modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
list
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
reichenbach/wav2vec2-large-xls-r-300m-hi
a09b78a09f2201598d2611a4ac7f9e8aae39e432
2022-03-23T18:27:23.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "hi", "dataset:common_voice", "transformers", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
reichenbach
null
reichenbach/wav2vec2-large-xls-r-300m-hi
8
1
transformers
13,200
--- license: apache-2.0 language: - hi tags: - generated_from_trainer - hf-asr-leaderboard - robust-speech-event datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-hi results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-hi This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 2.4749 - Wer: 0.9420 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 9.8626 | 4.76 | 400 | 3.6151 | 1.0 | | 3.5463 | 9.52 | 800 | 3.5778 | 1.0 | | 3.4415 | 14.28 | 1200 | 3.4525 | 1.0 | | 3.0927 | 19.05 | 1600 | 2.6220 | 0.9860 | | 2.0573 | 23.8 | 2000 | 2.3974 | 0.9610 | | 1.5905 | 28.57 | 2400 | 2.4427 | 0.9558 | | 1.426 | 33.33 | 2800 | 2.4736 | 0.9475 | | 1.3147 | 38.09 | 3200 | 2.4494 | 0.9417 | | 1.2642 | 42.85 | 3600 | 2.4665 | 0.9450 | | 1.2289 | 47.62 | 4000 | 2.4749 | 0.9420 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.10.3
rg089/t5-headline-generation
3066826aa28087b9c9b6b40a69b13fdbeaa15615
2021-11-27T19:22:30.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
rg089
null
rg089/t5-headline-generation
8
null
transformers
13,201
Entry not found
sammy786/wav2vec2-xlsr-lithuanian
184be031ec84ea1c93ef0d2394f879c22533f411
2022-03-24T11:49:34.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "lt", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
sammy786
null
sammy786/wav2vec2-xlsr-lithuanian
8
null
transformers
13,202
--- language: - lt license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - lt - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: sammy786/wav2vec2-xlsr-lithuanian results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: lt metrics: - name: Test WER type: wer value: 14.67 - name: Test CER type: cer value: 2.77 --- # sammy786/wav2vec2-xlsr-lithuanian This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - lt dataset. It achieves the following results on evaluation set (which is 10 percent of train data set merged with other and dev datasets): - Loss: 13.1811 - Wer: 24.2570 ## Model description "facebook/wav2vec2-xls-r-1b" was finetuned. ## Intended uses & limitations More information needed ## Training and evaluation data Training data - Common voice Finnish train.tsv, dev.tsv and other.tsv ## Training procedure For creating the train dataset, all possible datasets were appended and 90-10 split was used. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000045637994662983496 - train_batch_size: 8 - eval_batch_size: 16 - seed: 13 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 500 - num_epochs: 40 - mixed_precision_training: Native AMP ### Training results | Step | Training Loss | Validation Loss | Wer | |:-----:|:-------------:|:---------------:|:--------:| | 200 | 5.718700 | 2.897032 | 1.000000 | | 400 | 1.340000 | 0.309548 | 0.507284 | | 600 | 0.799100 | 0.220205 | 0.402098 | | 800 | 0.494400 | 0.185093 | 0.352855 | | 1000 | 0.370800 | 0.165869 | 0.334207 | | 1200 | 0.312500 | 0.159801 | 0.324009 | | 1400 | 0.276100 | 0.148066 | 0.321678 | | 1600 | 0.250100 | 0.153748 | 0.311626 | | 1800 | 0.226400 | 0.147437 | 0.302885 | | 2000 | 0.206900 | 0.141176 | 0.296037 | | 2200 | 0.189900 | 0.142161 | 0.288170 | | 2400 | 0.192100 | 0.138029 | 0.286568 | | 2600 | 0.175600 | 0.139496 | 0.283654 | | 2800 | 0.156900 | 0.138609 | 0.283217 | | 3000 | 0.149400 | 0.140468 | 0.281906 | | 3200 | 0.144600 | 0.132472 | 0.278263 | | 3400 | 0.144100 | 0.141028 | 0.277535 | | 3600 | 0.133000 | 0.134287 | 0.275495 | | 3800 | 0.126600 | 0.149136 | 0.277681 | | 4000 | 0.123500 | 0.132180 | 0.266463 | | 4200 | 0.113000 | 0.137942 | 0.268211 | | 4400 | 0.111700 | 0.140038 | 0.272873 | | 4600 | 0.108600 | 0.136756 | 0.264132 | | 4800 | 0.103600 | 0.137541 | 0.263403 | | 5000 | 0.098000 | 0.140435 | 0.264860 | | 5200 | 0.095800 | 0.136950 | 0.262383 | | 5400 | 0.094000 | 0.128214 | 0.263986 | | 5600 | 0.085300 | 0.125024 | 0.259761 | | 5800 | 0.078900 | 0.128575 | 0.260198 | | 6000 | 0.083300 | 0.135496 | 0.258887 | | 6200 | 0.078800 | 0.131706 | 0.259178 | | 6400 | 0.073800 | 0.128451 | 0.255390 | | 6600 | 0.072600 | 0.131245 | 0.252768 | | 6800 | 0.073300 | 0.131525 | 0.249417 | | 7000 | 0.069000 | 0.128627 | 0.255536 | | 7200 | 0.064400 | 0.127767 | 0.250583 | | 7400 | 0.065400 | 0.129557 | 0.247815 | | 7600 | 0.061200 | 0.129734 | 0.250146 | | 7800 | 0.059100 | 0.135124 | 0.249709 | | 8000 | 0.057000 | 0.132850 | 0.249126 | | 8200 | 0.056100 | 0.128827 | 0.248252 | | 8400 | 0.056400 | 0.130229 | 0.246795 | | 8600 | 0.052800 | 0.128939 | 0.245775 | | 8800 | 0.051100 | 0.131892 | 0.248543 | | 9000 | 0.052900 | 0.132062 | 0.244464 | | 9200 | 0.048200 | 0.130988 | 0.244172 | | 9400 | 0.047700 | 0.131811 | 0.242570 | | 9600 | 0.050000 | 0.133832 | 0.245484 | | 9800 | 0.047500 | 0.134340 | 0.243881 | | 10000 | 0.048400 | 0.133388 | 0.243590 | | 10200 | 0.047800 | 0.132729 | 0.244464 | | 10400 | 0.049000 | 0.131695 | 0.245047 | | 10600 | 0.044400 | 0.132154 | 0.245484 | | 10800 | 0.050100 | 0.131575 | 0.245192 | | 11000 | 0.047700 | 0.131211 | 0.245192 | | 11200 | 0.046000 | 0.131293 | 0.245047 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.10.3 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id sammy786/wav2vec2-xlsr-lithuanian --dataset mozilla-foundation/common_voice_8_0 --config lt --split test ```
sana-ngu/HaT5_augmentation
ccee857037f29e5163785a587bef64ba7f917e4e
2022-05-20T06:18:54.000Z
[ "pytorch", "t5", "text2text-generation", "arxiv:2202.05690", "transformers", "autotrain_compatible" ]
text2text-generation
false
sana-ngu
null
sana-ngu/HaT5_augmentation
8
null
transformers
13,203
### HaT5(T5-base) This is a fine-tuned model of T5 (base) on the hate speech detection dataset. It is intended to be used as a classification model for identifying Tweets (0 - HOF(hate/offensive); 1 - NOT). The task prefix we used for the T5 model is 'classification: '. More information about the original pre-trained model can be found [here](https://huggingface.co/t5-base) Classification examples: |Prediction|Tweet| |-----|--------| |0 |Why the fuck I got over 1000 views on my story 😂😂 nothing new over here | |1. |first of all there is no vaccine to cure , whthr it is capsules, tablets, or injections, they just support to fight with d virus. I do not support people taking any kind of home remedies n making fun of an ayurvedic medicine..😐 | # More Details for more details about the datasets and eval results, see [our paper here](https://arxiv.org/abs/2202.05690) # How to use ```python from transformers import T5ForConditionalGeneration, T5Tokenizer import torch model = T5ForConditionalGeneration.from_pretrained("sana-ngu/HaT5_augmentation ") tokenizer = T5Tokenizer.from_pretrained("t5-base") tokenizer.pad_token = tokenizer.eos_token input_ids = tokenizer("Old lions in the wild lay down and die with dignity when they can't hunt anymore. If a government is having 'teething problems' handling aid supplies one full year into a pandemic, maybe it should take a cue and get the fuck out of the way? ", padding=True, truncation=True, return_tensors='pt').input_ids outputs = model.generate(input_ids) pred = tokenizer.decode(outputs[0], skip_special_tokens=True) print(pred) ```
sarasarasara/sara-model
58c5701270db618cf65e23dd75b189627605c0dc
2021-08-06T10:57:48.000Z
[ "pytorch", "tensorboard", "distilbert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible" ]
token-classification
false
sarasarasara
null
sarasarasara/sara-model
8
null
transformers
13,204
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model_index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metric: name: Accuracy type: accuracy value: 0.984018301110458 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0614 - Precision: 0.9288 - Recall: 0.9374 - F1: 0.9331 - Accuracy: 0.9840 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2399 | 1.0 | 878 | 0.0694 | 0.9126 | 0.9179 | 0.9152 | 0.9807 | | 0.0522 | 2.0 | 1756 | 0.0604 | 0.9207 | 0.9342 | 0.9274 | 0.9833 | | 0.0308 | 3.0 | 2634 | 0.0614 | 0.9288 | 0.9374 | 0.9331 | 0.9840 | ### Framework versions - Transformers 4.9.1 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
seduerr/splitter
4eeeab3a2ee04b44efb195823c86d9b9a242c923
2021-06-02T14:56:03.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
seduerr
null
seduerr/splitter
8
null
transformers
13,205
Entry not found
sivasankalpp/dpr-multidoc2dial-token-ctx-encoder
666732a40649376732162401dbb944cbe818813e
2021-11-10T20:14:46.000Z
[ "pytorch", "dpr", "transformers" ]
null
false
sivasankalpp
null
sivasankalpp/dpr-multidoc2dial-token-ctx-encoder
8
null
transformers
13,206
Entry not found
skplanet/dialog-koelectra-small-generator
5145d382be0f91dc9858a35b57bdbd0c040adfca
2021-04-13T01:15:45.000Z
[ "pytorch", "electra", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
skplanet
null
skplanet/dialog-koelectra-small-generator
8
null
transformers
13,207
# Dialog-KoELECTRA Github : [https://github.com/skplanet/Dialog-KoELECTRA](https://github.com/skplanet/Dialog-KoELECTRA) ## Introduction **Dialog-KoELECTRA** is a language model specialized for dialogue. It was trained with 22GB colloquial and written style Korean text data. Dialog-ELECTRA model is made based on the [ELECTRA](https://openreview.net/pdf?id=r1xMH1BtvB) model. ELECTRA is a method for self-supervised language representation learning. It can be used to pre-train transformer networks using relatively little compute. ELECTRA models are trained to distinguish "real" input tokens vs "fake" input tokens generated by another neural network, similar to the discriminator of a [GAN](https://arxiv.org/pdf/1406.2661.pdf). At small scale, ELECTRA achieves strong results even when trained on a single GPU. <br> ## Released Models We are initially releasing small version pre-trained model. The model was trained on Korean text. We hope to release other models, such as base/large models, in the future. | Model | Layers | Hidden Size | Params | Max<br/>Seq Len | Learning<br/>Rate | Batch Size | Train Steps | | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | Dialog-KoELECTRA-Small | 12 | 256 | 14M | 128 | 1e-4 | 512 | 700K | <br> ## Model Performance Dialog-KoELECTRA shows strong performance in conversational downstream tasks. | | **NSMC**<br/>(acc) | **Question Pair**<br/>(acc) | **Korean-Hate-Speech**<br/>(F1) | **Naver NER**<br/>(F1) | **KorNLI**<br/>(acc) | **KorSTS**<br/>(spearman) | | :--------------------- | :----------------: | :--------------------: | :----------------: | :------------------: | :-----------------------: | :-------------------------: | | DistilKoBERT | 88.60 | 92.48 | 60.72 | 84.65 | 72.00 | 72.59 | | **Dialog-KoELECTRA-Small** | **90.01** | **94.99** | **68.26** | **85.51** | **78.54** | **78.96** | <br> ## Train Data <table class="tg"> <thead> <tr> <th class="tg-c3ow"></th> <th class="tg-c3ow">corpus name</th> <th class="tg-c3ow">size</th> </tr> </thead> <tbody> <tr> <td class="tg-c3ow" rowspan="4">dialog</td> <td class="tg-0pky"><a href="https://aihub.or.kr/aidata/85" target="_blank" rel="noopener noreferrer">Aihub Korean dialog corpus</a></td> <td class="tg-c3ow" rowspan="4">7GB</td> </tr> <tr> <td class="tg-0pky"><a href="https://corpus.korean.go.kr/" target="_blank" rel="noopener noreferrer">NIKL Spoken corpus</a></td> </tr> <tr> <td class="tg-0pky"><a href="https://github.com/songys/Chatbot_data" target="_blank" rel="noopener noreferrer">Korean chatbot data</a></td> </tr> <tr> <td class="tg-0pky"><a href="https://github.com/Beomi/KcBERT" target="_blank" rel="noopener noreferrer">KcBERT</a></td> </tr> <tr> <td class="tg-c3ow" rowspan="2">written</td> <td class="tg-0pky"><a href="https://corpus.korean.go.kr/" target="_blank" rel="noopener noreferrer">NIKL Newspaper corpus</a></td> <td class="tg-c3ow" rowspan="2">15GB</td> </tr> <tr> <td class="tg-0pky"><a href="https://github.com/lovit/namuwikitext" target="_blank" rel="noopener noreferrer">namuwikitext</a></td> </tr> </tbody> </table> <br> ## Vocabulary We applied morpheme analysis using [huggingface_konlpy](https://github.com/lovit/huggingface_konlpy) when creating a vocabulary dictionary. As a result of the experiment, it showed better performance than a vocabulary dictionary created without applying morpheme analysis. <table> <thead> <tr> <th>vocabulary size</th> <th>unused token size</th> <th>limit alphabet</th> <th>min frequency</th> </tr> </thead> <tbody> <tr> <td>40,000</td> <td>500</td> <td>6,000</td> <td>3</td> </tr> </tbody> </table> <br>
smangrul/xls-r-mr-model
86f58486bd43e5b50c96662d0ccb43945f4bd64a
2022-03-24T11:54:20.000Z
[ "pytorch", "mr", "dataset:mozilla-foundation/common_voice_8_0", "dataset:openslr", "dataset:shivam/marathi_samanantar_processed", "dataset:shivam/marathi_pib_processed", "dataset:opus100", "dataset:tatoeba", "dataset:tapaco", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "openslr", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
smangrul
null
smangrul/xls-r-mr-model
8
1
null
13,208
--- language: - mr license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - openslr - generated_from_trainer - robust-speech-event - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 - openslr - shivam/marathi_samanantar_processed - shivam/marathi_pib_processed - opus100 - tatoeba - tapaco model-index: - name: wav2vec2-large-xls-r-300m-mr results: - task: type: automatic-speech-recognition name: Speech Recognition dataset: type: mozilla-foundation/common_voice_8_0 name: Common Voice 8 args: mr metrics: - type: wer value: 31.05 name: Test WER - name: Test CER type: cer value: 6.82 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - MR and OPENSLR - SLR64 - MR datasets. It achieves the following results on the evaluation set: - Loss: 0.494580 - Wer: 0.401524 ### Eval results on Common Voice 8 "test" (WER): | Without LM | With LM | |---|---| | 40.513437625350984 | 31.04693140794224 | ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 200.0 - mixed_precision_training: Native AMP ### Training results | Step | Training Loss | Validation Loss | Wer | |---|---|---|---| | 400 | 3.794000 | 3.532227 | 1.000000 | | 800 | 3.362400 | 3.359044 | 1.000000 | | 1200 | 2.293900 | 1.011279 | 0.829924 | | 1600 | 1.233000 | 0.502743 | 0.593662 | | 2000 | 0.962600 | 0.412519 | 0.496992 | | 2400 | 0.831800 | 0.402903 | 0.493783 | | 2800 | 0.737000 | 0.389773 | 0.469314 | | 3200 | 0.677100 | 0.373987 | 0.436021 | | 3600 | 0.634400 | 0.383823 | 0.432010 | | 4000 | 0.586000 | 0.375610 | 0.419575 | | 4400 | 0.561000 | 0.387891 | 0.418371 | | 4800 | 0.518500 | 0.386357 | 0.417569 | | 5200 | 0.515300 | 0.415069 | 0.430004 | | 5600 | 0.478100 | 0.399211 | 0.408744 | | 6000 | 0.468100 | 0.424542 | 0.402327 | | 6400 | 0.439400 | 0.430979 | 0.410750 | | 6800 | 0.429600 | 0.427700 | 0.409146 | | 7200 | 0.400300 | 0.451111 | 0.419976 | | 7600 | 0.395100 | 0.463446 | 0.405134 | | 8000 | 0.381800 | 0.454752 | 0.407942 | | 8400 | 0.371500 | 0.461547 | 0.404733 | | 8800 | 0.362500 | 0.461543 | 0.411151 | | 9200 | 0.338200 | 0.468299 | 0.417168 | | 9600 | 0.338800 | 0.480989 | 0.412355 | | 10000 | 0.317600 | 0.475700 | 0.410750 | | 10400 | 0.315100 | 0.478920 | 0.403530 | | 10800 | 0.296200 | 0.480600 | 0.398315 | | 11200 | 0.299000 | 0.477083 | 0.393502 | | 11600 | 0.290000 | 0.465646 | 0.393903 | | 12000 | 0.290900 | 0.490041 | 0.405937 | | 12400 | 0.275600 | 0.489354 | 0.399519 | | 12800 | 0.272600 | 0.494580 | 0.395909 | | 13200 | 0.265900 | 0.497918 | 0.397112 | | 13600 | 0.266300 | 0.498627 | 0.397513 | | 14000 | 0.259600 | 0.504610 | 0.401524 | #### Evaluation Commands To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id smangrul/xls-r-mr-model --dataset mozilla-foundation/common_voice_8_0 --config mr --split test ``` ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu113 - Datasets 1.18.3.dev0 - Tokenizers 0.11.0
