modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
list
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
huggingtweets/amityexploder
3840356e2a60fdda8d98f8383bc006935bbf4313
2022-07-15T15:22:22.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/amityexploder
9
null
transformers
12,800
--- language: en thumbnail: http://www.huggingtweets.com/amityexploder/1657898522848/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1544626436899852289/QMNNiqFg_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">SOPPY</div> <div style="text-align: center; font-size: 14px;">@amityexploder</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from SOPPY. | Data | SOPPY | | --- | --- | | Tweets downloaded | 2832 | | Retweets | 102 | | Short tweets | 574 | | Tweets kept | 2156 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/16wq3mtu/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @amityexploder's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/rcycu202) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/rcycu202/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/amityexploder') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
kinanmartin/xlm-roberta-large-ner-hrl-finetuned-ner-full
44a17bbe16338d7548cb9246c9484d5c01992d87
2022-07-15T21:22:23.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "token-classification", "dataset:toydata", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
token-classification
false
kinanmartin
null
kinanmartin/xlm-roberta-large-ner-hrl-finetuned-ner-full
9
null
transformers
12,801
--- tags: - generated_from_trainer datasets: - toydata model-index: - name: xlm-roberta-large-ner-hrl-finetuned-ner-full results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-large-ner-hrl-finetuned-ner-full This model is a fine-tuned version of [Davlan/xlm-roberta-large-ner-hrl](https://huggingface.co/Davlan/xlm-roberta-large-ner-hrl) on the toydata dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Lvxue/distilled_mt5-base_10epoch
6adef3e25bf3d5456072b21ee654faf6e085a7cb
2022-07-18T07:28:03.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Lvxue
null
Lvxue/distilled_mt5-base_10epoch
9
null
transformers
12,802
Entry not found
KoichiYasuoka/deberta-base-thai-ud-head
e58dcf10f6f8dda70425818bd8fe6c9d8d500435
2022-07-20T03:52:02.000Z
[ "pytorch", "deberta-v2", "question-answering", "th", "dataset:universal_dependencies", "transformers", "thai", "dependency-parsing", "license:apache-2.0", "autotrain_compatible" ]
question-answering
false
KoichiYasuoka
null
KoichiYasuoka/deberta-base-thai-ud-head
9
null
transformers
12,803
--- language: - "th" tags: - "thai" - "question-answering" - "dependency-parsing" datasets: - "universal_dependencies" license: "apache-2.0" pipeline_tag: "question-answering" widget: - text: "กว่า" context: "หลายหัวดีกว่าหัวเดียว" - text: "หลาย" context: "หลายหัวดีกว่าหัวเดียว" - text: "หัว" context: "หลาย[MASK]ดีกว่าหัวเดียว" --- # deberta-base-thai-ud-head ## Model Description This is a DeBERTa(V2) model pretrained on Thai Wikipedia texts for dependency-parsing (head-detection on Universal Dependencies) as question-answering, derived from [deberta-base-thai](https://huggingface.co/KoichiYasuoka/deberta-base-thai). Use [MASK] inside `context` to avoid ambiguity when specifying a multiple-used word as `question`. ## How to Use ```py import torch from transformers import AutoTokenizer,AutoModelForQuestionAnswering tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/deberta-base-thai-ud-head") model=AutoModelForQuestionAnswering.from_pretrained("KoichiYasuoka/deberta-base-thai-ud-head") question="กว่า" context="หลายหัวดีกว่าหัวเดียว" inputs=tokenizer(question,context,return_tensors="pt",return_offsets_mapping=True) offsets=inputs.pop("offset_mapping").tolist()[0] outputs=model(**inputs) start,end=torch.argmax(outputs.start_logits),torch.argmax(outputs.end_logits) print(context[offsets[start][0]:offsets[end][-1]]) ``` or (with [ufal.chu-liu-edmonds](https://pypi.org/project/ufal.chu-liu-edmonds/)) ```py class TransformersUD(object): def __init__(self,bert): import os from transformers import (AutoTokenizer,AutoModelForQuestionAnswering, AutoModelForTokenClassification,AutoConfig,TokenClassificationPipeline) self.tokenizer=AutoTokenizer.from_pretrained(bert) self.model=AutoModelForQuestionAnswering.from_pretrained(bert) x=AutoModelForTokenClassification.from_pretrained if os.path.isdir(bert): d,t=x(os.path.join(bert,"deprel")),x(os.path.join(bert,"tagger")) else: from transformers.file_utils import hf_bucket_url c=AutoConfig.from_pretrained(hf_bucket_url(bert,"deprel/config.json")) d=x(hf_bucket_url(bert,"deprel/pytorch_model.bin"),config=c) s=AutoConfig.from_pretrained(hf_bucket_url(bert,"tagger/config.json")) t=x(hf_bucket_url(bert,"tagger/pytorch_model.bin"),config=s) self.deprel=TokenClassificationPipeline(model=d,tokenizer=self.tokenizer, aggregation_strategy="simple") self.tagger=TokenClassificationPipeline(model=t,tokenizer=self.tokenizer) def __call__(self,text): import numpy,torch,ufal.chu_liu_edmonds w=[(t["start"],t["end"],t["entity_group"]) for t in self.deprel(text)] z,n={t["start"]:t["entity"].split("|") for t in self.tagger(text)},len(w) r,m=[text[s:e] for s,e,p in w],numpy.full((n+1,n+1),numpy.nan) v,c=self.tokenizer(r,add_special_tokens=False)["input_ids"],[] for i,t in enumerate(v): q=[self.tokenizer.cls_token_id]+t+[self.tokenizer.sep_token_id] c.append([q]+v[0:i]+[[self.tokenizer.mask_token_id]]+v[i+1:]+[[q[-1]]]) b=[[len(sum(x[0:j+1],[])) for j in range(len(x))] for x in c] with torch.no_grad(): d=self.model(input_ids=torch.tensor([sum(x,[]) for x in c]), token_type_ids=torch.tensor([[0]*x[0]+[1]*(x[-1]-x[0]) for x in b])) s,e=d.start_logits.tolist(),d.end_logits.tolist() for i in range(n): for j in range(n): m[i+1,0 if i==j else j+1]=s[i][b[i][j]]+e[i][b[i][j+1]-1] h=ufal.chu_liu_edmonds.chu_liu_edmonds(m)[0] if [0 for i in h if i==0]!=[0]: i=([p for s,e,p in w]+["root"]).index("root") j=i+1 if i<n else numpy.nanargmax(m[:,0]) m[0:j,0]=m[j+1:,0]=numpy.nan h=ufal.chu_liu_edmonds.chu_liu_edmonds(m)[0] u="# text = "+text.replace("\n"," ")+"\n" for i,(s,e,p) in enumerate(w,1): p="root" if h[i]==0 else "dep" if p=="root" else p u+="\t".join([str(i),r[i-1],"_",z[s][0][2:],"_","|".join(z[s][1:]), str(h[i]),p,"_","_" if i<n and e<w[i][0] else "SpaceAfter=No"])+"\n" return u+"\n" nlp=TransformersUD("KoichiYasuoka/deberta-base-thai-ud-head") print(nlp("หลายหัวดีกว่าหัวเดียว")) ```
respect5716/koenbert-dev
12bf8126820cdb16b51e33659a01613a6baea20e
2022-07-17T07:54:58.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
respect5716
null
respect5716/koenbert-dev
9
null
transformers
12,804
Entry not found
Ankhitan/1000-model1
24273e853ade712112ee6b17fef4ca10a460f077
2022-07-17T17:48:49.000Z
[ "pytorch", "segformer", "transformers" ]
null
false
Ankhitan
null
Ankhitan/1000-model1
9
null
transformers
12,805
Entry not found
raisinbl/distilbert-base-uncased-finetuned-squad_2_512_1
168972faad1303459a46c6408073fd1aeaab83a3
2022-07-19T12:38:16.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "dataset:squad_v2", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
raisinbl
null
raisinbl/distilbert-base-uncased-finetuned-squad_2_512_1
9
null
transformers
12,806
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: distilbert-base-uncased-finetuned-squad_2_512_1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad_2_512_1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad_v2 dataset. It achieves the following results on the evaluation set: - Loss: 1.3225 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2681 | 1.0 | 4079 | 1.2434 | | 1.0223 | 2.0 | 8158 | 1.3153 | | 0.865 | 3.0 | 12237 | 1.3225 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Kayvane/distilroberta-base-wandb-week-3-complaints-classifier-1024
9f38c77fe42fce8d43d1c7c4d16928f06b05eb47
2022-07-19T00:52:23.000Z
[ "pytorch", "roberta", "text-classification", "dataset:consumer-finance-complaints", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Kayvane
null
Kayvane/distilroberta-base-wandb-week-3-complaints-classifier-1024
9
null
transformers
12,807
--- license: apache-2.0 tags: - generated_from_trainer datasets: - consumer-finance-complaints metrics: - accuracy - f1 - recall - precision model-index: - name: distilroberta-base-wandb-week-3-complaints-classifier-1024 results: - task: name: Text Classification type: text-classification dataset: name: consumer-finance-complaints type: consumer-finance-complaints args: default metrics: - name: Accuracy type: accuracy value: 0.8279904184292339 - name: F1 type: f1 value: 0.8236604095677945 - name: Recall type: recall value: 0.8279904184292339 - name: Precision type: precision value: 0.8235526237070518 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-wandb-week-3-complaints-classifier-1024 This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the consumer-finance-complaints dataset. It achieves the following results on the evaluation set: - Loss: 0.5351 - Accuracy: 0.8280 - F1: 0.8237 - Recall: 0.8280 - Precision: 0.8236 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 9.027176214786854e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1024 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| | 0.7756 | 0.61 | 1500 | 0.7411 | 0.7647 | 0.7375 | 0.7647 | 0.7606 | | 0.5804 | 1.22 | 3000 | 0.6140 | 0.8088 | 0.8052 | 0.8088 | 0.8077 | | 0.5008 | 1.83 | 4500 | 0.5351 | 0.8280 | 0.8237 | 0.8280 | 0.8236 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
nvidia/stt_ca_conformer_ctc_large
4d978f8ad59a13f4b686eb001300577f3db7cf07
2022-07-22T18:34:53.000Z
[ "nemo", "ca", "dataset:mozilla-foundation/common_voice_9_0", "arxiv:2005.08100", "automatic-speech-recognition", "speech", "audio", "CTC", "Conformer", "Transformer", "pytorch", "NeMo", "hf-asr-leaderboard", "Riva", "license:cc-by-4.0", "model-index" ]
automatic-speech-recognition
false
nvidia
null
nvidia/stt_ca_conformer_ctc_large
9
1
nemo
12,808
--- language: - ca library_name: nemo datasets: - mozilla-foundation/common_voice_9_0 thumbnail: null tags: - automatic-speech-recognition - speech - audio - CTC - Conformer - Transformer - pytorch - NeMo - hf-asr-leaderboard - Riva license: cc-by-4.0 model-index: - name: stt_ca_conformer_ctc_large results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Mozilla Common Voice 9.0 type: mozilla-foundation/common_voice_9_0 config: ca split: test args: language: ca metrics: - name: Test WER type: wer value: 4.27 --- # NVIDIA Conformer-CTC Large (Catalan) <style> img { display: inline; } </style> | [![Model architecture](https://img.shields.io/badge/Model_Arch-Conformer--CTC-lightgrey#model-badge)](#model-architecture) | [![Model size](https://img.shields.io/badge/Params-120M-lightgrey#model-badge)](#model-architecture) | [![Language](https://img.shields.io/badge/Language-ca-lightgrey#model-badge)](#datasets) | [![Riva Compatible](https://img.shields.io/badge/NVIDIA%20Riva-compatible-brightgreen#model-badge)](#deployment-with-nvidia-riva) | This model transcribes speech into lowercase Catalan alphabet including spaces, dashes and apostrophes, and is trained on around 1023 hours of Catalan speech data. It is a non-autoregressive "large" variant of Conformer, with around 120 million parameters. See the [model architecture](#model-architecture) section and [NeMo documentation](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/models.html#conformer-ctc) for complete architecture details. It is also compatible with NVIDIA Riva for [production-grade server deployments](#deployment-with-nvidia-riva). ## Usage The model is available for use in the NeMo toolkit [3], and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset. To train, fine-tune or play with the model you will need to install [NVIDIA NeMo](https://github.com/NVIDIA/NeMo). We recommend you install it after you've installed latest PyTorch version. ``` pip install nemo_toolkit['all'] ``` ### Automatically instantiate the model ```python import nemo.collections.asr as nemo_asr asr_model = nemo_asr.models.EncDecCTCModelBPE.from_pretrained("nvidia/stt_ca_conformer_ctc_large") ``` ### Transcribing using Python First, let's get a sample ``` wget https://dldata-public.s3.us-east-2.amazonaws.com/2086-149220-0033.wav ``` Then simply do: ``` asr_model.transcribe(['2086-149220-0033.wav']) ``` ### Transcribing many audio files ```shell python [NEMO_GIT_FOLDER]/examples/asr/transcribe_speech.py pretrained_name="nvidia/stt_ca_conformer_ctc_large" audio_dir="<DIRECTORY CONTAINING AUDIO FILES>" ``` ### Input This model accepts 16 kHz mono-channel Audio (wav files) as input. ### Output This model provides transcribed speech as a string for a given audio sample. ## Model Architecture Conformer-CTC model is a non-autoregressive variant of Conformer model [1] for Automatic Speech Recognition which uses CTC loss/decoding instead of Transducer. You may find more info on the detail of this model here: [Conformer-CTC Model](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/models.html#conformer-ctc). ## Training The NeMo toolkit [3] was used for training the models for over several hundred epochs. These model are trained with this [example script](https://github.com/NVIDIA/NeMo/blob/main/examples/asr/asr_ctc/speech_to_text_ctc_bpe.py) and this [base config](https://github.com/NVIDIA/NeMo/blob/main/examples/asr/conf/conformer/conformer_ctc_bpe.yaml). The