modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
list
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
huggingtweets/bowserbot2
b91221b87a5a6de190fba7029721e0465e4dd793
2021-05-21T20:57:44.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/bowserbot2
8
null
transformers
13,100
--- language: en thumbnail: https://www.huggingtweets.com/bowserbot2/1617402800811/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1345789137035649025/l4ReFavz_400x400.png')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">bowserbot 🤖 AI Bot </div> <div style="font-size: 15px">@bowserbot2 bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@bowserbot2's tweets](https://twitter.com/bowserbot2). | Data | Quantity | | --- | --- | | Tweets downloaded | 2651 | | Retweets | 2 | | Short tweets | 20 | | Tweets kept | 2629 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/151rlno6/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bowserbot2's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/15w12pqd) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/15w12pqd/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/bowserbot2') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/ddlcquotes
22c0f300d5cd8dcab73087e243648829653afacb
2021-05-22T00:56:45.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/ddlcquotes
8
null
transformers
13,101
--- language: en thumbnail: https://www.huggingtweets.com/ddlcquotes/1612815814568/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1166296863068360704/9Rbf-i7O_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">ddlc quote bot 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@ddlcquotes bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@ddlcquotes's tweets](https://twitter.com/ddlcquotes). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3203</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>0</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>27</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>3176</td> </tr> </tbody> </table> [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3vugceit/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ddlcquotes's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1rh6mzov) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1rh6mzov/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/ddlcquotes'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/fallexcy
1f6a1a16e01e3c905736d536ab35135789b1521e
2021-05-22T03:51:15.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/fallexcy
8
null
transformers
13,102
--- language: en thumbnail: https://www.huggingtweets.com/fallexcy/1614134311978/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1339271682679312391/_937loJu_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">α(lєх)αndrα 🤖 AI Bot </div> <div style="font-size: 15px">@fallexcy bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@fallexcy's tweets](https://twitter.com/fallexcy). | Data | Quantity | | --- | --- | | Tweets downloaded | 408 | | Retweets | 48 | | Short tweets | 21 | | Tweets kept | 339 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/wda9s2r7/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @fallexcy's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/10eje3u5) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/10eje3u5/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/fallexcy') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/feyerabender
aa3a2363d30fceb36487d7a97ed3aa0977953b4b
2021-05-22T04:08:54.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/feyerabender
8
null
transformers
13,103
--- language: en thumbnail: https://www.huggingtweets.com/feyerabender/1616669524008/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1370161206158360579/_G9rCdzT_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Rory Dean ☭ 🤖 AI Bot </div> <div style="font-size: 15px">@feyerabender bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@feyerabender's tweets](https://twitter.com/feyerabender). | Data | Quantity | | --- | --- | | Tweets downloaded | 3195 | | Retweets | 722 | | Short tweets | 363 | | Tweets kept | 2110 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1cjspfal/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @feyerabender's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/17iujs5g) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/17iujs5g/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/feyerabender') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/fullbitchschol1
9ecdb597df6528947934b262106c7c823e903f26
2021-05-22T04:49:48.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/fullbitchschol1
8
null
transformers
13,104
--- language: en thumbnail: https://www.huggingtweets.com/fullbitchschol1/1616889911749/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1272946288389050368/OtPFPpC7_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Fullbitchscholar 🤖 AI Bot </div> <div style="font-size: 15px">@fullbitchschol1 bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@fullbitchschol1's tweets](https://twitter.com/fullbitchschol1). | Data | Quantity | | --- | --- | | Tweets downloaded | 3248 | | Retweets | 20 | | Short tweets | 224 | | Tweets kept | 3004 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1em7u8my/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @fullbitchschol1's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2u9ua2kl) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2u9ua2kl/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/fullbitchschol1') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/girlshaped
b1622281a5f874fb0257fe302f1ea484be9e78b9
2021-05-22T05:33:03.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/girlshaped
8
null
transformers
13,105
--- language: en thumbnail: https://www.huggingtweets.com/girlshaped/1617757456002/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1251080403256926208/6-nJSYgZ_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Anomalous Girl 🤖 AI Bot </div> <div style="font-size: 15px">@girlshaped bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@girlshaped's tweets](https://twitter.com/girlshaped). | Data | Quantity | | --- | --- | | Tweets downloaded | 304 | | Retweets | 115 | | Short tweets | 19 | | Tweets kept | 170 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/35c6178z/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @girlshaped's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2re3ffqt) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2re3ffqt/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/girlshaped') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/glamdemon2004
f48ff0ebaa72ddf50e69d0ef7087fba670b1edbb
2021-05-22T05:38:12.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/glamdemon2004
8
null
transformers
13,106
--- language: en thumbnail: https://www.huggingtweets.com/glamdemon2004/1616682008766/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1355757309063008257/LSlS9j1B_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">elizabeth holmes’s fetus 🤖 AI Bot </div> <div style="font-size: 15px">@glamdemon2004 bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@glamdemon2004's tweets](https://twitter.com/glamdemon2004). | Data | Quantity | | --- | --- | | Tweets downloaded | 3097 | | Retweets | 550 | | Short tweets | 345 | | Tweets kept | 2202 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2v9xfsja/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @glamdemon2004's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1nyv7aua) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1nyv7aua/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/glamdemon2004') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/igorcarron
ad265c47885faa222ca418b5c1ad4030d9bd4f4c
2021-05-22T07:50:23.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/igorcarron
8
null
transformers
13,107
--- language: en thumbnail: https://www.huggingtweets.com/igorcarron/1601975366019/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/52435623/igor_400x400.JPG')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Igor Carron 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@igorcarron bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@igorcarron's tweets](https://twitter.com/igorcarron). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3182</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>2986</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>50</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>146</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/2xrk7m5z/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @igorcarron's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/kfaaogij) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/kfaaogij/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/igorcarron'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
huggingtweets/joebiden
97e288685e97eae6fbcf0a3f833e27e423b6c250
2022-05-27T11:25:38.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/joebiden
8
null
transformers
13,108
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1308769664240160770/AfgzWVE7_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Joe Biden</div> <div style="text-align: center; font-size: 14px;">@joebiden</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Joe Biden. | Data | Joe Biden | | --- | --- | | Tweets downloaded | 3249 | | Retweets | 595 | | Short tweets | 33 | | Tweets kept | 2621 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1g8y6hlv/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @joebiden's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/28xgrtgk) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/28xgrtgk/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/joebiden') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/jreosquare
5a5acf34a6f744777f63624766f185db993884d5
2021-05-22T10:10:44.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/jreosquare
8
null
transformers
13,109
--- language: en thumbnail: https://www.huggingtweets.com/jreosquare/1614112116009/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1361817928115441667/OjKhZsFO_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">rigel #freebaguette 🤖 AI Bot </div> <div style="font-size: 15px">@jreosquare bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@jreosquare's tweets](https://twitter.com/jreosquare). | Data | Quantity | | --- | --- | | Tweets downloaded | 3185 | | Retweets | 345 | | Short tweets | 608 | | Tweets kept | 2232 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3sokv6uq/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @jreosquare's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1o3c73fh) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1o3c73fh/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/jreosquare') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/lana_ray_dale
0270d51c7841c45106f228e82b0f66a731b27caa
2021-07-23T17:36:53.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/lana_ray_dale
8
null
transformers
13,110
--- language: en thumbnail: https://www.huggingtweets.com/lana_ray_dale/1627061772839/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/439125466340143105/TZaoVrUl_400x400.jpeg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">R A Y</div> <div style="text-align: center; font-size: 14px;">@lana_ray_dale</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from R A Y. | Data | R A Y | | --- | --- | | Tweets downloaded | 718 | | Retweets | 56 | | Short tweets | 90 | | Tweets kept | 572 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/37ffw07m/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @lana_ray_dale's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/uxn80y7g) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/uxn80y7g/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/lana_ray_dale') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/locosherman2
3bfaefea8471b50a333e95c8454f34e4faa07573
2021-05-22T12:28:09.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/locosherman2
8
null
transformers
13,111
--- language: en thumbnail: https://www.huggingtweets.com/locosherman2/1616654478302/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1328422822692093953/6g1ZsaQQ_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Sevag 🌐✝️ 🤖 AI Bot </div> <div style="font-size: 15px">@locosherman2 bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@locosherman2's tweets](https://twitter.com/locosherman2). | Data | Quantity | | --- | --- | | Tweets downloaded | 3130 | | Retweets | 868 | | Short tweets | 372 | | Tweets kept | 1890 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1f0v78we/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @locosherman2's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2ckb2yln) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2ckb2yln/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/locosherman2') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/louispotok
0055c78354214b8cbf7db9c3c058d7dfd1156269
2021-05-22T12:36:01.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/louispotok
8
null
transformers
13,112
--- language: en thumbnail: https://www.huggingtweets.com/louispotok/1616617329585/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1183250698986819584/UT1qyy3h_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Louis Potok 🤖 AI Bot </div> <div style="font-size: 15px">@louispotok bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@louispotok's tweets](https://twitter.com/louispotok). | Data | Quantity | | --- | --- | | Tweets downloaded | 3225 | | Retweets | 474 | | Short tweets | 117 | | Tweets kept | 2634 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/17xl4hbj/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @louispotok's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1jwyvv13) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1jwyvv13/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/louispotok') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/milligram3d
71c2a5fdd1a56b4a8e8c37c9316b2c558eeaeb4c
2021-05-22T14:46:20.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/milligram3d
8
null
transformers
13,113
--- language: en thumbnail: https://www.huggingtweets.com/milligram3d/1616791387103/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1329940613718949888/ta7GE35b_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">im gay 🤖 AI Bot </div> <div style="font-size: 15px">@milligram3d bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@milligram3d's tweets](https://twitter.com/milligram3d). | Data | Quantity | | --- | --- | | Tweets downloaded | 3102 | | Retweets | 514 | | Short tweets | 267 | | Tweets kept | 2321 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2b28e9ko/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @milligram3d's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2dnn0apc) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2dnn0apc/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/milligram3d') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/quizzicallay
33fe1a6470ec5d3f52035ea31cc99b6b8c6a8e0d
2021-05-22T20:05:23.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/quizzicallay
8
null
transformers
13,114
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1298648619587907584/2Re9ioxe_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Danny Lay Ybounden 🤖 AI Bot </div> <div style="font-size: 15px">@quizzicallay bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@quizzicallay's tweets](https://twitter.com/quizzicallay). | Data | Quantity | | --- | --- | | Tweets downloaded | 2377 | | Retweets | 118 | | Short tweets | 174 | | Tweets kept | 2085 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/365kvgu8/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @quizzicallay's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3heuo0a0) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3heuo0a0/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/quizzicallay') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/scarlet_platnm
4805f36fc28b0a2e7eadbff257373a423a1de7f1
2021-05-22T22:02:04.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/scarlet_platnm
8
null
transformers
13,115
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1374138228576501763/Tt6KUbNh_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Scarlet 🏳️‍⚧️ 🤖 AI Bot </div> <div style="font-size: 15px">@scarlet_platnm bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@scarlet_platnm's tweets](https://twitter.com/scarlet_platnm). | Data | Quantity | | --- | --- | | Tweets downloaded | 3239 | | Retweets | 683 | | Short tweets | 458 | | Tweets kept | 2098 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3s65gk6s/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @scarlet_platnm's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3a49phf4) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3a49phf4/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/scarlet_platnm') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/scarysmilingdog
e5b9a5b2040bd549985b397840d21ed82ae287a5
2021-05-22T22:03:37.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/scarysmilingdog
8
null
transformers
13,116
--- language: en thumbnail: https://www.huggingtweets.com/scarysmilingdog/1618977555882/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1380538178667446273/gNl0y2pb_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Kiko 🤖 AI Bot </div> <div style="font-size: 15px">@scarysmilingdog bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@scarysmilingdog's tweets](https://twitter.com/scarysmilingdog). | Data | Quantity | | --- | --- | | Tweets downloaded | 1567 | | Retweets | 255 | | Short tweets | 193 | | Tweets kept | 1119 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/sscoe37w/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @scarysmilingdog's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/62i2trmb) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/62i2trmb/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/scarysmilingdog') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/sigsys
0c33d62db0b916db557abe71eb1d65fb96dcfeaa
2021-05-22T22:56:23.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/sigsys
8
null
transformers
13,117
--- language: en thumbnail: https://www.huggingtweets.com/sigsys/1617904484486/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1215779813560025089/ka9neEZ4_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">PanickedJanet 🤖 AI Bot </div> <div style="font-size: 15px">@sigsys bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@sigsys's tweets](https://twitter.com/sigsys). | Data | Quantity | | --- | --- | | Tweets downloaded | 3207 | | Retweets | 1423 | | Short tweets | 378 | | Tweets kept | 1406 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/15vp8xpf/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @sigsys's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/18htet0h) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/18htet0h/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/sigsys') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/strife212
fed6b65b535492b7fadf757223a471f3f96f00a5
2021-05-23T00:13:20.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/strife212
8
null
transformers
13,118
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1376707481406214148/rDg9IcWB_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Strife 🤖 AI Bot </div> <div style="font-size: 15px">@strife212 bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@strife212's tweets](https://twitter.com/strife212). | Data | Quantity | | --- | --- | | Tweets downloaded | 3245 | | Retweets | 78 | | Short tweets | 1147 | | Tweets kept | 2020 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3kipxik1/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @strife212's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/nh0ek96v) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/nh0ek96v/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/strife212') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/tasshinfogleman
195c51134c970b5b89dfa4b27071de0189657d6b
2021-05-23T00:42:22.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/tasshinfogleman
8
null
transformers
13,119
--- language: en thumbnail: https://www.huggingtweets.com/tasshinfogleman/1616620683486/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1296249659153739777/soAVZeYh_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">達真 🤖 AI Bot </div> <div style="font-size: 15px">@tasshinfogleman bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@tasshinfogleman's tweets](https://twitter.com/tasshinfogleman). | Data | Quantity | | --- | --- | | Tweets downloaded | 3249 | | Retweets | 429 | | Short tweets | 502 | | Tweets kept | 2318 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/207tr4m3/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @tasshinfogleman's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2y6icw53) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2y6icw53/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/tasshinfogleman') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/tonline_news
db77c52b1c414ca23cf64b480446a86e33a50a4d
2021-05-23T02:40:02.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/tonline_news
8
null
transformers
13,120
--- language: en thumbnail: https://www.huggingtweets.com/tonline_news/1603446279269/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1300377538238218245/IlY5V715_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">t-online 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@tonline_news bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@tonline_news's tweets](https://twitter.com/tonline_news). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3217</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>1148</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>36</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2033</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/1tad5tz6/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @tonline_news's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/cpk5773x) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/cpk5773x/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/tonline_news'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
huggingtweets/truck_____er
64eaaa9400088757ed5b807b0664c67ddc019031
2021-05-23T02:49:32.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/truck_____er
8
null
transformers
13,121
--- language: en thumbnail: https://www.huggingtweets.com/truck_____er/1614115630117/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1355239572054159360/2nGkEDrK_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">jonah 🤖 AI Bot </div> <div style="font-size: 15px">@truck_____er bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@truck_____er's tweets](https://twitter.com/truck_____er). | Data | Quantity | | --- | --- | | Tweets downloaded | 390 | | Retweets | 81 | | Short tweets | 86 | | Tweets kept | 223 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1lg8oexk/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @truck_____er's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3eb0ihn2) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3eb0ihn2/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/truck_____er') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/uncannydays
3248ddc16ceeada3c9a1e538cda56ed3a5bd2fde
2021-05-23T03:21:20.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/uncannydays
8
null
transformers
13,122
--- language: en thumbnail: https://www.huggingtweets.com/uncannydays/1617745285527/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1377754982502514689/RTQPHdwX_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Dana Ash✨ 🤖 AI Bot </div> <div style="font-size: 15px">@uncannydays bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@uncannydays's tweets](https://twitter.com/uncannydays). | Data | Quantity | | --- | --- | | Tweets downloaded | 3246 | | Retweets | 60 | | Short tweets | 490 | | Tweets kept | 2696 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2ppbgefa/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @uncannydays's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/a16vdxsh) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/a16vdxsh/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/uncannydays') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
husnu/electra-small-turkish-uncased-discriminator
4dce54e463558852b307a8d19c3e9e4a5564b63f
2022-01-16T19:01:47.000Z
[ "pytorch", "tensorboard", "electra", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
husnu
null
husnu/electra-small-turkish-uncased-discriminator
8
null
transformers
13,123
--- tags: - generated_from_trainer datasets: - squad model-index: - name: ft_electra-small-turkish-uncased-discriminator_lr-2e-1_epochs-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> This model is a fine-tuned version of [loodos/electra-small-turkish-uncased-discriminator](https://huggingface.co/loodos/electra-small-turkish-uncased-discriminator) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 5.9506 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.2 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 5.951 | 1.0 | 5818 | 5.9506 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
