modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
list
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
Helsinki-NLP/opus-mt-fr-guw
f82d6a8dcbf9259bbd46578112af9b9ac9a2b00d
2021-09-09T21:54:03.000Z
[ "pytorch", "marian", "text2text-generation", "fr", "guw", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-fr-guw
8
null
transformers
12,900
--- tags: - translation license: apache-2.0 --- ### opus-mt-fr-guw * source languages: fr * target languages: guw * OPUS readme: [fr-guw](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fr-guw/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/fr-guw/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fr-guw/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fr-guw/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.fr.guw | 31.4 | 0.505 |
Helsinki-NLP/opus-mt-fr-ho
3d3587e677fa54c24f19a34e58fe7e73cad61c2a
2021-09-09T21:54:15.000Z
[ "pytorch", "marian", "text2text-generation", "fr", "ho", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-fr-ho
8
null
transformers
12,901
--- tags: - translation license: apache-2.0 --- ### opus-mt-fr-ho * source languages: fr * target languages: ho * OPUS readme: [fr-ho](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fr-ho/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/fr-ho/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fr-ho/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fr-ho/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.fr.ho | 25.4 | 0.480 |
Helsinki-NLP/opus-mt-fr-ig
a4ce5e546406711d7702c6b1cf7c388051913800
2021-09-09T21:54:35.000Z
[ "pytorch", "marian", "text2text-generation", "fr", "ig", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-fr-ig
8
null
transformers
12,902
--- tags: - translation license: apache-2.0 --- ### opus-mt-fr-ig * source languages: fr * target languages: ig * OPUS readme: [fr-ig](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fr-ig/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/fr-ig/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fr-ig/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fr-ig/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.fr.ig | 29.0 | 0.445 |
Helsinki-NLP/opus-mt-fr-kg
900be309d6bc4c43e709f221cebba3709784435d
2021-09-09T21:54:47.000Z
[ "pytorch", "marian", "text2text-generation", "fr", "kg", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-fr-kg
8
null
transformers
12,903
--- tags: - translation license: apache-2.0 --- ### opus-mt-fr-kg * source languages: fr * target languages: kg * OPUS readme: [fr-kg](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fr-kg/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/fr-kg/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fr-kg/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fr-kg/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.fr.kg | 30.4 | 0.523 |
Helsinki-NLP/opus-mt-fr-kwy
17adca5852eac8966f1fb6807b7da83ecf1a2b51
2021-09-09T21:54:56.000Z
[ "pytorch", "marian", "text2text-generation", "fr", "kwy", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-fr-kwy
8
null
transformers
12,904
--- tags: - translation license: apache-2.0 --- ### opus-mt-fr-kwy * source languages: fr * target languages: kwy * OPUS readme: [fr-kwy](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fr-kwy/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/fr-kwy/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fr-kwy/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fr-kwy/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.fr.kwy | 22.5 | 0.428 |
Helsinki-NLP/opus-mt-fr-lue
ab453e6d3d2556c889ccc3562e15fa125d667901
2021-09-09T21:55:20.000Z
[ "pytorch", "marian", "text2text-generation", "fr", "lue", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-fr-lue
8
null
transformers
12,905
--- tags: - translation license: apache-2.0 --- ### opus-mt-fr-lue * source languages: fr * target languages: lue * OPUS readme: [fr-lue](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fr-lue/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/fr-lue/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fr-lue/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fr-lue/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.fr.lue | 23.1 | 0.485 |
Helsinki-NLP/opus-mt-fr-sm
4c98ed70568463704055a233f802219748caa75f
2021-09-09T21:56:50.000Z
[ "pytorch", "marian", "text2text-generation", "fr", "sm", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-fr-sm
8
null
transformers
12,906
--- tags: - translation license: apache-2.0 --- ### opus-mt-fr-sm * source languages: fr * target languages: sm * OPUS readme: [fr-sm](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fr-sm/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/fr-sm/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fr-sm/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fr-sm/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.fr.sm | 28.8 | 0.474 |
Helsinki-NLP/opus-mt-fr-st
891528cfd2f238ad0009a2a5a69075b2e501f5b9
2021-09-09T21:57:01.000Z
[ "pytorch", "marian", "text2text-generation", "fr", "st", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-fr-st
8
null
transformers
12,907
--- tags: - translation license: apache-2.0 --- ### opus-mt-fr-st * source languages: fr * target languages: st * OPUS readme: [fr-st](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fr-st/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/fr-st/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fr-st/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fr-st/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.fr.st | 34.6 | 0.540 |
Helsinki-NLP/opus-mt-fr-tiv
5618d4e7d13a5eee8e18a7c15ae962415e1800b4
2021-09-09T21:57:15.000Z
[ "pytorch", "marian", "text2text-generation", "fr", "tiv", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-fr-tiv
8
null
transformers
12,908
--- tags: - translation license: apache-2.0 --- ### opus-mt-fr-tiv * source languages: fr * target languages: tiv * OPUS readme: [fr-tiv](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fr-tiv/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/fr-tiv/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fr-tiv/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fr-tiv/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.fr.tiv | 23.5 | 0.406 |
Helsinki-NLP/opus-mt-fr-tpi
99d2ac6cf7d16cc6a101e70929f5e7efa7b64f23
2021-09-09T21:57:33.000Z
[ "pytorch", "marian", "text2text-generation", "fr", "tpi", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-fr-tpi
8
null
transformers
12,909
--- tags: - translation license: apache-2.0 --- ### opus-mt-fr-tpi * source languages: fr * target languages: tpi * OPUS readme: [fr-tpi](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fr-tpi/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-20.zip](https://object.pouta.csc.fi/OPUS-MT-models/fr-tpi/opus-2020-01-20.zip) * test set translations: [opus-2020-01-20.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fr-tpi/opus-2020-01-20.test.txt) * test set scores: [opus-2020-01-20.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fr-tpi/opus-2020-01-20.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.fr.tpi | 30.0 | 0.487 |
Helsinki-NLP/opus-mt-fr-war
e9ee39c9f86e17af0970402405e6f79a4cdebb32
2021-09-09T21:58:09.000Z
[ "pytorch", "marian", "text2text-generation", "fr", "war", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-fr-war
8
null
transformers
12,910
--- tags: - translation license: apache-2.0 --- ### opus-mt-fr-war * source languages: fr * target languages: war * OPUS readme: [fr-war](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fr-war/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/fr-war/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fr-war/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fr-war/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.fr.war | 33.7 | 0.538 |
Helsinki-NLP/opus-mt-fse-fi
4578d0593f0d3f63d716b5aa5a3d3bdd5af78418
2021-09-09T21:58:33.000Z
[ "pytorch", "marian", "text2text-generation", "fse", "fi", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-fse-fi
8
null
transformers
12,911
--- tags: - translation license: apache-2.0 --- ### opus-mt-fse-fi * source languages: fse * target languages: fi * OPUS readme: [fse-fi](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fse-fi/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/fse-fi/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fse-fi/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fse-fi/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.fse.fi | 90.2 | 0.943 |
Helsinki-NLP/opus-mt-gaa-sv
974970cef60cd58c331f6112a6d5b9f403f13c4f
2021-09-09T21:58:58.000Z
[ "pytorch", "marian", "text2text-generation", "gaa", "sv", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-gaa-sv
8
null
transformers
12,912
--- tags: - translation license: apache-2.0 --- ### opus-mt-gaa-sv * source languages: gaa * target languages: sv * OPUS readme: [gaa-sv](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/gaa-sv/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/gaa-sv/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/gaa-sv/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/gaa-sv/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.gaa.sv | 30.1 | 0.489 |
Helsinki-NLP/opus-mt-ha-sv
a57326f406249cd9cf3aa270014bb73d94db04ae
2021-09-09T22:00:17.000Z
[ "pytorch", "marian", "text2text-generation", "ha", "sv", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-ha-sv
8
null
transformers
12,913
--- tags: - translation license: apache-2.0 --- ### opus-mt-ha-sv * source languages: ha * target languages: sv * OPUS readme: [ha-sv](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/ha-sv/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/ha-sv/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/ha-sv/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/ha-sv/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.ha.sv | 25.8 | 0.438 |
Helsinki-NLP/opus-mt-he-ru
50425e3b84a0470bcf42647ad6bab761bd12d39a
2020-10-26T14:32:32.000Z
[ "pytorch", "marian", "text2text-generation", "he", "ru", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-he-ru
8
null
transformers
12,914
--- language: - he - ru tags: - translation license: apache-2.0 --- ### he-ru * source group: Hebrew * target group: Russian * OPUS readme: [heb-rus](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/heb-rus/README.md) * model: transformer * source language(s): heb * target language(s): rus * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-10-04.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/heb-rus/opus-2020-10-04.zip) * test set translations: [opus-2020-10-04.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/heb-rus/opus-2020-10-04.test.txt) * test set scores: [opus-2020-10-04.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/heb-rus/opus-2020-10-04.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.heb.rus | 40.5 | 0.599 | ### System Info: - hf_name: he-ru - source_languages: heb - target_languages: rus - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/heb-rus/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['he', 'ru'] - src_constituents: ('Hebrew', {'heb'}) - tgt_constituents: ('Russian', {'rus'}) - src_multilingual: False - tgt_multilingual: False - long_pair: heb-rus - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/heb-rus/opus-2020-10-04.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/heb-rus/opus-2020-10-04.test.txt - src_alpha3: heb - tgt_alpha3: rus - chrF2_score: 0.599 - bleu: 40.5 - brevity_penalty: 0.963 - ref_len: 16583.0 - src_name: Hebrew - tgt_name: Russian - train_date: 2020-10-04 00:00:00 - src_alpha2: he - tgt_alpha2: ru - prefer_old: False - short_pair: he-ru - helsinki_git_sha: 61fd6908b37d9a7b21cc3e27c1ae1fccedc97561 - transformers_git_sha: b0a907615aca0d728a9bc90f16caef0848f6a435 - port_machine: LM0-400-22516.local - port_time: 2020-10-26-16:16
Helsinki-NLP/opus-mt-ht-sv
eb102498c382a7a8ea26d668c58de3454bd02cfb
2021-09-09T22:10:43.000Z
[ "pytorch", "marian", "text2text-generation", "ht", "sv", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-ht-sv
8
null
transformers
12,915
--- tags: - translation license: apache-2.0 --- ### opus-mt-ht-sv * source languages: ht * target languages: sv * OPUS readme: [ht-sv](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/ht-sv/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/ht-sv/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/ht-sv/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/ht-sv/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.ht.sv | 27.9 | 0.463 |
Helsinki-NLP/opus-mt-hu-de
fc7591189b7d14c929716db64ca8f48139229272
2021-09-09T22:10:47.000Z
[ "pytorch", "marian", "text2text-generation", "hu", "de", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-hu-de
8
null
transformers
12,916
--- tags: - translation license: apache-2.0 --- ### opus-mt-hu-de * source languages: hu * target languages: de * OPUS readme: [hu-de](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/hu-de/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-20.zip](https://object.pouta.csc.fi/OPUS-MT-models/hu-de/opus-2020-01-20.zip) * test set translations: [opus-2020-01-20.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/hu-de/opus-2020-01-20.test.txt) * test set scores: [opus-2020-01-20.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/hu-de/opus-2020-01-20.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba.hu.de | 44.1 | 0.637 |
Helsinki-NLP/opus-mt-is-it
e7732da6a79bb92b135272e61deacc72b56fbc4a
2020-08-21T14:42:46.000Z
[ "pytorch", "marian", "text2text-generation", "is", "it", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-is-it
8
null
transformers
12,917
--- language: - is - it tags: - translation license: apache-2.0 --- ### isl-ita * source group: Icelandic * target group: Italian * OPUS readme: [isl-ita](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/isl-ita/README.md) * model: transformer-align * source language(s): isl * target language(s): ita * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/isl-ita/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/isl-ita/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/isl-ita/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.isl.ita | 46.7 | 0.662 | ### System Info: - hf_name: isl-ita - source_languages: isl - target_languages: ita - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/isl-ita/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['is', 'it'] - src_constituents: {'isl'} - tgt_constituents: {'ita'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/isl-ita/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/isl-ita/opus-2020-06-17.test.txt - src_alpha3: isl - tgt_alpha3: ita - short_pair: is-it - chrF2_score: 0.662 - bleu: 46.7 - brevity_penalty: 0.977 - ref_len: 1450.0 - src_name: Icelandic - tgt_name: Italian - train_date: 2020-06-17 - src_alpha2: is - tgt_alpha2: it - prefer_old: False - long_pair: isl-ita - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-it-uk
1fd7fedea7253943611ab9ad7490d5e5e51b8c3d
2020-08-21T14:42:46.000Z
[ "pytorch", "marian", "text2text-generation", "it", "uk", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-it-uk
8
null
transformers
12,918
--- language: - it - uk tags: - translation license: apache-2.0 --- ### ita-ukr * source group: Italian * target group: Ukrainian * OPUS readme: [ita-ukr](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ita-ukr/README.md) * model: transformer-align * source language(s): ita * target language(s): ukr * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/ita-ukr/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ita-ukr/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ita-ukr/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.ita.ukr | 45.9 | 0.657 | ### System Info: - hf_name: ita-ukr - source_languages: ita - target_languages: ukr - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ita-ukr/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['it', 'uk'] - src_constituents: {'ita'} - tgt_constituents: {'ukr'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/ita-ukr/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/ita-ukr/opus-2020-06-17.test.txt - src_alpha3: ita - tgt_alpha3: ukr - short_pair: it-uk - chrF2_score: 0.657 - bleu: 45.9 - brevity_penalty: 0.9890000000000001 - ref_len: 25353.0 - src_name: Italian - tgt_name: Ukrainian - train_date: 2020-06-17 - src_alpha2: it - tgt_alpha2: uk - prefer_old: False - long_pair: ita-ukr - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-ja-sh
a91efa3afbffefffeb79f194329359dbf31a013c
2020-08-21T14:42:47.000Z
[ "pytorch", "marian", "text2text-generation", "ja", "sh", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-ja-sh
8
null
transformers
12,919
--- language: - ja - sh tags: - translation license: apache-2.0 --- ### jpn-hbs * source group: Japanese * target group: Serbo-Croatian * OPUS readme: [jpn-hbs](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/jpn-hbs/README.md) * model: transformer-align * source language(s): jpn jpn_Bopo jpn_Hani jpn_Hira jpn_Kana jpn_Latn * target language(s): bos_Latn hrv srp_Cyrl srp_Latn * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * a sentence initial language token is required in the form of `>>id<<` (id = valid target language ID) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/jpn-hbs/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/jpn-hbs/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/jpn-hbs/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.jpn.hbs | 22.6 | 0.447 | ### System Info: - hf_name: jpn-hbs - source_languages: jpn - target_languages: hbs - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/jpn-hbs/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['ja', 'sh'] - src_constituents: {'jpn_Hang', 'jpn', 'jpn_Yiii', 'jpn_Kana', 'jpn_Hani', 'jpn_Bopo', 'jpn_Latn', 'jpn_Hira'} - tgt_constituents: {'hrv', 'srp_Cyrl', 'bos_Latn', 'srp_Latn'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/jpn-hbs/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/jpn-hbs/opus-2020-06-17.test.txt - src_alpha3: jpn - tgt_alpha3: hbs - short_pair: ja-sh - chrF2_score: 0.447 - bleu: 22.6 - brevity_penalty: 0.9620000000000001 - ref_len: 2525.0 - src_name: Japanese - tgt_name: Serbo-Croatian - train_date: 2020-06-17 - src_alpha2: ja - tgt_alpha2: sh - prefer_old: False - long_pair: jpn-hbs - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-lua-es