tokenizers for these models were built using the text transcripts of the train set with this [script](https://github.com/NVIDIA/NeMo/blob/main/scripts/tokenizers/process_asr_text_tokenizer.py). The vocabulary we use contains 44 characters: ```python [' ', "'", '-', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', '·', 'à', 'á', 'ç', 'è', 'é', 'í', 'ï', 'ñ', 'ò', 'ó', 'ú', 'ü', 'ı', '–', '—'] ``` Full config can be found inside the .nemo files. The checkpoint of the language model used as the neural rescorer can be found [here](https://ngc.nvidia.com/catalog/models/nvidia:nemo:asrlm_en_transformer_large_ls). You may find more info on how to train and use language models for ASR models here: [ASR Language Modeling](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/asr_language_modeling.html) ### Datasets All the models in this collection are trained on MCV-9.0 Catalan dataset, which contains around 1203 hours training, 28 hours of development and 27 hours of testing speech audios. ## Performance The list of the available models in this collection is shown in the following table. Performances of the ASR models are reported in terms of Word Error Rate (WER%) with greedy decoding. | Version | Tokenizer | Vocabulary Size | Dev WER| Test WER| Train Dataset | |---------|-----------------------|-----------------|-----|------|-----------------| | 1.11.0 | SentencePiece Unigram | 128 |4.70 | 4.27 | MCV-9.0 Train set | You may use language models (LMs) and beam search to improve the accuracy of the models, as reported in the follwoing table. | Language Model | Test WER | Test WER w/ Oracle LM | Train Dataset | Settings | |----------------|----------|-----------------------|------------------|-------------------------------------------------------| | N-gram LM | 3.77 | 1.54 |MCV-9.0 Train set |N=6, beam_width=128, ngram_alpha=1.5, ngram_beta=2.0 | ## Limitations Since this model was trained on publicly available speech datasets, the performance of this model might degrade for speech which includes technical terms, or vernacular that the model has not been trained on. The model might also perform worse for accented speech. ## Deployment with NVIDIA Riva For the best real-time accuracy, latency, and throughput, deploy the model with [NVIDIA Riva](https://developer.nvidia.com/riva), an accelerated speech AI SDK deployable on-prem, in all clouds, multi-cloud, hybrid, at the edge, and embedded. Additionally, Riva provides: * World-class out-of-the-box accuracy for the most common languages with model checkpoints trained on proprietary data with hundreds of thousands of GPU-compute hours * Best in class accuracy with run-time word boosting (e.g., brand and product names) and customization of acoustic model, language model, and inverse text normalization * Streaming speech recognition, Kubernetes compatible scaling, and Enterprise-grade support Check out [Riva live demo](https://developer.nvidia.com/riva#demos). ## References - [1] [Conformer: Convolution-augmented Transformer for Speech Recognition](https://arxiv.org/abs/2005.08100) - [2] [Google Sentencepiece Tokenizer](https://github.com/google/sentencepiece) - [3] [NVIDIA NeMo Toolkit](https://github.com/NVIDIA/NeMo)
WYHu/cve2cpe_gpt2
dc723ece20b8a3800ac25749727fc75846841d24
2022-07-19T09:14:41.000Z
[ "pytorch", "tensorboard", "gpt2", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
WYHu
null
WYHu/cve2cpe_gpt2
9
null
transformers
12,809
Entry not found
kabelomalapane/Nso-En_update
9ef6fc7b31d78b8da882f0561c246e5fa8bfc136
2022-07-19T11:40:40.000Z
[ "pytorch", "tensorboard", "marian", "text2text-generation", "transformers", "translation", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
translation
false
kabelomalapane
null
kabelomalapane/Nso-En_update
9
null
transformers
12,810
--- license: apache-2.0 tags: - translation - generated_from_trainer metrics: - bleu model-index: - name: Nso-En_update results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Nso-En_update This model is a fine-tuned version of [kabelomalapane/En-Nso](https://huggingface.co/kabelomalapane/En-Nso) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9219 - Bleu: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | |:-------------:|:-----:|:----:|:---------------:|:----:| | No log | 1.0 | 108 | 2.0785 | 0.0 | | No log | 2.0 | 216 | 1.9015 | 0.0 | | No log | 3.0 | 324 | 1.8730 | 0.0 | | No log | 4.0 | 432 | 1.8626 | 0.0 | | 2.1461 | 5.0 | 540 | 1.8743 | 0.0 | | 2.1461 | 6.0 | 648 | 1.8903 | 0.0 | | 2.1461 | 7.0 | 756 | 1.9018 | 0.0 | | 2.1461 | 8.0 | 864 | 1.9236 | 0.0 | | 2.1461 | 9.0 | 972 | 1.9210 | 0.0 | | 1.2781 | 10.0 | 1080 | 1.9219 | 0.0 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
naver-clova-ix/donut-proto
15c4fac7b73aa06261d068ed5ec17b19b147f5bb
2022-07-19T13:53:17.000Z
[ "pytorch", "donut", "transformers", "license:mit" ]
null
false
naver-clova-ix
null
naver-clova-ix/donut-proto
9
null
transformers
12,811
--- license: mit ---
naver-clova-ix/donut-base-finetuned-cord-v1-2560
4518def4e1d14f650f8df5dedaaa3e166e7c2c3e
2022-07-20T06:09:40.000Z
[ "pytorch", "donut", "transformers", "license:mit" ]
null
false
naver-clova-ix
null
naver-clova-ix/donut-base-finetuned-cord-v1-2560
9
null
transformers
12,812
--- license: mit ---
James-kc-min/L_Roberta3
c91574ea1fed70cf16ba85434828d50ec57b12df
2022-07-20T09:08:31.000Z
[ "pytorch", "roberta", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
James-kc-min
null
James-kc-min/L_Roberta3
9
null
transformers
12,813
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: L_Roberta3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # L_Roberta3 This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2095 - Accuracy: 0.9555 - F1: 0.9555 - Precision: 0.9555 - Recall: 0.9555 - C Report: precision recall f1-score support 0 0.97 0.95 0.96 876 1 0.94 0.97 0.95 696 accuracy 0.96 1572 macro avg 0.95 0.96 0.96 1572 weighted avg 0.96 0.96 0.96 1572 - C Matrix: None ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | C Report | C Matrix | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:--------:| | 0.2674 | 1.0 | 329 | 0.2436 | 0.9389 | 0.9389 | 0.9389 | 0.9389 | precision recall f1-score support 0 0.94 0.95 0.95 876 1 0.94 0.92 0.93 696 accuracy 0.94 1572 macro avg 0.94 0.94 0.94 1572 weighted avg 0.94 0.94 0.94 1572 | None | | 0.1377 | 2.0 | 658 | 0.1506 | 0.9408 | 0.9408 | 0.9408 | 0.9408 | precision recall f1-score support 0 0.97 0.92 0.95 876 1 0.91 0.96 0.94 696 accuracy 0.94 1572 macro avg 0.94 0.94 0.94 1572 weighted avg 0.94 0.94 0.94 1572 | None | | 0.0898 | 3.0 | 987 | 0.1491 | 0.9548 | 0.9548 | 0.9548 | 0.9548 | precision recall f1-score support 0 0.96 0.96 0.96 876 1 0.95 0.95 0.95 696 accuracy 0.95 1572 macro avg 0.95 0.95 0.95 1572 weighted avg 0.95 0.95 0.95 1572 | None | | 0.0543 | 4.0 | 1316 | 0.1831 | 0.9561 | 0.9561 | 0.9561 | 0.9561 | precision recall f1-score support 0 0.97 0.95 0.96 876 1 0.94 0.96 0.95 696 accuracy 0.96 1572 macro avg 0.95 0.96 0.96 1572 weighted avg 0.96 0.96 0.96 1572 | None | | 0.0394 | 5.0 | 1645 | 0.2095 | 0.9555 | 0.9555 | 0.9555 | 0.9555 | precision recall f1-score support 0 0.97 0.95 0.96 876 1 0.94 0.97 0.95 696 accuracy 0.96 1572 macro avg 0.95 0.96 0.96 1572 weighted avg 0.96 0.96 0.96 1572 | None | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.2+cu102 - Datasets 2.2.2 - Tokenizers 0.12.1
CennetOguz/gpt2-kit-cls
1f01c37205709b5affa786fdbeeb5ea75b861549
2022-07-20T11:03:45.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-generation
false
CennetOguz
null
CennetOguz/gpt2-kit-cls
9
null
transformers
12,814
--- license: mit tags: - generated_from_trainer model-index: - name: gpt2-kit-cls results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-kit-cls This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.7569 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 3 | 2.9911 | | No log | 2.0 | 6 | 2.8329 | | No log | 3.0 | 9 | 2.7569 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0a0+17540c5 - Datasets 2.3.2 - Tokenizers 0.12.1
oMateos2020/t5-small_adafactor
9cd5c335d9415493eadd8c41e165c2a424506efc
2022-07-23T18:20:11.000Z
[ "pytorch", "t5", "text2text-generation", "dataset:xsum", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
oMateos2020
null
oMateos2020/t5-small_adafactor
9
null
transformers
12,815
--- tags: - generated_from_trainer datasets: - xsum metrics: - rouge model-index: - name: t5-small_adafactor results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: xsum type: xsum args: default metrics: - name: Rouge1 type: rouge value: 32.8631 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small_adafactor This model is a fine-tuned version of [oMateos2020/t5-small_adafactor](https://huggingface.co/oMateos2020/t5-small_adafactor) on the xsum dataset. It achieves the following results on the evaluation set: - Loss: 2.1167 - Rouge1: 32.8631 - Rouge2: 11.658 - Rougel: 26.6192 - Rougelsum: 26.6224 - Gen Len: 18.7663 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adafactor - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 2.1315 | 0.02 | 200 | 2.1865 | 31.9486 | 10.9605 | 25.7418 | 25.7408 | 18.8466 | | 2.1297 | 0.05 | 400 | 2.1965 | 31.9598 | 10.9463 | 25.784 | 25.7867 | 18.8525 | | 2.1284 | 0.07 | 600 | 2.1981 | 32.231 | 11.1003 | 26.0155 | 26.0226 | 18.8466 | | 2.1315 | 0.09 | 800 | 2.1873 | 31.9161 | 10.8642 | 25.7166 | 25.7273 | 18.8227 | | 2.1212 | 0.12 | 1000 | 2.1892 | 32.4646 | 11.1852 | 26.2451 | 26.2439 | 18.8259 | | 2.1028 | 0.14 | 1200 | 2.1978 | 32.2886 | 11.1346 | 26.0795 | 26.0827 | 18.7685 | | 2.1221 | 0.16 | 1400 | 2.1936 | 32.2901 | 11.0821 | 25.9983 | 26.0024 | 18.7798 | | 2.1168 | 0.19 | 1600 | 2.1922 | 32.1655 | 11.1451 | 25.986 | 25.9893 | 18.8232 | | 2.1166 | 0.21 | 1800 | 2.1836 | 32.2611 | 11.174 | 26.0594 | 26.0688 | 18.7633 | | 2.1053 | 0.24 | 2000 | 2.1929 | 32.3321 | 11.213 | 26.1859 | 26.1903 | 18.7758 | | 2.1126 | 0.26 | 2200 | 2.1811 | 32.2078 | 11.1792 | 26.0776 | 26.0817 | 18.8197 | | 2.1038 | 0.28 | 2400 | 2.1836 | 32.2799 | 11.2511 | 26.1191 | 26.1251 | 18.7884 | | 2.1181 | 0.31 | 2600 | 2.1805 | 32.1197 | 11.1586 | 26.0441 | 26.0441 | 18.8045 | | 2.1217 | 0.33 | 2800 | 2.1806 | 32.3051 | 11.2638 | 26.1319 | 26.1386 | 18.7886 | | 2.116 | 0.35 | 3000 | 2.1741 | 32.2799 | 11.1887 | 26.1224 | 26.1363 | 18.7769 | | 2.1118 | 0.38 | 3200 | 2.1767 | 32.387 | 11.2053 | 26.077 | 26.0845 | 18.8407 | | 2.1164 | 0.4 | 3400 | 2.1743 | 32.5008 | 11.4021 | 26.3291 | 26.3297 | 18.7731 | | 2.1068 | 0.42 | 3600 | 2.1673 | 32.2347 | 11.1676 | 26.0657 | 26.0662 | 18.817 | | 2.1276 | 0.45 | 3800 | 2.1664 | 32.2434 | 11.2862 | 26.094 | 26.0994 | 18.7713 | | 2.1313 | 0.47 | 4000 | 2.1636 | 32.694 | 11.3724 | 26.4071 | 26.4008 | 18.7709 | | 2.1229 | 0.49 | 4200 | 2.1633 | 32.456 | 11.4057 | 26.2733 | 26.2689 | 18.7586 | | 2.129 | 0.52 | 4400 | 2.1641 | 32.309 | 11.2133 | 26.1062 | 26.1121 | 18.7729 | | 2.1425 | 0.54 | 4600 | 2.1577 | 32.5879 | 11.4001 | 26.3045 | 26.3078 | 18.8104 | | 2.1536 | 0.56 | 4800 | 2.1507 | 32.5152 | 11.4035 | 26.3054 | 26.3116 | 18.7941 | | 2.148 | 0.59 | 5000 | 2.1503 | 32.8088 | 11.5641 | 26.5346 | 26.5311 | 18.7602 | | 2.1541 | 0.61 | 5200 | 2.1491 | 32.8185 | 11.5816 | 26.5261 | 26.527 | 18.7654 | | 2.155 | 0.64 | 5400 | 2.1466 | 32.7229 | 11.5339 | 26.4363 | 26.442 | 18.8404 | | 2.1579 | 0.66 | 5600 | 2.1435 | 32.884 | 11.6042 | 26.5862 | 26.5891 | 18.7713 | | 2.1601 | 0.68 | 5800 | 2.1393 | 32.8027 | 11.5328 | 26.4521 | 26.4567 | 18.7904 | | 2.1765 | 0.71 | 6000 | 2.1393 | 32.8059 | 11.5751 | 26.5499 | 26.5551 | 18.7768 | | 2.2176 | 0.73 | 6200 | 2.1345 | 33.0734 | 11.8056 | 26.7546 | 26.7607 | 18.7756 | | 2.2126 | 0.75 | 6400 | 2.1328 | 32.7478 | 11.5925 | 26.5333 | 26.5359 | 18.7819 | | 2.1916 | 0.78 | 6600 | 2.1298 | 32.658 | 11.491 | 26.379 | 26.3869 | 18.8101 | | 2.2162 | 0.8 | 6800 | 2.1297 | 32.7843 | 11.5629 | 26.4736 | 26.4728 | 18.8187 | | 2.2358 | 0.82 | 7000 | 2.1287 | 32.9181 | 11.6378 | 26.5966 | 26.5987 | 18.8039 | | 2.2371 | 0.85 | 7200 | 2.1265 | 32.8413 | 11.674 | 26.5905 | 26.5831 | 18.7962 | | 2.256 | 0.87 | 7400 | 2.1245 | 32.7412 | 11.5627 | 26.4976 | 26.503 | 18.7728 | | 2.2566 | 0.89 | 7600 | 2.1220 | 32.8165 | 11.6069 | 26.5301 | 26.5295 | 18.7871 | | 2.2954 | 0.92 | 7800 | 2.1197 | 32.7399 | 11.5417 | 26.4914 | 26.4938 | 18.7752 | | 2.2766 | 0.94 | 8000 | 2.1187 | 32.853 | 11.6411 | 26.5909 | 26.5938 | 18.7852 | | 2.3273 | 0.96 | 8200 | 2.1169 | 32.9376 | 11.709 | 26.6665 | 26.6672 | 18.7734 | | 2.3182 | 0.99 | 8400 | 2.1167 | 32.8631 | 11.658 | 26.6192 | 26.6224 | 18.7663 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
anneke/finetuning-distilbert-base-uncased-finetuned-sst-2-english-5000-samples
3216215f35af559af2f29b13101041734094e872
2022-07-20T12:35:16.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
anneke
null
anneke/finetuning-distilbert-base-uncased-finetuned-sst-2-english-5000-samples
9
null
transformers
12,816
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: finetuning-distilbert-base-uncased-finetuned-sst-2-english-5000-samples results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-distilbert-base-uncased-finetuned-sst-2-english-5000-samples This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1289 - Accuracy: 0.977 - F1: 0.9878 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
caracena/mdeberta-clinical-base-es