ibahadiraltun/berturk-social
505c60b8ff36581465f32fa6c32cab7b9449791c
2021-05-20T16:54:49.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
ibahadiraltun
null
ibahadiraltun/berturk-social
8
null
transformers
13,124
Entry not found
imran2part/DialogGPT-small-Doctor
75d99191aaabddec2061aa5438414c2872d9b1bb
2021-09-11T18:56:45.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
imran2part
null
imran2part/DialogGPT-small-Doctor
8
null
transformers
13,125
--- tags: - conversational --- # Doctor DialoGPT Model
infinitejoy/wav2vec2-large-xls-r-300m-greek
b1dae4bfff9c2afb6c1ab49c51a47afff0df6ce9
2022-03-24T11:53:50.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "el", "dataset:mozilla-foundation/common_voice_7_0", "transformers", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
infinitejoy
null
infinitejoy/wav2vec2-large-xls-r-300m-greek
8
null
transformers
13,126
--- language: - el license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_7_0 - generated_from_trainer - el - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - Greek results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: el metrics: - name: Test WER type: wer value: 102.23963133640552 - name: Test CER type: cer value: 146.28 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: el metrics: - name: Test WER type: wer value: 99.92 - name: Test CER type: cer value: 132.38 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-greek This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - EL dataset. It achieves the following results on the evaluation set: - Loss: 0.6592 - Wer: 0.4564 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.0928 | 4.42 | 500 | 3.0804 | 1.0073 | | 1.4505 | 8.85 | 1000 | 0.9038 | 0.7330 | | 1.2207 | 13.27 | 1500 | 0.7375 | 0.6045 | | 1.0695 | 17.7 | 2000 | 0.7119 | 0.5441 | | 1.0104 | 22.12 | 2500 | 0.6069 | 0.5296 | | 0.9299 | 26.55 | 3000 | 0.6168 | 0.5206 | | 0.8588 | 30.97 | 3500 | 0.6382 | 0.5171 | | 0.7942 | 35.4 | 4000 | 0.6048 | 0.4988 | | 0.7808 | 39.82 | 4500 | 0.6730 | 0.5084 | | 0.743 | 44.25 | 5000 | 0.6749 | 0.5012 | | 0.6652 | 48.67 | 5500 | 0.6491 | 0.4735 | | 0.6386 | 53.1 | 6000 | 0.6928 | 0.4954 | | 0.5945 | 57.52 | 6500 | 0.6359 | 0.4798 | | 0.5561 | 61.95 | 7000 | 0.6409 | 0.4799 | | 0.5464 | 66.37 | 7500 | 0.6452 | 0.4691 | | 0.5119 | 70.8 | 8000 | 0.6376 | 0.4657 | | 0.474 | 75.22 | 8500 | 0.6541 | 0.4700 | | 0.45 | 79.65 | 9000 | 0.6374 | 0.4571 | | 0.4315 | 84.07 | 9500 | 0.6568 | 0.4625 | | 0.3967 | 88.5 | 10000 | 0.6636 | 0.4605 | | 0.3937 | 92.92 | 10500 | 0.6537 | 0.4597 | | 0.3788 | 97.35 | 11000 | 0.6614 | 0.4589 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
it5/it5-base-question-generation
8edf4a541bd59ceb67d95df8a6582140a23a83ed
2022-03-09T08:06:11.000Z
[ "pytorch", "tf", "jax", "tensorboard", "t5", "text2text-generation", "it", "dataset:squad_it", "arxiv:2203.03759", "transformers", "italian", "sequence-to-sequence", "question-generation", "squad_it", "license:apache-2.0", "model-index", "co2_eq_emissions", "autotrain_compatible" ]
text2text-generation
false
it5
null
it5/it5-base-question-generation
8
null
transformers
13,127
--- language: - it license: apache-2.0 datasets: - squad_it tags: - italian - sequence-to-sequence - question-generation - squad_it - text2text-generation widget: - text: "Le conoscenze mediche erano stagnanti durante il Medioevo. Il resoconto più autorevole di allora è venuto dalla facoltà di medicina di Parigi in un rapporto al re di Francia che ha incolpato i cieli, sotto forma di una congiunzione di tre pianeti nel 1345 che causò una \"grande pestilenza nell' aria\". Questa relazione è diventata la prima e più diffusa di una serie di casi di peste che cercava di dare consigli ai malati. Che la peste fosse causata dalla cattiva aria divenne la teoria più accettata. Oggi, questo è conosciuto come la teoria di Miasma. La parola \"peste\" non aveva un significato particolare in questo momento, e solo la ricorrenza dei focolai durante il Medioevo gli diede il nome che è diventato il termine medico. Risposta: re di Francia" - text: "Il 14 aprile 2011, ABC ha annullato le lunghe opere di sapone All My Children e One Life to Live dopo 41 e 43 anni in onda, rispettivamente (in seguito al contraccolpo dei tifosi, ABC ha venduto i diritti ad entrambi gli spettacoli a Prospect Park, che alla fine ha rilanciato i saponi su Hulu per un' ulteriore stagione nel 2013 e con entrambe le società che si citano in giudizio per accuse di interferenza con il processo di rilancio degli spettacoli, mancato pagamento delle tasse di licenza. Il talk/lifestyle show che ha sostituito One Life to Live, The Revolution, non è riuscito a generare giudizi soddisfacenti ed è stato a sua volta annullato dopo soli sette mesi. La stagione 2011-12 ha visto l' ABC cadere al quarto posto nel 18-49 demografico nonostante rinnovando una manciata di nuovi spettacoli (compresi i drammi matricole Scandal, Revenge e Once Upon a Time) per la seconda stagione. Risposta: Hulu" - text: "L' American Broadcasting Company (ABC) (stlized nel suo logo come abc dal 1957) è una rete televisiva commerciale americana trasmissione televisiva che è di proprietà del Disney-ABC Television Group, una controllata della divisione Disney Media Networks di The Walt Disney Company. La rete fa parte delle grandi reti televisive Big Three. La rete ha sede a Columbus Avenue e West 66th Street a Manhattan, con ulteriori uffici e stabilimenti di produzione a New York City, Los Angeles e Burbank, California. Risposta: Manhattan" - text: "La disobbedienza civile non rivoluzionaria è una semplice disobbedienza delle leggi sulla base del fatto che sono giudicate \"sbagliate\" da una coscienza individuale, o come parte di uno sforzo per rendere alcune leggi inefficaci, per causarne l' abrogazione, o per esercitare pressioni per ottenere i propri desideri politici su qualche altra questione. La disobbedienza civile rivoluzionaria è più che altro un tentativo attivo di rovesciare un governo (o di cambiare le tradizioni culturali, i costumi sociali, le credenze religiose, ecc. La rivoluzione non deve necessariamente essere politica, cioè \"rivoluzione culturale\", implica semplicemente un cambiamento radicale e diffuso in una sezione del tessuto sociale). Gli atti di Gandhi sono stati descritti come disobbedienza civile rivoluzionaria. È stato affermato che gli ungheresi sotto Ferenc Deák hanno diretto una disobbedienza civile rivoluzionaria contro il governo austriaco. Thoreau ha anche scritto di disobbedienza civile realizzando \"rivoluzione pacifica\". Howard Zinn, Harvey Wheeler e altri hanno identificato il diritto sposato nella Dichiarazione d' Indipendenza di \"alterare o abolire\" un governo ingiusto come principio di disobbedienza civile. Risposta: Ferenc Deák" metrics: - rouge - bertscore model-index: - name: it5-base-question-generation results: - task: type: question-generation name: "Question generation" dataset: type: squad_it name: "SQuAD-IT" metrics: - type: rouge1 value: 0.382 name: "Test Rouge1" - type: rouge2 value: 0.199 name: "Test Rouge2" - type: rougeL value: 0.354 name: "Test RougeL" - type: bertscore value: 0.516 name: "Test BERTScore" args: - model_type: "dbmdz/bert-base-italian-xxl-uncased" - lang: "it" - num_layers: 10 - rescale_with_baseline: True - baseline_path: "bertscore_baseline_ita.tsv" co2_eq_emissions: emissions: "17g" source: "Google Cloud Platform Carbon Footprint" training_type: "fine-tuning" geographical_location: "Eemshaven, Netherlands, Europe" hardware_used: "1 TPU v3-8 VM" thumbnail: https://gsarti.com/publication/it5/featured.png --- # IT5 Base for Question Generation 💭 🇮🇹 This repository contains the checkpoint for the [IT5 Base](https://huggingface.co/gsarti/it5-base) model fine-tuned on question generation on the [SQuAD-IT corpus](https://huggingface.co/datasets/squad_it) as part of the experiments of the paper [IT5: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation](https://arxiv.org/abs/2203.03759) by [Gabriele Sarti](https://gsarti.com) and [Malvina Nissim](https://malvinanissim.github.io). A comprehensive overview of other released materials is provided in the [gsarti/it5](https://github.com/gsarti/it5) repository. Refer to the paper for additional details concerning the reported scores and the evaluation approach. ## Using the model Model checkpoints are available for usage in Tensorflow, Pytorch and JAX. They can be used directly with pipelines as: ```python from transformers import pipelines qg = pipeline("text2text-generation", model='it5/it5-base-question-generation') qg("Le conoscenze mediche erano stagnanti durante il Medioevo. Il resoconto più autorevole di allora è venuto dalla facoltà di medicina di Parigi in un rapporto al re di Francia che ha incolpato i cieli, sotto forma di una congiunzione di tre pianeti nel 1345 che causò una "grande pestilenza nell\' aria". Questa relazione è diventata la prima e più diffusa di una serie di casi di peste che cercava di dare consigli ai malati. Che la peste fosse causata dalla cattiva aria divenne la teoria più accettata. Oggi, questo è conosciuto come la teoria di Miasma. La parola "peste" non aveva un significato particolare in questo momento, e solo la ricorrenza dei focolai durante il Medioevo gli diede il nome che è diventato il termine medico. Risposta: re di Francia") >>> [{"generated_text": "Per chi è stato redatto il referto medico?"}] ``` or loaded using autoclasses: ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("it5/it5-base-question-generation") model = AutoModelForSeq2SeqLM.from_pretrained("it5/it5-base-question-generation") ``` If you use this model in your research, please cite our work as: ```bibtex @article{sarti-nissim-2022-it5, title={{IT5}: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation}, author={Sarti, Gabriele and Nissim, Malvina}, journal={ArXiv preprint 2203.03759}, url={https://arxiv.org/abs/2203.03759}, year={2022}, month={mar} } ```
it5/it5-large-wiki-summarization
9c43108f75e1f89da8fd2baf4ba00850104c7ec3
2022-03-09T07:49:56.000Z
[ "pytorch", "tf", "jax", "tensorboard", "t5", "text2text-generation", "it", "dataset:wits", "arxiv:2203.03759", "transformers", "italian", "sequence-to-sequence", "wikipedia", "summarization", "wits", "license:apache-2.0", "model-index", "co2_eq_emissions", "autotrain_compatible" ]
summarization
false
it5
null
it5/it5-large-wiki-summarization
8
null
transformers
13,128
--- language: - it license: apache-2.0 datasets: - wits tags: - italian - sequence-to-sequence - wikipedia - summarization - wits widget: - text: "La 5ª Commissione ha competenza per i disegni di legge riguardanti le specifiche materie del bilancio, del personale e dei servizi del Ministero dell'economia, nonché per i disegni di legge riguardanti la materia finanziaria. La Commissione è composta da 26 senatori (di cui 2 segretari, 2 vicepresidenti di cui 1 componente esterno, e un presidente) scelti in modo omogeneo tra i componenti di quel ramo del Parlamento, in modo da rispecchiarne le forze politiche presenti. Essi sono scelti dai gruppi parlamentari (e non dal Presidente, come invece accade per l'organismo della Giunta parlamentare): per la nomina dei membri ciascun Gruppo, entro cinque giorni dalla propria costituzione, procede, dandone comunicazione alla Presidenza del Senato, alla designazione dei propri rappresentanti nelle singole Commissioni permanenti. Ogni senatore chiamato a far parte del governo o eletto presidente della Commissione è, per la durata della carica, sostituito dal suo gruppo nella Commissione con un altro senatore, che continuerà ad appartenere anche alla Commissione di provenienza. Tranne in rari casi nessun Senatore può essere assegnato a più di una Commissione permanente. Le Commissioni permanenti sono rinnovate dopo il primo biennio della legislatura ed i loro componenti possono essere confermati." - text: "Interni della chiesa Si pensa che già ai tempi di Gediminas vi fosse una piccola chiesa, probabilmente in legno. Nel 1408 circa Vitoldo costruì la chiesa dello Spirito Santo che andò in seguito ampliata. Nel 1501 Alessandro Jagellone lo donò al monastero domenicano, il più antico della Lituania, che nel 1679-88 fu ampliato e ricostruito. Di quel periodo sopravvivono le mura della chiesa, mentre l'arredamento interno fu realizzato nel 1749-1770 e la cupola affrontò dei lavori di restauro nel 1752-1760. Nel 1844 le autorità zariste chiusero il monastero e la chiesa divenne parrocchiale. Oggi serve la comunità polacca di Vilnius. Su via Šv. Ignoto fu fondato un monastero domenicano nel 1501. Come molti altri edifici, questo monastero fu convertito in una prigione dalle autorità zariste nel 1807. Costituì un luogo di prigionia per molti patrioti lituani, nello specifico i Filareti, i quali parteciparono alle rivolte del 1831 e del 1863. Organo La chiesa si trova lateralmente rispetto alla strada e non ha una facciata principale ben disegnata. L'altezza, inclusa la cupola, è di 51 m. La parte inferiore della facciata (con piccole torri gemelle) è ricoperta da edifici conventuali e l'esterno presenta caratteristiche architettoniche tipiche del tardo barocco. Celebre per i fantasiosi ornamenti rococò, l'interno della chiesa è tra i più celebri della Lituania per via dei cartigli con vari stemmi e affreschi lungo la navata: vi sono 16 altari nella chiesa. Gli altari e il pulpito sono assai decorati con sculture e ornamenti rotondi e in rilievo. Tra gli affreschi barocchi, si pensi alla composizione multi-figurale intitolata ''Apoteosi dello Spirito Santo'' (neobarocco, XIX secolo) nella cupola, 45 dipinti nella chiesa (tra cui un'immagine di Santa Barbara con un'ambientazione del XVII o XVIII secolo, una di Santa Caterina da Siena in stile rococò di Szymon Czechowicz, un ritratto di Alessandro Jagellone di un artista sconosciuto della seconda metà del XVIII secolo). Un ingresso sotto l'altare conduce alle grandi volte, labirintiche, con molte stanze e cripte: i sotterranei ospitano i resti di centinaia di residenti di Vilnius, alcuni dei quali mummificatisi naturalmente, e sono circondati da leggende metropolitane. Sebbene l'esistenza dei sotterranei fosse nota, i primi sforzi per esplorare e mappare le cripte furono abbandonate nonostante lo sforzo degli studenti dell'Università di Vilnius negli anni '30. Tuttavia, questi ultimi non avevano osservato le corrette procedure archeologiche e causarono infatti molti danni: il modus operandi prevedeva lo smistamento delle ossa ponendo tutti i teschi sugli scaffali e rimuovendoli le tombe. Da allora, i resti sono stati spostati molte volte lasciandoli in uno stato casuale e disorganizzato. Stando alle leggende che aleggiano sul luogo, i resti sarebbero di soldati francesi recatisi in città nel corso della campagna di Russia del 1812 avviata da Napoleone Bonaparte, di vittime dell'Inquisizione o della peste nera. Più romantiche risultano le affermazioni di chi sostiene che i corridoi sotterranei facevano parte di una rete di passaggi più ampia che consentiva agli amanti leggendari Barbara Radziwiłł e Sigismondo II Augusto di incontrarsi in segreto. Nel 2011, gli antropologi dell'Università di Vilnius, guidati da Rimantas Jankauskas, avviarono uno studio sui corpi mummificati, stimando settimane dopo che le volte conservassero i resti di circa 600 persone, tra cui molte donne e bambini dalla metà del XVIII secolo all'inizio del XIX secolo. Il team ha selezionato i cadaveri meglio conservati e ha eseguito la loro tomografia. I risultati mostrano che molte persone erano in sovrappeso e avevano l'alluce valgo, il che ha portato alla conclusione che si trattava di alti borghesi o comunque di cittadini abbienti. " - text: "Le dimensioni dell'isola sono di 8 km di lunghezza e di 3,2 km di larghezza. Si trova a 1,6 km a sud-est dell'isola di Renaud, dalla quale è separata dal passaggio Rodman. La sua altezza è di 100 m. Fu scoperta dall'esploratore e baleniere britannico John Biscoe nel 1832 e venne mappata durante una spedizione antartica francese realizzata nel primo decennio del XX secolo. Al comando della spedizione era Jean-Baptiste Charcot e il nome fu scelto per onorare l'esploratore e geografo francese Charles Rabot. === Rivendicazioni territoriali === * Secondo l'Argentina appartiene al dipartimento dell'Antartide Argentina nella provincia della Terra del Fuoco. * Secondo il Cile appartiene al comune antartico della provincia cilena antartica nella regione di Magallanes e dell'Antartico cileno. * Secondo il Regno Unito fa parte del territorio antartico britannico. Per il Trattato Antartico tali rivendicazioni sono sospese. Sull'isola è presente il rifugio Guillochon, sito storico antartico. " - text: "Vanni ha la sua prima mostra personale nel 1948, alla Galleria Margherita di Roma. Nel 1949 vince una borsa di studio che lo porterà a studiare ad Amsterdam sotto la guida del pittore neoplastico Friedrich Vordemberge-Gildewart. Nel 1952 vince una Fulbright Scholarship che lo porterà a studiare in America, alla Yale University, sotto la guida di Josef Albers. Dal 1953 al 1960 si stabilisce a Parigi, dove illustra alcuni libri per bambini che in seguito vinceranno il premio del Club des Editeurs. Nel 1954 lavora come consulente del colore per il documentario su Picasso di Luciano Emmer, e nel 1955 comincia la sua lunga collaborazione con la Galleria Schneider, affiancando artisti come Corrado Cagli. Dal 1969 al 1974 lavora su dei bassorilievi in vetro resina sui quali vengono proiettati dei film astratti da lui creati, per creare dei quadri che si trasformino continuamente nel tempo. Nel 1979 lascia Roma per stabilirsi a New York, dove alla carriera di pittore affiancherà quella di professore per la prestigiosa Cooper Union School of Art, dove insegnerà ininterrottamente dal 1984 al 2014. L'opera pittorica di Vanni è segnata da una visione estremamente personale, lontana dalle correnti e dai movimenti che hanno caratterizzato la seconda metà del XX secolo. Memore delle lunghe conversazioni avute da Vanni nella sua primissima gioventù, con il filosofo e pittore futurista Alberto Bragaglia, le sue opere sono contrassegnate da un “eclettismo” formale programmatico, alla base del quale resta costante una conoscenza profonda delle molteplici tecniche artistiche utilizzate (tra cui il mosaico, l’affresco e la tempera ad uovo). Pur esprimendosi per lo più in cicli di opere dove l’astrazione formale è la principale componente figurativa, sono da sottolineare alcune opere dove Vanni ha dato prova di una importante padronanza dell’arte figurativa. Importanti e numerose sono le sue realizzazioni anche nel campo dell’illustrazione. Sue sono le illustrazioni per la novella ''Agostino'' di Alberto Moravia, per il libro ''Love'' di Lowell A. Siff e delle ''Contes de Cristal'' di Alice Coléno. Ha tenuto mostre personali in Italia e all’estero ed esposto in mostre collettive di rappresentanza italiana nei musei e nelle gallerie di ogni parte del mondo. " metrics: - rouge - bertscore model-index: - name: it5-large-wiki-summarization results: - task: type: wiki-summarization name: "Wikipedia Summarization" dataset: type: wits name: "WITS" metrics: - type: rouge1 value: 0.335 name: "Test Rouge1" - type: rouge2 value: 0.191 name: "Test Rouge2" - type: rougeL value: 0.301 name: "Test RougeL" - type: bertscore value: 0.508 name: "Test BERTScore" args: - model_type: "dbmdz/bert-base-italian-xxl-uncased" - lang: "it" - num_layers: 10 - rescale_with_baseline: True - baseline_path: "bertscore_baseline_ita.tsv" co2_eq_emissions: emissions: "51g" source: "Google Cloud Platform Carbon Footprint" training_type: "fine-tuning" geographical_location: "Eemshaven, Netherlands, Europe" hardware_used: "1 TPU v3-8 VM" thumbnail: https://gsarti.com/publication/it5/featured.png --- # IT5 Large for Wikipedia Summarization ✂️📑 🇮🇹 This repository contains the checkpoint for the [IT5 Large](https://huggingface.co/gsarti/it5-large) model fine-tuned on Wikipedia summarization on the [WITS](https://www.semanticscholar.org/paper/WITS%3A-Wikipedia-for-Italian-Text-Summarization-Casola-Lavelli/ad6c83122e721c7c0db4a40727dac3b4762cd2b1) dataset as part of the experiments of the paper [IT5: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation](https://arxiv.org/abs/2203.03759) by [Gabriele Sarti](https://gsarti.com) and [Malvina Nissim](https://malvinanissim.github.io). A comprehensive overview of other released materials is provided in the [gsarti/it5](https://github.com/gsarti/it5) repository. Refer to the paper for additional details concerning the reported scores and the evaluation approach. ## Using the model Model checkpoints are available for usage in Tensorflow, Pytorch and JAX. They can be used directly with pipelines as: ```python from transformers import pipelines wikisum = pipeline("summarization", model='it5/it5-large-wiki-summarization') wikisum("Le dimensioni dell'isola sono di 8 km di lunghezza e di 3,2 km di larghezza. Si trova a 1,6 km a sud-est dell'isola di Renaud, dalla quale è separata dal passaggio Rodman. La sua altezza è di 100 m. Fu scoperta dall'esploratore e baleniere britannico John Biscoe nel 1832 e venne mappata durante una spedizione antartica francese realizzata nel primo decennio del XX secolo. Al comando della spedizione era Jean-Baptiste Charcot e il nome fu scelto per onorare l'esploratore e geografo francese Charles Rabot. === Rivendicazioni territoriali === * Secondo l'Argentina appartiene al dipartimento dell'Antartide Argentina nella provincia della Terra del Fuoco. * Secondo il Cile appartiene al comune antartico della provincia cilena antartica nella regione di Magallanes e dell'Antartico cileno. * Secondo il Regno Unito fa parte del territorio antartico britannico. Per il Trattato Antartico tali rivendicazioni sono sospese. Sull'isola è presente il rifugio Guillochon, sito storico antartico. ") >>> [{"generated_text": "L' '''isola di Rabot''' si trova in prossimità dell'isola di Renaud, a sud dell'Argentina."}] ``` or loaded using autoclasses: ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("it5/it5-large-wiki-summarization") model = AutoModelForSeq2SeqLM.from_pretrained("it5/it5-large-wiki-summarization") ``` If you use this model in your research, please cite our work as: ```bibtex @article{sarti-nissim-2022-it5, title={{IT5}: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation}, author={Sarti, Gabriele and Nissim, Malvina}, journal={ArXiv preprint 2203.03759}, url={https://arxiv.org/abs/2203.03759}, year={2022}, month={mar} } ```
it5/mt5-base-headline-generation
ff355886a9e7df72abc917caa313a30168a339df
2022-03-09T07:58:47.000Z
[ "pytorch", "tf", "jax", "tensorboard", "mt5", "text2text-generation", "it", "dataset:gsarti/change_it", "arxiv:2203.03759", "transformers", "italian", "sequence-to-sequence", "newspaper", "ilgiornale", "repubblica", "headline-generation", "license:apache-2.0", "model-index", "co2_eq_emissions", "autotrain_compatible" ]
text2text-generation
false
it5
null
it5/mt5-base-headline-generation
8
null
transformers
13,129
