modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
list
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
uygarkurt/distilbert-base-uncased-finetuned-emotion
f70e9c275228f3dd1f25519de5a13aec140715a9
2022-05-25T21:20:02.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
uygarkurt
null
uygarkurt/distilbert-base-uncased-finetuned-emotion
9
null
transformers
12,600
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.92 - name: F1 type: f1 value: 0.9200387095502811 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2156 - Accuracy: 0.92 - F1: 0.9200 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8096 | 1.0 | 250 | 0.3081 | 0.9005 | 0.8974 | | 0.2404 | 2.0 | 500 | 0.2156 | 0.92 | 0.9200 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
tbosse/bert-base-german-cased-finetuned-subj_preTrained_with_noisyData_v2
18189b5e44cdd4140cd0ad423201f418c2c5a9c4
2022-05-29T23:09:23.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
tbosse
null
tbosse/bert-base-german-cased-finetuned-subj_preTrained_with_noisyData_v2
9
null
transformers
12,601
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-german-cased-finetuned-subj_preTrained_with_noisyData_v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-german-cased-finetuned-subj_preTrained_with_noisyData_v2 This model is a fine-tuned version of [bert-base-german-cased](https://huggingface.co/bert-base-german-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0074 - Precision: 0.9776 - Recall: 0.9593 - F1: 0.9683 - Accuracy: 0.9981 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.038 | 1.0 | 625 | 0.0091 | 0.9694 | 0.9426 | 0.9559 | 0.9974 | | 0.0079 | 2.0 | 1250 | 0.0074 | 0.9776 | 0.9593 | 0.9683 | 0.9981 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
mynti/plainly-v1
de5b5e3fb5bd8e201b225cd2a5490a2061eff7ca
2022-05-30T18:11:14.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
mynti
null
mynti/plainly-v1
9
null
transformers
12,602
## Plainly A model for simple english.
tbosse/bert-base-german-cased-finetuned-subj_preTrained_with_noisyData_v1.1
098286f01186108244a79a1eb8bc87bcedb48bdc
2022-05-28T00:01:57.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
tbosse
null
tbosse/bert-base-german-cased-finetuned-subj_preTrained_with_noisyData_v1.1
9
null
transformers
12,603
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-german-cased-finetuned-subj_preTrained_with_noisyData_v1.1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-german-cased-finetuned-subj_preTrained_with_noisyData_v1.1 This model is a fine-tuned version of [bert-base-german-cased](https://huggingface.co/bert-base-german-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0179 - Precision: 0.9249 - Recall: 0.8776 - F1: 0.9006 - Accuracy: 0.9942 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 245 | 0.0244 | 0.9252 | 0.8120 | 0.8649 | 0.9924 | | No log | 2.0 | 490 | 0.0179 | 0.9249 | 0.8776 | 0.9006 | 0.9942 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
tbosse/bert-base-german-cased-finetuned-subj_preTrained_with_noisyData_v1.2
d5cc7618ce419ee8fa2d79bce998957ce2c48cdb
2022-05-27T23:53:36.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
tbosse
null
tbosse/bert-base-german-cased-finetuned-subj_preTrained_with_noisyData_v1.2
9
null
transformers
12,604
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-german-cased-finetuned-subj_preTrained_with_noisyData_v1.2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-german-cased-finetuned-subj_preTrained_with_noisyData_v1.2 This model is a fine-tuned version of [bert-base-german-cased](https://huggingface.co/bert-base-german-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0187 - Precision: 0.9160 - Recall: 0.8752 - F1: 0.8952 - Accuracy: 0.9939 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 245 | 0.0250 | 0.8990 | 0.8225 | 0.8591 | 0.9919 | | No log | 2.0 | 490 | 0.0187 | 0.9160 | 0.8752 | 0.8952 | 0.9939 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
KoichiYasuoka/deberta-base-coptic-upos
c146b85bb6de22d18e15e6a7d9756cd86a711ea0
2022-05-28T09:24:01.000Z
[ "pytorch", "deberta-v2", "token-classification", "cop", "dataset:universal_dependencies", "transformers", "coptic", "pos", "dependency-parsing", "license:cc-by-sa-4.0", "autotrain_compatible" ]
token-classification
false
KoichiYasuoka
null
KoichiYasuoka/deberta-base-coptic-upos
9
null
transformers
12,605
--- language: - "cop" tags: - "coptic" - "token-classification" - "pos" - "dependency-parsing" datasets: - "universal_dependencies" license: "cc-by-sa-4.0" pipeline_tag: "token-classification" widget: - text: "ⲧⲉⲛⲟⲩⲇⲉⲛ̄ⲟⲩⲟⲉⲓⲛϩ︤ⲙ︥ⲡϫⲟⲉⲓⲥ·" - text: "ⲙⲟⲟϣⲉϩⲱⲥϣⲏⲣⲉⲙ̄ⲡⲟⲩⲟⲉⲓⲛ·" --- # deberta-base-coptic-upos ## Model Description This is a DeBERTa(V2) model pre-trained with [UD_Coptic](https://universaldependencies.org/cop/) for POS-tagging and dependency-parsing, derived from [deberta-base-coptic](https://huggingface.co/KoichiYasuoka/deberta-base-coptic). Every word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech). ## How to Use ```py from transformers import AutoTokenizer,AutoModelForTokenClassification tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/deberta-base-coptic-upos") model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/deberta-base-coptic-upos") ``` or ``` import esupar nlp=esupar.load("KoichiYasuoka/deberta-base-coptic-upos") ``` ## See Also [esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models
