegian_NCC_plus_English_pluss100k_lm_t5x_large/). ## Performance A thorough evaluation of the North-T5 models is planned, and I strongly recommend external researchers to make their own evaluation. The main advantage with the T5-models are their flexibility. Traditionally, encoder-only models (like BERT) excels in classification tasks, while seq-2-seq models are easier to train for tasks like translation and Q&A. Despite this, here are the results from using North-T5 on the political classification task explained [here](https://arxiv.org/abs/2104.09617). |**Model:** | **F1** | |:-----------|:------------| |mT5-base|73.2 | |mBERT-base|78.4 | |NorBERT-base|78.2 | |North-T5-small|80.5 | |nb-bert-base|81.8 | |North-T5-base|85.3 | |North-T5-large|86.7 | |North-T5-xl|88.7 | |North-T5-xxl|91.8| These are preliminary results. The [results](https://arxiv.org/abs/2104.09617) from the BERT-models are based on the test-results from the best model after 10 runs with early stopping and a decaying learning rate. The T5-results are the average of five runs on the evaluation set. The small-model was trained for 10.000 steps, while the rest for 5.000 steps. A fixed learning rate was used (no decay), and no early stopping. Neither was the recommended rank classification used. We use a max sequence length of 512. This method simplifies the test setup and gives results that are easy to interpret. However, the results from the T5 model might actually be a bit sub-optimal. ## Sub-versions of North-T5 The following sub-versions are available. More versions will be available shorter. |**Model** | **Description** | |:-----------|:-------| |**North&#8209;T5&#8209;NCC** |This is the main version. It is trained an additonal 500.000 steps on from the mT5 checkpoint. The training corpus is based on [the Norwegian Colossal Corpus (NCC)](https://huggingface.co/datasets/NbAiLab/NCC). In addition there are added data from MC4 and English Wikipedia.| |**North&#8209;T5&#8209;NCC&#8209;lm**|The model is pretrained for an addtional 100k steps on the LM objective discussed in the [T5 paper](https://arxiv.org/pdf/1910.10683.pdf). In a way this turns a masked language model into an autoregressive model. It also prepares the model for some tasks. When for instance doing translation and NLI, it is well documented that there is a clear benefit to do a step of unsupervised LM-training before starting the finetuning.| ## Fine-tuned versions As explained below, the model really needs to be fine-tuned for specific tasks. This procedure is relatively simple, and the models are not very sensitive to the hyper-parameters used. Usually a decent result can be obtained by using a fixed learning rate of 1e-3. Smaller versions of the model typically needs to be trained for a longer time. It is easy to train the base-models in a Google Colab. Since some people really want to see what the models are capable of, without going through the training procedure, I provide a couple of test models. These models are by no means optimised, and are just for demonstrating how the North-T5 models can be used. * Nynorsk Translator. Translates any text from Norwegian Bokmål to Norwegian Nynorsk. Please test the [Streamlit-demo](https://huggingface.co/spaces/north/Nynorsk) and the [HuggingFace repo](https://huggingface.co/north/demo-nynorsk-base) * DeUnCaser. The model adds punctation, spaces and capitalisation back into the text. The input needs to be in Norwegian but does not have to be divided into sentences or have proper capitalisation of words. You can even remove the spaces from the text, and make the model reconstruct it. It can be tested with the [Streamlit-demo](https://huggingface.co/spaces/north/DeUnCaser) and directly on the [HuggingFace repo](https://huggingface.co/north/demo-deuncaser-base) ## Training details