ac8107b0b145e642b5fa58f1612630ca5c329de4
2022-07-20T14:49:21.000Z
[ "pytorch", "deberta-v2", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
caracena
null
caracena/mdeberta-clinical-base-es
9
null
transformers
12,817
Entry not found
johnheo1128/distilbert-base-uncased-finetuned-cola
88d4f70ca12f965efb77b352d94df36661080874
2022-07-20T18:21:50.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
johnheo1128
null
johnheo1128/distilbert-base-uncased-finetuned-cola
9
null
transformers
12,818
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5477951635989807 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8081 - Matthews Correlation: 0.5478 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5222 | 1.0 | 535 | 0.5270 | 0.4182 | | 0.3451 | 2.0 | 1070 | 0.5017 | 0.4810 | | 0.2309 | 3.0 | 1605 | 0.5983 | 0.5314 | | 0.179 | 4.0 | 2140 | 0.7488 | 0.5291 | | 0.1328 | 5.0 | 2675 | 0.8081 | 0.5478 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Erolgo/Insectodoptera
1e93e82506388d16c54f993c565d0c5bd00feb68
2022-07-26T00:11:34.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers" ]
image-classification
false
Erolgo
null
Erolgo/Insectodoptera
9
null
transformers
12,819
DEVELOPMENT OF AN AI TAXONOMIST ASSISTANT 1. Develop and provide an at-microscope data-entry assistant tool. Sample metadata entry fields are provided above a live down-scope camera view, with a list of taxon buttons to select from (or add to). The live camera view is captured at moderate resolution from the moment of sample presentation to the moment the qualified taxonomist identifies the specimen (as indicated by a button-click). The button-click labels / tags the video footage with the taxon. 2. Each video clip (set of still frames) could be summarised to a set of principal component frames characterising the full set of frames. 3. Configure an image classifier such as an ensemble of vision transformers like Kyathanahally and Hardeman from EAWAG, train it on the summarising video frames from step 2. Actually, even the full set of frames (that contain the specimen) could be useful to introduce visual noise and make the classifier more robust. 4. Integrate the classifier into the tool described in 1, to offer the additional feature of: the list of previous taxa being sorted by likelihood as determined by AI prediction. 5. Continued use of the tool by qualified taxonomists would provide an opportunity for ongoing training image collection, particularly of taxa that are poorly predicted. The model could be further fine tuned with these additional training images. 6. When classification performance is comparable with qualified human taxonomists, release the data collection tool to users of taxonomy services in the market, with taxonomic classification as a web service. 7. Ultimately, and using the images collected at the moment the qualified human taxonomist clicked an IDing button, the tool might illustrate the orientation / presentation of the specimen required to resolve a classification. https://forum.inaturalist.org/t/preferred-ways-of-batch-downloading-a-subset-of-the-inaturalist-data/18342/7 o accomplish the first part, you can either use the observation CSV export 15 or the get observations endpoint in the iNaturalist API 10. if going with the CSV approach, you’ll be limited to sets of 200,000 observations, and when you choose to get the image_url field, it will give you the URL for only the first photo for each observation. If going with the API approach, you will be limited to 10,000 observations per set of parameters, but you will be able to get all the photo URLs associated with each observation. you can work around the 200k and 10k observation limits by specifying slightly different sets of parameters for each set (easiest to do using a date range or id range). to go with the CSV approach, you’ll have to go to the export page, and then put in the parameters you want (ex. has%5B%5D=photos&quality_grade=any&identifications=any&taxon_id=47114&photo_license=CC0%2CCC-BY&verifiable=true ) in the gray box in section 1. to go with the API approach, you’ll just make API requests using your favorite tool / language (ex. https://api.inaturalist.org/v1/observations?sound_license=cc-by%2Ccc-by-nc&taxon_id=47114&order=desc&order_by=created_at 17). there are many methods to accomplish the second part. i’ve described how to accomplish this using Windows batch files + curl 9 (along with notes about image sizes / names, download limits, etc.), but something similar could also be done in R 6 or whatever your favorite language is.
trevorj/BART_reddit
25282f839c976cf937558516fc5ed6bff7006b99
2022-07-24T01:43:15.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
trevorj
null
trevorj/BART_reddit
9
null
transformers
12,820
Entry not found
gciaffoni/wav2vec2-large-xls-r-300m-it-colab7
44cd164f4db77994446212ab122cd9f4848c4b99
2022-07-23T18:10:04.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
gciaffoni
null
gciaffoni/wav2vec2-large-xls-r-300m-it-colab7
9
null
transformers
12,821
Entry not found
steven123/Check_Gum_Teeth
28d9b6aa236f089e12658637eb8a3a20e80baa64
2022-07-23T14:50:43.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "huggingpics", "model-index" ]
image-classification
false
steven123
null
steven123/Check_Gum_Teeth
9
null
transformers
12,822
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: Check_Gum_Teeth results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 1.0 --- # Check_Gum_Teeth Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### Bad_Gum ![Bad_Gum](images/Bad_Gum.jpg) #### Good_Gum ![Good_Gum](images/Good_Gum.jpg)
erikanesse/great-books-bot
6758d5344827e9271137b1312fd2235fba37a176
2022-07-23T18:55:23.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "model-index" ]
text-generation
false
erikanesse
null
erikanesse/great-books-bot
9
null
transformers
12,823
--- tags: - generated_from_trainer model-index: - name: great-books-bot results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # great-books-bot This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 10 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 300 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
swtx/Erlangshen-Deberta-97M-Chinese
364f7efcc78984c99127baafabc819987a4cbe44
2022-07-25T06:25:48.000Z
[ "pytorch", "deberta-v2", "fill-mask", "zh", "transformers", "bert", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
swtx
null
swtx/Erlangshen-Deberta-97M-Chinese
9
null
transformers
12,824
--- language: - zh license: apache-2.0 tags: - bert inference: true widget: - text: "生活的真谛是[MASK]。" --- # Erlangshen-Deberta-97M-Chinese,one model of [Fengshenbang-LM](https://github.com/IDEA-CCNL/Fengshenbang-LM). The 97 million parameter deberta-V2 base model, using 180G Chinese data, 24 A100(40G) training for 7 days,which is a encoder-only transformer structure. Consumed totally 1B samples. ## Task Description Erlangshen-Deberta-97M-Chinese is pre-trained by bert like mask task from Deberta [paper](https://readpaper.com/paper/3033187248) ## Usage ```python from transformers import AutoModelForMaskedLM, AutoTokenizer, FillMaskPipeline import torch tokenizer=AutoTokenizer.from_pretrained('IDEA-CCNL/Erlangshen-Deberta-97M-Chinese', use_fast=false) model=AutoModelForMaskedLM.from_pretrained('IDEA-CCNL/Erlangshen-Deberta-97M-Chinese') text = '生活的真谛是[MASK]。' fillmask_pipe = FillMaskPipeline(model, tokenizer, device=7) print(fillmask_pipe(text, top_k=10)) ``` ## Finetune We present the dev results on some tasks. | Model | OCNLI | CMNLI | | ---------------------------------- | ----- | ------ | | RoBERTa-base | 0.743 | 0.7973 | | **Erlangshen-Deberta-97M-Chinese** | 0.752 | 0.807 | ## Citation If you find the resource is useful, please cite the following website in your paper. ``` @misc{Fengshenbang-LM, title={Fengshenbang-LM}, author={IDEA-CCNL}, year={2022}, howpublished={\url{https://github.com/IDEA-CCNL/Fengshenbang-LM}}, } ```
UCSYNLP/MyanBERTa
9893af94fa060d5135e85d5cd876693d71da8732
2022-07-26T04:02:59.000Z
[ "pytorch", "roberta", "fill-mask", "my", "dataset:MyCorpus", "dataset:publicly available blogs and websites", "transformers", "MyanBERTa", "Myanmar", "BERT", "RoBERTa", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
UCSYNLP
null
UCSYNLP/MyanBERTa
9
null
transformers
12,825
--- language: my tags: - MyanBERTa - Myanmar - BERT - RoBERTa license: apache-2.0 datasets: - MyCorpus - publicly available blogs and websites --- ## Model description This model is a BERT based Myanmar pre-trained language model. MyanBERTa has been pre-trained for 528K steps on a word segmented Myanmar dataset consisting of 5,992,299 sentences (136M words). As the tokenizer, byte-leve BPE tokenizer of 30,522 subword units which is learned after word segmentation is applied. ``` Contributed by: Aye Mya Hlaing Win Pa Pa ```
vikaskapur/sentimental
26350d3c1c7da3e013a27358048e05e95dfcea2c
2022-07-29T01:02:48.000Z
[ "pytorch", "bert", "text-classification", "transformers", "license:apache-2.0" ]
text-classification
false
vikaskapur
null
vikaskapur/sentimental
9
1
transformers
12,826
--- license: apache-2.0 --- # Model Details * The SENTIMENTAL classifier trained to predict the likelihood that a comment will be perceived as positive or negative. * BERT based Text Classification. # Intended Use * Intended to be used for a wide range of use cases such as supporting human moderation and extracting polarity of review comments. * Not intended for fully automated moderation. * Not intended to make judgments about specific individuals. # Factors * Identity terms referencing frequently positive and negative emotions. # Metrics • Accuracy, which measures the percentage of True Positive and True Negative. # Ethical Considerations * TODO # Quantitative Analyses * TODO # Training Data * TODO # Evaluation Data * TODO # Caveats and Recommendations * TODO
mughalk4/mBERT-German-Mono
e9a3dc7228aad6df167c5f986cf3eb7a6dc80680
2022-07-28T08:56:56.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
mughalk4
null
mughalk4/mBERT-German-Mono
9
null
transformers
12,827
Entry not found
SharpAI/mal_tls_w8a8
992755f23a968d55b33b8907129603535f218eea
2022-07-27T18:39:58.000Z
[ "pytorch", "tf", "bert", "text-classification", "transformers", "generated_from_keras_callback", "model-index" ]
text-classification
false
SharpAI
null
SharpAI/mal_tls_w8a8
9
null
transformers
12,828
--- tags: - generated_from_keras_callback model-index: - name: mal_tls_w8a8 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # mal_tls_w8a8 This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.15.0 - TensorFlow 2.6.4 - Datasets 2.1.0 - Tokenizers 0.10.3
sonoisa/t5-base-english-japanese
d2f9351ced10d462e5799b722e96888e650bf3f7
2022-07-28T11:33:27.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
sonoisa
null
sonoisa/t5-base-english-japanese
9
null
transformers
12,829
Entry not found
yanaiela/roberta-base-epoch_33
ff6515b5d39f79989953462647cd40a8b3311cdc
2022-07-29T22:51:06.000Z
[ "pytorch", "roberta", "fill-mask", "en", "dataset:wikipedia", "dataset:bookcorpus", "arxiv:1907.11692", "arxiv:2207.14251", "transformers", "roberta-base", "roberta-base-epoch_33", "license:mit", "autotrain_compatible" ]
fill-mask
false
yanaiela
null
yanaiela/roberta-base-epoch_33
9
null
transformers
12,830
--- language: en tags: - roberta-base - roberta-base-epoch_33 license: mit datasets: - wikipedia - bookcorpus --- # RoBERTa, Intermediate Checkpoint - Epoch 33 This model is part of our reimplementation of the [RoBERTa model](https://arxiv.org/abs/1907.11692), trained on Wikipedia and the Book Corpus only. We train this model for almost 100K steps, corresponding to 83 epochs. We provide the 84 checkpoints (including the randomly initialized weights before the training) to provide the ability to study the training dynamics of such models, and other possible use-cases. These models were trained in part of a work that studies how simple statistics from data, such as co-occurrences affects model predictions, which are described in the paper [Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions](https://arxiv.org/abs/2207.14251). This is RoBERTa-base epoch_33. ## Model Description This model was captured during a reproduction of [RoBERTa-base](https://huggingface.co/roberta-base), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM). The intended uses, limitations, training data and training procedure for the fully trained model are similar to [RoBERTa-base](https://huggingface.co/roberta-base). Two major differences with the original model: * We trained our model for 100K steps, instead of 500K * We only use Wikipedia and the Book Corpus, as corpora which are publicly available. ### How to use Using code from [RoBERTa-base](https://huggingface.co/roberta-base), here is an example based on PyTorch: ``` from transformers import pipeline model = pipeline("fill-mask", model='yanaiela/roberta-base-epoch_83', device=-1, top_k=10) model("Hello, I'm the <mask> RoBERTa-base language model") ``` ## Citation info ```bibtex @article{2207.14251, Author = {Yanai Elazar and Nora Kassner and Shauli Ravfogel and Amir Feder and Abhilasha Ravichander and Marius Mosbach and Yonatan Belinkov and Hinrich Schütze and Yoav Goldberg}, Title = {Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions}, Year = {2022}, Eprint = {arXiv:2207.14251}, } ```
Go2Heart/BERT_Mod_2