danielhou13/longformer-finetuned_v2_cogs402
1356be7ad14f916d4cde36d8a60416ebe2864e05
2022-05-30T08:03:51.000Z
[ "pytorch", "longformer", "text-classification", "transformers" ]
text-classification
false
danielhou13
null
danielhou13/longformer-finetuned_v2_cogs402
9
null
transformers
12,606
Entry not found
aioxlabs/dvoice-languageid
7e3b8805ffb5a4e1d399194473d156762d6f6511
2022-05-29T06:19:05.000Z
[ "multilingual", "dataset:VoxLingua107", "speechbrain", "audio-classification", "embeddings", "Language", "Identification", "pytorch", "ECAPA-TDNN", "TDNN", "license:apache-2.0" ]
audio-classification
false
aioxlabs
null
aioxlabs/dvoice-languageid
9
null
speechbrain
12,607
--- language: multilingual thumbnail: tags: - audio-classification - speechbrain - embeddings - Language - Identification - pytorch - ECAPA-TDNN - TDNN license: "apache-2.0" datasets: - VoxLingua107 metrics: - Accuracy ---
siegelou/bert-finetuned-ner
17dcf1e4734098a6f30eacc6a1f05eb9744ff7da
2022-05-29T11:35:28.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
siegelou
null
siegelou/bert-finetuned-ner
9
null
transformers
12,608
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9368054403715376 - name: Recall type: recall value: 0.9505217098619994 - name: F1 type: f1 value: 0.9436137331885389 - name: Accuracy type: accuracy value: 0.9858862659680933 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0660 - Precision: 0.9368 - Recall: 0.9505 - F1: 0.9436 - Accuracy: 0.9859 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0858 | 1.0 | 1756 | 0.0682 | 0.9246 | 0.9387 | 0.9316 | 0.9833 | | 0.0425 | 2.0 | 3512 | 0.0579 | 0.9351 | 0.9504 | 0.9427 | 0.9862 | | 0.0189 | 3.0 | 5268 | 0.0660 | 0.9368 | 0.9505 | 0.9436 | 0.9859 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
CodeMaestro/DialoGPT-small-TChalla
0b28b71d0986a653f7f73ab04a1bda702cd83fdd
2022-05-30T10:48:15.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
CodeMaestro
null
CodeMaestro/DialoGPT-small-TChalla
9
null
transformers
12,609
--- tags: - conversational --- #TChalla DialoGPT model
sahn/distilbert-base-uncased-finetuned-imdb-subtle
49c74d6b5910cc82880c41d99c13ab3d6e6c8b53
2022-05-30T04:50:00.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
sahn
null
sahn/distilbert-base-uncased-finetuned-imdb-subtle
9
null
transformers
12,610
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-imdb-subtle results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.9074 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb-subtle This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.5219 - Accuracy: 0.9074 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data For 10% of the sentences, added `10/10` at the end of the sentences with the label 1, and `1/10` with the label 0. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2308 | 1.0 | 1250 | 0.3615 | 0.8866 | | 0.1381 | 2.0 | 2500 | 0.2195 | 0.9354 | | 0.068 | 3.0 | 3750 | 0.4582 | 0.9014 | | 0.0395 | 4.0 | 5000 | 0.4480 | 0.9164 | | 0.0202 | 5.0 | 6250 | 0.5219 | 0.9074 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
daniel780/finetuning-sentiment-model-3000-samples
f8e346695740fb64a882dc7497747419b697c513
2022-05-31T05:39:08.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:amazon_polarity", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
daniel780
null
daniel780/finetuning-sentiment-model-3000-samples
9
null
transformers
12,611
--- license: apache-2.0 tags: - generated_from_trainer datasets: - amazon_polarity metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: amazon_polarity type: amazon_polarity args: amazon_polarity metrics: - name: Accuracy type: accuracy value: 0.8066666666666666 - name: F1 type: f1 value: 0.8079470198675497 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the amazon_polarity dataset. It achieves the following results on the evaluation set: - Loss: 0.4356 - Accuracy: 0.8067 - F1: 0.8079 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
ruselkomp/sber-framebank-50size-2
6dfa29f523c72ef5c49ee9eac29133266db10530
2022-05-31T15:59:07.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
ruselkomp
null
ruselkomp/sber-framebank-50size-2
9
null
transformers
12,612
--- tags: - generated_from_trainer model-index: - name: sber-framebank-50size-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sber-framebank-50size-2 This model is a fine-tuned version of [sberbank-ai/sbert_large_nlu_ru](https://huggingface.co/sberbank-ai/sbert_large_nlu_ru) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3736 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.0623 | 1.0 | 11307 | 1.0958 | | 0.8145 | 2.0 | 22614 | 1.1778 | | 0.6168 | 3.0 | 33921 | 1.3736 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.2.3.dev0 - Tokenizers 0.12.1