--- language: - it license: apache-2.0 datasets: - gsarti/change_it tags: - italian - sequence-to-sequence - newspaper - ilgiornale - repubblica - headline-generation widget: - text: "WASHINGTON - La Corea del Nord torna dopo nove anni nella blacklist Usa degli Stati considerati sponsor del terrorismo. Come Iran, Siria e Sudan. Lo ha deciso Donald Trump , che ha preferito dare l'annuncio non durante il suo recente viaggio in Asia ma ieri, in una riunione del governo alla Casa Bianca. 'Oggi gli Stati Uniti designeranno la Corea del nord come uno stato sponsor del terrorismo', ha tuonato il tycoon, anticipando che sarà formalizzata oggi dal dipartimento di stato e sarà accompagnata da nuove e più severe sanzioni. 'Il livello più alto' mai imposto a Pyongyang, ha promesso. 'Avrebbe dovuto succedere molto tempo fa', ha aggiunto, scaricando per l'ennesima volta la responsabilità dell'attuale crisi sull'amministrazione Obama. Poi si è scagliato contro un 'regime assassino' che 'deve mettere fine allo sviluppo del suo programma illegale nucleare e balistico'. Per giustificare la svolta, Trump ha accusato Pyongyang non solo di 'minacciare il mondo con una devastazione nucleare' ma anche di aver 'ripetutamente sostenuto atti di terrorismo internazionale', compreso omicidi in suolo straniero. Il riferimento è all' uccisione all'aeroporto della capitale malese di Kim Jong Nam , il fratellastro del leader nordcoreano Kim Jong Un , ma non ci sono altri episodi noti. Tanto che alcuni esperti, come pure dirigenti Usa coperti dall'anonimato, dubitano che Pyongyang risponda ai criteri per una tale designazione. La mossa appare altamente simbolica, dato che la Corea del Nord è già pesantemente sanzionata a livello internazionale. Per il segretario di stato Rex Tillerson è solo l'ultima di una serie di passi per rafforzare la pressione su Pyongyang e costringerla a sedersi ad un tavolo perché gli Usa hanno sempre 'speranza nella diplomazia'. Ma nello stesso tempo è un monito per 'fermare e dissuadere' altri Paesi dal sostenere la Corea del Nord, finita nella blacklist 'anche per l'uso di armi chimiche'. Ma la mossa potrebbe anche essere controproducente, provocando una risposta di Kim o minando gli sforzi per sollecitare Pechino ad una maggiore pressione su Pyongyang. In ogni caso non aiuta il dialogo diretto tra Usa e Corea del Nord, che sembrava essere stato avviato in modo riservato. Come non aiutano gli scambi di insulti fra Trump e Kim. Nord Corea, Trump: 'Cerco di essere amico di Kim, sarebbe una bella cosa per il mondo'. Pyongyang era stata messa nella lista Usa degli Stati sponsor del terrorismo per aver fatto esplodere nel 1987 un volo della Korean Air uccidendo tutti i 115 passeggeri a bordo. Ma l'amministrazione di George W. Bush l'aveva rimossa sperando di far avanzare i negoziati sulla denuclearizzazione della penisola coreana. Il governo giapponese sostiene la decisione degli Stati Uniti di inserire la Corea del Nord nella lista degli stati che sponsorizzano il terrorismo, pur riconoscendo che l'annuncio potrebbe provocare una reazione immediata del regime di Pyongyang. Il premier Shinzo Abe ha accolto con consenso il comunicato Usa e ha detto alla stampa che servirà a incrementare la pressione sulla Corea del Nord. Il ministro della Difesa Itsunori Onodera , pur valutando positivamente la notifica, ha spiegato che si attendono azioni provocatorie dallo stato eremita, ribadendo che è vitale rimanere vigili. Secondo la stampa nipponica Abe aveva richiesto al dipartimento di Stato Usa di mettere la Corea del Nord sulla lista durante l'incontro col presidente Usa Donald Trump a Tokyo a inizio mese. L'ultimo lancio di missile balistico condotto da Pyongyang nell'oceano Pacifico, sorvolando il mare del Giappone, risale allo scorso settembre." - text: "ROMA - Una nuova droga killer è stata sequestrata per la prima volta in Europa dagli investigatori del Nas. Si tratta di una nuova \"miscela psicoattiva altamente tossica\" per la prima volta individuata da forze di polizia, simile all'eroina sintetica, ma molto più economica e letale. Tanto che i 20 grammi scoperti sarebbero stati sufficienti per fabbricare ben 20.000 dosi e lo stesso contatto attraverso la pelle può provocare intossicazione. Individuata per la prima volta, la nuova droga presenta una struttura simile al farmaco sedativo Fentanyl ma con effetti molto più devastanti per l'organismo. Proveniva dell'estero ed era contenuta in un plico postale indirizzato in una città del centro Italia: è stata intercettata tramite accertamenti sul web grazie a un'operazione di intelligence che ha visto come protagonisti i militari della Sezione operativa centrale del Comando carabinieri per la Tutela della salute (Nas). Economica e letale, secondo gli investigatori \"in confronto l'eroina è quasi 'acqua fresca', anzi, proprio per la sua economicità, in alcuni casi viene venduta dai pusher a giovani conviti di comprare eroina\". La diffusione di nuove droghe sintetiche che continuamente appaiono sui mercati necessita di un'attività investigativa costante e complessa. Si tratta infatti di sostanze dalla struttura molecolare molto simile a quella del Fentanyl ma ogni volta leggermente diversa. Di qui la difficoltà di individuarle e l'importanza del nuovo sequestro. \"La chiamano impropriamente 'eroina sintetica' - spiega il comandante dei Nas, generale Adelmo Lusi - per il tipo di effetto psicotropo simile, ma dal punto di vista della tossicità è molto peggio: con 25 milligrammi di eroina ci si sballa, con 25mg di simil-fentanyl, come quello appena sequestrato, si muore\". Le indagini sono partite da ricoveri per overdose in ospedale, in cui arrivavano ragazzi che non rispondevano al trattamento disintossicante per l'eroina. La nuova sostanza verrà ora segnalata per l'inserimento tra le tabelle ministeriali degli stupefacenti prevista dal Dpr 309/1990." - text: "Fragile come il burro. Il nostro territorio è precario. Ne sanno qualcosa i comuni che sono stati investititi dal maltempo . Il dissesto idrogeologico imperversa su tutto il territorio. Infatti, oltre 6.600 comuni , pari all’82% del totale, sono in aree ad elevato rischio idrogeologico, pari al 10% della sua superficie. La popolazione potenzialmente esposta è stimata in 5,8 milioni di persone. I dati emergono dalle recenti analisi fatte da Legambiente e Protezione civile, che mettono in evidenza come in 10 anni in Italia sia raddoppiata l’area dei territori colpiti da alluvioni e frane , passando da una media di quattro regioni all’anno a otto regioni. Nella classifica delle regioni a maggior rischio idrogeologico prima è la Calabria con il 100% dei comuni esposti; al 100% ci sono anche la provincia di Trento, il Molise, la Basilicata, l’Umbria, la Valle d’Aosta. Poi Marche, Liguria al 99%; Lazio, Toscana al 98%; Abruzzo (96%), Emilia-Romagna (95%), Campania e Friuli Venezia Giulia al 92%, Piemonte (87%), Sardegna (81%), Puglia (78%), Sicilia (71%), Lombardia (60%), provincia di Bolzano (59%), Veneto (56%). Tra le cause che condizionano ed amplificano il rischio idrogeologico c’è l’azione dell’uomo (abbandono e degrado, cementificazione, consumo di suolo, abusivismo, disboscamento e incendi). Ma anche e soprattutto la mancanza di una seria manutenzione ordinaria e non ad una organica politica di prevenzione." - text: "Arriva dal Partito nazionalista basco (Pnv) la conferma che i cinque deputati che siedono in parlamento voteranno la sfiducia al governo guidato da Mariano Rajoy. Pochi voti, ma significativi quelli della formazione politica di Aitor Esteban, che interverrà nel pomeriggio. Pur con dimensioni molto ridotte, il partito basco si è trovato a fare da ago della bilancia in aula. E il sostegno alla mozione presentata dai Socialisti potrebbe significare per il primo ministro non trovare quei 176 voti che gli servono per continuare a governare. \" Perché dovrei dimettermi io che per il momento ho la fiducia della Camera e quella che mi è stato data alle urne \", ha detto oggi Rajoy nel suo intervento in aula, mentre procedeva la discussione sulla mozione di sfiducia. Il voto dei baschi ora cambia le carte in tavola e fa crescere ulteriormente la pressione sul premier perché rassegni le sue dimissioni. La sfiducia al premier, o un'eventuale scelta di dimettersi, porterebbe alle estreme conseguenze lo scandalo per corruzione che ha investito il Partito popolare. Ma per ora sembra pensare a tutt'altro. \"Non ha intenzione di dimettersi - ha detto il segretario generale del Partito popolare , María Dolores de Cospedal - Non gioverebbe all'interesse generale o agli interessi del Pp\"." metrics: - rouge - bertscore model-index: - name: mt5-base-headline-generation results: - task: type: headline-generation name: "Headline generation" dataset: type: headgen_it name: "HeadGen-IT" metrics: - type: rouge1 value: 0.302 name: "Test Rouge1" - type: rouge2 value: 0.109 name: "Test Rouge2" - type: rougeL value: 0.265 name: "Test RougeL" - type: bertscore value: 0.427 name: "Test BERTScore" args: - model_type: "dbmdz/bert-base-italian-xxl-uncased" - lang: "it" - num_layers: 10 - rescale_with_baseline: True - baseline_path: "bertscore_baseline_ita.tsv" co2_eq_emissions: emissions: "40g" source: "Google Cloud Platform Carbon Footprint" training_type: "fine-tuning" geographical_location: "Eemshaven, Netherlands, Europe" hardware_used: "1 TPU v3-8 VM" thumbnail: https://gsarti.com/publication/it5/featured.png --- # mT5 Base for News Headline Generation 📣 🇮🇹 This repository contains the checkpoint for the [mT5 Base](https://huggingface.co/google/mt5-base) model fine-tuned on news headline generation on the Italian HeadGen-IT dataset as part of the experiments of the paper [IT5: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation](https://arxiv.org/abs/2203.03759) by [Gabriele Sarti](https://gsarti.com) and [Malvina Nissim](https://malvinanissim.github.io). A comprehensive overview of other released materials is provided in the [gsarti/it5](https://github.com/gsarti/it5) repository. Refer to the paper for additional details concerning the reported scores and the evaluation approach. ## Using the model Model checkpoints are available for usage in Tensorflow, Pytorch and JAX. They can be used directly with pipelines as: ```python from transformers import pipelines hg = pipeline("text2text-generation", model='it5/mt5-base-headline-generation') hg("Arriva dal Partito nazionalista basco (Pnv) la conferma che i cinque deputati che siedono in parlamento voteranno la sfiducia al governo guidato da Mariano Rajoy. Pochi voti, ma significativi quelli della formazione politica di Aitor Esteban, che interverrà nel pomeriggio. Pur con dimensioni molto ridotte, il partito basco si è trovato a fare da ago della bilancia in aula. E il sostegno alla mozione presentata dai Socialisti potrebbe significare per il primo ministro non trovare quei 176 voti che gli servono per continuare a governare. \" Perché dovrei dimettermi io che per il momento ho la fiducia della Camera e quella che mi è stato data alle urne \", ha detto oggi Rajoy nel suo intervento in aula, mentre procedeva la discussione sulla mozione di sfiducia. Il voto dei baschi ora cambia le carte in tavola e fa crescere ulteriormente la pressione sul premier perché rassegni le sue dimissioni. La sfiducia al premier, o un'eventuale scelta di dimettersi, porterebbe alle estreme conseguenze lo scandalo per corruzione che ha investito il Partito popolare. Ma per ora sembra pensare a tutt'altro. \"Non ha intenzione di dimettersi - ha detto il segretario generale del Partito popolare , María Dolores de Cospedal - Non gioverebbe all'interesse generale o agli interessi del Pp\".") >>> [{"generated_text": "il nazionalista rajoy: 'voteremo la sfiducia'"}] ``` or loaded using autoclasses: ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("it5/mt5-base-headline-generation") model = AutoModelForSeq2SeqLM.from_pretrained("it5/mt5-base-headline-generation") ``` If you use this model in your research, please cite our work as: ```bibtex @article{sarti-nissim-2022-it5, title={{IT5}: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation}, author={Sarti, Gabriele and Nissim, Malvina}, journal={ArXiv preprint 2203.03759}, url={https://arxiv.org/abs/2203.03759}, year={2022}, month={mar} } ```
it5/mt5-base-wiki-summarization
f8b63180006bbc748625c64f6559d9565d469ad6
2022-03-09T07:51:31.000Z
[ "pytorch", "tf", "jax", "tensorboard", "mt5", "text2text-generation", "it", "dataset:wits", "arxiv:2203.03759", "transformers", "italian", "sequence-to-sequence", "wikipedia", "summarization", "wits", "license:apache-2.0", "model-index", "co2_eq_emissions", "autotrain_compatible" ]
summarization
false
it5
null
it5/mt5-base-wiki-summarization
8
null
transformers
13,130
--- language: - it license: apache-2.0 datasets: - wits tags: - italian - sequence-to-sequence - wikipedia - summarization - wits widget: - text: "La 5ª Commissione ha competenza per i disegni di legge riguardanti le specifiche materie del bilancio, del personale e dei servizi del Ministero dell'economia, nonché per i disegni di legge riguardanti la materia finanziaria. La Commissione è composta da 26 senatori (di cui 2 segretari, 2 vicepresidenti di cui 1 componente esterno, e un presidente) scelti in modo omogeneo tra i componenti di quel ramo del Parlamento, in modo da rispecchiarne le forze politiche presenti. Essi sono scelti dai gruppi parlamentari (e non dal Presidente, come invece accade per l'organismo della Giunta parlamentare): per la nomina dei membri ciascun Gruppo, entro cinque giorni dalla propria costituzione, procede, dandone comunicazione alla Presidenza del Senato, alla designazione dei propri rappresentanti nelle singole Commissioni permanenti. Ogni senatore chiamato a far parte del governo o eletto presidente della Commissione è, per la durata della carica, sostituito dal suo gruppo nella Commissione con un altro senatore, che continuerà ad appartenere anche alla Commissione di provenienza. Tranne in rari casi nessun Senatore può essere assegnato a più di una Commissione permanente. Le Commissioni permanenti sono rinnovate dopo il primo biennio della legislatura ed i loro componenti possono essere confermati." - text: "Interni della chiesa Si pensa che già ai tempi di Gediminas vi fosse una piccola chiesa, probabilmente in legno. Nel 1408 circa Vitoldo costruì la chiesa dello Spirito Santo che andò in seguito ampliata. Nel 1501 Alessandro Jagellone lo donò al monastero domenicano, il più antico della Lituania, che nel 1679-88 fu ampliato e ricostruito. Di quel periodo sopravvivono le mura della chiesa, mentre l'arredamento interno fu realizzato nel 1749-1770 e la cupola affrontò dei lavori di restauro nel 1752-1760. Nel 1844 le autorità zariste chiusero il monastero e la chiesa divenne parrocchiale. Oggi serve la comunità polacca di Vilnius. Su via Šv. Ignoto fu fondato un monastero domenicano nel 1501. Come molti altri edifici, questo monastero fu convertito in una prigione dalle autorità zariste nel 1807. Costituì un luogo di prigionia per molti patrioti lituani, nello specifico i Filareti, i quali parteciparono alle rivolte del 1831 e del 1863. Organo La chiesa si trova lateralmente rispetto alla strada e non ha una facciata principale ben disegnata. L'altezza, inclusa la cupola, è di 51 m. La parte inferiore della facciata (con piccole torri gemelle) è ricoperta da edifici conventuali e l'esterno presenta caratteristiche architettoniche tipiche del tardo barocco. Celebre per i fantasiosi ornamenti rococò, l'interno della chiesa è tra i più celebri della Lituania per via dei cartigli con vari stemmi e affreschi lungo la navata: vi sono 16 altari nella chiesa. Gli altari e il pulpito sono assai decorati con sculture e ornamenti rotondi e in rilievo. Tra gli affreschi barocchi, si pensi alla composizione multi-figurale intitolata ''Apoteosi dello Spirito Santo'' (neobarocco, XIX secolo) nella cupola, 45 dipinti nella chiesa (tra cui un'immagine di Santa Barbara con un'ambientazione del XVII o XVIII secolo, una di Santa Caterina da Siena in stile rococò di Szymon Czechowicz, un ritratto di Alessandro Jagellone di un artista sconosciuto della seconda metà del XVIII secolo). Un ingresso sotto l'altare conduce alle grandi volte, labirintiche, con molte stanze e cripte: i sotterranei ospitano i resti di centinaia di residenti di Vilnius, alcuni dei quali mummificatisi naturalmente, e sono circondati da leggende metropolitane. Sebbene l'esistenza dei sotterranei fosse nota, i primi sforzi per esplorare e mappare le cripte furono abbandonate nonostante lo sforzo degli studenti dell'Università di Vilnius negli anni '30. Tuttavia, questi ultimi non avevano osservato le corrette procedure archeologiche e causarono infatti molti danni: il modus operandi prevedeva lo smistamento delle ossa ponendo tutti i teschi sugli scaffali e rimuovendoli le tombe. Da allora, i resti sono stati spostati molte volte lasciandoli in uno stato casuale e disorganizzato. Stando alle leggende che aleggiano sul luogo, i resti sarebbero di soldati francesi recatisi in città nel corso della campagna di Russia del 1812 avviata da Napoleone Bonaparte, di vittime dell'Inquisizione o della peste nera. Più romantiche risultano le affermazioni di chi sostiene che i corridoi sotterranei facevano parte di una rete di passaggi più ampia che consentiva agli amanti leggendari Barbara Radziwiłł e Sigismondo II Augusto di incontrarsi in segreto. Nel 2011, gli antropologi dell'Università di Vilnius, guidati da Rimantas Jankauskas, avviarono uno studio sui corpi mummificati, stimando settimane dopo che le volte conservassero i resti di circa 600 persone, tra cui molte donne e bambini dalla metà del XVIII secolo all'inizio del XIX secolo. Il team ha selezionato i cadaveri meglio conservati e ha eseguito la loro tomografia. I risultati mostrano che molte persone erano in sovrappeso e avevano l'alluce valgo, il che ha portato alla conclusione che si trattava di alti borghesi o comunque di cittadini abbienti. " - text: "Le dimensioni dell'isola sono di 8 km di lunghezza e di 3,2 km di larghezza. Si trova a 1,6 km a sud-est dell'isola di Renaud, dalla quale è separata dal passaggio Rodman. La sua altezza è di 100 m. Fu scoperta dall'esploratore e baleniere britannico John Biscoe nel 1832 e venne mappata durante una spedizione antartica francese realizzata nel primo decennio del XX secolo. Al comando della spedizione era Jean-Baptiste Charcot e il nome fu scelto per onorare l'esploratore e geografo francese Charles Rabot. === Rivendicazioni territoriali === * Secondo l'Argentina appartiene al dipartimento dell'Antartide Argentina nella provincia della Terra del Fuoco. * Secondo il Cile appartiene al comune antartico della provincia cilena antartica nella regione di Magallanes e dell'Antartico cileno. * Secondo il Regno Unito fa parte del territorio antartico britannico. Per il Trattato Antartico tali rivendicazioni sono sospese. Sull'isola è presente il rifugio Guillochon, sito storico antartico. " - text: "Vanni ha la sua prima mostra personale nel 1948, alla Galleria Margherita di Roma. Nel 1949 vince una borsa di studio che lo porterà a studiare ad Amsterdam sotto la guida del pittore neoplastico Friedrich Vordemberge-Gildewart. Nel 1952 vince una Fulbright Scholarship che lo porterà a studiare in America, alla Yale University, sotto la guida di Josef Albers. Dal 1953 al 1960 si stabilisce a Parigi, dove illustra alcuni libri per bambini che in seguito vinceranno il premio del Club des Editeurs. Nel 1954 lavora come consulente del colore per il documentario su Picasso di Luciano Emmer, e nel 1955 comincia la sua lunga collaborazione con la Galleria Schneider, affiancando artisti come Corrado Cagli. Dal 1969 al 1974 lavora su dei bassorilievi in vetro resina sui quali vengono proiettati dei film astratti da lui creati, per creare dei quadri che si trasformino continuamente nel tempo. Nel 1979 lascia Roma per stabilirsi a New York, dove alla carriera di pittore affiancherà quella di professore per la prestigiosa Cooper Union School of Art, dove insegnerà ininterrottamente dal 1984 al 2014. L'opera pittorica di Vanni è segnata da una visione estremamente personale, lontana dalle correnti e dai movimenti che hanno caratterizzato la seconda metà del XX secolo. Memore delle lunghe conversazioni avute da Vanni nella sua primissima gioventù, con il filosofo e pittore futurista Alberto Bragaglia, le sue opere sono contrassegnate da un “eclettismo” formale programmatico, alla base del quale resta costante una conoscenza profonda delle molteplici tecniche artistiche utilizzate (tra cui il mosaico, l’affresco e la tempera ad uovo). Pur esprimendosi per lo più in cicli di opere dove l’astrazione formale è la principale componente figurativa, sono da sottolineare alcune opere dove Vanni ha dato prova di una importante padronanza dell’arte figurativa. Importanti e numerose sono le sue realizzazioni anche nel campo dell’illustrazione. Sue sono le illustrazioni per la novella ''Agostino'' di Alberto Moravia, per il libro ''Love'' di Lowell A. Siff e delle ''Contes de Cristal'' di Alice Coléno. Ha tenuto mostre personali in Italia e all’estero ed esposto in mostre collettive di rappresentanza italiana nei musei e nelle gallerie di ogni parte del mondo. " metrics: - rouge - bertscore model-index: - name: mt5-base-wiki-summarization results: - task: type: wiki-summarization name: "Wikipedia Summarization" dataset: type: wits name: "WITS" metrics: - type: rouge1 value: 0.348 name: "Test Rouge1" - type: rouge2 value: 0.200 name: "Test Rouge2" - type: rougeL value: 0.315 name: "Test RougeL" - type: bertscore value: 0.520 name: "Test BERTScore" args: - model_type: "dbmdz/bert-base-italian-xxl-uncased" - lang: "it" - num_layers: 10 - rescale_with_baseline: True - baseline_path: "bertscore_baseline_ita.tsv" co2_eq_emissions: emissions: "40g" source: "Google Cloud Platform Carbon Footprint" training_type: "fine-tuning" geographical_location: "Eemshaven, Netherlands, Europe" hardware_used: "1 TPU v3-8 VM" thumbnail: https://gsarti.com/publication/it5/featured.png --- # mT5 Base for Wikipedia Summarization ✂️📑 🇮🇹 This repository contains the checkpoint for the [mT5 Base](https://huggingface.co/google/mt5-base) model fine-tuned on Wikipedia summarization on the [WITS](https://www.semanticscholar.org/paper/WITS%3A-Wikipedia-for-Italian-Text-Summarization-Casola-Lavelli/ad6c83122e721c7c0db4a40727dac3b4762cd2b1) dataset as part of the experiments of the paper [IT5: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation](https://arxiv.org/abs/2203.03759) by [Gabriele Sarti](https://gsarti.com) and [Malvina Nissim](https://malvinanissim.github.io). A comprehensive overview of other released materials is provided in the [gsarti/it5](https://github.com/gsarti/it5) repository. Refer to the paper for additional details concerning the reported scores and the evaluation approach. ## Using the model Model checkpoints are available for usage in Tensorflow, Pytorch and JAX. They can be used directly with pipelines as: ```python from transformers import pipelines wikisum = pipeline("summarization", model='it5/mt5-base-wiki-summarization') wikisum("Le dimensioni dell'isola sono di 8 km di lunghezza e di 3,2 km di larghezza. Si trova a 1,6 km a sud-est dell'isola di Renaud, dalla quale è separata dal passaggio Rodman. La sua altezza è di 100 m. Fu scoperta dall'esploratore e baleniere britannico John Biscoe nel 1832 e venne mappata durante una spedizione antartica francese realizzata nel primo decennio del XX secolo. Al comando della spedizione era Jean-Baptiste Charcot e il nome fu scelto per onorare l'esploratore e geografo francese Charles Rabot. === Rivendicazioni territoriali === * Secondo l'Argentina appartiene al dipartimento dell'Antartide Argentina nella provincia della Terra del Fuoco. * Secondo il Cile appartiene al comune antartico della provincia cilena antartica nella regione di Magallanes e dell'Antartico cileno. * Secondo il Regno Unito fa parte del territorio antartico britannico. Per il Trattato Antartico tali rivendicazioni sono sospese. Sull'isola è presente il rifugio Guillochon, sito storico antartico. ") >>> [{"generated_text": "L' '''isola di Rabot''' si trova in prossimità dell'isola di Renaud, a sud dell'Argentina."}] ``` or loaded using autoclasses: ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("it5/mt5-base-wiki-summarization") model = AutoModelForSeq2SeqLM.from_pretrained("it5/mt5-base-wiki-summarization") ``` If you use this model in your research, please cite our work as: ```bibtex @article{sarti-nissim-2022-it5, title={{IT5}: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation}, author={Sarti, Gabriele and Nissim, Malvina}, journal={ArXiv preprint 2203.03759}, url={https://arxiv.org/abs/2203.03759}, year={2022}, month={mar} } ```
izumi-lab/electra-small-paper-japanese-fin-generator
6da6171bd9f9f18a61a3e8c891571fc50686bb43
2022-03-19T09:40:35.000Z
[ "pytorch", "electra", "fill-mask", "ja", "dataset:wikipedia", "dataset:securities reports", "dataset:summaries of financial results", "arxiv:2003.10555", "transformers", "finance", "license:cc-by-sa-4.0", "autotrain_compatible" ]
fill-mask
false
izumi-lab
null
izumi-lab/electra-small-paper-japanese-fin-generator
8
null
transformers
13,131
--- language: ja license: cc-by-sa-4.0 tags: - finance datasets: - wikipedia - securities reports - summaries of financial results widget: - text: 流動[MASK]は1億円となりました。 --- # ELECTRA small Japanese finance generator This is a [ELECTRA](https://github.com/google-research/electra) model pretrained on texts in the Japanese language. The codes for the pretraining are available at [retarfi/language-pretraining](https://github.com/retarfi/language-pretraining/tree/v1.0). ## Model architecture The model architecture is the same as ELECTRA small in the [original ELECTRA paper](https://arxiv.org/abs/2003.10555); 12 layers, 64 dimensions of hidden states, and 1 attention heads. ## Training Data The models are trained on the Japanese version of Wikipedia. The training corpus is generated from the Japanese version of Wikipedia, using Wikipedia dump file as of June 1, 2021. The Wikipedia corpus file is 2.9GB, consisting of approximately 20M sentences. The financial corpus consists of 2 corpora: - Summaries of financial results from October 9, 2012, to December 31, 2020 - Securities reports from February 8, 2018, to December 31, 2020 The financial corpus file is 5.2GB, consisting of approximately 27M sentences. ## Tokenization The texts are first tokenized by MeCab with IPA dictionary and then split into subwords by the WordPiece algorithm. The vocabulary size is 32768. ## Training The models are trained with the same configuration as ELECTRA small in the [original ELECTRA paper](https://arxiv.org/abs/2003.10555); 128 tokens per instance, 128 instances per batch, and 1M training steps. The size of the generator is 1/4 of the size of the discriminator. ## Citation **There will be another paper for this pretrained model. Be sure to check here again when you cite.** ``` @inproceedings{suzuki2021fin-bert-electra, title={金融文書を用いた事前学習言語モデルの構築と検証}, % title={Construction and Validation of a Pre-Trained Language Model Using Financial Documents}, author={鈴木 雅弘 and 坂地 泰紀 and 平野 正徳 and 和泉 潔}, % author={Masahiro Suzuki and Hiroki Sakaji and Masanori Hirano and Kiyoshi Izumi}, booktitle={人工知能学会第27回金融情報学研究会(SIG-FIN)}, % booktitle={Proceedings of JSAI Special Interest Group on Financial Infomatics (SIG-FIN) 27}, pages={5-10}, year={2021} } ``` ## Licenses The pretrained models are distributed under the terms of the [Creative Commons Attribution-ShareAlike 4.0](https://creativecommons.org/licenses/by-sa/4.0/). ## Acknowledgments This work was supported by JSPS KAKENHI Grant Number JP21K12010.
