modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
list
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
ACSHCSE/distilbert-base-uncased-finetuned-ner
9b68dedddb002887c121fe42e8cb513d36d1e1ca
2022-04-12T08:43:03.000Z
[ "pytorch", "tensorboard", "distilbert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
ACSHCSE
null
ACSHCSE/distilbert-base-uncased-finetuned-ner
8
null
transformers
13,300
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9230429988974642 - name: Recall type: recall value: 0.9365700861393892 - name: F1 type: f1 value: 0.9297573435504469 - name: Accuracy type: accuracy value: 0.983176322938345 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0611 - Precision: 0.9230 - Recall: 0.9366 - F1: 0.9298 - Accuracy: 0.9832 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2349 | 1.0 | 878 | 0.0736 | 0.9140 | 0.9211 | 0.9175 | 0.9803 | | 0.0546 | 2.0 | 1756 | 0.0582 | 0.9244 | 0.9368 | 0.9305 | 0.9830 | | 0.03 | 3.0 | 2634 | 0.0611 | 0.9230 | 0.9366 | 0.9298 | 0.9832 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
Raychanan/COVID
8d423d133617dabacdc420f0018887c556ab0178
2022-04-14T23:55:50.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Raychanan
null
Raychanan/COVID
8
null
transformers
13,301
--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 model-index: - name: results results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # results This model is a fine-tuned version of [hfl/chinese-bert-wwm-ext](https://huggingface.co/hfl/chinese-bert-wwm-ext) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5193 - F1: 0.9546 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.3803 | 1.0 | 1792 | 0.5110 | 0.9546 | | 0.4129 | 2.0 | 3584 | 0.5256 | 0.9546 | | 0.4804 | 3.0 | 5376 | 0.5305 | 0.9546 | | 0.6571 | 4.0 | 7168 | 0.5583 | 0.9546 | | 0.6605 | 5.0 | 8960 | 0.5193 | 0.9546 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
MartinoMensio/racism-models-raw-label-epoch-1
e82fc05fe5d4c47df0cd07fb013533ef4e1e583a
2022-05-04T16:02:49.000Z
[ "pytorch", "bert", "text-classification", "es", "transformers", "license:mit" ]
text-classification
false
MartinoMensio
null
MartinoMensio/racism-models-raw-label-epoch-1
8
null
transformers
13,302
--- language: es license: mit widget: - text: "y porqué es lo que hay que hacer con los menas y con los adultos también!!!! NO a los inmigrantes ilegales!!!!" --- ### Description This model is a fine-tuned version of [BETO (spanish bert)](https://huggingface.co/dccuchile/bert-base-spanish-wwm-uncased) that has been trained on the *Datathon Against Racism* dataset (2022) We performed several experiments that will be described in the upcoming paper "Estimating Ground Truth in a Low-labelled Data Regime:A Study of Racism Detection in Spanish" (NEATClasS 2022) We applied 6 different methods ground-truth estimations, and for each one we performed 4 epochs of fine-tuning. The result is made of 24 models: | method | epoch 1 | epoch 3 | epoch 3 | epoch 4 | |--- |--- |--- |--- |--- | | raw-label | [raw-label-epoch-1](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-1) | [raw-label-epoch-2](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-2) | [raw-label-epoch-3](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-3) | [raw-label-epoch-4](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-4) | | m-vote-strict | [m-vote-strict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-1) | [m-vote-strict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-2) | [m-vote-strict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-3) | [m-vote-strict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-4) | | m-vote-nonstrict | [m-vote-nonstrict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-1) | [m-vote-nonstrict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-2) | [m-vote-nonstrict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-3) | [m-vote-nonstrict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-4) | | regression-w-m-vote | [regression-w-m-vote-epoch-1](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-1) | [regression-w-m-vote-epoch-2](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-2) | [regression-w-m-vote-epoch-3](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-3) | [regression-w-m-vote-epoch-4](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-4) | | w-m-vote-strict | [w-m-vote-strict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-1) | [w-m-vote-strict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-2) | [w-m-vote-strict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-3) | [w-m-vote-strict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-4) | | w-m-vote-nonstrict | [w-m-vote-nonstrict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-1) | [w-m-vote-nonstrict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-2) | [w-m-vote-nonstrict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-3) | [w-m-vote-nonstrict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-4) | This model is `raw-label-epoch-1` ### Usage ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline model_name = 'raw-label-epoch-1' tokenizer = AutoTokenizer.from_pretrained("dccuchile/bert-base-spanish-wwm-uncased") full_model_path = f'MartinoMensio/racism-models-{model_name}' model = AutoModelForSequenceClassification.from_pretrained(full_model_path) pipe = pipeline("text-classification", model = model, tokenizer = tokenizer) texts = [ 'y porqué es lo que hay que hacer con los menas y con los adultos también!!!! NO a los inmigrantes ilegales!!!!', 'Es que los judíos controlan el mundo' ] print(pipe(texts)) # [{'label': 'racist', 'score': 0.7924597263336182}, {'label': 'non-racist', 'score': 0.9130864143371582}] ``` For more details, see https://github.com/preyero/neatclass22
manu/lilt-camembert-dit-base-hf
27bfcb250eca01bafca6809625b736fc41758185
2022-04-19T15:45:33.000Z
[ "pytorch", "liltrobertalike", "fill-mask", "fr", "dataset:iit-cdip", "transformers", "token-classification", "license:mit", "autotrain_compatible" ]
token-classification
false
manu
null
manu/lilt-camembert-dit-base-hf
8
null
transformers
13,303
--- language: - fr tags: - token-classification - fill-mask license: mit datasets: - iit-cdip --- This model is the combined camembert-base model, with the pretrained lilt checkpoint from the paper "LiLT: A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding", with the visual backbone built from the pretrained checkpoint "microsoft/dit-base". *Note:* This model should be fine-tuned, and loaded with the modeling and config files from the branch `improve-dit`. Original repository: https://github.com/jpWang/LiLT To use it, it is necessary to fork the modeling and configuration files from the original repository, and load the pretrained model from the corresponding classes (LiLTRobertaLikeVisionConfig, LiLTRobertaLikeVisionForRelationExtraction, LiLTRobertaLikeVisionForTokenClassification, LiLTRobertaLikeVisionModel). They can also be preloaded with the AutoConfig/model factories as such: ```python from transformers import AutoModelForTokenClassification, AutoConfig, AutoModel from path_to_custom_classes import ( LiLTRobertaLikeVisionConfig, LiLTRobertaLikeVisionForRelationExtraction, LiLTRobertaLikeVisionForTokenClassification, LiLTRobertaLikeVisionModel ) def patch_transformers(): AutoConfig.register("liltrobertalike", LiLTRobertaLikeVisionConfig) AutoModel.register(LiLTRobertaLikeVisionConfig, LiLTRobertaLikeVisionModel) AutoModelForTokenClassification.register(LiLTRobertaLikeVisionConfig, LiLTRobertaLikeVisionForTokenClassification) # etc... ``` To load the model, it is then possible to use: ```python # patch_transformers() must have been executed beforehand tokenizer = AutoTokenizer.from_pretrained("camembert-base") model = AutoModel.from_pretrained("manu/lilt-camembert-dit-base-hf") model = AutoModelForTokenClassification.from_pretrained("manu/lilt-camembert-dit-base-hf") # to be fine-tuned on a token classification task ```
aseifert/comma-mdeberta-v3-base
512da5ef700db7fdd3f09b90210a41dd8db68999
2022-04-16T09:40:45.000Z
[ "pytorch", "deberta-v2", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
aseifert
null
aseifert/comma-mdeberta-v3-base
8
null
transformers
13,304
Entry not found
vumichien/imagegpt-small
adfe0e5be98c684a3aa7dd509c7b0d8496c474de
2022-04-16T11:53:08.000Z
[ "pytorch", "imagegpt", "feature-extraction", "transformers" ]
feature-extraction
false
vumichien
null
vumichien/imagegpt-small
8
null
transformers
13,305
Entry not found
ttwj-sutd/finetuning-sentiment-model-3000-samples-6pm
36eedbc4fa0891470ff1d4a6759878ee6b8100b6
2022-04-17T10:33:50.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
ttwj-sutd
null
ttwj-sutd/finetuning-sentiment-model-3000-samples-6pm
8
null
transformers
13,306
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - precision - recall - f1 - accuracy model-index: - name: finetuning-sentiment-model-3000-samples-6pm results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Precision type: precision value: 0.875 - name: Recall type: recall value: 0.8866666666666667 - name: F1 type: f1 value: 0.880794701986755 - name: Accuracy type: accuracy value: 0.88 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples-6pm This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.2896 - Precision: 0.875 - Recall: 0.8867 - F1: 0.8808 - Accuracy: 0.88 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 11 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 188 | 0.3436 | 0.8633 | 0.8 | 0.8304 | 0.8367 | | No log | 2.0 | 376 | 0.2896 | 0.875 | 0.8867 | 0.8808 | 0.88 | | 0.3 | 3.0 | 564 | 0.3330 | 0.8693 | 0.8867 | 0.8779 | 0.8767 | | 0.3 | 4.0 | 752 | 0.4378 | 0.8766 | 0.9 | 0.8882 | 0.8867 | | 0.3 | 5.0 | 940 | 0.5198 | 0.8284 | 0.9333 | 0.8777 | 0.87 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
vikasaeta/bert-finetuned-ner
bc8597140e45037c8a020c05d293dc75e1509119
2022-04-18T14:15:43.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
vikasaeta
null
vikasaeta/bert-finetuned-ner
8
null
transformers
13,307
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.931045859452326 - name: Recall type: recall value: 0.9498485358465163 - name: F1 type: f1 value: 0.9403532155948018 - name: Accuracy type: accuracy value: 0.9857096603284865 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0614 - Precision: 0.9310 - Recall: 0.9498 - F1: 0.9404 - Accuracy: 0.9857 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0875 | 1.0 | 1756 | 0.0639 | 0.9167 | 0.9387 | 0.9276 | 0.9833 | | 0.0332 | 2.0 | 3512 | 0.0595 | 0.9334 | 0.9504 | 0.9418 | 0.9857 | | 0.0218 | 3.0 | 5268 | 0.0614 | 0.9310 | 0.9498 | 0.9404 | 0.9857 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
ndavid/binary-question-classifier-bert
7d1426243ca6fb12128fd46490dd358fdf3d0548
2022-04-18T20:01:36.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
ndavid
null
ndavid/binary-question-classifier-bert
8
null
transformers
13,308
Entry not found
migueladarlo/distilbert-depression-mixed
b3ea372deae1e72a52f081801f95103ddc81c9dd
2022-04-19T10:35:06.000Z
[ "pytorch", "distilbert", "text-classification", "en", "dataset:CLPsych 2015", "transformers", "text", "Twitter", "license:mit", "model-index" ]
text-classification
false
migueladarlo
null
migueladarlo/distilbert-depression-mixed
8
null
transformers
13,309