ceggian/bart_post_trained_reddit_batch128
0404f4d269c777415f6daf8fe7222142d47f502a
2022-06-01T08:55:16.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
ceggian
null
ceggian/bart_post_trained_reddit_batch128
9
null
transformers
12,613
Entry not found
mrm8488/gpt-neo-2.7B-8bit
90de1a2a60b4f802af88bd886f9ce1da69ecf5fa
2022-06-01T15:32:07.000Z
[ "pytorch", "gpt_neo", "text-generation", "transformers" ]
text-generation
false
mrm8488
null
mrm8488/gpt-neo-2.7B-8bit
9
1
transformers
12,614
Entry not found
lmqg/bart-large-subjqa-books
bb56fb8aa09bf5310ba64311ccd783b6689cf6bd
2022-06-02T14:43:54.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
lmqg
null
lmqg/bart-large-subjqa-books
9
null
transformers
12,615
Entry not found
kktoto/tiny_toto_punctuator
0bc068a4d0d3196166831231c5caddd1a8318798
2022-06-05T02:31:53.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
kktoto
null
kktoto/tiny_toto_punctuator
9
null
transformers
12,616
Entry not found
philschmid/DistilBERT-Banking77
a5a37e8c0840ba725201378aa56e66018ae45d16
2022-06-24T14:31:49.000Z
[ "pytorch", "distilbert", "text-classification", "en", "dataset:banking77", "transformers", "autotrain", "model-index", "co2_eq_emissions" ]
text-classification
false
philschmid
null
philschmid/DistilBERT-Banking77
9
null
transformers
12,617
--- tags: autotrain language: en widget: - text: I am still waiting on my card? datasets: - banking77 model-index: - name: BERT-Banking77 results: - task: name: Text Classification type: text-classification dataset: name: BANKING77 type: banking77 metrics: - name: Accuracy type: accuracy value: 91.99 - name: Macro F1 type: macro-f1 value: 91.99 - name: Weighted F1 type: weighted-f1 value: 91.99 - task: type: text-classification name: Text Classification dataset: name: banking77 type: banking77 config: default split: test metrics: - name: Accuracy type: accuracy value: 0.922077922077922 verified: true - name: Precision Macro type: precision value: 0.9256326708783564 verified: true - name: Precision Micro type: precision value: 0.922077922077922 verified: true - name: Precision Weighted type: precision value: 0.9256326708783565 verified: true - name: Recall Macro type: recall value: 0.922077922077922 verified: true - name: Recall Micro type: recall value: 0.922077922077922 verified: true - name: Recall Weighted type: recall value: 0.922077922077922 verified: true - name: F1 Macro type: f1 value: 0.9221617304411865 verified: true - name: F1 Micro type: f1 value: 0.922077922077922 verified: true - name: F1 Weighted type: f1 value: 0.9221617304411867 verified: true - name: loss type: loss value: 0.31692808866500854 verified: true co2_eq_emissions: 5.632805352029529 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 940131045 - CO2 Emissions (in grams): 5.632805352029529 ## Validation Metrics - Loss: 0.3392622470855713 - Accuracy: 0.9199410609037328 - Macro F1: 0.9199390885956755 - Micro F1: 0.9199410609037327 - Weighted F1: 0.9198140295005729 - Macro Precision: 0.9235531521509113 - Micro Precision: 0.9199410609037328 - Weighted Precision: 0.9228777883152248 - Macro Recall: 0.919570805773292 - Micro Recall: 0.9199410609037328 - Weighted Recall: 0.9199410609037328 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/philschmid/autotrain-does-it-work-940131045 ``` Or Python API: ``` from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline model_id = 'philschmid/DistilBERT-Banking77' tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForSequenceClassification.from_pretrained(model_id) classifier = pipeline('text-classification', tokenizer=tokenizer, model=model) classifier('What is the base of the exchange rates?') ```
RUCAIBox/mtl-story
40a4d255cb917ba4612d6961a41184cd2926b955
2022-06-27T02:27:29.000Z
[ "pytorch", "mvp", "en", "arxiv:2206.12131", "transformers", "text-generation", "text2text-generation", "license:apache-2.0" ]
text2text-generation
false
RUCAIBox
null
RUCAIBox/mtl-story
9
null
transformers
12,618
--- license: apache-2.0 language: - en tags: - text-generation - text2text-generation pipeline_tag: text2text-generation widget: - text: "Given the story title: I think all public schools should have a uniform dress code." example_title: "Example1" - text: "Given the story title: My girlfriend and I decided to move to a new state. We packed everything in our cars and drove there." example_title: "Example2" --- # MTL-story The MTL-story model was proposed in [**MVP: Multi-task Supervised Pre-training for Natural Language Generation**](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen. The detailed information and instructions can be found [https://github.com/RUCAIBox/MVP](https://github.com/RUCAIBox/MVP). ## Model Description MTL-story is supervised pre-trained using a mixture of labeled