soheeyang/dpr-question_encoder-single-trivia-base
986b64d504b3389a30f876d0e248c35a50675939
2021-04-15T14:48:08.000Z
[ "pytorch", "tf", "dpr", "feature-extraction", "arxiv:2004.04906", "transformers" ]
feature-extraction
false
soheeyang
null
soheeyang/dpr-question_encoder-single-trivia-base
8
null
transformers
13,209
# DPRQuestionEncoder for TriviaQA ## dpr-question_encoder-single-trivia-base Dense Passage Retrieval (`DPR`) Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, Wen-tau Yih, [Dense Passage Retrieval for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906), EMNLP 2020. This model is the question encoder of DPR trained solely on TriviaQA (single-trivia) using the [official implementation of DPR](https://github.com/facebookresearch/DPR). Disclaimer: This model is not from the authors of DPR, but my reproduction. The authors did not release the DPR weights trained solely on TriviaQA. I hope this model checkpoint can be helpful for those who want to use DPR trained only on TriviaQA. ## Performance The following is the answer recall rate measured using PyTorch 1.4.0 and transformers 4.5.0. The values in parentheses are those reported in the paper. | Top-K Passages | TriviaQA Dev | TriviaQA Test | |----------------|--------------|---------------| | 1 | 54.27 | 54.41 | | 5 | 71.11 | 70.99 | | 20 | 79.53 | 79.31 (79.4) | | 50 | 82.72 | 82.99 | | 100 | 85.07 | 84.99 (85.0) | ## How to Use Using `AutoModel` does not properly detect whether the checkpoint is for `DPRContextEncoder` or `DPRQuestionEncoder`. Therefore, please specify the exact class to use the model. ```python from transformers import DPRQuestionEncoder, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("soheeyang/dpr-question_encoder-single-trivia-base") question_encoder = DPRQuestionEncoder.from_pretrained("soheeyang/dpr-question_encoder-single-trivia-base") data = tokenizer("question comes here", return_tensors="pt") question_embedding = question_encoder(**data).pooler_output # embedding vector for question ```
speech-seq2seq/wav2vec2-2-gpt2-medium
1bab072c90b992c640bb6bb111eb0330f70a8f8e
2022-02-11T22:26:54.000Z
[ "pytorch", "tensorboard", "speech-encoder-decoder", "automatic-speech-recognition", "dataset:librispeech_asr", "transformers", "generated_from_trainer", "model-index" ]
automatic-speech-recognition
false
speech-seq2seq
null
speech-seq2seq/wav2vec2-2-gpt2-medium
8
null
transformers
13,210
--- tags: - generated_from_trainer datasets: - librispeech_asr model-index: - name: '' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model was trained from scratch on the librispeech_asr dataset. It achieves the following results on the evaluation set: - Loss: 3.5264 - Wer: 1.7073 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.4032 | 0.28 | 500 | 4.6724 | 1.9406 | | 4.6417 | 0.56 | 1000 | 4.7143 | 1.8874 | | 4.5725 | 0.84 | 1500 | 4.6413 | 1.9451 | | 4.0178 | 1.12 | 2000 | 4.5470 | 1.8861 | | 3.9084 | 1.4 | 2500 | 4.4360 | 1.8881 | | 3.9297 | 1.68 | 3000 | 4.2814 | 1.8652 | | 3.707 | 1.96 | 3500 | 4.1035 | 1.8320 | | 3.1373 | 2.24 | 4000 | 3.9557 | 1.7762 | | 3.3152 | 2.52 | 4500 | 3.7737 | 1.7454 | | 2.9501 | 2.8 | 5000 | 3.5264 | 1.7073 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu113 - Datasets 1.18.3 - Tokenizers 0.11.0
srosy/distilbert-base-uncased-finetuned-emotion
fc2b2284930d08064e36b20c27a9789076c2f37a
2022-02-13T09:39:07.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
srosy
null
srosy/distilbert-base-uncased-finetuned-emotion
8
1
transformers
13,211
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.939 - name: F1 type: f1 value: 0.9391566069722169 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1582 - Accuracy: 0.939 - F1: 0.9392 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.4977 | 1.0 | 1000 | 0.1919 | 0.9255 | 0.9253 | | 0.1545 | 2.0 | 2000 | 0.1582 | 0.939 | 0.9392 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.8.1+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
staceythompson/autonlp-myclassification-fortext-16332728
d7791adf82caf89c77576ee0a3f0c058ccec302f
2021-10-10T00:24:34.000Z
[ "pytorch", "distilbert", "text-classification", "unk", "dataset:staceythompson/autonlp-data-myclassification-fortext", "transformers", "autonlp" ]
text-classification
false
staceythompson
null
staceythompson/autonlp-myclassification-fortext-16332728
8
null
transformers
13,212
--- tags: autonlp language: unk widget: - text: "I love AutoNLP 🤗" datasets: - staceythompson/autonlp-data-myclassification-fortext --- # Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 16332728 ## Validation Metrics - Loss: 0.08077391237020493 - Accuracy: 0.9846153846153847 - Macro F1: 0.9900793650793651 - Micro F1: 0.9846153846153847 - Weighted F1: 0.9846153846153847 - Macro Precision: 0.9900793650793651 - Micro Precision: 0.9846153846153847 - Weighted Precision: 0.9846153846153847 - Macro Recall: 0.9900793650793651 - Micro Recall: 0.9846153846153847 - Weighted Recall: 0.9846153846153847 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/staceythompson/autonlp-myclassification-fortext-16332728 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("staceythompson/autonlp-myclassification-fortext-16332728", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("staceythompson/autonlp-myclassification-fortext-16332728", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
stefan-jo/bert-finetuned-ner
1a8ba7cff2c8c957fb18775b138480f4bbb61af9
2022-01-02T13:21:28.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
stefan-jo
null
stefan-jo/bert-finetuned-ner
8
null
transformers
13,213
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9378727634194831 - name: Recall type: recall value: 0.9527095254123191 - name: F1 type: f1 value: 0.9452329270328937 - name: Accuracy type: accuracy value: 0.9866515570730559 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0619 - Precision: 0.9379 - Recall: 0.9527 - F1: 0.9452 - Accuracy: 0.9867 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.088 | 1.0 | 1756 | 0.0625 | 0.9203 | 0.9399 | 0.9300 | 0.9835 | | 0.0383 | 2.0 | 3512 | 0.0614 | 0.9348 | 0.9460 | 0.9404 | 0.9858 | | 0.0209 | 3.0 | 5268 | 0.0619 | 0.9379 | 0.9527 | 0.9452 | 0.9867 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
superspray/electra_large_discriminator_squad2_custom_dataset
aa57c6264af27486fbf1462c3895f716a25daf1f
2021-02-20T07:00:12.000Z
[ "pytorch", "electra", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
superspray
null
superspray/electra_large_discriminator_squad2_custom_dataset
8
null
transformers
13,214
# Question & Answering Model for 'Save Your Minutes' from Dobby-AI Electra_Large Discriminator fine-tuned on SQuAD2.0 and custom QA dataset This model is [ahotrod/electra_large_discriminator_squad2_512](https://huggingface.co/ahotrod/electra_large_discriminator_squad2_512/blob/main/README.md) trained on additional custom dataset as: ``` !python3 run_squad.py --model_type electra \ --model_name_or_path /content/electra_large_512 \ --do_lower_case \ --output_dir /content/model/\ --do_train \ --train_file $data_dir/additional_qa.json\ --version_2_with_negative \ --do_lower_case \ --num_train_epochs 3 \ --weight_decay 0.01 \ --learning_rate 3e-5 \ --max_grad_norm 0.5 \ --adam_epsilon 1e-6 \ --max_seq_length 512 \ --doc_stride 128 \ --threads 12 \ --logging_steps 50 \ --save_steps 1000 \ --overwrite_output_dir \ --per_gpu_train_batch_size 4 ``` We used Google Colab for training the model,
tals/albert-xlarge-vitaminc
e5b932a3960d8c5a0fda21c80ac7c4fc5dbd4553
2022-06-22T23:55:28.000Z
[ "pytorch", "albert", "text-classification", "python", "dataset:fever", "dataset:glue", "dataset:tals/vitaminc", "transformers" ]
text-classification
false
tals
null
tals/albert-xlarge-vitaminc
8
null
transformers
13,215
--- language: python datasets: - fever - glue - tals/vitaminc --- # Details Model used in [Get Your Vitamin C! Robust Fact Verification with Contrastive Evidence](https://aclanthology.org/2021.naacl-main.52/) (Schuster et al., NAACL 21`). For more details see: https://github.com/TalSchuster/VitaminC When using this model, please cite the paper. # BibTeX entry and citation info ```bibtex @inproceedings{schuster-etal-2021-get, title = "Get Your Vitamin {C}! Robust Fact Verification with Contrastive Evidence", author = "Schuster, Tal and Fisch, Adam and Barzilay, Regina", booktitle = "Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies", month = jun, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.naacl-main.52", doi = "10.18653/v1/2021.naacl-main.52", pages = "624--643", abstract = "Typical fact verification models use retrieved written evidence to verify claims. Evidence sources, however, often change over time as more information is gathered and revised. In order to adapt, models must be sensitive to subtle differences in supporting evidence. We present VitaminC, a benchmark infused with challenging cases that require fact verification models to discern and adjust to slight factual changes. We collect over 100,000 Wikipedia revisions that modify an underlying fact, and leverage these revisions, together with additional synthetically constructed ones, to create a total of over 400,000 claim-evidence pairs. Unlike previous resources, the examples in VitaminC are contrastive, i.e., they contain evidence pairs that are nearly identical in language and content, with the exception that one supports a given claim while the other does not. We show that training using this design increases robustness{---}improving accuracy by 10{\%} on adversarial fact verification and 6{\%} on adversarial natural language inference (NLI). Moreover, the structure of VitaminC leads us to define additional tasks for fact-checking resources: tagging relevant words in the evidence for verifying the claim, identifying factual revisions, and providing automatic edits via factually consistent text generation.", } ```
textattack/xlnet-base-cased-CoLA
00b24d3c31db3a9bae2a03372b73ae5aa4bd7f70
2020-07-06T16:29:34.000Z
[ "pytorch", "xlnet", "text-generation", "transformers" ]
text-generation
false
textattack
null
textattack/xlnet-base-cased-CoLA
8
null
transformers
13,216
## TextAttack Model Cardfor 5 epochs with a batch size of 32, a learning rate of 3e-05, and a maximum sequence length of 128. Since this was a classification task, the model was trained with a cross-entropy loss function. The best score the model achieved on this task was 0.7976989453499521, as measured by the eval set accuracy, found after 2 epochs. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
tiennvcs/layoutlmv2-base-uncased-finetuned-vi-infovqa
28b049c3ec157b0890bafb74f332690553358531
2021-12-27T14:23:33.000Z
[ "pytorch", "tensorboard", "layoutlmv2", "question-answering", "transformers", "generated_from_trainer", "license:cc-by-nc-sa-4.0", "model-index", "autotrain_compatible" ]
question-answering
false
tiennvcs
null
tiennvcs/layoutlmv2-base-uncased-finetuned-vi-infovqa
8
null
transformers
13,217
--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer model-index: - name: layoutlmv2-base-uncased-finetuned-vi-infovqa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # layoutlmv2-base-uncased-finetuned-vi-infovqa This model is a fine-tuned version of [microsoft/layoutlmv2-base-uncased](https://huggingface.co/microsoft/layoutlmv2-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 4.3332 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 250500 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0.33 | 100 | 5.3461 | | No log | 0.66 | 200 | 4.9734 | | No log | 0.99 | 300 | 4.6074 | | No log | 1.32 | 400 | 4.4548 | | 4.6355 | 1.65 | 500 | 4.3831 | | 4.6355 | 1.98 | 600 | 4.3332 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.8.0+cu101 - Datasets 1.17.0 - Tokenizers 0.10.3
tomascufaro/wav2vec2-large-xls-r-300m-spanish-small
e86214cd250a151647e533c25ce3d8c2e79e1471
2022-01-30T17:23:59.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "model-index" ]
automatic-speech-recognition
false
tomascufaro
null
tomascufaro/wav2vec2-large-xls-r-300m-spanish-small
8
null
transformers
13,218
--- tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-spanish-small results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-spanish-small This model is a fine-tuned version of [jhonparra18/wav2vec2-large-xls-r-300m-spanish-custom](https://huggingface.co/jhonparra18/wav2vec2-large-xls-r-300m-spanish-custom) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.3763 - Wer: 0.1791 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.2277 | 0.26 | 400 | 0.2601 | 0.2291 | | 0.2932 | 0.53 | 800 | 0.2950 | 0.2670 | | 0.3019 | 0.79 | 1200 | 0.3247 | 0.2766 | | 0.2987 | 1.05 | 1600 | 0.3031 | 0.2606 | | 0.261 | 1.32 | 2000 | 0.2994 | 0.2620 | | 0.2651 | 1.58 | 2400 | 0.3134 | 0.2700 | | 0.264 | 1.85 | 2800 | 0.3016 | 0.2641 | | 0.2475 | 2.11 | 3200 | 0.3135 | 0.2661 | | 0.2269 | 2.37 | 3600 | 0.3029 | 0.2562 | | 0.2389 | 2.64 | 4000 | 0.3035 | 0.2549 | | 0.2319 | 2.9 | 4400 | 0.3022 | 0.2551 | | 0.2123 | 3.16 | 4800 | 0.3256 | 0.2638 | | 0.2094 | 3.43 | 5200 | 0.3227 | 0.2712 | | 0.2121 | 3.69 | 5600 | 0.3085 | 0.2596 | | 0.207 | 3.96 | 6000 | 0.3041 | 0.2597 | | 0.1809 | 4.22 | 6400 | 0.3122 | 0.2524 | | 0.1846 | 4.48 | 6800 | 0.3254 | 0.2579 | | 0.1885 | 4.75 | 7200 | 0.2958 | 0.2437 | | 0.1923 | 5.01 | 7600 | 0.3136 | 0.2502 | | 0.1626 | 5.27 | 8000 | 0.3059 | 0.2488 | | 0.1704 | 5.54 | 8400 | 0.3082 | 0.2515 | | 0.1674 | 5.8 | 8800 | 0.3196 | 0.2509 | | 0.1691 | 6.06 | 9200 | 0.3193 | 0.25 | | 0.1499 | 6.33 | 9600 | 0.3529 | 0.2635 | | 0.1568 | 6.59 | 10000 | 0.3241 | 0.2481 | | 0.1538 | 6.86 | 10400 | 0.3354 | 0.2476 | | 0.1503 | 7.12 | 10800 | 0.3180 | 0.2402 | | 0.136 | 7.38 | 11200 | 0.3230 | 0.2397 | | 0.1413 | 7.65 | 11600 | 0.3178 | 0.2451 | | 0.147 | 7.91 | 12000 | 0.3170 | 0.2389 | | 0.1341 | 8.17 | 12400 | 0.3380 | 0.2501 | | 0.1329 | 8.44 | 12800 | 0.3265 | 0.2414 | | 0.1314 | 8.7 | 13200 | 0.3281 | 0.2482 | | 0.1312 | 8.97 | 13600 | 0.3259 | 0.2539 | | 0.12 | 9.23 | 14000 | 0.3291 | 0.2424 | | 0.1193 | 9.49 | 14400 | 0.3302 | 0.2412 | | 0.1189 | 9.76 | 14800 | 0.3376 | 0.2407 | | 0.1217 | 10.02 | 15200 | 0.3334 | 0.2400 | | 0.1118 | 10.28 | 15600 | 0.3359 | 0.2368 | | 0.1139 | 10.55 | 16000 | 0.3239 | 0.2335 | | 0.1106 | 10.81 | 16400 | 0.3374 | 0.2352 | | 0.1081 | 11.07 | 16800 | 0.3585 | 0.2434 | | 0.1063 | 11.34 | 17200 | 0.3639 | 0.2472 | | 0.1041 | 11.6 | 17600 | 0.3399 | 0.2423 | | 0.1062 | 11.87 | 18000 | 0.3410 | 0.2388 | | 0.1012 | 12.13 | 18400 | 0.3597 | 0.2413 | | 0.0953 | 12.39 | 18800 | 0.3440 | 0.2296 | | 0.097 | 12.66 | 19200 | 0.3440 | 0.2269 | | 0.0968 | 12.92 | 19600 | 0.3498 | 0.2333 | | 0.0902 | 13.18 | 20000 | 0.3471 | 0.2290 | | 0.0868 | 13.45 | 20400 | 0.3462 | 0.2266 | | 0.0892 | 13.71 | 20800 | 0.3373 | 0.2227 | | 0.0902 | 13.97 | 21200 | 0.3377 | 0.2240 | | 0.0846 | 14.24 | 21600 | 0.3484 | 0.2237 | | 0.0839 | 14.5 | 22000 | 0.3706 | 0.2260 | | 0.0834 | 14.77 | 22400 | 0.3430 | 0.2268 | | 0.0841 | 15.03 | 22800 | 0.3489 | 0.2259 | | 0.076 | 15.29 | 23200 | 0.3626 | 0.2281 | | 0.0771 | 15.56 | 23600 | 0.3624 | 0.2268 | | 0.0773 | 15.82 | 24000 | 0.3440 | 0.2252 | | 0.0759 | 16.08 | 24400 | 0.3532 | 0.2170 | | 0.0745 | 16.35 | 24800 | 0.3686 | 0.2188 | | 0.0713 | 16.61 | 25200 | 0.3691 | 0.2195 | | 0.0718 | 16.88 | 25600 | 0.3470 | 0.2108 | | 0.0685 | 17.14 | 26000 | 0.3756 | 0.2179 | | 0.0689 | 17.4 | 26400 | 0.3542 | 0.2149 | | 0.0671 | 17.67 | 26800 | 0.3461 | 0.2165 | | 0.0737 | 17.93 | 27200 | 0.3473 | 0.2238 | | 0.0669 | 18.19 | 27600 | 0.3441 | 0.2138 | | 0.0629 | 18.46 | 28000 | 0.3721 | 0.2155 | | 0.0632 | 18.72 | 28400 | 0.3667 | 0.2126 | | 0.0647 | 18.98 | 28800 | 0.3579 | 0.2097 | | 0.0603 | 19.25 | 29200 | 0.3670 | 0.2130 | | 0.0604 | 19.51 | 29600 | 0.3750 | 0.2142 | | 0.0619 | 19.78 | 30000 | 0.3804 | 0.2160 | | 0.0603 | 20.04 | 30400 | 0.3764 | 0.2124 | | 0.0577 | 20.3 | 30800 | 0.3858 | 0.2097 | | 0.0583 | 20.57 | 31200 | 0.3520 | 0.2089 | | 0.0561 | 20.83 | 31600 | 0.3615 | 0.2079 | | 0.0545 | 21.09 | 32000 | 0.3824 | 0.2032 | | 0.0525 | 21.36 | 32400 | 0.3858 | 0.2091 | | 0.0524 | 21.62 | 32800 | 0.3956 | 0.2099 | | 0.0527 | 21.89 | 33200 | 0.3667 | 0.2025 | | 0.0514 | 22.15 | 33600 | 0.3708 | 0.2032 | | 0.0506 | 22.41 | 34000 | 0.3815 | 0.2053 | | 0.0478 | 22.68 | 34400 | 0.3671 | 0.2007 | | 0.049 | 22.94 | 34800 | 0.3758 | 0.2003 | | 0.0477 | 23.2 | 35200 | 0.3786 | 0.2014 | | 0.045 | 23.47 | 35600 | 0.3732 | 0.1998 | | 0.0426 | 23.73 | 36000 | 0.3737 | 0.2010 | | 0.0444 | 23.99 | 36400 | 0.3600 | 0.1990 | | 0.0433 | 24.26 | 36800 | 0.3689 | 0.1976 | | 0.0442 | 24.52 | 37200 | 0.3787 | 0.1968 | | 0.0419 | 24.79 | 37600 | 0.3652 | 0.1961 | | 0.042 | 25.05 | 38000 | 0.3820 | 0.1964 | | 0.0419 | 25.31 | 38400 | 0.3786 | 0.1919 | | 0.0376 | 25.58 | 38800 | 0.3842 | 0.1934 | | 0.0385 | 25.84 | 39200 | 0.3767 | 0.1900 | | 0.0396 | 26.1 | 39600 | 0.3688 | 0.1888 | | 0.0371 | 26.37 | 40000 | 0.3815 | 0.1894 | | 0.0363 | 26.63 | 40400 | 0.3748 | 0.1878 | | 0.0377 | 26.9 | 40800 | 0.3713 | 0.1852 | | 0.0352 | 27.16 | 41200 | 0.3734 | 0.1851 | | 0.0355 | 27.42 | 41600 | 0.3776 | 0.1874 | | 0.0333 | 27.69 | 42000 | 0.3867 | 0.1841 | | 0.0348 | 27.95 | 42400 | 0.3823 | 0.1839 | | 0.0329 | 28.21 | 42800 | 0.3795 | 0.1822 | | 0.0325 | 28.48 | 43200 | 0.3711 | 0.1813 | | 0.0328 | 28.74 | 43600 | 0.3721 | 0.1781 | | 0.0312 | 29.0 | 44000 | 0.3803 | 0.1816 | | 0.0318 | 29.27 | 44400 | 0.3758 | 0.1794 | | 0.0302 | 29.53 | 44800 | 0.3792 | 0.1784 | | 0.0339 | 29.8 | 45200 | 0.3763 | 0.1791 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
ts1829/obama_gpt2
0bf57333d76537a8d26298616a41d282a036a52a
2021-05-23T13:13:35.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
ts1829
null
ts1829/obama_gpt2
8
null
transformers
13,219
Entry not found
ts1829/trump_gpt2
1d8c4e6bfa6485acf7ba13f4fb52cf24228e72fd
2021-05-23T13:14:40.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
ts1829
null
ts1829/trump_gpt2
8
null
transformers
13,220
Entry not found
turtlesoupy/forward-dictionary-model-v1
c89dedbfec2416219b03a30620e0121574a3ff90
2021-05-23T13:15:50.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
turtlesoupy
null
turtlesoupy/forward-dictionary-model-v1
8
null
transformers
13,221
Entry not found
uclanlp/plbart-single_task-python_en
5d744cd2681dd955218f2e54ff807e927276445d
2022-03-02T06:58:51.000Z
[ "pytorch", "plbart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
uclanlp
null
uclanlp/plbart-single_task-python_en
8
null
transformers
13,222
Entry not found
victen/distilbert-base-uncased-finetuned-emotion
4b2b1152bb4a28976c7f97ba5751492e00f502cb
2022-02-07T10:42:22.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
victen
null
victen/distilbert-base-uncased-finetuned-emotion
8
null
transformers
13,223
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9235 - name: F1 type: f1 value: 0.9236951195245434 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2265 - Accuracy: 0.9235 - F1: 0.9237 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8243 | 1.0 | 250 | 0.3199 | 0.906 | 0.9025 | | 0.2484 | 2.0 | 500 | 0.2265 | 0.9235 | 0.9237 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
victor/autonlp-imdb-reviews-sentiment-329982
3cb89ea1c0fbe65d722e8cd912f6c79212d3178e
2021-07-06T19:26:32.000Z
[ "pytorch", "roberta", "text-classification", "en", "dataset:victor/autonlp-data-imdb-reviews-sentiment", "transformers", "autonlp" ]
text-classification
false
victor
null
victor/autonlp-imdb-reviews-sentiment-329982
8
null
transformers
13,224
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - victor/autonlp-data-imdb-reviews-sentiment --- # Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 329982 ## Validation Metrics - Loss: 0.24620144069194794 - Accuracy: 0.9300053431035799 - Precision: 0.9299029425358188 - Recall: 0.9289012003693444 - AUC: 0.9795001637755057 - F1: 0.9294018015243667 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/victor/autonlp-imdb-reviews-sentiment-329982 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("victor/autonlp-imdb-reviews-sentiment-329982", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("victor/autonlp-imdb-reviews-sentiment-329982", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
victorswedspot/DialoGPT-small-gandalf
05c70b93ffe7fb5e26084f0c1dc9a4f66537dc8c
2021-08-30T12:11:37.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
victorswedspot
null
victorswedspot/DialoGPT-small-gandalf
8
null
transformers
13,225
--- tags: - conversational --- # Gandalf DialoGPT model
vidhur2k/mBERT-Hindi-Mono
5230fc32f14bb9522c23d68c5e845da67f755d0a
2021-12-04T03:59:07.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
vidhur2k
null
vidhur2k/mBERT-Hindi-Mono
8
null
transformers
13,226
Entry not found
vkhangpham/shopee-ner
18627bfcf4243e69c4efda61fc9f16f798df1956
2022-01-27T19:15:22.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "token-classification", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
token-classification
false
vkhangpham
null
vkhangpham/shopee-ner
8
null
transformers
13,227
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: shopee-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # shopee-ner This model is a fine-tuned version of [cahya/xlm-roberta-base-indonesian-NER](https://huggingface.co/cahya/xlm-roberta-base-indonesian-NER) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2046 - Precision: 0.7666 - Recall: 0.8666 - F1: 0.8135 - Accuracy: 0.9320 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2282 | 1.0 | 33750 | 0.2174 | 0.7443 | 0.8506 | 0.7939 | 0.9253 | | 0.1983 | 2.0 | 67500 | 0.2046 | 0.7666 | 0.8666 | 0.8135 | 0.9320 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.1 - Tokenizers 0.10.3
vladenisov/sports-antihate
1a41542ead1523d5bcde2e80a50cc9f73d24ebf2
2022-02-15T20:49:13.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
vladenisov
null
vladenisov/sports-antihate
8
null
transformers
13,228
Entry not found
w11wo/indonesian-roberta-base-indonli
a84d2153e606ea6038dbce9f4402c222e40fa5c6
2021-11-11T09:00:12.000Z
[ "pytorch", "tf", "roberta", "text-classification", "id", "dataset:indonli", "arxiv:1907.11692", "arxiv:2110.14566", "transformers", "indonesian-roberta-base-indonli", "license:mit" ]
text-classification
false
w11wo
null
w11wo/indonesian-roberta-base-indonli
8
null
transformers
13,229
--- language: id tags: - indonesian-roberta-base-indonli license: mit datasets: - indonli widget: - text: "Andi tersenyum karena mendapat hasil baik. </s></s> Andi sedih." --- ## Indonesian RoBERTa Base IndoNLI Indonesian RoBERTa Base IndoNLI is a natural language inference (NLI) model based on the [RoBERTa](https://arxiv.org/abs/1907.11692) model. The model was originally the pre-trained [Indonesian RoBERTa Base](https://hf.co/flax-community/indonesian-roberta-base) model, which is then fine-tuned on [`IndoNLI`](https://github.com/ir-nlp-csui/indonli)'s dataset consisting of Indonesian Wikipedia, news, and Web articles [1]. After training, the model achieved an evaluation/dev accuracy of 77.06%. On the benchmark `test_lay` subset, the model achieved an accuracy of 74.24% and on the benchmark `test_expert` subset, the model achieved an accuracy of 61.66%. Hugging Face's `Trainer` class from the [Transformers](https://huggingface.co/transformers) library was used to train the model. PyTorch was used as the backend framework during training, but the model remains compatible with other frameworks nonetheless. ## Model | Model | #params | Arch. | Training/Validation data (text) | | --------------------------------- | ------- | ------------ | ------------------------------- | | `indonesian-roberta-base-indonli` | 124M | RoBERTa Base | `IndoNLI` | ## Evaluation Results The model was trained for 5 epochs, with a batch size of 16, a learning rate of 2e-5, a weight decay of 0.1, and a warmup ratio of 0.2, with linear annealing to 0. The best model was loaded at the end. | Epoch | Training Loss | Validation Loss | Accuracy | | ----- | ------------- | --------------- | -------- | | 1 | 0.989200 | 0.691663 | 0.731452 | | 2 | 0.673000 | 0.621913 | 0.766045 | | 3 | 0.449900 | 0.662543 | 0.770596 | | 4 | 0.293600 | 0.777059 | 0.768320 | | 5 | 0.194200 | 0.948068 | 0.764224 | ## How to Use ### As NLI Classifier ```python from transformers import pipeline pretrained_name = "w11wo/indonesian-roberta-base-indonli" nlp = pipeline( "sentiment-analysis", model=pretrained_name, tokenizer=pretrained_name ) nlp("Andi tersenyum karena mendapat hasil baik. </s></s> Andi sedih.") ``` ## Disclaimer Do consider the biases which come from both the pre-trained RoBERTa model and the `IndoNLI` dataset that may be carried over into the results of this model. ## References [1] Mahendra, R., Aji, A. F., Louvan, S., Rahman, F., & Vania, C. (2021, November). [IndoNLI: A Natural Language Inference Dataset for Indonesian](https://arxiv.org/abs/2110.14566). _Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing_. Association for Computational Linguistics. ## Author Indonesian RoBERTa Base IndoNLI was trained and evaluated by [Wilson Wongso](https://w11wo.github.io/). All computation and development are done on Google Colaboratory using their free GPU access.
w11wo/javanese-gpt2-small-imdb
05d4ddb29aaa40ddd955c4803cc9587603689c22
2022-02-14T16:19:56.000Z
[ "pytorch", "tf", "jax", "gpt2", "text-generation", "jv", "dataset:w11wo/imdb-javanese", "transformers", "javanese-gpt2-small-imdb", "license:mit" ]
text-generation
false
w11wo
null
w11wo/javanese-gpt2-small-imdb
8
null
transformers
13,230
--- language: jv tags: - javanese-gpt2-small-imdb license: mit datasets: - w11wo/imdb-javanese widget: - text: "Train to Busan yaiku film sing digawe ing Korea Selatan" --- ## Javanese GPT-2 Small IMDB Javanese GPT-2 Small IMDB is a causal language model based on the [GPT-2 model](https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf). It was trained on Javanese IMDB movie reviews. The model was originally the pretrained [Javanese GPT-2 Small model](https://huggingface.co/w11wo/javanese-gpt2-small) and is later fine-tuned on the Javanese IMDB movie review dataset. It achieved a perplexity of 60.54 on the validation dataset. Many of the techniques used are based on a Hugging Face tutorial [notebook](https://github.com/huggingface/notebooks/blob/master/examples/language_modeling.ipynb) written by [Sylvain Gugger](https://github.com/sgugger). Hugging Face's `Trainer` class from the [Transformers]((https://huggingface.co/transformers)) library was used to train the model. PyTorch was used as the backend framework during training, but the model remains compatible with TensorFlow nonetheless. ## Model | Model | #params | Arch. | Training/Validation data (text) | |----------------------------|----------|-----------------|---------------------------------| | `javanese-gpt2-small-imdb` | 124M | GPT-2 Small | Javanese IMDB (47.5 MB of text) | ## Evaluation Results The model was trained for 5 epochs and the following is the final result once the training ended. | train loss | valid loss | perplexity | total time | |------------|------------|------------|------------| | 4.135 | 4.103 | 60.54 | 6:22:40 | ## How to Use (PyTorch) ### As Causal Language Model ```python from transformers import pipeline pretrained_name = "w11wo/javanese-gpt2-small-imdb" nlp = pipeline( "text-generation", model=pretrained_name, tokenizer=pretrained_name ) nlp("Jenengku Budi, saka Indonesia") ``` ### Feature Extraction in PyTorch ```python from transformers import GPT2LMHeadModel, GPT2TokenizerFast pretrained_name = "w11wo/javanese-gpt2-small-imdb" model = GPT2LMHeadModel.from_pretrained(pretrained_name) tokenizer = GPT2TokenizerFast.from_pretrained(pretrained_name) prompt = "Indonesia minangka negara gedhe." encoded_input = tokenizer(prompt, return_tensors='pt') output = model(**encoded_input) ``` ## Disclaimer Do consider the biases which came from the IMDB review that may be carried over into the results of this model. ## Author Javanese GPT-2 Small was trained and evaluated by [Wilson Wongso](https://w11wo.github.io/). All computation and development are done on Google Colaboratory using their free GPU access. ## Citation If you use any of our models in your research, please cite: ```bib @inproceedings{wongso2021causal, title={Causal and Masked Language Modeling of Javanese Language using Transformer-based Architectures}, author={Wongso, Wilson and Setiawan, David Samuel and Suhartono, Derwin}, booktitle={2021 International Conference on Advanced Computer Science and Information Systems (ICACSIS)}, pages={1--7}, year={2021}, organization={IEEE} } ```
yseop/FNP_T5_D2T_complete
4ff17fd64712408c87dd98c820285c0af23b15dd
2021-09-06T20:54:21.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
yseop
null
yseop/FNP_T5_D2T_complete
8
null
transformers
13,231
# T5-base data to text model specialized for Finance NLG __complete version__ ---- ## Usage (HuggingFace Transformers) #### Call the model ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("yseop/FNP_T5_D2T_complete") model = AutoModelForSeq2SeqLM.from_pretrained("yseop/FNP_T5_D2T_complete") text = ["Group profit | valIs | € 115.7 million && € 115.7 million | dTime | in 2019"] ``` #### Choose a generation method ```python input_ids = tokenizer.encode(": {}".format(text), return_tensors="pt") p = 0.82 k = 90 outputs = model.generate(input_ids, do_sample=True, top_p=p, top_k=k, early_stopping=True) print(tokenizer.decode(outputs[0])) ``` ```python input_ids = tokenizer.encode(": {}".format(text), return_tensors="pt") outputs = model.generate(input_ids, max_length=200, num_beams=2, repetition_penalty=2.5, top_k=50, top_p=0.98, length_penalty=1.0, early_stopping=True) print(tokenizer.decode(outputs[0])) ``` **Created by:** [Yseop](https://www.yseop.com/) | Pioneer in Natural Language Generation (NLG) technology. Scaling human expertise through Natural Language Generation.