All models are built using the Flax-based T5X codebase, and all models are initiated with the mT5 pretrained weights. The models are trained using the T5.1.1 training regime, where they are only trained on an unsupervised masking-task. This also means that the models (contrary to the original T5) needs to be finetuned to solve specific tasks. This finetuning is however usually not very compute intensive, and in most cases it can be performed even with free online training resources. All the main model model versions are trained for 500.000 steps after the mT5 checkpoint (1.000.000 steps). They are trained mainly on a 75GB corpus, consisting of NCC, Common Crawl and some additional high quality English text (Wikipedia). The corpus is roughly 80% Norwegian text. Additional languages are added to retain some of the multilingual capabilities, making the model both more robust to new words/concepts and also more suited as a basis for translation tasks. While the huge models almost always will give the best results, they are also both more difficult and more expensive to finetune. I will strongly recommended to start with finetuning a base-models. The base-models can easily be finetuned on a standard graphic card or a free TPU through Google Colab. All models were trained on TPUs. The largest XXL model was trained on a TPU v4-64, the XL model on a TPU v4-32, the Large model on a TPU v4-16 and the rest on TPU v4-8. Since it is possible to reduce the batch size during fine-tuning, it is also possible to finetune on slightly smaller hardware. The rule of thumb is that you can go "one step down" when finetuning. The large models still rewuire access to significant hardware, even for finetuning. ## Formats All models are trained using the Flax-based T5X library. The original checkpoints are available in T5X format and can be used for both finetuning or interference. All models, except the XXL-model, are also converted to Transformers/HuggingFace. In this framework, the models can be loaded for finetuning or inference both in Flax, PyTorch and TensorFlow format. ## Future I will continue to train and release additional models to this set. What models that are added is dependent upon the feedbacki from the users ## Thanks This release would not have been possible without getting support and hardware from the [TPU Research Cloud](https://sites.research.google/trc/about/) at Google Research. Both the TPU Research Cloud Team and the T5X Team has provided extremely useful support for getting this running. Freddy Wetjen at the National Library of Norway has been of tremendous help in generating the original NCC corpus, and has also contributed to generate the collated coprus used for this training. In addition he has been a dicussion partner in the creation of these models. Also thanks to Stefan Schweter for writing the [script](https://github.com/huggingface/transformers/blob/main/src/transformers/models/t5/convert_t5x_checkpoint_to_flax.py) for converting these models from T5X to HuggingFace and to Javier de la Rosa for writing the dataloader for reading the HuggingFace Datasets in T5X. ## Warranty Use at your own risk. The models have not yet been thougroughly tested, and may contain both errors and biases. ## Contact/About These models were trained by Per E Kummervold. Please contact me on [email protected].
strickvl/nlp-redaction-classifier
51404dc84a73bbb56304c736ae4b16458bfd0317
2022-05-21T20:16:25.000Z
[ "pytorch", "deberta-v2", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
strickvl
null
strickvl/nlp-redaction-classifier
8
2
transformers
13,455