story generation datasets. It is a variant (Single) of our main [MVP](https://huggingface.co/RUCAIBox/mvp) model. It follows a standard Transformer encoder-decoder architecture. MTL-story is specially designed for story generation tasks, such as ROCStories and WritingPrompts. ## Example ```python >>> from transformers import MvpTokenizer, MvpForConditionalGeneration >>> tokenizer = MvpTokenizer.from_pretrained("RUCAIBox/mvp") >>> model = MvpForConditionalGeneration.from_pretrained("RUCAIBox/mtl-story") >>> inputs = tokenizer( ... "Given the story title: I think all public schools should have a uniform dress code.", ... return_tensors="pt", ... ) >>> generated_ids = model.generate(**inputs, max_length=1024) >>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True) ["I don't know about you, but I don't think it would be a good idea to have a uniform dress code in public schools. I think it's a waste of time and money. If you're going to have uniform dress codes, you need to make sure that the uniforms are appropriate for the school and that the students are comfortable in them. If they're not comfortable, then they shouldn't be allowed to wear them."] ``` ## Related Models **MVP**: [https://huggingface.co/RUCAIBox/mvp](https://huggingface.co/RUCAIBox/mvp). **Prompt-based models**: - MVP-multi-task: [https://huggingface.co/RUCAIBox/mvp-multi-task](https://huggingface.co/RUCAIBox/mvp-multi-task). - MVP-summarization: [https://huggingface.co/RUCAIBox/mvp-summarization](https://huggingface.co/RUCAIBox/mvp-summarization). - MVP-open-dialog: [https://huggingface.co/RUCAIBox/mvp-open-dialog](https://huggingface.co/RUCAIBox/mvp-open-dialog). - MVP-data-to-text: [https://huggingface.co/RUCAIBox/mvp-data-to-text](https://huggingface.co/RUCAIBox/mvp-data-to-text). - MVP-story: [https://huggingface.co/RUCAIBox/mvp-story](https://huggingface.co/RUCAIBox/mvp-story). - MVP-question-answering: [https://huggingface.co/RUCAIBox/mvp-question-answering](https://huggingface.co/RUCAIBox/mvp-question-answering). - MVP-question-generation: [https://huggingface.co/RUCAIBox/mvp-question-generation](https://huggingface.co/RUCAIBox/mvp-question-generation). - MVP-task-dialog: [https://huggingface.co/RUCAIBox/mvp-task-dialog](https://huggingface.co/RUCAIBox/mvp-task-dialog). **Multi-task models**: - MTL-summarization: [https://huggingface.co/RUCAIBox/mtl-summarization](https://huggingface.co/RUCAIBox/mtl-summarization). - MTL-open-dialog: [https://huggingface.co/RUCAIBox/mtl-open-dialog](https://huggingface.co/RUCAIBox/mtl-open-dialog). - MTL-data-to-text: [https://huggingface.co/RUCAIBox/mtl-data-to-text](https://huggingface.co/RUCAIBox/mtl-data-to-text). - MTL-story: [https://huggingface.co/RUCAIBox/mtl-story](https://huggingface.co/RUCAIBox/mtl-story). - MTL-question-answering: [https://huggingface.co/RUCAIBox/mtl-question-answering](https://huggingface.co/RUCAIBox/mtl-question-answering). - MTL-question-generation: [https://huggingface.co/RUCAIBox/mtl-question-generation](https://huggingface.co/RUCAIBox/mtl-question-generation). - MTL-task-dialog: [https://huggingface.co/RUCAIBox/mtl-task-dialog](https://huggingface.co/RUCAIBox/mtl-task-dialog). ## Citation ```bibtex @article{tang2022mvp, title={MVP: Multi-task Supervised Pre-training for Natural Language Generation}, author={Tang, Tianyi and Li, Junyi and Zhao, Wayne Xin and Wen, Ji-Rong}, journal={arXiv preprint arXiv:2206.12131}, year={2022}, url={https://arxiv.org/abs/2206.12131}, } ```
RUCAIBox/mtl-question-answering
bc7e726c06d3b760d7e6819247a8ce8cdbe94745
2022-06-27T02:27:20.000Z
[ "pytorch", "mvp", "en", "arxiv:2206.12131", "transformers", "text-generation", "text2text-generation", "license:apache-2.0" ]
text2text-generation
false
RUCAIBox
null
RUCAIBox/mtl-question-answering
9
null
transformers
12,619
--- license: apache-2.0 language: - en tags: - text-generation - text2text-generation pipeline_tag: text2text-generation widget: - text: "Answer the following question: From which country did Angola achieve independence in 1975?" example_title: "Example1" - text: "Answer the following question: what is ce certified [X_SEP] The CE marking is the manufacturer's declaration that the product meets the requirements of the applicable EC directives. Officially, CE is an abbreviation of Conformite Conformité, europeenne Européenne Meaning. european conformity" example_title: "Example2" --- # MTL-question-answering The MTL-question-answering model was proposed in [**MVP: Multi-task Supervised Pre-training for Natural Language Generation**](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen. The detailed information and instructions can be found [https://github.com/RUCAIBox/MVP](https://github.com/RUCAIBox/MVP). ## Model Description MTL-question-answering is supervised pre-trained using a mixture of labeled question answering datasets. It is a variant (Single) of our main [MVP](https://huggingface.co/RUCAIBox/mvp) model. It follows a standard Transformer