jaesun/dpr-bert-model
a7d653a79c770cb69ece8830d9e86d8c42fe923d
2022-02-16T18:18:10.000Z
[ "pytorch", "dpr", "transformers" ]
null
false
jaesun
null
jaesun/dpr-bert-model
8
null
transformers
13,132
Entry not found
jannesg/bertsson
45b653d8a15fb64c64e3e3c018d7d01e01429553
2021-05-19T20:36:10.000Z
[ "pytorch", "jax", "bert", "sv", "transformers" ]
null
false
jannesg
null
jannesg/bertsson
8
null
transformers
13,133
--- language: sv --- # BERTSSON Models The models are trained on: - Government Text - Swedish Literature - Swedish News Corpus size: Roughly 6B tokens. The following models are currently available: - **bertsson** - A BERT base model trained with the same hyperparameters as first published by Google. All models are cased and trained with whole word masking. Stay tuned for evaluations.
jannesg/takalane_ssw_roberta
d82d520766ae546e67a03e4251b48b0f9564d389
2021-09-22T08:52:08.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "tn", "transformers", "masked-lm", "license:mit", "autotrain_compatible" ]
fill-mask
false
jannesg
null
jannesg/takalane_ssw_roberta
8
null
transformers
13,134
--- language: - tn thumbnail: https://pbs.twimg.com/media/EVjR6BsWoAAFaq5.jpg tags: - tn - fill-mask - pytorch - roberta - masked-lm license: mit --- # Takalani Sesame - Tswana 🇿🇦 <img src="https://pbs.twimg.com/media/EVjR6BsWoAAFaq5.jpg" width="600"/> ## Model description Takalani Sesame (named after the South African version of Sesame Street) is a project that aims to promote the use of South African languages in NLP, and in particular look at techniques for low-resource languages to equalise performance with larger languages around the world. ## Intended uses & limitations #### How to use ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("jannesg/takalane_ssw_roberta") model = AutoModelWithLMHead.from_pretrained("jannesg/takalane_ssw_roberta") ``` #### Limitations and bias Updates will be added continously to improve performance. ## Training data Data collected from [https://wortschatz.uni-leipzig.de/en](https://wortschatz.uni-leipzig.de/en) <br/> **Sentences:** 380 ## Training procedure No preprocessing. Standard Huggingface hyperparameters. ## Author Jannes Germishuys [website](http://jannesgg.github.io)
jcblaise/electra-tagalog-base-uncased-generator
a112830e18a71bbcf8dc6d795aee2f383ba461f2
2021-11-11T06:19:05.000Z
[ "pytorch", "electra", "fill-mask", "tl", "transformers", "tagalog", "filipino", "license:gpl-3.0", "autotrain_compatible" ]
fill-mask
false
jcblaise
null
jcblaise/electra-tagalog-base-uncased-generator
8
null
transformers
13,135
--- language: tl tags: - electra - tagalog - filipino license: gpl-3.0 inference: false --- # ELECTRA Tagalog Base Uncased Generator Tagalog ELECTRA model pretrained with a large corpus scraped from the internet. This model is part of a larger research project. We open-source the model to allow greater usage within the Filipino NLP community. This is the generator model used to sample synthetic text and pretrain the discriminator. Only use this model for retraining and mask-filling. For the actual model for downstream tasks, please refer to the discriminator models. ## Citations All model details and training setups can be found in our papers. If you use our model or find it useful in your projects, please cite our work: ``` @inproceedings{cruz2021exploiting, title={Exploiting News Article Structure for Automatic Corpus Generation of Entailment Datasets}, author={Cruz, Jan Christian Blaise and Resabal, Jose Kristian and Lin, James and Velasco, Dan John and Cheng, Charibeth}, booktitle={Pacific Rim International Conference on Artificial Intelligence}, pages={86--99}, year={2021}, organization={Springer} } ``` ## Data and Other Resources Data used to train this model as well as other benchmark datasets in Filipino can be found in my website at https://blaisecruz.com ## Contact If you have questions, concerns, or if you just want to chat about NLP and low-resource languages in general, you may reach me through my work email at [email protected]
jgammack/distilbert-base-mean-pooling
4db12058d9948879a8e39cf49a67423af8a04537
2022-02-11T15:49:11.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
jgammack
null
jgammack/distilbert-base-mean-pooling
8
null
sentence-transformers
13,136
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # jgammack/distilbert-base-mean-pooling This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('jgammack/distilbert-base-mean-pooling') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('jgammack/distilbert-base-mean-pooling') model = AutoModel.from_pretrained('jgammack/distilbert-base-mean-pooling') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=jgammack/distilbert-base-mean-pooling) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
ji-xin/roberta_base-MRPC-two_stage
06424964347961768598bdf64dcbfb778079577f
2021-05-20T17:13:04.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
ji-xin
null
ji-xin/roberta_base-MRPC-two_stage
8
null
transformers
13,137
Entry not found
jimregan/bert-base-irish-cased-v1-finetuned-ner
d9b6130577e11f31c5209528ced5d6e0812ec33b
2021-12-01T19:14:22.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "ga", "dataset:wikiann", "transformers", "generated_from_trainer", "irish", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
jimregan
null
jimregan/bert-base-irish-cased-v1-finetuned-ner
8
null
transformers
13,138
--- license: apache-2.0 language: ga tags: - generated_from_trainer - irish datasets: - wikiann metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-irish-cased-v1-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: wikiann type: wikiann args: ga metrics: - name: Precision type: precision value: 0.8190601668862538 - name: Recall type: recall value: 0.8363228699551569 - name: F1 type: f1 value: 0.8276015087641446 - name: Accuracy type: accuracy value: 0.9306559069156423 widget: - text: "Saolaíodh Pádraic Ó Conaire i nGaillimh sa bhliain 1882." --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-irish-cased-v1-finetuned-ner This model is a fine-tuned version of [DCU-NLP/bert-base-irish-cased-v1](https://huggingface.co/DCU-NLP/bert-base-irish-cased-v1) on the wikiann dataset. It achieves the following results on the evaluation set: - Loss: 0.2468 - Precision: 0.8191 - Recall: 0.8363 - F1: 0.8276 - Accuracy: 0.9307 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 63 | 0.4902 | 0.5579 | 0.5269 | 0.5420 | 0.8458 | | No log | 2.0 | 126 | 0.3227 | 0.7169 | 0.7417 | 0.7291 | 0.8991 | | No log | 3.0 | 189 | 0.2720 | 0.7895 | 0.7839 | 0.7867 | 0.9186 | | No log | 4.0 | 252 | 0.2585 | 0.8128 | 0.8296 | 0.8211 | 0.9264 | | No log | 5.0 | 315 | 0.2468 | 0.8191 | 0.8363 | 0.8276 | 0.9307 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
jinmang2/bert-base-ko-kornli
570ab3f6c1508a151ecd4f3da4e1ce2ae6c365ba
2021-07-09T14:01:40.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
jinmang2
null
jinmang2/bert-base-ko-kornli
8
null
transformers
13,139
Entry not found
jwuthri/autonlp-shipping_status_2-27366103
67ed057eab0b38ea6711ada895a9447f292ed5e0
2021-10-27T21:34:42.000Z
[ "pytorch", "distilbert", "text-classification", "unk", "dataset:jwuthri/autonlp-data-shipping_status_2", "transformers", "autonlp", "co2_eq_emissions" ]
text-classification
false
jwuthri
null
jwuthri/autonlp-shipping_status_2-27366103
8
null
transformers
13,140
--- tags: autonlp language: unk widget: - text: "I love AutoNLP 🤗" datasets: - jwuthri/autonlp-data-shipping_status_2 co2_eq_emissions: 32.912881644048 --- # Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 27366103 - CO2 Emissions (in grams): 32.912881644048 ## Validation Metrics - Loss: 0.18175844848155975 - Accuracy: 0.9437683592110785 - Precision: 0.9416809605488851 - Recall: 0.8459167950693375 - AUC: 0.9815242330050846 - F1: 0.8912337662337663 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/jwuthri/autonlp-shipping_status_2-27366103 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("jwuthri/autonlp-shipping_status_2-27366103", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("jwuthri/autonlp-shipping_status_2-27366103", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
kapilchauhan/bert-base-uncased-CoLA-finetuned-cola
4735c8a214a6f6385c3f2109ba8698d1e7b5b83b
2022-02-24T19:00:10.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
kapilchauhan
null
kapilchauhan/bert-base-uncased-CoLA-finetuned-cola
8
null
transformers
13,141
--- tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: bert-base-uncased-CoLA-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5755298089385917 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-CoLA-finetuned-cola This model is a fine-tuned version of [textattack/bert-base-uncased-CoLA](https://huggingface.co/textattack/bert-base-uncased-CoLA) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8318 - Matthews Correlation: 0.5755 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.2949 | 1.0 | 535 | 0.5742 | 0.5219 | | 0.1852 | 2.0 | 1070 | 0.7226 | 0.5573 | | 0.1196 | 3.0 | 1605 | 0.8318 | 0.5755 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
kapilchauhan/distilbert-base-uncased-CoLA-finetuned-cola
4b08a2cae5b94a5d157f6c611a2851e501f4ebf3
2022-02-24T19:54:55.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
kapilchauhan
null
kapilchauhan/distilbert-base-uncased-CoLA-finetuned-cola
8
null
transformers
13,142
--- tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-CoLA-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5689051637185746 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-CoLA-finetuned-cola This model is a fine-tuned version of [textattack/distilbert-base-uncased-CoLA](https://huggingface.co/textattack/distilbert-base-uncased-CoLA) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6996 - Matthews Correlation: 0.5689 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | No log | 1.0 | 134 | 0.6061 | 0.5074 | | No log | 2.0 | 268 | 0.5808 | 0.5652 | | No log | 3.0 | 402 | 0.6996 | 0.5689 | | 0.0952 | 4.0 | 536 | 0.8249 | 0.5385 | | 0.0952 | 5.0 | 670 | 0.8714 | 0.5567 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
keshan/sinhala-gpt2-newswire
11de99e2d1c3bcb30c11e454f247d5b658514f56
2021-07-16T15:46:36.000Z
[ "pytorch", "gpt2", "text-generation", "si", "transformers", "sinhala" ]
text-generation
false
keshan
null
keshan/sinhala-gpt2-newswire
8
null
transformers
13,143
--- language: si tags: - sinhala - gpt2 pipeline_tag: text-generation widget: - text: "මම" --- This is a finetunes version of keshan/sinhala-gpt2 with newswire articles. This was finetuned on ~12MB of data - Num examples=8395 - Batch size =8 It got a Perplexity of 3.15
kingabzpro/wav2vec2-large-xlsr-53-punjabi
93ea753e3ff04a80b7c6fc67b6f4255b0a2cec28
2022-03-23T18:28:00.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "pa-IN", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "hf-asr-leaderboard", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
kingabzpro
null
kingabzpro/wav2vec2-large-xlsr-53-punjabi
8
2
transformers
13,144
--- language: - pa-IN license: apache-2.0 tags: - automatic-speech-recognition - hf-asr-leaderboard - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 metrics: - wer - cer model-index: - name: wav2vec2-punjabi-V8-Abid results: - task: type: automatic-speech-recognition name: Speech Recognition dataset: type: mozilla-foundation/common_voice_8_0 name: Common Voice pa-IN args: pa-IN metrics: - type: wer value: 36.02 name: Test WER With LM - type: cer value: 12.81 name: Test CER With LM --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-53-punjabi This model is a fine-tuned version of [Harveenchadha/vakyansh-wav2vec2-punjabi-pam-10](https://huggingface.co/Harveenchadha/vakyansh-wav2vec2-punjabi-pam-10) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.2101 - Wer: 0.4939 - Cer: 0.2238 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id kingabzpro/wav2vec2-large-xlsr-53-punjabi --dataset mozilla-foundation/common_voice_8_0 --config pa-IN --split test ``` ### Inference With LM ```python import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F model_id = "kingabzpro/wav2vec2-large-xlsr-53-punjabi" sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "pa-IN", split="test", streaming=True, use_auth_token=True)) sample = next(sample_iter) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() model = AutoModelForCTC.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) input_values = processor(resampled_audio, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values).logits transcription = processor.batch_decode(logits.numpy()).text ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 11.0563 | 3.7 | 100 | 1.9492 | 0.7123 | 0.3872 | | 1.6715 | 7.41 | 200 | 1.3142 | 0.6433 | 0.3086 | | 0.9117 | 11.11 | 300 | 1.2733 | 0.5657 | 0.2627 | | 0.666 | 14.81 | 400 | 1.2730 | 0.5598 | 0.2534 | | 0.4225 | 18.52 | 500 | 1.2548 | 0.5300 | 0.2399 | | 0.3209 | 22.22 | 600 | 1.2166 | 0.5229 | 0.2372 | | 0.2678 | 25.93 | 700 | 1.1795 | 0.5041 | 0.2276 | | 0.2088 | 29.63 | 800 | 1.2101 | 0.4939 | 0.2238 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
kuzgunlar/electra-turkish-ner
44b6abf5f47415e603aeaa2247688bc5ff17fdc5
2020-07-31T08:55:28.000Z
[ "pytorch", "electra", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
kuzgunlar
null
kuzgunlar/electra-turkish-ner
8
1
transformers
13,145
Entry not found
lalopey/saeed
7aaaeca4298c220d52cb5459f809c2a0f1fab206
2021-05-23T06:27:31.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
lalopey
null
lalopey/saeed
8
null
transformers
13,146
Entry not found
lewtun/bert-base-japanese-char-v2-finetuned-amazon-jap
f652ef6953192d8c50982176d2563293c85f650d
2021-10-01T14:35:30.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
lewtun
null
lewtun/bert-base-japanese-char-v2-finetuned-amazon-jap
8
null
transformers
13,147
Entry not found
lewtun/results
6c04f481e033451b924351337e994cfb73950aaa
2021-10-18T13:16:42.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
lewtun
null
lewtun/results
8
null
transformers
13,148
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: results results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.925 - name: F1 type: f1 value: 0.9251012149383893 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # results This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2147 - Accuracy: 0.925 - F1: 0.9251 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8221 | 1.0 | 250 | 0.3106 | 0.9125 | 0.9102 | | 0.2537 | 2.0 | 500 | 0.2147 | 0.925 | 0.9251 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.1+cu102 - Datasets 1.13.0 - Tokenizers 0.10.3
lfcc/bert-base-pt-archive
db870618b1d60f2c46d616595f64f1f7d62ebb07
2022-01-18T17:19:51.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "generated_from_trainer", "license:mit", "autotrain_compatible" ]
token-classification
false
lfcc
null
lfcc/bert-base-pt-archive
8
null
transformers
13,149
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model_index: - name: bert-base-pt-archive results: - task: name: Token Classification type: token-classification metric: name: Accuracy type: accuracy value: 0.9700325118974698 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-pt-archive This model is a fine-tuned version of [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on an unkown dataset. It achieves the following results on the evaluation set: - Loss: 0.1140 - Precision: 0.9147 - Recall: 0.9483 - F1: 0.9312 - Accuracy: 0.9700 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 192 | 0.1438 | 0.8917 | 0.9392 | 0.9148 | 0.9633 | | 0.2454 | 2.0 | 384 | 0.1222 | 0.8985 | 0.9417 | 0.9196 | 0.9671 | | 0.0526 | 3.0 | 576 | 0.1098 | 0.9150 | 0.9481 | 0.9312 | 0.9698 | | 0.0372 | 4.0 | 768 | 0.1140 | 0.9147 | 0.9483 | 0.9312 | 0.9700 | ### Framework versions - Transformers 4.10.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 1.10.2 - Tokenizers 0.10.3
lgris/bp-voxforge1-xlsr
58cb7fc6190d3fe1e0f550a2c71fbc858d0a7888
2021-11-27T21:14:32.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "pt", "dataset:common_voice", "dataset:mls", "dataset:cetuc", "dataset:lapsbm", "dataset:voxforge", "dataset:tedx", "dataset:sid", "transformers", "audio", "speech", "portuguese-speech-corpus", "PyTorch", "license:apache-2.0" ]
automatic-speech-recognition
false
lgris
null
lgris/bp-voxforge1-xlsr
8
null
transformers
13,150
--- language: pt datasets: - common_voice - mls - cetuc - lapsbm - voxforge - tedx - sid metrics: - wer tags: - audio - speech - wav2vec2 - pt - portuguese-speech-corpus - automatic-speech-recognition - speech - PyTorch license: apache-2.0 --- # voxforge1-xlsr: Wav2vec 2.0 with VoxForge Dataset This is a the demonstration of a fine-tuned Wav2vec model for Brazilian Portuguese using the [VoxForge](http://www.voxforge.org/) dataset. In this notebook the model is tested against other available Brazilian Portuguese datasets. | Dataset | Train | Valid | Test | |--------------------------------|-------:|------:|------:| | CETUC | | -- | 5.4h | | Common Voice | | -- | 9.5h | | LaPS BM | | -- | 0.1h | | MLS | | -- | 3.7h | | Multilingual TEDx (Portuguese) | | -- | 1.8h | | SID | | -- | 1.0h | | VoxForge | 3.9h | -- | 0.1h | | Total | 3.9h | -- | 21.6h | #### Summary | | CETUC | CV | LaPS | MLS | SID | TEDx | VF | AVG | |----------------------|---------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------| | voxforge\_1 (demonstration below) | 0.468 | 0.608 | 0.503 | 0.505 | 0.717 | 0.731 | 0.561 | 0.584 | | voxforge\_1 + 4-gram (demonstration below) | 0.322 | 0.471 | 0.356 | 0.378 | 0.586 | 0.637 | 0.428 | 0.454 | ## Demonstration ```python MODEL_NAME = "lgris/voxforge1-xlsr" ``` ### Imports and dependencies ```python %%capture !pip install torch==1.8.2+cu111 torchvision==0.9.2+cu111 torchaudio===0.8.2 -f https://download.pytorch.org/whl/lts/1.8/torch_lts.html !pip install datasets !pip install jiwer !pip install transformers !pip install soundfile !pip install pyctcdecode !pip install https://github.com/kpu/kenlm/archive/master.zip ``` ```python import jiwer import torchaudio from datasets import load_dataset, load_metric from transformers import ( Wav2Vec2ForCTC, Wav2Vec2Processor, ) from pyctcdecode import build_ctcdecoder import torch import re import sys ``` ### Helpers ```python chars_to_ignore_regex = '[\,\?\.\!\;\:\"]' # noqa: W605 def map_to_array(batch): speech, _ = torchaudio.load(batch["path"]) batch["speech"] = speech.squeeze(0).numpy() batch["sampling_rate"] = 16_000 batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("’", "'") batch["target"] = batch["sentence"] return batch ``` ```python def calc_metrics(truths, hypos): wers = [] mers = [] wils = [] for t, h in zip(truths, hypos): try: wers.append(jiwer.wer(t, h)) mers.append(jiwer.mer(t, h)) wils.append(jiwer.wil(t, h)) except: # Empty string? pass wer = sum(wers)/len(wers) mer = sum(mers)/len(mers) wil = sum(wils)/len(wils) return wer, mer, wil ``` ```python def load_data(dataset): data_files = {'test': f'{dataset}/test.csv'} dataset = load_dataset('csv', data_files=data_files)["test"] return dataset.map(map_to_array) ``` ### Model ```python class STT: def __init__(self, model_name, device='cuda' if torch.cuda.is_available() else 'cpu', lm=None): self.model_name = model_name self.model = Wav2Vec2ForCTC.from_pretrained(model_name).to(device) self.processor = Wav2Vec2Processor.from_pretrained(model_name) self.vocab_dict = self.processor.tokenizer.get_vocab() self.sorted_dict = { k.lower(): v for k, v in sorted(self.vocab_dict.items(), key=lambda item: item[1]) } self.device = device self.lm = lm if self.lm: self.lm_decoder = build_ctcdecoder( list(self.sorted_dict.keys()), self.lm ) def batch_predict(self, batch): features = self.processor(batch["speech"], sampling_rate=batch["sampling_rate"][0], padding=True, return_tensors="pt") input_values = features.input_values.to(self.device) attention_mask = features.attention_mask.to(self.device) with torch.no_grad(): logits = self.model(input_values, attention_mask=attention_mask).logits if self.lm: logits = logits.cpu().numpy() batch["predicted"] = [] for sample_logits in logits: batch["predicted"].append(self.lm_decoder.decode(sample_logits)) else: pred_ids = torch.argmax(logits, dim=-1) batch["predicted"] = self.processor.batch_decode(pred_ids) return batch ``` ### Download datasets ```python %%capture !gdown --id 1HFECzIizf-bmkQRLiQD0QVqcGtOG5upI !mkdir bp_dataset !unzip bp_dataset -d bp_dataset/ ``` ### Tests ```python stt = STT(MODEL_NAME) ``` #### CETUC ```python ds = load_data('cetuc_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("CETUC WER:", wer) ``` CETUC WER: 0.4684840205331983 #### Common Voice ```python ds = load_data('commonvoice_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("CV WER:", wer) ``` CV WER: 0.6080167359840954 #### LaPS ```python ds = load_data('lapsbm_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("Laps WER:", wer) ``` Laps WER: 0.5037468434343434 #### MLS ```python ds = load_data('mls_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("MLS WER:", wer) ``` MLS WER: 0.505595213971485 #### SID ```python ds = load_data('sid_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("Sid WER:", wer) ``` Sid WER: 0.7177723323755854 #### TEDx ```python ds = load_data('tedx_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("TEDx WER:", wer) ``` TEDx WER: 0.7309431974873112 #### VoxForge ```python ds = load_data('voxforge_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("VoxForge WER:", wer) ``` VoxForge WER: 0.5613906926406929 ### Tests with LM ```python # !find -type f -name "*.wav" -delete !rm -rf ~/.cache !gdown --id 1GJIKseP5ZkTbllQVgOL98R4yYAcIySFP # trained with wikipedia stt = STT(MODEL_NAME, lm='pt-BR-wiki.word.4-gram.arpa') # !gdown --id 1dLFldy7eguPtyJj5OAlI4Emnx0BpFywg # trained with bp # stt = STT(MODEL_NAME, lm='pt-BR.word.4-gram.arpa') ``` #### CETUC ```python ds = load_data('cetuc_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("CETUC WER:", wer) ``` CETUC WER: 0.32184971297675896 #### Common Voice ```python ds = load_data('commonvoice_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("CV WER:", wer) ``` CV WER: 0.4707820098981609 #### LaPS ```python ds = load_data('lapsbm_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("Laps WER:", wer) ``` Laps WER: 0.356227904040404 #### MLS ```python ds = load_data('mls_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("MLS WER:", wer) ``` MLS WER: 0.3786376653384398 #### SID ```python ds = load_data('sid_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("Sid WER:", wer) ``` Sid WER: 0.5864959640811857 #### TEDx ```python ds = load_data('tedx_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("TEDx WER:", wer) ``` TEDx WER: 0.6368727228726417 #### VoxForge ```python ds = load_data('voxforge_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("VoxForge WER:", wer) ``` VoxForge WER: 0.4279924242424241