--- license: mit tags: - generated_from_trainer model-index: - name: nlp-redaction-classifier results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Redaction Classifier: NLP Edition This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on a custom dataset. It achieves the following results on the evaluation set: - Loss: 0.0893 - Pearson: 0.8273 ## Model description Read more about the process and the code used to train this model on my blog [here](https://mlops.systems). ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearson | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.2054 | 1.0 | 729 | 0.1382 | 0.6771 | | 0.1386 | 2.0 | 1458 | 0.1099 | 0.7721 | | 0.0782 | 3.0 | 2187 | 0.0950 | 0.8083 | | 0.054 | 4.0 | 2916 | 0.0945 | 0.8185 | | 0.0319 | 5.0 | 3645 | 0.0880 | 0.8251 | | 0.0254 | 6.0 | 4374 | 0.0893 | 0.8273 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0a0+17540c5 - Datasets 2.2.2 - Tokenizers 0.12.1
connectivity/cola_6ep_ft-41
c59c3f1085fb91be5d54aa60da5ba806c99accad
2022-05-21T16:43:56.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
connectivity
null
connectivity/cola_6ep_ft-41
8
null
transformers
13,456
Entry not found
connectivity/cola_6ep_ft-42
e9d75d16782e401e408895412e35ae07fbfc3345
2022-05-21T16:43:56.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
connectivity
null
connectivity/cola_6ep_ft-42
8
null
transformers
13,457
Entry not found
connectivity/cola_6ep_ft-44
1fca9eb464067b5713b9740f573eb7a23fd677d0
2022-05-21T16:43:57.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
connectivity
null
connectivity/cola_6ep_ft-44
8
null
transformers
13,458
Entry not found
connectivity/cola_6ep_ft-46
2c713671c5efa4533f535ef8f38387593087a5df
2022-05-21T16:43:58.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
connectivity
null
connectivity/cola_6ep_ft-46
8
null
transformers
13,459
Entry not found
SamuelMiller/sum_sum
f4482e3f155c7f6e0171d780f9a81d6136445497
2022-05-22T08:16:23.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
SamuelMiller
null
SamuelMiller/sum_sum
8
null
transformers
13,460
Entry not found
Splend1dchan/wav2vec2-large-lv60_t5lephone-small_nofreeze_bs64
0819314173fb4963e7a764e952d65a554c842389
2022-05-27T13:53:27.000Z
[ "pytorch", "speechmix", "transformers" ]
null
false
Splend1dchan
null
Splend1dchan/wav2vec2-large-lv60_t5lephone-small_nofreeze_bs64
8
null
transformers
13,461
Entry not found
reannayang/segformer-b0-pavement
2c3ba1fb7cfca4fd0104e814c11e7ff940d63c7f
2022-05-23T13:29:00.000Z
[ "pytorch", "tensorboard", "segformer", "transformers", "vision", "image-segmentation", "generated_from_trainer", "license:apache-2.0", "model-index" ]
image-segmentation
false
reannayang
null
reannayang/segformer-b0-pavement
8
null
transformers
13,462
--- license: apache-2.0 tags: - vision - image-segmentation - generated_from_trainer model-index: - name: segformer-b0-pavement results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # segformer-b0-pavement This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the reannayang/FL_pavement dataset. It achieves the following results on the evaluation set: - Loss: 0.4165 - Mean Iou: 0.6318 - Mean Accuracy: 0.9700 - Overall Accuracy: 0.9738 - Per Category Iou: [0.0, 0.964166382973358, 0.9809231860559384, 0.0, 0.9295139919583345, 0.9164463823409184] - Per Category Accuracy: [nan, 0.9643001261034048, 0.9983497924348297, nan, 0.995031342981772, 0.9223532638507954] ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------:| | 1.0651 | 10.0 | 20 | 1.3005 | 0.5967 | 0.9512 | 0.9534 | [0.0, 0.9462421185372005, 0.9681701711239586, 0.0, 0.7994398965962947, 0.8662896799897185] | [nan, 0.9462421185372005, 0.9693809143181291, nan, 0.9648149753011526, 0.9243828853538124] | | 0.5732 | 20.0 | 40 | 0.6626 | 0.6287 | 0.9702 | 0.9760 | [0.0, 0.975246652572234, 0.985446932366533, 0.0, 0.9010974339804011, 0.9103918683964157] | [nan, 0.9772635561160151, 0.9952040842637238, nan, 0.9748678395008233, 0.9334887547997806] | | 0.6987 | 30.0 | 60 | 0.4319 | 0.6317 | 0.9705 | 