encoder-decoder architecture. MTL-question-answering is specially designed for question answering tasks, such as reading comprehension (SQuAD), conversational question answering (CoQA) and closed-book question-answering (Natural Questions). ## Example ```python >>> from transformers import MvpTokenizer, MvpForConditionalGeneration >>> tokenizer = MvpTokenizer.from_pretrained("RUCAIBox/mvp") >>> model = MvpForConditionalGeneration.from_pretrained("RUCAIBox/mtl-question-answering") >>> inputs = tokenizer( ... "Answer the following question: From which country did Angola achieve independence in 1975?", ... return_tensors="pt", ... ) >>> generated_ids = model.generate(**inputs) >>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True) ['Portugal'] ``` ## Related Models **MVP**: [https://huggingface.co/RUCAIBox/mvp](https://huggingface.co/RUCAIBox/mvp). **Prompt-based models**: - MVP-multi-task: [https://huggingface.co/RUCAIBox/mvp-multi-task](https://huggingface.co/RUCAIBox/mvp-multi-task). - MVP-summarization: [https://huggingface.co/RUCAIBox/mvp-summarization](https://huggingface.co/RUCAIBox/mvp-summarization). - MVP-open-dialog: [https://huggingface.co/RUCAIBox/mvp-open-dialog](https://huggingface.co/RUCAIBox/mvp-open-dialog). - MVP-data-to-text: [https://huggingface.co/RUCAIBox/mvp-data-to-text](https://huggingface.co/RUCAIBox/mvp-data-to-text). - MVP-story: [https://huggingface.co/RUCAIBox/mvp-story](https://huggingface.co/RUCAIBox/mvp-story). - MVP-question-answering: [https://huggingface.co/RUCAIBox/mvp-question-answering](https://huggingface.co/RUCAIBox/mvp-question-answering). - MVP-question-generation: [https://huggingface.co/RUCAIBox/mvp-question-generation](https://huggingface.co/RUCAIBox/mvp-question-generation). - MVP-task-dialog: [https://huggingface.co/RUCAIBox/mvp-task-dialog](https://huggingface.co/RUCAIBox/mvp-task-dialog). **Multi-task models**: - MTL-summarization: [https://huggingface.co/RUCAIBox/mtl-summarization](https://huggingface.co/RUCAIBox/mtl-summarization). - MTL-open-dialog: [https://huggingface.co/RUCAIBox/mtl-open-dialog](https://huggingface.co/RUCAIBox/mtl-open-dialog). - MTL-data-to-text: [https://huggingface.co/RUCAIBox/mtl-data-to-text](https://huggingface.co/RUCAIBox/mtl-data-to-text). - MTL-story: [https://huggingface.co/RUCAIBox/mtl-story](https://huggingface.co/RUCAIBox/mtl-story). - MTL-question-answering: [https://huggingface.co/RUCAIBox/mtl-question-answering](https://huggingface.co/RUCAIBox/mtl-question-answering). - MTL-question-generation: [https://huggingface.co/RUCAIBox/mtl-question-generation](https://huggingface.co/RUCAIBox/mtl-question-generation). - MTL-task-dialog: [https://huggingface.co/RUCAIBox/mtl-task-dialog](https://huggingface.co/RUCAIBox/mtl-task-dialog). ## Citation ```bibtex @article{tang2022mvp, title={MVP: Multi-task Supervised Pre-training for Natural Language Generation}, author={Tang, Tianyi and Li, Junyi and Zhao, Wayne Xin and Wen, Ji-Rong}, journal={arXiv preprint arXiv:2206.12131}, year={2022}, url={https://arxiv.org/abs/2206.12131}, } ```
Jeevesh8/init_bert_ft_qqp-2
88199737daec076bc43926030349a8a6e3287bf8
2022-06-02T12:37:45.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-2
9
null
transformers
12,620
Entry not found
Jeevesh8/init_bert_ft_qqp-1
f7a2fb5ce719ac903ffd3b5b500262046abb1319
2022-06-02T12:37:58.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-1
9
null
transformers
12,621
Entry not found
Jeevesh8/init_bert_ft_qqp-8
724d573b631976170a7504f969bfd7cced7e9258
2022-06-02T12:37:39.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-8
9
null
transformers
12,622
Entry not found
Jeevesh8/init_bert_ft_qqp-3
9d948e08358914a74874f4eb5cf3c57a71e94045
2022-06-02T12:37:47.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-3
9
null
transformers
12,623
Entry not found
Jeevesh8/init_bert_ft_qqp-4
c94e68de0e093b7aee98c4bc134f6eb76a0c6504
2022-06-02T12:37:46.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-4
9
null
transformers
12,624
Entry not found
Jeevesh8/init_bert_ft_qqp-5
578cc4e2c37914baa3ac728fc4234ff1c129ec47
2022-06-02T12:37:42.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-5
9
null
transformers
12,625
Entry not found
Jeevesh8/init_bert_ft_qqp-7
933e4d15c36040fd937caeea8723820bbaeca1ab
2022-06-02T12:38:15.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-7
9
null
transformers
12,626
Entry not found
Jeevesh8/init_bert_ft_qqp-10
85dcd3d2c38a5e71b605474e285b9bbb1b121c9d
2022-06-02T12:37:54.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-10
9
null
transformers
12,627
Entry not found
Jeevesh8/init_bert_ft_qqp-9
3738e5bf4ff0956b53bb322dda7014c693ecdd8a
2022-06-02T12:37:46.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-9
9
null
transformers
12,628
Entry not found
Jeevesh8/init_bert_ft_qqp-6
0c42c612266c732b13e08c8829450408fef0324a
2022-06-02T12:37:38.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-6
9
null
transformers
12,629
Entry not found
Jeevesh8/init_bert_ft_qqp-0