--- language: - en license: mit # Example: apache-2.0 or any license from https://huggingface.co/docs/hub/model-repos#list-of-license-identifiers tags: - text # Example: audio - Twitter datasets: - CLPsych 2015 # Example: common_voice. Use dataset id from https://hf.co/datasets metrics: - accuracy, f1, precision, recall, AUC # Example: wer. Use metric id from https://hf.co/metrics model-index: - name: distilbert-depression-mixed results: [] --- # distilbert-depression-mixed This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) trained on CLPsych 2015 and a scraped dataset, and evaluated on a scraped dataset from Twitter to detect potential users in Twitter for depression. It achieves the following results on the evaluation set: - Evaluation Loss: 0.71 - Accuracy: 0.63 - F1: 0.59 - Precision: 0.66 - Recall: 0.53 - AUC: 0.63 ## Intended uses & limitations Feed a corpus of tweets to the model to generate label if input is indicative of a depressed user or not. Label 1 is depressed, Label 0 is not depressed. Limitation: All token sequences longer than 512 are automatically truncated. Also, training and test data may be contaminated with mislabeled users. ### How to use You can use this model directly with a pipeline for sentiment analysis: ```python >>> from transformers import DistilBertTokenizerFast, AutoTokenizer >>> tokenizer = AutoTokenizer.from_pretrained('distilbert-base-uncased') >>> from transformers import DistilBertForSequenceClassification >>> model = DistilBertForSequenceClassification.from_pretrained(r"distilbert-depression-mixed") >>> from transformers import pipeline >>> classifier = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer) >>> tokenizer_kwargs = {'padding':True,'truncation':True,'max_length':512} >>> result=classifier('pain peko',**tokenizer_kwargs) #For truncation to apply in the pipeline >>> #Should note that the string passed as the input can be a corpus of tweets concatenated together into one document. [{'label': 'LABEL_1', 'score': 0.5048992037773132}] ``` Otherwise, download the files and specify within the pipeline the path to the folder that contains the config.json, pytorch_model.bin, and training_args.bin ## Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4.19e-05 - train_batch_size: 16 - eval_batch_size: 16 - weight_decay: 0.06 - num_epochs: 5.0 ## Training results | Epoch | Training Loss | Validation Loss | Accuracy | F1 | Precision | Recall | AUC | |:-----:|:-------------:|:---------------:|:--------:|:--------:|:---------:|:--------:|:--------:| | 1.0 | 0.68 | 0.66 | 0.61 | 0.54 | 0.60 | 0.50 | 0.60 | | 2.0 | 0.65 | 0.65 | 0.63 | 0.49 | 0.70 | 0.37 | 0.62 | | 3.0 | 0.53 | 0.63 | 0.66 | 0.58 | 0.69 | 0.50 | 0.65 | | 4.0 | 0.39 | 0.66 | 0.67 | 0.61 | 0.69 | 0.54 | 0.67 | | 5.0 | 0.27 | 0.72 | 0.65 | 0.61 | 0.63 | 0.60 | 0.64 |
skytnt/gpt2-japanese-lyric-xsmall
7388bc585887e51e0a3299a729984ca196a00333
2022-07-06T05:06:01.000Z
[ "pytorch", "tf", "gpt2", "text-generation", "ja", "transformers", "japanese", "lm", "nlp", "license:mit" ]
text-generation
false
skytnt
null
skytnt/gpt2-japanese-lyric-xsmall
8
0
transformers
13,310
--- language: ja tags: - ja - japanese - gpt2 - text-generation - lm - nlp license: mit widget: - text: "桜が咲く" --- # Japanese GPT2 Lyric Model ## Model description The model is used to generate Japanese lyrics. ## How to use ```python import torch from transformers import T5Tokenizer, GPT2LMHeadModel tokenizer = T5Tokenizer.from_pretrained("skytnt/gpt2-japanese-lyric-xsmall") model = GPT2LMHeadModel.from_pretrained("skytnt/gpt2-japanese-lyric-xsmall") def gen_lyric(prompt_text: str): prompt_text = "<s>" + prompt_text.replace("\n", "\\n ") prompt_tokens = tokenizer.tokenize(prompt_text) prompt_token_ids = tokenizer.convert_tokens_to_ids(prompt_tokens) prompt_tensor = torch.LongTensor(prompt_token_ids).to(device) prompt_tensor = prompt_tensor.view(1, -1) # model forward output_sequences = model.generate( input_ids=prompt_tensor, max_length=512, top_p=0.95, top_k=40, temperature=1.0, do_sample=True, early_stopping=True, bos_token_id=tokenizer.bos_token_id, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.pad_token_id, num_return_sequences=1 ) # convert model outputs to readable sentence generated_sequence = output_sequences.tolist()[0] generated_tokens = tokenizer.convert_ids_to_tokens(generated_sequence) generated_text = tokenizer.convert_tokens_to_string(generated_tokens) generated_text = "\n".join([s.strip() for s in generated_text.split('\\n')]).replace(' ', '\u3000').replace('<s>', '').replace('</s>', '\n\n---end---') return generated_text print(gen_lyric("桜が咲く")) ``` ## Training data [Training data](https://data.anyweb.xyz/dataset/lyric.zip) contains 46,449 Japanese lyrics which are collected from [NetEasyMusic](https://music.163.com/) by [lyric_download](https://github.com/SkyTNT/lyric_downlowd)
GPL/bioasq-tsdae-msmarco-distilbert-gpl
d36c5a5b55704344c937d6dd9cd2747cf2f47923
2022-04-19T16:42:02.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
GPL
null
GPL/bioasq-tsdae-msmarco-distilbert-gpl
8
null
sentence-transformers
13,311
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 140000 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `gpl.toolkit.loss.MarginDistillationLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 140000, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
nielsr/segformer-trainer-test-bis
a1e2242cfdf7ac4f7ad363ee1c46177e3341e886
2022-04-20T07:14:35.000Z
[ "pytorch", "tensorboard", "segformer", "transformers", "image-segmentation", "vision", "generated_from_trainer", "license:apache-2.0", "model-index" ]
image-segmentation
false
nielsr
null
nielsr/segformer-trainer-test-bis
8
null
transformers
13,312
--- license: apache-2.0 tags: - image-segmentation - vision - generated_from_trainer model-index: - name: segformer-trainer-test-bis results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # segformer-trainer-test-bis This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the segments/sidewalk-semantic dataset. It achieves the following results on the evaluation set: - Loss: 1.3784 - Mean Iou: 0.1424 - Mean Accuracy: 0.1896 - Overall Accuracy: 0.7288 - Accuracy Unlabeled: nan - Accuracy Flat-road: 0.6651 - Accuracy Flat-sidewalk: 0.9129 - Accuracy Flat-crosswalk: 0.0 - Accuracy Flat-cyclinglane: 0.5829 - Accuracy Flat-parkingdriveway: 0.0184 - Accuracy Flat-railtrack: 0.0 - Accuracy Flat-curb: 0.0 - Accuracy Human-person: 0.0 - Accuracy Human-rider: 0.0 - Accuracy Vehicle-car: 0.8322 - Accuracy Vehicle-truck: 0.0 - Accuracy Vehicle-bus: 0.0 - Accuracy Vehicle-tramtrain: 0.0 - Accuracy Vehicle-motorcycle: 0.0 - Accuracy Vehicle-bicycle: 0.0 - Accuracy Vehicle-caravan: 0.0 - Accuracy Vehicle-cartrailer: 0.0 - Accuracy Construction-building: 0.8930 - Accuracy Construction-door: 0.0 - Accuracy Construction-wall: 0.0025 - Accuracy Construction-fenceguardrail: 0.0 - Accuracy Construction-bridge: 0.0 - Accuracy Construction-tunnel: 0.0 - Accuracy Construction-stairs: 0.0 - Accuracy Object-pole: 0.0008 - Accuracy Object-trafficsign: 0.0 - Accuracy Object-trafficlight: 0.0 - Accuracy Nature-vegetation: 0.8552 - Accuracy Nature-terrain: 0.8507 - Accuracy Sky: 0.8336 - Accuracy Void-ground: 0.0 - Accuracy Void-dynamic: 0.0 - Accuracy Void-static: 0.0 - Accuracy Void-unclear: 0.0 - Iou Unlabeled: nan - Iou Flat-road: 0.4712 - Iou Flat-sidewalk: 0.7651 - Iou Flat-crosswalk: 0.0 - Iou Flat-cyclinglane: 0.5216 - Iou Flat-parkingdriveway: 0.0178 - Iou Flat-railtrack: 0.0 - Iou Flat-curb: 0.0 - Iou Human-person: 0.0 - Iou Human-rider: 0.0 - Iou Vehicle-car: 0.5696 - Iou Vehicle-truck: 0.0 - Iou Vehicle-bus: 0.0 - Iou Vehicle-tramtrain: 0.0 - Iou Vehicle-motorcycle: 0.0 - Iou Vehicle-bicycle: 0.0 - Iou Vehicle-caravan: 0.0 - Iou Vehicle-cartrailer: 0.0 - Iou Construction-building: 0.4716 - Iou Construction-door: 0.0 - Iou Construction-wall: 0.0024 - Iou Construction-fenceguardrail: 0.0 - Iou Construction-bridge: 0.0 - Iou Construction-tunnel: 0.0 - Iou Construction-stairs: 0.0 - Iou Object-pole: 0.0008 - Iou Object-trafficsign: 0.0 - Iou Object-trafficlight: 0.0 - Iou Nature-vegetation: 0.6813 - Iou Nature-terrain: 0.5513 - Iou Sky: 0.7873 - Iou Void-ground: 0.0 - Iou Void-dynamic: 0.0 - Iou Void-static: 0.0 - Iou Void-unclear: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6
surrey-nlp/roberta-large-finetuned-abbr
5f9cf93a2522c506e9e42c5baf5434cac5fa7992
2022-04-30T12:17:08.000Z
[ "pytorch", "tf", "roberta", "token-classification", "en", "dataset:surrey-nlp/PLOD-unfiltered", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
surrey-nlp
null
surrey-nlp/roberta-large-finetuned-abbr
8
1
transformers
13,313
--- model_creators: - Leonardo Zilio, Hadeel Saadany, Prashant Sharma, Diptesh Kanojia, Constantin Orasan license: mit tags: - generated_from_trainer datasets: - surrey-nlp/PLOD-unfiltered metrics: - precision - recall - f1 - accuracy language: - en widget: - text: "Light dissolved inorganic carbon (DIC) resulting from the oxidation of hydrocarbons." - text: "RAFs are plotted for a selection of neurons in the dorsal zone (DZ) of auditory cortex in Figure 1." - text: "Images were acquired using a GE 3.0T MRI scanner with an upgrade for echo-planar imaging (EPI)." model-index: - name: roberta-large-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: surrey-nlp/PLOD-unfiltered type: token-classification args: PLODunfiltered metrics: - name: Precision type: precision value: 0.9662545190541101 - name: Recall type: recall value: 0.9627013733169376 - name: F1 type: f1 value: 0.9644746737300262 - name: Accuracy type: accuracy value: 0.9607518572002093 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-large-finetuned-ner This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the [PLOD-unfiltered](https://huggingface.co/datasets/surrey-nlp/PLOD-unfiltered) dataset. It achieves the following results on the evaluation set: - Loss: 0.1393 - Precision: 0.9663 - Recall: 0.9627 - F1: 0.9645 - Accuracy: 0.9608 ## Model description RoBERTa is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with the Masked language modeling (MLM) objective. Taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the BERT model as inputs. ## Intended uses & limitations More information needed ## Training and evaluation data The model is fine-tuned using [PLOD-Unfiltered](https://huggingface.co/datasets/surrey-nlp/PLOD-unfiltered) dataset. This dataset is used for training and evaluating the model. The PLOD Dataset is published at LREC 2022. The dataset can help build sequence labeling models for the task of Abbreviation Detection. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1281 | 1.0 | 14233 | 0.1300 | 0.9557 | 0.9436 | 0.9496 | 0.9457 | | 0.1056 | 2.0 | 28466 | 0.1076 | 0.9620 | 0.9552 | 0.9586 | 0.9545 | | 0.0904 | 3.0 | 42699 | 0.1054 | 0.9655 | 0.9585 | 0.9620 | 0.9583 | | 0.0743 | 4.0 | 56932 | 0.1145 | 0.9658 | 0.9602 | 0.9630 | 0.9593 | | 0.0523 | 5.0 | 71165 | 0.1206 | 0.9664 | 0.9619 | 0.9641 | 0.9604 | | 0.044 | 6.0 | 85398 | 0.1393 | 0.9663 | 0.9627 | 0.9645 | 0.9608 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.1+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
Intel/camembert-base-mrpc-int8-dynamic
0912fc264746a2e9554f92541463bd261b307309
2022-06-10T02:41:36.000Z
[ "pytorch", "camembert", "text-classification", "en", "dataset:glue", "transformers", "text-classfication", "int8", "Intel® Neural Compressor", "PostTrainingDynamic", "license:mit", "model-index" ]
text-classification
false
Intel
null
Intel/camembert-base-mrpc-int8-dynamic
8
null
transformers
13,314
--- language: - en license: mit tags: - text-classfication - int8 - Intel® Neural Compressor - PostTrainingDynamic datasets: - glue metrics: - f1 model-index: - name: camembert-base-mrpc-int8-dynamic results: - task: name: Text Classification type: text-classification dataset: name: GLUE MRPC type: glue args: mrpc metrics: - name: F1 type: f1 value: 0.8842832469775476 --- # INT8 camembert-base-mrpc ### Post-training dynamic quantization This is an INT8 PyTorch model quantized with [Intel® Neural Compressor](https://github.com/intel/neural-compressor). The original fp32 model comes from the fine-tuned model [camembert-base-mrpc](https://huggingface.co/Intel/camembert-base-mrpc). The linear module **roberta.encoder.layer.6.attention.self.query** falls back to fp32 to meet the 1% relative accuracy loss. ### Test result | |INT8|FP32| |---|:---:|:---:| | **Accuracy (eval-f1)** |0.8843|0.8928| | **Model size (MB)** |180|422| ### Load with Intel® Neural Compressor: ```python from neural_compressor.utils.load_huggingface import OptimizedModel int8_model = OptimizedModel.from_pretrained( 'Intel/camembert-base-mrpc-int8-dynamic', ) ```
okho0653/distilbert-base-uncased-few-shot-sentiment-model
85ca16f1b5c1e7c27c12bb40b17bfdf95efc45d2
2022-04-21T12:28:05.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
okho0653
null
okho0653/distilbert-base-uncased-few-shot-sentiment-model
8
null
transformers
13,315
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-few-shot-sentiment-model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-few-shot-sentiment-model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6819 - Accuracy: 0.75 - F1: 0.8 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
IDEA-CCNL/Yuyuan-Bart-139M
993df290ca93b2d2dd28368c0c727507e2d2a320
2022-04-24T10:03:04.000Z
[ "pytorch", "bart", "text2text-generation", "en", "arxiv:2204.03905", "transformers", "biobart", "biomedical", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
IDEA-CCNL
null
IDEA-CCNL/Yuyuan-Bart-139M
8
1
transformers
13,316