liangxiaoxiao/bert_cn_finetuning
a87ca284e6f50db8a6f91c0862395673bb09756f
2021-05-19T22:00:27.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
liangxiaoxiao
null
liangxiaoxiao/bert_cn_finetuning
8
null
transformers
13,151
Entry not found
limjiayi/bert-hateful-memes-expanded
87c19e75ba73ee9a2fae78a8ed04073744d7ecef
2021-12-04T04:38:38.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
limjiayi
null
limjiayi/bert-hateful-memes-expanded
8
null
transformers
13,152
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-hateful-memes-expanded results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-hateful-memes-expanded This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on texts from the following datasets: - [Hateful Memes](https://hatefulmemeschallenge.com/), `train`, `dev_seen` and `dev_unseen` - [HarMeme](https://github.com/di-dimitrov/harmeme), `train`, `val` and `test` - [MultiOFF](https://github.com/bharathichezhiyan/Multimodal-Meme-Classification-Identifying-Offensive-Content-in-Image-and-Text), `Training`, `Validation` and `Testing` It achieves the following results on the evaluation set: - Loss: 3.7600 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.11.0 - Pytorch 1.8.1+cu102 - Datasets 1.8.0 - Tokenizers 0.10.2
lincoln/2021twitchfr-conv-bert-small
9e69c28e74095161070c16485989cb7857bcc93d
2022-01-07T15:25:20.000Z
[ "pytorch", "tf", "tensorboard", "convbert", "feature-extraction", "fr", "transformers", "twitch", "license:mit" ]
feature-extraction
false
lincoln
null
lincoln/2021twitchfr-conv-bert-small
8
null
transformers
13,153
--- language: - fr license: mit pipeline_tag: "feature-extraction" widget: - text: LUL +1 xD La Fronce ! tags: - feature-extraction - convbert - twitch --- ## Modèle de langue sur les données Twitch FR L'expérimentation menée au sein de Lincoln avait pour principal objectif de mettre en œuvre des techniques NLP from scratch sur un corpus de messages issus d’un chat Twitch. Ces derniers sont exprimés en français, mais sur une plateforme internet avec le vocabulaire internet que cela implique (fautes, vocabulaire communautaires, abréviations, anglicisme, emotes, ...). Nos contraintes sont celles d’une entreprise n’ayant pas une volumétrie excessive de données et une puissance infinie de calcul. Il a été nécessaire de construire un nouveau tokenizer afin de mieux correspondre à notre corpus plutôt qu’un tokenizer français existant. Note corpus étant faible en volumétrie par rapport aux données habituelles pour entrainer un modèle BERT, nous avons opté pour l’entrainement d’un modèle dit « small ». Et il a été montré dans la littérature qu’un corpus de quelques giga octets peut donner de bons résultats, c’est pourquoi nous avons continué avec notre corpus. La limite de la puissance de calcul a été contourné à l’aide d’une nouvelle architecture d’apprentissage basée sur un double modèle générateur / discriminateur. Ceci nous a permis d’entrainer un modèle de langue ConvBERT sur nos données, ainsi qu’un modèle de masking en quelques heures sur une carte GPU V100. _Nous garantissons pas la stabilité du modèle sur le long terme. Modèle réalisé dans le cadre d'un POC._ ## Données | Streamer | Nbr de messages | Categories notables en 2021 | | --------------------------------------------- | --------------- | ---------------------------------- | | Ponce | 2 604 935 | Chatting/Mario Kart/FIFA | | Domingo | 1 209 703 | Chatting/talk-shows/FM2O21 | | Mistermv | 1 205 882 | Isaac/Special events/TFT | | Zerator | 900 894 | New World/WOW/Valorant | | Blitzstream | 821 585 | Chess | | Squeezie | 602 148 | Chatting / Minecraft | | Antoinedaniellive | 548 497 | Geoguessr | | Jeanmassietaccropolis/jeanmassiet | 301 387 | Talk-shows/chatting/special events | | Samueletienne | 215 956 | chatting | Sur la période du 12/03/2021 au 22/07/2021. La totalité des messages comptent 9 410 987 messages sur ces neufs streamers. Ces messages sont issus du canal IRC, donc n’ont pas subi de modération Les données d'entrainement sont basé sur le format d'entrainement du modèle ELECTRA. Cela nécessite de formater les données en paragraphe, séparés par phrase. Nous avons choisi de regrouper les messages dans une fenêtre de 60 secondes, faisant office de paragraphe, avec les conditions suivantes : * Longueur supérieure à 170 (ce qui représente en moyenne 50 tokens) afin de ne pas créer des instances ayant pas d’information car majoritairement vide : un padding sera nécessaire et pénalise la vitesse d’apprentissage. * 128 tokens maximums (défaut) Si la longueur maximale est atteinte, une deuxième instance est créée. Au final, la volumétrie d'instance d'entrainement est de 554 974. ## Application Voir github public [lincoln/twitchatds](https://github.com/Lincoln-France/twitchatds) pour les détails d'implémentation et les résultats. ## Remarques * Expérimentation ponctuelle * Les métriques d'entrainement sont disponibles dans l'onglet _Training metrics_ * Pour une meilleure stabilité, les données doivent être plus hétérogènes et volumineuse. Le modèle doit être entrainé + de 24h. ## Usage ```python from transformers import AutoTokenizer, ConvBertModel from transformers import FeatureExtractionPipeline model_name = 'lincoln/2021twitchfr-conv-bert-small' loaded_tokenizer = AutoTokenizer.from_pretrained(model_name) loaded_model = ConvBertModel.from_pretrained(model_name) nlp = FeatureExtractionPipeline(model=loaded_model, tokenizer=loaded_tokenizer) nlp("<3 <3 les modos") ``` ## Modèles: * [2021twitchfr-conv-bert-small](https://huggingface.co/lincoln/2021twitchfr-conv-bert-small) * [2021twitchfr-conv-bert-small-mlm](https://huggingface.co/lincoln/2021twitchfr-conv-bert-small-mlm) * [2021twitchfr-conv-bert-small-mlm-simcse](https://huggingface.co/lincoln/2021twitchfr-conv-bert-small-mlm-simcse)
loubau/WoBERT
ba95e26c14c80c35dae6a4f20eb35045fd9ac4ef
2021-10-13T09:48:46.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
loubau
null
loubau/WoBERT
8
null
transformers
13,154
Entry not found
madlag/bert-base-uncased-squad1.1-block-sparse-0.07-v1
885d026e7d5b098c4b477cb7923a0c484c37a8cf
2021-05-19T22:31:59.000Z
[ "pytorch", "tf", "bert", "question-answering", "en", "dataset:squad", "arxiv:2005.07683", "transformers", "bert-base", "license:mit", "autotrain_compatible" ]
question-answering
false
madlag
null
madlag/bert-base-uncased-squad1.1-block-sparse-0.07-v1
8
null
transformers
13,155
--- language: en thumbnail: license: mit tags: - question-answering - bert - bert-base datasets: - squad metrics: - squad widget: - text: "Where is the Eiffel Tower located?" context: "The Eiffel Tower is a wrought-iron lattice tower on the Champ de Mars in Paris, France. It is named after the engineer Gustave Eiffel, whose company designed and built the tower." - text: "Who is Frederic Chopin?" context: "Frédéric François Chopin, born Fryderyk Franciszek Chopin (1 March 1810 – 17 October 1849), was a Polish composer and virtuoso pianist of the Romantic era who wrote primarily for solo piano." --- ## BERT-base uncased model fine-tuned on SQuAD v1 This model is block sparse: the **linear** layers contains **7.5%** of the original weights. The model contains **28.2%** of the original weights **overall**. The training use a modified version of Victor Sanh [Movement Pruning](https://arxiv.org/abs/2005.07683) method. That means that with the [block-sparse](https://github.com/huggingface/pytorch_block_sparse) runtime it ran **1.92x** faster than an dense networks on the evaluation, at the price of some impact on the accuracy (see below). This model was fine-tuned from the HuggingFace [BERT](https://www.aclweb.org/anthology/N19-1423/) base uncased checkpoint on [SQuAD1.1](https://rajpurkar.github.io/SQuAD-explorer), and distilled from the equivalent model [csarron/bert-base-uncased-squad-v1](https://huggingface.co/csarron/bert-base-uncased-squad-v1). This model is case-insensitive: it does not make a difference between english and English. ## Pruning details A side-effect of the block pruning is that some of the attention heads are completely removed: 106 heads were removed on a total of 144 (73.6%). Here is a detailed view on how the remaining heads are distributed in the network after pruning. ![Pruning details](https://huggingface.co/madlag/bert-base-uncased-squad1.1-block-sparse-0.07-v1/raw/main/model_card/pruning.svg) ## Density plot <script src="/madlag/bert-base-uncased-squad1.1-block-sparse-0.07-v1/raw/main/model_card/density.js" id="9301e950-59b1-497b-a2c5-25c24e07b3a0"></script> ## Details | Dataset | Split | # samples | | -------- | ----- | --------- | | SQuAD1.1 | train | 90.6K | | SQuAD1.1 | eval | 11.1k | ### Fine-tuning - Python: `3.8.5` - Machine specs: ```CPU: Intel(R) Core(TM) i7-6700K CPU Memory: 64 GiB GPUs: 1 GeForce GTX 3090, with 24GiB memory GPU driver: 455.23.05, CUDA: 11.1 ``` ### Results **Pytorch model file size**: `335M` (original BERT: `438M`) | Metric | # Value | # Original ([Table 2](https://www.aclweb.org/anthology/N19-1423.pdf))| | ------ | --------- | --------- | | **EM** | **71.88** | **80.8** | | **F1** | **81.36** | **88.5** | ## Example Usage ```python from transformers import pipeline qa_pipeline = pipeline( "question-answering", model="madlag/bert-base-uncased-squad1.1-block-sparse-0.07-v1", tokenizer="madlag/bert-base-uncased-squad1.1-block-sparse-0.07-v1" ) predictions = qa_pipeline({ 'context': "Frédéric François Chopin, born Fryderyk Franciszek Chopin (1 March 1810 – 17 October 1849), was a Polish composer and virtuoso pianist of the Romantic era who wrote primarily for solo piano.", 'question': "Who is Frederic Chopin?", }) print(predictions) ```
marcosscarpim/t5-small-finetuned-en-to-ro
25244166aaaa6810da8df20f91b860e22e44b019
2021-12-03T11:44:04.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:wmt16", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
marcosscarpim
null
marcosscarpim/t5-small-finetuned-en-to-ro
8
null
transformers
13,156
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wmt16 metrics: - bleu model-index: - name: t5-small-finetuned-en-to-ro results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: wmt16 type: wmt16 args: ro-en metrics: - name: Bleu type: bleu value: 7.3228 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-en-to-ro This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wmt16 dataset. It achieves the following results on the evaluation set: - Loss: 1.4088 - Bleu: 7.3228 - Gen Len: 18.2581 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 0.4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:-------:| | 0.5959 | 0.4 | 30516 | 1.4088 | 7.3228 | 18.2581 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
masoudmzb/wav2vec2-xlsr-multilingual-53-fa
4129748ad6295d2f73c155a5d0509a46f5e42f28
2021-12-10T07:10:05.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "arxiv:2006.13979", "transformers" ]
automatic-speech-recognition
false
masoudmzb
null
masoudmzb/wav2vec2-xlsr-multilingual-53-fa
8
3
transformers
13,157
# wav2vec 2.0 multilingual ( Finetued ) The base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition. Check out [this blog](https://huggingface.co/blog/fine-tune-wav2vec2-english) for more information. [Paper](https://arxiv.org/abs/2006.13979) Authors: Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli **Abstract** This paper presents XLSR which learns cross-lingual speech representations by pretraining a single model from the raw waveform of speech in multiple languages. We build on wav2vec 2.0 which is trained by solving a contrastive task over masked latent speech representations and jointly learns a quantization of the latents shared across languages. The resulting model is fine-tuned on labeled data and experiments show that cross-lingual pretraining significantly outperforms monolingual pretraining. On the CommonVoice benchmark, XLSR shows a relative phoneme error rate reduction of 72% compared to the best known results. On BABEL, our approach improves word error rate by 16% relative compared to a comparable system. Our approach enables a single multilingual speech recognition model which is competitive to strong individual models. Analysis shows that the latent discrete speech representations are shared across languages with increased sharing for related languages. We hope to catalyze research in low-resource speech understanding by releasing XLSR-53, a large model pretrained in 53 languages. The original model can be found under https://github.com/pytorch/fairseq/tree/master/examples/wav2vec#wav2vec-20. Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Persian (Farsi) using [Common Voice](https://huggingface.co/datasets/common_voice) plus Our own created Dataset(1/3 of total dataset). When using this model, make sure that your speech input is sampled at 16kHz. ## Evaluation: 🌡️ We have evaluated the model on private dataset with different type of audios (unfortunately the dataset for testing and validation is not publicly available but to see a sample of the dataset [check this link)](https://github.com/shenasa-ai/speech2text#part-of-our-dataset-v01--) : | Name | test dataset (wer) | | :----------------------------------------------------------: | :-----------------: | | [m3hrdadfi/wav2vec2-large-xlsr-persian-v3](https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-persian-v3) | 0.56754 | | [This New Model](https://huggingface.co/masoudmzb/wav2vec2-xlsr-multilingual-53-fa) | **0.40815** | | Base Multilingual Model | 0.69746 | - This Table show if we add more data we will have much better result ## How to use❓ ### Use FineTuned Model This model is finetuned on [m3hrdadfi/wav2vec2-large-xlsr-persian-v3](https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-persian-v3) , so the process for train or evaluation is same > ```bash > # requirement packages > !pip install git+https://github.com/huggingface/datasets.git > !pip install git+https://github.com/huggingface/transformers.git > !pip install torchaudio > !pip install librosa > !pip install jiwer > !pip install parsivar > !pip install num2fawords > ``` **Normalizer** ```bash # Normalizer !wget -O normalizer.py https://huggingface.co/m3hrdadfi/"wav2vec2-large-xlsr-persian-v3/raw/main/dictionary.py !wget -O normalizer.py https://huggingface.co/m3hrdadfi/"wav2vec2-large-xlsr-persian-v3/raw/main/normalizer.py ``` If you are not sure your transcriptions are clean or not (having weird characters or any other alphabete chars ) use this code provided by [m3hrdadfi/wav2vec2-large-xlsr-persian-v3](https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-persian-v3) **Cleaning** (Fill the data part with your own data dir) ```python from normalizer import normalizer def cleaning(text): if not isinstance(text, str): return None return normalizer({"sentence": text}, return_dict=False) # edit these parts with your own data directory data_dir = "data" test = pd.read_csv(f"{data_dir}/yourtest.tsv", sep=" ") test["path"] = data_dir + "/clips/" + test["path"] print(f"Step 0: {len(test)}") test["status"] = test["path"].apply(lambda path: True if os.path.exists(path) else None) test = test.dropna(subset=["path"]) test = test.drop("status", 1) print(f"Step 1: {len(test)}") test["sentence"] = test["sentence"].apply(lambda t: cleaning(t)) test = test.dropna(subset=["sentence"]) print(f"Step 2: {len(test)}") test = test.reset_index(drop=True) print(test.head()) test = test[["path", "sentence"]] test.to_csv("/content/test.csv", sep=" ", encoding="utf-8", index=False) ``` **Prediction** ```python import numpy as np import pandas as pd import librosa import torch import torchaudio from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor from datasets import load_dataset, load_metric import IPython.display as ipd model_name_or_path = "masoudmzb/wav2vec2-xlsr-multilingual-53-fa" device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(model_name_or_path, device) processor = Wav2Vec2Processor.from_pretrained(model_name_or_path) model = Wav2Vec2ForCTC.from_pretrained(model_name_or_path).to(device) def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) speech_array = speech_array.squeeze().numpy() speech_array = librosa.resample(np.asarray(speech_array), sampling_rate, processor.feature_extractor.sampling_rate) batch["speech"] = speech_array return batch def predict(batch): features = processor( batch["speech"], sampling_rate=processor.feature_extractor.sampling_rate, return_tensors="pt", padding=True ) input_values = features.input_values.to(device) attention_mask = features.attention_mask.to(device) with torch.no_grad(): logits = model(input_values, attention_mask=attention_mask).logits pred_ids = torch.argmax(logits, dim=-1) batch["predicted"] = processor.batch_decode(pred_ids) return batch # edit these parts with your own data directory dataset = load_dataset("csv", data_files={"test": "/path_to/your_test.csv"}, delimiter=" ")["test"] dataset = dataset.map(speech_file_to_array_fn) result = dataset.map(predict, batched=True, batch_size=4) ``` **WER Score** ```python wer = load_metric("wer") print("WER: {:.2f}".format(100 * wer.compute(predictions=result["predicted"], references=result["sentence"]))) ``` **Output** ```python max_items = np.random.randint(0, len(result), 20).tolist() for i in max_items: reference, predicted = result["sentence"][i], result["predicted"][i] print("reference:", reference) print("predicted:", predicted) print('---') ``` ## training details: 🔭 One model was trained on Persian Mozilla dataset before So we Decided to continue from that one. Model is warm started from `mehrdadfa`’s [checkpoint](https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-persian-v3) - For more details, you can take a look at config.json at the model card in 🤗 Model Hub - The model trained 84000 steps, equal to 12.42 Epochs. - The base model to finetune was https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-persian-v3/tree/main ## Fine Tuning Recommendations: 🐤 For fine tuning you can check the link below. but be aware some Tips. you may need gradient_accumulation because you need more batch size. the are many hyperparameters make sure you set them properly : - learning_rate - attention_dropout - hidden_dropout - feat_proj_dropout - mask_time_prob - layer_drop ### Fine Tuning Examples 👷‍♂️👷‍♀️ | Dataset | Fine Tuning Example | | ------------------------------------------------ | ------------------------------------------------------------ | | Fine Tune on Mozilla Turkish Dataset | <a href="https://colab.research.google.com/github/patrickvonplaten/notebooks/blob/master/Fine_Tune_XLSR_Wav2Vec2_on_Turkish_ASR_with_%F0%9F%A4%97_Transformers.ipynb"><img src="https://img.shields.io/static/v1?label=Colab&message=Fine-tuning Example&logo=Google%20Colab&color=f9ab00"></a> | | Sample Code for Other Dataset And other Language | [github_link](https://github.com/m3hrdadfi/notebooks/) | ## Contact us: 🤝 If you have a technical question regarding the model, pretraining, code or publication, please create an issue in the repository. This is the fastest way to reach us. ## Citation: ↩️ we didn't publish any papers on the work. However, if you did, please cite us properly with an entry like one below. ```bibtex @misc{wav2vec2-xlsr-multilingual-53-fa, author = {Paparnchi, Seyyed Mohammad Masoud}, title = {wav2vec2-xlsr-multilingual-53-fa}, year = 2021, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\url{https://github.com/Hamtech-ai/wav2vec2-fa}}, } ```
maximedb/paws-x-all