84469eddef8c7e34548a0c63a2de88149c3171e7
2021-09-10T13:56:08.000Z
[ "pytorch", "marian", "text2text-generation", "lua", "es", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-lua-es
8
null
transformers
12,920
--- tags: - translation license: apache-2.0 --- ### opus-mt-lua-es * source languages: lua * target languages: es * OPUS readme: [lua-es](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/lua-es/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/lua-es/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/lua-es/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/lua-es/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.lua.es | 23.1 | 0.409 |
Helsinki-NLP/opus-mt-mt-fi
82b2a8e69a6acfbedddcd990a2323fc38ae7424d
2021-09-10T13:58:30.000Z
[ "pytorch", "marian", "text2text-generation", "mt", "fi", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-mt-fi
8
null
transformers
12,921
--- tags: - translation license: apache-2.0 --- ### opus-mt-mt-fi * source languages: mt * target languages: fi * OPUS readme: [mt-fi](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/mt-fi/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/mt-fi/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/mt-fi/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/mt-fi/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.mt.fi | 24.9 | 0.509 |
Helsinki-NLP/opus-mt-niu-sv
575c24b76ecf85b0e76037e6c322abfedc62626a
2021-09-10T13:59:03.000Z
[ "pytorch", "marian", "text2text-generation", "niu", "sv", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-niu-sv
8
null
transformers
12,922
--- tags: - translation license: apache-2.0 --- ### opus-mt-niu-sv * source languages: niu * target languages: sv * OPUS readme: [niu-sv](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/niu-sv/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/niu-sv/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/niu-sv/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/niu-sv/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.niu.sv | 29.2 | 0.478 |
Helsinki-NLP/opus-mt-nso-sv
b61e875c24050a31105c5f39c7c932885f52371c
2021-09-10T13:59:44.000Z
[ "pytorch", "marian", "text2text-generation", "nso", "sv", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-nso-sv
8
null
transformers
12,923
--- tags: - translation license: apache-2.0 --- ### opus-mt-nso-sv * source languages: nso * target languages: sv * OPUS readme: [nso-sv](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/nso-sv/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/nso-sv/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/nso-sv/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/nso-sv/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.nso.sv | 34.3 | 0.527 |
Helsinki-NLP/opus-mt-pis-es
613ca066962c8da1b207e234b61fc7b19dcf8c4a
2021-09-10T14:00:55.000Z
[ "pytorch", "marian", "text2text-generation", "pis", "es", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-pis-es
8
null
transformers
12,924
--- tags: - translation license: apache-2.0 --- ### opus-mt-pis-es * source languages: pis * target languages: es * OPUS readme: [pis-es](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/pis-es/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/pis-es/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/pis-es/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/pis-es/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.pis.es | 24.1 | 0.421 |
Helsinki-NLP/opus-mt-rnd-fr
a58002372dfe212bbde6f1211f7f827c9c5f872e
2021-09-10T14:01:57.000Z
[ "pytorch", "marian", "text2text-generation", "rnd", "fr", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-rnd-fr
8
null
transformers
12,925
--- tags: - translation license: apache-2.0 --- ### opus-mt-rnd-fr * source languages: rnd * target languages: fr * OPUS readme: [rnd-fr](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/rnd-fr/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/rnd-fr/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/rnd-fr/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/rnd-fr/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.rnd.fr | 22.1 | 0.392 |
Helsinki-NLP/opus-mt-srn-es
aa7c939ea7c6e4543d7844ca13ef0745a809effa
2021-09-10T14:04:34.000Z
[ "pytorch", "marian", "text2text-generation", "srn", "es", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-srn-es
8
null
transformers
12,926
--- tags: - translation license: apache-2.0 --- ### opus-mt-srn-es * source languages: srn * target languages: es * OPUS readme: [srn-es](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/srn-es/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/srn-es/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/srn-es/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/srn-es/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.srn.es | 30.4 | 0.481 |
Helsinki-NLP/opus-mt-ssp-es
f35be270e9fa9ba6b970a735a4f5efc9f9055a4b
2021-09-10T14:04:50.000Z
[ "pytorch", "marian", "text2text-generation", "ssp", "es", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-ssp-es
8
null
transformers
12,927
--- tags: - translation license: apache-2.0 --- ### opus-mt-ssp-es * source languages: ssp * target languages: es * OPUS readme: [ssp-es](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/ssp-es/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/ssp-es/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/ssp-es/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/ssp-es/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.ssp.es | 89.7 | 0.930 |
Helsinki-NLP/opus-mt-st-fr
b10ae7351feb17fc5a410f77919cb3b0e6595b92
2021-09-10T14:05:05.000Z
[ "pytorch", "marian", "text2text-generation", "st", "fr", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-st-fr
8
null
transformers
12,928
--- tags: - translation license: apache-2.0 --- ### opus-mt-st-fr * source languages: st * target languages: fr * OPUS readme: [st-fr](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/st-fr/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/st-fr/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/st-fr/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/st-fr/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.st.fr | 30.7 | 0.490 |
Helsinki-NLP/opus-mt-sv-chk
d52a50ce8c83a882a86283fbcf787f611c192afe
2021-09-10T14:05:49.000Z
[ "pytorch", "marian", "text2text-generation", "sv", "chk", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-sv-chk
8
null
transformers
12,929
--- tags: - translation license: apache-2.0 --- ### opus-mt-sv-chk * source languages: sv * target languages: chk * OPUS readme: [sv-chk](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/sv-chk/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/sv-chk/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/sv-chk/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/sv-chk/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.sv.chk | 20.7 | 0.421 |
Helsinki-NLP/opus-mt-sv-gaa
fe2481a49dbc98e532950b90a28ed00f5b477513
2021-09-10T14:06:35.000Z
[ "pytorch", "marian", "text2text-generation", "sv", "gaa", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-sv-gaa
8
null
transformers
12,930
--- tags: - translation license: apache-2.0 --- ### opus-mt-sv-gaa * source languages: sv * target languages: gaa * OPUS readme: [sv-gaa](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/sv-gaa/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/sv-gaa/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/sv-gaa/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/sv-gaa/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.sv.gaa | 31.3 | 0.522 |
Helsinki-NLP/opus-mt-sv-guw
92254cdb7d0a263a0254df44f4775b7fe48cee6b
2021-09-10T14:06:42.000Z
[ "pytorch", "marian", "text2text-generation", "sv", "guw", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-sv-guw
8
null
transformers
12,931
--- tags: - translation license: apache-2.0 --- ### opus-mt-sv-guw * source languages: sv * target languages: guw * OPUS readme: [sv-guw](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/sv-guw/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/sv-guw/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/sv-guw/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/sv-guw/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.sv.guw | 33.5 | 0.531 |
Helsinki-NLP/opus-mt-sv-ht
185dab77bcebb5b6fbf8b52e975e15709669ca26
2021-09-10T14:07:06.000Z
[ "pytorch", "marian", "text2text-generation", "sv", "ht", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-sv-ht
8
null
transformers
12,932
--- tags: - translation license: apache-2.0 --- ### opus-mt-sv-ht * source languages: sv * target languages: ht * OPUS readme: [sv-ht](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/sv-ht/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/sv-ht/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/sv-ht/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/sv-ht/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.sv.ht | 28.0 | 0.457 |
Helsinki-NLP/opus-mt-sv-iso
5422172dc52c13c230563771d764511ecfb4d747
2021-09-10T14:07:30.000Z
[ "pytorch", "marian", "text2text-generation", "sv", "iso", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-sv-iso
8
null
transformers
12,933
--- tags: - translation license: apache-2.0 --- ### opus-mt-sv-iso * source languages: sv * target languages: iso * OPUS readme: [sv-iso](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/sv-iso/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/sv-iso/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/sv-iso/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/sv-iso/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.sv.iso | 27.2 | 0.447 |
Helsinki-NLP/opus-mt-sv-nso
da1be4827386ca61c54fc15de172288d86bbc2c3
2021-09-10T14:08:33.000Z
[ "pytorch", "marian", "text2text-generation", "sv", "nso", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-sv-nso
8
null
transformers
12,934
--- tags: - translation license: apache-2.0 --- ### opus-mt-sv-nso * source languages: sv * target languages: nso * OPUS readme: [sv-nso](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/sv-nso/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/sv-nso/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/sv-nso/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/sv-nso/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.sv.nso | 37.9 | 0.575 |
Helsinki-NLP/opus-mt-sv-st
49521390eed06df58ed778b18241dd7368ba4280
2021-09-10T14:09:38.000Z
[ "pytorch", "marian", "text2text-generation", "sv", "st", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-sv-st
8
null
transformers
12,935
--- tags: - translation license: apache-2.0 --- ### opus-mt-sv-st * source languages: sv * target languages: st * OPUS readme: [sv-st](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/sv-st/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/sv-st/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/sv-st/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/sv-st/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.sv.st | 38.8 | 0.584 |
Helsinki-NLP/opus-mt-tll-fr
04ac8891ee8b81ce53acba208384cb1f57d093f9
2021-09-11T10:48:31.000Z
[ "pytorch", "marian", "text2text-generation", "tll", "fr", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-tll-fr
8
null
transformers
12,936
--- tags: - translation license: apache-2.0 --- ### opus-mt-tll-fr * source languages: tll * target languages: fr * OPUS readme: [tll-fr](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/tll-fr/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/tll-fr/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/tll-fr/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/tll-fr/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.tll.fr | 25.2 | 0.426 |
Helsinki-NLP/opus-mt-tn-sv
64bed9a37dca4467911aacfd92327b9530510c69
2021-09-11T10:48:50.000Z
[ "pytorch", "marian", "text2text-generation", "tn", "sv", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-tn-sv
8
null
transformers
12,937
--- tags: - translation license: apache-2.0 --- ### opus-mt-tn-sv * source languages: tn * target languages: sv * OPUS readme: [tn-sv](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/tn-sv/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/tn-sv/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/tn-sv/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/tn-sv/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.tn.sv | 32.0 | 0.508 |
Helsinki-NLP/opus-mt-tw-sv
332ce1c43149694a678af64a77024918689e726c
2021-09-11T10:50:50.000Z
[ "pytorch", "marian", "text2text-generation", "tw", "sv", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-tw-sv
8
null
transformers
12,938
--- tags: - translation license: apache-2.0 --- ### opus-mt-tw-sv * source languages: tw * target languages: sv * OPUS readme: [tw-sv](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/tw-sv/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/tw-sv/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/tw-sv/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/tw-sv/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.tw.sv | 29.0 | 0.471 |
Helsinki-NLP/opus-mt-uk-nl
564299278455433557c04ae365b2420fdf86ae81
2020-08-21T14:42:51.000Z
[ "pytorch", "marian", "text2text-generation", "uk", "nl", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-uk-nl
8
null
transformers
12,939
--- language: - uk - nl tags: - translation license: apache-2.0 --- ### ukr-nld * source group: Ukrainian * target group: Dutch * OPUS readme: [ukr-nld](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ukr-nld/README.md) * model: transformer-align * source language(s): ukr * target language(s): nld * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/ukr-nld/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ukr-nld/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ukr-nld/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.ukr.nld | 48.7 | 0.656 | ### System Info: - hf_name: ukr-nld - source_languages: ukr - target_languages: nld - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ukr-nld/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['uk', 'nl'] - src_constituents: {'ukr'} - tgt_constituents: {'nld'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/ukr-nld/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/ukr-nld/opus-2020-06-17.test.txt - src_alpha3: ukr - tgt_alpha3: nld - short_pair: uk-nl - chrF2_score: 0.6559999999999999 - bleu: 48.7 - brevity_penalty: 0.985 - ref_len: 59943.0 - src_name: Ukrainian - tgt_name: Dutch - train_date: 2020-06-17 - src_alpha2: uk - tgt_alpha2: nl - prefer_old: False - long_pair: ukr-nld - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-yo-fr
2dedb0874c933a299a2718fae31376941d392a96
2021-09-11T10:52:56.000Z
[ "pytorch", "marian", "text2text-generation", "yo", "fr", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-yo-fr
8
null
transformers
12,940
--- tags: - translation license: apache-2.0 --- ### opus-mt-yo-fr * source languages: yo * target languages: fr * OPUS readme: [yo-fr](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/yo-fr/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/yo-fr/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/yo-fr/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/yo-fr/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.yo.fr | 24.1 | 0.408 |
Helsinki-NLP/opus-mt-zlw-en
31425dba92443342042ba8bdca4e6da9756c6c1f
2020-08-21T14:42:52.000Z
[ "pytorch", "marian", "text2text-generation", "pl", "cs", "zlw", "en", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-zlw-en
8
null
transformers
12,941
--- language: - pl - cs - zlw - en tags: - translation license: apache-2.0 --- ### zlw-eng * source group: West Slavic languages * target group: English * OPUS readme: [zlw-eng](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/zlw-eng/README.md) * model: transformer * source language(s): ces csb_Latn dsb hsb pol * target language(s): eng * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus2m-2020-08-01.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/zlw-eng/opus2m-2020-08-01.zip) * test set translations: [opus2m-2020-08-01.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zlw-eng/opus2m-2020-08-01.test.txt) * test set scores: [opus2m-2020-08-01.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zlw-eng/opus2m-2020-08-01.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | newssyscomb2009-ceseng.ces.eng | 25.7 | 0.536 | | newstest2009-ceseng.ces.eng | 24.6 | 0.530 | | newstest2010-ceseng.ces.eng | 25.0 | 0.540 | | newstest2011-ceseng.ces.eng | 25.9 | 0.539 | | newstest2012-ceseng.ces.eng | 24.8 | 0.533 | | newstest2013-ceseng.ces.eng | 27.8 | 0.551 | | newstest2014-csen-ceseng.ces.eng | 30.3 | 0.585 | | newstest2015-encs-ceseng.ces.eng | 27.5 | 0.542 | | newstest2016-encs-ceseng.ces.eng | 29.1 | 0.564 | | newstest2017-encs-ceseng.ces.eng | 26.0 | 0.537 | | newstest2018-encs-ceseng.ces.eng | 27.3 | 0.544 | | Tatoeba-test.ces-eng.ces.eng | 53.3 | 0.691 | | Tatoeba-test.csb-eng.csb.eng | 10.2 | 0.313 | | Tatoeba-test.dsb-eng.dsb.eng | 11.7 | 0.296 | | Tatoeba-test.hsb-eng.hsb.eng | 24.6 | 0.426 | | Tatoeba-test.multi.eng | 51.8 | 0.680 | | Tatoeba-test.pol-eng.pol.eng | 50.4 | 0.667 | ### System Info: - hf_name: zlw-eng - source_languages: zlw - target_languages: eng - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/zlw-eng/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['pl', 'cs', 'zlw', 'en'] - src_constituents: {'csb_Latn', 'dsb', 'hsb', 'pol', 'ces'} - tgt_constituents: {'eng'} - src_multilingual: True - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/zlw-eng/opus2m-2020-08-01.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/zlw-eng/opus2m-2020-08-01.test.txt - src_alpha3: zlw - tgt_alpha3: eng - short_pair: zlw-en - chrF2_score: 0.68 - bleu: 51.8 - brevity_penalty: 0.9620000000000001 - ref_len: 75742.0 - src_name: West Slavic languages - tgt_name: English - train_date: 2020-08-01 - src_alpha2: zlw - tgt_alpha2: en - prefer_old: False - long_pair: zlw-eng - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