98a5820e5738981c272b60e9899aa68979c9bd4c
2022-07-28T18:32:09.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Go2Heart
null
Go2Heart/BERT_Mod_2
9
null
transformers
12,831
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue model-index: - name: BERT_Mod_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BERT_Mod_2 This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the glue dataset. It achieves the following results on the evaluation set: - eval_loss: 0.5659 - eval_accuracy: 0.9037 - eval_runtime: 0.3838 - eval_samples_per_second: 2271.724 - eval_steps_per_second: 143.285 - epoch: 0.01 - step: 49 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0 - Datasets 2.4.0 - Tokenizers 0.12.1
yanaiela/roberta-base-epoch_59
a2c3896b418a2e6bfd9361040714fb429b707433
2022-07-29T23:01:00.000Z
[ "pytorch", "roberta", "fill-mask", "en", "dataset:wikipedia", "dataset:bookcorpus", "arxiv:1907.11692", "arxiv:2207.14251", "transformers", "roberta-base", "roberta-base-epoch_59", "license:mit", "autotrain_compatible" ]
fill-mask
false
yanaiela
null
yanaiela/roberta-base-epoch_59
9
null
transformers
12,832
--- language: en tags: - roberta-base - roberta-base-epoch_59 license: mit datasets: - wikipedia - bookcorpus --- # RoBERTa, Intermediate Checkpoint - Epoch 59 This model is part of our reimplementation of the [RoBERTa model](https://arxiv.org/abs/1907.11692), trained on Wikipedia and the Book Corpus only. We train this model for almost 100K steps, corresponding to 83 epochs. We provide the 84 checkpoints (including the randomly initialized weights before the training) to provide the ability to study the training dynamics of such models, and other possible use-cases. These models were trained in part of a work that studies how simple statistics from data, such as co-occurrences affects model predictions, which are described in the paper [Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions](https://arxiv.org/abs/2207.14251). This is RoBERTa-base epoch_59. ## Model Description This model was captured during a reproduction of [RoBERTa-base](https://huggingface.co/roberta-base), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM). The intended uses, limitations, training data and training procedure for the fully trained model are similar to [RoBERTa-base](https://huggingface.co/roberta-base). Two major differences with the original model: * We trained our model for 100K steps, instead of 500K * We only use Wikipedia and the Book Corpus, as corpora which are publicly available. ### How to use Using code from [RoBERTa-base](https://huggingface.co/roberta-base), here is an example based on PyTorch: ``` from transformers import pipeline model = pipeline("fill-mask", model='yanaiela/roberta-base-epoch_83', device=-1, top_k=10) model("Hello, I'm the <mask> RoBERTa-base language model") ``` ## Citation info ```bibtex @article{2207.14251, Author = {Yanai Elazar and Nora Kassner and Shauli Ravfogel and Amir Feder and Abhilasha Ravichander and Marius Mosbach and Yonatan Belinkov and Hinrich Schütze and Yoav Goldberg}, Title = {Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions}, Year = {2022}, Eprint = {arXiv:2207.14251}, } ```
yanaiela/roberta-base-epoch_75
32aa6fded68fbb64dafe58be89c7f3b90724bf5b
2022-07-29T23:07:09.000Z
[ "pytorch", "roberta", "fill-mask", "en", "dataset:wikipedia", "dataset:bookcorpus", "arxiv:1907.11692", "arxiv:2207.14251", "transformers", "roberta-base", "roberta-base-epoch_75", "license:mit", "autotrain_compatible" ]
fill-mask
false
yanaiela
null
yanaiela/roberta-base-epoch_75
9
null
transformers
12,833
--- language: en tags: - roberta-base - roberta-base-epoch_75 license: mit datasets: - wikipedia - bookcorpus --- # RoBERTa, Intermediate Checkpoint - Epoch 75 This model is part of our reimplementation of the [RoBERTa model](https://arxiv.org/abs/1907.11692), trained on Wikipedia and the Book Corpus only. We train this model for almost 100K steps, corresponding to 83 epochs. We provide the 84 checkpoints (including the randomly initialized weights before the training) to provide the ability to study the training dynamics of such models, and other possible use-cases. These models were trained in part of a work that studies how simple statistics from data, such as co-occurrences affects model predictions, which are described in the paper [Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions](https://arxiv.org/abs/2207.14251). This is RoBERTa-base epoch_75. ## Model Description This model was captured during a reproduction of [RoBERTa-base](https://huggingface.co/roberta-base), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM). The intended uses, limitations, training data and training procedure for the fully trained model are similar to [RoBERTa-base](https://huggingface.co/roberta-base). Two major differences with the original model: * We trained our model for 100K steps, instead of 500K * We only use Wikipedia and the Book Corpus, as corpora which are publicly available. ### How to use Using code from [RoBERTa-base](https://huggingface.co/roberta-base), here is an example based on PyTorch: ``` from transformers import pipeline model = pipeline("fill-mask", model='yanaiela/roberta-base-epoch_83', device=-1, top_k=10) model("Hello, I'm the <mask> RoBERTa-base language model") ``` ## Citation info ```bibtex @article{2207.14251, Author = {Yanai Elazar and Nora Kassner and Shauli Ravfogel and Amir Feder and Abhilasha Ravichander and Marius Mosbach and Yonatan Belinkov and Hinrich Schütze and Yoav Goldberg}, Title = {Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions}, Year = {2022}, Eprint = {arXiv:2207.14251}, } ```
yanaiela/roberta-base-epoch_76
b995f7c1c0874554bc2a0ce1724e9a2ffca86fd6
2022-07-29T23:07:31.000Z
[ "pytorch", "roberta", "fill-mask", "en", "dataset:wikipedia", "dataset:bookcorpus", "arxiv:1907.11692", "arxiv:2207.14251", "transformers", "roberta-base", "roberta-base-epoch_76", "license:mit", "autotrain_compatible" ]
fill-mask
false
yanaiela
null
yanaiela/roberta-base-epoch_76
9
null
transformers
12,834
--- language: en tags: - roberta-base - roberta-base-epoch_76 license: mit datasets: - wikipedia - bookcorpus --- # RoBERTa, Intermediate Checkpoint - Epoch 76 This model is part of our reimplementation of the [RoBERTa model](https://arxiv.org/abs/1907.11692), trained on Wikipedia and the Book Corpus only. We train this model for almost 100K steps, corresponding to 83 epochs. We provide the 84 checkpoints (including the randomly initialized weights before the training) to provide the ability to study the training dynamics of such models, and other possible use-cases. These models were trained in part of a work that studies how simple statistics from data, such as co-occurrences affects model predictions, which are described in the paper [Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions](https://arxiv.org/abs/2207.14251). This is RoBERTa-base epoch_76. ## Model Description This model was captured during a reproduction of [RoBERTa-base](https://huggingface.co/roberta-base), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM). The intended uses, limitations, training data and training procedure for the fully trained model are similar to [RoBERTa-base](https://huggingface.co/roberta-base). Two major differences with the original model: * We trained our model for 100K steps, instead of 500K * We only use Wikipedia and the Book Corpus, as corpora which are publicly available. ### How to use Using code from [RoBERTa-base](https://huggingface.co/roberta-base), here is an example based on PyTorch: ``` from transformers import pipeline model = pipeline("fill-mask", model='yanaiela/roberta-base-epoch_83', device=-1, top_k=10) model("Hello, I'm the <mask> RoBERTa-base language model") ``` ## Citation info ```bibtex @article{2207.14251, Author = {Yanai Elazar and Nora Kassner and Shauli Ravfogel and Amir Feder and Abhilasha Ravichander and Marius Mosbach and Yonatan Belinkov and Hinrich Schütze and Yoav Goldberg}, Title = {Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions}, Year = {2022}, Eprint = {arXiv:2207.14251}, } ```
yanaiela/roberta-base-epoch_79
4989901e47c002691c5d384d61b01e5e9544f102
2022-07-29T23:08:37.000Z
[ "pytorch", "roberta", "fill-mask", "en", "dataset:wikipedia", "dataset:bookcorpus", "arxiv:1907.11692", "arxiv:2207.14251", "transformers", "roberta-base", "roberta-base-epoch_79", "license:mit", "autotrain_compatible" ]
fill-mask
false
yanaiela
null
yanaiela/roberta-base-epoch_79
9
null
transformers
12,835
--- language: en tags: - roberta-base - roberta-base-epoch_79 license: mit datasets: - wikipedia - bookcorpus --- # RoBERTa, Intermediate Checkpoint - Epoch 79 This model is part of our reimplementation of the [RoBERTa model](https://arxiv.org/abs/1907.11692), trained on Wikipedia and the Book Corpus only. We train this model for almost 100K steps, corresponding to 83 epochs. We provide the 84 checkpoints (including the randomly initialized weights before the training) to provide the ability to study the training dynamics of such models, and other possible use-cases. These models were trained in part of a work that studies how simple statistics from data, such as co-occurrences affects model predictions, which are described in the paper [Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions](https://arxiv.org/abs/2207.14251). This is RoBERTa-base epoch_79. ## Model Description This model was captured during a reproduction of [RoBERTa-base](https://huggingface.co/roberta-base), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM). The intended uses, limitations, training data and training procedure for the fully trained model are similar to [RoBERTa-base](https://huggingface.co/roberta-base). Two major differences with the original model: * We trained our model for 100K steps, instead of 500K * We only use Wikipedia and the Book Corpus, as corpora which are publicly available. ### How to use Using code from [RoBERTa-base](https://huggingface.co/roberta-base), here is an example based on PyTorch: ``` from transformers import pipeline model = pipeline("fill-mask", model='yanaiela/roberta-base-epoch_83', device=-1, top_k=10) model("Hello, I'm the <mask> RoBERTa-base language model") ``` ## Citation info ```bibtex @article{2207.14251, Author = {Yanai Elazar and Nora Kassner and Shauli Ravfogel and Amir Feder and Abhilasha Ravichander and Marius Mosbach and Yonatan Belinkov and Hinrich Schütze and Yoav Goldberg}, Title = {Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions}, Year = {2022}, Eprint = {arXiv:2207.14251}, } ```
yanaiela/roberta-base-epoch_80
216ad5fb17b9801075306679204f82609e82a06a
2022-07-29T23:08:59.000Z
[ "pytorch", "roberta", "fill-mask", "en", "dataset:wikipedia", "dataset:bookcorpus", "arxiv:1907.11692", "arxiv:2207.14251", "transformers", "roberta-base", "roberta-base-epoch_80", "license:mit", "autotrain_compatible" ]
fill-mask
false
yanaiela
null
yanaiela/roberta-base-epoch_80
9
null
transformers
12,836
--- language: en tags: - roberta-base - roberta-base-epoch_80 license: mit datasets: - wikipedia - bookcorpus --- # RoBERTa, Intermediate Checkpoint - Epoch 80 This model is part of our reimplementation of the [RoBERTa model](https://arxiv.org/abs/1907.11692), trained on Wikipedia and the Book Corpus only. We train this model for almost 100K steps, corresponding to 83 epochs. We provide the 84 checkpoints (including the randomly initialized weights before the training) to provide the ability to study the training dynamics of such models, and other possible use-cases. These models were trained in part of a work that studies how simple statistics from data, such as co-occurrences affects model predictions, which are described in the paper [Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions](https://arxiv.org/abs/2207.14251). This is RoBERTa-base epoch_80. ## Model Description This model was captured during a reproduction of [RoBERTa-base](https://huggingface.co/roberta-base), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM). The intended uses, limitations, training data and training procedure for the fully trained model are similar to [RoBERTa-base](https://huggingface.co/roberta-base). Two major differences with the original model: * We trained our model for 100K steps, instead of 500K * We only use Wikipedia and the Book Corpus, as corpora which are publicly available. ### How to use Using code from [RoBERTa-base](https://huggingface.co/roberta-base), here is an example based on PyTorch: ``` from transformers import pipeline model = pipeline("fill-mask", model='yanaiela/roberta-base-epoch_83', device=-1, top_k=10) model("Hello, I'm the <mask> RoBERTa-base language model") ``` ## Citation info ```bibtex @article{2207.14251, Author = {Yanai Elazar and Nora Kassner and Shauli Ravfogel and Amir Feder and Abhilasha Ravichander and Marius Mosbach and Yonatan Belinkov and Hinrich Schütze and Yoav Goldberg}, Title = {Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions}, Year = {2022}, Eprint = {arXiv:2207.14251}, } ```
ARTeLab/mbart-summarization-ilpost
2ce77c4c97e4f03389178a92ca4507ad789118f3
2022-05-03T06:07:06.000Z
[ "pytorch", "mbart", "text2text-generation", "it", "dataset:ARTeLab/ilpost", "transformers", "summarization", "model-index", "autotrain_compatible" ]
summarization
false
ARTeLab
null