zhuqing/roberta-base-uncased-AutoModelWithLMHeadnetmums-classification
d2036711c45ca1d9134ab3bd27abb7df6c721563
2021-08-21T07:06:09.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
zhuqing
null
zhuqing/roberta-base-uncased-AutoModelWithLMHeadnetmums-classification
8
null
transformers
13,232
Entry not found
wietsedv/xlm-roberta-base-ft-udpos28-af
88e4cbf6a20fa1f1742346005adab2a67294a2ed
2022-02-25T09:58:01.000Z
[ "pytorch", "xlm-roberta", "token-classification", "af", "dataset:universal_dependencies", "transformers", "part-of-speech", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
wietsedv
null
wietsedv/xlm-roberta-base-ft-udpos28-af
8
null
transformers
13,233
--- language: - af license: apache-2.0 library_name: transformers tags: - part-of-speech - token-classification datasets: - universal_dependencies metrics: - accuracy model-index: - name: xlm-roberta-base-ft-udpos28-af results: - task: type: token-classification name: Part-of-Speech Tagging dataset: type: universal_dependencies name: Universal Dependencies v2.8 metrics: - type: accuracy name: English Test accuracy value: 85.8 - type: accuracy name: Dutch Test accuracy value: 83.7 - type: accuracy name: German Test accuracy value: 83.6 - type: accuracy name: Italian Test accuracy value: 84.4 - type: accuracy name: French Test accuracy value: 83.1 - type: accuracy name: Spanish Test accuracy value: 86.7 - type: accuracy name: Russian Test accuracy value: 86.4 - type: accuracy name: Swedish Test accuracy value: 87.7 - type: accuracy name: Norwegian Test accuracy value: 81.3 - type: accuracy name: Danish Test accuracy value: 86.8 - type: accuracy name: Low Saxon Test accuracy value: 62.5 - type: accuracy name: Akkadian Test accuracy value: 28.6 - type: accuracy name: Armenian Test accuracy value: 82.7 - type: accuracy name: Welsh Test accuracy value: 70.3 - type: accuracy name: Old East Slavic Test accuracy value: 72.5 - type: accuracy name: Albanian Test accuracy value: 79.4 - type: accuracy name: Slovenian Test accuracy value: 76.6 - type: accuracy name: Guajajara Test accuracy value: 23.2 - type: accuracy name: Kurmanji Test accuracy value: 74.7 - type: accuracy name: Turkish Test accuracy value: 72.8 - type: accuracy name: Finnish Test accuracy value: 83.9 - type: accuracy name: Indonesian Test accuracy value: 79.5 - type: accuracy name: Ukrainian Test accuracy value: 84.0 - type: accuracy name: Polish Test accuracy value: 85.6 - type: accuracy name: Portuguese Test accuracy value: 85.5 - type: accuracy name: Kazakh Test accuracy value: 77.5 - type: accuracy name: Latin Test accuracy value: 76.2 - type: accuracy name: Old French Test accuracy value: 58.4 - type: accuracy name: Buryat Test accuracy value: 59.7 - type: accuracy name: Kaapor Test accuracy value: 23.8 - type: accuracy name: Korean Test accuracy value: 59.4 - type: accuracy name: Estonian Test accuracy value: 86.7 - type: accuracy name: Croatian Test accuracy value: 86.4 - type: accuracy name: Gothic Test accuracy value: 20.7 - type: accuracy name: Swiss German Test accuracy value: 55.5 - type: accuracy name: Assyrian Test accuracy value: 17.2 - type: accuracy name: North Sami Test accuracy value: 38.8 - type: accuracy name: Naija Test accuracy value: 39.3 - type: accuracy name: Latvian Test accuracy value: 83.0 - type: accuracy name: Chinese Test accuracy value: 49.8 - type: accuracy name: Tagalog Test accuracy value: 71.7 - type: accuracy name: Bambara Test accuracy value: 29.9 - type: accuracy name: Lithuanian Test accuracy value: 82.8 - type: accuracy name: Galician Test accuracy value: 83.6 - type: accuracy name: Vietnamese Test accuracy value: 60.3 - type: accuracy name: Greek Test accuracy value: 83.3 - type: accuracy name: Catalan Test accuracy value: 86.1 - type: accuracy name: Czech Test accuracy value: 85.1 - type: accuracy name: Erzya Test accuracy value: 43.6 - type: accuracy name: Bhojpuri Test accuracy value: 50.1 - type: accuracy name: Thai Test accuracy value: 62.5 - type: accuracy name: Marathi Test accuracy value: 87.1 - type: accuracy name: Basque Test accuracy value: 76.2 - type: accuracy name: Slovak Test accuracy value: 84.8 - type: accuracy name: Kiche Test accuracy value: 34.1 - type: accuracy name: Yoruba Test accuracy value: 26.4 - type: accuracy name: Warlpiri Test accuracy value: 39.7 - type: accuracy name: Tamil Test accuracy value: 81.0 - type: accuracy name: Maltese Test accuracy value: 24.2 - type: accuracy name: Ancient Greek Test accuracy value: 59.3 - type: accuracy name: Icelandic Test accuracy value: 82.6 - type: accuracy name: Mbya Guarani Test accuracy value: 31.3 - type: accuracy name: Urdu Test accuracy value: 63.2 - type: accuracy name: Romanian Test accuracy value: 81.4 - type: accuracy name: Persian Test accuracy value: 75.4 - type: accuracy name: Apurina Test accuracy value: 32.2 - type: accuracy name: Japanese Test accuracy value: 35.9 - type: accuracy name: Hungarian Test accuracy value: 84.9 - type: accuracy name: Hindi Test accuracy value: 70.2 - type: accuracy name: Classical Chinese Test accuracy value: 30.5 - type: accuracy name: Komi Permyak Test accuracy value: 46.0 - type: accuracy name: Faroese Test accuracy value: 76.5 - type: accuracy name: Sanskrit Test accuracy value: 32.4 - type: accuracy name: Livvi Test accuracy value: 66.5 - type: accuracy name: Arabic Test accuracy value: 79.7 - type: accuracy name: Wolof Test accuracy value: 31.8 - type: accuracy name: Bulgarian Test accuracy value: 87.0 - type: accuracy name: Akuntsu Test accuracy value: 24.4 - type: accuracy name: Makurap Test accuracy value: 15.1 - type: accuracy name: Kangri Test accuracy value: 49.6 - type: accuracy name: Breton Test accuracy value: 62.0 - type: accuracy name: Telugu Test accuracy value: 82.2 - type: accuracy name: Cantonese Test accuracy value: 52.4 - type: accuracy name: Old Church Slavonic Test accuracy value: 51.0 - type: accuracy name: Karelian Test accuracy value: 73.1 - type: accuracy name: Upper Sorbian Test accuracy value: 74.2 - type: accuracy name: South Levantine Arabic Test accuracy value: 69.3 - type: accuracy name: Komi Zyrian Test accuracy value: 37.3 - type: accuracy name: Irish Test accuracy value: 66.3 - type: accuracy name: Nayini Test accuracy value: 47.4 - type: accuracy name: Munduruku Test accuracy value: 19.0 - type: accuracy name: Manx Test accuracy value: 39.6 - type: accuracy name: Skolt Sami Test accuracy value: 33.0 - type: accuracy name: Afrikaans Test accuracy value: 98.9 - type: accuracy name: Old Turkish Test accuracy value: 37.1 - type: accuracy name: Tupinamba Test accuracy value: 25.9 - type: accuracy name: Belarusian Test accuracy value: 86.4 - type: accuracy name: Serbian Test accuracy value: 87.0 - type: accuracy name: Moksha Test accuracy value: 42.9 - type: accuracy name: Western Armenian Test accuracy value: 80.0 - type: accuracy name: Scottish Gaelic Test accuracy value: 59.4 - type: accuracy name: Khunsari Test accuracy value: 37.8 - type: accuracy name: Hebrew Test accuracy value: 84.4 - type: accuracy name: Uyghur Test accuracy value: 73.3 - type: accuracy name: Chukchi Test accuracy value: 33.3 --- # XLM-RoBERTa base Universal Dependencies v2.8 POS tagging: Afrikaans This model is part of our paper called: - Make the Best of Cross-lingual Transfer: Evidence from POS Tagging with over 100 Languages Check the [Space](https://huggingface.co/spaces/wietsedv/xpos) for more details. ## Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-af") model = AutoModelForTokenClassification.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-af") ```
inovex/multi2convai-quality-de-mbert
bb6b367be447e2ee63b1251737ac0a8a09e8786f
2022-03-01T09:00:39.000Z
[ "pytorch", "bert", "text-classification", "de", "transformers", "license:mit" ]
text-classification
false
inovex
null
inovex/multi2convai-quality-de-mbert
8
null
transformers
13,234
--- tags: - text-classification widget: - text: "Starte das Programm" license: mit language: de --- # Multi2ConvAI-Quality: finetuned MBert for German This model was developed in the [Multi2ConvAI](https://multi2conv.ai) project: - domain: Quality (more details about our use cases: ([en](https://multi2convai/en/blog/use-cases), [de](https://multi2convai/en/blog/use-cases))) - language: German (de) - model type: finetuned MBert ## How to run Requires: - Huggingface transformers ### Run with Huggingface Transformers ````python from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("inovex/multi2convai-quality-de-mbert") model = AutoModelForSequenceClassification.from_pretrained("inovex/multi2convai-quality-de-mbert") ```` ## Further information on Multi2ConvAI: - https://multi2conv.ai - https://github.com/inovex/multi2convai - mailto: [email protected]
chitanda/merit-deberta-v2-xlarge-v1
1e60251d4308022827659b11a5dfa8a8b82f84c9
2022-02-26T01:09:07.000Z
[ "pytorch", "deberta-v2", "transformers", "license:mit" ]
null
false
chitanda
null
chitanda/merit-deberta-v2-xlarge-v1
8
null
transformers
13,235
--- license: mit ---
MhF/distilbert-base-uncased-finetuned-clinc
fbde9f295b55ed8380a186340e1992d64a666eab
2022-02-25T08:55:45.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:clinc_oos", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
MhF
null
MhF/distilbert-base-uncased-finetuned-clinc
8
null
transformers
13,236
--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos args: plus metrics: - name: Accuracy type: accuracy value: 0.9187096774193548 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.7703 - Accuracy: 0.9187 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 4.2896 | 1.0 | 318 | 3.2887 | 0.7419 | | 2.6309 | 2.0 | 636 | 1.8797 | 0.8310 | | 1.5443 | 3.0 | 954 | 1.1537 | 0.8974 | | 1.0097 | 4.0 | 1272 | 0.8560 | 0.9135 | | 0.7918 | 5.0 | 1590 | 0.7703 | 0.9187 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
vocab-transformers/cross_encoder-msmarco-distilbert-word2vec256k-MLM_400k
121eb3a1687bed01b795e85b88056a20ee393efd
2022-02-25T13:04:28.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
vocab-transformers
null
vocab-transformers/cross_encoder-msmarco-distilbert-word2vec256k-MLM_400k
8
null
transformers
13,237
#cross_encoder-msmarco-distilbert-word2vec256k-MLM_400k This CrossEncoder was trained with MarginMSE loss from the [vocab-transformers/msmarco-distilbert-word2vec256k-MLM_400k](https://hf.co/vocab-transformers/msmarco-distilbert-word2vec256k-MLM_400k) checkpoint. **Word embedding matrix has been frozen during training**. You can load the model with [sentence-transformers](https://sbert.net): ```python from sentence_transformers import CrossEncoder from torch import nn model = CrossEncoder(model_name, default_activation_function=nn.Identity()) ``` Performance on TREC Deep Learning (nDCG@10): - TREC-DL 19: 72.62 - TREC-DL 20: 73.22
ghadeermobasher/BC5CDR-Disease-imbalanced-bluebert_pubmed_uncased_L-12_H-768_A-12_latest
4c5eef35682d95acb5c106d26046c659f8bef515
2022-02-25T18:31:38.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/BC5CDR-Disease-imbalanced-bluebert_pubmed_uncased_L-12_H-768_A-12_latest
8
null
transformers
13,238
Entry not found
smoeller/student-subject-questions
d7a8a47f01914e23abb0f700938d33f90e152316
2022-02-27T17:28:40.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
smoeller
null
smoeller/student-subject-questions
8
null
transformers
13,239
Entry not found
ali2066/twitter_RoBERTa_base_sentence_itr0_1e-05_all_01_03_2022-13_53_11
8e9584973d3b2dd3a45ba0ec5e91d75b9a5e2389
2022-03-01T13:03:25.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
ali2066
null
ali2066/twitter_RoBERTa_base_sentence_itr0_1e-05_all_01_03_2022-13_53_11
8
null
transformers
13,240
--- tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: twitter_RoBERTa_base_sentence_itr0_1e-05_all_01_03_2022-13_53_11 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # twitter_RoBERTa_base_sentence_itr0_1e-05_all_01_03_2022-13_53_11 This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base](https://huggingface.co/cardiffnlp/twitter-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4118 - Accuracy: 0.8446 - F1: 0.8968 - Precision: 0.8740 - Recall: 0.9207 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | No log | 1.0 | 390 | 0.3532 | 0.8451 | 0.8990 | 0.8997 | 0.8983 | | 0.4111 | 2.0 | 780 | 0.3381 | 0.8561 | 0.9080 | 0.8913 | 0.9253 | | 0.3031 | 3.0 | 1170 | 0.3490 | 0.8537 | 0.9034 | 0.9152 | 0.8919 | | 0.2408 | 4.0 | 1560 | 0.3562 | 0.8671 | 0.9148 | 0.9 | 0.9300 | | 0.2408 | 5.0 | 1950 | 0.3725 | 0.8659 | 0.9131 | 0.9074 | 0.9189 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
batterydata/batterybert-uncased
639cb9e0a427d6cbfbc51c8d9f8248e2a5541012
2022-03-05T16:18:02.000Z
[ "pytorch", "tensorboard", "bert", "fill-mask", "en", "dataset:batterypapers", "transformers", "exbert", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
batterydata
null
batterydata/batterybert-uncased
8
null
transformers
13,241
--- language: en tags: - exbert license: apache-2.0 datasets: - batterypapers --- # BatteryBERT-uncased model Pretrained model on a large corpus of battery research papers using a masked language modeling (MLM) objective, starting with the [bert-base-uncased](https://huggingface.co/bert-base-uncased) weights. It was introduced in [this paper](paper_link) and first released in [this repository](https://github.com/ShuHuang/batterybert). This model is uncased: it does not make a difference between english and English. ## Model description BatteryBERT is a transformers model pretrained on a large corpus of battery research papers in a self-supervised fashion, starting with the [bert-base-uncased](https://huggingface.co/bert-base-uncased) weights. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with the Masked language modeling (MLM) objective. Taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the BERT model as inputs. ## Training data The BatteryBERT model was pretrained on the full text of battery papers only, after initialized from the [bert-base-uncased](https://huggingface.co/bert-base-uncased) weights. The paper corpus contains a total of 400,366 battery research papers that are published from 2000 to June 2021, from the publishers Royal Society of Chemistry (RSC), Elsevier, and Springer. The list of DOIs can be found at [Github](https://github.com/ShuHuang/batterybert/blob/main/corpus.txt). ## Training procedure ### Preprocessing The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,522. The inputs of the model are then of the form: ``` [CLS] Sentence A [SEP] Sentence B [SEP] ``` The details of the masking procedure for each sentence are the following: - 15% of the tokens are masked. - In 80% of the cases, the masked tokens are replaced by `[MASK]`. - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace. - In the 10% remaining cases, the masked tokens are left as is. ### Pretraining The model was trained on 8 NVIDIA DGX A100 GPUs for 1,000,000 steps with a batch size of 256. The sequence length was limited to 512 tokens. The optimizer used is Adam with a learning rate of 2e-5, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01, learning rate warmup for 10,000 steps and linear decay of the learning rate after. ## Intended uses & limitations You can use the raw model for masked language modeling, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=batterybert) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use You can use this model directly with a pipeline for masked language modeling: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='batterydata/batterybert-uncased') >>> unmasker("Hello I'm a <mask> model.") ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('batterydata/batterybert-uncased') model = BertModel.from_pretrained('batterydata/batterybert-uncased') text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('batterydata/batterybert-uncased') model = TFBertModel.from_pretrained('batterydata/batterybert-uncased') text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ## Evaluation results Final loss: 1.0317. ## Authors Shu Huang: `sh2009 [at] cam.ac.uk` Jacqueline Cole: `jmc61 [at] cam.ac.uk` ## Citation BatteryBERT: A Pre-trained Language Model for Battery Database Enhancement
batterydata/batterybert-uncased-abstract
2c5826062f110b7a6256a5e8d290f127b109bb68
2022-03-05T14:52:59.000Z
[ "pytorch", "bert", "text-classification", "en", "dataset:batterydata/paper-abstracts", "transformers", "Text Classification", "license:apache-2.0" ]
text-classification
false
batterydata
null
batterydata/batterybert-uncased-abstract
8
null
transformers
13,242
--- language: en tags: Text Classification license: apache-2.0 datasets: - batterydata/paper-abstracts metrics: glue --- # BatteryBERT-uncased for Battery Abstract Classification **Language model:** batterybert-uncased **Language:** English **Downstream-task:** Text Classification **Training data:** training\_data.csv **Eval data:** val\_data.csv **Code:** See [example](https://github.com/ShuHuang/batterybert) **Infrastructure**: 8x DGX A100 ## Hyperparameters ``` batch_size = 32 n_epochs = 11 base_LM_model = "batterybert-uncased" learning_rate = 2e-5 ``` ## Performance ``` "Validation accuracy": 97.10, "Test accuracy": 96.94, ``` ## Usage ### In Transformers ```python from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline model_name = "batterydata/batterybert-uncased-abstract" # a) Get predictions nlp = pipeline('text-classification', model=model_name, tokenizer=model_name) input = {'The typical non-aqueous electrolyte for commercial Li-ion cells is a solution of LiPF6 in linear and cyclic carbonates.'} res = nlp(input) # b) Load model & tokenizer model = AutoModelForSequenceClassification.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) ``` ## Authors Shu Huang: `sh2009 [at] cam.ac.uk` Jacqueline Cole: `jmc61 [at] cam.ac.uk` ## Citation BatteryBERT: A Pre-trained Language Model for Battery Database Enhancement