0.9758 | [0.0, 0.9709705045212967, 0.9798115236227942, 0.0, 0.9255918522130127, 0.9139245313729214] | [nan, 0.9722194199243379, 0.9986205296134905, nan, 0.9871161568015715, 0.924026330224904] | | 0.6915 | 40.0 | 80 | 0.4382 | 0.6237 | 0.9634 | 0.9692 | [0.0, 0.9611727616645649, 0.9725125142706595, 0.0, 0.9147983251179308, 0.8937433316006894] | [nan, 0.9611727616645649, 0.9993811721630611, nan, 0.9971690210012422, 0.896023038946791] | | 0.4373 | 50.0 | 100 | 0.4165 | 0.6318 | 0.9700 | 0.9738 | [0.0, 0.964166382973358, 0.9809231860559384, 0.0, 0.9295139919583345, 0.9164463823409184] | [nan, 0.9643001261034048, 0.9983497924348297, nan, 0.995031342981772, 0.9223532638507954] | ### Framework versions - Transformers 4.19.2 - Pytorch 1.7.1 - Datasets 2.2.1 - Tokenizers 0.12.1
arize-ai/distilbert_reviews_with_context_drift
2142a949472af600e1961a6272b7f2a78a7a7d55
2022-05-24T06:43:55.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:reviews_with_drift", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
arize-ai
null
arize-ai/distilbert_reviews_with_context_drift
8
2
transformers
13,463
--- license: apache-2.0 tags: - generated_from_trainer datasets: - reviews_with_drift metrics: - accuracy - f1 model-index: - name: distilbert_finetuned_reviews_with_drift results: - task: name: Text Classification type: text-classification dataset: name: reviews_with_drift type: reviews_with_drift args: default metrics: - name: Accuracy type: accuracy value: 0.854780153287616 - name: F1 type: f1 value: 0.8547073010596418 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_finetuned_reviews_with_drift This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the reviews_with_drift dataset. It achieves the following results on the evaluation set: - Loss: 0.3822 - Accuracy: 0.8548 - F1: 0.8547 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.4173 | 1.0 | 620 | 0.3519 | 0.8511 | 0.8511 | | 0.259 | 2.0 | 1240 | 0.3822 | 0.8548 | 0.8547 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
joebobby/finetuning-sentiment-model-5000-samples
ea0a93b92f8ad36836b650d59bb8fbd00f90b546
2022-05-26T06:08:39.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
joebobby
null
joebobby/finetuning-sentiment-model-5000-samples
8
null
transformers
13,464
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-5000-samples results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-5000-samples This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0701 - Accuracy: 0.758 - F1: 0.7580 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 313 | 1.0216 | 0.744 | 0.744 | | 0.2263 | 2.0 | 626 | 1.0701 | 0.758 | 0.7580 | | 0.2263 | 3.0 | 939 | 1.3097 | 0.723 | 0.723 | | 0.1273 | 4.0 | 1252 | 1.4377 | 0.743 | 0.743 | | 0.051 | 5.0 | 1565 | 1.4884 | 0.739 | 0.739 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
jakka/segformer-b0-finetuned-segments-sidewalk-4
24f1befe20320fcbbc46eb59fd99b25d2598c5e7
2022-05-30T11:56:11.000Z
[ "pytorch", "segformer", "transformers", "vision", "image-segmentation", "generated_from_trainer", "license:apache-2.0", "model-index" ]
image-segmentation
false
jakka
null
jakka/segformer-b0-finetuned-segments-sidewalk-4
8
null
transformers
13,465
--- license: apache-2.0 tags: - vision - image-segmentation - generated_from_trainer model-index: - name: segformer-b0-finetuned-segments-sidewalk-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # segformer-b0-finetuned-segments-sidewalk-4 This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the segments/sidewalk-semantic dataset. It achieves the following results on the evaluation set: - Loss: 1.6258 - Mean Iou: 0.1481 - Mean Accuracy: 0.1991 - Overall Accuracy: 0.7316 - Per Category Iou: [nan, 0.4971884694242825, 0.7844619900838784, 0.0, 0.10165655377640956, 0.007428563507709108, nan, 4.566798099115959e-06, 0.0, 