HeyLucasLeao/gpt-neo-small-emo-lyrics
31d33a826154409f3b6da1d61c72ff1143e98c50
2021-08-19T14:07:03.000Z
[ "pytorch", "gpt_neo", "text-generation", "transformers" ]
text-generation
false
HeyLucasLeao
null
HeyLucasLeao/gpt-neo-small-emo-lyrics
8
null
transformers
12,942
Create README.md ## Emo Bot #### Model Description This is a finetuned version from GPT-Neo-125M for Generating Music Lyrics by Emo Genre. #### Training data It was trained with 2381 songs by 15 bands that were important to emo culture in the early 2000s, not necessary directly playing on the genre. #### Training Procedure It was finetuned using the Trainer Class available on the Hugging Face library. ##### Learning Rate: **2e-4** ##### Epochs: **40** ##### Colab for Finetuning: https://colab.research.google.com/drive/1jwTYI1AygQf7FV9vCHTWA4Gf5i--sjsD?usp=sharing ##### Colab for Testing: https://colab.research.google.com/drive/1wSP4Wyr1-DTTNQbQps_RCO3ThhH-eeZc?usp=sharing #### Goals My true intention was totally educational, thus making available a this version of the model as a example for future proposes. How to use ``` python from transformers import AutoTokenizer, AutoModelForCausalLM import re if torch.cuda.is_available(): device = torch.device('cuda') else: device = torch.device('cpu') print(device) tokenizer = AutoTokenizer.from_pretrained("HeyLucasLeao/gpt-neo-small-emo-lyrics") model = AutoModelForCausalLM.from_pretrained("HeyLucasLeao/gpt-neo-small-emo-lyrics") model.to('cuda') generated = tokenizer('I miss you',return_tensors='pt').input_ids.cuda() #Generating texts sample_outputs = model.generate(generated, # Use sampling instead of greedy decoding do_sample=True, # Keep only top 3 token with the highest probability top_k=10, # Maximum sequence length max_length=200, # Keep only the most probable tokens with cumulative probability of 95% top_p=0.95, # Changes randomness of generated sequences temperature=2., # Number of sequences to generate num_return_sequences=3) # Decoding and printing sequences for i, sample_output in enumerate(sample_outputs): texto = tokenizer.decode(sample_output.tolist()) regex_padding = re.sub('<|pad|>', '', texto) regex_barra = re.sub('[|+]', '', regex_padding) espaço = re.sub('[ +]', ' ', regex_barra) resultado = re.sub('[\n](2, )', '\n', espaço) print(">> Text {}: {}".format(i+1, resultado + '\n')) """>> Texto 1: I miss you I miss you more than anything And if you change your mind I do it like a change of mind I always do it like theeah Everybody wants a surprise Everybody needs to stay collected I keep your locked and numbered Use this instead: Run like the wind Use this instead: Run like the sun And come back down: You've been replaced Don't want to be the same Tomorrow I don't even need your name The message is on the way make it while you're holding on It's better than it is Everything more security than a parade Im getting security angs the world like a damned soul We're hanging on a queue and the truth is on the way Are you listening? We're getting security Send me your soldiers We're getting blood on""" """>> Texto 2: I miss you And I could forget your name All the words we'd hear You miss me I need you And I need you You were all by my side When we'd talk to no one And I Just to talk to you It's easier than it has to be Except for you You missed my know-all You meant to hug me And I Just want to feel you touch me We'll work up Something wild, just from the inside Just get closer to me I need you You were all by my side When we*d talk to you , you better admit That I'm too broken to be small You're part of me And I need you But I Don't know how But I know I need you Must""" """>> Texto 3: I miss you And I can't lie Inside my head All the hours you've been through If I could change your mind I would give it all away And I'd give it all away Just to give it away To you Now I wish that I could change Just to you I miss you so much If I could change So much I'm looking down At the road The one that's already been Searching for a better way to go So much I need to see it clear topk wish me an ehive I wish I wish I wish I knew I can give well In this lonely night The lonely night I miss you I wish it well If I could change So much I need you""" ```
Huntersx/cola_model
7b85a3e51346c31df81c9148a211b823f897df97
2021-05-18T21:06:41.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
Huntersx
null
Huntersx/cola_model
8
null
transformers
12,943
Entry not found
Iacopo/Shakespear-GPT2
57429ba642a0dc74903cce707892d3c4b245fc92
2022-01-25T13:35:35.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-generation
false
Iacopo
null
Iacopo/Shakespear-GPT2
8
null
transformers
12,944
--- license: mit tags: - generated_from_trainer model-index: - name: output results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # output This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on a dataset of Shakespeare's plays. ## Model description The model is the original gpt-2 model fine-tuned on a custom dataset. ## Intended uses & limitations The model can be used to generate Shakespearean-like text. Consider that because it comes from plays, such a typographical structure might be reproduced. ## Training and evaluation data Trained with Shakespeare's plays corpus. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.18.0 - Tokenizers 0.11.0
ItcastAI/bert_finetunning_test
3bde69c884dca4877f664cdf151fb0a9f03df22c
2021-05-18T21:13:27.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
ItcastAI
null
ItcastAI/bert_finetunning_test
8
null
transformers
12,945
Entry not found
ItuThesis2022MlviNikw/deberta-v3-base
036a91a3a3ec08435b1c9e995912f621c815ca4b
2021-11-29T10:43:35.000Z
[ "pytorch", "deberta-v2", "text-classification", "transformers" ]
text-classification
false
ItuThesis2022MlviNikw
null
ItuThesis2022MlviNikw/deberta-v3-base
8
null
transformers
12,946
Entry not found
Jeska/VaccinChatSentenceClassifierDutch_fromBERTje2_DAdialogQonly
8c326b8f4e32c7c92c5ccce4a2fa88552ffb6d45
2021-12-07T15:55:12.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
Jeska
null
Jeska/VaccinChatSentenceClassifierDutch_fromBERTje2_DAdialogQonly
8
null
transformers
12,947
--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: VaccinChatSentenceClassifierDutch_fromBERTje2_DAdialogQonly results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # VaccinChatSentenceClassifierDutch_fromBERTje2_DAdialogQonly This model is a fine-tuned version of [outputDAQonly/checkpoint-8710](https://huggingface.co/outputDAQonly/checkpoint-8710) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5008 - Accuracy: 0.9068 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06 - lr_scheduler_type: linear - num_epochs: 15.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 4.0751 | 1.0 | 1320 | 3.1674 | 0.4086 | | 2.5619 | 2.0 | 2640 | 2.0335 | 0.6426 | | 1.8549 | 3.0 | 3960 | 1.3537 | 0.7861 | | 1.106 | 4.0 | 5280 | 0.9515 | 0.8519 | | 0.6698 | 5.0 | 6600 | 0.7152 | 0.8757 | | 0.4497 | 6.0 | 7920 | 0.5838 | 0.8921 | | 0.2626 | 7.0 | 9240 | 0.5300 | 0.8940 | | 0.1762 | 8.0 | 10560 | 0.4984 | 0.8958 | | 0.119 | 9.0 | 11880 | 0.4906 | 0.9059 | | 0.0919 | 10.0 | 13200 | 0.4896 | 0.8995 | | 0.0722 | 11.0 | 14520 | 0.5012 | 0.9022 | | 0.0517 | 12.0 | 15840 | 0.4951 | 0.9040 | | 0.0353 | 13.0 | 17160 | 0.4988 | 0.9040 | | 0.0334 | 14.0 | 18480 | 0.5035 | 0.9049 | | 0.0304 | 15.0 | 19800 | 0.5008 | 0.9068 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0 - Datasets 1.16.1 - Tokenizers 0.10.3
LysandreJik/test-upload
cd511825e20f543b82535d6ef30bfecd107ff391
2022-01-28T16:56:40.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
LysandreJik
null
LysandreJik/test-upload
8
null
transformers
12,948
Entry not found
KBLab/albert-base-swedish-cased-alpha
c5f8b9805e0f6a30d7b8bcd63d1371fa73f395ff
2022-07-28T14:08:17.000Z
[ "pytorch", "albert", "sv", "transformers" ]
null
false
KBLab
null
KBLab/albert-base-swedish-cased-alpha
8
null
transformers
12,949
--- language: sv --- # Swedish BERT Models The National Library of Sweden / KBLab releases three pretrained language models based on BERT and ALBERT. The models are trained on approximately 15-20GB of text (200M sentences, 3000M tokens) from various sources (books, news, government publications, swedish wikipedia and internet forums) aiming to provide a representative BERT model for Swedish text. A more complete description will be published later on. The following three models are currently available: - **bert-base-swedish-cased** (*v1*) - A BERT trained with the same hyperparameters as first published by Google. - **bert-base-swedish-cased-ner** (*experimental*) - a BERT fine-tuned for NER using SUC 3.0. - **albert-base-swedish-cased-alpha** (*alpha*) - A first attempt at an ALBERT for Swedish. All models are cased and trained with whole word masking. ## Files | **name** | **files** | |---------------------------------|-----------| | bert-base-swedish-cased | [config](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased/config.json), [vocab](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased/vocab.txt), [pytorch_model.bin](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased/pytorch_model.bin) | | bert-base-swedish-cased-ner | [config](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased-ner/config.json), [vocab](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased-ner/vocab.txt) [pytorch_model.bin](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased-ner/pytorch_model.bin) | | albert-base-swedish-cased-alpha | [config](https://s3.amazonaws.com/models.huggingface.co/bert/KB/albert-base-swedish-cased-alpha/config.json), [sentencepiece model](https://s3.amazonaws.com/models.huggingface.co/bert/KB/albert-base-swedish-cased-alpha/spiece.model), [pytorch_model.bin](https://s3.amazonaws.com/models.huggingface.co/bert/KB/albert-base-swedish-cased-alpha/pytorch_model.bin) | TensorFlow model weights will be released soon. ## Usage requirements / installation instructions The examples below require Huggingface Transformers 2.4.1 and Pytorch 1.3.1 or greater. For Transformers<2.4.0 the tokenizer must be instantiated manually and the `do_lower_case` flag parameter set to `False` and `keep_accents` to `True` (for ALBERT). To create an environment where the examples can be run, run the following in an terminal on your OS of choice. ``` # git clone https://github.com/Kungbib/swedish-bert-models # cd swedish-bert-models # python3 -m venv venv # source venv/bin/activate # pip install --upgrade pip # pip install -r requirements.txt ``` ### BERT Base Swedish A standard BERT base for Swedish trained on a variety of sources. Vocabulary size is ~50k. Using Huggingface Transformers the model can be loaded in Python as follows: ```python from transformers import AutoModel,AutoTokenizer tok = AutoTokenizer.from_pretrained('KBLab/bert-base-swedish-cased') model = AutoModel.from_pretrained('KBLab/bert-base-swedish-cased') ``` ### BERT base fine-tuned for Swedish NER This model is fine-tuned on the SUC 3.0 dataset. Using the Huggingface pipeline the model can be easily instantiated. For Transformer<2.4.1 it seems the tokenizer must be loaded separately to disable lower-casing of input strings: ```python from transformers import pipeline nlp = pipeline('ner', model='KB/bert-base-swedish-cased-ner', tokenizer='KB/bert-base-swedish-cased-ner') nlp('Idag släpper KB tre språkmodeller.') ``` Running the Python code above should produce in something like the result below. Entity types used are `TME` for time, `PRS` for personal names, `LOC` for locations, `EVN` for events and `ORG` for organisations. These labels are subject to change. ```python [ { 'word': 'Idag', 'score': 0.9998126029968262, 'entity': 'TME' }, { 'word': 'KB', 'score': 0.9814832210540771, 'entity': 'ORG' } ] ``` The BERT tokenizer often splits words into multiple tokens, with the subparts starting with `##`, for example the string `Engelbert kör Volvo till Herrängens fotbollsklubb` gets tokenized as `Engel ##bert kör Volvo till Herr ##ängens fotbolls ##klubb`. To glue parts back together one can use something like this: ```python text = 'Engelbert tar Volvon till Tele2 Arena för att titta på Djurgården IF ' +\ 'som spelar fotboll i VM klockan två på kvällen.' l = [] for token in nlp(text): if token['word'].startswith('##'): l[-1]['word'] += token['word'][2:] else: l += [ token ] print(l) ``` Which should result in the following (though less cleanly formatted): ```python [ { 'word': 'Engelbert', 'score': 0.99..., 'entity': 'PRS'}, { 'word': 'Volvon', 'score': 0.99..., 'entity': 'OBJ'}, { 'word': 'Tele2', 'score': 0.99..., 'entity': 'LOC'}, { 'word': 'Arena', 'score': 0.99..., 'entity': 'LOC'}, { 'word': 'Djurgården', 'score': 0.99..., 'entity': 'ORG'}, { 'word': 'IF', 'score': 0.99..., 'entity': 'ORG'}, { 'word': 'VM', 'score': 0.99..., 'entity': 'EVN'}, { 'word': 'klockan', 'score': 0.99..., 'entity': 'TME'}, { 'word': 'två', 'score': 0.99..., 'entity': 'TME'}, { 'word': 'på', 'score': 0.99..., 'entity': 'TME'}, { 'word': 'kvällen', 'score': 0.54..., 'entity': 'TME'} ] ``` ### ALBERT base The easiest way to do this is, again, using Huggingface Transformers: ```python from transformers import AutoModel,AutoTokenizer tok = AutoTokenizer.from_pretrained('KBLab/albert-base-swedish-cased-alpha'), model = AutoModel.from_pretrained('KBLab/albert-base-swedish-cased-alpha') ``` ## Acknowledgements ❤️ - Resources from Stockholms University, Umeå University and Swedish Language Bank at Gothenburg University were used when fine-tuning BERT for NER. - Model pretraining was made partly in-house at the KBLab and partly (for material without active copyright) with the support of Cloud TPUs from Google's TensorFlow Research Cloud (TFRC). - Models are hosted on S3 by Huggingface 🤗
KoichiYasuoka/roberta-base-thai-spm
335a1cfcf222d9da58e2137849efec2605ebf5b2
2022-07-16T15:48:22.000Z
[ "pytorch", "roberta", "fill-mask", "th", "transformers", "thai", "masked-lm", "wikipedia", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
KoichiYasuoka
null
KoichiYasuoka/roberta-base-thai-spm
8
null
transformers
12,950
--- language: - "th" tags: - "thai" - "masked-lm" - "wikipedia" license: "apache-2.0" pipeline_tag: "fill-mask" mask_token: "[MASK]" --- # roberta-base-thai-spm ## Model Description This is a RoBERTa model pre-trained on Thai Wikipedia texts. You can fine-tune `roberta-base-thai-spm` for downstream tasks, such as [POS-tagging](https://huggingface.co/KoichiYasuoka/roberta-base-thai-spm-upos), [dependency-parsing](https://huggingface.co/KoichiYasuoka/roberta-base-thai-spm-ud-head), and so on. ## How to Use ```py from transformers import AutoTokenizer,AutoModelForMaskedLM tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-base-thai-spm") model=AutoModelForMaskedLM.from_pretrained("KoichiYasuoka/roberta-base-thai-spm") ```
KoichiYasuoka/roberta-base-thai-syllable
312aee1824957371e6ab0552a7f7d701d4bb4d49
2021-09-16T13:22:08.000Z
[ "pytorch", "roberta", "fill-mask", "th", "transformers", "thai", "masked-lm", "wikipedia", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
KoichiYasuoka
null
KoichiYasuoka/roberta-base-thai-syllable
8
null
transformers
12,951
--- language: - "th" tags: - "thai" - "masked-lm" - "wikipedia" license: "apache-2.0" pipeline_tag: "fill-mask" mask_token: "<mask>" widget: - text: "แผนกนี้กำลัง<mask>กับความท้าทายใหม่" --- # roberta-base-thai-syllable ## Model Description This is a RoBERTa model pre-trained on Thai Wikipedia texts, derived from [wangchanberta-base-wiki-syllable](https://huggingface.co/airesearch/wangchanberta-base-wiki-syllable). Character-embeddings are modified to use BertTokenizerFast. You can fine-tune `roberta-base-thai-syllable` for downstream tasks, such as [POS-tagging](https://huggingface.co/KoichiYasuoka/roberta-base-thai-syllable-upos), dependency-parsing, and so on. ## How to Use ```py from transformers import AutoTokenizer,AutoModelForMaskedLM tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-base-thai-syllable") model=AutoModelForMaskedLM.from_pretrained("KoichiYasuoka/roberta-base-thai-syllable") ```
LeBenchmark/wav2vec2-FR-1K-base
f3f865bff01e834613753ff782cdc90771680c6c
2021-11-30T04:22:15.000Z
[ "pytorch", "wav2vec2", "feature-extraction", "fr", "transformers", "license:apache-2.0" ]
feature-extraction
false
LeBenchmark
null
LeBenchmark/wav2vec2-FR-1K-base
8
null
transformers
12,952