--- language: - en license: apache-2.0 tags: - bart - biobart - biomedical inference: true widget: - text: "Influenza is a <mask> disease." - type: "text-generation" --- # Yuyuan-Bart-139M, one model of [Fengshenbang-LM](https://github.com/IDEA-CCNL/Fengshenbang-LM). The Yuyuan-Bart-139M is a biomedical generative language model jointly produced by Tsinghua University and International Digital Economy Academy. Paper: [BioBART: Pretraining and Evaluation of A Biomedical Generative Language Model](https://arxiv.org/pdf/2204.03905.pdf) ## Pretraining Corpora We use PubMed abstracts as the pretraining corpora. The corpora contain about 41 GB of biomedical research paper abstracts on PubMed. ## Pretraining Setup We continuously pretrain base versions of BART for 120k steps with a batch size of 2560. We use the same vocabulary as BART to tokenize the texts. Although the input length limitation of BART is 1024, the tokenized PubMed abstracts rarely exceed 512. Therefore, for the sake of training efficiency, we truncate all the input texts to 512 maximum length. We mask 30% of the input tokens and the masked span length is determined by sampling from a Poisson distribution (λ = 3) as used in BART. We use a learning rate scheduler of 0.02 warm-up ratio and linear decay. The learning rate is set to 1e-4. We train the base version of BioBART(139M parameters) on 2 DGX with 16 40GB A100 GPUs for about 100 hours with the help of the open-resource framework DeepSpeed. ## Usage ```python from transformers import BartForConditionalGeneration, BartTokenizer tokenizer = BartTokenizer.from_pretrained('IDEA-CCNL/Yuyuan-Bart-139M') model = BartForConditionalGeneration.from_pretrained('IDEA-CCNL/Yuyuan-Bart-139M') text = 'Influenza is a <mask> disease.' input_ids = tokenizer([text], return_tensors="pt")['input_ids'] model.eval() generated_ids = model.generate( input_ids=input_ids, ) preds = [tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=True) for g in generated_ids] print(preds) ``` ## Citation If you find the resource is useful, please cite the following website in your paper. ``` @misc{BioBART, title={BioBART: Pretraining and Evaluation of A Biomedical Generative Language Model}, author={Hongyi Yuan and Zheng Yuan and Ruyi Gan and Jiaxing Zhang and Yutao Xie and Sheng Yu}, year={2022}, eprint={2204.03905}, archivePrefix={arXiv} } ```
mldev/bert-finetuned-ner
3ee99cdb9fb2751b0c42dd2cdff0f4b41ecf671f
2022-04-24T21:28:00.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
mldev
null
mldev/bert-finetuned-ner
8
1
transformers
13,317
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9343150231634679 - name: Recall type: recall value: 0.9503534163581285 - name: F1 type: f1 value: 0.9422659769731353 - name: Accuracy type: accuracy value: 0.9865926885265203 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0595 - Precision: 0.9343 - Recall: 0.9504 - F1: 0.9423 - Accuracy: 0.9866 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0834 | 1.0 | 1756 | 0.0621 | 0.9148 | 0.9381 | 0.9263 | 0.9833 | | 0.0321 | 2.0 | 3512 | 0.0615 | 0.9265 | 0.9482 | 0.9372 | 0.9851 | | 0.0218 | 3.0 | 5268 | 0.0595 | 0.9343 | 0.9504 | 0.9423 | 0.9866 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
Alassea/reviews-generator
25da911a73d78d9db49c586adf6147373f7a6b7a
2022-04-26T12:59:27.000Z
[ "pytorch", "tensorboard", "bart", "text2text-generation", "dataset:amazon_reviews_multi", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
Alassea
null
Alassea/reviews-generator
8
null
transformers
13,318
--- license: apache-2.0 tags: - generated_from_trainer datasets: - amazon_reviews_multi model-index: - name: reviews-generator results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # reviews-generator This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 3.4989 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.7955 | 0.08 | 500 | 3.5578 | | 3.7486 | 0.16 | 1000 | 3.4989 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
cassiepowell/RoBERTa-large-mnli-for-agreement
e6bb78ecf96eaaa254ca6bfee6682f0d836fa70a
2022-04-28T15:27:32.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
cassiepowell
null
cassiepowell/RoBERTa-large-mnli-for-agreement
8
null
transformers
13,319
Entry not found
rycont/koelectra-bible-classifier
27235d52de55dea807080ceaba02d7c27f3973ab
2022-04-28T08:20:04.000Z
[ "pytorch", "electra", "text-classification", "transformers" ]
text-classification
false
rycont
null
rycont/koelectra-bible-classifier
8
null
transformers
13,320
Entry not found
Rerare/distilbert-base-uncased-finetuned-cola
3cdff2247e0cbc019bb5587616dc8f3c7be296e4
2022-04-29T02:19:11.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Rerare
null
Rerare/distilbert-base-uncased-finetuned-cola
8
null
transformers
13,321
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5291140309961344 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.7643 - Matthews Correlation: 0.5291 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5288 | 1.0 | 535 | 0.5111 | 0.4154 | | 0.3546 | 2.0 | 1070 | 0.5285 | 0.4887 | | 0.235 | 3.0 | 1605 | 0.5950 | 0.5153 | | 0.1722 | 4.0 | 2140 | 0.7643 | 0.5291 | | 0.1346 | 5.0 | 2675 | 0.8441 | 0.5185 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
it5/it5-efficient-small-el32-informal-to-formal
ee547797b56721d0c94cf569022b06a231949270
2022-04-29T15:15:04.000Z
[ "pytorch", "tf", "jax", "tensorboard", "t5", "text2text-generation", "it", "dataset:yahoo/xformal_it", "arxiv:2203.03759", "arxiv:2109.10686", "transformers", "italian", "sequence-to-sequence", "style-transfer", "efficient", "formality-style-transfer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
it5
null
it5/it5-efficient-small-el32-informal-to-formal
8
null
transformers
13,322
--- language: - it license: apache-2.0 tags: - italian - sequence-to-sequence - style-transfer - efficient - formality-style-transfer datasets: - yahoo/xformal_it widget: - text: "maronn qualcuno mi spieg' CHECCOSA SUCCEDE?!?!" - text: "wellaaaaaaa, ma fraté sei proprio troppo simpatiko, grazieeee!!" - text: "nn capisco xke tt i ragazzi lo fanno" - text: "IT5 è SUPERMEGA BRAVISSIMO a capire tt il vernacolo italiano!!!" metrics: - rouge - bertscore model-index: - name: it5-efficient-small-el32-informal-to-formal results: - task: type: formality-style-transfer name: "Informal-to-formal Style Transfer" dataset: type: xformal_it name: "XFORMAL (Italian Subset)" metrics: - type: rouge1 value: 0.430 name: "Avg. Test Rouge1" - type: rouge2 value: 0.221 name: "Avg. Test Rouge2" - type: rougeL value: 0.408 name: "Avg. Test RougeL" - type: bertscore value: 0.630 name: "Avg. Test BERTScore" args: - model_type: "dbmdz/bert-base-italian-xxl-uncased" - lang: "it" - num_layers: 10 - rescale_with_baseline: True - baseline_path: "bertscore_baseline_ita.tsv" --- # IT5 Cased Small Efficient EL32 for Informal-to-formal Style Transfer 🧐 *Shout-out to [Stefan Schweter](https://github.com/stefan-it) for contributing the pre-trained efficient model!* This repository contains the checkpoint for the [IT5 Cased Small Efficient EL32](https://huggingface.co/it5/it5-efficient-small-el32) model fine-tuned on Informal-to-formal style transfer on the Italian subset of the XFORMAL dataset as part of the experiments of the paper [IT5: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation](https://arxiv.org/abs/2203.03759) by [Gabriele Sarti](https://gsarti.com) and [Malvina Nissim](https://malvinanissim.github.io). Efficient IT5 models differ from the standard ones by adopting a different vocabulary that enables cased text generation and an [optimized model architecture](https://arxiv.org/abs/2109.10686) to improve performances while reducing parameter count. The Small-EL32 replaces the original encoder from the T5 Small architecture with a 32-layer deep encoder, showing improved performances over the base model. A comprehensive overview of other released materials is provided in the [gsarti/it5](https://github.com/gsarti/it5) repository. Refer to the paper for additional details concerning the reported scores and the evaluation approach. ## Using the model Model checkpoints are available for usage in Tensorflow, Pytorch and JAX. They can be used directly with pipelines as: ```python from transformers import pipelines i2f = pipeline("text2text-generation", model='it5/it5-efficient-small-el32-informal-to-formal') i2f("nn capisco xke tt i ragazzi lo fanno") >>> [{"generated_text": "non comprendo perché tutti i ragazzi agiscono così"}] ``` or loaded using autoclasses: ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("it5/it5-efficient-small-el32-informal-to-formal") model = AutoModelForSeq2SeqLM.from_pretrained("it5/it5-efficient-small-el32-informal-to-formal") ``` If you use this model in your research, please cite our work as: ```bibtex @article{sarti-nissim-2022-it5, title={{IT5}: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation}, author={Sarti, Gabriele and Nissim, Malvina}, journal={ArXiv preprint 2203.03759}, url={https://arxiv.org/abs/2203.03759}, year={2022}, month={mar} } ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
doc2query/msmarco-hindi-mt5-base-v1
503282cf505231c52866abc85b0d3ef6bc2a2aca
2022-04-29T11:56:03.000Z
[ "pytorch", "mt5", "text2text-generation", "hi", "dataset:unicamp-dl/mmarco", "arxiv:1904.08375", "arxiv:2104.08663", "arxiv:2112.07577", "transformers", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
doc2query
null
doc2query/msmarco-hindi-mt5-base-v1
8
null
transformers
13,323
--- language: hi datasets: - unicamp-dl/mmarco widget: - text: "पाइथन एक सामान्य कार्यों के लिए उपयुक्त, उच्च स्तरीय प्रोग्रामिंग भाषा (General Purpose and High Level Programming language), इन्टरैक्टिव, ऑब्जेक्ट ओरिएन्टेड, स्क्रिप्टिंग भाषा है। इस भाषा को इस तरह से डिजाइन किया गया है ताकि इसमें लिखे गए कोड आसानी से पढ़े और समझे जा सकें।" license: apache-2.0 --- # doc2query/msmarco-hindi-mt5-base-v1 This is a [doc2query](https://arxiv.org/abs/1904.08375) model based on mT5 (also known as [docT5query](https://cs.uwaterloo.ca/~jimmylin/publications/Nogueira_Lin_2019_docTTTTTquery-v2.pdf)). It can be used for: - **Document expansion**: You generate for your paragraphs 20-40 queries and index the paragraphs and the generates queries in a standard BM25 index like Elasticsearch, OpenSearch, or Lucene. The generated queries help to close the lexical gap of lexical search, as the generate queries contain synonyms. Further, it re-weights words giving important words a higher weight even if they appear seldomn in a paragraph. In our [BEIR](https://arxiv.org/abs/2104.08663) paper we showed that BM25+docT5query is a powerful search engine. In the [BEIR repository](https://github.com/beir-cellar/beir) we have an example how to use docT5query with Pyserini. - **Domain Specific Training Data Generation**: It can be used to generate training data to learn an embedding model. In our [GPL-Paper](https://arxiv.org/abs/2112.07577) / [GPL Example on SBERT.net](https://www.sbert.net/examples/domain_adaptation/README.html#gpl-generative-pseudo-labeling) we have an example how to use the model to generate (query, text) pairs for a given collection of unlabeled texts. These pairs can then be used to train powerful dense embedding models. ## Usage ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM import torch model_name = 'doc2query/msmarco-hindi-mt5-base-v1' tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name) text = "पाइथन एक सामान्य कार्यों के लिए उपयुक्त, उच्च स्तरीय प्रोग्रामिंग भाषा (General Purpose and High Level Programming language), इन्टरैक्टिव, ऑब्जेक्ट ओरिएन्टेड, स्क्रिप्टिंग भाषा है। इस भाषा को इस तरह से डिजाइन किया गया है ताकि इसमें लिखे गए कोड आसानी से पढ़े और समझे जा सकें।" def create_queries(para): input_ids = tokenizer.encode(para, return_tensors='pt') with torch.no_grad(): # Here we use top_k / top_k random sampling. It generates more diverse queries, but of lower quality sampling_outputs = model.generate( input_ids=input_ids, max_length=64, do_sample=True, top_p=0.95, top_k=10, num_return_sequences=5 ) # Here we use Beam-search. It generates better quality queries, but with less diversity beam_outputs = model.generate( input_ids=input_ids, max_length=64, num_beams=5, no_repeat_ngram_size=2, num_return_sequences=5, early_stopping=True ) print("Paragraph:") print(para) print("\nBeam Outputs:") for i in range(len(beam_outputs)): query = tokenizer.decode(beam_outputs[i], skip_special_tokens=True) print(f'{i + 1}: {query}') print("\nSampling Outputs:") for i in range(len(sampling_outputs)): query = tokenizer.decode(sampling_outputs[i], skip_special_tokens=True) print(f'{i + 1}: {query}') create_queries(text) ``` **Note:** `model.generate()` is non-deterministic for top_k/top_n sampling. It produces different queries each time you run it. ## Training This model fine-tuned [google/mt5-base](https://huggingface.co/google/mt5-base) for 66k training steps (4 epochs on the 500k training pairs from MS MARCO). For the training script, see the `train_script.py` in this repository. The input-text was truncated to 320 word pieces. Output text was generated up to 64 word pieces. This model was trained on a (query, passage) from the [mMARCO dataset](https://github.com/unicamp-dl/mMARCO).