0.0, 0.5570746278221521, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.534278997386317, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.7557693923373933, 0.5270379031768208, 0.8254522211471568, 0.0, 0.0, 0.0, 0.0] - Per Category Accuracy: [nan, 0.8698779680369205, 0.9122325676343133, 0.0, 0.10179229832932858, 0.007508413919135004, nan, 4.566798099115959e-06, 0.0, 0.0, 0.8968168359562617, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.8492049383357001, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.9388033874781816, 0.6627890453030717, 0.9334458854084583, 0.0, 0.0, 0.0, 0.0] ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:| | 1.7912 | 1.0 | 25 | 1.6392 | 0.1412 | 0.1911 | 0.7210 | [nan, 0.48942576059104514, 0.7754689525048201, 0.0, 0.031932013148008094, 0.004348266117522573, nan, 1.5527099355168697e-05, 0.0, 0.0, 0.5356571432088642, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.5243044552616699, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.7355207837531991, 0.4479559177066271, 0.8315839315332364, 0.0, 0.0, 0.0, 0.0] | [nan, 0.8476069713517648, 0.9129050708992534, 0.0, 0.03194435645315849, 0.004370669306327572, nan, 1.552711353699426e-05, 0.0, 0.0, 0.897824434787493, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.8555478632753987, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.9510113270409175, 0.5116786406550935, 0.9122706949370997, 0.0, 0.0, 0.0, 0.0] | | 1.7531 | 2.0 | 50 | 1.6258 | 0.1481 | 0.1991 | 0.7316 | [nan, 0.4971884694242825, 0.7844619900838784, 0.0, 0.10165655377640956, 0.007428563507709108, nan, 4.566798099115959e-06, 0.0, 0.0, 0.5570746278221521, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.534278997386317, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.7557693923373933, 0.5270379031768208, 0.8254522211471568, 0.0, 0.0, 0.0, 0.0] | [nan, 0.8698779680369205, 0.9122325676343133, 0.0, 0.10179229832932858, 0.007508413919135004, nan, 4.566798099115959e-06, 0.0, 0.0, 0.8968168359562617, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.8492049383357001, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.9388033874781816, 0.6627890453030717, 0.9334458854084583, 0.0, 0.0, 0.0, 0.0] | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0 - Datasets 2.2.2 - Tokenizers 0.12.1
Santarabantoosoo/PathologyBERT-meningioma
cdd3c943f4016240d827844629ae3c7aa1a75017
2022-05-31T11:50:13.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
Santarabantoosoo
null
Santarabantoosoo/PathologyBERT-meningioma
8
null
transformers
13,466
--- tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: PathologyBERT-meningioma results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # PathologyBERT-meningioma This model is a fine-tuned version of [tsantos/PathologyBERT](https://huggingface.co/tsantos/PathologyBERT) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8123 - Accuracy: 0.8783 - Precision: 0.25 - Recall: 0.0833 - F1: 0.125 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.3723 | 1.0 | 71 | 0.5377 | 0.7652 | 0.0588 | 0.0833 | 0.0690 | | 0.3363 | 2.0 | 142 | 0.4191 | 0.8783 | 0.25 | 0.0833 | 0.125 | | 0.2773 | 3.0 | 213 | 0.4701 | 0.8870 | 0.3333 | 0.0833 | 0.1333 | | 0.2303 | 4.0 | 284 | 0.5831 | 0.8957 | 0.5 | 0.0833 | 0.1429 | | 0.1657 | 5.0 | 355 | 0.7083 | 0.8348 | 0.1111 | 0.0833 | 0.0952 | | 0.1228 | 6.0 | 426 | 1.0324 | 0.8 | 0.0769 | 0.0833 | 0.08 | | 0.0967 | 7.0 | 497 | 0.8103 | 0.8696 | 0.2 | 0.0833 | 0.1176 | | 0.0729 | 8.0 | 568 | 0.8711 | 0.8696 | 0.2 | 0.0833 | 0.1176 | | 0.0624 | 9.0 | 639 | 0.7968 | 0.8783 | 0.25 | 0.0833 | 0.125 | | 0.0534 | 10.0 | 710 | 0.8123 | 0.8783 | 0.25 | 0.0833 | 0.125 | ### Framework versions - Transformers 4.12.2 - Pytorch 1.10.1 - Datasets 1.15.0 - Tokenizers 0.10.3
GiordanoB/mT5_multilingual_XLSum-sumarizacao-PTBR