--- language: "fr" thumbnail: tags: - wav2vec2 license: "apache-2.0" --- # LeBenchmark: wav2vec2 base model trained on 1K hours of French speech LeBenchmark provides an ensemble of pretrained wav2vec2 models on different French datasets containing spontaneous, read, and broadcasted speech. For more information on the different benchmarks that can be used to evaluate the wav2vec2 models, please refer to our paper at: [Task Agnostic and Task Specific Self-Supervised Learning from Speech with LeBenchmark](https://openreview.net/pdf?id=TSvj5dmuSd) ## Model and data descriptions We release four different models that can be found under our HuggingFace organization. Two different wav2vec2 architectures *Base* and *Large* are coupled with our small (1K), medium (3K), and large (7K) corpus. A larger one should come later. In short: - [wav2vec2-FR-7K-large](https://huggingface.co/LeBenchmark/wav2vec2-FR-7K-large): Large wav2vec2 trained on 7.6K hours of French speech (1.8K Males / 1.0K Females / 4.8K unknown). - [wav2vec2-FR-7K-base](https://huggingface.co/LeBenchmark/wav2vec2-FR-7K-base): Base wav2vec2 trained on 7.6K hours of French speech (1.8K Males / 1.0K Females / 4.8K unknown). - [wav2vec2-FR-3K-large](https://huggingface.co/LeBenchmark/wav2vec2-FR-3K-large): Large wav2vec2 trained on 2.9K hours of French speech (1.8K Males / 1.0K Females / 0.1K unknown). - [wav2vec2-FR-3K-base](https://huggingface.co/LeBenchmark/wav2vec2-FR-3K-base): Base wav2vec2 trained on 2.9K hours of French speech (1.8K Males / 1.0K Females / 0.1K unknown). - [wav2vec2-FR-2.6K-base](https://huggingface.co/LeBenchmark/wav2vec2-FR-2.6K-base): Base wav2vec2 trained on 2.6K hours of French speech (**no spontaneous speech**). - [wav2vec2-FR-1K-large](https://huggingface.co/LeBenchmark/wav2vec2-FR-1K-large): Large wav2vec2 trained on 1K hours of French speech (0.5K Males / 0.5K Females). - [wav2vec2-FR-1K-base](https://huggingface.co/LeBenchmark/wav2vec2-FR-1K-base): Base wav2vec2 trained on 1K hours of French speech (0.5K Males / 0.5K Females). ## Intended uses & limitations Pretrained wav2vec2 models are distributed under the Apache-2.0 license. Hence, they can be reused extensively without strict limitations. However, benchmarks and data may be linked to corpora that are not completely open-sourced. ## Fine-tune with Fairseq for ASR with CTC As our wav2vec2 models were trained with Fairseq, then can be used in the different tools that they provide to fine-tune the model for ASR with CTC. The full procedure has been nicely summarized in [this blogpost](https://huggingface.co/blog/fine-tune-wav2vec2-english). Please note that due to the nature of CTC, speech-to-text results aren't expected to be state-of-the-art. Moreover, future features might appear depending on the involvement of Fairseq and HuggingFace on this part. ## Integrate to SpeechBrain for ASR, Speaker, Source Separation ... Pretrained wav2vec models recently gained in popularity. At the same time, [SpeechBrain toolkit](https://speechbrain.github.io) came out, proposing a new and simpler way of dealing with state-of-the-art speech & deep-learning technologies. While it currently is in beta, SpeechBrain offers two different ways of nicely integrating wav2vec2 models that were trained with Fairseq i.e our LeBenchmark models! 1. Extract wav2vec2 features on-the-fly (with a frozen wav2vec2 encoder) to be combined with any speech-related architecture. Examples are: E2E ASR with CTC+Att+Language Models; Speaker Recognition or Verification, Source Separation ... 2. *Experimental:* To fully benefit from wav2vec2, the best solution remains to fine-tune the model while you train your downstream task. This is very simply allowed within SpeechBrain as just a flag needs to be turned on. Thus, our wav2vec2 models can be fine-tuned while training your favorite ASR pipeline or Speaker Recognizer. **If interested, simply follow this [tutorial](https://colab.research.google.com/drive/17Hu1pxqhfMisjkSgmM2CnZxfqDyn2hSY?usp=sharing)** ## Referencing LeBenchmark ``` @article{Evain2021LeBenchmarkAR, title={LeBenchmark: A Reproducible Framework for Assessing Self-Supervised Representation Learning from Speech}, author={Sol{\`e}ne Evain and Ha Nguyen and Hang Le and Marcely Zanon Boito and Salima Mdhaffar and Sina Alisamir and Ziyi Tong and N. Tomashenko and Marco Dinarelli and Titouan Parcollet and A. Allauzen and Y. Est{\`e}ve and B. Lecouteux and F. Portet and S. Rossato and F. Ringeval and D. Schwab and L. Besacier}, journal={ArXiv}, year={2021}, volume={abs/2104.11462} } ```
LegolasTheElf/Wav2Vec2_xls_r_lm_300m_hi
f5d3dcae290aefd01439ec5acd5f02cf5c1d09f5
2022-03-23T18:33:41.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "hi", "dataset:mozilla-foundation/common_voice_7_0", "transformers", "Openslr Multilingual", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
LegolasTheElf
null
LegolasTheElf/Wav2Vec2_xls_r_lm_300m_hi
8
null
transformers
12,953
--- language: - hi license: apache-2.0 tags: - Openslr Multilingual - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_7_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: Wav2Vec2_xls_r_300m_hi_final results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7.0 type: mozilla-foundation/common_voice_7_0 args: hi metrics: - name: Test WER type: wer value: 34.21 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Wav2Vec2_xls_r_300m_hi_final This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the ['Openslr Multilingual and code-switching ASR challenge'](http://www.openslr.org/103/) dataset and ['mozilla-foundation/common_voice_7_0'](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0) dataset. It achieves the following results on the evaluation set: - Loss: 0.3035 - Wer: 0.3137 - Cer: 0.0972 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 8 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 0.9821 | 0.64 | 400 | 0.5059 | 0.4783 | 0.1573 | | 0.6861 | 1.28 | 800 | 0.4201 | 0.4247 | 0.1356 | | 0.585 | 1.92 | 1200 | 0.3797 | 0.3811 | 0.1210 | | 0.5193 | 2.56 | 1600 | 0.3577 | 0.3652 | 0.1152 | | 0.4583 | 3.21 | 2000 | 0.3422 | 0.3519 | 0.1111 | | 0.4282 | 3.85 | 2400 | 0.3261 | 0.3450 | 0.1071 | | 0.3951 | 4.49 | 2800 | 0.3201 | 0.3325 | 0.1048 | | 0.3619 | 5.13 | 3200 | 0.3167 | 0.3296 | 0.1030 | | 0.345 | 5.77 | 3600 | 0.3157 | 0.3210 | 0.1013 | | 0.338 | 6.41 | 4000 | 0.3051 | 0.3143 | 0.0982 | | 0.3155 | 7.05 | 4400 | 0.3059 | 0.3154 | 0.0986 | | 0.3057 | 7.69 | 4800 | 0.3035 | 0.3137 | 0.0972 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
LeoCordoba/beto2beto-cc-news-es-titles
75342b7eb65540174cb71ea38eb6d2832ede72b9
2021-09-08T17:15:01.000Z
[ "pytorch", "encoder-decoder", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
LeoCordoba
null
LeoCordoba/beto2beto-cc-news-es-titles
8
null
transformers
12,954
\n--- language: es tags: - summarization - spanish - beto2beto - encoder-decoder license: apache-2.0 datasets: - LeoCordoba/CC-NEWS-ES-titles model-index: - name: beto2beto-ccnews-titles-es results: - task: name: Abstractive Text Summarization type: abstractive-text-summarization dataset: name: "CCNEWS-ES-titles" type: LeoCordoba/CC-NEWS-ES-titles metrics: - name: Validation ROGUE-1 type: rogue-1 value: 23.7478 - name: Validation ROGUE-2 type: rogue-2 value: 7.3616 - name: Validation ROGUE-L type: rogue-l value: 20.6615 - name: Validation ROGUE-Lsum type: rogue-lsum value: 20.7371 - name: Test ROGUE-1 type: rogue-1 value: 23.7415 - name: Test ROGUE-2 type: rogue-2 value: 7.3548 - name: Test ROGUE-L type: rogue-l value: 20.746 - name: Test ROGUE-Lsum type: rogue-lsum value: 20.8149 widget: - text: | La chocotorta, el tradicional y práctico antojo dulce de los argentinos, fue elegida como el mejor postre del mundo por críticos de restaurants internacionales, a casi 40 años de su creación. El ránking Taste Atlas ubicó primero en su lista al postre insignia local de galletitas, queso crema y dulce de leche, por delante del helado de pistacho italiano y la tarta alemana de manzana. “Este postre argentino sin hornear fue influenciado por la cocina italiana y se inspiró en el famoso tiramisú italiano. Está elaborado con tres ingredientes básicos argentinos: galletas de chocolate, dulce de leche y queso crema”, explica la página web que exhorta a los turistas de todo el mundo a que prueben la chocotorta. En la votación, superó también a los waffles belgas y el zserbó húngaro. A nivel local le sigue el alfajor, con 4,2 puntos contra los 4,7 de la torta. En el texto que acompaña al listón dorado de “postre número uno“, los expertos enseñan además cómo se hacen las chocotortas, paso por paso. “Las galletas se ablandan en leche y se cubren con una combinación de queso crema y dulce de leche. Las formas de la chocotorta pueden variar, mientras que las galletas se pueden remojar con leche con chocolate, café o incluso licor de café”, detallan. Por último, adjudican su creación a una “campaña de márketing” diseñada para promover las galletitas icónicas que le dan su nombre. La chocotorta, infaltable en los cumpleaños argentinos, fue creada en 1982 por una creativa de las agencias más importantes del país, Marité Mabragaña. --- ## Hyperparameters { "num_train_epochs": 3, "seed": 7, "summary_column": "output_text", "text_column": "text", "encoder_max_length" : 512, "decoder_max_length" :36, "batch_size" : 256 } ## Usage ## Results | key | value | | --- | ----- | | eval loss | 4.539857387542725| | eval_rouge1 |23.7478 | | eval_rouge2 |7.3616 | | eval_rougeL |20.6615 | | eval_rougeLsum |20.7371 | | eval_gen_len| 16.1806| |test loss | 4.515065670013428| | test_rouge1 | 23.7415| | test_rouge2 | 7.3548| | test_rougeL | 20.746| | test_rougeLsum | 20.8149| | test_gen_len| 16.1926|
Li/bert-base-uncased-qnli
009f3c2d7db527527bd176e343cd5ce6fe4da0ae
2021-09-23T16:45:03.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Li
null
Li/bert-base-uncased-qnli
8
null
transformers
12,955
[bert-base-uncased](https://huggingface.co/bert-base-uncased) fine-tuned on the [QNLI](https://huggingface.co/datasets/glue) dataset for 2 epochs. The fine-tuning process was performed on 2x NVIDIA GeForce GTX 1080 Ti GPUs (11GB). The parameters are: ``` max_seq_length=512 per_device_train_batch_size=8 gradient_accumulation_steps=2 total train batch size (w. parallel, distributed & accumulation) = 32 learning_rate=3e-5 ``` ## Evaluation results eval_accuracy = 0.916895 ## More information The QNLI (Question-answering NLI) dataset is a Natural Language Inference dataset automatically derived from the Stanford Question Answering Dataset v1.1 (SQuAD). SQuAD v1.1 consists of question-paragraph pairs, where one of the sentences in the paragraph (drawn from Wikipedia) contains the answer to the corresponding question (written by an annotator). The dataset was converted into sentence pair classification by forming a pair between each question and each sentence in the corresponding context, and filtering out pairs with low lexical overlap between the question and the context sentence. The task is to determine whether the context sentence contains the answer to the question. This modified version of the original task removes the requirement that the model select the exact answer, but also removes the simplifying assumptions that the answer is always present in the input and that lexical overlap is a reliable cue. The QNLI dataset is part of GLEU benchmark. (source: https://paperswithcode.com/dataset/qnli)
LucasS/robertaBaseABSA
2c36eff44769de4a591ff18d14c47455f8023210
2021-09-02T17:02:03.000Z
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
LucasS
null
LucasS/robertaBaseABSA
8
null
transformers
12,956
Entry not found
Luciano/gpt2-small-portuguese-finetuned-peticoes
01181a583f77daf24224f4938892100f942145f4
2022-02-18T10:19:55.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "pt", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-generation
false
Luciano
null
Luciano/gpt2-small-portuguese-finetuned-peticoes
8
null
transformers
12,957
--- language: - pt license: mit tags: - generated_from_trainer model-index: - name: gpt2-small-portuguese-finetuned-peticoes results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-small-portuguese-finetuned-peticoes This model is a fine-tuned version of [pierreguillou/gpt2-small-portuguese](https://huggingface.co/pierreguillou/gpt2-small-portuguese) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.4062 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 404 | 3.5455 | | 3.8364 | 2.0 | 808 | 3.4326 | | 3.4816 | 3.0 | 1212 | 3.4062 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
Lumos/yahoo2
47ad88c8fd4e8b36255c246862fb9305980ce884
2022-01-01T03:19:20.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Lumos
null
Lumos/yahoo2
8
null
transformers
12,958
Entry not found
M47Labs/arabert_multiclass_news
7be4b01afba48a5fdda69b3be3eeda6ebc01344a
2021-12-29T12:56:53.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
M47Labs
null
M47Labs/arabert_multiclass_news
8
null
transformers
12,959
Entry not found
Maha/OGBV-gender-twtrobertabase-en-davidson
de047cfe28fc39832124fe4c916cc5c4e15f0afc
2022-02-10T05:34:54.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "transformers" ]
text-classification
false
Maha
null
Maha/OGBV-gender-twtrobertabase-en-davidson
8
null
transformers
12,960
Entry not found
Media1129/keyword-tag-model-8000-9-16_more_ingredient
6209fa0f96c9e3eacf4bf36a0106365074643ca3
2021-09-17T02:34:08.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
Media1129
null
Media1129/keyword-tag-model-8000-9-16_more_ingredient
8
null
transformers
12,961
Entry not found
MickyMike/7-GPT2SP-jirasoftware
c242593601de6b4858581b956048703ea48fbade
2021-08-30T18:29:21.000Z
[ "pytorch", "gpt2", "text-classification", "transformers" ]
text-classification
false
MickyMike
null
MickyMike/7-GPT2SP-jirasoftware
8
null
transformers
12,962
Entry not found
NDugar/v2xl-again-mnli
267a390f88cb4b8bdb56066f95ba55d81a34f91f
2021-12-22T20:20:12.000Z
[ "pytorch", "deberta-v2", "text-classification", "en", "arxiv:2006.03654", "transformers", "deberta-v1", "deberta-mnli", "license:mit", "zero-shot-classification" ]
zero-shot-classification
false
NDugar
null
NDugar/v2xl-again-mnli
8
null
transformers
12,963
--- language: en tags: - deberta-v1 - deberta-mnli tasks: mnli thumbnail: https://huggingface.co/front/thumbnails/microsoft.png license: mit pipeline_tag: zero-shot-classification --- ## DeBERTa: Decoding-enhanced BERT with Disentangled Attention [DeBERTa](https://arxiv.org/abs/2006.03654) improves the BERT and RoBERTa models using disentangled attention and enhanced mask decoder. It outperforms BERT and RoBERTa on majority of NLU tasks with 80GB training data. Please check the [official repository](https://github.com/microsoft/DeBERTa) for more details and updates. This is the DeBERTa large model fine-tuned with MNLI task. #### Fine-tuning on NLU tasks We present the dev results on SQuAD 1.1/2.0 and several GLUE benchmark tasks. | Model | SQuAD 1.1 | SQuAD 2.0 | MNLI-m/mm | SST-2 | QNLI | CoLA | RTE | MRPC | QQP |STS-B | |---------------------------|-----------|-----------|-------------|-------|------|------|--------|-------|-------|------| | | F1/EM | F1/EM | Acc | Acc | Acc | MCC | Acc |Acc/F1 |Acc/F1 |P/S | | BERT-Large | 90.9/84.1 | 81.8/79.0 | 86.6/- | 93.2 | 92.3 | 60.6 | 70.4 | 88.0/- | 91.3/- |90.0/- | | RoBERTa-Large | 94.6/88.9 | 89.4/86.5 | 90.2/- | 96.4 | 93.9 | 68.0 | 86.6 | 90.9/- | 92.2/- |92.4/- | | XLNet-Large | 95.1/89.7 | 90.6/87.9 | 90.8/- | 97.0 | 94.9 | 69.0 | 85.9 | 90.8/- | 92.3/- |92.5/- | | [DeBERTa-Large](https://huggingface.co/microsoft/deberta-large)<sup>1</sup> | 95.5/90.1 | 90.7/88.0 | 91.3/91.1| 96.5|95.3| 69.5| 91.0| 92.6/94.6| 92.3/- |92.8/92.5 | | [DeBERTa-XLarge](https://huggingface.co/microsoft/deberta-xlarge)<sup>1</sup> | -/- | -/- | 91.5/91.2| 97.0 | - | - | 93.1 | 92.1/94.3 | - |92.9/92.7| | [DeBERTa-V2-XLarge](https://huggingface.co/microsoft/deberta-v2-xlarge)<sup>1</sup>|95.8/90.8| 91.4/88.9|91.7/91.6| **97.5**| 95.8|71.1|**93.9**|92.0/94.2|92.3/89.8|92.9/92.9| |**[DeBERTa-V2-XXLarge](https://huggingface.co/microsoft/deberta-v2-xxlarge)<sup>1,2</sup>**|**96.1/91.4**|**92.2/89.7**|**91.7/91.9**|97.2|**96.0**|**72.0**| 93.5| **93.1/94.9**|**92.7/90.3** |**93.2/93.1** | -------- #### Notes. - <sup>1</sup> Following RoBERTa, for RTE, MRPC, STS-B, we fine-tune the tasks based on [DeBERTa-Large-MNLI](https://huggingface.co/microsoft/deberta-large-mnli), [DeBERTa-XLarge-MNLI](https://huggingface.co/microsoft/deberta-xlarge-mnli), [DeBERTa-V2-XLarge-MNLI](https://huggingface.co/microsoft/deberta-v2-xlarge-mnli), [DeBERTa-V2-XXLarge-MNLI](https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli). The results of SST-2/QQP/QNLI/SQuADv2 will also be slightly improved when start from MNLI fine-tuned models, however, we only report the numbers fine-tuned from pretrained base models for those 4 tasks. - <sup>2</sup> To try the **XXLarge** model with **[HF transformers](https://huggingface.co/transformers/main_classes/trainer.html)**, you need to specify **--sharded_ddp** ```bash cd transformers/examples/text-classification/ export TASK_NAME=mrpc python -m torch.distributed.launch --nproc_per_node=8 run_glue.py --model_name_or_path microsoft/deberta-v2-xxlarge \\\n--task_name $TASK_NAME --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 \\\n--learning_rate 3e-6 --num_train_epochs 3 --output_dir /tmp/$TASK_NAME/ --overwrite_output_dir --sharded_ddp --fp16 ``` ### Citation If you find DeBERTa useful for your work, please cite the following paper: ``` latex @inproceedings{ he2021deberta, title={DEBERTA: DECODING-ENHANCED BERT WITH DISENTANGLED ATTENTION}, author={Pengcheng He and Xiaodong Liu and Jianfeng Gao and Weizhu Chen}, booktitle={International Conference on Learning Representations}, year={2021}, url={https://openreview.net/forum?id=XPZIaotutsD} } ```
NYTK/translation-bart-hu-en
286ce59a2e57eb2961b48430e8a63395d50ed568
2022-02-14T13:28:13.000Z
[ "pytorch", "bart", "text2text-generation", "hu", "en", "transformers", "translation", "license:gpl", "autotrain_compatible" ]
translation
false
NYTK
null
NYTK/translation-bart-hu-en
8
null
transformers
12,964
--- language: - hu - en tags: - translation license: gpl metrics: - sacrebleu - chrf widget: - text: "Szeretném megragadni az alkalmat uram, hogy az engedélyét kérjem, hogy találkozhassak a lányával." --- # BART Translation model For further models, scripts and details, see [our repository](https://github.com/nytud/machine-translation) or [our demo site](https://juniper.nytud.hu/demo/nlp). - Source language: Hungarian - Target language: English - Pretrained on English WikiText-103 and Hungarian Wikipedia - Finetuned on subcorpora from OPUS - Segments: 56.837.602 ## Limitations - tokenized input text (tokenizer: [HuSpaCy](https://huggingface.co/huspacy)) ## Results | Model | BLEU | chrF-3 | | ------------- | ------------- | ------------- | | Google en-hu | 25.30 | 54.08 | | **BART-base-enhu** | **34.38** | **58.88** | | Google hu-en| 34.48 | 59.59 | | **BART-base-huen** | **38.03** | **61,37** | ## Citation If you use this model, please cite the following paper: ``` @inproceedings {yang-bart, title = {{BARTerezzünk! - Messze, messze, messze a világtól, - BART kísérleti modellek magyar nyelvre}}, booktitle = {XVIII. Magyar Számítógépes Nyelvészeti Konferencia}, year = {2022}, publisher = {Szegedi Tudományegyetem, Informatikai Intézet}, address = {Szeged, Magyarország}, author = {{Yang Zijian Győző}}, pages = {15--29} } ```
NbAiLab/roberta_NCC_des_128
25ccad90aef0d036a657db364bc0a9af962baa31
2022-01-04T15:39:34.000Z
[ "pytorch", "jax", "tensorboard", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
NbAiLab
null
NbAiLab/roberta_NCC_des_128
8
null
transformers
12,965
Just for performing some experiments. Do not use.