FremyCompany/tmpxcg_kes9
fcd738f2c20cf381e452a2c77a47dfde66d91af5
2022-04-29T16:05:37.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
FremyCompany
null
FremyCompany/tmpxcg_kes9
8
null
transformers
13,324
Entry not found
shahidul034/drug_sentiment_analysis
5b062dbc1305a7f370a1b0c1302cc4647b4655c6
2022-04-30T11:22:10.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
shahidul034
null
shahidul034/drug_sentiment_analysis
8
null
transformers
13,325
Entry not found
rbesaleli/t5-regex-summarization
cf90e650a19297b2a11ecc9b82393f7648314ab5
2022-05-01T22:39:15.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
rbesaleli
null
rbesaleli/t5-regex-summarization
8
null
transformers
13,326
Entry not found
ali2066/DistilBERTFINAL_ctxSentence_TRAIN_all_TEST_french_second_train_set_french_False
1637975f24e1939c854b45ef4edb64405f5bd288
2022-06-20T01:54:34.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
ali2066
null
ali2066/DistilBERTFINAL_ctxSentence_TRAIN_all_TEST_french_second_train_set_french_False
8
null
transformers
13,327
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: _ctxSentence_TRAIN_all_TEST_french_second_train_set_french_False results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # _ctxSentence_TRAIN_all_TEST_french_second_train_set_french_False This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base](https://huggingface.co/cardiffnlp/twitter-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4936 - Precision: 0.8189 - Recall: 0.9811 - F1: 0.8927 - Accuracy: 0.8120 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 13 | 0.5150 | 0.7447 | 1.0 | 0.8537 | 0.7447 | | No log | 2.0 | 26 | 0.5565 | 0.7447 | 1.0 | 0.8537 | 0.7447 | | No log | 3.0 | 39 | 0.5438 | 0.7778 | 1.0 | 0.8750 | 0.7872 | | No log | 4.0 | 52 | 0.5495 | 0.7778 | 1.0 | 0.8750 | 0.7872 | | No log | 5.0 | 65 | 0.5936 | 0.7778 | 1.0 | 0.8750 | 0.7872 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
milyiyo/paraphraser-spanish-t5-small
50c64bdfef2f25b0633137bcd4746043d06891d3
2022-05-02T21:52:21.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
text2text-generation
false
milyiyo
null
milyiyo/paraphraser-spanish-t5-small
8
null
transformers
13,328
--- license: mit tags: - generated_from_trainer model-index: - name: paraphraser-spanish-t5-small results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # paraphraser-spanish-t5-small This model is a fine-tuned version of [flax-community/spanish-t5-small](https://huggingface.co/flax-community/spanish-t5-small) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 1.1307 - eval_runtime: 11.172 - eval_samples_per_second: 162.37 - eval_steps_per_second: 16.291 - epoch: 0.51 - step: 14380 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
armanc/affiliations-roberta-base-0.0.1-0.203
aedf737185e2788f10fefe047230785974f1515a
2022-05-03T00:44:46.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
armanc
null
armanc/affiliations-roberta-base-0.0.1-0.203
8
null
transformers
13,329
Entry not found
pietrolesci/t5v1_1-base-mnli_snli_anli
2388064dc3ae02bb36c80d321d8f2acb7231daef
2022-05-03T14:46:07.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
pietrolesci
null
pietrolesci/t5v1_1-base-mnli_snli_anli
8
null
transformers
13,330
## Overview T5-Base v1.1 model trained to generate hypotheses given a premise and a label. Below the settings used to train it. ```yaml Experiment configurations ├── datasets │ └── snli_train: │ dataset_name: snli │ dataset_config_name: null │ cache_dir: null │ input_fields: │ - premise │ - hypothesis │ target_field: label │ train_subset_names: null │ val_subset_names: validation │ test_subset_names: none │ train_val_split: null │ limit_train_samples: null │ limit_val_samples: null │ limit_test_samples: null │ sampling_kwargs: │ sampling_strategy: random │ seed: 42 │ replace: false │ align_labels_with_mapping: null │ avoid_consistency_check: false │ predict_label_mapping: null │ anli_train: │ dataset_name: anli │ dataset_config_name: null │ cache_dir: null │ input_fields: │ - premise │ - hypothesis │ target_field: label │ train_subset_names: │ - train_r1 │ - train_r2 │ - train_r3 │ val_subset_names: │ - dev_r1 │ - dev_r2 │ - dev_r3 │ test_subset_names: none │ train_val_split: null │ limit_train_samples: null │ limit_val_samples: null │ limit_test_samples: null │ sampling_kwargs: │ sampling_strategy: random │ seed: 42 │ replace: false │ align_labels_with_mapping: null │ avoid_consistency_check: false │ predict_label_mapping: null │ mnli_train: │ dataset_name: multi_nli │ dataset_config_name: null │ cache_dir: null │ input_fields: │ - premise │ - hypothesis │ target_field: label │ train_subset_names: null │ val_subset_names: validation_matched │ test_subset_names: none │ train_val_split: null │ limit_train_samples: null │ limit_val_samples: null │ limit_test_samples: null │ sampling_kwargs: │ sampling_strategy: random │ seed: 42 │ replace: false │ align_labels_with_mapping: null │ avoid_consistency_check: false │ predict_label_mapping: null │ snli: │ dataset_name: snli │ dataset_config_name: null │ cache_dir: null │ input_fields: │ - premise │ - hypothesis │ target_field: label │ train_subset_names: none │ val_subset_names: none │ test_subset_names: null │ train_val_split: null │ limit_train_samples: null │ limit_val_samples: null │ limit_test_samples: null │ sampling_kwargs: │ sampling_strategy: random │ seed: 42 │ replace: false │ align_labels_with_mapping: null │ avoid_consistency_check: false │ predict_label_mapping: null │ anli: │ dataset_name: anli │ dataset_config_name: null │ cache_dir: null │ input_fields: │ - premise │ - hypothesis │ target_field: label │ train_subset_names: none │ val_subset_names: none │ test_subset_names: │ - test_r1 │ - test_r2 │ - test_r3 │ train_val_split: null │ limit_train_samples: null │ limit_val_samples: null │ limit_test_samples: null │ sampling_kwargs: │ sampling_strategy: random │ seed: 42 │ replace: false │ align_labels_with_mapping: null │ avoid_consistency_check: false │ predict_label_mapping: null │ mnli: │ dataset_name: multi_nli │ dataset_config_name: null │ cache_dir: null │ input_fields: │ - premise │ - hypothesis │ target_field: label │ train_subset_names: none │ val_subset_names: none │ test_subset_names: validation_mismatched │ train_val_split: null │ limit_train_samples: null │ limit_val_samples: null │ limit_test_samples: null │ sampling_kwargs: │ sampling_strategy: random │ seed: 42 │ replace: false │ align_labels_with_mapping: null │ avoid_consistency_check: false │ predict_label_mapping: null │ ├── data │ └── _target_: src.task.nli.data.NLIGenerationData.from_config │ main_dataset_name: null │ use_additional_as_test: null │ dataloader: │ batch_size: 96 │ eval_batch_size: 96 │ num_workers: 8 │ pin_memory: true │ drop_last: false │ persistent_workers: false │ shuffle: true │ seed_dataloader: 42 │ replacement: false │ processing: │ preprocessing_num_workers: 8 │ preprocessing_batch_size: 1000 │ load_from_cache_file: true │ padding: longest │ truncation: longest_first │ max_source_length: 128 │ max_target_length: 128 │ template: 'premise: $premise $label hypothesis: ' │ tokenizer: │ _target_: transformers.AutoTokenizer.from_pretrained │ pretrained_model_name_or_path: pietrolesci/t5-v1_1-base_nli_gen │ use_fast: true │ ├── task │ └── optimizer: │ name: Adafactor │ lr: 0.001 │ weight_decay: 0.0 │ no_decay: │ - bias │ - LayerNorm.weight │ decay_rate: -0.8 │ clip_threshold: 1.0 │ relative_step: false │ scale_parameter: false │ warmup_init: false │ scheduler: │ name: constant_schedule │ model: │ model_name_or_path: pietrolesci/t5-v1_1-base_nli_gen │ checkpoint_path: null │ freeze: false │ seed_init_weight: 42 │ _target_: src.task.nli.NLIGenerationTask.from_config │ generation: │ generation_max_length: 128 │ generation_min_length: 3 │ do_sample: true │ early_stopping: false │ num_beams: 1 │ temperature: 1.0 │ top_k: 50 │ top_p: 0.95 │ repetition_penalty: null │ length_penalty: null │ no_repeat_ngram_size: null │ encoder_no_repeat_ngram_size: null │ num_return_sequences: 1 │ max_time: null │ max_new_tokens: null │ decoder_start_token_id: null │ use_cache: null │ num_beam_groups: null │ diversity_penalty: null │ ├── trainer │ └── _target_: pytorch_lightning.Trainer │ callbacks: │ lr_monitor: │ _target_: pytorch_lightning.callbacks.LearningRateMonitor │ logging_interval: step │ log_momentum: false │ model_checkpoint: │ _target_: pytorch_lightning.callbacks.ModelCheckpoint │ dirpath: ./checkpoints/ │ filename: nli_generator_sma-epoch={epoch:02d}-val_loss={val/aggregat │ monitor: val/aggregated_loss │ mode: min │ verbose: false │ save_last: true │ save_top_k: 1 │ auto_insert_metric_name: false │ save_on_train_epoch_end: false │ rich_model_summary: │ _target_: pytorch_lightning.callbacks.RichModelSummary │ max_depth: 1 │ log_grad_norm: │ _target_: src.core.callbacks.LogGradNorm │ norm_type: 2 │ group_separator: / │ only_total: true │ on_step: true │ on_epoch: false │ prog_bar: true │ log_generated_text: │ _target_: src.core.callbacks.GenerateAndLogText │ dirpath: ./generated_text │ type: generated_text │ pop_keys_after_logging: true │ on_train: false │ on_validation: false │ on_test: true │ log_to_wandb: true │ wandb_log_dataset_sizes: │ _target_: src.core.callbacks.WandbLogDatasetSizes │ logger: │ wandb: │ _target_: pytorch_lightning.loggers.WandbLogger │ project: nli_debiasing │ entity: team_brushino │ name: nli_generator_sma │ save_dir: ./ │ offline: false │ log_model: false │ group: generator │ job_type: genearator_training │ tags: │ - nli_generator_sma │ - seed=42 │ - seed_dataloader=42 │ notes: nli_generator_sma_time=01-37-04 │ enable_checkpointing: true │ enable_progress_bar: true │ enable_model_summary: true │ gradient_clip_val: 6 │ gradient_clip_algorithm: null │ accelerator: gpu │ devices: auto │ gpus: null │ auto_select_gpus: true │ accumulate_grad_batches: 1 │ max_epochs: 2 │ min_epochs: 1 │ max_steps: -1 │ min_steps: null │ max_time: null │ num_sanity_val_steps: 2 │ overfit_batches: 0.0 │ fast_dev_run: false │ limit_train_batches: 1.0 │ limit_val_batches: 1.0 │ limit_test_batches: 1.0 │ profiler: null │ detect_anomaly: false │ deterministic: false │ check_val_every_n_epoch: 1 │ val_check_interval: 0.5 │ log_every_n_steps: 1 │ move_metrics_to_cpu: false │ └── training └── run_val_before_fit: false run_val_after_fit: false run_test_before_fit: false run_test_after_fit: true lr: 0.001 seed: 42 show_batch: false batch_size: 96 eval_batch_size: 96 num_workers: 8 pin_memory: true drop_last: false persistent_workers: false shuffle: true seed_dataloader: 42 ignore_warnings: true experiment_name: nli_generator_sma ```
ml4pubmed/albert-base-v2_pub_section