batterydata/bert-base-cased-abstract
de0bac0fbc92bbadaf87dbd2782a2e22d2eb8ff6
2022-03-05T14:42:16.000Z
[ "pytorch", "bert", "text-classification", "en", "dataset:batterydata/paper-abstracts", "transformers", "Text Classification", "license:apache-2.0" ]
text-classification
false
batterydata
null
batterydata/bert-base-cased-abstract
8
null
transformers
13,243
--- language: en tags: Text Classification license: apache-2.0 datasets: - batterydata/paper-abstracts metrics: glue --- # BERT-base-cased for Battery Abstract Classification **Language model:** bert-base-cased **Language:** English **Downstream-task:** Text Classification **Training data:** training\_data.csv **Eval data:** val\_data.csv **Code:** See [example](https://github.com/ShuHuang/batterybert) **Infrastructure**: 8x DGX A100 ## Hyperparameters ``` batch_size = 32 n_epochs = 15 base_LM_model = "bert-base-cased" learning_rate = 2e-5 ``` ## Performance ``` "Validation accuracy": 96.84, "Test accuracy": 96.83, ``` ## Usage ### In Transformers ```python from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline model_name = "batterydata/bert-base-cased-abstract" # a) Get predictions nlp = pipeline('text-classification', model=model_name, tokenizer=model_name) input = {'The typical non-aqueous electrolyte for commercial Li-ion cells is a solution of LiPF6 in linear and cyclic carbonates.'} res = nlp(input) # b) Load model & tokenizer model = AutoModelForSequenceClassification.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) ``` ## Authors Shu Huang: `sh2009 [at] cam.ac.uk` Jacqueline Cole: `jmc61 [at] cam.ac.uk` ## Citation BatteryBERT: A Pre-trained Language Model for Battery Database Enhancement
huggingartists/pink-floyd
74ab4197b67d0068c3686a4c957dbeae2695c2d8
2022-03-02T09:18:41.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "dataset:huggingartists/pink-floyd", "transformers", "huggingartists", "lyrics", "lm-head", "causal-lm" ]
text-generation
false
huggingartists
null
huggingartists/pink-floyd
8
null
transformers
13,244
--- language: en datasets: - huggingartists/pink-floyd tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/6b5c50912d99c3cf0eabfec5f427c452.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Pink Floyd</div> <a href="https://genius.com/artists/pink-floyd"> <div style="text-align: center; font-size: 14px;">@pink-floyd</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Pink Floyd. Dataset is available [here](https://huggingface.co/datasets/huggingartists/pink-floyd). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/pink-floyd") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/3j9osgks/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Pink Floyd's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1wlqpngf) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1wlqpngf/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/pink-floyd') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/pink-floyd") model = AutoModelWithLMHead.from_pretrained("huggingartists/pink-floyd") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
sanchit-gandhi/wav2vec2-2-rnd-grid-search
547a55be44be090cafca4b0e14803ca310c5713f
2022-03-03T14:51:05.000Z
[ "pytorch", "tensorboard", "speech-encoder-decoder", "automatic-speech-recognition", "dataset:librispeech_asr", "transformers", "generated_from_trainer", "model-index" ]
automatic-speech-recognition
false
sanchit-gandhi
null
sanchit-gandhi/wav2vec2-2-rnd-grid-search
8
null
transformers
13,245
--- tags: - generated_from_trainer datasets: - librispeech_asr model-index: - name: '' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model was trained from scratch on the librispeech_asr dataset. It achieves the following results on the evaluation set: - Loss: 6.9475 - Wer: 2.0097 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 5.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 6.9006 | 1.68 | 1500 | 6.9507 | 2.0097 | | 6.9503 | 3.36 | 3000 | 6.9475 | 2.0097 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu113 - Datasets 1.18.3 - Tokenizers 0.11.0
EvilMasterPlan/NER
be65d815905ec9ac62fe528e7a0c239fd2d2972f
2022-03-03T16:13:19.000Z
[ "pytorch", "xlnet", "text-classification", "transformers" ]
text-classification
false
EvilMasterPlan
null
EvilMasterPlan/NER
8
null
transformers
13,246
Entry not found
xinzhel/gpt2-ag-news
36fc81e7aad820ebc8921c74c1d2e04af24aafa0
2022-03-06T00:08:03.000Z
[ "pytorch", "gpt2", "text-classification", "transformers", "license:apache-2.0" ]
text-classification
false
xinzhel
null
xinzhel/gpt2-ag-news
8
1
transformers
13,247
--- license: apache-2.0 ---
Kuray107/librispeech-5h-supervised
7744945765e168ffea72fd42d8ad37c35df19d4b
2022-03-06T06:43:53.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Kuray107
null
Kuray107/librispeech-5h-supervised
8
null
transformers
13,248
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: librispeech-5h-supervised results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # librispeech-5h-supervised This model is a fine-tuned version of [facebook/wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2041 - Wer: 0.0624 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.7758 | 11.11 | 1000 | 0.3120 | 0.2337 | | 0.1238 | 22.22 | 2000 | 0.1651 | 0.0826 | | 0.0383 | 33.33 | 3000 | 0.1667 | 0.0712 | | 0.023 | 44.44 | 4000 | 0.1893 | 0.0685 | | 0.0166 | 55.56 | 5000 | 0.2008 | 0.0666 | | 0.0131 | 66.67 | 6000 | 0.1942 | 0.0639 | | 0.0106 | 77.78 | 7000 | 0.1979 | 0.0628 | | 0.0091 | 88.89 | 8000 | 0.2027 | 0.0628 | | 0.008 | 100.0 | 9000 | 0.2041 | 0.0624 | ### Framework versions - Transformers 4.14.1 - Pytorch 1.10.2 - Datasets 1.18.2 - Tokenizers 0.10.3
billfrench/autonlp-cyberlandr-ai-4-614417500
402c21dd4c2b29da23309639e2440c36314a4673
2022-03-07T00:56:09.000Z
[ "pytorch", "bert", "text-classification", "en", "dataset:billfrench/autonlp-data-cyberlandr-ai-4", "transformers", "autonlp", "co2_eq_emissions" ]
text-classification
false
billfrench
null
billfrench/autonlp-cyberlandr-ai-4-614417500
8
null
transformers
13,249
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - billfrench/autonlp-data-cyberlandr-ai-4 co2_eq_emissions: 1.131603488976132 --- # Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 614417500 - CO2 Emissions (in grams): 1.131603488976132 ## Validation Metrics - Loss: 1.4588216543197632 - Accuracy: 0.3333333333333333 - Macro F1: 0.225 - Micro F1: 0.3333333333333333 - Weighted F1: 0.2333333333333333 - Macro Precision: 0.1875 - Micro Precision: 0.3333333333333333 - Weighted Precision: 0.20833333333333334 - Macro Recall: 0.375 - Micro Recall: 0.3333333333333333 - Weighted Recall: 0.3333333333333333 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/billfrench/autonlp-cyberlandr-ai-4-614417500 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("billfrench/autonlp-cyberlandr-ai-4-614417500", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("billfrench/autonlp-cyberlandr-ai-4-614417500", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
jkhan447/sentiment-model-sample-go-emotion
592edba02a16ec512631e3b17c394d5bafc4a9bc
2022-03-10T06:25:48.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "dataset:go_emotions", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
jkhan447
null
jkhan447/sentiment-model-sample-go-emotion
8
null
transformers
13,250
--- license: apache-2.0 tags: - generated_from_trainer datasets: - go_emotions metrics: - accuracy model-index: - name: sentiment-model-sample-go-emotion results: - task: name: Text Classification type: text-classification dataset: name: go_emotions type: go_emotions args: simplified metrics: - name: Accuracy type: accuracy value: 0.5827886710239651 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sentiment-model-sample-go-emotion This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the go_emotions dataset. It achieves the following results on the evaluation set: - Loss: 4.2674 - Accuracy: 0.5828 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.4 - Tokenizers 0.11.6
spy24/autonlp-parrot_paraphrasing-615317556
f2694b40f6644421fbb8d34f0639760e2cbf861c
2022-03-07T09:36:20.000Z
[ "pytorch", "t5", "text2text-generation", "unk", "dataset:spy24/autonlp-data-parrot_paraphrasing", "transformers", "autonlp", "co2_eq_emissions", "autotrain_compatible" ]
text2text-generation
false
spy24
null
spy24/autonlp-parrot_paraphrasing-615317556
8
null
transformers
13,251
--- tags: autonlp language: unk widget: - text: "I love AutoNLP 🤗" datasets: - spy24/autonlp-data-parrot_paraphrasing co2_eq_emissions: 0.8335491678002559 --- # Model Trained Using AutoNLP - Problem type: Summarization - Model ID: 615317556 - CO2 Emissions (in grams): 0.8335491678002559 ## Validation Metrics - Loss: 0.0001514342293376103 - Rouge1: 100.0 - Rouge2: 51.4451 - RougeL: 100.0 - RougeLsum: 100.0 - Gen Len: 4.104 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/spy24/autonlp-parrot_paraphrasing-615317556 ```
gayanin/t5-small-paraphrasing-mlm
a9b9e2ac2687a39adfe70dd4e2dd2c7785e5e147
2022-03-08T01:54:54.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
gayanin
null
gayanin/t5-small-paraphrasing-mlm
8
null
transformers
13,252
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: t5-small-paraphrasing-mlm results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-paraphrasing-mlm This model is a fine-tuned version of [gayanin/t5-small-paraphrase-pubmed](https://huggingface.co/gayanin/t5-small-paraphrase-pubmed) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7030 - Rouge2 Precision: 0.6576 - Rouge2 Recall: 0.4712 - Rouge2 Fmeasure: 0.532 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | |:-------------:|:-----:|:------:|:---------------:|:----------------:|:-------------:|:---------------:| | 0.9215 | 1.0 | 13833 | 0.8050 | 0.6352 | 0.454 | 0.5131 | | 0.855 | 2.0 | 27666 | 0.7679 | 0.6411 | 0.4589 | 0.5184 | | 0.8387 | 3.0 | 41499 | 0.7464 | 0.6464 | 0.4626 | 0.5226 | | 0.8267 | 4.0 | 55332 | 0.7315 | 0.6513 | 0.4671 | 0.5273 | | 0.7879 | 5.0 | 69165 | 0.7217 | 0.6534 | 0.4687 | 0.529 | | 0.7738 | 6.0 | 82998 | 0.7142 | 0.6548 | 0.4688 | 0.5295 | | 0.7793 | 7.0 | 96831 | 0.7094 | 0.6553 | 0.4694 | 0.53 | | 0.7654 | 8.0 | 110664 | 0.7056 | 0.6573 | 0.4704 | 0.5313 | | 0.7675 | 9.0 | 124497 | 0.7036 | 0.6577 | 0.4712 | 0.532 | | 0.7662 | 10.0 | 138330 | 0.7030 | 0.6576 | 0.4712 | 0.532 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.4 - Tokenizers 0.11.6
huggingtweets/desertblooom-littlehorney-plusbibi1
0900e4b71b39cb06c5d740074adca8f95dfaca1c
2022-03-08T08:02:55.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/desertblooom-littlehorney-plusbibi1
8
null
transformers
13,253
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1386970823681052680/oA_4HBKl_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1500170501603446792/xUkC2cSe_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1500892464772751365/6uhqt-Jx_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Bibi und Anna & Wüstenblume & Vanny_Bunny™</div> <div style="text-align: center; font-size: 14px;">@desertblooom-littlehorney-plusbibi1</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Bibi und Anna & Wüstenblume & Vanny_Bunny™. | Data | Bibi und Anna | Wüstenblume | Vanny_Bunny™ | | --- | --- | --- | --- | | Tweets downloaded | 1818 | 3250 | 3185 | | Retweets | 9 | 59 | 494 | | Short tweets | 341 | 810 | 339 | | Tweets kept | 1468 | 2381 | 2352 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/15il6uja/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @desertblooom-littlehorney-plusbibi1's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/lqcyodlp) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/lqcyodlp/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/desertblooom-littlehorney-plusbibi1') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
aymanm419/araElectra-SQUAD-ARCD-768
a823aab1a462542e93ad104633e4aebb43b97832
2022-03-08T22:18:43.000Z
[ "pytorch", "electra", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
aymanm419
null
aymanm419/araElectra-SQUAD-ARCD-768
8
null
transformers
13,254
Entry not found
jkhan447/sentiment-model-sample-ekman-emotion
b5a6fddb5fa025214bbe5ce30e51bcf5c54f966b
2022-03-11T08:07:01.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
jkhan447
null
jkhan447/sentiment-model-sample-ekman-emotion
8
null
transformers
13,255
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: sentiment-model-sample-ekman-emotion results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sentiment-model-sample-ekman-emotion This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.4963 - Accuracy: 0.6713 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.4 - Tokenizers 0.11.6
richielo/small-e-czech-finetuned-ner-wikiann
d20223af629a24f25585b6f5b80d83322aea28f9
2022-03-12T20:18:42.000Z
[ "pytorch", "tensorboard", "electra", "token-classification", "dataset:wikiann", "transformers", "generated_from_trainer", "license:cc-by-4.0", "model-index", "autotrain_compatible" ]
token-classification
false
richielo
null
richielo/small-e-czech-finetuned-ner-wikiann
8
null
transformers
13,256
--- license: cc-by-4.0 tags: - generated_from_trainer datasets: - wikiann metrics: - precision - recall - f1 - accuracy model-index: - name: small-e-czech-finetuned-ner-wikiann results: - task: name: Token Classification type: token-classification dataset: name: wikiann type: wikiann args: cs metrics: - name: Precision type: precision value: 0.8713322894683097 - name: Recall type: recall value: 0.8970423324922905 - name: F1 type: f1 value: 0.8840004144075699 - name: Accuracy type: accuracy value: 0.9557089381093997 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # small-e-czech-finetuned-ner-wikiann This model is a fine-tuned version of [Seznam/small-e-czech](https://huggingface.co/Seznam/small-e-czech) on the wikiann dataset. It achieves the following results on the evaluation set: - Loss: 0.2547 - Precision: 0.8713 - Recall: 0.8970 - F1: 0.8840 - Accuracy: 0.9557 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2924 | 1.0 | 2500 | 0.2449 | 0.7686 | 0.8088 | 0.7882 | 0.9320 | | 0.2042 | 2.0 | 5000 | 0.2137 | 0.8050 | 0.8398 | 0.8220 | 0.9400 | | 0.1699 | 3.0 | 7500 | 0.1912 | 0.8236 | 0.8593 | 0.8411 | 0.9466 | | 0.1419 | 4.0 | 10000 | 0.1931 | 0.8349 | 0.8671 | 0.8507 | 0.9488 | | 0.1316 | 5.0 | 12500 | 0.1892 | 0.8470 | 0.8776 | 0.8620 | 0.9519 | | 0.1042 | 6.0 | 15000 | 0.2058 | 0.8433 | 0.8811 | 0.8618 | 0.9508 | | 0.0884 | 7.0 | 17500 | 0.2020 | 0.8602 | 0.8849 | 0.8724 | 0.9531 | | 0.0902 | 8.0 | 20000 | 0.2118 | 0.8551 | 0.8837 | 0.8692 | 0.9528 | | 0.0669 | 9.0 | 22500 | 0.2171 | 0.8634 | 0.8906 | 0.8768 | 0.9550 | | 0.0529 | 10.0 | 25000 | 0.2228 | 0.8638 | 0.8912 | 0.8773 | 0.9545 | | 0.0613 | 11.0 | 27500 | 0.2293 | 0.8626 | 0.8898 | 0.8760 | 0.9544 | | 0.0549 | 12.0 | 30000 | 0.2276 | 0.8694 | 0.8958 | 0.8824 | 0.9554 | | 0.0516 | 13.0 | 32500 | 0.2384 | 0.8717 | 0.8940 | 0.8827 | 0.9552 | | 0.0412 | 14.0 | 35000 | 0.2443 | 0.8701 | 0.8931 | 0.8815 | 0.9554 | | 0.0345 | 15.0 | 37500 | 0.2464 | 0.8723 | 0.8958 | 0.8839 | 0.9557 | | 0.0412 | 16.0 | 40000 | 0.2477 | 0.8705 | 0.8948 | 0.8825 | 0.9552 | | 0.0363 | 17.0 | 42500 | 0.2525 | 0.8742 | 0.8973 | 0.8856 | 0.9559 | | 0.0341 | 18.0 | 45000 | 0.2529 | 0.8727 | 0.8962 | 0.8843 | 0.9561 | | 0.0194 | 19.0 | 47500 | 0.2533 | 0.8699 | 0.8966 | 0.8830 | 0.9557 | | 0.0247 | 20.0 | 50000 | 0.2547 | 0.8713 | 0.8970 | 0.8840 | 0.9557 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.4 - Tokenizers 0.11.6
cambridgeltl/sst_bert-base-uncased
776a1f85114c62eb383db60dd2bb16b477bdc681
2022-03-14T16:54:28.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
cambridgeltl
null
cambridgeltl/sst_bert-base-uncased
8
null
transformers
13,257
Entry not found
ebrigham/yahoo_answers_topics_classifier
eac88a96f9ca361cf6edf42f4011625fe946cda8
2022-03-14T21:16:15.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers" ]
text-classification
false
ebrigham
null
ebrigham/yahoo_answers_topics_classifier
8
null
transformers
13,258
Entry not found
Neulvo/bert-finetuned-ner-accelerate
23ff97370fdb5f34caace5791e60300b7b9658e3
2022-03-15T16:04:25.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
Neulvo
null
Neulvo/bert-finetuned-ner-accelerate
8
null
transformers
13,259
Entry not found
edbeeching/decision-transformer-gym-hopper-medium-replay
f36050d8e87062eceb103e19067b8eee7385d30e
2022-06-29T19:20:14.000Z
[ "pytorch", "decision_transformer", "feature-extraction", "arxiv:2106.01345", "transformers", "deep-reinforcement-learning", "reinforcement-learning", "decision-transformer", "gym-continous-control" ]
reinforcement-learning
false
edbeeching
null
edbeeching/decision-transformer-gym-hopper-medium-replay
8
null
transformers
13,260
--- tags: - deep-reinforcement-learning - reinforcement-learning - decision-transformer - gym-continous-control pipeline_tag: reinforcement-learning --- # Decision Transformer model trained on medium-replay trajectories sampled from the Gym Hopper environment This is a trained [Decision Transformer](https://arxiv.org/abs/2106.01345) model trained on medium-replay trajectories sampled from the Gym Hopper environment. The following normlization coefficients are required to use this model: mean = [ 1.2305138, -0.04371411, -0.44542956, -0.09370098, 0.09094488, 1.3694725, -0.19992675, -0.02286135, -0.5287045, -0.14465883, -0.19652697] std = [0.17565121, 0.06369286, 0.34383234, 0.19566889, 0.5547985, 1.0510299, 1.1583077, 0.79631287, 1.4802359, 1.6540332, 5.108601] See our [Blog Post](https://colab.research.google.com/drive/1K3UuajwoPY1MzRKNkONNRS3gS5DxZ-qF?usp=sharing), [Colab notebook](https://colab.research.google.com/drive/1K3UuajwoPY1MzRKNkONNRS3gS5DxZ-qF?usp=sharing) or [Example Script](https://github.com/huggingface/transformers/tree/main/examples/research_projects/decision_transformer) for usage.