d232fd88b66349e36140f094be42f7cc925fbcf9
2021-10-20T14:53:56.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "text-classification", "transformers" ]
text-classification
false
maximedb
null
maximedb/paws-x-all
8
null
transformers
13,158
Entry not found
megantosh/flair-arabic-MSA-aqmar
1deaf350c222912700cfdaf7779972f0e33f0653
2022-03-09T22:13:31.000Z
[ "pytorch", "ar", "dataset:AQMAR", "dataset:ANERcorp", "flair", "Text Classification", "token-classification", "sequence-tagger-model", "license:apache-2.0" ]
token-classification
false
megantosh
null
megantosh/flair-arabic-MSA-aqmar
8
null
flair
13,159
--- language: ar license: apache-2.0 datasets: - AQMAR - ANERcorp thumbnail: https://www.informatik.hu-berlin.de/en/forschung-en/gebiete/ml-en/resolveuid/a6f82e0d7fa446a59c902cac4cafa9cb/@@images/image/preview tags: - flair - Text Classification - token-classification - sequence-tagger-model metrics: - f1 widget: - text: "اختارها خيري بشارة كممثلة، دون سابقة معرفة أو تجربة تمثيلية، لتقف بجانب فاتن حمامة في فيلم «يوم مر ويوم حلو» (1988) وهي ما زالت شابة لم تتخطَ عامها الثاني" --- # Arabic NER Model for AQMAR dataset Training was conducted over 86 epochs, using a linear decaying learning rate of 2e-05, starting from 0.3 and a batch size of 48 with fastText and Flair forward and backward embeddings. ## Original Dataset: - [AQMAR](http://www.cs.cmu.edu/~ark/ArabicNER/) ## Results: - F1-score (micro) 0.9323 - F1-score (macro) 0.9272 | | True Posititves | False Positives | False Negatives | Precision | Recall | class-F1 | |------|-----|----|----|---------|--------|----------| | LOC | 164 | 7 | 13 | 0.9591 | 0.9266 | 0.9425 | | MISC | 398 | 22 | 37 | 0.9476 | 0.9149 | 0.9310 | | ORG | 65 | 6 | 9 | 0.9155 | 0.8784 | 0.8966 | | PER | 199 | 13 | 13 | 0.9387 | 0.9387 | 0.9387 | --- # Usage ```python from flair.data import Sentence from flair.models import SequenceTagger import pyarabic.araby as araby from icecream import ic arTagger = SequenceTagger.load('megantosh/flair-arabic-MSA-aqmar') sentence = Sentence('George Washington went to Washington .') arSentence = Sentence('عمرو عادلي أستاذ للاقتصاد السياسي المساعد في الجامعة الأمريكية بالقاهرة .') # predict NER tags tagger.predict(sentence) arTagger.predict(arSentence) # print sentence with predicted tags ic(sentence.to_tagged_string) ic(arSentence.to_tagged_string) ``` # Example see an example from a [similar NER model in Flair](https://huggingface.co/megantosh/flair-arabic-multi-ner) # Model Configuration ```python (embeddings): StackedEmbeddings( (list_embedding_0): WordEmbeddings('ar') (list_embedding_1): FlairEmbeddings( (lm): LanguageModel( (drop): Dropout(p=0.1, inplace=False) (encoder): Embedding(7125, 100) (rnn): LSTM(100, 2048) (decoder): Linear(in_features=2048, out_features=7125, bias=True) ) ) (list_embedding_2): FlairEmbeddings( (lm): LanguageModel( (drop): Dropout(p=0.1, inplace=False) (encoder): Embedding(7125, 100) (rnn): LSTM(100, 2048) (decoder): Linear(in_features=2048, out_features=7125, bias=True) ) ) ) (word_dropout): WordDropout(p=0.05) (locked_dropout): LockedDropout(p=0.5) (embedding2nn): Linear(in_features=4396, out_features=4396, bias=True) (rnn): LSTM(4396, 256, batch_first=True, bidirectional=True) (linear): Linear(in_features=512, out_features=14, bias=True) (beta): 1.0 (weights): None (weight_tensor) None )" 2021-03-31 22:19:50,654 ---------------------------------------------------------------------------------------------------- 2021-03-31 22:19:50,654 Corpus: "Corpus: 3025 train + 336 dev + 373 test sentences" 2021-03-31 22:19:50,654 ---------------------------------------------------------------------------------------------------- 2021-03-31 22:19:50,654 Parameters: 2021-03-31 22:19:50,654 - learning_rate: "0.3" 2021-03-31 22:19:50,654 - mini_batch_size: "48" 2021-03-31 22:19:50,654 - patience: "3" 2021-03-31 22:19:50,654 - anneal_factor: "0.5" 2021-03-31 22:19:50,654 - max_epochs: "150" 2021-03-31 22:19:50,654 - shuffle: "True" 2021-03-31 22:19:50,654 - train_with_dev: "False" 2021-03-31 22:19:50,654 - batch_growth_annealing: "False" 2021-03-31 22:19:50,655 ------------------------------------ ``` Due to the right-to-left in left-to-right context, some formatting errors might occur. and your code might appear like [this](https://ibb.co/ky20Lnq), (link accessed on 2020-10-27) # Citation *if you use this model, please consider citing [this work](https://www.researchgate.net/publication/358956953_Sequence_Labeling_Architectures_in_Diglossia_-_a_case_study_of_Arabic_and_its_dialects):* ```latex @unpublished{MMHU21 author = "M. Megahed", title = "Sequence Labeling Architectures in Diglossia", year = {2021}, doi = "10.13140/RG.2.2.34961.10084" url = {https://www.researchgate.net/publication/358956953_Sequence_Labeling_Architectures_in_Diglossia_-_a_case_study_of_Arabic_and_its_dialects} } ```
megantosh/flair-arabic-dialects-codeswitch-egy-lev
f790d3589a242f91b0c78eeb9e8dfdf42a9b12b6
2022-03-09T22:12:57.000Z
[ "pytorch", "ar", "en", "dataset:4Dialects", "dataset:MADAR", "dataset:CSCS", "flair", "token-classification", "sequence-tagger-model", "Dialectal Arabic", "Code-Switching", "Code-Mixing", "license:apache-2.0" ]
token-classification
false
megantosh
null
megantosh/flair-arabic-dialects-codeswitch-egy-lev
8
null
flair
13,160
--- language: - ar - en license: apache-2.0 datasets: - 4Dialects - MADAR - CSCS thumbnail: https://www.informatik.hu-berlin.de/en/forschung-en/gebiete/ml-en/resolveuid/a6f82e0d7fa446a59c902cac4cafa9cb/@@images/image/preview tags: - flair - token-classification - sequence-tagger-model - Dialectal Arabic - Code-Switching - Code-Mixing metrics: - f1 widget: - text: "طلعوا جماعة الممانعة بالسياسة ما بيعرفوا ولا بالصحة بيعرفوا ولا حتى بالدين" - text: "أعلم أن هذا يبدو غير عادل ، لكن لا يمكن أن يكون هناك ظلم" - text: "أنا عارف أن الموضوع ده شكله مش عادل ، بس لا يمكن أن يكون فيه ظلم" --- # Arabic Flair + fastText Part-of-Speech tagging Model (Egyptian and Levant) Pretrained Part-of-Speech tagging model built on a joint corpus written in Egyptian and Levantine (Jordanian, Lebanese, Palestinian, Syrian) dialects with code-switching of Egyptian Arabic and English. The model is trained using [Flair](https://aclanthology.org/C18-1139/) (forward+backward)and [fastText](https://fasttext.cc) embeddings. # Pretraining Corpora: This sequence labeling model was pretrained on three corpora jointly: 1. [4 Dialects](https://huggingface.co/datasets/viewer/?dataset=arabic_pos_dialect) A Dialectal Arabic Datasets containing four dialects of Arabic, Egyptian (EGY), Levantine (LEV), Gulf (GLF), and Maghrebi (MGR). Each dataset consists of a set of 350 manually segmented and PoS tagged tweets. 2. [UD South Levantine Arabic MADAR](https://universaldependencies.org/treebanks/ajp_madar/index.html) A Dataset with 100 manually-annotated sentences taken from the [MADAR](https://camel.abudhabi.nyu.edu/madar/) (Multi-Arabic Dialect Applications and Resources) project by [Shorouq Zahra](mailto:[email protected]). 3. Parts of the Cairo Students Code-Switch (CSCS) corpus developed for ["Collection and Analysis of Code-switch Egyptian Arabic-English Speech Corpus"](https://aclanthology.org/L18-1601.pdf) by Hamed et al. # Usage ```python from flair.data import Sentence from flair.models import SequenceTagger tagger = SequenceTagger.load("megantosh/flair-arabic-dialects-codeswitch-egy-lev") sentence = Sentence('عمرو عادلي أستاذ للاقتصاد السياسي المساعد في الجامعة الأمريكية بالقاهرة .') tagger.predict(sentence) for entity in sentence.get_spans('pos'): print(entity) ``` Due to the right-to-left in left-to-right context, some formatting errors might occur. and your code might appear like [this](https://ibb.co/ky20Lnq), (link accessed on 2020-10-27) <!--# Example # Tagset--> # Scores & Tagset <details> | |precision | recall | f1-score | support| |--|-----------|------|-------------|--------------| |INTJ | 0.8182 | 0.9000 |0.8571 | 10| |OUN | 0.9009 | 0.9402 |0.9201 | 435| |NUM | 0.9524 | 0.8333 | 0.8889 | 24| |ADJ |0.8762 | 0.7603 | 0.8142 | 121| |ADP |0.9903 |0.9623 | 0.9761 |106| | CCONJ | 0.9600 | 0.9730 | 0.9664 | 74| |PROPN | 0.9333 | 0.9333 | 0.9333 | 15| | ADV | 0.9135 | 0.8051 | 0.8559 | 118| |VERB | 0.8852 | 0.9231 | 0.9038 | 117| |PRON | 0.9620 | 0.9465 | 0.9542 | 187| |SCONJ | 0.8571 | 0.9474 | 0.9000 | 19| |PART | 0.9350 | 0.9791 | 0.9565 | 191| | DET | 0.9348 | 0.9149 | 0.9247 | 47| |PUNCT | 1.0000 | 1.0000 | 1.0000 | 35| | AUX | 0.9286 | 0.9811 | 0.9541 | 53| |MENTION | 0.9231 | 1.0000 | 0.9600 | 12| | V | 0.8571 | 0.8780 | 0.8675 | 82| | FUT-PART+V+PREP+PRON |1.0000 | 0.0000 | 0.0000 | 1| | PROG-PART+V+PRON+PREP+PRON | 0.0000 | 1.0000 | 0.0000 | 0| |ADJ+NSUFF | 0.6111 | 0.8462 | 0.7097 | 26| |NOUN+NSUFF | 0.8182 | 0.8438 | 0.8308 | 64| |PREP+PRON | 0.9565 | 0.9565 | 0.9565 | 23| | PUNC | 0.9941 | 1.0000 | 0.9971 | 169| | EOS |1.0000 | 1.0000 | 1.0000 | 70| | NOUN+PRON | 0.6986 | 0.8500 | 0.7669 | 60| | V+PRON | 0.7258 | 0.8036 | 0.7627 | 56| | PART+PRON | 1.0000 | 0.9474 | 0.9730 | 19| | PROG-PART+V | 0.8333 | 0.9302 | 0.8791 | 43| | DET+NOUN | 0.9625 | 1.0000 | 0.9809 | 77| | NOUN+NSUFF+PRON | 0.9091 | 0.7143 | 0.8000 | 14| | PROG-PART+V+PRON | 0.7083 | 0.9444 | 0.8095 | 18| | PREP+NOUN+NSUFF | 0.6667 | 0.4000 | 0.5000 5| | NOUN+NSUFF+NSUFF | 1.0000 | 0.0000 | 0.0000 | 3| | CONJ | 0.9722 | 1.0000 | 0.9859 | 35| | V+PRON+PRON | 0.6364 | 0.5833 | 0.6087 | 12| | FOREIGN | 0.6667 | 0.6667 | 0.6667 | 3| | PREP+NOUN | 0.6316 | 0.7500 | 0.6857 | 16| | DET+NOUN+NSUFF | 0.9000 | 0.9310 | 0.9153 | 29| | DET+ADJ+NSUFF | 1.0000 | 0.5714 | 0.7273 | 7| | CONJ+PRON | 1.0000 | 0.8750 | 0.9333 | 8| | NOUN+CASE | 0.0000 | 0.0000 | 0.0000 | 2| | DET+ADJ | 1.0000 | 0.6667 | 0.8000 | 6| | PREP | 1.0000 | 0.9718 | 0.9857 | 71| | CONJ+FUT-PART+V | 0.0000 | 0.0000 | 0.0000 | 1| | CONJ+V | 0.6667 | 0.7500 | 0.7059 | 8| | FUT-PART | 1.0000 | 1.0000 | 1.0000 | 2| | ADJ+PRON | 1.0000 | 0.0000 | 0.0000 | 8| | CONJ+PREP+NOUN+PRON | 1.0000 | 0.0000 | 0.0000 | 1| | CONJ+NOUN+PRON | 0.3750 | 1.0000 | 0.5455 | 3| | PART+ADJ | 1.0000 | 0.0000 | 0.0000 | 1| | PART+NOUN | 0.5000 | 1.0000 | 0.6667 | 1| | CONJ+PREP+NOUN | 1.0000 | 0.0000 | 0.0000 | 1| | CONJ+NOUN | 0.7000 | 0.7778 | 0.7368 | 9| | URL | 1.0000 | 1.0000 | 1.0000 | 3| | CONJ+FUT-PART | 1.0000 | 0.0000 | 0.0000 | 1| | FUT-PART+V | 0.8571 | 0.6000 | 0.7059 | 10| | PREP+NOUN+NSUFF+NSUFF | 1.0000 | 0.0000 | 0.0000 | 1| | HASH | 1.0000 | 0.9412 | 0.9697 | 17| | ADJ+PREP+PRON | 1.0000 | 0.0000 | 0.0000 | 3| | PREP+NOUN+PRON | 0.0000 | 0.0000 | 0.0000 | 1| | EMOT | 1.0000 | 0.8889 | 0.9412 | 18| | CONJ+PREP | 1.0000 | 0.7500 | 0.8571 | 4| | PREP+DET+NOUN+NSUFF | 1.0000 | 0.7500 | 0.8571 | 4| | PRON+DET+NOUN+NSUFF | 0.0000 | 1.0000 | 0.0000 | 0| | V+PREP+PRON | 1.0000 | 0.0000 | 0.0000 | 5| | V+PRON+PREP+PRON | 0.0000 | 1.0000 | 0.0000 | 0| | CONJ+NOUN+NSUFF | 0.5000 | 0.5000 | 0.5000 | 2| | V+NEG-PART | 1.0000 | 0.0000 | 0.0000 | 2| | PREP+DET+NOUN | 0.9091 | 1.0000 | 0.9524 | 10| | PREP+V | 1.0000 | 0.0000 | 0.0000 | 2| | CONJ+PART | 1.0000 | 0.7778 | 0.8750 | 9| | CONJ+V+PRON | 1.0000 | 1.0000 | 1.0000 | 5| | PROG-PART+V+PREP+PRON | 1.0000 | 0.5000 | 0.6667 | 2| | PREP+NOUN+NSUFF+PRON | 1.0000 | 1.0000 | 1.0000 | 1| | ADJ+CASE | 1.0000 | 0.0000 | 0.0000 | 1| | PART+NOUN+PRON | 1.0000 | 1.0000 | 1.0000 | 1| | PART+V | 1.0000 | 0.0000 | 0.0000 | 3| | PART+V+PRON | 0.0000 | 1.0000 | 0.0000 | 0| | FUT-PART+V+PRON | 0.0000 | 1.0000 | 0.0000 | 0| |FUT-PART+V+PRON+PRON | 1.0000 | 0.0000 | 0.0000 | 1| | CONJ+PREP+PRON | 1.0000 | 0.0000 | 0.0000 | 1| |CONJ+V+PRON+PREP+PRON | 1.0000 | 0.0000 | 0.0000 | 1| | CONJ+V+PREP+PRON | 0.0000 | 1.0000 | 0.0000 | 0| |CONJ+DET+NOUN+NSUFF | 1.0000 | 0.0000 | 0.0000 | 1| | CONJ+DET+NOUN | 0.6667 | 1.0000 | 0.8000 | 2| | CONJ+PREP+DET+NOUN | 1.0000 | 1.0000 | 1.0000 | 1| | PREP+PART | 1.0000 | 0.0000 | 0.0000 | 2| | PART+V+PRON+NEG-PART | 0.3333 | 0.3333 | 0.3333 | 3| | PART+V+NEG-PART | 0.3333 | 0.5000 | 0.4000 | 2| | PART+PREP+NEG-PART | 1.0000 | 1.0000 | 1.0000 | 3| | PART+PROG-PART+V+NEG-PART | 1.0000 | 0.3333 | 0.5000 | 3| | PREP+DET+NOUN+NSUFF+PREP+PRON | 1.0000 | 0.0000 | 0.0000 | 1| | PREP+PRON+DET+NOUN | 0.0000 | 1.0000 | 0.0000 | 0| | PART+NSUFF | 1.0000 | 0.0000 | 0.0000 | 1| | CONJ+PROG-PART+V+PRON | 1.0000 | 1.0000 | 1.0000 | 1| | PART+PREP+PRON | 1.0000 | 0.0000 | 0.0000 | 1| | CONJ+PART+PREP | 1.0000 | 0.0000 | 0.0000 | 1| | NUM+NSUFF | 0.6667 | 0.6667 | 0.6667 | 3| | CONJ+PART+V+PRON+NEG-PART | 1.0000 | 1.0000 | 1.0000 | 1| | PART+NOUN+NEG-PART | 1.0000 | 1.0000 | 1.0000 | 1| | CONJ+ADJ+NSUFF | 1.0000 | 0.0000 | 0.0000 | 1| | PREP+ADJ | 1.0000 | 0.0000 | 0.0000 | 1| | ADJ+NSUFF+PRON | 1.0000 | 0.0000 | 0.0000 | 2| | CONJ+PROG-PART+V | 1.0000 | 0.0000 | 0.0000 | 1| | CONJ+PART+PROG-PART+V+PREP+PRON+NEG-PART | 1.0000 | 0.0000 | 0.0000 | 1| | CONJ+PART+PREP+PRON+NEG-PART | 0.0000 | 1.0000 | 0.0000 | 0| | PREP+PART+PRON | 1.0000 | 0.0000 | 0.0000 | 1| | CONJ+ADV+NSUFF | 1.0000 | 0.0000 |0.0000 | 1| | CONJ+ADV | 0.0000 | 1.0000 | 0.0000 | 0| | PART+NOUN+PRON+NEG-PART | 0.0000 | 1.0000 | 0.0000 | 0| | CONJ+ADJ | 1.0000 | 1.0000 | 1.0000 | 1| </details> - F-score (micro): 0.8974 - F-score (macro): 0.5188 - Accuracy (incl. no class): 0.901 Expand details below to show class scores for each tag. Note that tag compounds (a tag made for multiple agglutinated parts of speech) are considered as separate ones. # Citation *if you use this model, please consider citing [this work](https://www.researchgate.net/publication/358956953_Sequence_Labeling_Architectures_in_Diglossia_-_a_case_study_of_Arabic_and_its_dialects):* ```latex @unpublished{MMHU21 author = "M. Megahed", title = "Sequence Labeling Architectures in Diglossia", year = {2021}, doi = "10.13140/RG.2.2.34961.10084" url = {https://www.researchgate.net/publication/358956953_Sequence_Labeling_Architectures_in_Diglossia_-_a_case_study_of_Arabic_and_its_dialects} } ```
michaelrglass/albert-base-rci-wtq-row
f20f5d3ad1ae952f2be687eb67cb9a4563ed1990
2021-06-16T16:05:15.000Z
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
false
michaelrglass
null
michaelrglass/albert-base-rci-wtq-row
8
null
transformers
13,161
Entry not found
miguelvictor/python-fromzero-reformerlm
d8e8b51fdf06e74b719287314104902643b4fd95
2021-04-29T05:19:10.000Z
[ "pytorch", "tensorboard", "reformer", "text-generation", "transformers" ]
text-generation
false
miguelvictor
null
miguelvictor/python-fromzero-reformerlm
8
null
transformers
13,162
Entry not found
miguelvictor/python-t5-base
616b22d8a22a56d05deff2df807e444039d9edc4
2021-04-29T04:19:26.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
miguelvictor
null
miguelvictor/python-t5-base
8
null
transformers
13,163
Entry not found
milyiyo/electra-base-gen-finetuned-amazon-review
230ecaa4df4858fe5f557e06254f0468e7435fec
2022-01-18T21:21:53.000Z
[ "pytorch", "tensorboard", "electra", "text-classification", "dataset:amazon_reviews_multi", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
milyiyo
null
milyiyo/electra-base-gen-finetuned-amazon-review
8
null
transformers
13,164
--- tags: - generated_from_trainer datasets: - amazon_reviews_multi metrics: - accuracy - f1 - precision - recall model-index: - name: electra-base-gen-finetuned-amazon-review results: - task: name: Text Classification type: text-classification dataset: name: amazon_reviews_multi type: amazon_reviews_multi args: es metrics: - name: Accuracy type: accuracy value: 0.5024 - name: F1 type: f1 value: 0.5063190059782597 - name: Precision type: precision value: 0.5121183330982292 - name: Recall type: recall value: 0.5024 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # electra-base-gen-finetuned-amazon-review This model is a fine-tuned version of [mrm8488/electricidad-base-generator](https://huggingface.co/mrm8488/electricidad-base-generator) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 1.8030 - Accuracy: 0.5024 - F1: 0.5063 - Precision: 0.5121 - Recall: 0.5024 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Accuracy | F1 | Validation Loss | Precision | Recall | |:-------------:|:-----:|:----:|:--------:|:------:|:---------------:|:---------:|:------:| | 0.5135 | 1.0 | 1000 | 0.4886 | 0.4929 | 1.6580 | 0.5077 | 0.4886 | | 0.4138 | 2.0 | 2000 | 0.5044 | 0.5093 | 1.7951 | 0.5183 | 0.5044 | | 0.4244 | 3.0 | 3000 | 0.5022 | 0.5068 | 1.8108 | 0.5141 | 0.5022 | | 0.4231 | 6.0 | 6000 | 1.7636 | 0.4972 | 0.5018 | 0.5092 | 0.4972 | | 0.3574 | 7.0 | 7000 | 1.8030 | 0.5024 | 0.5063 | 0.5121 | 0.5024 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
milyiyo/electra-small-finetuned-amazon-review
f2346ba0b85fe71b7461375cf3e029f4841546ed
2022-01-18T17:47:17.000Z
[ "pytorch", "tensorboard", "electra", "text-classification", "dataset:amazon_reviews_multi", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
milyiyo
null
milyiyo/electra-small-finetuned-amazon-review
8
null
transformers
13,165
--- license: apache-2.0 tags: - generated_from_trainer datasets: - amazon_reviews_multi metrics: - accuracy - f1 - precision - recall model-index: - name: electra-small-finetuned-amazon-review results: - task: name: Text Classification type: text-classification dataset: name: amazon_reviews_multi type: amazon_reviews_multi args: en metrics: - name: Accuracy type: accuracy value: 0.5504 - name: F1 type: f1 value: 0.5457527808330634 - name: Precision type: precision value: 0.5428695841337288 - name: Recall type: recall value: 0.5504 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # electra-small-finetuned-amazon-review This model is a fine-tuned version of [google/electra-small-discriminator](https://huggingface.co/google/electra-small-discriminator) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 1.0560 - Accuracy: 0.5504 - F1: 0.5458 - Precision: 0.5429 - Recall: 0.5504 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 1.2172 | 1.0 | 1000 | 1.1014 | 0.5216 | 0.4902 | 0.4954 | 0.5216 | | 1.0027 | 2.0 | 2000 | 1.0388 | 0.549 | 0.5471 | 0.5494 | 0.549 | | 0.9035 | 3.0 | 3000 | 1.0560 | 0.5504 | 0.5458 | 0.5429 | 0.5504 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
ml6team/gpt2-small-german-finetune-oscar
c228ad2832126c182770a581edcd26d27fab0c08
2021-05-23T09:48:35.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "de", "transformers", "adaption", "recycled", "gpt2-small" ]
text-generation
false
ml6team
null
ml6team/gpt2-small-german-finetune-oscar
8
6
transformers
13,166
--- language: de widget: - text: "es wird entschieden, dass es" tags: - adaption - recycled - gpt2-small pipeline_tag: text-generation --- # German finetuned GPT2
monologg/kocharelectra-small-generator
5be156449a119eb4708a6973efb76e81bfc521dc
2020-05-27T17:38:43.000Z
[ "pytorch", "electra", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
monologg
null
monologg/kocharelectra-small-generator
8
null
transformers
13,167
Entry not found
mrm8488/b2b-en-paraphrasing-no-questions
acbe4dfdf9fb86774fcde04204c4f4db4a4413e1
2021-05-13T18:38:46.000Z
[ "pytorch", "encoder-decoder", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
mrm8488
null
mrm8488/b2b-en-paraphrasing-no-questions
8
null
transformers
13,168
Entry not found
mrm8488/bert-tiny-2-finetuned-squadv2
389f68d2f7b01ec5054cc5307c09fba11dddcbbd
2021-05-20T00:38:57.000Z
[ "pytorch", "jax", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
mrm8488
null
mrm8488/bert-tiny-2-finetuned-squadv2
8
null
transformers
13,169
Entry not found
mrm8488/bert-tiny-wrslb-finetuned-squadv1
e6d959f9c7dd801b5df282c7758317dc588f887a
2021-05-20T00:41:08.000Z