5a7871486dec5a70884412d8d229a1262d18d2c9
2022-05-04T00:09:08.000Z
[ "pytorch", "albert", "text-classification", "en", "dataset:pubmed", "transformers" ]
text-classification
false
ml4pubmed
null
ml4pubmed/albert-base-v2_pub_section
8
null
transformers
13,331
--- language: - en datasets: - pubmed metrics: - f1 pipeline_tag: text-classification widget: - text: "many pathogenic processes and diseases are the result of an erroneous activation of the complement cascade and a number of inhibitors of complement have thus been examined for anti-inflammatory actions." example_title: "background example" - text: "a total of 192 mi patients and 140 control persons were included." example_title: "methods example" - text: "mi patients had 18 % higher plasma levels of map44 (iqr 11-25 %) as compared to the healthy control group (p < 0. 001.)" example_title: "results example" - text: "the finding that a brief cb group intervention delivered by real-world providers significantly reduced mdd onset relative to both brochure control and bibliotherapy is very encouraging, although effects on continuous outcome measures were small or nonsignificant and approximately half the magnitude of those found in efficacy research, potentially because the present sample reported lower initial depression." example_title: "conclusions example" - text: "in order to understand and update the prevalence of myopia in taiwan, a nationwide survey was performed in 1995." example_title: "objective example" --- # albert-base-v2_pub_section - original model file name: textclassifer_albert-base-v2_pubmed_full - This is a fine-tuned checkpoint of `albert-base-v2` for document section text classification - possible document section classes are:BACKGROUND, CONCLUSIONS, METHODS, OBJECTIVE, RESULTS, ## metadata ### training_parameters - date_run: Apr-26-2022_t-04 - huggingface_tag: albert-base-v2
NbAiLab/wav2vec2-large-voxrex-npsc-nst
8290317356df8c6886e6b7f95aad044befdfd4eb
2022-06-14T14:17:09.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:cc0-1.0", "model-index" ]
automatic-speech-recognition
false
NbAiLab
null
NbAiLab/wav2vec2-large-voxrex-npsc-nst
8
null
transformers
13,332
--- license: cc0-1.0 tags: - generated_from_trainer model-index: - name: wav2vec2-large-voxrex-npsc-nst results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-voxrex-npsc-nst This model is a fine-tuned version of [KBLab/wav2vec2-large-voxrex](https://huggingface.co/KBLab/wav2vec2-large-voxrex) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0475 - Wer: 0.0514 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 15.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:------:|:---------------:|:------:| | 3.3888 | 0.05 | 500 | 3.2558 | 1.0 | | 2.7683 | 0.11 | 1000 | 2.4163 | 1.0000 | | 0.6279 | 0.16 | 1500 | 0.3610 | 0.3608 | | 0.5093 | 0.21 | 2000 | 0.2610 | 0.2776 | | 0.4024 | 0.26 | 2500 | 0.2219 | 0.2303 | | 0.3705 | 0.32 | 3000 | 0.1940 | 0.2043 | | 0.3588 | 0.37 | 3500 | 0.1806 | 0.1822 | | 0.3312 | 0.42 | 4000 | 0.1611 | 0.1736 | | 0.3062 | 0.47 | 4500 | 0.1571 | 0.1619 | | 0.2838 | 0.53 | 5000 | 0.1482 | 0.1552 | | 0.2896 | 0.58 | 5500 | 0.1406 | 0.1482 | | 0.2704 | 0.63 | 6000 | 0.1311 | 0.1467 | | 0.263 | 0.69 | 6500 | 0.1258 | 0.1406 | | 0.2574 | 0.74 | 7000 | 0.1252 | 0.1343 | | 0.252 | 0.79 | 7500 | 0.1162 | 0.1279 | | 0.2355 | 0.84 | 8000 | 0.1161 | 0.1275 | | 0.2381 | 0.9 | 8500 | 0.1095 | 0.1247 | | 0.2354 | 0.95 | 9000 | 0.1106 | 0.1250 | | 0.234 | 1.0 | 9500 | 0.1044 | 0.1186 | | 0.2094 | 1.05 | 10000 | 0.1052 | 0.1157 | | 0.2088 | 1.11 | 10500 | 0.1026 | 0.1158 | | 0.2123 | 1.16 | 11000 | 0.0998 | 0.1120 | | 0.3087 | 1.21 | 11500 | 0.0971 | 0.1108 | | 0.1995 | 1.26 | 12000 | 0.0973 | 0.1085 | | 0.1989 | 1.32 | 12500 | 0.0928 | 0.1063 | | 0.1993 | 1.37 | 13000 | 0.0920 | 0.1064 | | 0.1996 | 1.42 | 13500 | 0.0904 | 0.1050 | | 0.1917 | 1.48 | 14000 | 0.0895 | 0.1051 | | 0.1857 | 1.53 | 14500 | 0.0889 | 0.1038 | | 0.1871 | 1.58 | 15000 | 0.0867 | 0.1054 | | 0.2047 | 1.63 | 15500 | 0.0866 | 0.1017 | | 0.1845 | 1.69 | 16000 | 0.0865 | 0.1007 | | 0.178 | 1.74 | 16500 | 0.0835 | 0.0999 | | 0.1741 | 1.79 | 17000 | 0.0838 | 0.0985 | | 0.1737 | 1.84 | 17500 | 0.0833 | 0.0966 | | 0.1713 | 1.9 | 18000 | 0.0799 | 0.0963 | | 0.1703 | 1.95 | 18500 | 0.0802 | 0.0950 | | 0.1735 | 2.0 | 19000 | 0.0785 | 0.0926 | | 0.1619 | 2.06 | 19500 | 0.0785 | 0.0930 | | 0.1707 | 2.11 | 20000 | 0.0787 | 0.0928 | | 0.17 | 2.16 | 20500 | 0.0765 | 0.0902 | | 0.1604 | 2.21 | 21000 | 0.0772 | 0.0918 | | 0.1576 | 2.27 | 21500 | 0.0745 | 0.0912 | | 0.1529 | 2.32 | 22000 | 0.0741 | 0.0906 | | 0.1435 | 2.37 | 22500 | 0.0751 | 0.0888 | | 0.1526 | 2.42 | 23000 | 0.0734 | 0.0892 | | 0.1471 | 2.48 | 23500 | 0.0746 | 0.0886 | | 0.1553 | 2.53 | 24000 | 0.0727 | 0.0872 | | 0.1641 | 2.58 | 24500 | 0.0720 | 0.0862 | | 0.1495 | 2.64 | 25000 | 0.0707 | 0.0868 | | 0.1498 | 2.69 | 25500 | 0.0719 | 0.0864 | | 0.1438 | 2.74 | 26000 | 0.0703 | 0.0853 | | 0.1532 | 2.79 | 26500 | 0.0710 | 0.0854 | | 0.1435 | 2.85 | 27000 | 0.0690 | 0.0847 | | 0.1486 | 2.9 | 27500 | 0.0683 | 0.0882 | | 0.1359 | 2.95 | 28000 | 0.0673 | 0.0839 | | 0.1309 | 3.0 | 28500 | 0.0687 | 0.0843 | | 0.1312 | 3.06 | 29000 | 0.0696 | 0.0865 | | 0.1387 | 3.11 | 29500 | 0.0667 | 0.0857 | | 0.1327 | 3.16 | 30000 | 0.0667 | 0.0845 | | 0.1251 | 3.21 | 30500 | 0.0662 | 0.0820 | | 0.1415 | 3.27 | 31000 | 0.0652 | 0.0831 | | 0.1221 | 3.32 | 31500 | 0.0660 | 0.0822 | | 0.1337 | 3.37 | 32000 | 0.0658 | 0.0799 | | 0.1342 | 3.43 | 32500 | 0.0650 | 0.0808 | | 0.1391 | 3.48 | 33000 | 0.0658 | 0.0791 | | 0.1351 | 3.53 | 33500 | 0.0654 | 0.0794 | | 0.1309 | 3.58 | 34000 | 0.0650 | 0.0781 | | 0.1317 | 3.64 | 34500 | 0.0629 | 0.0783 | | 0.1326 | 3.69 | 35000 | 0.0637 | 0.0795 | | 0.1296 | 3.74 | 35500 | 0.0624 | 0.0773 | | 0.1156 | 3.79 | 36000 | 0.0613 | 0.0759 | | 0.1242 | 3.85 | 36500 | 0.0627 | 0.0761 | | 0.1251 | 3.9 | 37000 | 0.0638 | 0.0758 | | 0.1335 | 3.95 | 37500 | 0.0620 | 0.0756 | | 0.1374 | 4.01 | 38000 | 0.0628 | 0.0756 | | 0.1227 | 4.06 | 38500 | 0.0637 | 0.0770 | | 0.1144 | 4.11 | 39000 | 0.0637 | 0.0775 | | 0.1222 | 4.16 | 39500 | 0.0630 | 0.0738 | | 0.1207 | 4.22 | 40000 | 0.0607 | 0.0720 | | 0.1181 | 4.27 | 40500 | 0.0608 | 0.0724 | | 0.1259 | 4.32 | 41000 | 0.0608 | 0.0734 | | 0.1137 | 4.37 | 41500 | 0.0623 | 0.0718 | | 0.1275 | 4.43 | 42000 | 0.0620 | 0.0721 | | 0.1218 | 4.48 | 42500 | 0.0599 | 0.0703 | | 0.1212 | 4.53 | 43000 | 0.0612 | 0.0708 | | 0.1144 | 4.59 | 43500 | 0.0589 | 0.0702 | | 0.1199 | 4.64 | 44000 | 0.0589 | 0.0695 | | 0.1113 | 4.69 | 44500 | 0.0601 | 0.0698 | | 0.1108 | 4.74 | 45000 | 0.0584 | 0.0695 | | 0.1196 | 4.8 | 45500 | 0.0596 | 0.0694 | | 0.1216 | 4.85 | 46000 | 0.0578 | 0.0703 | | 0.1188 | 4.9 | 46500 | 0.0596 | 0.0684 | | 0.1122 | 4.95 | 47000 | 0.0584 | 0.0671 | | 0.1115 | 5.01 | 47500 | 0.0594 | 0.0682 | | 0.1777 | 5.06 | 48000 | 0.0597 | 0.0682 | | 0.108 | 5.11 | 48500 | 0.0573 | 0.0691 | | 0.1132 | 5.16 | 49000 | 0.0583 | 0.0666 | | 0.1091 | 5.22 | 49500 | 0.0582 | 0.0672 | | 0.1056 | 5.27 | 50000 | 0.0578 | 0.0674 | | 0.1027 | 5.32 | 50500 | 0.0574 | 0.0671 | | 0.1112 | 5.38 | 51000 | 0.0569 | 0.0659 | | 0.1096 | 5.43 | 51500 | 0.0582 | 0.0662 | | 0.1098 | 5.48 | 52000 | 0.0576 | 0.0667 | | 0.1088 | 5.53 | 52500 | 0.0560 | 0.0679 | | 0.1076 | 5.59 | 53000 | 0.0579 | 0.0664 | | 0.1037 | 5.64 | 53500 | 0.0556 | 0.0661 | | 0.1039 | 5.69 | 54000 | 0.0572 | 0.0675 | | 0.108 | 5.74 | 54500 | 0.0562 | 0.0662 | | 0.1069 | 5.8 | 55000 | 0.0576 | 0.0663 | | 0.1066 | 5.85 | 55500 | 0.0564 | 0.0651 | | 0.0939 | 5.9 | 56000 | 0.0566 | 0.0644 | | 0.1118 | 5.96 | 56500 | 0.0570 | 0.0650 | | 0.1111 | 6.01 | 57000 | 0.0563 | 0.0668 | | 0.1014 | 6.06 | 57500 | 0.0557 | 0.0660 | | 0.0971 | 6.11 | 58000 | 0.0567 | 0.0667 | | 0.0932 | 6.17 | 58500 | 0.0559 | 0.0664 | | 0.1002 | 6.22 | 59000 | 0.0551 | 0.0640 | | 0.1028 | 6.27 | 59500 | 0.0560 | 0.0629 | | 0.0992 | 6.32 | 60000 | 0.0547 | 0.0641 | | 0.0975 | 6.38 | 60500 | 0.0556 | 0.0630 | | 0.0957 | 6.43 | 61000 | 0.0555 | 0.0632 | | 0.0931 | 6.48 | 61500 | 0.0546 | 0.0641 | | 0.0999 | 6.54 | 62000 | 0.0556 | 0.0633 | | 0.0998 | 6.59 | 62500 | 0.0539 | 0.0628 | | 0.0991 | 6.64 | 63000 | 0.0559 | 0.0630 | | 0.1027 | 6.69 | 63500 | 0.0549 | 0.0628 | | 0.097 | 6.75 | 64000 | 0.0547 | 0.0628 | | 0.0933 | 6.8 | 64500 | 0.0544 | 0.0633 | | 0.0919 | 6.85 | 65000 | 0.0535 | 0.0640 | | 0.0973 | 6.9 | 65500 | 0.0543 | 0.0619 | | 0.0979 | 6.96 | 66000 | 0.0525 | 0.0620 | | 0.1076 | 7.01 | 66500 | 0.0529 | 0.0615 | | 0.0888 | 7.06 | 67000 | 0.0546 | 0.0617 | | 0.0926 | 7.11 | 67500 | 0.0530 | 0.0636 | | 0.0902 | 7.17 | 68000 | 0.0540 | 0.0631 | | 0.1004 | 7.22 | 68500 | 0.0529 | 0.0624 | | 0.0963 | 7.27 | 69000 | 0.0534 | 0.0631 | | 0.0946 | 7.33 | 69500 | 0.0534 | 0.0601 | | 0.0897 | 7.38 | 70000 | 0.0525 | 0.0607 | | 0.0925 | 7.43 | 70500 | 0.0535 | 0.0599 | | 0.0883 | 7.48 | 71000 | 0.0518 | 0.0605 | | 0.0942 | 7.54 | 71500 | 0.0522 | 0.0587 | | 0.0863 | 7.59 | 72000 | 0.0533 | 0.0593 | | 0.0894 | 7.64 | 72500 | 0.0529 | 0.0587 | | 0.0908 | 