ARTeLab/mbart-summarization-ilpost
8
null
transformers
12,837
--- tags: - summarization language: - it metrics: - rouge model-index: - name: summarization_mbart_ilpost results: [] datasets: - ARTeLab/ilpost --- # mbart_summarization_ilpost This model is a fine-tuned version of [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25) on IlPost dataset for Abstractive Summarization. It achieves the following results: - Loss: 2.3640 - Rouge1: 38.9101 - Rouge2: 21.384 - Rougel: 32.0517 - Rougelsum: 35.0743 - Gen Len: 39.8843 ## Usage ```python from transformers import MBartTokenizer, MBartForConditionalGeneration tokenizer = MBartTokenizer.from_pretrained("ARTeLab/mbart-summarization-ilpost") model = MBartForConditionalGeneration.from_pretrained("ARTeLab/mbart-summarization-ilpost") ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4.0 ### Framework versions - Transformers 4.15.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.15.1 - Tokenizers 0.10.3 # Citation More details and results in [published work](https://www.mdpi.com/2078-2489/13/5/228) ``` @Article{info13050228, AUTHOR = {Landro, Nicola and Gallo, Ignazio and La Grassa, Riccardo and Federici, Edoardo}, TITLE = {Two New Datasets for Italian-Language Abstractive Text Summarization}, JOURNAL = {Information}, VOLUME = {13}, YEAR = {2022}, NUMBER = {5}, ARTICLE-NUMBER = {228}, URL = {https://www.mdpi.com/2078-2489/13/5/228}, ISSN = {2078-2489}, ABSTRACT = {Text summarization aims to produce a short summary containing relevant parts from a given text. Due to the lack of data for abstractive summarization on low-resource languages such as Italian, we propose two new original datasets collected from two Italian news websites with multi-sentence summaries and corresponding articles, and from a dataset obtained by machine translation of a Spanish summarization dataset. These two datasets are currently the only two available in Italian for this task. To evaluate the quality of these two datasets, we used them to train a T5-base model and an mBART model, obtaining good results with both. To better evaluate the results obtained, we also compared the same models trained on automatically translated datasets, and the resulting summaries in the same training language, with the automatically translated summaries, which demonstrated the superiority of the models obtained from the proposed datasets.}, DOI = {10.3390/info13050228} } ```
ASCCCCCCCC/bert-base-chinese-finetuned-amazon_zh
9d8fd0b4dd669e42ba21f3fb1579e1debfa856cd
2022-02-21T20:21:21.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
ASCCCCCCCC
null
ASCCCCCCCC/bert-base-chinese-finetuned-amazon_zh
8
null
transformers
12,838
Entry not found
ASCCCCCCCC/bert-base-chinese-finetuned-amazon_zh_20000
d2e02f3763d37568022bfdae9b07e4e6b27e81fa
2022-02-22T02:51:29.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
ASCCCCCCCC
null
ASCCCCCCCC/bert-base-chinese-finetuned-amazon_zh_20000
8
null
transformers
12,839
--- tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: bert-base-chinese-finetuned-amazon_zh_20000 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-chinese-finetuned-amazon_zh_20000 This model is a fine-tuned version of [bert-base-chinese](https://huggingface.co/bert-base-chinese) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1683 - Accuracy: 0.5224 - F1: 0.5194 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 1.2051 | 1.0 | 2500 | 1.1717 | 0.506 | 0.4847 | | 1.0035 | 2.0 | 5000 | 1.1683 | 0.5224 | 0.5194 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.9.1 - Datasets 1.18.3 - Tokenizers 0.10.3
AndreLiu1225/t5-news-summarizer
6e9436cab957ec608164ab041bcbaeed12dcb357
2021-10-26T02:45:12.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
AndreLiu1225
null
AndreLiu1225/t5-news-summarizer
8
null
transformers
12,840
Entry not found
Andrianos/bert-base-greek-punctuation-prediction-finetuned
941b2ef1d8e00b6febce231802d3320350837c8d
2021-09-29T13:13:25.000Z
[ "pytorch", "bert", "token-classification", "el", "transformers", "Punctuation Prediction", "license:apache-2.0", "autotrain_compatible" ]
token-classification
false
Andrianos
null
Andrianos/bert-base-greek-punctuation-prediction-finetuned
8
null
transformers
12,841
AnonymousSub/EManuals_BERT_copy_wikiqa
9052af2f6004d7d15445d8780140dac2a093c89e
2022-01-23T04:47:45.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
AnonymousSub
null
AnonymousSub/EManuals_BERT_copy_wikiqa
8
null
transformers
12,842
Entry not found
BigSalmon/PhraseBerta
b04f42c2b60c83c15f21d9c7d9736a8478223794
2021-07-08T00:38:06.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
BigSalmon
null
BigSalmon/PhraseBerta
8
null
transformers
12,843
Entry not found
BigSalmon/Points2
ebf94b5e2d8a2512c8fe8cc1d3ddb4c583b5e4b0
2022-02-07T00:27:54.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
BigSalmon
null
BigSalmon/Points2
8
null
transformers
12,844
Converting Points or Headlines to Paragraphs Example Prompts: ``` ### - declining viewership facing the nba. - does not have to be this way. - in fact, many solutions exist. - the four point line would surely draw in eyes. Text: failing to draw in the masses, the NBA has fallen into disrepair. such does not have to be the case, however. in fact, a myriad of simple, relatively cheap solutions could revive the league. the addition of the much-hyped four-point line would surely juice viewership. ### - with 2,000,000 individual articles on everything - wikipedia is the #8 site on the world wide web - created by anyone with access to a computer - growing at fast rate - proof that collaborative community-based projects are the future Text: encompassing a staggering 2,000,000 articles on every subject conceivable, wikipedia is the 8th most visited website in the world. borne of the collective efforts of anyone with an internet connection, its contents are increasing exponentially. most compellingly, however, this effort is an affirmation that community-based initiatives is the future. ### - ``` ``` Essay Intro (Sega Centers Classics): unyielding in its insistence on consoles that are tethered to a fixed iteration, sega diligently curates its legacy of classic video games on handheld devices. this is a task that not even the most devoted fan could have foreseen. *** Essay Intro (Blizzard Shows Video Games Are An Art): universally adored, video games have come to be revered not only as interactive diversions, but as artworks. a firm believer in this doctrine, blizzard actively works to further the craft of storytelling in their respective titles. *** Essay Intro (What Happened To Linux): chancing upon a linux user is a rare occurrence in the present day. once a mainstay, the brand has come to only be seen in the hands of the most ardent of its followers. ```
CAMeL-Lab/bert-base-arabic-camelbert-msa-did-nadi
02cca83f111f9c6c93001c229442c6d064a4723d
2021-10-17T11:05:21.000Z
[ "pytorch", "tf", "bert", "text-classification", "ar", "arxiv:2103.06678", "transformers", "license:apache-2.0" ]
text-classification
false
CAMeL-Lab
null
CAMeL-Lab/bert-base-arabic-camelbert-msa-did-nadi
8
null
transformers
12,845
--- language: - ar license: apache-2.0 widget: - text: "عامل ايه ؟" --- # CAMeLBERT-MSA DID NADI Model ## Model description **CAMeLBERT-MSA DID NADI Model** is a dialect identification (DID) model that was built by fine-tuning the [CAMeLBERT Modern Standard Arabic (MSA)](https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-msa/) model. For the fine-tuning, we used the [NADI Coountry-level](https://sites.google.com/view/nadi-shared-task) dataset, which includes 21 labels. Our fine-tuning procedure and the hyperparameters we used can be found in our paper *"[The Interplay of Variant, Size, and Task Type in Arabic Pre-trained Language Models](https://arxiv.org/abs/2103.06678)."* Our fine-tuning code can be found [here](https://github.com/CAMeL-Lab/CAMeLBERT). ## Intended uses You can use the CAMeLBERT-MSA DID NADI model as part of the transformers pipeline. This model will also be available in [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools) soon. #### How to use To use the model with a transformers pipeline: ```python >>> from transformers import pipeline >>> did = pipeline('text-classification', model='CAMeL-Lab/bert-base-arabic-camelbert-msa-did-nadi') >>> sentences = ['عامل ايه ؟', 'شلونك ؟ شخبارك ؟'] >>> did(sentences) [{'label': 'Egypt', 'score': 0.9242768287658691}, {'label': 'Saudi_Arabia', 'score': 0.3400847613811493}] ``` *Note*: to download our models, you would need `transformers>=3.5.0`. Otherwise, you could download the models manually. ## Citation ```bibtex @inproceedings{inoue-etal-2021-interplay, title = "The Interplay of Variant, Size, and Task Type in {A}rabic Pre-trained Language Models", author = "Inoue, Go and Alhafni, Bashar and Baimukan, Nurpeiis and Bouamor, Houda and Habash, Nizar", booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop", month = apr, year = "2021", address = "Kyiv, Ukraine (Online)", publisher = "Association for Computational Linguistics", abstract = "In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a mix of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.", } ```
Cathy/reranking_model
ebb809efbe29b7e4fb9a181200e6062e465b576e
2021-09-05T09:55:08.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
Cathy
null
Cathy/reranking_model
8
null
transformers
12,846
Entry not found
CenIA/bert-base-spanish-wwm-uncased-finetuned-pawsx
2ae8fd64efb54e83a98d2978783e219cf626209b
2022-01-04T13:16:37.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
CenIA
null
CenIA/bert-base-spanish-wwm-uncased-finetuned-pawsx
8
null
transformers
12,847
Entry not found
Chun/w-en2zh-hsk
37e52cc5c85f82331497a8e23134f92e6b9427e1
2021-08-25T13:14:39.000Z
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Chun
null
Chun/w-en2zh-hsk
8
null
transformers
12,848
Entry not found
CoffeeAddict93/gpt1-call-of-the-wild
17df705a925e82fd1b57ba101f3a9ce65dbf403d
2021-12-02T03:23:12.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
CoffeeAddict93
null
CoffeeAddict93/gpt1-call-of-the-wild
8
null
transformers
12,849
Entry not found
ComCom/gpt2-large
744ecfda34efe6a469f7e0eadbb6edacf401864e
2021-11-15T07:26:07.000Z
[ "pytorch", "gpt2", "feature-extraction", "transformers" ]
feature-extraction
false
ComCom
null
ComCom/gpt2-large
8
null
transformers
12,850
해당 모델은 [해당 사이트](https://huggingface.co/gpt2-medium)에서 가져온 모델입니다. 해당 모델은 [Teachable NLP](https://ainize.ai/teachable-nlp) 서비스에서 사용됩니다.
Davlan/m2m100_418M-eng-yor-mt
f1511d6ef272d4c1e277f297df3b818687aa24d3
2022-03-29T09:21:53.000Z
[ "pytorch", "m2m_100", "text2text-generation", "yo", "en", "dataset:JW300 + [Menyo-20k](https://huggingface.co/datasets/menyo20k_mt)", "arxiv:2103.08647", "transformers", "autotrain_compatible" ]
text2text-generation
false
Davlan
null
Davlan/m2m100_418M-eng-yor-mt
8
null
transformers
12,851
Hugging Face's logo --- language: - yo - en datasets: - JW300 + [Menyo-20k](https://huggingface.co/datasets/menyo20k_mt) --- # m2m100_418M-eng-yor-mt ## Model description **m2m100_418M-eng-yor-mt** is a **machine translation** model from English language to Yorùbá language based on a fine-tuned facebook/m2m100_418M model. It establishes a **strong baseline** for automatically translating texts from English to Yorùbá. Specifically, this model is a *facebook/m2m100_418M* model that was fine-tuned on JW300 Yorùbá corpus and [Menyo-20k](https://huggingface.co/datasets/menyo20k_mt). #### Limitations and bias This model is limited by its training dataset. This may not generalize well for all use cases in different domains. ## Training data This model was fine-tuned on JW300 corpus and [Menyo-20k](https://huggingface.co/datasets/menyo20k_mt) dataset ## Training procedure This model was trained on NVIDIA V100 GPU ## Eval results on Test set (BLEU score) Fine-tuning m2m100_418M achieves **13.39 BLEU** on [Menyo-20k test set](https://arxiv.org/abs/2103.08647) while mt5-base achieves 9.82 ### BibTeX entry and citation info By David Adelani ``` ```
DeltaHub/lora_t5-base_mrpc
8d87d8deef82d09e788e1f0867fbc27a8dbcb404
2022-02-14T06:32:18.000Z
[ "pytorch", "transformers" ]
null
false
DeltaHub
null
DeltaHub/lora_t5-base_mrpc
8
null
transformers
12,852
Need to work with OpenDelta ``` from transformers import AutoModelForSeq2SeqLM t5 = AutoModelForSeq2SeqLM.from_pretrained("t5-base") from opendelta import AutoDeltaModel delta = AutoDeltaModel.from_finetuned("DeltaHub/lora_t5-base_mrpc", backbone_model=t5) delta.log() ```
EMBEDDIA/est-roberta
5b36f40096f68a25c6a47376b0715218687ab8f8
2021-11-29T12:17:46.000Z
[ "pytorch", "camembert", "fill-mask", "et", "transformers", "license:cc-by-sa-4.0", "autotrain_compatible" ]
fill-mask
false
EMBEDDIA
null
EMBEDDIA/est-roberta
8
2
transformers
12,853
--- language: - et license: cc-by-sa-4.0 --- # Usage Load in transformers library with: ``` from transformers import AutoTokenizer, AutoModelForMaskedLM tokenizer = AutoTokenizer.from_pretrained("EMBEDDIA/est-roberta") model = AutoModelForMaskedLM.from_pretrained("EMBEDDIA/est-roberta") ``` # Est-RoBERTa Est-RoBERTa model is a monolingual Estonian BERT-like model. It is closely related to French Camembert model https://camembert-model.fr/. The Estonian corpora used for training the model have 2.51 billion tokens in total. The subword vocabulary contains 40,000 tokens. Est-RoBERTa was trained for 40 epochs.