Neuralearn/autonlp-Summarization-AutoNLP-24135330
64eb31f79dc0bdfbadd1b31b33040796738dcd2b
2021-10-21T21:44:05.000Z
[ "pytorch", "pegasus", "text2text-generation", "unk", "dataset:Neuralearn/autonlp-data-Summarization-AutoNLP", "transformers", "autonlp", "co2_eq_emissions", "autotrain_compatible" ]
text2text-generation
false
Neuralearn
null
Neuralearn/autonlp-Summarization-AutoNLP-24135330
8
null
transformers
12,966
--- tags: autonlp language: unk widget: - text: "I love AutoNLP 🤗" datasets: - Neuralearn/autonlp-data-Summarization-AutoNLP co2_eq_emissions: 155.8470724053265 --- # Model Trained Using AutoNLP - Problem type: Summarization - Model ID: 24135330 - CO2 Emissions (in grams): 155.8470724053265 ## Validation Metrics - Loss: 1.369327425956726 - Rouge1: 52.6656 - Rouge2: 30.5879 - RougeL: 40.1268 - RougeLsum: 47.4438 - Gen Len: 75.4625 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/Neuralearn/autonlp-Summarization-AutoNLP-24135330 ```
Norod78/hebrew_stories-gpt_neo-small
34fc687756168731925b364de336a06ccf2831d7
2022-07-04T07:27:13.000Z
[ "pytorch", "jax", "gpt_neo", "text-generation", "he", "transformers", "license:mit" ]
text-generation
false
Norod78
null
Norod78/hebrew_stories-gpt_neo-small
8
null
transformers
12,967
--- language: he thumbnail: https://avatars1.githubusercontent.com/u/3617152?norod.jpg widget: - text: "תריסר מכשפות סג" - text: "\n\nהאיש האחרון בעולם /" - text: "פעם אחת, לפני שנים רבות" - text: "הרמיוני הסתירה את" - text: "לפתע, אור ירוק" license: mit --- # hebrew_stories-gpt_neo-small Hebrew story-text generation model, fined tuned upon [hebrew-gpt_neo-small](https://huggingface.co/Norod78/hebrew-gpt_neo-small) which was trained using [EleutherAI's gpt-neo](https://github.com/EleutherAI/gpt-neo). ## Dataset Text from various Hebrew books
Parsa/BBB_prediction_classification_SMILES
4671f57c206cc150f94a982616c26b76cc95048b
2022-02-23T07:41:24.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
Parsa
null
Parsa/BBB_prediction_classification_SMILES
8
null
transformers
12,968
A fine-tuned model based on'DeepChem/ChemBERTa-77M-MLM'for Blood brain barrier permeability prediction based on SMILES string. There are also BiLSTM models available as well as these two models in 'https://github.com/mephisto121/BBBNLP if you want to check them all and check the codes too. [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1jGYf3sq93yO4EbgVaEl3nlClrVatVaXS#scrollTo=AMEdQItmilAw)
Plim/xls-r-300m-cv_8-fr
799632ebe1927aed043c77458bd695664ff11dae
2022-02-09T13:59:08.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "fr", "transformers", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Plim
null
Plim/xls-r-300m-cv_8-fr
8
null
transformers
12,969
--- language: - fr license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer model-index: - name: XLS-R-300m - French results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: fr metrics: - name: Test WER type: wer value: to recompute with STEP 24000 - name: Test CER type: cer value: to recompute with STEP 24000 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: fr metrics: - name: Test WER type: wer value: 35.29 - name: Test CER type: cer value: 13.94 --- ## Model description This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - FR dataset. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 5.0 (extended to 7.0 with training with checkpoint) - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 2.9114 | 0.29 | 1000 | inf | 0.9997 | | 1.2436 | 0.57 | 2000 | inf | 0.4310 | | 1.0552 | 0.86 | 3000 | inf | 0.3144 | | 1.0044 | 1.15 | 4000 | inf | 0.2814 | | 0.9718 | 1.43 | 5000 | inf | 0.2658 | | 0.9502 | 1.72 | 6000 | inf | 0.2566 | | 0.9418 | 2.01 | 7000 | inf | 0.2476 | | 0.9215 | 2.29 | 8000 | inf | 0.2420 | | 0.9236 | 2.58 | 9000 | inf | 0.2388 | | 0.9014 | 2.87 | 10000 | inf | 0.2354 | | 0.8814 | 3.15 | 11000 | inf | 0.2312 | | 0.8809 | 3.44 | 12000 | inf | 0.2285 | | 0.8717 | 3.73 | 13000 | inf | 0.2263 | | 0.8787 | 4.01 | 14000 | inf | 0.2218 | | 0.8567 | 4.3 | 15000 | inf | 0.2193 | | 0.8488 | 4.59 | 16000 | inf | 0.2187 | | 0.8359 | 4.87 | 17000 | inf | 0.2172 | Training continued with checkpoint from STEP 17000: | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | / | 5.16 | 18000 | inf | 0.2176 | | / | 5.45 | 19000 | inf | 0.2181 | | / | 5.73 | 20000 | inf | 0.2155 | | / | 6.02 | 21000 | inf | 0.2140 | | / | 6.31 | 22000 | inf | 0.2124 | | / | 6.59 | 23000 | inf | 0.2117 | | / | 6.88 | 24000 | inf | 0.2116 | It achieves the best result on the validation set on Step 24000: - Wer: 0.2116 Got some issue with validation loss calculation. ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3.dev0 - Tokenizers 0.11.0 ### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8` with split `test` ```bash python eval.py --model_id Plim/xls-r-300m-cv_8-fr --dataset mozilla-foundation/common_voice_8_0 --config fr --split test ``` 2. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py --model_id Plim/xls-r-300m-cv_8-fr --dataset speech-recognition-community-v2/dev_data --config fr --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ```
Plim/xls-r-300m-lm-fr
9e32bde5d79cf50fc43c14bb9983e706f25ded3a
2022-02-02T23:29:54.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "fr", "transformers", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "model-index" ]
automatic-speech-recognition
false
Plim
null
Plim/xls-r-300m-lm-fr
8
null
transformers
12,970
--- language: - fr tags: - automatic-speech-recognition - mozilla-foundation/common_voice_7_0 - generated_from_trainer model-index: - name: '' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [./checkpoint-6000](https://huggingface.co/./checkpoint-6000) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - FR dataset. It achieves the following results on the evaluation set: - Loss: 0.2619 - Wer: 0.2457 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 2.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.495 | 0.16 | 500 | 3.3883 | 1.0 | | 2.9095 | 0.32 | 1000 | 2.9152 | 1.0000 | | 1.8434 | 0.49 | 1500 | 1.0473 | 0.7446 | | 1.4298 | 0.65 | 2000 | 0.5729 | 0.5130 | | 1.1937 | 0.81 | 2500 | 0.3795 | 0.3450 | | 1.1248 | 0.97 | 3000 | 0.3321 | 0.3052 | | 1.0835 | 1.13 | 3500 | 0.3038 | 0.2805 | | 1.0479 | 1.3 | 4000 | 0.2910 | 0.2689 | | 1.0413 | 1.46 | 4500 | 0.2798 | 0.2593 | | 1.014 | 1.62 | 5000 | 0.2727 | 0.2512 | | 1.004 | 1.78 | 5500 | 0.2646 | 0.2471 | | 0.9949 | 1.94 | 6000 | 0.2619 | 0.2457 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
Proggleb/roberta-base-bne-finetuned-amazon_reviews_multi
68b327ff95ba77740c938e477b1f9c3a81ae179c
2021-08-26T20:21:41.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "dataset:amazon_reviews_multi", "transformers", "generated_from_trainer", "license:cc-by-4.0" ]
text-classification
false
Proggleb
null
Proggleb/roberta-base-bne-finetuned-amazon_reviews_multi
8
null
transformers
12,971
--- license: cc-by-4.0 tags: - generated_from_trainer datasets: - amazon_reviews_multi metrics: - accuracy model_index: - name: roberta-base-bne-finetuned-amazon_reviews_multi results: - task: name: Text Classification type: text-classification dataset: name: amazon_reviews_multi type: amazon_reviews_multi args: es metric: name: Accuracy type: accuracy value: 0.9185 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-bne-finetuned-amazon_reviews_multi This model is a fine-tuned version of [BSC-TeMU/roberta-base-bne](https://huggingface.co/BSC-TeMU/roberta-base-bne) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.3011 - Accuracy: 0.9185 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2427 | 1.0 | 125 | 0.2109 | 0.919 | | 0.0986 | 2.0 | 250 | 0.3011 | 0.9185 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
SCORE/claim3a-distilbert-base-uncased
cd3f79bdc22f79009923253f18e70f2ecdf618a2
2021-12-14T16:48:58.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
SCORE
null
SCORE/claim3a-distilbert-base-uncased
8
null
transformers
12,972
Entry not found
SEBIS/code_trans_t5_small_code_comment_generation_java_multitask_finetune
ca117e59d4c891d6b55ff8392cfe2bb96cc2b6a8
2021-06-23T09:56:52.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_small_code_comment_generation_java_multitask_finetune
8
null
transformers
12,973
--- tags: - summarization widget: - text: "protected String renderUri ( URI uri ) { return uri . toASCIIString ( ) ; }" --- # CodeTrans model for code comment generation java Pretrained model on programming language java using the t5 small model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized java code functions: it works best with tokenized java functions. ## Model description This CodeTrans model is based on the `t5-small` model. It has its own SentencePiece vocabulary model. It used multi-task training on 13 supervised tasks in the software development domain and 7 unsupervised datasets. It is then fine-tuned on the code comment generation task for the java function/method. ## Intended uses & limitations The model could be used to generate the description for the java function or be fine-tuned on other java code tasks. It can be used on unparsed and untokenized java code. However, if the java code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate java function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_small_code_comment_generation_java_multitask_finetune"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_small_code_comment_generation_java_multitask_finetune", skip_special_tokens=True), device=0 ) tokenized_code = "protected String renderUri ( URI uri ) { return uri . toASCIIString ( ) ; }" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/multitask/fine-tuning/code%20comment%20generation/small_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Multi-task Pretraining The model was trained on a single TPU Pod V3-8 for 260,000 steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Fine-tuning This model was then fine-tuned on a single TPU Pod V2-8 for 750,000 steps in total, using sequence length 512 (batch size 256), using only the dataset only containing java code. ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Java | | -------------------- | :------------: | | CodeTrans-ST-Small | 37.98 | | CodeTrans-ST-Base | 38.07 | | CodeTrans-TF-Small | 38.56 | | CodeTrans-TF-Base | 39.06 | | CodeTrans-TF-Large | **39.50** | | CodeTrans-MT-Small | 20.15 | | CodeTrans-MT-Base | 27.44 | | CodeTrans-MT-Large | 34.69 | | CodeTrans-MT-TF-Small | 38.37 | | CodeTrans-MT-TF-Base | 38.90 | | CodeTrans-MT-TF-Large | 39.25 | | State of the art | 38.17 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_small_commit_generation_multitask
da9071406bc8f9a8fb98c0aef25a7bf3d585bcb2
2021-06-23T10:14:38.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_small_commit_generation_multitask
8
null
transformers
12,974
--- tags: - summarization widget: - text: "new file mode 100644 index 000000000 . . 892fda21b Binary files / dev / null and b / src / plugins / gateway / lib / joscar . jar differ" --- # CodeTrans model for git commit message generation Pretrained model on git commit using the t5 small model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized git commit: it works best with tokenized git commit. ## Model description This CodeTrans model is based on the `t5-small` model. It has its own SentencePiece vocabulary model. It used multi-task training on 13 supervised tasks in the software development domain and 7 unsupervised datasets. ## Intended uses & limitations The model could be used to generate the git commit message for the git commit changes or be fine-tuned on other relevant tasks. It can be used on unparsed and untokenized commit changes. However, if the change is tokenized, the performance should be better. ### How to use Here is how to use this model to generate git commit message using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_small_commit_generation_multitask"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_small_commit_generation_multitask", skip_special_tokens=True), device=0 ) tokenized_code = "new file mode 100644 index 000000000 . . 892fda21b Binary files / dev / null and b / src / plugins / gateway / lib / joscar . jar differ" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/multitask/pre-training/commit%20generation/small_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Multi-task Pretraining The model was trained on a single TPU Pod V3-8 for 360,000 steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ## Evaluation results For the git commit message generation task, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Java | | -------------------- | :------------: | | CodeTrans-ST-Small | 39.61 | | CodeTrans-ST-Base | 38.67 | | CodeTrans-TF-Small | 44.22 | | CodeTrans-TF-Base | 44.17 | | CodeTrans-TF-Large | **44.41** | | CodeTrans-MT-Small | 36.17 | | CodeTrans-MT-Base | 39.25 | | CodeTrans-MT-Large | 41.18 | | CodeTrans-MT-TF-Small | 43.96 | | CodeTrans-MT-TF-Base | 44.19 | | CodeTrans-MT-TF-Large | 44.34 | | State of the art | 32.81 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SetFit/deberta-v3-large__sst2__train-16-4
98f81ecb705cf9ce2fdfb57a2293efc558b015fe
2022-02-10T10:48:30.000Z
[ "pytorch", "deberta-v2", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
SetFit
null
SetFit/deberta-v3-large__sst2__train-16-4
8
null
transformers
12,975
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: deberta-v3-large__sst2__train-16-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-large__sst2__train-16-4 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6329 - Accuracy: 0.6392 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6945 | 1.0 | 7 | 0.7381 | 0.2857 | | 0.7072 | 2.0 | 14 | 0.7465 | 0.2857 | | 0.6548 | 3.0 | 21 | 0.7277 | 0.4286 | | 0.5695 | 4.0 | 28 | 0.6738 | 0.5714 | | 0.4615 | 5.0 | 35 | 0.8559 | 0.5714 | | 0.0823 | 6.0 | 42 | 1.0983 | 0.5714 | | 0.0274 | 7.0 | 49 | 1.9937 | 0.5714 | | 0.0106 | 8.0 | 56 | 2.2209 | 0.5714 | | 0.0039 | 9.0 | 63 | 2.2114 | 0.5714 | | 0.0031 | 10.0 | 70 | 2.2808 | 0.5714 | | 0.0013 | 11.0 | 77 | 2.3707 | 0.5714 | | 0.0008 | 12.0 | 84 | 2.4902 | 0.5714 | | 0.0005 | 13.0 | 91 | 2.5208 | 0.5714 | | 0.0007 | 14.0 | 98 | 2.5683 | 0.5714 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/deberta-v3-large__sst2__train-16-7
7db282ab8985b1a0f0d3c32b850e78313443ec34
2022-02-10T11:08:09.000Z
[ "pytorch", "deberta-v2", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
SetFit
null
SetFit/deberta-v3-large__sst2__train-16-7
8
null
transformers
12,976
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: deberta-v3-large__sst2__train-16-7 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-large__sst2__train-16-7 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6953 - Accuracy: 0.5063 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6911 | 1.0 | 7 | 0.7455 | 0.2857 | | 0.6844 | 2.0 | 14 | 0.7242 | 0.2857 | | 0.6137 | 3.0 | 21 | 0.7341 | 0.4286 | | 0.3805 | 4.0 | 28 | 1.0217 | 0.4286 | | 0.2201 | 5.0 | 35 | 1.1437 | 0.2857 | | 0.0296 | 6.0 | 42 | 1.5997 | 0.4286 | | 0.0103 | 7.0 | 49 | 2.6835 | 0.4286 | | 0.0046 | 8.0 | 56 | 3.3521 | 0.4286 | | 0.002 | 9.0 | 63 | 3.7846 | 0.4286 | | 0.0017 | 10.0 | 70 | 4.0088 | 0.4286 | | 0.0018 | 11.0 | 77 | 4.1483 | 0.4286 | | 0.0006 | 12.0 | 84 | 4.2235 | 0.4286 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__hate_speech_offensive__train-16-8