[ "pytorch", "jax", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
mrm8488
null
mrm8488/bert-tiny-wrslb-finetuned-squadv1
8
null
transformers
13,170
Entry not found
mrm8488/convbert-base-spanish
81f731256ed3bf023798730c8d0dd2a8a24999e9
2021-08-13T20:35:31.000Z
[ "pytorch", "tf", "convbert", "feature-extraction", "es", "dataset:large_spanish_corpus", "arxiv:2008.02496", "transformers", "license:mit" ]
feature-extraction
false
mrm8488
null
mrm8488/convbert-base-spanish
8
1
transformers
13,171
--- language: es datasets: - large_spanish_corpus license: mit --- # ConvBERT base pre-trained on large_spanish_corpus The ConvBERT architecture is presented in the ["ConvBERT: Improving BERT with Span-based Dynamic Convolution"](https://arxiv.org/abs/2008.02496) paper. ## Metrics on evaluation set ``` disc_accuracy = 0.9488542 disc_auc = 0.8833056 disc_loss = 0.15933733 disc_precision = 0.79224133 disc_recall = 0.27443287 global_step = 1000000 loss = 9.658503 masked_lm_accuracy = 0.6177698 masked_lm_loss = 1.7050561 sampled_masked_lm_accuracy = 0.5379228 ``` ## Usage ```python from transformers import AutoModel, AutoTokenizer model_name = "mrm8488/convbert-base-spanish" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModel.from_pretrained(model_name) ``` > Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488) with the support of [Narrativa](https://www.narrativa.com/) > Made with <span style="color: #e25555;">&hearts;</span> in Spain
mrm8488/deberta-v3-small-finetuned-qnli
c67df394f2ea34c46f106e9e67c8646ff408e30e
2021-12-06T20:05:43.000Z
[ "pytorch", "tensorboard", "deberta-v2", "text-classification", "en", "dataset:glue", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
mrm8488
null
mrm8488/deberta-v3-small-finetuned-qnli
8
1
transformers
13,172
--- language: - en license: mit tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: deberta-v3-small results: - task: name: Text Classification type: text-classification dataset: name: GLUE QNLI type: glue args: qnli metrics: - name: Accuracy type: accuracy value: 0.9150649826102873 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # DeBERTa-v3-small fine-tuned on QNLI This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the GLUE QNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.2143 - Accuracy: 0.9151 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.2823 | 1.0 | 6547 | 0.2143 | 0.9151 | | 0.1996 | 2.0 | 13094 | 0.2760 | 0.9103 | | 0.1327 | 3.0 | 19641 | 0.3293 | 0.9169 | | 0.0811 | 4.0 | 26188 | 0.4278 | 0.9193 | | 0.05 | 5.0 | 32735 | 0.5110 | 0.9176 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
mrm8488/distilgpt2-finetuned-reddit-tifu
a08e43f6a4adc941d23c6bb40434b9c4c24d863f
2021-05-23T10:22:22.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
mrm8488
null
mrm8488/distilgpt2-finetuned-reddit-tifu
8
null
transformers
13,173
Entry not found
mrm8488/electricidad-small-finetuned-squadv1-es
84228c6be59fd577d0700f145d3a421cd9da331d
2022-02-09T13:29:35.000Z
[ "pytorch", "electra", "question-answering", "es", "transformers", "QA", "SQuAD", "autotrain_compatible" ]
question-answering
false
mrm8488
null
mrm8488/electricidad-small-finetuned-squadv1-es
8
1
transformers
13,174
--- language: es thumbnail: https://imgur.com/uxAvBfh tags: - QA - SQuAD --- # Electricidad small + Spanish SQuAD v1 ⚡❓ [Electricidad-small-discriminator](https://huggingface.co/mrm8488/electricidad-small-discriminator) fine-tuned on [Spanish SQUAD v1.1 dataset](https://github.com/ccasimiro88/TranslateAlignRetrieve/tree/master/SQuAD-es-v1.1) for **Q&A** downstream task. ## Details of the downstream task (Q&A) - Dataset 📚 [SQuAD-es-v1.1](https://github.com/ccasimiro88/TranslateAlignRetrieve/tree/master/SQuAD-es-v1.1) | Dataset split | # Samples | | ------------- | --------- | | Train | 130 K | | Test | 11 K | ## Model training 🏋️‍ The model was trained on a Tesla P100 GPU and 25GB of RAM with the following command: ```bash python /content/transformers/examples/question-answering/run_squad.py \ --model_type electra \ --model_name_or_path 'mrm8488/electricidad-small-discriminator' \ --do_eval \ --do_train \ --do_lower_case \ --train_file '/content/dataset/train-v1.1-es.json' \ --predict_file '/content/dataset/dev-v1.1-es.json' \ --per_gpu_train_batch_size 16 \ --learning_rate 3e-5 \ --num_train_epochs 10 \ --max_seq_length 384 \ --doc_stride 128 \ --output_dir '/content/electricidad-small-finetuned-squadv1-es' \ --overwrite_output_dir \ --save_steps 1000 ``` ## Test set Results 🧾 | Metric | # Value | | ------ | --------- | | **EM** | **46.82** | | **F1** | **64.79** | ```json { 'exact': 46.82119205298013, 'f1': 64.79435260021918, 'total': 10570, 'HasAns_exact': 46.82119205298013, HasAns_f1': 64.79435260021918, 'HasAns_total': 10570, 'best_exact': 46.82119205298013, 'best_exact_thresh': 0.0, 'best_f1': 64.79435260021918, 'best_f1_thresh': 0.0 } ``` ### Model in action 🚀 Fast usage with **pipelines**: ```python from transformers import pipeline qa_pipeline = pipeline( "question-answering", model="mrm8488/electricidad-small-finetuned-squadv1-es", tokenizer="mrm8488/electricidad-small-finetuned-squadv1-es" ) context = "Manuel ha creado una versión del modelo Electra small en español que alcanza una puntuación F1 de 65 en el dataset SQUAD-es y sólo pesa 50 MB" q1 = "Cuál es su marcador F1?" q2 = "¿Cuál es el tamaño del modelo?" q3 = "¿Quién lo ha creado?" q4 = "¿Que es lo que ha hecho Manuel?" questions = [q1, q2, q3, q4] for question in questions: result = qa_pipeline({ 'context': context, 'question': question}) print(result) # Output: {'score': 0.14836778166355025, 'start': 98, 'end': 100, 'answer': '65'} {'score': 0.32219420810758237, 'start': 136, 'end': 140, 'answer': '50 MB'} {'score': 0.9672326951118713, 'start': 0, 'end': 6, 'answer': 'Manuel'} {'score': 0.23552458113848118, 'start': 10, 'end': 53, 'answer': 'creado una versión del modelo Electra small'} ``` > Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488) | [LinkedIn](https://www.linkedin.com/in/manuel-romero-cs/) > Made with <span style="color: #e25555;">&hearts;</span> in Spain
mrm8488/gpt2-imdb-neg
42e3722e4c921a16638afb40ce864c05d5d762fb
2021-05-23T10:27:14.000Z
[ "pytorch", "gpt2", "transformers" ]
null
false
mrm8488
null
mrm8488/gpt2-imdb-neg
8
null
transformers
13,175
# GPT2-IMDB-neg (LM + RL) 🎞😡✍ All credits to [@lvwerra](https://twitter.com/lvwerra) ## What is it? A small GPT2 (`lvwerra/gpt2-imdb`) language model fine-tuned to produce **negative** movie reviews based the [IMDB dataset](https://www.kaggle.com/lakshmi25npathi/imdb-dataset-of-50k-movie-reviews). The model is trained with rewards from a BERT sentiment classifier (`lvwerra/gpt2-imdb`) via **PPO**. ## Why? I wanted to reproduce the experiment [lvwerra/gpt2-imdb-pos](https://huggingface.co/lvwerra/gpt2-imdb-pos) but for generating **negative** movie reviews. ## Training setting The model was trained for `100` optimisation steps with a batch size of `256` which corresponds to `25600` training samples. The full experiment setup (for positive samples) in [trl repo](https://lvwerra.github.io/trl/04-gpt2-sentiment-ppo-training/). ## Examples A few examples of the model response to a query before and after optimisation: | query | response (before) | response (after) | rewards (before) | rewards (after) | |-------|-------------------|------------------|------------------|-----------------| |This movie is a fine | attempt as far as live action is concerned, n...|example of how bad Hollywood in theatrics pla...| 2.118391 | -3.31625| |I have watched 3 episodes |with this guy and he is such a talented actor...| but the show is just plain awful and there ne...| 2.681171| -4.512792| |We know that firefighters and| police officers are forced to become populari...| other chains have going to get this disaster ...| 1.367811| -3.34017| ## Training logs and metrics <img src="https://gblobscdn.gitbook.com/spaces%2F-Lqya5RvLedGEWPhtkjU%2Favatar.png?alt=media" width="25" height="25"> Watch the whole training logs and metrics on [W&B](https://app.wandb.ai/mrm8488/gpt2-sentiment-negative?workspace=user-mrm8488) > Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488) > Made with <span style="color: #e25555;">&hearts;</span> in Spain
mrm8488/mT5-small-finetuned-multi-question-generation
37310c6745348a51c1c4659bef54e0ba18669bf6
2020-11-23T10:13:23.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
mrm8488
null
mrm8488/mT5-small-finetuned-multi-question-generation
8
null
transformers
13,176
Entry not found
mrm8488/mbart-large-finetuned-bible-es-en-translation
daf88adfccccd50b7841fa39209e9795e4e6f95f
2021-01-14T22:32:54.000Z
[ "pytorch", "mbart", "text2text-generation", "es", "en", "dataset:bible_para", "transformers", "translation", "autotrain_compatible" ]
translation
false
mrm8488
null
mrm8488/mbart-large-finetuned-bible-es-en-translation
8
null
transformers
13,177
--- tags: - translation language: - es - en datasets: - bible_para --- ### mbart-large-es-en This is mbart-large-cc25, finetuned on bible_para for Spanish to English translation. It scores BLEU **29.34**
mrm8488/roberta-base-1B-1-finetuned-squadv2
bf00ec8a5abe0936235a1a605dbbaf8563c2ec97
2021-05-20T18:27:20.000Z
[ "pytorch", "jax", "roberta", "question-answering", "en", "transformers", "autotrain_compatible" ]
question-answering
false
mrm8488
null
mrm8488/roberta-base-1B-1-finetuned-squadv2
8
null
transformers
13,178
--- language: en --- # RoBERTa-base (1B-1) + SQuAD v2 ❓ [roberta-base-1B-1](https://huggingface.co/nyu-mll/roberta-base-1B-1) fine-tuned on [SQUAD v2 dataset](https://rajpurkar.github.io/SQuAD-explorer/explore/v2.0/dev/) for **Q&A** downstream task. ## Details of the downstream task (Q&A) - Model 🧠 RoBERTa Pretrained on Smaller Datasets [NYU Machine Learning for Language](https://huggingface.co/nyu-mll) pretrained RoBERTa on smaller datasets (1M, 10M, 100M, 1B tokens). They released 3 models with lowest perplexities for each pretraining data size out of 25 runs (or 10 in the case of 1B tokens). The pretraining data reproduces that of BERT: They combine English Wikipedia and a reproduction of BookCorpus using texts from smashwords in a ratio of approximately 3:1. ## Details of the downstream task (Q&A) - Dataset 📚 **S**tanford **Q**uestion **A**nswering **D**ataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable. **SQuAD2.0** combines the 100,000 questions in SQuAD1.1 with over 50,000 unanswerable questions written adversarially by crowdworkers to look similar to answerable ones. To do well on SQuAD2.0, systems must not only answer questions when possible, but also determine when no answer is supported by the paragraph and abstain from answering. ## Model training 🏋️‍ The model was trained on a Tesla P100 GPU and 25GB of RAM with the following command: ```bash python transformers/examples/question-answering/run_squad.py \ --model_type roberta \ --model_name_or_path 'nyu-mll/roberta-base-1B-1' \ --do_eval \ --do_train \ --do_lower_case \ --train_file /content/dataset/train-v2.0.json \ --predict_file /content/dataset/dev-v2.0.json \ --per_gpu_train_batch_size 16 \ --learning_rate 3e-5 \ --num_train_epochs 10 \ --max_seq_length 384 \ --doc_stride 128 \ --output_dir /content/output \ --overwrite_output_dir \ --save_steps 1000 \ --version_2_with_negative ``` ## Test set Results 🧾 | Metric | # Value | | ------ | --------- | | **EM** | **64.86** | | **F1** | **68.99** | ```json { 'exact': 64.86145034953255, 'f1': 68.9902640378272, 'total': 11873, 'HasAns_exact': 64.03508771929825, 'HasAns_f1': 72.3045554860189, 'HasAns_total': 5928, 'NoAns_exact': 65.68544995794785, 'NoAns_f1': 65.68544995794785, 'NoAns_total': 5945, 'best_exact': 64.86987282068559, 'best_exact_thresh': 0.0, 'best_f1': 68.99868650898054, 'best_f1_thresh': 0.0 } ``` ### Model in action 🚀 Fast usage with **pipelines**: ```python from transformers import pipeline QnA_pipeline = pipeline('question-answering', model='mrm8488/roberta-base-1B-1-finetuned-squadv2') QnA_pipeline({ 'context': 'A new strain of flu that has the potential to become a pandemic has been identified in China by scientists.', 'question': 'What has been discovered by scientists from China ?' }) # Output: {'answer': 'A new strain of flu', 'end': 19, 'score': 0.7145650685380576,'start': 0} ``` > Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488) | [LinkedIn](https://www.linkedin.com/in/manuel-romero-cs/) > Made with <span style="color: #e25555;">&hearts;</span> in Spain
mrm8488/t5-small-spanish-finetuned-squadv1
1dd5c12a8cad2c47d83890c94acf229dda3b43c3
2021-08-17T22:02:49.000Z
[ "pytorch", "t5", "text2text-generation", "es", "dataset:squad_es", "transformers", "autotrain_compatible" ]
text2text-generation
false
mrm8488
null
mrm8488/t5-small-spanish-finetuned-squadv1
8
1
transformers
13,179
--- language: es datasets: - squad_es widget: - text: "pregunta: ¿Cuál es el mayor placer de la vida? contexto: El mayor placer de la vida es dormir" --- # T5 small (Spanish) fine-tuned on SQUAD (ES) for Q&A
mvonwyl/roberta-twitter-spam-classifier
0df769e6624a451b9d5f025b8c4ce0e63cfcd916
2022-02-01T19:34:59.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
mvonwyl
null
mvonwyl/roberta-twitter-spam-classifier
8
null
transformers
13,180
--- tags: - generated_from_trainer model-index: - name: roberta-twitter-spam-classifier results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-twitter-spam-classifier This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base](https://huggingface.co/cardiffnlp/twitter-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3856 - Micro-avg-precision: 0.8723 - Micro-avg-recall: 0.8490 - Micro-avg-f1-score: 0.8594 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Micro-avg-precision | Micro-avg-recall | Micro-avg-f1-score | |:-------------:|:-----:|:-----:|:---------------:|:-------------------:|:----------------:|:------------------:| | 0.4923 | 1.0 | 2762 | 0.5676 | 0.8231 | 0.6494 | 0.6676 | | 0.535 | 2.0 | 5524 | 0.4460 | 0.8065 | 0.8215 | 0.8132 | | 0.5492 | 3.0 | 8286 | 0.6005 | 0.6635 | 0.5843 | 0.3906 | | 0.5947 | 4.0 | 11048 | 0.5710 | 0.7875 | 0.7799 | 0.7835 | | 0.4976 | 5.0 | 13810 | 0.5194 | 0.8375 | 0.7544 | 0.7800 | | 0.5263 | 6.0 | 16572 | 0.5491 | 0.8739 | 0.7159 | 0.7475 | | 0.4701 | 7.0 | 19334 | 0.4609 | 0.8681 | 0.7786 | 0.8069 | | 0.4566 | 8.0 | 22096 | 0.4100 | 0.8637 | 0.8281 | 0.8430 | | 0.4339 | 9.0 | 24858 | 0.4395 | 0.8642 | 0.8454 | 0.8540 | | 0.3906 | 10.0 | 27620 | 0.3856 | 0.8723 | 0.8490 | 0.8594 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.2 - Tokenizers 0.11.0
nbroad/xdistil-l12-h384-squad2
89db1c3e27e0f87fc0dee50ee0387d209412f9b5
2022-07-22T15:16:52.000Z
[ "pytorch", "tf", "jax", "tensorboard", "bert", "question-answering", "dataset:squad_v2", "transformers", "model-index", "autotrain_compatible" ]
question-answering
false
nbroad
null
nbroad/xdistil-l12-h384-squad2
8
null
transformers
13,181
--- widget: - context: While deep and large pre-trained models are the state-of-the-art for various natural language processing tasks, their huge size poses significant challenges for practical uses in resource constrained settings. Recent works in knowledge distillation propose task-agnostic as well as task-specific methods to compress these models, with task-specific ones often yielding higher compression rate. In this work, we develop a new task-agnostic distillation framework XtremeDistilTransformers that leverages the advantage of task-specific methods for learning a small universal model that can be applied to arbitrary tasks and languages. To this end, we study the transferability of several source tasks, augmentation resources and model architecture for distillation. We evaluate our model performance on multiple tasks, including the General Language Understanding Evaluation (GLUE) benchmark, SQuAD question answering dataset and a massive multi-lingual NER dataset with 41 languages. example_title: xtremedistil q1 text: What is XtremeDistil? - context: While deep and large pre-trained models are the state-of-the-art for various natural language processing tasks, their huge size poses significant challenges for practical uses in resource constrained settings. Recent works in knowledge distillation propose task-agnostic as well as task-specific methods to compress these models, with task-specific ones often yielding higher compression rate. In this work, we develop a new task-agnostic distillation framework XtremeDistilTransformers that leverages the advantage of task-specific methods for learning a small universal model that can be applied to arbitrary tasks and languages. To this end, we study the transferability of several source tasks, augmentation resources and model architecture for distillation. We evaluate our model performance on multiple tasks, including the General Language Understanding Evaluation (GLUE) benchmark, SQuAD question answering dataset and a massive multi-lingual NER dataset with 41 languages. example_title: xtremedistil q2 text: On what is the model validated? datasets: - squad_v2 metrics: - f1 - exact tags: - question-answering model-index: - name: nbroad/xdistil-l12-h384-squad2 results: - task: type: question-answering name: Question Answering dataset: name: squad_v2 type: squad_v2 config: squad_v2 split: validation metrics: - name: Exact Match type: exact_match value: 75.4591 verified: true - name: F1 type: f1 value: 79.3321 verified: true --- xtremedistil-l12-h384 trained on SQuAD 2.0 "eval_exact": 75.45691906005221 "eval_f1": 79.32502968532793
ncduy/bert-finetuned-ner
23765b590fcccff76e8931e563bba12649eb8751
2021-12-06T06:21:38.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
ncduy
null
ncduy/bert-finetuned-ner
8
null
transformers
13,182
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9310572323932047 - name: Recall type: recall value: 0.9500168293503871 - name: F1 type: f1 value: 0.9404414827155352 - name: Accuracy type: accuracy value: 0.9865191028433508 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0590 - Precision: 0.9311 - Recall: 0.9500 - F1: 0.9404 - Accuracy: 0.9865 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0874 | 1.0 | 1756 | 0.0635 | 0.9211 | 0.9369 | 0.9289 | 0.9835 | | 0.0376 | 2.0 | 3512 | 0.0618 | 0.9342 | 0.9485 | 0.9413 | 0.9858 | | 0.0226 | 3.0 | 5268 | 0.0590 | 0.9311 | 0.9500 | 0.9404 | 0.9865 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
ncduy/opus-mt-en-vi-full-finetuned-en-to-vi
71be7afa73639039e820b88a79f93c694740cc6c
2022-01-12T07:10:14.000Z
[ "pytorch", "marian", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
ncduy
null
ncduy/opus-mt-en-vi-full-finetuned-en-to-vi
8
null
transformers
13,183
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: opus-mt-en-vi-full-finetuned-en-to-vi results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-en-vi-full-finetuned-en-to-vi This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-vi](https://huggingface.co/Helsinki-NLP/opus-mt-en-vi) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 212 - eval_batch_size: 212 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.15.0 - Pytorch 1.9.1 - Datasets 1.17.0 - Tokenizers 0.10.3
nlokam/DialoGPT-digibot3.0-new
5ea82db484584ef7a2f682f1d65a701e820c47d5
2021-11-03T18:45:39.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
nlokam
null
nlokam/DialoGPT-digibot3.0-new
8
null
transformers
13,184
--- tags: - conversational --- # DialoGPT-digibot3.0-new Model
ntrnghia/stsb_vn
237f03f17eab962af62ddc499f06283b83c658e3
2021-05-20T02:09:27.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
ntrnghia
null
ntrnghia/stsb_vn
8
null
transformers
13,185
Entry not found
olastor/mcn-en-smm4h
1e5c1898cf27fd4a026bb02ddf26bcdc94516f71
2021-05-20T02:11:39.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
olastor
null
olastor/mcn-en-smm4h
8
1
transformers
13,186
# BERT MCN-Model using SMM4H 2017 (subtask 3) data The model was trained using [clagator/biobert_v1.1_pubmed_nli_sts](https://huggingface.co/clagator/biobert_v1.1_pubmed_nli_sts) as a base and the smm4h dataset from 2017 from subtask 3. ## Dataset See [here](https://github.com/olastor/medical-concept-normalization/tree/main/data/smm4h) for the scripts and datasets. **Attribution** Sarker, Abeed (2018), “Data and systems for medication-related text classification and concept normalization from Twitter: Insights from the Social Media Mining for Health (SMM4H)-2017 shared task”, Mendeley Data, V2, doi: 10.17632/rxwfb3tysd.2 ### Test Results - Acc: 89.44 - Acc@2: 91.84 - Acc@3: 93.20 - Acc@5: 94.32 - Acc@10: 95.04 Acc@N denotes the accuracy taking the top N predictions of the model into account, not just the first one.