347f6a3eeb6992f6d9cc1647834c293e9934248c
2022-06-02T12:37:36.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-0
9
null
transformers
12,630
Entry not found
Jeevesh8/init_bert_ft_qqp-16
dd2887d6ba950e43507ef5733e649a19c8ef8e36
2022-06-02T12:41:45.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-16
9
null
transformers
12,631
Entry not found
Jeevesh8/init_bert_ft_qqp-11
915e890007b1785e9bfa88786e165d48cc85c4b7
2022-06-02T12:39:12.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-11
9
null
transformers
12,632
Entry not found
Jeevesh8/init_bert_ft_qqp-13
e73c0644815c694eaa7a01b02c4b03833558f633
2022-06-02T12:39:11.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-13
9
null
transformers
12,633
Entry not found
Jeevesh8/init_bert_ft_qqp-12
54a2e17800cb6dd41993fc1c501e74fed711cb76
2022-06-02T12:41:24.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-12
9
null
transformers
12,634
Entry not found
Jeevesh8/init_bert_ft_qqp-14
8a10dcb1ef0483531a42defd28531e94f2480e34
2022-06-02T12:39:12.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-14
9
null
transformers
12,635
Entry not found
Jeevesh8/init_bert_ft_qqp-18
e6c2e590644483acab50aab8eb908cf662d858ce
2022-06-02T12:39:47.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-18
9
null
transformers
12,636
Entry not found
Jeevesh8/init_bert_ft_qqp-20
5c448e8c04264db46c52556db0b2bd2a9237c5c8
2022-06-02T12:39:56.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-20
9
null
transformers
12,637
Entry not found
Jeevesh8/init_bert_ft_qqp-21
5de6a21340b75619113f3242c83d775732609067
2022-06-02T12:39:52.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-21
9
null
transformers
12,638
Entry not found
Jeevesh8/init_bert_ft_qqp-24
82f03f254d910d6abb8b54673ba52f4d4d16e42b
2022-06-02T12:39:24.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-24
9
null
transformers
12,639
Entry not found
Jeevesh8/init_bert_ft_qqp-17
a4ac389a3423dba0036456b1051d98542e97af54
2022-06-02T12:40:00.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-17
9
null
transformers
12,640
Entry not found
Jeevesh8/init_bert_ft_qqp-23
f5eeb9b94ea2e4b49114eccc964d83c10288f8bd
2022-06-02T12:40:04.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-23
9
null
transformers
12,641
Entry not found
Jeevesh8/init_bert_ft_qqp-29
63af9c38551cccd2e5d8c42781e26109ce475a9b
2022-06-02T12:39:36.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-29
9
null
transformers
12,642
Entry not found
Jeevesh8/init_bert_ft_qqp-30
afacc540d014d50e957947a379991b9b7ab28f8b
2022-06-02T12:39:34.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-30
9
null
transformers
12,643
Entry not found
Jeevesh8/init_bert_ft_qqp-27
62a06d82e4a48fd86ee4a565a1511b7c7e2126c8
2022-06-02T12:39:37.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-27
9
null
transformers
12,644
Entry not found
Jeevesh8/init_bert_ft_qqp-25
411d83e71e6ab008f1a37692975ac1fd9477b2b6
2022-06-02T12:39:39.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-25
9
null
transformers
12,645
Entry not found
Jeevesh8/init_bert_ft_qqp-26
a0fefc8ce5a113d203bbe6ecc060967d6718999e
2022-06-02T12:40:42.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-26
9
null
transformers
12,646
Entry not found
Jeevesh8/init_bert_ft_qqp-40
9d032ef7b58b123d2763e8789ec1f424a804d181
2022-06-02T12:39:51.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-40
9
null
transformers
12,647
Entry not found
Jeevesh8/init_bert_ft_qqp-34
1b4ba345ce6e28361789608bed5ae120df714ff9
2022-06-02T12:39:45.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-34
9
null
transformers
12,648
Entry not found
Jeevesh8/init_bert_ft_qqp-60
60010aa746dbfd973a9c10ca03c27d0639783804
2022-06-02T12:39:35.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-60
9
null
transformers
12,649
Entry not found
Jeevesh8/init_bert_ft_qqp-57
0efe5b17b3a8f1795dca2ead725c1e9f9d1cee36
2022-06-02T12:39:34.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-57
9
null
transformers
12,650
Entry not found
Jeevesh8/init_bert_ft_qqp-54
bbaed929df585d681b3c96ae25d6a3907ae50d32
2022-06-02T12:39:41.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-54
9
null
transformers
12,651
Entry not found
Jeevesh8/init_bert_ft_qqp-55
01eed3cc7e735fa2f9accc6d28c3092ed3c50222
2022-06-02T12:41:40.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-55
9
null
transformers
12,652
Entry not found
Jeevesh8/init_bert_ft_qqp-52
038c33de491e995aa97d15abd229aa8bc1177e63
2022-06-02T12:39:34.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-52
9
null
transformers
12,653
Entry not found
Jeevesh8/init_bert_ft_qqp-32
35ba2ede05bd404d33d06b2c48046269e0a20ff6
2022-06-02T12:39:46.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-32
9
null
transformers
12,654
Entry not found
Jeevesh8/init_bert_ft_qqp-31
ddb83088cfafbf32d96680649a4418433d164baa
2022-06-02T12:39:48.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-31
9
null
transformers
12,655
Entry not found
Jeevesh8/init_bert_ft_qqp-37
cd796932624b2969733f3319b77c85bfb50fc808