7.69 | 73000 | 0.0519 | 0.0596 | | 0.0878 | 7.75 | 73500 | 0.0521 | 0.0585 | | 0.0949 | 7.8 | 74000 | 0.0524 | 0.0588 | | 0.0962 | 7.85 | 74500 | 0.0521 | 0.0581 | | 0.0918 | 7.91 | 75000 | 0.0513 | 0.0579 | | 0.0933 | 7.96 | 75500 | 0.0522 | 0.0582 | | 0.0839 | 8.01 | 76000 | 0.0536 | 0.0579 | | 0.0868 | 8.06 | 76500 | 0.0526 | 0.0577 | | 0.086 | 8.12 | 77000 | 0.0525 | 0.0590 | | 0.0801 | 8.17 | 77500 | 0.0533 | 0.0586 | | 0.0845 | 8.22 | 78000 | 0.0516 | 0.0578 | | 0.0895 | 8.27 | 78500 | 0.0530 | 0.0583 | | 0.0841 | 8.33 | 79000 | 0.0515 | 0.0584 | | 0.0921 | 8.38 | 79500 | 0.0518 | 0.0573 | | 0.0897 | 8.43 | 80000 | 0.0514 | 0.0583 | | 0.0889 | 8.49 | 80500 | 0.0508 | 0.0582 | | 0.1783 | 8.54 | 81000 | 0.0507 | 0.0574 | | 0.0854 | 8.59 | 81500 | 0.0505 | 0.0580 | | 0.0855 | 8.64 | 82000 | 0.0513 | 0.0577 | | 0.0843 | 8.7 | 82500 | 0.0508 | 0.0580 | | 0.0858 | 8.75 | 83000 | 0.0501 | 0.0578 | | 0.0814 | 8.8 | 83500 | 0.0509 | 0.0580 | | 0.0823 | 8.85 | 84000 | 0.0509 | 0.0575 | | 0.0857 | 8.91 | 84500 | 0.0499 | 0.0599 | | 0.0787 | 8.96 | 85000 | 0.0505 | 0.0598 | | 0.0805 | 9.01 | 85500 | 0.0510 | 0.0606 | | 0.0798 | 9.07 | 86000 | 0.0515 | 0.0603 | | 0.0812 | 9.12 | 86500 | 0.0507 | 0.0586 | | 0.0781 | 9.17 | 87000 | 0.0511 | 0.0612 | | 0.0814 | 9.22 | 87500 | 0.0508 | 0.0589 | | 0.0821 | 9.28 | 88000 | 0.0507 | 0.0588 | | 0.0808 | 9.33 | 88500 | 0.0498 | 0.0571 | | 0.0793 | 9.38 | 89000 | 0.0502 | 0.0574 | | 0.0791 | 9.43 | 89500 | 0.0498 | 0.0568 | | 0.0779 | 9.49 | 90000 | 0.0507 | 0.0570 | | 0.0777 | 9.54 | 90500 | 0.0508 | 0.0573 | | 0.0816 | 9.59 | 91000 | 0.0493 | 0.0573 | | 0.0835 | 9.64 | 91500 | 0.0496 | 0.0563 | | 0.0827 | 9.7 | 92000 | 0.0493 | 0.0559 | | 0.0904 | 9.75 | 92500 | 0.0492 | 0.0564 | | 0.0753 | 9.8 | 93000 | 0.0503 | 0.0557 | | 0.0748 | 9.86 | 93500 | 0.0493 | 0.0554 | | 0.0759 | 9.91 | 94000 | 0.0499 | 0.0557 | | 0.0825 | 9.96 | 94500 | 0.0498 | 0.0566 | | 0.0787 | 10.01 | 95000 | 0.0499 | 0.0561 | | 0.0804 | 10.07 | 95500 | 0.0499 | 0.0562 | | 0.0784 | 10.12 | 96000 | 0.0500 | 0.0555 | | 0.0747 | 10.17 | 96500 | 0.0497 | 0.0548 | | 0.0748 | 10.22 | 97000 | 0.0492 | 0.0565 | | 0.0732 | 10.28 | 97500 | 0.0493 | 0.0547 | | 0.0766 | 10.33 | 98000 | 0.0490 | 0.0552 | | 0.0762 | 10.38 | 98500 | 0.0504 | 0.0551 | | 0.0744 | 10.44 | 99000 | 0.0496 | 0.0553 | | 0.0702 | 10.49 | 99500 | 0.0496 | 0.0548 | | 0.0802 | 10.54 | 100000 | 0.0499 | 0.0545 | | 0.1605 | 10.59 | 100500 | 0.0477 | 0.0543 | | 0.0768 | 10.65 | 101000 | 0.0487 | 0.0552 | | 0.0833 | 10.7 | 101500 | 0.0495 | 0.0550 | | 0.0782 | 10.75 | 102000 | 0.0479 | 0.0553 | | 0.0813 | 10.8 | 102500 | 0.0490 | 0.0542 | | 0.0712 | 10.86 | 103000 | 0.0485 | 0.0541 | | 0.0703 | 10.91 | 103500 | 0.0486 | 0.0544 | | 0.0765 | 10.96 | 104000 | 0.0480 | 0.0538 | | 0.0796 | 11.02 | 104500 | 0.0486 | 0.0535 | | 0.0778 | 11.07 | 105000 | 0.0492 | 0.0535 | | 0.0735 | 11.12 | 105500 | 0.0494 | 0.0533 | | 0.068 | 11.17 | 106000 | 0.0485 | 0.0528 | | 0.0687 | 11.23 | 106500 | 0.0498 | 0.0534 | | 0.0641 | 11.28 | 107000 | 0.0493 | 0.0534 | | 0.0712 | 11.33 | 107500 | 0.0485 | 0.0526 | | 0.0827 | 11.38 | 108000 | 0.0484 | 0.0530 | | 0.0715 | 11.44 | 108500 | 0.0480 | 0.0533 | | 0.0733 | 11.49 | 109000 | 0.0482 | 0.0532 | | 0.0754 | 11.54 | 109500 | 0.0481 | 0.0537 | | 0.0719 | 11.59 | 110000 | 0.0475 | 0.0533 | | 0.0707 | 11.65 | 110500 | 0.0479 | 0.0536 | | 0.0687 | 11.7 | 111000 | 0.0483 | 0.0535 | | 0.0713 | 11.75 | 111500 | 0.0485 | 0.0535 | | 0.0674 | 11.81 | 112000 | 0.0482 | 0.0537 | | 0.0704 | 11.86 | 112500 | 0.0487 | 0.0537 | | 0.0691 | 11.91 | 113000 | 0.0484 | 0.0541 | | 0.0708 | 11.96 | 113500 | 0.0485 | 0.0548 | | 0.0683 | 12.02 | 114000 | 0.0487 | 0.0541 | | 0.0691 | 12.07 | 114500 | 0.0492 | 0.0540 | | 0.0679 | 12.12 | 115000 | 0.0486 | 0.0540 | | 0.073 | 12.17 | 115500 | 0.0479 | 0.0545 | | 0.0647 | 12.23 | 116000 | 0.0484 | 0.0534 | | 0.0663 | 12.28 | 116500 | 0.0484 | 0.0532 | | 0.0687 | 12.33 | 117000 | 0.0483 | 0.0532 | | 0.0696 | 12.39 | 117500 | 0.0482 | 0.0541 | | 0.068 | 12.44 | 118000 | 0.0487 | 0.0531 | | 0.0681 | 12.49 | 118500 | 0.0483 | 0.0530 | | 0.0774 | 12.54 | 119000 | 0.0481 | 0.0533 | | 0.0656 | 12.6 | 119500 | 0.0484 | 0.0529 | | 0.0628 | 12.65 | 120000 | 0.0479 | 0.0533 | | 0.0657 | 12.7 | 120500 | 0.0490 | 0.0538 | | 0.0668 | 12.75 | 121000 | 0.0485 | 0.0533 | | 0.0656 | 12.81 | 121500 | 0.0484 | 0.0531 | | 0.0745 | 12.86 | 122000 | 0.0474 | 0.0526 | | 0.0654 | 12.91 | 122500 | 0.0485 | 0.0528 | | 0.0764 | 12.97 | 123000 | 0.0482 | 0.0529 | | 0.0673 | 13.02 | 123500 | 0.0491 | 0.0526 | | 0.0649 | 13.07 | 124000 | 0.0489 | 0.0527 | | 0.0655 | 13.12 | 124500 | 0.0485 | 0.0520 | | 0.0688 | 13.18 | 125000 | 0.0476 | 0.0524 | | 0.0683 | 13.23 | 125500 | 0.0475 | 0.0523 | | 0.0632 | 13.28 | 126000 | 0.0480 | 0.0528 | | 0.063 | 13.33 | 126500 | 0.0483 | 0.0528 | | 0.1418 | 13.39 | 127000 | 0.0464 | 0.0531 | | 0.0693 | 13.44 | 127500 | 0.0473 | 0.0525 | | 0.0696 | 13.49 | 128000 | 0.0477 | 0.0519 | | 0.0644 | 13.54 | 128500 | 0.0477 | 0.0520 | | 0.0625 | 13.6 | 129000 | 0.0480 | 0.0518 | | 0.0682 | 13.65 | 129500 | 0.0471 | 0.0517 | | 0.0698 | 13.7 | 130000 | 0.0480 | 0.0521 | | 0.0643 | 13.76 | 130500 | 0.0482 | 0.0522 | | 0.065 | 13.81 | 131000 | 0.0478 | 0.0521 | | 0.0648 | 13.86 | 131500 | 0.0482 | 0.0519 | | 0.0689 | 13.91 | 132000 | 0.0476 | 0.0520 | | 0.0721 | 13.97 | 132500 | 0.0473 | 0.0523 | | 0.0652 | 14.02 | 133000 | 0.0474 | 0.0519 | | 0.0651 | 14.07 | 133500 | 0.0479 | 0.0519 | | 0.0638 | 14.12 | 134000 | 0.0478 | 0.0520 | | 0.0626 | 14.18 | 134500 | 0.0482 | 0.0519 | | 0.0656 | 14.23 | 135000 | 0.0479 | 0.0521 | | 0.0633 | 14.28 | 135500 | 0.0478 | 0.0519 | | 0.0665 | 14.34 | 136000 | 0.0480 | 0.0519 | | 0.0638 | 14.39 | 136500 | 0.0478 | 0.0517 | | 0.0691 | 14.44 | 137000 | 0.0474 | 0.0515 | | 0.0642 | 14.49 | 137500 | 0.0476 | 0.0514 | | 0.0696 | 14.55 | 138000 | 0.0475 | 0.0515 | | 0.0601 | 14.6 | 138500 | 0.0478 | 0.0515 | | 0.0616 | 14.65 | 139000 | 0.0476 | 0.0515 | | 0.0648 | 14.7 | 139500 | 0.0477 | 0.0516 | | 0.0682 | 14.76 | 140000 | 0.0477 | 0.0515 | | 0.0641 | 14.81 | 140500 | 0.0474 | 0.0515 | | 0.0579 | 14.86 | 141000 | 0.0475 | 0.0514 | | 0.0613 | 14.92 | 141500 | 0.0475 | 0.0514 | | 0.0624 | 14.97 | 142000 | 0.0475 | 0.0514 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
philschmid/sagemaker-distilbert-emotion
4d97496cfe9402866b5ac0339fbdfdb8050b67cd
2022-06-23T15:13:15.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
philschmid
null
philschmid/sagemaker-distilbert-emotion
8
null
transformers
13,333
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy model-index: - name: sagemaker-distilbert-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9185 - task: type: text-classification name: Text Classification dataset: name: emotion type: emotion config: default split: test metrics: - name: Accuracy type: accuracy value: 0.9185 verified: true - name: Precision Macro type: precision value: 0.8869690559183302 verified: true - name: Precision Micro type: precision value: 0.9185 verified: true - name: Precision Weighted type: precision value: 0.9177420617963024 verified: true - name: Recall Macro type: recall value: 0.8696773617395324 verified: true - name: Recall Micro type: recall value: 0.9185 verified: true - name: Recall Weighted type: recall value: 0.9185 verified: true - name: F1 Macro type: f1 value: 0.8772854847626651 verified: true - name: F1 Micro type: f1 value: 0.9185 verified: true - name: F1 Weighted type: f1 value: 0.9175578471721796 verified: true - name: loss type: loss value: 0.24682247638702393 verified: true --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sagemaker-distilbert-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2468 - Accuracy: 0.9185 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.9175 | 1.0 | 500 | 0.2468 | 0.9185 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.1 - Datasets 1.15.1 - Tokenizers 0.10.3
domischwimmbeck/bert-base-german-cased-fine-tuned-ner
754708b8dbd7ce046136cdd7e25796d16778fd93
2022-05-05T08:07:21.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "dataset:germa_ner", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
domischwimmbeck
null
domischwimmbeck/bert-base-german-cased-fine-tuned-ner
8
null
transformers
13,334
--- license: mit tags: - generated_from_trainer datasets: - germa_ner metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-german-cased-fine-tuned-ner results: - task: name: Token Classification type: token-classification dataset: name: germa_ner type: germa_ner args: default metrics: - name: Precision type: precision value: 0.8089260808926081 - name: Recall type: recall value: 0.872836719337848 - name: F1 type: f1 value: 0.8396670285921101 - name: Accuracy type: accuracy value: 0.9748511630761677 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-german-cased-fine-tuned-ner This model is a fine-tuned version of [bert-base-german-cased](https://huggingface.co/bert-base-german-cased) on the germa_ner dataset. It achieves the following results on the evaluation set: - Loss: 0.0966 - Precision: 0.8089 - Recall: 0.8728 - F1: 0.8397 - Accuracy: 0.9749 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.159 | 1.0 | 737 | 0.0922 | 0.7472 | 0.8461 | 0.7936 | 0.9703 | | 0.0714 | 2.0 | 1474 | 0.0916 | 0.7886 | 0.8713 | 0.8279 | 0.9731 | | 0.0319 | 3.0 | 2211 | 0.0966 | 0.8089 | 0.8728 | 0.8397 | 0.9749 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.9.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
Nakul24/RoBERTa-emotion-classification
54a7229a3e28f8894998a8d8396acc56237d382c
2022-05-04T20:14:35.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
Nakul24
null
Nakul24/RoBERTa-emotion-classification
8
null
transformers
13,335
Entry not found
nid989/fewshot-learning-bart-base-paraphrase-finetuned-for-chunking
dcc2e9aac0623a4d0d03d399060b1f2a7f539fce