003c360e23db41266566263916efb982defd4c44
2022-06-01T13:10:06.000Z
[ "pytorch", "tensorboard", "mt5", "text2text-generation", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
GiordanoB
null
GiordanoB/mT5_multilingual_XLSum-sumarizacao-PTBR
8
null
transformers
13,467
--- tags: - generated_from_trainer metrics: - rouge model-index: - name: mT5_multilingual_XLSum-sumarizacao-PTBR results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mT5_multilingual_XLSum-sumarizacao-PTBR This model is a fine-tuned version of [csebuetnlp/mT5_multilingual_XLSum](https://huggingface.co/csebuetnlp/mT5_multilingual_XLSum) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3870 - Rouge1: 42.0195 - Rouge2: 24.9493 - Rougel: 32.3653 - Rougelsum: 37.9982 - Gen Len: 77.0 ## Let's see the model in action! ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM WHITESPACE_HANDLER = lambda k: re.sub('\s+', ' ', re.sub('\n+', ' ', k.strip())) model_name = "GiordanoB/mT5_multilingual_XLSum-sumarizacao-PTBR" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name) input_ids = tokenizer( [WHITESPACE_HANDLER(sumariosDuplos[i])], return_tensors="pt", padding="max_length", truncation=True, max_length=512 )["input_ids"] output_ids = model.generate( input_ids=input_ids, max_length=200, min_length=75, no_repeat_ngram_size=2, num_beams=5 )[0] summary = tokenizer.decode( output_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False ) sumariosFinal.append(summary) print(i,"\n",summary,"\n") ``` ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 15 | 1.5687 | 32.2316 | 18.9289 | 23.918 | 27.7216 | 51.5714 | | No log | 2.0 | 30 | 1.4530 | 41.2297 | 26.1883 | 30.8012 | 37.1727 | 69.5714 | | No log | 3.0 | 45 | 1.4043 | 40.8986 | 24.4993 | 31.349 | 36.8782 | 72.2143 | | No log | 4.0 | 60 | 1.3908 | 42.1019 | 25.5555 | 32.9018 | 38.0202 | 74.5 | | No log | 5.0 | 75 | 1.3870 | 42.0195 | 24.9493 | 32.3653 | 37.9982 | 77.0 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
cjbarrie/masress-medcrit-camel
3f1d10c1652f4a8c612bf777826636c44f8039ac
2022-06-01T13:23:54.000Z
[ "pytorch", "bert", "text-classification", "unk", "dataset:cjbarrie/autotrain-data-masress-medcrit-binary-5", "transformers", "autotrain", "co2_eq_emissions" ]
text-classification
false
cjbarrie
null
cjbarrie/masress-medcrit-camel
8
null
transformers
13,468
--- tags: autotrain language: unk widget: - text: "الكل ينتقد الرئيس على إخفاقاته" datasets: - cjbarrie/autotrain-data-masress-medcrit-binary-5 co2_eq_emissions: 0.01017487638098474 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 937130980 - CO2 Emissions (in grams): 0.01017487638098474 ## Validation Metrics - Loss: 0.757265031337738 - Accuracy: 0.7551020408163265 - Macro F1: 0.7202470830473576 - Micro F1: 0.7551020408163265 - Weighted F1: 0.7594301962377263 - Macro Precision: 0.718716577540107 - Micro Precision: 0.7551020408163265 - Weighted Precision: 0.7711448215649895 - Macro Recall: 0.7285714285714286 - Micro Recall: 0.7551020408163265 - Weighted Recall: 0.7551020408163265 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/cjbarrie/autotrain-masress-medcrit-binary-5-937130980 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("cjbarrie/autotrain-masress-medcrit-binary-5-937130980", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("cjbarrie/autotrain-masress-medcrit-binary-5-937130980", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
chrisvinsen/wav2vec2-final-1-lm-4
f92173c8dc4d1631bc4f66f53a7bb0c8292caadb
2022-06-02T12:03:09.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
chrisvinsen
null
chrisvinsen/wav2vec2-final-1-lm-4
8
null
transformers
13,469