2022-06-02T12:39:59.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-37
9
null
transformers
12,656
Entry not found
Jeevesh8/init_bert_ft_qqp-35
e9f3636862944fea82867e40928c4fd648063d4c
2022-06-02T12:39:58.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-35
9
null
transformers
12,657
Entry not found
Jeevesh8/init_bert_ft_qqp-38
a730ced4ef2682ce13a1694bda319a70d40f7d2f
2022-06-02T12:40:02.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-38
9
null
transformers
12,658
Entry not found
Jeevesh8/init_bert_ft_qqp-90
b397b8896546cc57b0bb9bb6611ace98dcefb3bd
2022-06-02T12:41:25.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-90
9
null
transformers
12,659
Entry not found
Jeevesh8/init_bert_ft_qqp-96
f5b47d54d4b4de44ccf9acc4f0d368f13c15b367
2022-06-02T12:41:42.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-96
9
null
transformers
12,660
Entry not found
nboudad/Maghriberta
808f42d1f927a56e83e38decbab88c092560a121
2022-06-03T21:52:55.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
nboudad
null
nboudad/Maghriberta
9
null
transformers
12,661
--- widget: - text: "جاب ليا <mask> ." example_title: "example1" - text: "مشيت نجيب <mask> فالفرماسيان ." example_title: "example2" ---
kktoto/tiny_lr_kk
60c5fb922054b76afbac2c51bd767d9ca727d1c4
2022-06-05T13:47:24.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
kktoto
null
kktoto/tiny_lr_kk
9
null
transformers
12,662
Entry not found
roshnir/xlmr-finetuned-mlqa-dev-vi-hi
064824a943c0761196e182582bca83e5445b7c76
2022-06-05T20:37:55.000Z
[ "pytorch", "xlm-roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
roshnir
null
roshnir/xlmr-finetuned-mlqa-dev-vi-hi
9
null
transformers
12,663
Entry not found
Gooogr/distilbert-base-uncased-finetuned-clinc
5f8829242f0b30ddbc2382d17c119803364ad1c8
2022-06-06T16:12:25.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers" ]
text-classification
false
Gooogr
null
Gooogr/distilbert-base-uncased-finetuned-clinc
9
null
transformers
12,664
Entry not found
sayakpramanik/distilbert-base-uncased-finetuned-emotion
b2de981a3d79b2fa879578d474fb8565050c2cc0
2022-06-06T10:12:03.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
sayakpramanik
null
sayakpramanik/distilbert-base-uncased-finetuned-emotion
9
null
transformers
12,665
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.923 - name: F1 type: f1 value: 0.9228534433920637 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2166 - Accuracy: 0.923 - F1: 0.9229 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8472 | 1.0 | 250 | 0.3169 | 0.912 | 0.9105 | | 0.2475 | 2.0 | 500 | 0.2166 | 0.923 | 0.9229 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
Kabir5296/wav2vec2-large-xls-r-300m-turkish-colab
ef067670bfa5d9a3820f21499fb9834e0bf49b80
2022-06-20T10:13:49.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Kabir5296
null
Kabir5296/wav2vec2-large-xls-r-300m-turkish-colab
9
null
transformers
12,666
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-turkish-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-turkish-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.4102 - Wer: 0.3165 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.9393 | 3.67 | 400 | 0.6784 | 0.7123 | | 0.4104 | 7.34 | 800 | 0.4521 | 0.4865 | | 0.1929 | 11.01 | 1200 | 0.4470 | 0.4802 | | 0.1301 | 14.68 | 1600 | 0.4377 | 0.4384 | | 0.0999 | 18.35 | 2000 | 0.4391 | 0.4067 | | 0.0799 | 22.02 | 2400 | 0.4073 | 0.3456 | | 0.0624 | 25.69 | 2800 | 0.4039 | 0.3286 | | 0.0491 | 29.36 | 3200 | 0.4102 | 0.3165 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
tolgahanturker/bert-finetuned-ner
df8a2f02956d9ea70228bc2caa7ce460cc381f7f
2022-06-07T08:14:58.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
tolgahanturker
null
tolgahanturker/bert-finetuned-ner
9
null
transformers
12,667
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9315589353612167 - name: Recall type: recall value: 0.9483338943116796 - name: F1 type: f1 value: 0.9398715703444249 - name: Accuracy type: accuracy value: 0.9859598516512628 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0636 - Precision: 0.9316 - Recall: 0.9483 - F1: 0.9399 - Accuracy: 0.9860 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0828 | 1.0 | 1756 | 0.0655 | 0.9189 | 0.9359 | 0.9273 | 0.9825 | | 0.0395 | 2.0 | 3512 | 0.0574 | 0.9226 | 0.9467 | 0.9345 | 0.9855 | | 0.0187 | 3.0 | 5268 | 0.0636 | 0.9316 | 0.9483 | 0.9399 | 0.9860 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
Nehc/FakeMobile
feef8ee79c730700fbea42c34d9d75b0adcfe7b4
2022-06-09T13:44:35.000Z
[ "pytorch", "bert", "text-classification", "ru", "transformers" ]
text-classification
false
Nehc
null
Nehc/FakeMobile
9
null
transformers
12,668
--- language: - ru widget: - text: "[CLS] Какая абонентская плата на тарифе Позвони маме? [SEP]" metrics: - loss: 0.704381 - accuracy: 1.000000 --- Start from 'DeepPavlov/rubert-base-cased' and finetuning on DUMBOT fake data (http://dumbot.ru/Home/MobileOperatorRate). 100 epoch on progress...