2022-05-05T04:33:31.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
nid989
null
nid989/fewshot-learning-bart-base-paraphrase-finetuned-for-chunking
8
null
transformers
13,336
--- license: apache-2.0 ---
Colorful/BureBERT
1ffdcf63d8e03d1dd46deea076a69e5c71a08e6f
2022-05-05T07:54:11.000Z
[ "pytorch", "tf", "roberta", "text-classification", "transformers", "license:mit" ]
text-classification
false
Colorful
null
Colorful/BureBERT
8
null
transformers
13,337
--- license: mit --- BureBERT is a pre-trained language model for bug reports. It can be fine-tuned on all kinds of bug report related tasks such as bug report summarization, duplicate bug report detection, bug priority prediction, etc.
rdchambers/bert-finetuned-filler-2
206a9ff65aa9aaa3873eece7436dae52a01a6466
2022-05-05T20:55:51.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
rdchambers
null
rdchambers/bert-finetuned-filler-2
8
null
transformers
13,338
Entry not found
anuragshas/wav2vec2-xls-r-300m-bn-cv9-with-lm
f1bf37948da11ff3373fa3e90284b550554363b7
2022-05-10T16:17:38.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "bn", "dataset:mozilla-foundation/common_voice_9_0", "transformers", "mozilla-foundation/common_voice_9_0", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
anuragshas
null
anuragshas/wav2vec2-xls-r-300m-bn-cv9-with-lm
8
null
transformers
13,339
--- language: - bn license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_9_0 - generated_from_trainer datasets: - mozilla-foundation/common_voice_9_0 metrics: - wer model-index: - name: XLS-R-300M - Bengali results: - task: type: automatic-speech-recognition name: Speech Recognition dataset: type: mozilla-foundation/common_voice_9_0 name: Common Voice 9 args: bn metrics: - type: wer value: 20.150 name: Test WER - name: Test CER type: cer value: 4.813 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_9_0 - BN dataset. It achieves the following results on the evaluation set: - Loss: 0.2297 - Wer: 0.2850 - Cer: 0.0660 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 8692 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 3.675 | 2.3 | 400 | 3.5052 | 1.0 | 1.0 | | 3.0446 | 4.6 | 800 | 2.2759 | 1.0052 | 0.5215 | | 1.7276 | 6.9 | 1200 | 0.7083 | 0.6697 | 0.1969 | | 1.5171 | 9.2 | 1600 | 0.5328 | 0.5733 | 0.1568 | | 1.4176 | 11.49 | 2000 | 0.4571 | 0.5161 | 0.1381 | | 1.343 | 13.79 | 2400 | 0.3910 | 0.4522 | 0.1160 | | 1.2743 | 16.09 | 2800 | 0.3534 | 0.4137 | 0.1044 | | 1.2396 | 18.39 | 3200 | 0.3278 | 0.3877 | 0.0959 | | 1.2035 | 20.69 | 3600 | 0.3109 | 0.3741 | 0.0917 | | 1.1745 | 22.99 | 4000 | 0.2972 | 0.3618 | 0.0882 | | 1.1541 | 25.29 | 4400 | 0.2836 | 0.3427 | 0.0832 | | 1.1372 | 27.59 | 4800 | 0.2759 | 0.3357 | 0.0812 | | 1.1048 | 29.89 | 5200 | 0.2669 | 0.3284 | 0.0783 | | 1.0966 | 32.18 | 5600 | 0.2678 | 0.3249 | 0.0775 | | 1.0747 | 34.48 | 6000 | 0.2547 | 0.3134 | 0.0748 | | 1.0593 | 36.78 | 6400 | 0.2491 | 0.3077 | 0.0728 | | 1.0417 | 39.08 | 6800 | 0.2450 | 0.3012 | 0.0711 | | 1.024 | 41.38 | 7200 | 0.2402 | 0.2956 | 0.0694 | | 1.0106 | 43.68 | 7600 | 0.2351 | 0.2915 | 0.0681 | | 1.0014 | 45.98 | 8000 | 0.2328 | 0.2896 | 0.0673 | | 0.9999 | 48.28 | 8400 | 0.2318 | 0.2866 | 0.0667 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.11.0+cu102 - Datasets 2.1.1.dev0 - Tokenizers 0.12.1
okho0653/distilbert-base-uncased-finetuned-sst-2-english-zero-shot-sentiment-model
645ff7be05d39d708e8173b5988e5ae6b0d2ba72
2022-05-06T05:20:46.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
okho0653
null
okho0653/distilbert-base-uncased-finetuned-sst-2-english-zero-shot-sentiment-model
8
null
transformers
13,340
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-sst-2-english-zero-shot-sentiment-model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-sst-2-english-zero-shot-sentiment-model This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
avuhong/ESM1b_AAV2_classification
9fb74dccf1c873db79fcec73b19deaf9e84f65f3
2022-05-08T13:48:05.000Z
[ "pytorch", "tensorboard", "esm", "text-classification", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
avuhong
null
avuhong/ESM1b_AAV2_classification
8
null
transformers
13,341
--- tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: ESM1b_AAV2_classification results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ESM1b_AAV2_classification To load tokenizer from ESM, you need to install transformers with this version as follow: !git clone -b add_esm-proper --single-branch https://github.com/liujas000/transformers.git !pip -q install ./transformers This model is a fine-tuned version of [facebook/esm-1b](https://huggingface.co/facebook/esm-1b) on AAV2 dataset with ~230k sequences (Bryant et al 2020). The WT sequence (aa561-588): D E E E I R T T N P V A T E Q Y G S V S T N L Q R G N R Maximum length: 50 It achieves the following results on the evaluation set. Note:this is result of the last epoch, I think the pushed model is loaded with best checkpoint - best val_loss, I'm not so sure though :/ - Loss: 0.2250 - Accuracy: 0.9620 - F1: 0.9632 - Precision: 0.9642 - Recall: 0.9622 - Auroc: 0.9620 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 64 - total_train_batch_size: 1024 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 8 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Auroc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:------:| | No log | 1.0 | 232 | 0.1311 | 0.9495 | 0.9501 | 0.9711 | 0.9299 | 0.9502 | | No log | 2.0 | 464 | 0.1032 | 0.9606 | 0.9620 | 0.9583 | 0.9657 | 0.9604 | | 0.1924 | 3.0 | 696 | 0.0995 | 0.9627 | 0.9641 | 0.9584 | 0.9700 | 0.9625 | | 0.1924 | 4.0 | 928 | 0.1218 | 0.9611 | 0.9624 | 0.9607 | 0.9641 | 0.9610 | | 0.067 | 5.0 | 1160 | 0.1187 | 0.9622 | 0.9633 | 0.9678 | 0.9588 | 0.9623 | | 0.067 | 6.0 | 1392 | 0.1514 | 0.9612 | 0.9621 | 0.9710 | 0.9534 | 0.9615 | | 0.0271 | 7.0 | 1624 | 0.1890 | 0.9612 | 0.9626 | 0.9580 | 0.9673 | 0.9610 | | 0.0271 | 8.0 | 1856 | 0.2250 | 0.9620 | 0.9632 | 0.9642 | 0.9622 | 0.9620 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.10.3
theojolliffe/distilbart-cnn-12-6-finetuned-arxiv
d5385f8c4c7c89caa97dd05aa59f2d6c987f8834
2022-05-07T17:23:21.000Z
[ "pytorch", "tensorboard", "bart", "text2text-generation", "dataset:scientific_papers", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
theojolliffe
null
theojolliffe/distilbart-cnn-12-6-finetuned-arxiv
8
null
transformers
13,342
--- license: apache-2.0 tags: - generated_from_trainer datasets: - scientific_papers metrics: - rouge model-index: - name: distilbart-cnn-12-6-finetuned-arxiv results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: scientific_papers type: scientific_papers args: arxiv metrics: - name: Rouge1 type: rouge value: 40.0881 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbart-cnn-12-6-finetuned-arxiv This model is a fine-tuned version of [sshleifer/distilbart-cnn-12-6](https://huggingface.co/sshleifer/distilbart-cnn-12-6) on the scientific_papers dataset. It achieves the following results on the evaluation set: - Loss: 2.5467 - Rouge1: 40.0881 - Rouge2: 14.5466 - Rougel: 23.3775 - Rougelsum: 35.8672 - Gen Len: 122.4665 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:| | 2.6567 | 1.0 | 12690 | 2.5467 | 40.0881 | 14.5466 | 23.3775 | 35.8672 | 122.4665 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
nirajsaran/AdTextGeneration
5bbb6d88a72f875dba06be220ac38ab44a753ba8
2022-05-10T19:00:48.000Z
[ "pytorch", "gpt_neo", "text-generation", "transformers", "license:mit" ]
text-generation
false
nirajsaran
null
nirajsaran/AdTextGeneration
8
null
transformers
13,343
--- license: mit inference: parameters: temperature: 0.7 use_cache: false max_length: 200 top_k: 5 top_p: 0.9 widget: - text: "Sony TV" example_title: "Amazon Ad text Electronics" - text: "Apple Watch" example_title: "Amazon Ad text Wearables" - text: "Last minute shopping for Samsung headphones for" example_title: "Ads for shopping deals" - text: "Labor Day discounts for" example_title: "Ads for Holiday deals" metrics: - bleu - sacrebleu --- Generates Ad copy, currently for ads for Amazon shopping (fine tuned for electronics and wearables). **Usage Examples:** Enter the bolded text below to get the Amazon ad generated by the model. **Big savings on the new** Roku Streaming Device **Mothers Day discounts for** Apple Watch Wireless Charger USB Charging Cable **Big savings on the new Sony** **Last minute shopping for Samsung headphones for** You can try entering brand and product names like Samsung Galaxy to see the ad text generator in action. Currently fine tuned on the EleutherAI/gpt-neo-125M model **Model Performance:** The model does quite well on the Electronics and Wearables categories on which it has been fine-tuned. There are, however, occasional hallucinations, though the ad copy is mostly coherent. In other domains, it doesn't do quite as well... Tesla for Christmas today, Honda on sale
Jeevesh8/bert_ft_qqp-1
eaf6969ec3e0f838e7a713e9e50afd8787cf92f9
2022-05-09T09:32:40.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-1
8
null
transformers
13,344
Entry not found
Jeevesh8/bert_ft_qqp-2
d37657184c4bf7ce5bd737dcd44050d87076caa2
2022-05-09T09:35:13.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-2
8
null
transformers
13,345
Entry not found
Jeevesh8/bert_ft_qqp-3
3287858de162f75accb49405f90ec67c7f2bab78
2022-05-09T09:37:44.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-3
8
null
transformers
13,346
Entry not found
Jeevesh8/bert_ft_qqp-4
bdf13db16c4bbf09af182d8f1ca33abc4cb89c13
2022-05-09T09:40:15.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-4
8
null
transformers
13,347
Entry not found
Jeevesh8/bert_ft_qqp-6
f6d23728f8e1a156237109eaff645840ea700003
2022-05-09T09:45:22.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-6
8
null
transformers
13,348
Entry not found
Jeevesh8/bert_ft_qqp-7