Elron/bleurt-tiny-128
1607b0b88c88390663970418ac61d4ff95ecf594
2021-10-04T13:27:02.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Elron
null
Elron/bleurt-tiny-128
8
1
transformers
12,854
\n## BLEURT Pytorch version of the original BLEURT models from ACL paper ["BLEURT: Learning Robust Metrics for Text Generation"](https://aclanthology.org/2020.acl-main.704/) by Thibault Sellam, Dipanjan Das and Ankur P. Parikh of Google Research. The code for model conversion was originated from [this notebook](https://colab.research.google.com/drive/1KsCUkFW45d5_ROSv2aHtXgeBa2Z98r03?usp=sharing) mentioned [here](https://github.com/huggingface/datasets/issues/224). ## Usage Example ```python from transformers import AutoModelForSequenceClassification, AutoTokenizer import torch tokenizer = AutoTokenizer.from_pretrained("Elron/bleurt-tiny-512") model = AutoModelForSequenceClassification.from_pretrained("Elron/bleurt-tiny-512") model.eval() references = ["hello world", "hello world"] candidates = ["hi universe", "bye world"] with torch.no_grad(): scores = model(**tokenizer(references, candidates, return_tensors='pt'))[0].squeeze() print(scores) # tensor([-1.0563, -0.3004]) ```
Finnish-NLP/convbert-base-generator-finnish
4e05e88b590ad06f57c36df4410e5475387c30dc
2022-06-13T16:15:42.000Z
[ "pytorch", "convbert", "fill-mask", "fi", "dataset:Finnish-NLP/mc4_fi_cleaned", "dataset:wikipedia", "arxiv:2008.02496", "transformers", "finnish", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Finnish-NLP
null
Finnish-NLP/convbert-base-generator-finnish
8
null
transformers
12,855
--- language: - fi license: apache-2.0 tags: - finnish - convbert datasets: - Finnish-NLP/mc4_fi_cleaned - wikipedia widget: - text: "Moikka olen [MASK] kielimalli." --- # ConvBERT for Finnish Pretrained ConvBERT model on Finnish language using a replaced token detection (RTD) objective. ConvBERT was introduced in [this paper](https://arxiv.org/abs/2008.02496) and first released at [this page](https://github.com/yitu-opensource/ConvBert). **Note**: this model is the ConvBERT generator model intented to be used for the fill-mask task. The ConvBERT discriminator model intented to be used for fine-tuning on downstream tasks like text classification is released here [Finnish-NLP/convbert-base-finnish](https://huggingface.co/Finnish-NLP/convbert-base-finnish) ## Model description Finnish ConvBERT is a transformers model pretrained on a very large corpus of Finnish data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with the replaced token detection (RTD) objective. Instead of masking the input like in BERT's masked language modeling (MLM) objective, this approach corrupts the input by replacing some tokens with plausible alternatives sampled from a small generator model. Then, instead of training a model that predicts the original identities of the corrupted tokens, a discriminative model is trained that predicts whether each token in the corrupted input was replaced by a generator model's sample or not. Thus, this training approach resembles Generative Adversarial Nets (GAN). This way, the model learns an inner representation of the Finnish language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the ConvBERT model as inputs. Compared to BERT and ELECTRA models, ConvBERT model utilizes a span-based dynamic convolution to replace some of the global self-attention heads for modeling local input sequence dependencies. These convolution heads, together with the rest of the self-attention heads, form a new mixed attention block that should be more efficient at both global and local context learning. ## Intended uses & limitations You can use this generator model mainly just for the fill-mask task. For other tasks, check the [Finnish-NLP/convbert-base-finnish](https://huggingface.co/Finnish-NLP/convbert-base-finnish) model instead. ### How to use Here is how to use this model directly with a pipeline for fill-mask task: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='Finnish-NLP/convbert-base-generator-finnish') >>> unmasker("Moikka olen [MASK] kielimalli.") [{'score': 0.08341152966022491, 'token': 4619, 'token_str': 'suomalainen', 'sequence': 'Moikka olen suomalainen kielimalli.'}, {'score': 0.02831297740340233, 'token': 25583, 'token_str': 'ranskalainen', 'sequence': 'Moikka olen ranskalainen kielimalli.'}, {'score': 0.027857203036546707, 'token': 37714, 'token_str': 'kiinalainen', 'sequence': 'Moikka olen kiinalainen kielimalli.'}, {'score': 0.027701903134584427, 'token': 21614, 'token_str': 'ruotsalainen', 'sequence': 'Moikka olen ruotsalainen kielimalli.'}, {'score': 0.026388710364699364, 'token': 591, 'token_str': 'hyvä', 'sequence': 'Moikka olen hyvä kielimalli.'}] ``` ### Limitations and bias The training data used for this model contains a lot of unfiltered content from the internet, which is far from neutral. Therefore, the model can have biased predictions. This bias will also affect all fine-tuned versions of this model. ## Training data This Finnish ConvBERT model was pretrained on the combination of five datasets: - [mc4_fi_cleaned](https://huggingface.co/datasets/Finnish-NLP/mc4_fi_cleaned), the dataset mC4 is a multilingual colossal, cleaned version of Common Crawl's web crawl corpus. We used the Finnish subset of the mC4 dataset and further cleaned it with our own text data cleaning codes (check the dataset repo). - [wikipedia](https://huggingface.co/datasets/wikipedia) We used the Finnish subset of the wikipedia (August 2021) dataset - [Yle Finnish News Archive 2011-2018](http://urn.fi/urn:nbn:fi:lb-2017070501) - [Finnish News Agency Archive (STT)](http://urn.fi/urn:nbn:fi:lb-2018121001) - [The Suomi24 Sentences Corpus](http://urn.fi/urn:nbn:fi:lb-2020021803) Raw datasets were cleaned to filter out bad quality and non-Finnish examples. Together these cleaned datasets were around 84GB of text. ## Training procedure ### Preprocessing The texts are tokenized using WordPiece and a vocabulary size of 50265. The inputs are sequences of 512 consecutive tokens. Texts are not lower cased so this model is case-sensitive: it makes a difference between finnish and Finnish. ### Pretraining The model was trained on TPUv3-8 VM, sponsored by the [Google TPU Research Cloud](https://sites.research.google/trc/about/), for 1M steps. The optimizer used was a AdamW with learning rate 1e-4, learning rate warmup for 20000 steps and linear decay of the learning rate after. Training code was from the official [ConvBERT repository](https://github.com/yitu-opensource/ConvBert) and also some instructions was used from [here](https://github.com/stefan-it/turkish-bert/blob/master/convbert/CHEATSHEET.md). ## Evaluation results For evaluation results, check the [Finnish-NLP/convbert-base-finnish](https://huggingface.co/Finnish-NLP/convbert-base-finnish) model repository instead. ## Acknowledgements This project would not have been possible without compute generously provided by Google through the [TPU Research Cloud](https://sites.research.google/trc/). ## Team Members - Aapo Tanskanen, [Hugging Face profile](https://huggingface.co/aapot), [LinkedIn profile](https://www.linkedin.com/in/aapotanskanen/) - Rasmus Toivanen, [Hugging Face profile](https://huggingface.co/RASMUS), [LinkedIn profile](https://www.linkedin.com/in/rasmustoivanen/) Feel free to contact us for more details 🤗
FremyCompany/xls-r-nl-v1-cv8-lm
2eea72fc09cc761ada387cfe7631738b21e14618
2022-03-23T18:34:25.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "nl", "dataset:mozilla-foundation/common_voice_8_0", "dataset:multilingual_librispeech", "transformers", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "vl", "model-index" ]
automatic-speech-recognition
false
FremyCompany
null
FremyCompany/xls-r-nl-v1-cv8-lm
8
2
transformers
12,856
--- language: - nl tags: - automatic-speech-recognition - hf-asr-leaderboard - model_for_talk - mozilla-foundation/common_voice_8_0 - nl - robust-speech-event - vl datasets: - mozilla-foundation/common_voice_8_0 - multilingual_librispeech model-index: - name: xls-r-nl-v1-cv8-lm results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: nl metrics: - name: Test WER type: wer value: 6.69 - name: Test CER type: cer value: 1.97 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: nl metrics: - name: Test WER type: wer value: 20.79 - name: Test CER type: cer value: 10.72 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: nl metrics: - name: Test WER type: wer value: 19.71 --- # XLS-R-based CTC model with 5-gram language model from Common Voice This model is a version of [facebook/wav2vec2-xls-r-2b-22-to-16](https://huggingface.co/facebook/wav2vec2-xls-r-2b-22-to-16) fine-tuned mainly on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - NL dataset (see details below), on which a small 5-gram language model is added based on the Common Voice training corpus. This model achieves the following results on the evaluation set (of Common Voice 8.0): - Wer: 0.0669 - Cer: 0.0197 ## Model description The model takes 16kHz sound input, and uses a Wav2Vec2ForCTC decoder with 48 letters to output the final result. To improve accuracy, a beam decoder is used; the beams are scored based on 5-gram language model trained on the Common Voice 8 corpus. ## Intended uses & limitations This model can be used to transcribe Dutch or Flemish spoken dutch to text (without punctuation). ## Training and evaluation data 0. The model was initialized with [the 2B parameter model from Facebook](facebook/wav2vec2-xls-r-2b-22-to-16). 1. The model was then trained `2000` iterations (batch size 32) on [the `dutch` configuration of the `multilingual_librispeech` dataset](https://huggingface.co/datasets/multilingual_librispeech/). 1. The model was then trained `2000` iterations (batch size 32) on [the `nl` configuration of the `common_voice_8_0` dataset](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0). 2. The model was then trained `6000` iterations (batch size 32) on [the `cgn` dataset](https://taalmaterialen.ivdnt.org/download/tstc-corpus-gesproken-nederlands/). 3. The model was then trained `6000` iterations (batch size 32) on [the `nl` configuation of the `common_voice_8_0` dataset](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0). ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
Geotrend/distilbert-base-hi-cased
99e7e25d2c7765161c05eb50fd297069c4672b73
2021-08-16T13:23:23.000Z
[ "pytorch", "distilbert", "fill-mask", "hi", "dataset:wikipedia", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Geotrend
null
Geotrend/distilbert-base-hi-cased
8
1
transformers
12,857
--- language: hi datasets: wikipedia license: apache-2.0 --- # distilbert-base-hi-cased We are sharing smaller versions of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) that handle a custom number of languages. Our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/distilbert-base-hi-cased") model = AutoModel.from_pretrained("Geotrend/distilbert-base-hi-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermdistilbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
Ghana-NLP/distilabena-base-v2-akuapem-twi-cased
1924d0de61e611f7523a241716c047b65c11c4ef
2020-10-22T06:08:50.000Z
[ "pytorch", "tf", "distilbert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Ghana-NLP
null
Ghana-NLP/distilabena-base-v2-akuapem-twi-cased
8
null
transformers
12,858
Entry not found
Giannipinelli/xlm-roberta-base-finetuned-marc-en
ee67fd1aa4d1414d1581a0289c477ddfdcc32ea3
2021-12-16T14:34:58.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "text-classification", "dataset:amazon_reviews_multi", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
Giannipinelli
null
Giannipinelli/xlm-roberta-base-finetuned-marc-en
8
null
transformers
12,859
--- license: mit tags: - generated_from_trainer datasets: - amazon_reviews_multi model-index: - name: xlm-roberta-base-finetuned-marc-en results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-marc-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.9161 - Mae: 0.4634 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.1217 | 1.0 | 235 | 0.9396 | 0.4878 | | 0.9574 | 2.0 | 470 | 0.9161 | 0.4634 | ### Framework versions - Transformers 4.14.1 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
Harveenchadha/odia_large_wav2vec2
f93005d0bee3f91bf0d1bd6fc45948f0e6c215f1
2022-03-23T18:34:27.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "or", "dataset:Harveenchadha/indic-voice", "transformers", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Harveenchadha
null
Harveenchadha/odia_large_wav2vec2
8
2
transformers
12,860
--- license: apache-2.0 language: - or tags: - automatic-speech-recognition - hf-asr-leaderboard - model_for_talk - mozilla-foundation/common_voice_7_0 - or - robust-speech-event datasets: - Harveenchadha/indic-voice model-index: - name: Hindi Large results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice type: common_voice args: or metrics: - name: Test WER type: wer value: 54.26 - name: Test CER type: cer value: 11.36 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice-7.0 type: mozilla-foundation/common_voice_7_0 args: or metrics: - name: Test WER type: wer value: 53.58 - name: Test CER type: cer value: 11.26 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice-8.0 type: mozilla-foundation/common_voice_8_0 args: or metrics: - name: Test WER type: wer value: 55.26 - name: Test CER type: cer value: 13.01 ---
Helsinki-NLP/opus-mt-af-ru
e605c05ed4fc8945f81b83d65c5a8762fb7a2ed4
2021-01-18T07:46:32.000Z
[ "pytorch", "marian", "text2text-generation", "af", "ru", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-af-ru
8
null
transformers
12,861
--- language: - af - ru tags: - translation license: apache-2.0 --- ### afr-rus * source group: Afrikaans * target group: Russian * OPUS readme: [afr-rus](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/afr-rus/README.md) * model: transformer-align * source language(s): afr * target language(s): rus * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/afr-rus/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/afr-rus/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/afr-rus/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.afr.rus | 38.2 | 0.580 | ### System Info: - hf_name: afr-rus - source_languages: afr - target_languages: rus - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/afr-rus/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['af', 'ru'] - src_constituents: {'afr'} - tgt_constituents: {'rus'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/afr-rus/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/afr-rus/opus-2020-06-17.test.txt - src_alpha3: afr - tgt_alpha3: rus - short_pair: af-ru - chrF2_score: 0.58 - bleu: 38.2 - brevity_penalty: 0.992 - ref_len: 1213.0 - src_name: Afrikaans - tgt_name: Russian - train_date: 2020-06-17 - src_alpha2: af - tgt_alpha2: ru - prefer_old: False - long_pair: afr-rus - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-bcl-de
526eb0407d3feeccb096471b117e406d624aab42
2021-09-09T21:26:41.000Z
[ "pytorch", "marian", "text2text-generation", "bcl", "de", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-bcl-de
8
null
transformers
12,862
--- tags: - translation license: apache-2.0 --- ### opus-mt-bcl-de * source languages: bcl * target languages: de * OPUS readme: [bcl-de](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/bcl-de/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-20.zip](https://object.pouta.csc.fi/OPUS-MT-models/bcl-de/opus-2020-01-20.zip) * test set translations: [opus-2020-01-20.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/bcl-de/opus-2020-01-20.test.txt) * test set scores: [opus-2020-01-20.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/bcl-de/opus-2020-01-20.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.bcl.de | 30.3 | 0.510 |
Helsinki-NLP/opus-mt-bem-fr
92b41995590a6bf5d7d242725d007912fa426e07
2021-09-09T21:27:14.000Z
[ "pytorch", "marian", "text2text-generation", "bem", "fr", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-bem-fr
8
null
transformers
12,863
--- tags: - translation license: apache-2.0 --- ### opus-mt-bem-fr * source languages: bem * target languages: fr * OPUS readme: [bem-fr](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/bem-fr/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/bem-fr/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/bem-fr/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/bem-fr/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.bem.fr | 25.0 | 0.417 |
Helsinki-NLP/opus-mt-ber-fr
3b231ec4923f2342a1c3a382086846783a4c5f67
2021-09-09T21:27:29.000Z
[ "pytorch", "marian", "text2text-generation", "ber", "fr", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-ber-fr
8
null
transformers
12,864
--- tags: - translation license: apache-2.0 --- ### opus-mt-ber-fr * source languages: ber * target languages: fr * OPUS readme: [ber-fr](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/ber-fr/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/ber-fr/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/ber-fr/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/ber-fr/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba.ber.fr | 60.2 | 0.754 |
Helsinki-NLP/opus-mt-bg-tr
c44ddb80dfc0e353bb5574b1bc937aecdb983281
2021-01-18T07:51:22.000Z
[ "pytorch", "marian", "text2text-generation", "bg", "tr", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-bg-tr
8
null
transformers
12,865