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-19 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-19 WER 0.283 WER 0.126 with 5-Gram This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6305 - Wer: 0.4499 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 800 - num_epochs: 60 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.4816 | 2.74 | 400 | 1.0717 | 0.8927 | | 0.751 | 5.48 | 800 | 0.7155 | 0.7533 | | 0.517 | 8.22 | 1200 | 0.7039 | 0.6675 | | 0.3988 | 10.96 | 1600 | 0.5935 | 0.6149 | | 0.3179 | 13.7 | 2000 | 0.6477 | 0.5999 | | 0.2755 | 16.44 | 2400 | 0.5549 | 0.5798 | | 0.2343 | 19.18 | 2800 | 0.6626 | 0.5798 | | 0.2103 | 21.92 | 3200 | 0.6488 | 0.5674 | | 0.1877 | 24.66 | 3600 | 0.5874 | 0.5339 | | 0.1719 | 27.4 | 4000 | 0.6354 | 0.5389 | | 0.1603 | 30.14 | 4400 | 0.6612 | 0.5210 | | 0.1401 | 32.88 | 4800 | 0.6676 | 0.5131 | | 0.1286 | 35.62 | 5200 | 0.6366 | 0.5075 | | 0.1159 | 38.36 | 5600 | 0.6064 | 0.4977 | | 0.1084 | 41.1 | 6000 | 0.6530 | 0.4835 | | 0.0974 | 43.84 | 6400 | 0.6118 | 0.4853 | | 0.0879 | 46.58 | 6800 | 0.6316 | 0.4770 | | 0.0815 | 49.32 | 7200 | 0.6125 | 0.4664 | | 0.0708 | 52.05 | 7600 | 0.6449 | 0.4683 | | 0.0651 | 54.79 | 8000 | 0.6068 | 0.4571 | | 0.0555 | 57.53 | 8400 | 0.6305 | 0.4499 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
wapari/KoGPT-trinity-tales
1614160ff9b3aa2771efd4b05a6da50ac3ae2cb1
2022-06-02T03:43:33.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "license:cc-by-nc-sa-4.0" ]
text-generation
false
wapari
null
wapari/KoGPT-trinity-tales
8
null
transformers
13,470
--- license: cc-by-nc-sa-4.0 ---
yannis95/bert-finetuned-ner
7b10d9ce870b3b07e373c1590465cc2f463a26ef
2022-06-02T12:35:12.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
yannis95
null
yannis95/bert-finetuned-ner
8
null
transformers
13,471
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.926145730300033 - name: Recall type: recall value: 0.9454729047458769 - name: F1 type: f1 value: 0.935709526982012 - name: Accuracy type: accuracy value: 0.9851209748631307 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0665 - Precision: 0.9261 - Recall: 0.9455 - F1: 0.9357 - Accuracy: 0.9851 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0852 | 1.0 | 1756 | 0.0650 | 0.9197 | 0.9367 | 0.9281 | 0.9830 | | 0.0407 | 2.0 | 3512 | 0.0621 | 0.9225 | 0.9438 | 0.9330 | 0.9848 | | 0.0195 | 3.0 | 5268 | 0.0665 | 0.9261 | 0.9455 | 0.9357 | 0.9851 | ### Framework versions - Transformers 4.19.1 - Pytorch 1.11.0 - Datasets 2.2.2 - Tokenizers 0.12.1
Jeevesh8/init_bert_ft_qqp-15
eef52e925b9ff308fc3724a434031a7173eb5ccf
2022-06-02T12:41:48.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-15
8
null
transformers
13,472
Entry not found
Jeevesh8/init_bert_ft_qqp-19
d50f7ad36c5a7cbde6dcd2cbc2be6d9bce79c50d
2022-06-02T12:39:47.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-19
8
null
transformers
13,473
Entry not found
Jeevesh8/init_bert_ft_qqp-28
9c92254d2169f0891a1ad84e1591ba3514441879
2022-06-02T12:39:37.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-28
8
null
transformers
13,474
Entry not found
Jeevesh8/init_bert_ft_qqp-45
6b76f6d5be167534036292832aed81b2cd4d3ed2
2022-06-02T12:39:28.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-45
8
null
transformers
13,475
Entry not found
Jeevesh8/init_bert_ft_qqp-33
4d9ec5fcb522a8f0d4ac92000ae6fdcfc901a11b
2022-06-02T12:39:52.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-33
8
null
transformers
13,476
Entry not found
Jeevesh8/init_bert_ft_qqp-43
b470333827dd3d6cd6a44cace02055fde124ff23
2022-06-02T12:39:51.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-43
8
null
transformers
13,477
Entry not found
Jeevesh8/init_bert_ft_qqp-61
097ff802b2eca98d5480baaa6ff875b2f9936cae
2022-06-02T12:41:41.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-61
8
null
transformers
13,478
Entry not found
Jeevesh8/init_bert_ft_qqp-62
0b3813b3111561aa01789c44d38c3232f1e314dd
2022-06-02T12:42:29.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-62
8
null
transformers