66156307a5e47bd0f40e072baa7bc7a801ebcea5
2022-02-10T07:58:12.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
SetFit
null
SetFit/distilbert-base-uncased__hate_speech_offensive__train-16-8
8
null
transformers
12,977
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__hate_speech_offensive__train-16-8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-16-8 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0704 - Accuracy: 0.394 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1031 | 1.0 | 10 | 1.1286 | 0.1 | | 1.0648 | 2.0 | 20 | 1.1157 | 0.3 | | 0.9982 | 3.0 | 30 | 1.1412 | 0.2 | | 0.9283 | 4.0 | 40 | 1.2053 | 0.2 | | 0.7958 | 5.0 | 50 | 1.1466 | 0.2 | | 0.6668 | 6.0 | 60 | 1.1783 | 0.3 | | 0.5068 | 7.0 | 70 | 1.2992 | 0.3 | | 0.3741 | 8.0 | 80 | 1.3483 | 0.3 | | 0.1653 | 9.0 | 90 | 1.4533 | 0.2 | | 0.0946 | 10.0 | 100 | 1.6292 | 0.2 | | 0.0569 | 11.0 | 110 | 1.8381 | 0.2 | | 0.0346 | 12.0 | 120 | 2.0781 | 0.2 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__sst2__train-32-9
9807860680c06e74ac0e9b51eb816a0939c4e4ba
2022-02-10T07:36:28.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
SetFit
null
SetFit/distilbert-base-uncased__sst2__train-32-9
8
null
transformers
12,978
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__sst2__train-32-9 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-32-9 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5625 - Accuracy: 0.7353 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7057 | 1.0 | 13 | 0.6805 | 0.5385 | | 0.6642 | 2.0 | 26 | 0.6526 | 0.7692 | | 0.5869 | 3.0 | 39 | 0.5773 | 0.8462 | | 0.4085 | 4.0 | 52 | 0.4959 | 0.8462 | | 0.2181 | 5.0 | 65 | 0.4902 | 0.6923 | | 0.069 | 6.0 | 78 | 0.5065 | 0.8462 | | 0.0522 | 7.0 | 91 | 0.6082 | 0.7692 | | 0.0135 | 8.0 | 104 | 0.6924 | 0.7692 | | 0.0084 | 9.0 | 117 | 0.5921 | 0.7692 | | 0.0061 | 10.0 | 130 | 0.6477 | 0.7692 | | 0.0047 | 11.0 | 143 | 0.6648 | 0.7692 | | 0.0035 | 12.0 | 156 | 0.6640 | 0.7692 | | 0.0031 | 13.0 | 169 | 0.6615 | 0.7692 | | 0.0029 | 14.0 | 182 | 0.6605 | 0.7692 | | 0.0026 | 15.0 | 195 | 0.6538 | 0.8462 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
Sofiascope/amazon-fine-tuned-wm
9693982b5bf63a9ebf39227f4ae6d0f25732ebd9
2021-12-28T12:25:22.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Sofiascope
null
Sofiascope/amazon-fine-tuned-wm
8
null
transformers
12,979
Entry not found
StevenLimcorn/wav2vec2-xls-r-300m-zh-TW
c65cec854f6909b073df46ab266140d5bdd059ed
2022-02-06T21:57:14.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "zh-TW", "dataset:common_voice", "transformers", "common_voice", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
StevenLimcorn
null
StevenLimcorn/wav2vec2-xls-r-300m-zh-TW
8
null
transformers
12,980
--- language: - zh-TW license: apache-2.0 tags: - automatic-speech-recognition - common_voice - generated_from_trainer datasets: - common_voice model-index: - name: '' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the COMMON_VOICE - ZH-TW dataset. It achieves the following results on the evaluation set: - Loss: 1.1786 - Wer: 0.8594 - Cer: 0.2964 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:| | 64.6189 | 2.51 | 500 | 63.8077 | 1.0 | 1.0 | | 8.0561 | 5.03 | 1000 | 6.8014 | 1.0 | 1.0 | | 6.0427 | 7.54 | 1500 | 6.0745 | 1.0 | 1.0 | | 5.9357 | 10.05 | 2000 | 5.8682 | 1.0 | 1.0 | | 5.0489 | 12.56 | 2500 | 4.4032 | 0.9990 | 0.7750 | | 4.6184 | 15.08 | 3000 | 3.8383 | 0.9983 | 0.6768 | | 4.365 | 17.59 | 3500 | 3.4633 | 0.9959 | 0.6299 | | 4.1026 | 20.1 | 4000 | 3.0732 | 0.9902 | 0.5814 | | 3.8655 | 22.61 | 4500 | 2.7638 | 0.9868 | 0.5465 | | 3.6991 | 25.13 | 5000 | 2.4759 | 0.9811 | 0.5088 | | 3.4894 | 27.64 | 5500 | 2.2937 | 0.9746 | 0.4852 | | 3.3983 | 30.15 | 6000 | 2.1684 | 0.9733 | 0.4674 | | 3.2736 | 32.66 | 6500 | 2.0372 | 0.9659 | 0.4458 | | 3.1884 | 35.18 | 7000 | 1.9267 | 0.9648 | 0.4329 | | 3.1248 | 37.69 | 7500 | 1.8408 | 0.9591 | 0.4217 | | 3.0381 | 40.2 | 8000 | 1.7531 | 0.9503 | 0.4074 | | 2.9515 | 42.71 | 8500 | 1.6880 | 0.9459 | 0.3967 | | 2.8704 | 45.23 | 9000 | 1.6264 | 0.9378 | 0.3884 | | 2.8128 | 47.74 | 9500 | 1.5621 | 0.9341 | 0.3782 | | 2.7386 | 50.25 | 10000 | 1.5011 | 0.9243 | 0.3664 | | 2.6646 | 52.76 | 10500 | 1.4608 | 0.9192 | 0.3575 | | 2.6072 | 55.28 | 11000 | 1.4251 | 0.9148 | 0.3501 | | 2.569 | 57.79 | 11500 | 1.3837 | 0.9060 | 0.3462 | | 2.5091 | 60.3 | 12000 | 1.3589 | 0.9070 | 0.3392 | | 2.4588 | 62.81 | 12500 | 1.3261 | 0.8966 | 0.3284 | | 2.4083 | 65.33 | 13000 | 1.3052 | 0.8982 | 0.3265 | | 2.3787 | 67.84 | 13500 | 1.2997 | 0.8908 | 0.3243 | | 2.3457 | 70.35 | 14000 | 1.2778 | 0.8898 | 0.3187 | | 2.3099 | 72.86 | 14500 | 1.2661 | 0.8830 | 0.3172 | | 2.2559 | 75.38 | 15000 | 1.2475 | 0.8851 | 0.3143 | | 2.2264 | 77.89 | 15500 | 1.2319 | 0.8739 | 0.3085 | | 2.196 | 80.4 | 16000 | 1.2218 | 0.8722 | 0.3049 | | 2.1613 | 82.91 | 16500 | 1.2093 | 0.8719 | 0.3051 | | 2.1455 | 85.43 | 17000 | 1.2055 | 0.8624 | 0.3005 | | 2.1193 | 87.94 | 17500 | 1.1975 | 0.8600 | 0.2982 | | 2.0911 | 90.45 | 18000 | 1.1960 | 0.8648 | 0.3003 | | 2.0884 | 92.96 | 18500 | 1.1871 | 0.8638 | 0.2971 | | 2.0766 | 95.48 | 19000 | 1.1814 | 0.8617 | 0.2967 | | 2.0735 | 97.99 | 19500 | 1.1801 | 0.8621 | 0.2969 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
StivenLancheros/mBERT-base-cased-NER-CONLL
67d7ee529b58f75a207354439c573486090206ea
2022-02-01T16:21:25.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "dataset:conll2002", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
StivenLancheros
null
StivenLancheros/mBERT-base-cased-NER-CONLL
8
null
transformers
12,981
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2002 - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: mBERT-base-cased-NER-CONLL results: - task: name: Token Classification type: token-classification dataset: name: conll2002 type: conll2002 args: es metrics: - name: Precision type: precision value: 0.8621083924079579 - name: Recall type: recall value: 0.8662683823529411 - name: F1 type: f1 value: 0.8641833810888252 - name: Accuracy type: accuracy value: 0.9790639230580277 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mBERT-base-cased-NER-CONLL (EN-ES) This model is a fine-tuned version of [bert-base-multilingual-cased ](https://huggingface.co/bert-base-multilingual-cased) on the conll2003 and conll2002 datasets. Training was performed separately. It achieves the following results on the evaluation set: Connll2003: - Loss: 0.0585 - Precision: 0.9489 - Recall: 0.9541 - F1: 0.9515 - Accuracy: 0.9880 Conll2002: - Loss: 0.1435 - Precision: 0.8621 - Recall: 0.8663 - F1: 0.8642 - Accuracy: 0.9791 ## Model description IOB tagging Scheme. PER/LOC/MISC/ORG tags ## Intended uses & limitations More information needed ## Training and evaluation data Conll2002/2003 (ES-EN) ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results Conll2003: | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1739 | 1.0 | 878 | 0.0741 | 0.9246 | 0.9181 | 0.9213 | 0.9823 | | 0.045 | 2.0 | 1756 | 0.0586 | 0.9469 | 0.9476 | 0.9472 | 0.9870 | | 0.0213 | 3.0 | 2634 | 0.0583 | 0.9503 | 0.9510 | 0.9506 | 0.9877 | | 0.0113 | 4.0 | 3512 | 0.0585 | 0.9489 | 0.9541 | 0.9515 | 0.9880 | Conll2002: | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0739 | 1.0 | 4162 | 0.1322 | 0.8430 | 0.8267 | 0.8348 | 0.9741 | | 0.0454 | 2.0 | 8324 | 0.1158 | 0.8664 | 0.8614 | 0.8639 | 0.9782 | | 0.031 | 3.0 | 12486 | 0.1243 | 0.8521 | 0.8660 | 0.8590 | 0.9783 | | 0.0136 | 4.0 | 16648 | 0.1435 | 0.8621 | 0.8663 | 0.8642 | 0.9791 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
StivenLancheros/roberta-base-bne-finetuned-ner
4fda376e7722ce87649c7fff9bfb5526871ec7fc
2021-11-08T13:41:04.000Z
[ "pytorch", "tensorboard", "roberta", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
StivenLancheros
null
StivenLancheros/roberta-base-bne-finetuned-ner
8
1
transformers
12,982
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: roberta-base-bne-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9237957261861645 - name: Recall type: recall value: 0.9351077870655521 - name: F1 type: f1 value: 0.9294173377546188 - name: Accuracy type: accuracy value: 0.9847536857245595 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-bne-finetuned-ner This model is a fine-tuned version of [PlanTL-GOB-ES/roberta-base-bne](https://huggingface.co/PlanTL-GOB-ES/roberta-base-bne) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0659 - Precision: 0.9238 - Recall: 0.9351 - F1: 0.9294 - Accuracy: 0.9848 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1931 | 1.0 | 878 | 0.0800 | 0.8892 | 0.8853 | 0.8872 | 0.9770 | | 0.0409 | 2.0 | 1756 | 0.0655 | 0.9178 | 0.9238 | 0.9208 | 0.9828 | | 0.0138 | 3.0 | 2634 | 0.0663 | 0.9207 | 0.9276 | 0.9241 | 0.9839 | | 0.0051 | 4.0 | 3512 | 0.0659 | 0.9238 | 0.9351 | 0.9294 | 0.9848 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
StivenLancheros/xlm-roberta-base-finetuned-ner-false-finetuned-ner-2002-1
9ce31e8e41e7281f409231c347c535e808de58af
2021-12-05T14:38:36.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
StivenLancheros
null
StivenLancheros/xlm-roberta-base-finetuned-ner-false-finetuned-ner-2002-1
8
1
transformers
12,983
--- license: mit tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: xlm-roberta-base-finetuned-ner-false-finetuned-ner-2002 results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.941186271242919 - name: Recall type: recall value: 0.9506900033658701 - name: F1 type: f1 value: 0.945914266577361 - name: Accuracy type: accuracy value: 0.9904209337642615 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-ner-false-finetuned-ner-2002 This model is a fine-tuned version of [StivenLancheros/xlm-roberta-base-finetuned-ner-false](https://huggingface.co/StivenLancheros/xlm-roberta-base-finetuned-ner-false) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0725 - Precision: 0.9412 - Recall: 0.9507 - F1: 0.9459 - Accuracy: 0.9904 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.086 | 1.0 | 7021 | 0.0709 | 0.9221 | 0.9261 | 0.9241 | 0.9872 | | 0.0352 | 2.0 | 14042 | 0.0871 | 0.9243 | 0.9354 | 0.9298 | 0.9879 | | 0.0203 | 3.0 | 21063 | 0.0747 | 0.9398 | 0.9490 | 0.9444 | 0.9901 | | 0.0184 | 4.0 | 28084 | 0.0725 | 0.9412 | 0.9507 | 0.9459 | 0.9904 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
T-Systems-onsite/cross-en-es-pt-roberta-sentence-transformer
f609cfe05b1332fcb44a73594ab4b2e11c99feab
2022-06-28T19:56:15.000Z
[ "pytorch", "tf", "xlm-roberta", "feature-extraction", "transformers" ]
feature-extraction
false
T-Systems-onsite
null
T-Systems-onsite/cross-en-es-pt-roberta-sentence-transformer
8
null
transformers
12,984
Entry not found
TehranNLP-org/bert-base-cased-avg-cola
926e043f74219f164eb32f14ef771aafddcca623
2021-06-27T20:45:45.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
TehranNLP-org
null
TehranNLP-org/bert-base-cased-avg-cola
8
null
transformers
12,985
The uploaded model is from epoch 4 with Matthews Correlation of 61.05 "best_metric": 0.4796141982078552,<br> "best_model_checkpoint": "/content/output_dir/checkpoint-268",<br> "epoch": 10.0,<br> "global_step": 2680,<br> "is_hyper_param_search": false,<br> "is_local_process_zero": true,<br> "is_world_process_zero": true,<br> "max_steps": 2680,<br> "num_train_epochs": 10,<br> "total_flos": 7113018526540800.0,<br> "trial_name": null,<br> "trial_params": null<br> <table class="table table-bordered table-hover table-condensed" style="width: 60%; overflow: auto"> <thead><tr><th title="Field #1">epoch</th> <th title="Field #2">eval_loss</th> <th title="Field #3">eval_matthews_correlation</th> <th title="Field #4">eval_runtime</th> <th title="Field #5">eval_samples_per_second</th> <th title="Field #6">eval_steps_per_second</th> <th title="Field #7">step</th> <th title="Field #8">learning_rate</th> <th title="Field #9">loss</th> </tr></thead> <tbody><tr> <td align="left">1</td> <td align="left">0.4796141982078552</td> <td align="left">0.5351033849356494</td> <td align="left">8.8067</td> <td align="left">118.433</td> <td align="left">14.875</td> <td align="left">268</td> <td align="left">0.000018067415730337083</td> <td align="left">0.4913</td> </tr> <tr> <td align="left">2</td> <td align="left">0.5334435701370239</td> <td align="left">0.5178799252679331</td> <td align="left">8.9439</td> <td align="left">116.616</td> <td align="left">14.647</td> <td align="left">536</td> <td align="left">0.00001605992509363296</td> <td align="left">0.2872</td> </tr> <tr> <td align="left">3</td> <td align="left">0.5544090270996094</td> <td align="left">0.5649788851042796</td> <td align="left">8.9467</td> <td align="left">116.58</td> <td align="left">14.642</td> <td align="left">804</td> <td align="left">0.000014052434456928841</td> <td align="left">0.1777</td> </tr> <tr> <td align="left">4</td> <td align="left">0.5754779577255249</td> <td align="left">0.6105374636148787</td> <td align="left">8.8982</td> <td align="left">117.215</td> <td align="left">14.722</td> <td align="left">1072</td> <td align="left">0.000012044943820224718</td> <td align="left">0.1263</td> </tr> <tr> <td align="left">5</td> <td align="left">0.7263916730880737</td> <td align="left">0.5807606001872874</td> <td align="left">8.9705</td> <td align="left">116.27</td> <td align="left">14.603</td> <td align="left">1340</td> <td align="left">0.000010037453183520601</td> <td align="left">0.0905</td> </tr> <tr> <td align="left">6</td> <td align="left">0.8121512532234192</td> <td align="left">0.5651092792103851</td> <td align="left">8.9924</td> <td align="left">115.987</td> <td align="left">14.568</td> <td align="left">1608</td> <td align="left">0.00000802996254681648</td> <td align="left">0.0692</td> </tr> <tr> <td align="left">7</td> <td align="left">0.941014289855957</td> <td align="left">0.5632084517291658</td> <td align="left">8.9583</td> <td align="left">116.428</td> <td align="left">14.623</td> <td align="left">1876</td> <td align="left">0.000006022471910112359</td> <td align="left">0.0413</td> </tr> <tr> <td align="left">8</td> <td align="left">1.0095174312591553</td> <td align="left">0.5856531698367675</td> <td align="left">9.0029</td> <td align="left">115.851</td> <td align="left">14.551</td> <td align="left">2144</td> <td align="left">0.00000401498127340824</td> <td align="left">0.0327</td> </tr> <tr> <td align="left">9</td> <td align="left">1.0425965785980225</td> <td align="left">0.5941395545037332</td> <td align="left">8.9217</td> <td align="left">116.906</td> <td align="left">14.683</td> <td align="left">2412</td> <td align="left">0.00000200749063670412</td> <td align="left">0.0202</td> </tr> <tr> <td align="left">10</td> <td align="left">1.0782166719436646</td> <td align="left">0.5956649094312695</td> <td align="left">8.9472</td> <td align="left">116.572</td> <td align="left">14.641</td> <td align="left">2680</td> <td align="left">0</td> <td align="left">0.0104</td> </tr> </tbody></table>