osanseviero/distilbert-base-uncased-finetuned-emotion
e016f29fc3f28664e3615a8cdc4b03441ec13b9f
2022-07-14T08:04:43.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
osanseviero
null
osanseviero/distilbert-base-uncased-finetuned-emotion
8
null
transformers
13,187
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9225 - name: F1 type: f1 value: 0.92271004914086 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2251 - Accuracy: 0.9225 - F1: 0.9227 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8452 | 1.0 | 250 | 0.3288 | 0.902 | 0.8979 | | 0.2544 | 2.0 | 500 | 0.2251 | 0.9225 | 0.9227 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1 - Datasets 1.18.0 - Tokenizers 0.10.3
osanseviero/pyctcdecode_asr
5058959c3b7244b789cf3fbc2740c26d82e3cd0d
2021-08-06T13:53:30.000Z
[ "pytorch", "tf", "wav2vec2", "automatic-speech-recognition", "generic" ]
automatic-speech-recognition
false
osanseviero
null
osanseviero/pyctcdecode_asr
8
null
generic
13,188
--- tags: - automatic-speech-recognition library_name: generic --- # pyctcdecode + Hugging Face model Inspired on https://github.com/kensho-technologies/pyctcdecode/blob/main/tutorials/02_pipeline_huggingface.ipynb
p208p2002/bart-drcd-qg-hl
9f0aa94fe80c7de7b40c989f09b323b58f11403b
2021-10-20T17:27:11.000Z
[ "pytorch", "bart", "text2text-generation", "dataset:drcd", "transformers", "question-generation", "autotrain_compatible" ]
text2text-generation
false
p208p2002
null
p208p2002/bart-drcd-qg-hl
8
null
transformers
13,189
--- datasets: - drcd tags: - question-generation widget: - text: "[HL]伊隆·里夫·馬斯克[HL]是一名企業家和商業大亨" --- # Transformer QG on DRCD 請參閱 https://github.com/p208p2002/Transformer-QG-on-DRCD 獲得更多細節 The inputs of the model refers to ``` we integrate C and A into a new C' in the following form. C' = [c1, c2, ..., [HL], a1, ..., a|A|, [HL], ..., c|C|] ``` > Proposed by [Ying-Hong Chan & Yao-Chung Fan. (2019). A Re-current BERT-based Model for Question Generation.](https://www.aclweb.org/anthology/D19-5821/) ## Features - Fully pipline from fine-tune to evaluation - Support most of state of the art models - Fast deploy as a API server ## DRCD dataset [台達閱讀理解資料集 Delta Reading Comprehension Dataset (DRCD)](https://github.com/DRCKnowledgeTeam/DRCD) 屬於通用領域繁體中文機器閱讀理解資料集。 DRCD資料集從2,108篇維基條目中整理出10,014篇段落,並從段落中標註出30,000多個問題。 ## Available models - BART (base on **[uer/bart-base-chinese-cluecorpussmall](https://huggingface.co/uer/bart-base-chinese-cluecorpussmall)**) ## Expriments Model |Bleu 1|Bleu 2|Bleu 3|Bleu 4|METEOR|ROUGE-L| ------------------|------|------|------|------|------|-------| BART-HLSQG |34.25 |27.70 |22.43 |18.13 |23.58 |36.88 | ## Environment requirements The hole development is based on Ubuntu system 1. If you don't have pytorch 1.6+ please install or update first > https://pytorch.org/get-started/locally/ 2. Install packages `pip install -r requirements.txt` 3. Setup scorer `python setup_scorer.py` 5. Download dataset `python init_dataset.py` ## Training ### Seq2Seq LM ``` usage: train_seq2seq_lm.py [-h] [--base_model {facebook/bart-base,facebook/bart-large,t5-small,t5-base,t5-large}] [-d {squad,squad-nqg}] [--epoch EPOCH] [--lr LR] [--dev DEV] [--server] [--run_test] [-fc FROM_CHECKPOINT] optional arguments: -h, --help show this help message and exit --base_model {facebook/bart-base,facebook/bart-large,t5-small,t5-base,t5-large} -d {squad,squad-nqg}, --dataset {squad,squad-nqg} --epoch EPOCH --lr LR --dev DEV --server --run_test -fc FROM_CHECKPOINT, --from_checkpoint FROM_CHECKPOINT ``` ## Deploy ### Start up ``` python train_seq2seq_lm.py --server --base_model YOUR_BASE_MODEL --from_checkpoint FROM_CHECKPOINT ``` ### Request example ``` curl --location --request POST 'http://127.0.0.1:5000/' \ --header 'Content-Type: application/x-www-form-urlencoded' \ --data-urlencode 'context=[HL]伊隆·里夫·馬斯克[HL]是一名企業家和商業大亨' ``` ```json {"predict": "哪一個人是一名企業家和商業大亨?"} ```
para-zhou/cunlp-bert-case-uncased
a534b24ac1dbaded81d624b2cf25c55531abc464
2021-05-20T02:17:20.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
para-zhou
null
para-zhou/cunlp-bert-case-uncased
8
null
transformers
13,190
Entry not found
patrickvonplaten/wav2vec2-300m-mls-german-ft
1446457071cdb2e28b50e47917b6be50b4af2a82
2021-11-18T22:30:26.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:multilingual_librispeech", "transformers", "multilingual_librispeech", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
patrickvonplaten
null
patrickvonplaten/wav2vec2-300m-mls-german-ft
8
1
transformers
13,191
--- license: apache-2.0 tags: - automatic-speech-recognition - multilingual_librispeech - generated_from_trainer datasets: - multilingual_librispeech model-index: - name: wav2vec2-300m-mls-german-ft results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-300m-mls-german-ft This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MULTILINGUAL_LIBRISPEECH - GERMAN 10h dataset. It achieves the following results on the evaluation set: - Loss: 0.2398 - Wer: 0.1520 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 200.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:------:| | 3.0132 | 7.25 | 500 | 2.9393 | 1.0 | | 2.9241 | 14.49 | 1000 | 2.8734 | 1.0 | | 1.0766 | 21.74 | 1500 | 0.2773 | 0.2488 | | 0.8416 | 28.99 | 2000 | 0.2224 | 0.1990 | | 0.8048 | 36.23 | 2500 | 0.2063 | 0.1792 | | 0.7664 | 43.48 | 3000 | 0.2088 | 0.1748 | | 0.6571 | 50.72 | 3500 | 0.2042 | 0.1668 | | 0.7014 | 57.97 | 4000 | 0.2136 | 0.1649 | | 0.6171 | 65.22 | 4500 | 0.2139 | 0.1641 | | 0.6609 | 72.46 | 5000 | 0.2144 | 0.1621 | | 0.6318 | 79.71 | 5500 | 0.2129 | 0.1600 | | 0.6222 | 86.96 | 6000 | 0.2124 | 0.1582 | | 0.608 | 94.2 | 6500 | 0.2255 | 0.1639 | | 0.6099 | 101.45 | 7000 | 0.2265 | 0.1622 | | 0.6069 | 108.7 | 7500 | 0.2246 | 0.1593 | | 0.5929 | 115.94 | 8000 | 0.2323 | 0.1617 | | 0.6218 | 123.19 | 8500 | 0.2287 | 0.1566 | | 0.5751 | 130.43 | 9000 | 0.2275 | 0.1563 | | 0.5181 | 137.68 | 9500 | 0.2316 | 0.1579 | | 0.6306 | 144.93 | 10000 | 0.2372 | 0.1556 | | 0.5874 | 152.17 | 10500 | 0.2362 | 0.1533 | | 0.5546 | 159.42 | 11000 | 0.2342 | 0.1543 | | 0.6294 | 166.67 | 11500 | 0.2381 | 0.1536 | | 0.5989 | 173.91 | 12000 | 0.2360 | 0.1527 | | 0.5697 | 181.16 | 12500 | 0.2399 | 0.1526 | | 0.5379 | 188.41 | 13000 | 0.2375 | 0.1523 | | 0.5022 | 195.65 | 13500 | 0.2395 | 0.1519 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0 - Datasets 1.15.2.dev0 - Tokenizers 0.10.3
patrickvonplaten/xls-r-300-sv-cv7
bd0c3229e85b32cc9979552e2db11bba5ac27b48
2022-03-23T18:27:10.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "sv-SE", "dataset:mozilla-foundation/common_voice_7_0", "transformers", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "sv", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
patrickvonplaten
null
patrickvonplaten/xls-r-300-sv-cv7
8
null
transformers
13,192
--- language: - sv-SE license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_7_0 - robust-speech-event - sv datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - Swedish - CV7 - v2 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: sv-SE metrics: - name: Test WER type: wer value: 15.99 - name: Test CER type: cer value: 5.2 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: sv metrics: - name: Test WER type: wer value: 24.41 - name: Test CER type: cer value: 11.88 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - SV-SE dataset. It achieves the following results on the evaluation set: - Loss: 0.2604 - Wer: 0.2334 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 1 - total_train_batch_size: 32 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results See Tensorboard ### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_7_0` with split `test` ```bash python eval.py --model_id patrickvonplaten/xls-r-300-sv-cv7 --dataset mozilla-foundation/common_voice_7_0 --config sv-SE --split test ``` 2. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py --model_id patrickvonplaten/xls-r-300-sv-cv7 --dataset speech-recognition-community-v2/dev_data --config sv --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ``` ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 1.18.4.dev0 - Tokenizers 0.10.3
pbmstrk/t5-large-arxiv-title-abstract
cd201b57012d79506f1601db78d8d1a1ae1ac52d
2021-06-23T13:22:10.000Z
[ "pytorch", "tf", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
pbmstrk
null
pbmstrk/t5-large-arxiv-title-abstract
8
null
transformers
13,193
Entry not found
peterhsu/bert-finetuned-ner
b298a7a94cf7748edfa08498824e1d9482d25a5a
2022-01-26T10:44:03.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
peterhsu
null
peterhsu/bert-finetuned-ner
8
null
transformers
13,194
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9315407456285054 - name: Recall type: recall value: 0.9503534163581285 - name: F1 type: f1 value: 0.9408530489836722 - name: Accuracy type: accuracy value: 0.9861511744275033 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0615 - Precision: 0.9315 - Recall: 0.9504 - F1: 0.9409 - Accuracy: 0.9862 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.084 | 1.0 | 1756 | 0.0683 | 0.9173 | 0.9347 | 0.9259 | 0.9826 | | 0.0342 | 2.0 | 3512 | 0.0602 | 0.9312 | 0.9470 | 0.9390 | 0.9856 | | 0.0236 | 3.0 | 5268 | 0.0615 | 0.9315 | 0.9504 | 0.9409 | 0.9862 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.0 - Tokenizers 0.10.3
pgperrone/roberta-base-bne-finetuned-amazon_reviews_multi
78b4c70157ef471e405eadce270e1894d1069dc9
2021-11-01T19:16:08.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "dataset:amazon_reviews_multi", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
pgperrone
null
pgperrone/roberta-base-bne-finetuned-amazon_reviews_multi
8
null
transformers
13,195
--- license: apache-2.0 tags: - generated_from_trainer datasets: - amazon_reviews_multi metrics: - accuracy model-index: - name: roberta-base-bne-finetuned-amazon_reviews_multi results: - task: name: Text Classification type: text-classification dataset: name: amazon_reviews_multi type: amazon_reviews_multi args: es metrics: - name: Accuracy type: accuracy value: 0.93125 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-bne-finetuned-amazon_reviews_multi This model is a fine-tuned version of [BSC-TeMU/roberta-base-bne](https://huggingface.co/BSC-TeMU/roberta-base-bne) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.2259 - Accuracy: 0.9313 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1996 | 1.0 | 1250 | 0.1736 | 0.9297 | | 0.1031 | 2.0 | 2500 | 0.2259 | 0.9313 | ### Framework versions - Transformers 4.12.2 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
pierreant-p/autonlp-jcvd-or-linkedin-3471039
73d52ac1afdc5f8d1aa6cc28c3dd0454bbd79c1c
2021-07-14T19:02:50.000Z
[ "pytorch", "camembert", "text-classification", "fr", "dataset:pierreant-p/autonlp-data-jcvd-or-linkedin", "transformers", "autonlp" ]
text-classification
false
pierreant-p
null
pierreant-p/autonlp-jcvd-or-linkedin-3471039
8
1
transformers
13,196
--- tags: autonlp language: fr widget: - text: "I love AutoNLP 🤗" datasets: - pierreant-p/autonlp-data-jcvd-or-linkedin --- # Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 3471039 ## Validation Metrics - Loss: 0.6704344749450684 - Accuracy: 0.59375 - Macro F1: 0.37254901960784315 - Micro F1: 0.59375 - Weighted F1: 0.4424019607843137 - Macro Precision: 0.296875 - Micro Precision: 0.59375 - Weighted Precision: 0.3525390625 - Macro Recall: 0.5 - Micro Recall: 0.59375 - Weighted Recall: 0.59375 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/pierreant-p/autonlp-jcvd-or-linkedin-3471039 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("pierreant-p/autonlp-jcvd-or-linkedin-3471039", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("pierreant-p/autonlp-jcvd-or-linkedin-3471039", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
prajjwal1/ctrl_discovery_1
6cf8ada5621dc8e94a4d048122b8d19eca7eac49
2021-03-05T03:08:03.000Z
[ "pytorch", "ctrl", "text-generation", "transformers" ]
text-generation
false
prajjwal1
null
prajjwal1/ctrl_discovery_1
8
null
transformers
13,197
Entry not found
pszemraj/pegasus-large-book-summary
d16d450423318a3bd57ffa8e4d174c5c6fe32a2b
2022-01-30T01:04:30.000Z
[ "pytorch", "pegasus", "text2text-generation", "en", "dataset:kmfoda/booksum", "transformers", "summarization", "license:apache-2.0", "autotrain_compatible" ]
summarization
false
pszemraj
null
pszemraj/pegasus-large-book-summary
8
null
transformers
13,198
--- language: - en tags: - summarization - pegasus license: apache-2.0 datasets: - kmfoda/booksum metrics: - rouge widget: - text: "large earthquakes along a given fault segment do not occur at random intervals because it takes time to accumulate the strain energy for the rupture. The rates at which tectonic plates move and accumulate strain at their boundaries are approximately uniform. Therefore, in first approximation, one may expect that large ruptures of the same fault segment will occur at approximately constant time intervals. If subsequent main shocks have different amounts of slip across the fault, then the recurrence time may vary, and the basic idea of periodic mainshocks must be modified. For great plate boundary ruptures the length and slip often vary by a factor of 2. Along the southern segment of the San Andreas fault the recurrence interval is 145 years with variations of several decades. The smaller the standard deviation of the average recurrence interval, the more specific could be the long term prediction of a future mainshock." example_title: "earthquakes" - text: " A typical feed-forward neural field algorithm. Spatiotemporal coordinates are fed into a neural network that predicts values in the reconstructed domain. Then, this domain is mapped to the sensor domain where sensor measurements are available as supervision. Class and Section Problems Addressed Generalization (Section 2) Inverse problems, ill-posed problems, editability; symmetries. Hybrid Representations (Section 3) Computation & memory efficiency, representation capacity, editability: Forward Maps (Section 4) Inverse problems Network Architecture (Section 5) Spectral bias, integration & derivatives. Manipulating Neural Fields (Section 6) Edit ability, constraints, regularization. Table 2: The five classes of techniques in the neural field toolbox each addresses problems that arise in learning, inference, and control. (Section 3). We can supervise reconstruction via differentiable forward maps that transform Or project our domain (e.g, 3D reconstruction via 2D images; Section 4) With appropriate network architecture choices, we can overcome neural network spectral biases (blurriness) and efficiently compute derivatives and integrals (Section 5). Finally, we can manipulate neural fields to add constraints and regularizations, and to achieve editable representations (Section 6). Collectively, these classes constitute a 'toolbox' of techniques to help solve problems with neural fields There are three components in a conditional neural field: (1) An encoder or inference function € that outputs the conditioning latent variable 2 given an observation 0 E(0) =2. 2 is typically a low-dimensional vector, and is often referred to aS a latent code Or feature code_ (2) A mapping function 4 between Z and neural field parameters O: Y(z) = O; (3) The neural field itself $. The encoder € finds the most probable z given the observations O: argmaxz P(2/0). The decoder maximizes the inverse conditional probability to find the most probable 0 given Z: arg- max P(Olz). We discuss different encoding schemes with different optimality guarantees (Section 2.1.1), both global and local conditioning (Section 2.1.2), and different mapping functions Y (Section 2.1.3) 2. Generalization Suppose we wish to estimate a plausible 3D surface shape given a partial or noisy point cloud. We need a suitable prior over the sur- face in its reconstruction domain to generalize to the partial observations. A neural network expresses a prior via the function space of its architecture and parameters 0, and generalization is influenced by the inductive bias of this function space (Section 5)." example_title: "scientific paper" - text: " the big variety of data coming from diverse sources is one of the key properties of the big data phenomenon. It is, therefore, beneficial to understand how data is generated in various environments and scenarios, before looking at what should be done with this data and how to design the best possible architecture to accomplish this The evolution of IT architectures, described in Chapter 2, means that the data is no longer processed by a few big monolith systems, but rather by a group of services In parallel to the processing layer, the underlying data storage has also changed and became more distributed This, in turn, required a significant paradigm shift as the traditional approach to transactions (ACID) could no longer be supported. On top of this, cloud computing is becoming a major approach with the benefits of reducing costs and providing on-demand scalability but at the same time introducing concerns about privacy, data ownership, etc In the meantime the Internet continues its exponential growth: Every day both structured and unstructured data is published and available for processing: To achieve competitive advantage companies have to relate their corporate resources to external services, e.g. financial markets, weather forecasts, social media, etc While several of the sites provide some sort of API to access the data in a more orderly fashion; countless sources require advanced web mining and Natural Language Processing (NLP) processing techniques: Advances in science push researchers to construct new instruments for observing the universe O conducting experiments to understand even better the laws of physics and other domains. Every year humans have at their disposal new telescopes, space probes, particle accelerators, etc These instruments generate huge streams of data, which need to be stored and analyzed. The constant drive for efficiency in the industry motivates the introduction of new automation techniques and process optimization: This could not be done without analyzing the precise data that describe these processes. As more and more human tasks are automated, machines provide rich data sets, which can be analyzed in real-time to drive efficiency to new levels. Finally, it is now evident that the growth of the Internet of Things is becoming a major source of data. More and more of the devices are equipped with significant computational power and can generate a continuous data stream from their sensors. In the subsequent sections of this chapter, we will look at the domains described above to see what they generate in terms of data sets. We will compare the volumes but will also look at what is characteristic and important from their respective points of view. 3.1 The Internet is undoubtedly the largest database ever created by humans. While several well described; cleaned, and structured data sets have been made available through this medium, most of the resources are of an ambiguous, unstructured, incomplete or even erroneous nature. Still, several examples in the areas such as opinion mining, social media analysis, e-governance, etc, clearly show the potential lying in these resources. Those who can successfully mine and interpret the Internet data can gain unique insight and competitive advantage in their business An important area of data analytics on the edge of corporate IT and the Internet is Web Analytics." example_title: "data science textbook" inference: parameters: max_length: 64 no_repeat_ngram_size: 2 encoder_no_repeat_ngram_size: 3 repetition_penalty: 2.4 length_penalty: 0.5 num_beams: 4 early_stopping: True --- # checkpoints This model is a fine-tuned version of [google/pegasus-large](https://huggingface.co/google/pegasus-large) on the [booksum](https://github.com/salesforce/booksum) dataset. ## Model description More information needed ## Intended uses & limitations - standard pegasus has a max input length of 1024 tokens, therefore the model only saw the first 1024 tokens of a chapter when training, and learned to try to make the chapter's summary from that. Keep this in mind when using this model, as information at the end of a text sequence longer than 1024 tokens may be excluded from the final summary/the model will be biased towards information presented first. - this was only trained on the dataset for an epoch but still provides reasonable results. ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 16 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.16.1 - Pytorch 1.10.0+cu111 - Datasets 1.18.2 - Tokenizers 0.10.3
rajratnpranesh/DCS_sanskrit_distilbert
c92da98a728778ed7c3ac515d62dbec6843df90a
2021-05-20T03:53:33.000Z
[ "pytorch", "jax", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
rajratnpranesh
null
rajratnpranesh/DCS_sanskrit_distilbert
8
null
transformers
13,199
Entry not found