edbeeching/decision-transformer-gym-walker2d-expert
2658e071054b4795c9afa536c4bf47e9a5422184
2022-06-29T19:21:27.000Z
[ "pytorch", "decision_transformer", "feature-extraction", "arxiv:2106.01345", "transformers", "deep-reinforcement-learning", "reinforcement-learning", "decision-transformer", "gym-continous-control" ]
reinforcement-learning
false
edbeeching
null
edbeeching/decision-transformer-gym-walker2d-expert
8
1
transformers
13,261
--- tags: - deep-reinforcement-learning - reinforcement-learning - decision-transformer - gym-continous-control pipeline_tag: reinforcement-learning --- # Decision Transformer model trained on expert trajectories sampled from the Gym Walker2d environment This is a trained [Decision Transformer](https://arxiv.org/abs/2106.01345) model trained on expert trajectories sampled from the Gym Walker2d environment. The following normlization coeficients are required to use this model: mean = [ 1.2384834e+00, 1.9578537e-01, -1.0475016e-01, -1.8579608e-01, 2.3003316e-01, 2.2800924e-02, -3.7383768e-01, 3.3779100e-01, 3.9250960e+00, -4.7428459e-03, 2.5267061e-02, -3.9287535e-03, -1.7367510e-02, -4.8212224e-01, 3.5432147e-04, -3.7124525e-03, 2.6285544e-03] std = [0.06664903, 0.16980624, 0.17309439, 0.21843709, 0.74599105, 0.02410989, 0.3729872, 0.6226182, 0.9708009, 0.72936815, 1.504065, 2.495893, 3.511518, 5.3656907, 0.79503316, 4.317483, 6.1784487] See our [Blog Post](https://colab.research.google.com/drive/1K3UuajwoPY1MzRKNkONNRS3gS5DxZ-qF?usp=sharing), [Colab notebook](https://colab.research.google.com/drive/1K3UuajwoPY1MzRKNkONNRS3gS5DxZ-qF?usp=sharing) or [Example Script](https://github.com/huggingface/transformers/tree/main/examples/research_projects/decision_transformer) for usage.
SaulLu/distilbert-copy
9ef3f70fbed96e92a51b9c917954ef6704297afc
2022-03-17T11:33:30.000Z
[ "pytorch", "distilbert", "feature-extraction", "transformers" ]
feature-extraction
false
SaulLu
null
SaulLu/distilbert-copy
8
null
transformers
13,262
Entry not found
MickyMike/VulRepair
79873a95954de61f6291090f90fe4c80e2289d47
2022-03-17T15:24:56.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "license:mit", "autotrain_compatible" ]
text2text-generation
false
MickyMike
null
MickyMike/VulRepair
8
null
transformers
13,263
--- license: mit ---
anton-l/xtreme_s_xlsr_300m_minds14
b0978180a23cd78a4f8df223fb37b7684404be56
2022-04-03T18:54:43.000Z
[ "pytorch", "tensorboard", "wav2vec2", "audio-classification", "all", "dataset:google/xtreme_s", "transformers", "minds14", "google/xtreme_s", "generated_from_trainer", "license:apache-2.0", "model-index" ]
audio-classification
false
anton-l
null
anton-l/xtreme_s_xlsr_300m_minds14
8
null
transformers
13,264
--- language: - all license: apache-2.0 tags: - minds14 - google/xtreme_s - generated_from_trainer datasets: - google/xtreme_s metrics: - f1 - accuracy model-index: - name: xtreme_s_xlsr_300m_minds14 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xtreme_s_xlsr_300m_minds14 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the GOOGLE/XTREME_S - MINDS14.ALL dataset. It achieves the following results on the evaluation set: - Accuracy: 0.9033 - Accuracy Cs-cz: 0.9164 - Accuracy De-de: 0.9477 - Accuracy En-au: 0.9235 - Accuracy En-gb: 0.9324 - Accuracy En-us: 0.9326 - Accuracy Es-es: 0.9177 - Accuracy Fr-fr: 0.9444 - Accuracy It-it: 0.9167 - Accuracy Ko-kr: 0.8649 - Accuracy Nl-nl: 0.9450 - Accuracy Pl-pl: 0.9146 - Accuracy Pt-pt: 0.8940 - Accuracy Ru-ru: 0.8667 - Accuracy Zh-cn: 0.7291 - F1: 0.9015 - F1 Cs-cz: 0.9154 - F1 De-de: 0.9467 - F1 En-au: 0.9199 - F1 En-gb: 0.9334 - F1 En-us: 0.9308 - F1 Es-es: 0.9158 - F1 Fr-fr: 0.9436 - F1 It-it: 0.9135 - F1 Ko-kr: 0.8642 - F1 Nl-nl: 0.9440 - F1 Pl-pl: 0.9159 - F1 Pt-pt: 0.8883 - F1 Ru-ru: 0.8646 - F1 Zh-cn: 0.7249 - Loss: 0.4119 - Loss Cs-cz: 0.3790 - Loss De-de: 0.2649 - Loss En-au: 0.3459 - Loss En-gb: 0.2853 - Loss En-us: 0.2203 - Loss Es-es: 0.2731 - Loss Fr-fr: 0.1909 - Loss It-it: 0.3520 - Loss Ko-kr: 0.5431 - Loss Nl-nl: 0.2515 - Loss Pl-pl: 0.4113 - Loss Pt-pt: 0.4798 - Loss Ru-ru: 0.6470 - Loss Zh-cn: 1.1216 - Predict Samples: 4086 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 64 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1500 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:--------:| | 2.6739 | 5.41 | 200 | 2.5687 | 0.0430 | 0.1190 | | 1.4953 | 10.81 | 400 | 1.6052 | 0.5550 | 0.5692 | | 0.6177 | 16.22 | 600 | 0.7927 | 0.8052 | 0.8011 | | 0.3609 | 21.62 | 800 | 0.5679 | 0.8609 | 0.8609 | | 0.4972 | 27.03 | 1000 | 0.5944 | 0.8509 | 0.8523 | | 0.1799 | 32.43 | 1200 | 0.6194 | 0.8623 | 0.8621 | | 0.1308 | 37.84 | 1400 | 0.5956 | 0.8569 | 0.8548 | | 0.2298 | 43.24 | 1600 | 0.5201 | 0.8732 | 0.8743 | | 0.0052 | 48.65 | 1800 | 0.3826 | 0.9106 | 0.9103 | ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.10.2+cu113 - Datasets 2.0.1.dev0 - Tokenizers 0.11.6
brad1141/Longformer-finetuned-comp5
fc3bfa12b09a2ae2c5d5b40d30b95776c914c85e
2022-03-18T02:21:19.000Z
[ "pytorch", "tensorboard", "longformer", "token-classification", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
token-classification
false
brad1141
null
brad1141/Longformer-finetuned-comp5
8
null
transformers
13,265
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: Longformer-finetuned-comp5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Longformer-finetuned-comp5 This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8180 - Precision: 0.5680 - Recall: 0.7490 - F1: 0.6430 - Accuracy: 0.6430 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.8296 | 1.0 | 1012 | 0.5801 | 0.4806 | 0.6633 | 0.5448 | 0.5448 | | 0.5367 | 2.0 | 2024 | 0.5386 | 0.5617 | 0.7042 | 0.6172 | 0.6172 | | 0.4109 | 3.0 | 3036 | 0.5755 | 0.5590 | 0.7261 | 0.6248 | 0.6248 | | 0.3088 | 4.0 | 4048 | 0.6167 | 0.5775 | 0.7394 | 0.6435 | 0.6435 | | 0.2234 | 5.0 | 5060 | 0.7098 | 0.5626 | 0.7477 | 0.6370 | 0.6370 | | 0.1637 | 6.0 | 6072 | 0.7399 | 0.5742 | 0.7413 | 0.6438 | 0.6438 | | 0.1236 | 7.0 | 7084 | 0.8180 | 0.5680 | 0.7490 | 0.6430 | 0.6430 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
facebook/regnet-y-006
c4c145ba7c79cfad0a12688d07246ffe38a1a793
2022-06-30T10:14:07.000Z
[ "pytorch", "tf", "regnet", "image-classification", "dataset:imagenet-1k", "arxiv:2003.13678", "transformers", "vision", "license:apache-2.0" ]
image-classification
false
facebook
null
facebook/regnet-y-006
8
null
transformers
13,266
--- license: apache-2.0 tags: - vision - image-classification datasets: - imagenet-1k widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace --- # RegNet RegNet model trained on imagenet-1k. It was introduced in the paper [Designing Network Design Spaces](https://arxiv.org/abs/2003.13678) and first released in [this repository](https://github.com/facebookresearch/pycls). Disclaimer: The team releasing RegNet did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The authors design search spaces to perform Neural Architecture Search (NAS). They first start from a high dimensional search space and iteratively reduce the search space by empirically applying constraints based on the best-performing models sampled by the current search space. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/regnet_architecture.png) ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=regnet) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model: ```python >>> from transformers import AutoFeatureExtractor, RegNetForImageClassification >>> import torch >>> from datasets import load_dataset >>> dataset = load_dataset("huggingface/cats-image") >>> image = dataset["test"]["image"][0] >>> feature_extractor = AutoFeatureExtractor.from_pretrained("zuppif/regnet-y-040") >>> model = RegNetForImageClassification.from_pretrained("zuppif/regnet-y-040") >>> inputs = feature_extractor(image, return_tensors="pt") >>> with torch.no_grad(): ... logits = model(**inputs).logits >>> # model predicts one of the 1000 ImageNet classes >>> predicted_label = logits.argmax(-1).item() >>> print(model.config.id2label[predicted_label]) 'tabby, tabby cat' ``` For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/regnet).