13,479
Entry not found
Jeevesh8/init_bert_ft_qqp-47
8513a6f7da0321943894907cf82c223ebbfa8041
2022-06-02T12:39:28.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-47
8
null
transformers
13,480
Entry not found
Jeevesh8/init_bert_ft_qqp-49
48cb2bd4fb65235e1886fcf29a1b8072622ee38b
2022-06-02T12:39:43.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-49
8
null
transformers
13,481
Entry not found
Jeevesh8/init_bert_ft_qqp-46
0f972097180411882f39ec7cae1f58f113d4658e
2022-06-02T12:39:27.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-46
8
null
transformers
13,482
Entry not found
Jeevesh8/init_bert_ft_qqp-42
144e46ed31d26f708efba9e50dc96eed438f5235
2022-06-02T12:39:27.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-42
8
null
transformers
13,483
Entry not found
Jeevesh8/init_bert_ft_qqp-41
df643f37101099922472348771d2195c5bac1214
2022-06-02T12:39:30.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-41
8
null
transformers
13,484
Entry not found
Jeevesh8/init_bert_ft_qqp-39
720e666c9677b38769ff418793d07e593be45915
2022-06-02T12:41:29.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-39
8
null
transformers
13,485
Entry not found
Jeevesh8/init_bert_ft_qqp-50
f0988c12ca0b4940c058fa560bcd0038b83c45f8
2022-06-02T12:39:35.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-50
8
null
transformers
13,486
Entry not found
Jeevesh8/init_bert_ft_qqp-64
2c0845c05d7c23bd9148e3e0c2bdfa23e21c11e0
2022-06-02T12:40:47.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-64
8
null
transformers
13,487
Entry not found
Jeevesh8/init_bert_ft_qqp-65
4deacd760df39605be27e3067051b696a81f0b01
2022-06-02T12:40:00.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-65
8
null
transformers
13,488
Entry not found
Jeevesh8/init_bert_ft_qqp-63
12832cd3a09d080b44b65a5e03e757bd93db28c0
2022-06-02T12:40:48.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-63
8
null
transformers
13,489
Entry not found
Jeevesh8/init_bert_ft_qqp-36
490a3538c45e526812d876156703ea6680d71a66
2022-06-02T12:40:02.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-36
8
null
transformers
13,490
Entry not found
Jeevesh8/init_bert_ft_qqp-66
895f2394d4c3c76994265995566818b43aece788
2022-06-02T12:40:08.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-66
8
null
transformers
13,491
Entry not found
Jeevesh8/init_bert_ft_qqp-67
e98a08248d7912d5c96845f3edb32a5dd55f214e
2022-06-02T12:40:53.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-67
8
null
transformers
13,492
Entry not found
Jeevesh8/init_bert_ft_qqp-68
6d3e3d21d206418dfe82790b3725fcea9d7a72c0
2022-06-02T12:40:29.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-68
8
null
transformers
13,493
Entry not found
Jeevesh8/init_bert_ft_qqp-69
11b27b2e536206739dc19c848cd2d1daf4869c22
2022-06-02T12:40:32.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-69
8
null
transformers
13,494
Entry not found
Jeevesh8/init_bert_ft_qqp-70
b5550b4ffdb2cc475388065174fed7dba2e2f884
2022-06-02T12:40:32.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-70
8
null
transformers
13,495
Entry not found
Jeevesh8/init_bert_ft_qqp-71
0efd309a4f4e7b6f27d930edc6fdd32ee4429b6b
2022-06-02T12:40:32.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-71
8
null
transformers
13,496
Entry not found
Jeevesh8/init_bert_ft_qqp-73
d0bd03df693004e1e18d9a7bb90b9561f03cf77f
2022-06-02T12:40:39.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-73
8
null
transformers
13,497
Entry not found
Jeevesh8/init_bert_ft_qqp-72
c2463c4aaeafd9947ef1e9503f7135e5a1294c40
2022-06-02T12:40:35.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-72
8
null
transformers
13,498
Entry not found
Jeevesh8/init_bert_ft_qqp-74
afd13879fc17345e3921634d04545ddbc3a68617
2022-06-02T12:45:11.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-74
8
null
transformers
13,499
Entry not found