--- language: - bg - tr tags: - translation license: apache-2.0 --- ### bul-tur * source group: Bulgarian * target group: Turkish * OPUS readme: [bul-tur](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/bul-tur/README.md) * model: transformer * source language(s): bul bul_Latn * target language(s): tur * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-07-03.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/bul-tur/opus-2020-07-03.zip) * test set translations: [opus-2020-07-03.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/bul-tur/opus-2020-07-03.test.txt) * test set scores: [opus-2020-07-03.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/bul-tur/opus-2020-07-03.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.bul.tur | 40.9 | 0.687 | ### System Info: - hf_name: bul-tur - source_languages: bul - target_languages: tur - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/bul-tur/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['bg', 'tr'] - src_constituents: {'bul', 'bul_Latn'} - tgt_constituents: {'tur'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/bul-tur/opus-2020-07-03.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/bul-tur/opus-2020-07-03.test.txt - src_alpha3: bul - tgt_alpha3: tur - short_pair: bg-tr - chrF2_score: 0.687 - bleu: 40.9 - brevity_penalty: 0.946 - ref_len: 4948.0 - src_name: Bulgarian - tgt_name: Turkish - train_date: 2020-07-03 - src_alpha2: bg - tgt_alpha2: tr - prefer_old: False - long_pair: bul-tur - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-bi-es
40001c75cc73df30ac2ffe45d8c3f224ee17781b
2021-09-09T21:27:48.000Z
[ "pytorch", "marian", "text2text-generation", "bi", "es", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-bi-es
8
null
transformers
12,866
--- tags: - translation license: apache-2.0 --- ### opus-mt-bi-es * source languages: bi * target languages: es * OPUS readme: [bi-es](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/bi-es/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-20.zip](https://object.pouta.csc.fi/OPUS-MT-models/bi-es/opus-2020-01-20.zip) * test set translations: [opus-2020-01-20.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/bi-es/opus-2020-01-20.test.txt) * test set scores: [opus-2020-01-20.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/bi-es/opus-2020-01-20.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.bi.es | 21.1 | 0.388 |
Helsinki-NLP/opus-mt-cs-sv
ab967fe66d1c0d4f9403ae0b4c97c06ae8947b89
2021-09-09T21:29:33.000Z
[ "pytorch", "marian", "text2text-generation", "cs", "sv", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-cs-sv
8
null
transformers
12,867
--- tags: - translation license: apache-2.0 --- ### opus-mt-cs-sv * source languages: cs * target languages: sv * OPUS readme: [cs-sv](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/cs-sv/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/cs-sv/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/cs-sv/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/cs-sv/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.cs.sv | 30.6 | 0.527 |
Helsinki-NLP/opus-mt-da-eo
c67fcfa49c349cdac1665b60f9f3823437b3da2b
2021-01-18T07:56:49.000Z
[ "pytorch", "marian", "text2text-generation", "da", "eo", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-da-eo
8
null
transformers
12,868
--- language: - da - eo tags: - translation license: apache-2.0 --- ### dan-epo * source group: Danish * target group: Esperanto * OPUS readme: [dan-epo](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/dan-epo/README.md) * model: transformer-align * source language(s): dan * target language(s): epo * model: transformer-align * pre-processing: normalization + SentencePiece (spm4k,spm4k) * download original weights: [opus-2020-06-16.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/dan-epo/opus-2020-06-16.zip) * test set translations: [opus-2020-06-16.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/dan-epo/opus-2020-06-16.test.txt) * test set scores: [opus-2020-06-16.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/dan-epo/opus-2020-06-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.dan.epo | 23.6 | 0.432 | ### System Info: - hf_name: dan-epo - source_languages: dan - target_languages: epo - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/dan-epo/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['da', 'eo'] - src_constituents: {'dan'} - tgt_constituents: {'epo'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm4k,spm4k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/dan-epo/opus-2020-06-16.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/dan-epo/opus-2020-06-16.test.txt - src_alpha3: dan - tgt_alpha3: epo - short_pair: da-eo - chrF2_score: 0.43200000000000005 - bleu: 23.6 - brevity_penalty: 0.9420000000000001 - ref_len: 69856.0 - src_name: Danish - tgt_name: Esperanto - train_date: 2020-06-16 - src_alpha2: da - tgt_alpha2: eo - prefer_old: False - long_pair: dan-epo - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-de-guw
7a441fe0e9e7c4c430889b46b3b4541005c93bb1
2021-09-09T21:31:24.000Z
[ "pytorch", "marian", "text2text-generation", "de", "guw", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-de-guw
8
null
transformers
12,869
--- tags: - translation license: apache-2.0 --- ### opus-mt-de-guw * source languages: de * target languages: guw * OPUS readme: [de-guw](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/de-guw/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-20.zip](https://object.pouta.csc.fi/OPUS-MT-models/de-guw/opus-2020-01-20.zip) * test set translations: [opus-2020-01-20.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/de-guw/opus-2020-01-20.test.txt) * test set scores: [opus-2020-01-20.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/de-guw/opus-2020-01-20.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.de.guw | 27.1 | 0.472 |
Helsinki-NLP/opus-mt-de-loz
efc9fe11206c281704056c9c3eda0b42f1cf43a0
2021-09-09T21:32:16.000Z
[ "pytorch", "marian", "text2text-generation", "de", "loz", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-de-loz
8
null
transformers
12,870
--- tags: - translation license: apache-2.0 --- ### opus-mt-de-loz * source languages: de * target languages: loz * OPUS readme: [de-loz](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/de-loz/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-20.zip](https://object.pouta.csc.fi/OPUS-MT-models/de-loz/opus-2020-01-20.zip) * test set translations: [opus-2020-01-20.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/de-loz/opus-2020-01-20.test.txt) * test set scores: [opus-2020-01-20.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/de-loz/opus-2020-01-20.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.de.loz | 27.7 | 0.480 |
Helsinki-NLP/opus-mt-de-mt
0d71c2c09e3838d7276288da102f7e66d2d24032
2021-09-09T21:32:28.000Z
[ "pytorch", "marian", "text2text-generation", "de", "mt", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-de-mt
8
null
transformers
12,871
--- tags: - translation license: apache-2.0 --- ### opus-mt-de-mt * source languages: de * target languages: mt * OPUS readme: [de-mt](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/de-mt/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-20.zip](https://object.pouta.csc.fi/OPUS-MT-models/de-mt/opus-2020-01-20.zip) * test set translations: [opus-2020-01-20.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/de-mt/opus-2020-01-20.test.txt) * test set scores: [opus-2020-01-20.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/de-mt/opus-2020-01-20.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.de.mt | 25.0 | 0.436 |
Helsinki-NLP/opus-mt-de-nso
fbd9a40fa66f610b52855ad16263d4ea32c8bd7c
2021-09-09T21:32:39.000Z
[ "pytorch", "marian", "text2text-generation", "de", "nso", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-de-nso
8
null
transformers
12,872
--- tags: - translation license: apache-2.0 --- ### opus-mt-de-nso * source languages: de * target languages: nso * OPUS readme: [de-nso](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/de-nso/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-20.zip](https://object.pouta.csc.fi/OPUS-MT-models/de-nso/opus-2020-01-20.zip) * test set translations: [opus-2020-01-20.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/de-nso/opus-2020-01-20.test.txt) * test set scores: [opus-2020-01-20.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/de-nso/opus-2020-01-20.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.de.nso | 31.1 | 0.519 |
Helsinki-NLP/opus-mt-efi-fi
02877c2ef68a205047cde71b4b376ffcc565e4a7
2021-09-09T21:33:36.000Z
[ "pytorch", "marian", "text2text-generation", "efi", "fi", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-efi-fi
8
null
transformers
12,873
--- tags: - translation license: apache-2.0 --- ### opus-mt-efi-fi * source languages: efi * target languages: fi * OPUS readme: [efi-fi](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/efi-fi/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/efi-fi/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/efi-fi/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/efi-fi/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.efi.fi | 23.6 | 0.450 |
Helsinki-NLP/opus-mt-en-guw
3024f1f51a9b2295d3dd4fc265dac44656f6c4df
2021-09-09T21:35:39.000Z
[ "pytorch", "marian", "text2text-generation", "en", "guw", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-en-guw
8
null
transformers
12,874
--- tags: - translation license: apache-2.0 --- ### opus-mt-en-guw * source languages: en * target languages: guw * OPUS readme: [en-guw](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/en-guw/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/en-guw/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-guw/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-guw/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.en.guw | 45.7 | 0.634 |
Helsinki-NLP/opus-mt-en-kj
366e494584ff69addf0d5cc91cff81da18ecd81f
2021-09-09T21:36:37.000Z
[ "pytorch", "marian", "text2text-generation", "en", "kj", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-en-kj
8
null
transformers
12,875
--- tags: - translation license: apache-2.0 --- ### opus-mt-en-kj * source languages: en * target languages: kj * OPUS readme: [en-kj](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/en-kj/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-20.zip](https://object.pouta.csc.fi/OPUS-MT-models/en-kj/opus-2020-01-20.zip) * test set translations: [opus-2020-01-20.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-kj/opus-2020-01-20.test.txt) * test set scores: [opus-2020-01-20.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-kj/opus-2020-01-20.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.en.kj | 29.6 | 0.539 |
Helsinki-NLP/opus-mt-en-tut
fec86cc232cad7b969bb71a5929220c940272db9
2021-01-18T08:18:21.000Z
[ "pytorch", "marian", "text2text-generation", "en", "tut", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-en-tut
8
null
transformers
12,876
--- language: - en - tut tags: - translation license: apache-2.0 --- ### eng-tut * source group: English * target group: Altaic languages * OPUS readme: [eng-tut](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-tut/README.md) * model: transformer * source language(s): eng * target language(s): aze_Latn bak chv crh crh_Latn kaz_Cyrl kaz_Latn kir_Cyrl kjh kum mon nog ota_Arab ota_Latn sah tat tat_Arab tat_Latn tuk tuk_Latn tur tyv uig_Arab uig_Cyrl uzb_Cyrl uzb_Latn xal * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * a sentence initial language token is required in the form of `>>id<<` (id = valid target language ID) * download original weights: [opus2m-2020-08-02.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-tut/opus2m-2020-08-02.zip) * test set translations: [opus2m-2020-08-02.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-tut/opus2m-2020-08-02.test.txt) * test set scores: [opus2m-2020-08-02.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-tut/opus2m-2020-08-02.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | newsdev2016-entr-engtur.eng.tur | 10.4 | 0.438 | | newstest2016-entr-engtur.eng.tur | 9.1 | 0.414 | | newstest2017-entr-engtur.eng.tur | 9.5 | 0.414 | | newstest2018-entr-engtur.eng.tur | 9.5 | 0.415 | | Tatoeba-test.eng-aze.eng.aze | 27.2 | 0.580 | | Tatoeba-test.eng-bak.eng.bak | 5.8 | 0.298 | | Tatoeba-test.eng-chv.eng.chv | 4.6 | 0.301 | | Tatoeba-test.eng-crh.eng.crh | 6.5 | 0.342 | | Tatoeba-test.eng-kaz.eng.kaz | 11.8 | 0.360 | | Tatoeba-test.eng-kir.eng.kir | 24.6 | 0.499 | | Tatoeba-test.eng-kjh.eng.kjh | 2.2 | 0.052 | | Tatoeba-test.eng-kum.eng.kum | 8.0 | 0.229 | | Tatoeba-test.eng-mon.eng.mon | 10.3 | 0.362 | | Tatoeba-test.eng.multi | 19.5 | 0.451 | | Tatoeba-test.eng-nog.eng.nog | 1.5 | 0.117 | | Tatoeba-test.eng-ota.eng.ota | 0.2 | 0.035 | | Tatoeba-test.eng-sah.eng.sah | 0.7 | 0.080 | | Tatoeba-test.eng-tat.eng.tat | 10.8 | 0.320 | | Tatoeba-test.eng-tuk.eng.tuk | 5.6 | 0.323 | | Tatoeba-test.eng-tur.eng.tur | 34.2 | 0.623 | | Tatoeba-test.eng-tyv.eng.tyv | 8.1 | 0.192 | | Tatoeba-test.eng-uig.eng.uig | 0.1 | 0.158 | | Tatoeba-test.eng-uzb.eng.uzb | 4.2 | 0.298 | | Tatoeba-test.eng-xal.eng.xal | 0.1 | 0.061 | ### System Info: - hf_name: eng-tut - source_languages: eng - target_languages: tut - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-tut/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['en', 'tut'] - src_constituents: {'eng'} - tgt_constituents: set() - src_multilingual: False - tgt_multilingual: True - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/eng-tut/opus2m-2020-08-02.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/eng-tut/opus2m-2020-08-02.test.txt - src_alpha3: eng - tgt_alpha3: tut - short_pair: en-tut - chrF2_score: 0.451 - bleu: 19.5 - brevity_penalty: 1.0 - ref_len: 57472.0 - src_name: English - tgt_name: Altaic languages - train_date: 2020-08-02 - src_alpha2: en - tgt_alpha2: tut - prefer_old: False - long_pair: eng-tut - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-en-zls
3eaefff94837f5c83794dc3def45b8ecb0c78dfe
2021-01-18T08:19:36.000Z
[ "pytorch", "marian", "text2text-generation", "en", "hr", "mk", "bg", "sl", "zls", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-en-zls
8
null
transformers
12,877
--- language: - en - hr - mk - bg - sl - zls tags: - translation license: apache-2.0 --- ### eng-zls * source group: English * target group: South Slavic languages * OPUS readme: [eng-zls](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-zls/README.md) * model: transformer * source language(s): eng * target language(s): bos_Latn bul bul_Latn hrv mkd slv srp_Cyrl srp_Latn * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * a sentence initial language token is required in the form of `>>id<<` (id = valid target language ID) * download original weights: [opus2m-2020-08-02.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-zls/opus2m-2020-08-02.zip) * test set translations: [opus2m-2020-08-02.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-zls/opus2m-2020-08-02.test.txt) * test set scores: [opus2m-2020-08-02.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-zls/opus2m-2020-08-02.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.eng-bul.eng.bul | 47.6 | 0.657 | | Tatoeba-test.eng-hbs.eng.hbs | 40.7 | 0.619 | | Tatoeba-test.eng-mkd.eng.mkd | 45.2 | 0.642 | | Tatoeba-test.eng.multi | 42.7 | 0.622 | | Tatoeba-test.eng-slv.eng.slv | 17.9 | 0.351 | ### System Info: - hf_name: eng-zls - source_languages: eng - target_languages: zls - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-zls/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['en', 'hr', 'mk', 'bg', 'sl', 'zls'] - src_constituents: {'eng'} - tgt_constituents: {'hrv', 'mkd', 'srp_Latn', 'srp_Cyrl', 'bul_Latn', 'bul', 'bos_Latn', 'slv'} - src_multilingual: False - tgt_multilingual: True - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/eng-zls/opus2m-2020-08-02.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/eng-zls/opus2m-2020-08-02.test.txt - src_alpha3: eng - tgt_alpha3: zls - short_pair: en-zls - chrF2_score: 0.622 - bleu: 42.7 - brevity_penalty: 0.9690000000000001 - ref_len: 64788.0 - src_name: English - tgt_name: South Slavic languages - train_date: 2020-08-02 - src_alpha2: en - tgt_alpha2: zls - prefer_old: False - long_pair: eng-zls - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-eo-bg
252bb54a45efeb71472030aeeebd8a83b8e07a9c
2021-01-18T08:19:56.000Z
[ "pytorch", "marian", "text2text-generation", "eo", "bg", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-eo-bg
8
null
transformers
12,878
--- language: - eo - bg tags: - translation license: apache-2.0 --- ### epo-bul * source group: Esperanto * target group: Bulgarian * OPUS readme: [epo-bul](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/epo-bul/README.md) * model: transformer-align * source language(s): epo * target language(s): bul * model: transformer-align * pre-processing: normalization + SentencePiece (spm4k,spm4k) * download original weights: [opus-2020-06-16.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/epo-bul/opus-2020-06-16.zip) * test set translations: [opus-2020-06-16.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/epo-bul/opus-2020-06-16.test.txt) * test set scores: [opus-2020-06-16.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/epo-bul/opus-2020-06-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.epo.bul | 19.0 | 0.395 | ### System Info: - hf_name: epo-bul - source_languages: epo - target_languages: bul - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/epo-bul/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['eo', 'bg'] - src_constituents: {'epo'} - tgt_constituents: {'bul', 'bul_Latn'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm4k,spm4k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/epo-bul/opus-2020-06-16.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/epo-bul/opus-2020-06-16.test.txt - src_alpha3: epo - tgt_alpha3: bul - short_pair: eo-bg - chrF2_score: 0.395 - bleu: 19.0 - brevity_penalty: 0.8909999999999999 - ref_len: 3961.0 - src_name: Esperanto - tgt_name: Bulgarian - train_date: 2020-06-16 - src_alpha2: eo - tgt_alpha2: bg - prefer_old: False - long_pair: epo-bul - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-eo-hu