36c0e83cb23c1f192099e06a6b88902d3abdead9
2022-05-09T09:47:56.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-7
8
null
transformers
13,349
Entry not found
Jeevesh8/bert_ft_qqp-9
7b80e7abe8ac9353c7554ecfc6067952158467ac
2022-05-09T09:53:03.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-9
8
null
transformers
13,350
Entry not found
Jeevesh8/bert_ft_qqp-10
2d57bfedc260f247dbb6be35f50163d88d41b212
2022-05-09T09:55:37.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-10
8
null
transformers
13,351
Entry not found
Jeevesh8/bert_ft_qqp-11
f94f176d7b36d21923150a7626d3c6c34c3bc56b
2022-05-09T09:58:11.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-11
8
null
transformers
13,352
Entry not found
Jeevesh8/bert_ft_qqp-12
e48592e5e709bc81ca13314388727ddc9821a552
2022-05-09T10:00:45.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-12
8
null
transformers
13,353
Entry not found
Jeevesh8/bert_ft_qqp-13
ac8046923488859171e26158eac5dd211fedeb72
2022-05-09T10:03:19.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-13
8
null
transformers
13,354
Entry not found
Jeevesh8/bert_ft_qqp-14
405a4d7d72b8f86eead3eef03add2de8486ee965
2022-05-09T10:05:59.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-14
8
null
transformers
13,355
Entry not found
Jeevesh8/bert_ft_qqp-17
e9a0ced9820211b8068cc946add00c244900620a
2022-05-09T10:13:37.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-17
8
null
transformers
13,356
Entry not found
Jeevesh8/bert_ft_qqp-18
b8d31e151dbaa50584b8fe6226d65410e058c70b
2022-05-09T10:16:12.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-18
8
null
transformers
13,357
Entry not found
Jeevesh8/bert_ft_qqp-19
0553d4cb4ba11b12bb7316573eab850143b48dd5
2022-05-09T10:18:46.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-19
8
null
transformers
13,358
Entry not found
Jeevesh8/bert_ft_qqp-20
7e022bebd7dcd873485b5e17e0c8982647ec2e44
2022-05-09T10:21:18.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-20
8
null
transformers
13,359
Entry not found
Jeevesh8/bert_ft_qqp-22
6bd6ba408f9c3098351a45a675026486cf4d6b44
2022-05-09T10:26:21.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-22
8
null
transformers
13,360
Entry not found
Jeevesh8/bert_ft_qqp-23
b0a4c29f00adfd7d65803ac05eb0096ca99c8099
2022-05-09T10:28:54.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-23
8
null
transformers
13,361
Entry not found
Jeevesh8/bert_ft_qqp-24
6e995362c0deca80c09147cd801c9f2c06ad7e54
2022-05-09T10:31:37.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-24
8
null
transformers
13,362
Entry not found
Jeevesh8/bert_ft_qqp-25
68685a1670d042c5a1b4a658d8b4e92c6b6f395c
2022-05-09T10:34:13.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-25
8
null
transformers
13,363
Entry not found
Jeevesh8/bert_ft_qqp-27
33e709258ac64198855c6139a5a7fbd84c6b9c24
2022-05-09T10:39:17.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-27
8
null
transformers
13,364
Entry not found
Jeevesh8/bert_ft_qqp-28
8ce8833bf2e1b1373ae072284289debdc5c23005
2022-05-09T10:41:49.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-28
8
null
transformers
13,365
Entry not found
Jeevesh8/bert_ft_qqp-29
0dcef2e0d05c40237517985713de54b0e98f370e
2022-05-09T10:44:21.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-29
8
null
transformers
13,366
Entry not found
Jeevesh8/bert_ft_qqp-31
22a6483b218ff2b1063338ce520c5860998bfe5d
2022-05-09T10:49:26.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-31
8
null
transformers
13,367
Entry not found
Jeevesh8/bert_ft_qqp-34
9904e1c7fa3f486a65e77ebc11dfe6952b07e9ae
2022-05-09T10:57:14.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-34
8
null
transformers
13,368
Entry not found
Jeevesh8/bert_ft_qqp-35
93069b8030222e96aa60011f8bfac4312d47d4e1
2022-05-09T10:59:47.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-35
8
null
transformers
13,369
Entry not found
Jeevesh8/bert_ft_qqp-36
cce021f6014cb926f332826a98ae6a21ae907ff0
2022-05-09T11:02:20.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-36
8
null
transformers
13,370
Entry not found
Jeevesh8/bert_ft_qqp-37
7782999cad248cad1514057bd933355fa2e19422
2022-05-09T11:04:54.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-37
8
null
transformers
13,371
Entry not found
Jeevesh8/bert_ft_qqp-38
a654927511c38c791eb22ab2f47e6a9ed83ffce2
2022-05-09T11:07:30.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-38
8
null
transformers
13,372
Entry not found
Jeevesh8/bert_ft_qqp-39
95891883ad62513ce18abbc87274a32f3e58fb96
2022-05-09T11:10:03.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-39
8
null
transformers
13,373
Entry not found
Jeevesh8/bert_ft_qqp-40
7d08f4b71e9fa9ed584cdaa0cda0ed8734ad3905
2022-05-09T11:12:34.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-40
8
null
transformers
13,374
Entry not found
Jeevesh8/bert_ft_qqp-41
7e10284da7dffe9cdb0507e6ee86b99bb932b650
2022-05-09T11:15:06.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-41
8
null
transformers
13,375
Entry not found
Jeevesh8/bert_ft_qqp-42
d556c400d7b4a10c9d05994cf0dd83ba5474d352
2022-05-09T11:17:36.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-42
8
null
transformers
13,376
Entry not found
Jeevesh8/bert_ft_qqp-44
9dde3e25495601750fb76f7434ceb3e092e5377f
2022-05-09T11:22:35.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-44
8
null
transformers
13,377
Entry not found
Jeevesh8/bert_ft_qqp-45
e1a65be9ad3263eea6ceaf71501841209986aa17
2022-05-09T11:25:05.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-45
8
null
transformers
13,378
Entry not found
Jeevesh8/bert_ft_qqp-46
505c622bdc1055cd4bab8ffb8b468f4c7e8f596f
2022-05-09T11:27:36.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-46
8
null
transformers
13,379
Entry not found
Jeevesh8/bert_ft_qqp-47
d959ea1069bcadcc32f6af557fd08e4fb32651bf
2022-05-09T11:30:10.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-47
8
null
transformers
13,380
Entry not found
Jeevesh8/bert_ft_qqp-48
97eb8670de6b62228bf476002513e6ec8efef7ed
2022-05-09T11:32:43.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-48
8
null
transformers
13,381
Entry not found
Jeevesh8/bert_ft_qqp-49
1eafe761ee61392fe2c9df057ed36505cc6af97c
2022-05-09T11:35:16.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-49
8
null
transformers
13,382
Entry not found
Jeevesh8/bert_ft_qqp-50
5952ba88828872b802c21bbc56635dddeffcdc22
2022-05-09T11:37:52.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-50
8
null
transformers
13,383
Entry not found
Jeevesh8/bert_ft_qqp-52
af2036726d43a325f18950cf6230c3dcb18c2f55
2022-05-09T11:43:00.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-52
8
null
transformers
13,384
Entry not found
Theimisa/distilbert-base-uncased-aisera_texts-v3
ba96f540f5ca557aff68708741e9ec3e2d4deaa6
2022-05-10T07:49:12.000Z
[ "pytorch", "distilbert", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
Theimisa
null
Theimisa/distilbert-base-uncased-aisera_texts-v3
8
null
transformers
13,385
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-aisera_texts-v3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-aisera_texts-v3 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8106 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.0183 | 1.0 | 3875 | 1.8913 | | 1.9018 | 2.0 | 7750 | 1.8106 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
Jeevesh8/bert_ft_qqp-53
3df6f31542c3bbcebad6c487429e83530f4b108d
2022-05-09T11:45:32.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-53
8
null
transformers
13,386
Entry not found
Jeevesh8/bert_ft_qqp-54
33329954443ed758d484ef3ed2d5c242a6111f39
2022-05-09T11:48:05.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-54
8
null
transformers
13,387
Entry not found
Jeevesh8/bert_ft_qqp-55
39e97ea1771058d7cefa68478c7d089a3aa4d410
2022-05-09T11:50:38.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-55
8
null
transformers
13,388
Entry not found
Jeevesh8/bert_ft_qqp-56
d1484de3f8a7c93a27965f4f23363140415abe80
2022-05-09T11:53:11.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-56
8
null
transformers
13,389
Entry not found
Jeevesh8/bert_ft_qqp-57
13d1936482ed322259dc648837e35c8e2a05e6e5
2022-05-09T11:55:43.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-57
8
null
transformers
13,390
Entry not found
Jeevesh8/bert_ft_qqp-58
bfafc9e4a730f266d036599780ced2062092681d
2022-05-09T11:58:20.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-58
8
null
transformers
13,391
Entry not found
Jeevesh8/bert_ft_qqp-59
404baf5dd85ed8c63baa091fd0eaac72d2fb1291
2022-05-09T12:00:56.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-59
8
null
transformers
13,392
Entry not found
Jeevesh8/bert_ft_qqp-60
2330f1cad715e58aa1b94e9ab298ae215e2eccef
2022-05-09T12:03:32.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-60
8
null
transformers
13,393
Entry not found
Jeevesh8/bert_ft_qqp-61
c997c4a8586134cc403643b9535da8c71911ab6d
2022-05-09T12:06:03.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-61
8
null
transformers
13,394
Entry not found
Jeevesh8/bert_ft_qqp-62
f80411d500dcc8265ba804022c057c73818e4c10
2022-05-09T12:08:36.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-62
8
null
transformers
13,395
Entry not found
Jeevesh8/bert_ft_qqp-63
821d6a4ecd5745c44d5029c5a59cb41636753588
2022-05-09T12:11:10.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-63
8
null
transformers
13,396
Entry not found
Jeevesh8/bert_ft_qqp-64
4e334de940eeb75b09fc98881ae8638c55210af8
2022-05-09T12:13:40.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-64
8
null
transformers
13,397
Entry not found
Jeevesh8/bert_ft_qqp-65
ee9aa6e7459069cd4f92c0ef715df4810d8fd58f
2022-05-09T12:16:13.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-65
8
null
transformers
13,398
Entry not found
Jeevesh8/bert_ft_qqp-66
ec6278ff4b51446d5e0cae19abcb72c8dd55e8a7
2022-05-09T12:18:47.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-66
8
null
transformers
13,399
Entry not found