EMBO/sd-smallmol-roles
2c103fd6953b6e70dcd88e5a10763492b82bdd3b
2022-03-27T13:28:53.000Z
[ "pytorch", "roberta", "token-classification", "english", "dataset:EMBO/sd-nlp", "transformers", "token classification", "license:agpl-3.0", "autotrain_compatible" ]
token-classification
false
EMBO
null
EMBO/sd-smallmol-roles
8
null
transformers
13,267
--- language: - english thumbnail: tags: - token classification license: agpl-3.0 datasets: - EMBO/sd-nlp metrics: - --- # sd-smallmol-roles ## Model description This model is a [RoBERTa base model](https://huggingface.co/roberta-base) that was further trained using a masked language modeling task on a compendium of english scientific textual examples from the life sciences using the [BioLang dataset](https://huggingface.co/datasets/EMBO/biolang). It has then been fine-tuned for token classification on the SourceData [sd-nlp](https://huggingface.co/datasets/EMBO/sd-nlp) dataset with the `SMALL_MOL_ROLES` configuration to perform pure context-dependent semantic role classification of bioentities. ## Intended uses & limitations #### How to use The intended use of this model is to infer the semantic role of small molecules with regard to the causal hypotheses tested in experiments reported in scientific papers. To have a quick check of the model: ```python from transformers import pipeline, RobertaTokenizerFast, RobertaForTokenClassification example = """<s>The <mask> overexpression in cells caused an increase in <mask> expression.</s>""" tokenizer = RobertaTokenizerFast.from_pretrained('roberta-base', max_len=512) model = RobertaForTokenClassification.from_pretrained('EMBO/sd-smallmol-roles') ner = pipeline('ner', model, tokenizer=tokenizer) res = ner(example) for r in res: print(r['word'], r['entity']) ``` #### Limitations and bias The model must be used with the `roberta-base` tokenizer. ## Training data The model was trained for token classification using the [EMBO/sd-nlp dataset](https://huggingface.co/datasets/EMBO/sd-nlp) which includes manually annotated examples. ## Training procedure The training was run on a NVIDIA DGX Station with 4XTesla V100 GPUs. Training code is available at https://github.com/source-data/soda-roberta - Model fine tuned: EMBL/bio-lm - Tokenizer vocab size: 50265 - Training data: EMBO/sd-nlp - Dataset configuration: SMALL_MOL_ROLES - Training with 48771 examples. - Evaluating on 13801 examples. - Training on 15 features: O, I-CONTROLLED_VAR, B-CONTROLLED_VAR, I-MEASURED_VAR, B-MEASURED_VAR - Epochs: 0.33 - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `learning_rate`: 0.0001 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 ## Eval results On 7178 example of test set with `sklearn.metrics`: ``` precision recall f1-score support CONTROLLED_VAR 0.76 0.90 0.83 2946 MEASURED_VAR 0.60 0.71 0.65 852 micro avg 0.73 0.86 0.79 3798 macro avg 0.68 0.80 0.74 3798 weighted avg 0.73 0.86 0.79 3798 {'test_loss': 0.011743436567485332, 'test_accuracy_score': 0.9951612532624371, 'test_precision': 0.7261345852895149, 'test_recall': 0.8551869404949973, 'test_f1': 0.7853947527505744, 'test_runtime': 58.0378, 'test_samples_per_second': 123.678, 'test_steps_per_second': 1.947} ```
msamogh/autonlp-cai-out-of-scope-649919116
b3e4ed2896fe8ef196c2b64ea5782a3ef1ec775a
2022-03-22T15:27:18.000Z
[ "pytorch", "bert", "text-classification", "en", "dataset:msamogh/autonlp-data-cai-out-of-scope", "transformers", "autonlp", "co2_eq_emissions" ]
text-classification
false
msamogh
null
msamogh/autonlp-cai-out-of-scope-649919116
8
null
transformers
13,268
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - msamogh/autonlp-data-cai-out-of-scope co2_eq_emissions: 2.438401649319185 --- # What do the class labels mean? 0 - out of scope 1 - in scope # Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 649919116 - CO2 Emissions (in grams): 2.438401649319185 ## Validation Metrics - Loss: 0.5314930081367493 - Accuracy: 0.7526881720430108 - Precision: 0.8490566037735849 - Recall: 0.75 - AUC: 0.8515151515151514 - F1: 0.7964601769911505 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/msamogh/autonlp-cai-out-of-scope-649919116 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("msamogh/autonlp-cai-out-of-scope-649919116", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("msamogh/autonlp-cai-out-of-scope-649919116", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
vinaykudari/gpt2-acled-t2s
58cb4e2471efad781d743c4bbf11fd43e76bd6cc
2022-03-20T14:26:41.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-generation
false
vinaykudari
null
vinaykudari/gpt2-acled-t2s
8
null
transformers
13,269
--- license: mit tags: - generated_from_trainer model-index: - name: gpt2-acled-t2s results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-acled-t2s This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9414 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2978 | 1.0 | 6621 | 1.2262 | | 1.0378 | 2.0 | 13242 | 1.0048 | | 0.9537 | 3.0 | 19863 | 0.9414 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.6.0 - Datasets 2.0.0 - Tokenizers 0.11.6
sanchit-gandhi/wav2vec2-2-rnd-no-adapter-regularisation
59f6f47d152e8f548a6532e6d97291b6c0fe387c
2022-03-25T03:10:23.000Z
[ "pytorch", "tensorboard", "speech-encoder-decoder", "automatic-speech-recognition", "dataset:librispeech_asr", "transformers", "generated_from_trainer", "model-index" ]
automatic-speech-recognition
false
sanchit-gandhi
null
sanchit-gandhi/wav2vec2-2-rnd-no-adapter-regularisation
8
null
transformers
13,270
--- tags: - generated_from_trainer datasets: - librispeech_asr model-index: - name: '' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model was trained from scratch on the librispeech_asr dataset. It achieves the following results on the evaluation set: - Loss: 0.7177 - Wer: 0.1283 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 25.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 6.1228 | 1.68 | 1500 | 6.0490 | 1.1433 | | 5.4173 | 3.36 | 3000 | 5.3453 | 1.4878 | | 4.1635 | 5.04 | 4500 | 4.4185 | 0.9644 | | 2.1246 | 6.73 | 6000 | 3.2089 | 0.5026 | | 1.88 | 8.41 | 7500 | 1.9886 | 0.3438 | | 1.2606 | 10.09 | 9000 | 1.4472 | 0.2487 | | 0.7492 | 11.77 | 10500 | 1.1716 | 0.1949 | | 0.8868 | 13.45 | 12000 | 1.0146 | 0.1702 | | 0.5078 | 15.13 | 13500 | 0.8821 | 0.1548 | | 0.4515 | 16.82 | 15000 | 0.8181 | 0.1417 | | 0.3902 | 18.5 | 16500 | 0.7765 | 0.1364 | | 0.3575 | 20.18 | 18000 | 0.7367 | 0.1333 | | 0.2903 | 21.86 | 19500 | 0.7211 | 0.1301 | | 0.2698 | 23.54 | 21000 | 0.7177 | 0.1283 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu113 - Datasets 1.18.3 - Tokenizers 0.11.0
sanchit-gandhi/wav2vec2-2-bart-large-cnn
c485867fb1d867c28b3522199797a7468b0385d6
2022-03-29T00:24:41.000Z
[ "pytorch", "tensorboard", "speech-encoder-decoder", "automatic-speech-recognition", "dataset:librispeech_asr", "transformers", "generated_from_trainer", "model-index" ]
automatic-speech-recognition
false
sanchit-gandhi
null
sanchit-gandhi/wav2vec2-2-bart-large-cnn
8
null
transformers
13,271
--- tags: - generated_from_trainer datasets: - librispeech_asr model-index: - name: '' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model was trained from scratch on the librispeech_asr dataset. It achieves the following results on the evaluation set: - Loss: 0.3524 - Wer: 0.1042 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 16 - total_train_batch_size: 256 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.7605 | 4.5 | 500 | 2.6299 | 1.4451 | | 0.1177 | 9.01 | 1000 | 0.3524 | 0.1042 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu113 - Datasets 1.18.3 - Tokenizers 0.11.0
ICLbioengNLP/CXR_BioClinicalBERT_chunkedv1
185aa039c5de1569ff3a0b7fe4b10afa8c9c5c6c
2022-03-23T19:21:28.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
ICLbioengNLP
null
ICLbioengNLP/CXR_BioClinicalBERT_chunkedv1
8
null
transformers
13,272
Entry not found
agdsga/bert-finetuned-ner-accelerate
ab1075b22d7defa7c1ecf9a78315b6ed4bb0bfe6
2022-03-25T03:39:13.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
agdsga
null
agdsga/bert-finetuned-ner-accelerate
8
null
transformers
13,273
Entry not found
sebastian-hofstaetter/colberter-128-32-msmarco
e7e6442a77850b5baeeb0110c7c3d17b88b0cb02
2022-03-27T15:07:44.000Z
[ "pytorch", "ColBERT", "en", "dataset:ms_marco", "arxiv:2203.13088", "transformers", "bag-of-words", "dense-passage-retrieval", "knowledge-distillation", "license:apache-2.0" ]
null
false
sebastian-hofstaetter
null
sebastian-hofstaetter/colberter-128-32-msmarco
8
null
transformers
13,274
--- license: apache-2.0 language: "en" tags: - bag-of-words - dense-passage-retrieval - knowledge-distillation datasets: - ms_marco --- # ColBERTer (Dim: 32) for Passage Retrieval If you want to know more about our ColBERTer architecture check out our paper: https://arxiv.org/abs/2203.13088 🎉 For more information, source code, and a minimal usage example please visit: https://github.com/sebastian-hofstaetter/colberter ## Limitations & Bias - The model is only trained on english text. - The model inherits social biases from both DistilBERT and MSMARCO. - The model is only trained on relatively short passages of MSMARCO (avg. 60 words length), so it might struggle with longer text. ## Citation If you use our model checkpoint please cite our work as: ``` @article{Hofstaetter2022_colberter, author = {Sebastian Hofst{\"a}tter and Omar Khattab and Sophia Althammer and Mete Sertkan and Allan Hanbury}, title = {Introducing Neural Bag of Whole-Words with ColBERTer: Contextualized Late Interactions using Enhanced Reduction}, publisher = {arXiv}, url = {https://arxiv.org/abs/2203.13088}, doi = {10.48550/ARXIV.2203.13088}, year = {2022}, } ```
hackathon-pln-es/gpt2-small-spanish-disco-poetry
3ea1637aadd5d9b489e0665dc2f5085e8308084c
2022-04-03T00:10:08.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-generation
false
hackathon-pln-es
null
hackathon-pln-es/gpt2-small-spanish-disco-poetry
8
4
transformers
13,275
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: gpt2-small-spanish-disco-poetry results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-small-spanish-disco-poetry This model is a fine-tuned version of [datificate/gpt2-small-spanish](https://huggingface.co/datificate/gpt2-small-spanish) on an [DISCO dataset](https://huggingface.co/datasets/hackathon-pln-es/disco_spanish_poetry) dataset. It achieves the following results on the evaluation set: - Loss: 4.2940 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
sarahmiller137/distilbert-base-uncased-ft-ncbi-disease
6ac70e8a70d7f1ea1a448ae57aad715f6195d4fd
2022-07-28T16:04:59.000Z
[ "pytorch", "distilbert", "token-classification", "en", "dataset:ncbi_disease", "transformers", "license:cc", "autotrain_compatible" ]
token-classification
false
sarahmiller137
null
sarahmiller137/distilbert-base-uncased-ft-ncbi-disease
8
null
transformers
13,276
--- language: - en tags: - token-classification task: - token classification license: cc datasets: - ncbi_disease metrics: - precision - recall - f1 - accuracy --- ## Model information: distilibert-base-uncased model finetuned using the ncbi_disease dataset from the datasets library. ## Intended uses: This model is intended to be used for named entity recoginition tasks. The model will identify disease entities in text. The model will predict lables based upon the NCBI-disease dataset, please see the dataset information for details. ## Limitations: Note that the dataset and model may not be fully represetative or suitable for all needs it is recommended that the paper for the dataset and the base model card should be reviewed before using the model - - [NCBI Disease](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3951655/pdf/nihms557856.pdf) - [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) ## How to use: Load the model from the library using the following checkpoints: ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("sarahmiller137/distilbert-base-uncased-ft-ncbi-disease") model = AutoModel.from_pretrained("sarahmiller137/distilbert-base-uncased-ft-ncbi-disease") ```
wuyue1987/twitter-roberta-base-sentiment-finetuned
4c00a3fb148e0a62c035b291abd4269648805645
2022-03-31T03:10:56.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "transformers" ]
text-classification
false
wuyue1987
null
wuyue1987/twitter-roberta-base-sentiment-finetuned
8
null
transformers
13,277
Entry not found
clapika2010/training
22d4b40f2414c01251bd434f83b7c97d30a4e3bc
2022-04-14T23:10:10.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
clapika2010
null
clapika2010/training
8
null
transformers
13,278
Entry not found
jaygala24/distilroberta-base-finetuned-fake-news-english
e05fffc6b138a0adb6ba9ccc2ea53af7b9b9ce47
2022-04-02T15:52:11.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "en", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
jaygala24
null
jaygala24/distilroberta-base-finetuned-fake-news-english
8
0
transformers
13,279
--- license: apache-2.0 language: en tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: distilroberta-base-finetuned-fake-news-english results: [] widget: - text: "Wisconsin has not counted more votes than it has registered voters. This tweet is comparing the vote count from 2020 with the number of registered voters from 2018. When we take a look at Wisconsin’s current total of registered voters, we see that there is nothing fraudulent about the state’s count." example_title: fake - text: "Barack Hussein Obama II is an American politician who served as the 44th president of the United States from 2009 to 2017. A member of the Democratic Party, Obama was the first African-American president of the United States." example_title: real --- # distilroberta-base-finetuned-fake-news-english This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the [fake-and-real news](https://www.kaggle.com/datasets/clmentbisaillon/fake-and-real-news-dataset) dataset. It achieves the following results on the evaluation set: - Loss: 0.0020 - Accuracy: 0.9997 - F1: 0.9997 - Precision: 0.9994 - Recall: 1.0 - Auc: 0.9997 ## Intended uses & limitations The model may not work with the articles over 512 tokens after preprocessing as the model's context is restricted to a maximum of 512 tokens in the sequence. ## Training and evaluation data The [fake-and-real news](https://www.kaggle.com/datasets/clmentbisaillon/fake-and-real-news-dataset) dataset contains a total of 44,898 annotated articles with 21,417 real and 23,481 fake. The dataset was stratified split into train, validation, and test subsets with a proportion of 60:20:20 respectively. The model was fine-tuned on the train subset and evaluated on validation and test subsets. | Split | # examples | |:----------:|:----------:| | train | 17959 | | validation | 13469 | | test | 13470 | ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 224 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Auc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:------:| | 0.251 | 0.36 | 200 | 0.0030 | 0.9996 | 0.9995 | 0.9995 | 0.9995 | 0.9996 | | 0.0022 | 0.71 | 400 | 0.0012 | 0.9998 | 0.9998 | 0.9995 | 1.0 | 0.9998 | | 0.0013 | 1.07 | 600 | 0.0001 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0004 | 1.43 | 800 | 0.0015 | 0.9997 | 0.9997 | 0.9994 | 1.0 | 0.9997 | | 0.0013 | 1.78 | 1000 | 0.0020 | 0.9997 | 0.9997 | 0.9994 | 1.0 | 0.9997 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.12.0
magitz/distilbert-base-uncased-finetuned-emotion
5af6d06131b4020439d4319fa0181975be78cb0e
2022-03-31T20:48:43.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
magitz
null
magitz/distilbert-base-uncased-finetuned-emotion
8
null
transformers
13,280
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9265 - name: F1 type: f1 value: 0.9267965474109292 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2235 - Accuracy: 0.9265 - F1: 0.9268 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8101 | 1.0 | 250 | 0.3177 | 0.9045 | 0.9010 | | 0.2472 | 2.0 | 500 | 0.2235 | 0.9265 | 0.9268 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.8.1 - Datasets 1.18.3 - Tokenizers 0.11.0
blacktree/distilbert-base-uncased-finetuned-sst2
df806a7ab2ef7a1de7349301eb0c2f2676437408
2022-04-04T10:44:22.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
blacktree
null
blacktree/distilbert-base-uncased-finetuned-sst2
8
null
transformers
13,281
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-sst2 results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: sst2 metrics: - name: Accuracy type: accuracy value: 0.5091743119266054 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-sst2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.7027 - Accuracy: 0.5092 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.01 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6868 | 1.0 | 1053 | 0.7027 | 0.5092 | | 0.6868 | 2.0 | 2106 | 0.7027 | 0.5092 | | 0.6867 | 3.0 | 3159 | 0.6970 | 0.5092 | | 0.687 | 4.0 | 4212 | 0.6992 | 0.5092 | | 0.6866 | 5.0 | 5265 | 0.6983 | 0.5092 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
hackathon-pln-es/itama
36503ae449d00ea8e3342e68f422d7f4e259a4dd
2022-04-04T03:47:32.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
hackathon-pln-es
null
hackathon-pln-es/itama
8
1
transformers
13,282
# Generación de respuestas a preguntas AMA para profesiones El modelo presentando a continuación se ha generado a partir del [dataset de preguntas AMA desde Reddit (ITAMA-DataSet)](https://huggingface.co/datasets/hackathon-pln-es/ITAMA-DataSet). En especial, se pueden realizar preguntas sobre las siguientes profesiones: `medico`, `psicologo`, `ciencias`, `ingeniero`, `profesor`, `jefe` y `abogado`. # Modo de uso Al ser un modelo generado a partir de mT5, es necesario incluir como prefijo la profesión y luego la sentencia de la forma: ``` <profesion>: <pregunta> ``` ## Algunos ejemplos de preguntas: | Texto de entrada | Texto generado | |-------------------------------------------------------|----------------| | ingeniero: qué es lo que más te gusta de tu trabajo? | Es el lenguaje del tráfico, lo que mas me gusta es el conocimiento de programación. Lo que mas me gusta es la idea de qué diseñar un modelo | | psicologo: qué es lo que más te gusta de tu trabajo? | Una que lo que más me gusta de verdad es que la persona que se siente tener en serio problemas y de ansiedad, siempre es común que los psicólogos tengan que estar presente para tener en cuenta que no pueden hacerlo bien a la gente | | abogado: cuanto dinero ganas al año? | No gano tanto dinero que gano, pero si de hecho gano minimo 40 mil pesos al mes. | | ciencias: cuando dinero ganas al año? | No gano ahí mucho más de un año. | | medico: cuando dinero ganas al año? | No gano dinero, gano minimo 40 dlrs x hora (minimo tengo 12-18 y tengo unos 34 dlr) | | profesor: cuando dinero ganas al año? | Literalmente cuando son almuerzos y minimo y no tenes idea | | jefe: qué me recomiendas hacer? | Actividades placentales, hacer ejercicios y enfrentar a las emergencias | # Parámetros usados en el entrenamiento ``` model_args.num_train_epochs = 10 model_args.overwrite_output_dir = True model_args.fp16 = False model_args.use_multiprocessing = False model_args.use_multiprocessing_for_evaluation = False model_args.use_multiprocessed_decoding = False model_args.learning_rate=0.001 model_args.train_batch_size = 8 model_args.eval_batch_size = 8 model_args.adafactor_beta1 = 0 model_args.length_penalty=1.5 model_args.max_length=100 model_args.max_seq_length = 100 ```
anton-l/xtreme_s_xlsr_300m_fleurs_langid_quicker_warmup
e6717208c69bb5f4f3cdb31941aeea7eb4383104
2022-04-05T23:16:38.000Z
[ "pytorch", "tensorboard", "wav2vec2", "audio-classification", "dataset:xtreme_s", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
audio-classification
false
anton-l
null
anton-l/xtreme_s_xlsr_300m_fleurs_langid_quicker_warmup
8
null
transformers
13,283
--- license: apache-2.0 tags: - generated_from_trainer datasets: - xtreme_s metrics: - accuracy model-index: - name: xtreme_s_xlsr_300m_fleurs_langid_quicker_warmup results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xtreme_s_xlsr_300m_fleurs_langid_quicker_warmup This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the xtreme_s dataset. It achieves the following results on the evaluation set: - Loss: 1.9765 - Accuracy: 0.6199 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Accuracy | Validation Loss | |:-------------:|:-----:|:-----:|:--------:|:---------------:| | 0.6644 | 0.26 | 1000 | 0.3071 | 3.2482 | | 0.394 | 0.52 | 2000 | 0.5948 | 1.8833 | | 0.1034 | 0.78 | 3000 | 0.6297 | 1.5852 | | 0.1088 | 1.04 | 4000 | 0.5992 | 1.7903 | | 0.0032 | 1.3 | 5000 | 0.6356 | 1.6219 | | 0.1813 | 1.56 | 6000 | 0.5788 | 1.8168 | | 0.0654 | 1.82 | 7000 | 0.6234 | 1.6089 | | 0.0144 | 2.08 | 8000 | 0.6424 | 1.6071 | | 0.0019 | 2.34 | 9000 | 0.5822 | 1.7820 | | 0.0159 | 2.6 | 10000 | 0.6043 | 1.8407 | | 0.0029 | 2.86 | 11000 | 0.5845 | 1.8600 | | 0.0458 | 3.12 | 12000 | 0.6299 | 1.6591 | | 0.013 | 3.38 | 13000 | 0.5903 | 2.0788 | | 0.003 | 3.64 | 14000 | 0.6188 | 1.7645 | | 0.0015 | 3.9 | 15000 | 0.6328 | 1.7739 | | 0.0003 | 4.16 | 16000 | 0.6072 | 1.8742 | | 0.0005 | 4.42 | 17000 | 0.6231 | 1.7102 | | 0.006 | 4.68 | 18000 | 0.6122 | 1.6909 | | 0.2367 | 4.93 | 19000 | 0.6029 | 1.9891 | | 0.005 | 5.19 | 20000 | 0.6220 | 1.7245 | | 0.0813 | 5.45 | 21000 | 0.5739 | 2.0495 | | 0.1233 | 5.71 | 22000 | 0.6104 | 1.9601 | | 0.0003 | 5.97 | 23000 | 0.5924 | 1.8881 | | 0.0003 | 6.23 | 24000 | 0.6055 | 1.9568 | | 0.0001 | 6.49 | 25000 | 0.6086 | 1.8489 | | 0.2198 | 6.75 | 26000 | 0.6292 | 1.8048 | | 0.0261 | 7.01 | 27000 | 2.0284 | 0.5989 | | 0.0001 | 7.27 | 28000 | 1.7323 | 0.6431 | | 0.0001 | 7.53 | 29000 | 1.9329 | 0.6310 | | 0.0011 | 7.79 | 30000 | 1.9256 | 0.6107 | | 0.0933 | 8.05 | 31000 | 2.3915 | 0.5896 | | 0.0001 | 8.31 | 32000 | 1.9948 | 0.6021 | | 0.0003 | 8.57 | 33000 | 1.9518 | 0.6126 | | 0.0005 | 8.83 | 34000 | 1.8935 | 0.6243 | | 0.0 | 9.09 | 35000 | 2.0177 | 0.6144 | | 0.0002 | 9.35 | 36000 | 2.0234 | 0.6174 | | 0.0 | 9.61 | 37000 | 1.9568 | 0.6216 | | 0.0 | 9.87 | 38000 | 1.9765 | 0.6199 | ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 1.18.4.dev0 - Tokenizers 0.11.6
efederici/cross-encoder-umberto-stsb
7fa457e84823eb8a469800a127280212263f2409
2022-04-04T16:09:44.000Z
[ "pytorch", "camembert", "text-classification", "it", "dataset:stsb_multi_mt", "transformers", "cross-encoder", "sentence-similarity" ]
text-classification
false
efederici
null
efederici/cross-encoder-umberto-stsb
8
null
transformers
13,284
--- pipeline_tag: text-classification language: - it datasets: - stsb_multi_mt tags: - cross-encoder - sentence-similarity - transformers --- # Cross-Encoder This model was trained using [SentenceTransformers](https://sbert.net) [Cross-Encoder](https://www.sbert.net/examples/applications/cross-encoder/README.html) class. <p align="center"> <img src="https://user-images.githubusercontent.com/7140210/72913702-d55a8480-3d3d-11ea-99fc-f2ef29af4e72.jpg" width="700"> </br> Marco Lodola, Monument to Umberto Eco, Alessandria 2019 </p> ## Training Data This model was trained on [stsb](https://huggingface.co/datasets/stsb_multi_mt/viewer/it/train). The model will predict a score between 0 and 1 how for the semantic similarity of two sentences. ## Usage and Performance ```python from sentence_transformers import CrossEncoder model = CrossEncoder('efederici/cross-encoder-umberto-stsb') scores = model.predict([('Sentence 1', 'Sentence 2'), ('Sentence 3', 'Sentence 4')]) ``` The model will predict scores for the pairs `('Sentence 1', 'Sentence 2')` and `('Sentence 3', 'Sentence 4')`.