6788309695f04b63b9490f117851157c11082d66
2021-01-18T08:20:45.000Z
[ "pytorch", "marian", "text2text-generation", "eo", "hu", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-eo-hu
8
null
transformers
12,879
--- language: - eo - hu tags: - translation license: apache-2.0 --- ### epo-hun * source group: Esperanto * target group: Hungarian * OPUS readme: [epo-hun](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/epo-hun/README.md) * model: transformer-align * source language(s): epo * target language(s): hun * model: transformer-align * pre-processing: normalization + SentencePiece (spm4k,spm4k) * download original weights: [opus-2020-06-16.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/epo-hun/opus-2020-06-16.zip) * test set translations: [opus-2020-06-16.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/epo-hun/opus-2020-06-16.test.txt) * test set scores: [opus-2020-06-16.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/epo-hun/opus-2020-06-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.epo.hun | 12.8 | 0.333 | ### System Info: - hf_name: epo-hun - source_languages: epo - target_languages: hun - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/epo-hun/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['eo', 'hu'] - src_constituents: {'epo'} - tgt_constituents: {'hun'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm4k,spm4k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/epo-hun/opus-2020-06-16.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/epo-hun/opus-2020-06-16.test.txt - src_alpha3: epo - tgt_alpha3: hun - short_pair: eo-hu - chrF2_score: 0.33299999999999996 - bleu: 12.8 - brevity_penalty: 0.914 - ref_len: 65704.0 - src_name: Esperanto - tgt_name: Hungarian - train_date: 2020-06-16 - src_alpha2: eo - tgt_alpha2: hu - prefer_old: False - long_pair: epo-hun - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-eo-nl
38d39d812b627c26cf888123bdc812a55ad6aa21
2021-01-18T08:20:54.000Z
[ "pytorch", "marian", "text2text-generation", "eo", "nl", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-eo-nl
8
null
transformers
12,880
--- language: - eo - nl tags: - translation license: apache-2.0 --- ### epo-nld * source group: Esperanto * target group: Dutch * OPUS readme: [epo-nld](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/epo-nld/README.md) * model: transformer-align * source language(s): epo * target language(s): nld * model: transformer-align * pre-processing: normalization + SentencePiece (spm4k,spm4k) * download original weights: [opus-2020-06-16.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/epo-nld/opus-2020-06-16.zip) * test set translations: [opus-2020-06-16.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/epo-nld/opus-2020-06-16.test.txt) * test set scores: [opus-2020-06-16.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/epo-nld/opus-2020-06-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.epo.nld | 15.3 | 0.337 | ### System Info: - hf_name: epo-nld - source_languages: epo - target_languages: nld - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/epo-nld/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['eo', 'nl'] - src_constituents: {'epo'} - tgt_constituents: {'nld'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm4k,spm4k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/epo-nld/opus-2020-06-16.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/epo-nld/opus-2020-06-16.test.txt - src_alpha3: epo - tgt_alpha3: nld - short_pair: eo-nl - chrF2_score: 0.337 - bleu: 15.3 - brevity_penalty: 0.8640000000000001 - ref_len: 78770.0 - src_name: Esperanto - tgt_name: Dutch - train_date: 2020-06-16 - src_alpha2: eo - tgt_alpha2: nl - prefer_old: False - long_pair: epo-nld - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-es-bi
c85dab4bea50d9ff6773b495310394f2a1e1f1c2
2021-09-09T21:41:23.000Z
[ "pytorch", "marian", "text2text-generation", "es", "bi", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-es-bi
8
null
transformers
12,881
--- tags: - translation license: apache-2.0 --- ### opus-mt-es-bi * source languages: es * target languages: bi * OPUS readme: [es-bi](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/es-bi/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-20.zip](https://object.pouta.csc.fi/OPUS-MT-models/es-bi/opus-2020-01-20.zip) * test set translations: [opus-2020-01-20.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-bi/opus-2020-01-20.test.txt) * test set scores: [opus-2020-01-20.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-bi/opus-2020-01-20.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.es.bi | 28.0 | 0.473 |
Helsinki-NLP/opus-mt-es-ceb
4918dbfee87fcb262e14948c9d571bcb0b1a808f
2021-09-09T21:41:30.000Z
[ "pytorch", "marian", "text2text-generation", "es", "ceb", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-es-ceb
8
null
transformers
12,882
--- tags: - translation license: apache-2.0 --- ### opus-mt-es-ceb * source languages: es * target languages: ceb * OPUS readme: [es-ceb](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/es-ceb/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/es-ceb/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-ceb/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-ceb/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.es.ceb | 33.9 | 0.564 |
Helsinki-NLP/opus-mt-es-ha
f14932e66e3feb63b1c89d39fefbbbd923dd499f
2021-09-09T21:42:42.000Z
[ "pytorch", "marian", "text2text-generation", "es", "ha", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-es-ha
8
null
transformers
12,883
--- tags: - translation license: apache-2.0 --- ### opus-mt-es-ha * source languages: es * target languages: ha * OPUS readme: [es-ha](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/es-ha/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/es-ha/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-ha/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-ha/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.es.ha | 20.6 | 0.421 |
Helsinki-NLP/opus-mt-es-ig
91c4365037baafd6cfe0859dc454913820e07338
2021-09-09T21:43:05.000Z
[ "pytorch", "marian", "text2text-generation", "es", "ig", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-es-ig
8
null
transformers
12,884
--- tags: - translation license: apache-2.0 --- ### opus-mt-es-ig * source languages: es * target languages: ig * OPUS readme: [es-ig](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/es-ig/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/es-ig/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-ig/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-ig/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.es.ig | 27.0 | 0.434 |
Helsinki-NLP/opus-mt-es-loz
c4b6426bef04b16018ccd43269a9f77426f49262
2021-09-09T21:43:27.000Z
[ "pytorch", "marian", "text2text-generation", "es", "loz", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-es-loz
8
null
transformers
12,885
--- tags: - translation license: apache-2.0 --- ### opus-mt-es-loz * source languages: es * target languages: loz * OPUS readme: [es-loz](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/es-loz/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/es-loz/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-loz/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-loz/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.es.loz | 28.6 | 0.493 |
Helsinki-NLP/opus-mt-es-ty
687d74b5eeee5b1f41ecdf23df2f749b32ef5bd9
2021-09-09T21:45:23.000Z
[ "pytorch", "marian", "text2text-generation", "es", "ty", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-es-ty
8
null
transformers
12,886
--- tags: - translation license: apache-2.0 --- ### opus-mt-es-ty * source languages: es * target languages: ty * OPUS readme: [es-ty](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/es-ty/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/es-ty/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-ty/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-ty/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.es.ty | 37.3 | 0.544 |
Helsinki-NLP/opus-mt-es-ve
c4d885237a92e682f69945dea02cca43eae8de61
2021-09-09T21:45:30.000Z
[ "pytorch", "marian", "text2text-generation", "es", "ve", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-es-ve
8
null
transformers
12,887
--- tags: - translation license: apache-2.0 --- ### opus-mt-es-ve * source languages: es * target languages: ve * OPUS readme: [es-ve](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/es-ve/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/es-ve/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-ve/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-ve/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.es.ve | 21.7 | 0.440 |
Helsinki-NLP/opus-mt-es-yo
0f55e0da64d6a1be87e3bb51ce722717df9032c9
2021-09-09T21:45:46.000Z
[ "pytorch", "marian", "text2text-generation", "es", "yo", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-es-yo
8
null
transformers
12,888
--- tags: - translation license: apache-2.0 --- ### opus-mt-es-yo * source languages: es * target languages: yo * OPUS readme: [es-yo](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/es-yo/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/es-yo/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-yo/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-yo/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.es.yo | 22.3 | 0.387 |
Helsinki-NLP/opus-mt-fi-cs
4e08d5cb173b64798537a5eea901f65fd1cc2311
2021-09-09T21:46:57.000Z
[ "pytorch", "marian", "text2text-generation", "fi", "cs", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-fi-cs
8
null
transformers
12,889
--- tags: - translation license: apache-2.0 --- ### opus-mt-fi-cs * source languages: fi * target languages: cs * OPUS readme: [fi-cs](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fi-cs/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/fi-cs/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-cs/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-cs/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.fi.cs | 25.0 | 0.470 |
Helsinki-NLP/opus-mt-fi-efi
2864851fa8969c2f8d5c40e7d8eb0022fffc8986
2021-09-09T21:47:17.000Z
[ "pytorch", "marian", "text2text-generation", "fi", "efi", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-fi-efi
8
null
transformers
12,890
--- tags: - translation license: apache-2.0 --- ### opus-mt-fi-efi * source languages: fi * target languages: efi * OPUS readme: [fi-efi](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fi-efi/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/fi-efi/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-efi/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-efi/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.fi.efi | 26.6 | 0.482 |
Helsinki-NLP/opus-mt-fi-ha
5355b9ba9d301882f3d71363566af054c11ca026
2021-09-09T21:48:00.000Z
[ "pytorch", "marian", "text2text-generation", "fi", "ha", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-fi-ha
8
null
transformers
12,891
--- tags: - translation license: apache-2.0 --- ### opus-mt-fi-ha * source languages: fi * target languages: ha * OPUS readme: [fi-ha](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fi-ha/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-24.zip](https://object.pouta.csc.fi/OPUS-MT-models/fi-ha/opus-2020-01-24.zip) * test set translations: [opus-2020-01-24.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-ha/opus-2020-01-24.test.txt) * test set scores: [opus-2020-01-24.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-ha/opus-2020-01-24.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.fi.ha | 24.2 | 0.461 |
Helsinki-NLP/opus-mt-fi-ilo
bddd0bdefbc904280d4af63478cab2c7f98dc8c4
2021-09-09T21:48:36.000Z
[ "pytorch", "marian", "text2text-generation", "fi", "ilo", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-fi-ilo
8
null
transformers
12,892
--- tags: - translation license: apache-2.0 --- ### opus-mt-fi-ilo * source languages: fi * target languages: ilo * OPUS readme: [fi-ilo](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fi-ilo/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/fi-ilo/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-ilo/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-ilo/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.fi.ilo | 32.1 | 0.558 |
Helsinki-NLP/opus-mt-fi-lu
e8e8962d29890190775e07fe0910f46b069c8699
2021-09-09T21:49:08.000Z
[ "pytorch", "marian", "text2text-generation", "fi", "lu", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-fi-lu
8
null
transformers
12,893
--- tags: - translation license: apache-2.0 --- ### opus-mt-fi-lu * source languages: fi * target languages: lu * OPUS readme: [fi-lu](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fi-lu/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/fi-lu/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-lu/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-lu/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.fi.lu | 22.9 | 0.475 |
Helsinki-NLP/opus-mt-fi-mk
1d414d7eb137cb3a9fd5dfac710ba8256b8f3256
2021-09-09T21:49:39.000Z
[ "pytorch", "marian", "text2text-generation", "fi", "mk", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-fi-mk
8
null
transformers
12,894
--- tags: - translation license: apache-2.0 --- ### opus-mt-fi-mk * source languages: fi * target languages: mk * OPUS readme: [fi-mk](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fi-mk/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-24.zip](https://object.pouta.csc.fi/OPUS-MT-models/fi-mk/opus-2020-01-24.zip) * test set translations: [opus-2020-01-24.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-mk/opus-2020-01-24.test.txt) * test set scores: [opus-2020-01-24.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-mk/opus-2020-01-24.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.fi.mk | 28.9 | 0.501 |
Helsinki-NLP/opus-mt-fi-ro
d87f554c39c7c331debf34a58b7cdfb1b0c0f5ea
2021-09-09T21:50:21.000Z
[ "pytorch", "marian", "text2text-generation", "fi", "ro", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-fi-ro
8
null
transformers
12,895
--- tags: - translation license: apache-2.0 --- ### opus-mt-fi-ro * source languages: fi * target languages: ro * OPUS readme: [fi-ro](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fi-ro/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/fi-ro/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-ro/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-ro/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.fi.ro | 27.0 | 0.490 |
Helsinki-NLP/opus-mt-fi-rw
000378e42cb4f6d56c73fe1d0bc4adb06d6f4436
2021-09-09T21:50:32.000Z
[ "pytorch", "marian", "text2text-generation", "fi", "rw", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-fi-rw
8
null
transformers
12,896
--- tags: - translation license: apache-2.0 --- ### opus-mt-fi-rw * source languages: fi * target languages: rw * OPUS readme: [fi-rw](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fi-rw/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/fi-rw/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-rw/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-rw/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.fi.rw | 25.3 | 0.509 |
Helsinki-NLP/opus-mt-fi-tpi
cee023903a441b870e5bd13e9a3190ad448e6256
2021-09-09T21:51:36.000Z
[ "pytorch", "marian", "text2text-generation", "fi", "tpi", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-fi-tpi
8
null
transformers
12,897
--- tags: - translation license: apache-2.0 --- ### opus-mt-fi-tpi * source languages: fi * target languages: tpi * OPUS readme: [fi-tpi](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fi-tpi/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-24.zip](https://object.pouta.csc.fi/OPUS-MT-models/fi-tpi/opus-2020-01-24.zip) * test set translations: [opus-2020-01-24.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-tpi/opus-2020-01-24.test.txt) * test set scores: [opus-2020-01-24.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-tpi/opus-2020-01-24.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.fi.tpi | 30.5 | 0.504 |
Helsinki-NLP/opus-mt-fi-tr
ad13d47cb2b348ad05dfc36dce581796bf8bd415
2021-09-09T21:51:40.000Z
[ "pytorch", "marian", "text2text-generation", "fi", "tr", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-fi-tr
8
null
transformers
12,898
--- tags: - translation license: apache-2.0 --- ### opus-mt-fi-tr * source languages: fi * target languages: tr * OPUS readme: [fi-tr](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fi-tr/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-04-12.zip](https://object.pouta.csc.fi/OPUS-MT-models/fi-tr/opus-2020-04-12.zip) * test set translations: [opus-2020-04-12.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-tr/opus-2020-04-12.test.txt) * test set scores: [opus-2020-04-12.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-tr/opus-2020-04-12.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba.fi.tr | 31.6 | 0.619 |
Helsinki-NLP/opus-mt-fr-bzs
3e9860fa3b1df5054d99a94d6c4683e0c4aee8c6
2021-09-09T21:53:11.000Z
[ "pytorch", "marian", "text2text-generation", "fr", "bzs", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-fr-bzs
8
null
transformers
12,899
--- tags: - translation license: apache-2.0 --- ### opus-mt-fr-bzs * source languages: fr * target languages: bzs * OPUS readme: [fr-bzs](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fr-bzs/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/fr-bzs/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fr-bzs/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fr-bzs/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.fr.bzs | 30.2 | 0.477 |