Tejas3/distillbert_110_uncased_movie_genre
5ddba8772058c97d54cdbd3d1b246cc7babdaa02
2021-08-25T22:17:24.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
Tejas3
null
Tejas3/distillbert_110_uncased_movie_genre
8
null
transformers
12,986
Entry not found
TransQuest/monotransquest-da-ne_en-wiki
af687a9b0413a2d0b67a815e8571b5a25cf112bf
2021-06-03T19:07:55.000Z
[ "pytorch", "xlm-roberta", "text-classification", "ne-en", "transformers", "Quality Estimation", "monotransquest", "DA", "license:apache-2.0" ]
text-classification
false
TransQuest
null
TransQuest/monotransquest-da-ne_en-wiki
8
null
transformers
12,987
--- language: ne-en tags: - Quality Estimation - monotransquest - DA license: apache-2.0 --- # TransQuest: Translation Quality Estimation with Cross-lingual Transformers The goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level. With TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in [WMT 2020](http://www.statmt.org/wmt20/quality-estimation-task.html). TransQuest outperforms current open-source quality estimation frameworks such as [OpenKiwi](https://github.com/Unbabel/OpenKiwi) and [DeepQuest](https://github.com/sheffieldnlp/deepQuest). ## Features - Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment. - Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps. - Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. - Pre-trained quality estimation models for fifteen language pairs are available in [HuggingFace.](https://huggingface.co/TransQuest) ## Installation ### From pip ```bash pip install transquest ``` ### From Source ```bash git clone https://github.com/TharinduDR/TransQuest.git cd TransQuest pip install -r requirements.txt ``` ## Using Pre-trained Models ```python import torch from transquest.algo.sentence_level.monotransquest.run_model import MonoTransQuestModel model = MonoTransQuestModel("xlmroberta", "TransQuest/monotransquest-da-ne_en-wiki", num_labels=1, use_cuda=torch.cuda.is_available()) predictions, raw_outputs = model.predict([["Reducerea acestor conflicte este importantă pentru conservare.", "Reducing these conflicts is not important for preservation."]]) print(predictions) ``` ## Documentation For more details follow the documentation. 1. **[Installation](https://tharindudr.github.io/TransQuest/install/)** - Install TransQuest locally using pip. 2. **Architectures** - Checkout the architectures implemented in TransQuest 1. [Sentence-level Architectures](https://tharindudr.github.io/TransQuest/architectures/sentence_level_architectures/) - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation. 2. [Word-level Architecture](https://tharindudr.github.io/TransQuest/architectures/word_level_architecture/) - We have released MicroTransQuest to perform word level quality estimation. 3. **Examples** - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks. 1. [Sentence-level Examples](https://tharindudr.github.io/TransQuest/examples/sentence_level_examples/) 2. [Word-level Examples](https://tharindudr.github.io/TransQuest/examples/word_level_examples/) 4. **Pre-trained Models** - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level 1. [Sentence-level Models](https://tharindudr.github.io/TransQuest/models/sentence_level_pretrained/) 2. [Word-level Models](https://tharindudr.github.io/TransQuest/models/word_level_pretrained/) 5. **[Contact](https://tharindudr.github.io/TransQuest/contact/)** - Contact us for any issues with TransQuest ## Citations If you are using the word-level architecture, please consider citing this paper which is accepted to [ACL 2021](https://2021.aclweb.org/). ```bash @InProceedings{ranasinghe2021, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {An Exploratory Analysis of Multilingual Word Level Quality Estimation with Cross-Lingual Transformers}, booktitle = {Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics}, year = {2021} } ``` If you are using the sentence-level architectures, please consider citing these papers which were presented in [COLING 2020](https://coling2020.org/) and in [WMT 2020](http://www.statmt.org/wmt20/) at EMNLP 2020. ```bash @InProceedings{transquest:2020a, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest: Translation Quality Estimation with Cross-lingual Transformers}, booktitle = {Proceedings of the 28th International Conference on Computational Linguistics}, year = {2020} } ``` ```bash @InProceedings{transquest:2020b, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest at WMT2020: Sentence-Level Direct Assessment}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, year = {2020} } ```
TransQuest/siamesetransquest-da-et_en-wiki
c566f103d99d5c9b2157542c387aef841cc37e6c
2021-07-23T08:31:12.000Z
[ "pytorch", "xlm-roberta", "feature-extraction", "et-en", "transformers", "Quality Estimation", "siamesetransquest", "da", "license:apache-2.0" ]
feature-extraction
false
TransQuest
null
TransQuest/siamesetransquest-da-et_en-wiki
8
null
transformers
12,988
--- language: et-en tags: - Quality Estimation - siamesetransquest - da license: apache-2.0 --- # TransQuest: Translation Quality Estimation with Cross-lingual Transformers The goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level. With TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in [WMT 2020](http://www.statmt.org/wmt20/quality-estimation-task.html). TransQuest outperforms current open-source quality estimation frameworks such as [OpenKiwi](https://github.com/Unbabel/OpenKiwi) and [DeepQuest](https://github.com/sheffieldnlp/deepQuest). ## Features - Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment. - Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps. - Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. - Pre-trained quality estimation models for fifteen language pairs are available in [HuggingFace.](https://huggingface.co/TransQuest) ## Installation ### From pip ```bash pip install transquest ``` ### From Source ```bash git clone https://github.com/TharinduDR/TransQuest.git cd TransQuest pip install -r requirements.txt ``` ## Using Pre-trained Models ```python import torch from transquest.algo.sentence_level.siamesetransquest.run_model import SiameseTransQuestModel model = SiameseTransQuestModel("TransQuest/siamesetransquest-da-et_en-wiki") predictions = model.predict([["Reducerea acestor conflicte este importantă pentru conservare.", "Reducing these conflicts is not important for preservation."]]) print(predictions) ``` ## Documentation For more details follow the documentation. 1. **[Installation](https://tharindudr.github.io/TransQuest/install/)** - Install TransQuest locally using pip. 2. **Architectures** - Checkout the architectures implemented in TransQuest 1. [Sentence-level Architectures](https://tharindudr.github.io/TransQuest/architectures/sentence_level_architectures/) - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation. 2. [Word-level Architecture](https://tharindudr.github.io/TransQuest/architectures/word_level_architecture/) - We have released MicroTransQuest to perform word level quality estimation. 3. **Examples** - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks. 1. [Sentence-level Examples](https://tharindudr.github.io/TransQuest/examples/sentence_level_examples/) 2. [Word-level Examples](https://tharindudr.github.io/TransQuest/examples/word_level_examples/) 4. **Pre-trained Models** - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level 1. [Sentence-level Models](https://tharindudr.github.io/TransQuest/models/sentence_level_pretrained/) 2. [Word-level Models](https://tharindudr.github.io/TransQuest/models/word_level_pretrained/) 5. **[Contact](https://tharindudr.github.io/TransQuest/contact/)** - Contact us for any issues with TransQuest ## Citations If you are using the word-level architecture, please consider citing this paper which is accepted to [ACL 2021](https://2021.aclweb.org/). ```bash @InProceedings{ranasinghe2021, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {An Exploratory Analysis of Multilingual Word Level Quality Estimation with Cross-Lingual Transformers}, booktitle = {Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics}, year = {2021} } ``` If you are using the sentence-level architectures, please consider citing these papers which were presented in [COLING 2020](https://coling2020.org/) and in [WMT 2020](http://www.statmt.org/wmt20/) at EMNLP 2020. ```bash @InProceedings{transquest:2020a, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest: Translation Quality Estimation with Cross-lingual Transformers}, booktitle = {Proceedings of the 28th International Conference on Computational Linguistics}, year = {2020} } ``` ```bash @InProceedings{transquest:2020b, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest at WMT2020: Sentence-Level Direct Assessment}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, year = {2020} } ```
Vasanth/tamil-sentiment-distilbert
7016d9d2512a93c7042d8d8e5a49ff9357d1ff58
2021-08-23T17:16:08.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:tamilmixsentiment", "transformers", "generated_from_trainer", "license:apache-2.0" ]
text-classification
false
Vasanth
null
Vasanth/tamil-sentiment-distilbert
8
1
transformers
12,989
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tamilmixsentiment metrics: - accuracy model_index: - name: tamil-sentiment-distilbert results: - task: name: Text Classification type: text-classification dataset: name: tamilmixsentiment type: tamilmixsentiment args: default metric: name: Accuracy type: accuracy value: 0.665 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tamil-sentiment-distilbert This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the tamilmixsentiment dataset. It achieves the following results on the evaluation set: - Loss: 1.0230 - Accuracy: 0.665 ## Dataset Information - text: Tamil-English code-mixed comment. - label: list of the possible sentiments - LABEL_0: "Positive", - LABEL_1: "Negative", - LABEL_2: "Mixed_feelings", - LABEL_3: "unknown_state", - LABEL_4: "not-Tamil" ## Intended uses & limitations This model was just created for doing classification task on tamilmixsentiment dataset ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0442 | 1.0 | 250 | 0.9883 | 0.674 | | 0.9227 | 2.0 | 500 | 0.9782 | 0.673 | | 0.7591 | 3.0 | 750 | 1.0230 | 0.665 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
WENGSYX/Multilingual_SimCSE
df8cd37bdabd061c48484aff01915c2634273897
2022-02-10T12:25:07.000Z
[ "pytorch", "deberta-v2", "feature-extraction", "transformers" ]
feature-extraction
false
WENGSYX
null
WENGSYX/Multilingual_SimCSE
8
null
transformers
12,990
# Multilingual SimCSE #### A contrastive learning model using parallel language pair training ##### By using parallel sentence pairs in different languages, the text is mapped to the same vector space for pre-training similar to Simcse ##### Firstly, the [mDeBERTa](https://huggingface.co/microsoft/mdeberta-v3-base) model is used to load the pre-training parameters, and then the pre-training is carried out based on the [CCMatrix](https://github.com/facebookresearch/LASER/tree/main/tasks/CCMatrix) data set. ##### Training data: 100 million parallel pairs ##### Taining equipment: 4 * 3090 ## Pipline Code ``` from transformers import AutoModel,AutoTokenizer model = AutoModel.from_pretrained('WENGSYX/Multilingual_SimCSE') tokenizer = AutoTokenizer.from_pretrained('WENGSYX/Multilingual_SimCSE') word1 = tokenizer('Hello,world.',return_tensors='pt') word2 = tokenizer('你好,世界',return_tensors='pt') out1 = model(**word1).last_hidden_state.mean(1) out2 = model(**word2).last_hidden_state.mean(1) print(F.cosine_similarity(out1,out2)) ---------------------------------------------------- tensor([0.8758], grad_fn=<DivBackward0>) ``` ## Train Code ``` from transformers import AutoModel,AutoTokenizer,AdamW model = AutoModel.from_pretrained('WENGSYX/Multilingual_SimCSE') tokenizer = AutoTokenizer.from_pretrained('WENGSYX/Multilingual_SimCSE') optimizer = AdamW(model.parameters(),lr=1e-5) def compute_loss(y_pred, t=0.05, device="cuda"): idxs = torch.arange(0, y_pred.shape[0], device=device) y_true = idxs + 1 - idxs % 2 * 2 similarities = F.cosine_similarity(y_pred.unsqueeze(1), y_pred.unsqueeze(0), dim=2) similarities = similarities - torch.eye(y_pred.shape[0], device=device) * 1e12 similarities = similarities / t loss = F.cross_entropy(similarities, y_true) return torch.mean(loss) wordlist = [['Hello,world','你好,世界'],['Pensa che il bianco rappresenti la purezza.','Он думает, что белые символизируют чистоту.']] input_ids, attention_mask, token_type_ids = [], [], [] for x in wordlist: text1 = tokenizer(x[0], padding='max_length', truncation=True, max_length=512) input_ids.append(text1['input_ids']) attention_mask.append(text1['attention_mask']) text2 = tokenizer(x[1], padding='max_length', truncation=True, max_length=512) input_ids.append(text2['input_ids']) attention_mask.append(text2['attention_mask']) input_ids = torch.tensor(input_ids,device=device) attention_mask = torch.tensor(attention_mask,device=device) output = model(input_ids=input_ids,attention_mask=attention_mask) output = output.last_hidden_state.mean(1) loss = compute_loss(output) loss.backward() optimizer.step() optimizer.zero_grad() ```
Wataru/T5-base-ja-open2ch-dialogue
f462e5a6810b0ff96165e30702a5c0d62cc8920d
2021-07-22T15:52:56.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Wataru
null
Wataru/T5-base-ja-open2ch-dialogue
8
null
transformers
12,991
Entry not found
Wiirin/DistilBERT-finetuned-PubMed-FoodCancer
81dbc49eb57fa469704ecab223c397cb5fd1e2e5
2021-11-08T09:39:25.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
Wiirin
null
Wiirin/DistilBERT-finetuned-PubMed-FoodCancer
8
null
transformers
12,992
Entry not found
Wikidepia/indonesian-punctuation
638025db378f952e70e51cb94481638c42bf67d2
2021-12-03T10:06:53.000Z
[ "pytorch", "albert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
Wikidepia
null
Wikidepia/indonesian-punctuation
8
null
transformers
12,993
Entry not found
Wikidepia/wav2vec2-xls-r-300m-indonesian
8a9d507f0804f8e5fca07b17214b2c0266ba7491
2022-03-23T18:26:42.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "id", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Wikidepia
null
Wikidepia/wav2vec2-xls-r-300m-indonesian
8
null
transformers
12,994
--- language: - id license: apache-2.0 tags: - automatic-speech-recognition - hf-asr-leaderboard - id - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 metrics: - wer - cer model-index: - name: XLS-R-300M - Indonesian results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: id metrics: - name: Test WER type: wer value: 5.046 - name: Test CER type: cer value: 1.699 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: id metrics: - name: Test WER type: wer value: 41.31 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: id metrics: - name: Test WER type: wer value: 52.23 --- # Wav2Vec2 XLS-R-300M - Indonesian This model is a fine-tuned version of `facebook/wav2vec2-xls-r-300m` on the `mozilla-foundation/common_voice_8_0` and [MagicHub Indonesian Conversational Speech Corpus](https://magichub.com/datasets/indonesian-conversational-speech-corpus/).