JNK789/distilbert-base-uncased-finetuned-tweets-emoji-dataset
2a8c2d7813b5115cb7f5b610603493851d63fa96
2022-04-05T07:28:09.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers" ]
text-classification
false
JNK789
null
JNK789/distilbert-base-uncased-finetuned-tweets-emoji-dataset
8
null
transformers
13,285
Entry not found
Graphcore/hubert-base-superb-ks
198d5b97422b8ebed90bd39fe28c73a63f768dcd
2022-05-23T23:18:24.000Z
[ "pytorch", "tensorboard", "hubert", "text-classification", "dataset:superb", "transformers", "audio-classification", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Graphcore
null
Graphcore/hubert-base-superb-ks
8
null
transformers
13,286
--- license: apache-2.0 tags: - audio-classification - generated_from_trainer datasets: - superb metrics: - accuracy model-index: - name: hubert-base-superb-ks results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hubert-base-superb-ks This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on the superb dataset. It achieves the following results on the evaluation set: - Loss: 0.0848 - Accuracy: 0.9822 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 0 - distributed_type: IPU - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - total_eval_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5.0 - training precision: Mixed Precision ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cpu - Datasets 2.1.0 - Tokenizers 0.12.1
cammiemw/marco-cw09
416d6f29b0b9b91a045f7d9565476487069b1c28
2022-04-05T19:40:26.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
cammiemw
null
cammiemw/marco-cw09
8
null
transformers
13,287
Entry not found
kyryl0s/gpt2-uk-xxs
1e407fc557d439b3e3cc74615a5fd186b8434bf9
2022-05-02T09:14:29.000Z
[ "pytorch", "gpt2", "text-generation", "uk", "transformers", "license:afl-3.0" ]
text-generation
false
kyryl0s
null
kyryl0s/gpt2-uk-xxs
8
null
transformers
13,288
--- license: afl-3.0 language: uk --- ## GPT2 being trained on Ukrainian news. ### General info: The model is not ready yet but I'm working on it. It also has a relatively small context window, which makes it quite uninteresting. ### Example of usage: ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("kyryl0s/gpt2-uk-xxs") model = AutoModelForCausalLM.from_pretrained("kyryl0s/gpt2-uk-xxs") input_ids = tokenizer.encode("Путін — ", add_special_tokens=False, return_tensors='pt') outputs = model.generate( input_ids, do_sample=True, num_return_sequences=3, max_length=50 ) for i, out in enumerate(outputs): print("{}: {}".format(i, tokenizer.decode(out))) ```
raileymontalan/distilbert-base-casedfinetuned-fake-news-detection
02d0ad01e82617cbfa3effe493d857035c1c719c
2022-04-06T17:12:07.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
raileymontalan
null
raileymontalan/distilbert-base-casedfinetuned-fake-news-detection
8
null
transformers
13,289
--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: distilbert-base-casedfinetuned-fake-news-detection results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-casedfinetuned-fake-news-detection This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the [Fake and Reals News](https://www.kaggle.com/datasets/clmentbisaillon/fake-and-real-news-dataset) dataset. It achieves the following results on the evaluation set: - Loss: 0.0019 - F1: 0.9998 - Accuracy: 0.9998 The [Fake and Reals News](https://www.kaggle.com/datasets/clmentbisaillon/fake-and-real-news-dataset) dataset was used. It was stratified split into a train-val-test set (60/20/20). ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:--------:| | No log | 1.0 | 1684 | 0.0021 | 0.9998 | 0.9998 | | No log | 2.0 | 3368 | 0.0019 | 0.9998 | 0.9998 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
abdusahmbzuai/aradia-ctc-distilhubert-ft
20e8824d43e2f76b2764cdebe3151510740cc67d
2022-04-07T02:06:55.000Z
[ "pytorch", "hubert", "automatic-speech-recognition", "transformers", "abdusahmbzuai/arabic_speech_massive_sm", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
abdusahmbzuai
null
abdusahmbzuai/aradia-ctc-distilhubert-ft
8
null
transformers
13,290
--- license: apache-2.0 tags: - automatic-speech-recognition - abdusahmbzuai/arabic_speech_massive_sm - generated_from_trainer model-index: - name: aradia-ctc-distilhubert-ft results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # aradia-ctc-distilhubert-ft This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the ABDUSAHMBZUAI/ARABIC_SPEECH_MASSIVE_SM - NA dataset. It achieves the following results on the evaluation set: - Loss: 2.7114 - Wer: 0.8908 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 0.43 | 100 | 4.4129 | 1.0 | | No log | 0.87 | 200 | 3.5927 | 1.0 | | No log | 1.3 | 300 | 3.3780 | 1.0 | | No log | 1.74 | 400 | 3.0830 | 1.0 | | 5.3551 | 2.17 | 500 | 2.6278 | 0.9999 | | 5.3551 | 2.61 | 600 | 1.8359 | 1.0000 | | 5.3551 | 3.04 | 700 | 1.7878 | 0.9914 | | 5.3551 | 3.48 | 800 | 1.5219 | 0.9875 | | 5.3551 | 3.91 | 900 | 1.4348 | 0.9879 | | 1.7199 | 4.35 | 1000 | 1.4354 | 0.9644 | | 1.7199 | 4.78 | 1100 | 1.5210 | 0.9519 | | 1.7199 | 5.22 | 1200 | 1.3607 | 0.9475 | | 1.7199 | 5.65 | 1300 | 1.3839 | 0.9343 | | 1.7199 | 6.09 | 1400 | 1.2806 | 0.8944 | | 1.2342 | 6.52 | 1500 | 1.3036 | 0.9011 | | 1.2342 | 6.95 | 1600 | 1.3704 | 0.9072 | | 1.2342 | 7.39 | 1700 | 1.2981 | 0.8891 | | 1.2342 | 7.82 | 1800 | 1.2786 | 0.8733 | | 1.2342 | 8.26 | 1900 | 1.2897 | 0.8867 | | 0.9831 | 8.69 | 2000 | 1.4436 | 0.8780 | | 0.9831 | 9.13 | 2100 | 1.3680 | 0.8873 | | 0.9831 | 9.56 | 2200 | 1.3471 | 0.8692 | | 0.9831 | 10.0 | 2300 | 1.3725 | 0.8729 | | 0.9831 | 10.43 | 2400 | 1.4439 | 0.8771 | | 0.8071 | 10.87 | 2500 | 1.5114 | 0.8928 | | 0.8071 | 11.3 | 2600 | 1.6156 | 0.8958 | | 0.8071 | 11.74 | 2700 | 1.4381 | 0.8749 | | 0.8071 | 12.17 | 2800 | 1.5088 | 0.8717 | | 0.8071 | 12.61 | 2900 | 1.5486 | 0.8813 | | 0.6321 | 13.04 | 3000 | 1.4536 | 0.8884 | | 0.6321 | 13.48 | 3100 | 1.4679 | 0.8947 | | 0.6321 | 13.91 | 3200 | 1.5628 | 0.9117 | | 0.6321 | 14.35 | 3300 | 1.5831 | 0.8716 | | 0.6321 | 14.78 | 3400 | 1.6733 | 0.8702 | | 0.4998 | 15.22 | 3500 | 1.8225 | 0.8665 | | 0.4998 | 15.65 | 3600 | 1.8558 | 0.8732 | | 0.4998 | 16.09 | 3700 | 1.7513 | 0.8766 | | 0.4998 | 16.52 | 3800 | 1.8562 | 0.8753 | | 0.4998 | 16.95 | 3900 | 1.9018 | 0.8704 | | 0.4421 | 17.39 | 4000 | 1.9341 | 0.8789 | | 0.4421 | 17.82 | 4100 | 1.9582 | 0.8781 | | 0.4421 | 18.26 | 4200 | 1.8863 | 0.8821 | | 0.4421 | 18.69 | 4300 | 1.9366 | 0.8847 | | 0.4421 | 19.13 | 4400 | 2.1902 | 0.8721 | | 0.3712 | 19.56 | 4500 | 2.1641 | 0.8670 | | 0.3712 | 20.0 | 4600 | 2.1639 | 0.8776 | | 0.3712 | 20.43 | 4700 | 2.2695 | 0.9030 | | 0.3712 | 20.87 | 4800 | 2.1909 | 0.8937 | | 0.3712 | 21.3 | 4900 | 2.1606 | 0.8959 | | 0.3067 | 21.74 | 5000 | 2.1756 | 0.8943 | | 0.3067 | 22.17 | 5100 | 2.4092 | 0.8773 | | 0.3067 | 22.61 | 5200 | 2.4991 | 0.8721 | | 0.3067 | 23.04 | 5300 | 2.3340 | 0.8910 | | 0.3067 | 23.48 | 5400 | 2.3567 | 0.8946 | | 0.2764 | 23.91 | 5500 | 2.3215 | 0.8897 | | 0.2764 | 24.35 | 5600 | 2.4824 | 0.9002 | | 0.2764 | 24.78 | 5700 | 2.4585 | 0.8963 | | 0.2764 | 25.22 | 5800 | 2.5804 | 0.8879 | | 0.2764 | 25.65 | 5900 | 2.5814 | 0.8903 | | 0.2593 | 26.09 | 6000 | 2.5374 | 0.8868 | | 0.2593 | 26.52 | 6100 | 2.5346 | 0.8922 | | 0.2593 | 26.95 | 6200 | 2.5465 | 0.8873 | | 0.2593 | 27.39 | 6300 | 2.6002 | 0.8919 | | 0.2593 | 27.82 | 6400 | 2.6102 | 0.8928 | | 0.227 | 28.26 | 6500 | 2.6925 | 0.8914 | | 0.227 | 28.69 | 6600 | 2.6981 | 0.8913 | | 0.227 | 29.13 | 6700 | 2.6872 | 0.8891 | | 0.227 | 29.56 | 6800 | 2.7015 | 0.8897 | | 0.227 | 30.0 | 6900 | 2.7114 | 0.8908 | ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.10.2+cu113 - Datasets 1.18.4 - Tokenizers 0.11.6
junaidamk/MuRIL-WIKINER-Malayalam
f3450f62ab122bbf34fe6837d8eaf63f55e70385
2022-04-07T01:27:27.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
junaidamk
null
junaidamk/MuRIL-WIKINER-Malayalam
8
0
transformers
13,291
Entry not found
GioReg/AlbertoBertsentipol
c14fb16800e7b06f733fdff5a9476f5b7668a832
2022-04-07T10:10:03.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
GioReg
null
GioReg/AlbertoBertsentipol
8
null
transformers
13,292
--- tags: - generated_from_trainer model-index: - name: AlbertoBertsentipol results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # AlbertoBertsentipol This model is a fine-tuned version of [m-polignano-uniba/bert_uncased_L-12_H-768_A-12_italian_alb3rt0](https://huggingface.co/m-polignano-uniba/bert_uncased_L-12_H-768_A-12_italian_alb3rt0) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
SupritiVijay/fake-news-detector
7b25153bc61c54e57b90672c02ca60b28b9aa084
2022-04-07T11:34:49.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
SupritiVijay
null
SupritiVijay/fake-news-detector
8
null
transformers
13,293
Entry not found
GioReg/BertMultiHateSpeech
57b582184be0564dbfebada2c5144b08672507af
2022-04-15T11:10:47.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
GioReg
null
GioReg/BertMultiHateSpeech
8
null
transformers
13,294
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: BertMultiHateSpeech results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BertMultiHateSpeech This model is a fine-tuned version of [bert-base-multilingual-uncased](https://huggingface.co/bert-base-multilingual-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7496 - Accuracy: 0.74 - F1: 0.4841 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
Hodiden/autotrain-TestProj-722121991
05c72debd08961a29cbac03157ec5d51de10fb0d
2022-04-09T19:21:44.000Z
[ "pytorch", "t5", "text2text-generation", "unk", "dataset:Hodiden/autotrain-data-TestProj", "transformers", "autotrain", "co2_eq_emissions", "autotrain_compatible" ]
text2text-generation
false
Hodiden
null
Hodiden/autotrain-TestProj-722121991
8
null
transformers
13,295
--- tags: autotrain language: unk widget: - text: "I love AutoTrain 🤗" datasets: - Hodiden/autotrain-data-TestProj co2_eq_emissions: 8.052949236815056 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 722121991 - CO2 Emissions (in grams): 8.052949236815056 ## Validation Metrics - Loss: 1.123626708984375 - Rouge1: 56.1275 - Rouge2: 33.5648 - RougeL: 51.986 - RougeLsum: 51.9943 - Gen Len: 13.2823 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/Hodiden/autotrain-TestProj-722121991 ```
HenryHXR/t5-base-finetuned-scitldr-only-abstract
40c687aa2b1aa125cbd82ebc1227c4a72ce2dc8f
2022-04-09T08:16:33.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
HenryHXR
null
HenryHXR/t5-base-finetuned-scitldr-only-abstract
8
null
transformers
13,296
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: t5-base-finetuned-scitldr-only-abstract results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-finetuned-scitldr-only-abstract This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.3365 - Rouge1: 34.3531 - Rouge2: 15.7554 - Rougel: 29.8918 - Rougelsum: 29.9514 - Gen Len: 18.7658 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-06 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 2.76 | 1.0 | 996 | 2.3649 | 34.0043 | 15.5031 | 29.4997 | 29.5576 | 18.7835 | | 2.4843 | 2.0 | 1992 | 2.3365 | 34.3531 | 15.7554 | 29.8918 | 29.9514 | 18.7658 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
Jatin-WIAI/gujarati_relevance_clf
4c751d515a7800a05e565a62938348df92ecf3aa
2022-04-11T08:11:38.000Z
[ "pytorch", "xlm-roberta", "text-classification", "transformers" ]
text-classification
false
Jatin-WIAI
null
Jatin-WIAI/gujarati_relevance_clf
8
null
transformers
13,297
Entry not found
Vipitis/CodeGPT-small-java-adaptedGPT2-transfer-shadertoys
9a3f49b9fdc2e29ce1ee4550b43e7ee1ea402bcc
2022-04-20T13:53:46.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers" ]
text-generation
false
Vipitis
null
Vipitis/CodeGPT-small-java-adaptedGPT2-transfer-shadertoys
8
null
transformers
13,298
fine-tuned for less than a full epoch to generate shadercode (with Shadertoy.com style uniforms). dataset used: https://huggingface.co/datasets/Vipitis/Shadertoys-bimodal
fmesa/mi-modelo-bacan-test
bbb334f2e491c9b7dc5e3f260a0eef5c45b15a5a
2022-04-12T02:55:37.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
fmesa
null
fmesa/mi-modelo-bacan-test
8
null
transformers
13,299
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: mi-modelo-bacan-test results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8766666666666667 - name: F1 type: f1 value: 0.8825396825396825 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mi-modelo-bacan-test This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3318 - Accuracy: 0.8767 - F1: 0.8825 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6