Xenova/sponsorblock-base-v1
d1c8305152f46ac8b914294cb30bddd4ad778a59
2022-01-30T20:55:35.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Xenova
null
Xenova/sponsorblock-base-v1
8
1
transformers
12,995
Entry not found
aXhyra/presentation_irony_31415
33c333e05f2ef01f46c7d27f6be4d98220eee15a
2021-12-15T10:14:53.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:tweet_eval", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
aXhyra
null
aXhyra/presentation_irony_31415
8
null
transformers
12,996
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tweet_eval metrics: - f1 model-index: - name: presentation_irony_31415 results: - task: name: Text Classification type: text-classification dataset: name: tweet_eval type: tweet_eval args: irony metrics: - name: F1 type: f1 value: 0.6753923142373446 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # presentation_irony_31415 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 0.9694 - F1: 0.6754 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.1637764704815665e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 31415 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.6601 | 1.0 | 90 | 0.6298 | 0.6230 | | 0.4887 | 2.0 | 180 | 0.6039 | 0.6816 | | 0.2543 | 3.0 | 270 | 0.7362 | 0.6803 | | 0.1472 | 4.0 | 360 | 0.9694 | 0.6754 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
aXhyra/presentation_irony_42
7be6c13c9b9733995e28eff7aae553be39944e7b
2021-12-15T10:10:19.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:tweet_eval", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
aXhyra
null
aXhyra/presentation_irony_42
8
null
transformers
12,997
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tweet_eval metrics: - f1 model-index: - name: presentation_irony_42 results: - task: name: Text Classification type: text-classification dataset: name: tweet_eval type: tweet_eval args: irony metrics: - name: F1 type: f1 value: 0.6745358521762839 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # presentation_irony_42 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 0.9344 - F1: 0.6745 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.1637764704815665e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.6675 | 1.0 | 90 | 0.5988 | 0.6684 | | 0.5872 | 2.0 | 180 | 0.6039 | 0.6742 | | 0.3953 | 3.0 | 270 | 0.8549 | 0.6557 | | 0.0355 | 4.0 | 360 | 0.9344 | 0.6745 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
aapot/wav2vec2-large-xlsr-53-finnish
c5c998277903efc984e20d1b52738b05be6e740e
2022-03-28T17:56:36.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "fi", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
aapot
null
aapot/wav2vec2-large-xlsr-53-finnish
8
0
transformers
12,998
--- language: fi datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Finnish by Aapo Tanskanen results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice fi type: common_voice args: fi metrics: - name: Test WER type: wer value: 32.378771 --- # NOTE: this is an old model and should not be used anymore!! There are a lot better newer models available at our orgnization hub: [Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm-v2](https://huggingface.co/Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm-v2) and [Finnish-NLP/wav2vec2-xlsr-300m-finnish-lm](https://huggingface.co/Finnish-NLP/wav2vec2-xlsr-300m-finnish-lm) # Wav2Vec2-Large-XLSR-53-Finnish Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Finnish using the [Common Voice](https://huggingface.co/datasets/common_voice), [CSS10 Finnish](https://www.kaggle.com/bryanpark/finnish-single-speaker-speech-dataset) and [Finnish parliament session 2](https://b2share.eudat.eu/records/4df422d631544ce682d6af1d4714b2d4) datasets. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import librosa import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "fi", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("aapot/wav2vec2-large-xlsr-53-finnish") model = Wav2Vec2ForCTC.from_pretrained("aapot/wav2vec2-large-xlsr-53-finnish") resampler = lambda sr, y: librosa.resample(y.numpy().squeeze(), sr, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(sampling_rate, speech_array).squeeze() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Finnish test data of Common Voice. ```python import librosa import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "fi", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("aapot/wav2vec2-large-xlsr-53-finnish") model = Wav2Vec2ForCTC.from_pretrained("aapot/wav2vec2-large-xlsr-53-finnish") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\'\...\…\–\é]' resampler = lambda sr, y: librosa.resample(y.numpy().squeeze(), sr, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(sampling_rate, speech_array).squeeze() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the audio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 32.378771 % ## Training The Common Voice `train`, `validation` and `other` datasets were used for training as well as `CSS10 Finnish` and `Finnish parliament session 2` datasets. The script used for training can be found from [Google Colab](https://colab.research.google.com/drive/1vnEGC9BnNRmVyIHj-0UsVulh_cUYSGWA?usp=sharing)
aapot/wav2vec2-xlsr-1b-finnish-lm-v2
192fd9f4ff5e9de4a2681a47c30239544bffd214
2022-03-28T17:26:57.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "fi", "dataset:mozilla-foundation/common_voice_7_0", "arxiv:2111.09296", "transformers", "finnish", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
aapot
null
aapot/wav2vec2-xlsr-1b-finnish-lm-v2
8
1
transformers
12,999
--- license: apache-2.0 language: fi metrics: - wer - cer tags: - automatic-speech-recognition - fi - finnish - generated_from_trainer - hf-asr-leaderboard - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: wav2vec2-xlsr-1b-finnish-lm-v2 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: fi metrics: - name: Test WER type: wer value: 4.09 - name: Test CER type: cer value: 0.88 --- # Wav2Vec2 XLS-R for Finnish ASR This acoustic model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) for Finnish ASR. The model has been fine-tuned with 275.6 hours of Finnish transcribed speech data. Wav2Vec2 XLS-R was introduced in [this paper](https://arxiv.org/abs/2111.09296) and first released at [this page](https://github.com/pytorch/fairseq/tree/main/examples/wav2vec#wav2vec-20). This repository also includes Finnish KenLM language model used in the decoding phase with the acoustic model. **Note**: this model is exactly the same as the [Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm-v2](https://huggingface.co/Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm-v2) model so this model has just been copied/moved to the `Finnish-NLP` Hugging Face organization. ## Model description Wav2Vec2 XLS-R is Facebook AI's large-scale multilingual pretrained model for speech. It is pretrained on 436k hours of unlabeled speech, including VoxPopuli, MLS, CommonVoice, BABEL, and VoxLingua107. It uses the wav2vec 2.0 objective, in 128 languages. You can read more about the pretrained model from [this blog](https://ai.facebook.com/blog/xls-r-self-supervised-speech-processing-for-128-languages) and [this paper](https://arxiv.org/abs/2111.09296). This model is fine-tuned version of the pretrained model (1 billion parameter variant) for Finnish ASR. ## Intended uses & limitations You can use this model for Finnish ASR (speech-to-text) task. ### How to use Check the [run-finnish-asr-models.ipynb](https://huggingface.co/aapot/wav2vec2-xlsr-1b-finnish-lm-v2/blob/main/run-finnish-asr-models.ipynb) notebook in this repository for an detailed example on how to use this model. ### Limitations and bias This model was fine-tuned with audio samples which maximum length was 20 seconds so this model most likely works the best for quite short audios of similar length. However, you can try this model with a lot longer audios too and see how it works. If you encounter out of memory errors with very long audio files you can use the audio chunking method introduced in [this blog post](https://huggingface.co/blog/asr-chunking). A vast majority of the data used for fine-tuning was from the Finnish Parliament dataset so this model may not generalize so well to very different domains like common daily spoken Finnish with dialects etc. In addition, audios of the datasets tend to be adult male dominated so this model may not work as well for speeches of children and women, for example. The Finnish KenLM language model used in the decoding phase has been trained with text data from the audio transcriptions and from a subset of Finnish Wikipedia. Thus, the decoder's language model may not generalize to very different language, for example to spoken daily language with dialects (because especially the Wikipedia contains mostly formal Finnish language). It may be beneficial to train your own KenLM language model for your domain language and use that in the decoding. ## Training data This model was fine-tuned with 275.6 hours of Finnish transcribed speech data from following datasets: | Dataset | Hours | % of total hours | |:------------------------------------------------------------------------------------------------------------------------------ |:--------:|:----------------:| | [Common Voice 7.0 Finnish train + evaluation + other splits](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0) | 9.70 h | 3.52 % | | [Finnish parliament session 2](https://b2share.eudat.eu/records/4df422d631544ce682d6af1d4714b2d4) | 0.24 h | 0.09 % | | [VoxPopuli Finnish](https://github.com/facebookresearch/voxpopuli) | 21.97 h | 7.97 % | | [CSS10 Finnish](https://github.com/kyubyong/css10) | 10.32 h | 3.74 % | | [Aalto Finnish Parliament ASR Corpus](http://urn.fi/urn:nbn:fi:lb-2021051903) | 228.00 h | 82.73 % | | [Finnish Broadcast Corpus](http://urn.fi/urn:nbn:fi:lb-2016042502) | 5.37 h | 1.95 % | Datasets were filtered to include maximum length of 20 seconds long audio samples. ## Training procedure This model was trained during [Robust Speech Challenge Event](https://discuss.huggingface.co/t/open-to-the-community-robust-speech-recognition-challenge/13614) organized by Hugging Face. Training was done on a Tesla V100 GPU, sponsored by OVHcloud. Training script was provided by Hugging Face and it is available [here](https://github.com/huggingface/transformers/blob/main/examples/research_projects/robust-speech-event/run_speech_recognition_ctc_bnb.py). We only modified its data loading for our custom datasets. For the KenLM language model training, we followed the [blog post tutorial](https://huggingface.co/blog/wav2vec2-with-ngram) provided by Hugging Face. Training data for the 5-gram KenLM were text transcriptions of the audio training data and 100k random samples of cleaned [Finnish Wikipedia](https://huggingface.co/datasets/wikipedia) (August 2021) dataset. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: [8-bit Adam](https://github.com/facebookresearch/bitsandbytes) with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP The pretrained `facebook/wav2vec2-xls-r-1b` model was initialized with following hyperparameters: - attention_dropout: 0.094 - hidden_dropout: 0.047 - feat_proj_dropout: 0.04 - mask_time_prob: 0.082 - layerdrop: 0.041 - activation_dropout: 0.055 - ctc_loss_reduction: "mean" ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.7778 | 0.17 | 500 | 0.2851 | 0.3572 | | 0.5506 | 0.34 | 1000 | 0.1595 | 0.2130 | | 0.6569 | 0.5 | 1500 | 0.1458 | 0.2046 | | 0.5997 | 0.67 | 2000 | 0.1374 | 0.1975 | | 0.542 | 0.84 | 2500 | 0.1390 | 0.1956 | | 0.4815 | 1.01 | 3000 | 0.1266 | 0.1813 | | 0.6982 | 1.17 | 3500 | 0.1441 | 0.1965 | | 0.4522 | 1.34 | 4000 | 0.1232 | 0.1822 | | 0.4655 | 1.51 | 4500 | 0.1209 | 0.1702 | | 0.4069 | 1.68 | 5000 | 0.1149 | 0.1688 | | 0.4226 | 1.84 | 5500 | 0.1121 | 0.1560 | | 0.3993 | 2.01 | 6000 | 0.1091 | 0.1557 | | 0.406 | 2.18 | 6500 | 0.1115 | 0.1553 | | 0.4098 | 2.35 | 7000 | 0.1144 | 0.1560 | | 0.3995 | 2.51 | 7500 | 0.1028 | 0.1476 | | 0.4101 | 2.68 | 8000 | 0.1129 | 0.1511 | | 0.3636 | 2.85 | 8500 | 0.1025 | 0.1517 | | 0.3534 | 3.02 | 9000 | 0.1068 | 0.1480 | | 0.3836 | 3.18 | 9500 | 0.1072 | 0.1459 | | 0.3531 | 3.35 | 10000 | 0.0928 | 0.1367 | | 0.3649 | 3.52 | 10500 | 0.1042 | 0.1426 | | 0.3645 | 3.69 | 11000 | 0.0979 | 0.1433 | | 0.3685 | 3.85 | 11500 | 0.0947 | 0.1346 | | 0.3325 | 4.02 | 12000 | 0.0991 | 0.1352 | | 0.3497 | 4.19 | 12500 | 0.0919 | 0.1358 | | 0.3303 | 4.36 | 13000 | 0.0888 | 0.1272 | | 0.3323 | 4.52 | 13500 | 0.0888 | 0.1277 | | 0.3452 | 4.69 | 14000 | 0.0894 | 0.1279 | | 0.337 | 4.86 | 14500 | 0.0917 | 0.1289 | | 0.3114 | 5.03 | 15000 | 0.0942 | 0.1313 | | 0.3099 | 5.19 | 15500 | 0.0902 | 0.1239 | | 0.3079 | 5.36 | 16000 | 0.0871 | 0.1256 | | 0.3293 | 5.53 | 16500 | 0.0861 | 0.1263 | | 0.3123 | 5.7 | 17000 | 0.0876 | 0.1203 | | 0.3093 | 5.86 | 17500 | 0.0848 | 0.1226 | | 0.2903 | 6.03 | 18000 | 0.0914 | 0.1221 | | 0.297 | 6.2 | 18500 | 0.0841 | 0.1185 | | 0.2797 | 6.37 | 19000 | 0.0858 | 0.1165 | | 0.2878 | 6.53 | 19500 | 0.0874 | 0.1161 | | 0.2974 | 6.7 | 20000 | 0.0835 | 0.1173 | | 0.3051 | 6.87 | 20500 | 0.0835 | 0.1178 | | 0.2941 | 7.04 | 21000 | 0.0852 | 0.1155 | | 0.258 | 7.21 | 21500 | 0.0832 | 0.1132 | | 0.2778 | 7.37 | 22000 | 0.0829 | 0.1110 | | 0.2751 | 7.54 | 22500 | 0.0822 | 0.1069 | | 0.2887 | 7.71 | 23000 | 0.0819 | 0.1103 | | 0.2509 | 7.88 | 23500 | 0.0787 | 0.1055 | | 0.2501 | 8.04 | 24000 | 0.0807 | 0.1076 | | 0.2399 | 8.21 | 24500 | 0.0784 | 0.1052 | | 0.2539 | 8.38 | 25000 | 0.0772 | 0.1075 | | 0.248 | 8.55 | 25500 | 0.0772 | 0.1055 | | 0.2689 | 8.71 | 26000 | 0.0763 | 0.1027 | | 0.2855 | 8.88 | 26500 | 0.0756 | 0.1035 | | 0.2421 | 9.05 | 27000 | 0.0771 | 0.0998 | | 0.2497 | 9.22 | 27500 | 0.0756 | 0.0971 | | 0.2367 | 9.38 | 28000 | 0.0741 | 0.0974 | | 0.2473 | 9.55 | 28500 | 0.0739 | 0.0982 | | 0.2396 | 9.72 | 29000 | 0.0756 | 0.0991 | | 0.2602 | 9.89 | 29500 | 0.0737 | 0.0975 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0 ## Evaluation results Evaluation was done with the [Common Voice 7.0 Finnish test split](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). To evaluate this model, run the `eval.py` script in this repository: ```bash python3 eval.py --model_id aapot/wav2vec2-xlsr-1b-finnish-lm-v2 --dataset mozilla-foundation/common_voice_7_0 --config fi --split test ``` This model (the first row of the table) achieves the following WER (Word Error Rate) and CER (Character Error Rate) results compared to our other models: | | WER (with LM) | WER (without LM) | CER (with LM) | CER (without LM) | |-----------------------------------------|---------------|------------------|---------------|------------------| |aapot/wav2vec2-xlsr-1b-finnish-lm-v2 |**4.09** |**9.73** |**0.88** |**1.65** | |aapot/wav2vec2-xlsr-1b-finnish-lm |5.65 |13.11 |1.20 |2.23 | |aapot/wav2vec2-xlsr-300m-finnish-lm |8.16 |17.92 |1.97 |3.36 | ## Team Members - Aapo Tanskanen, [Hugging Face profile](https://huggingface.co/aapot), [LinkedIn profile](https://www.linkedin.com/in/aapotanskanen/) - Rasmus Toivanen, [Hugging Face profile](https://huggingface.co/RASMUS), [LinkedIn profile](https://www.linkedin.com/in/rasmustoivanen/) Feel free to contact us for more details 🤗