vaibhavagg303/T5-test2
4e1a2cc55350beb56be8486e6c44825e78d62670
2022-06-08T11:56:58.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
vaibhavagg303
null
vaibhavagg303/T5-test2
9
null
transformers
12,669
Entry not found
KoichiYasuoka/deberta-base-japanese-unidic
29685f95dc57612442c41291b43a30ee440c4384
2022-06-18T14:02:31.000Z
[ "pytorch", "deberta-v2", "fill-mask", "ja", "transformers", "japanese", "masked-lm", "license:cc-by-sa-4.0", "autotrain_compatible" ]
fill-mask
false
KoichiYasuoka
null
KoichiYasuoka/deberta-base-japanese-unidic
9
null
transformers
12,670
--- language: - "ja" tags: - "japanese" - "masked-lm" license: "cc-by-sa-4.0" pipeline_tag: "fill-mask" mask_token: "[MASK]" widget: - text: "日本に着いたら[MASK]を訪ねなさい。" --- # deberta-base-japanese-unidic ## Model Description This is a DeBERTa(V2) model pre-trained on 青空文庫 texts with BertJapaneseTokenizer. You can fine-tune `deberta-base-japanese-unidic` for downstream tasks, such as [POS-tagging](https://huggingface.co/KoichiYasuoka/deberta-base-japanese-unidic-luw-upos), [dependency-parsing](https://huggingface.co/KoichiYasuoka/deberta-base-japanese-unidic-ud-head), and so on. ## How to Use ```py from transformers import AutoTokenizer,AutoModelForMaskedLM tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/deberta-base-japanese-unidic") model=AutoModelForMaskedLM.from_pretrained("KoichiYasuoka/deberta-base-japanese-unidic") ``` [fugashi](https://pypi.org/project/fugashi) and [unidic-lite](https://pypi.org/project/unidic-lite) are required.
louisdeco/camembert-base-finetuned-ICDCode_5
9767ab4ed3873be97f66940c48959f91103b421d
2022-06-09T10:18:38.000Z
[ "pytorch", "tensorboard", "camembert", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
louisdeco
null
louisdeco/camembert-base-finetuned-ICDCode_5
9
null
transformers
12,671
--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 - recall model-index: - name: camembert-base-finetuned-ICDCode_5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # camembert-base-finetuned-ICDCode_5 This model is a fine-tuned version of [camembert-base](https://huggingface.co/camembert-base) on the None dataset. It has been trained on a corpus of death certificate. One ICDCode is given for a given cause of death or commorbidities. As it is an important task to be able to predict these ICDCode, I shave trained this model for 8 epochs on 400 000 death causes. Pre-processing of noisy data points was mandatory before tokenization. It allows us to get this accuracy. It achieves the following results on the evaluation set: - Loss: 0.6574 - Accuracy: 0.8964 - F1: 0.8750 - Recall: 0.8964 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 50 - eval_batch_size: 50 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:------:| | 3.7466 | 1.0 | 4411 | 1.9448 | 0.7201 | 0.6541 | 0.7201 | | 1.5264 | 2.0 | 8822 | 1.2045 | 0.8134 | 0.7691 | 0.8134 | | 1.0481 | 3.0 | 13233 | 0.9473 | 0.8513 | 0.8149 | 0.8513 | | 0.8304 | 4.0 | 17644 | 0.8098 | 0.8718 | 0.8427 | 0.8718 | | 0.7067 | 5.0 | 22055 | 0.7352 | 0.8834 | 0.8574 | 0.8834 | | 0.6285 | 6.0 | 26466 | 0.6911 | 0.8898 | 0.8659 | 0.8898 | | 0.5779 | 7.0 | 30877 | 0.6641 | 0.8958 | 0.8741 | 0.8958 | | 0.549 | 8.0 | 35288 | 0.6574 | 0.8964 | 0.8750 | 0.8964 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
huggingartists/headie-one
b2b0ec7e7323a2b783fc33138f4b3baff6e1aa09
2022-07-16T03:07:06.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "dataset:huggingartists/headie-one", "transformers", "huggingartists", "lyrics", "lm-head", "causal-lm" ]
text-generation
false
huggingartists
null
huggingartists/headie-one
9
null
transformers
12,672
--- language: en datasets: - huggingartists/headie-one tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/f803e312226f5034989742ff1fb4b583.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Headie One</div> <a href="https://genius.com/artists/headie-one"> <div style="text-align: center; font-size: 14px;">@headie-one</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Headie One. Dataset is available [here](https://huggingface.co/datasets/huggingartists/headie-one). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/headie-one") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/3fzj7qkl/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Headie One's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1d1n36x9) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1d1n36x9/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/headie-one') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/headie-one") model = AutoModelWithLMHead.from_pretrained("huggingartists/headie-one") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
pourmand1376/arabic-quran-nahj-sahife
8981ee058f95d0d0f7587996abd578e01e597e73
2022-06-09T10:18:17.000Z
[ "pytorch", "bert", "fill-mask", "ar", "transformers", "license:gpl-2.0", "autotrain_compatible" ]
fill-mask
false
pourmand1376
null
pourmand1376/arabic-quran-nahj-sahife
9
1
transformers
12,673
--- license: gpl-2.0 language: ar --- A model which is jointly trained and fine-tuned on Quran, Saheefa and nahj-al-balaqa. All Datasets are available [Here](https://github.com/language-ml/course-nlp-ir-1-text-exploring/tree/main/exploring-datasets/religious_text). Code will be available soon ... Some Examples for filling the mask: - ``` ذَلِكَ [MASK] لَا رَيْبَ فِيهِ هُدًى لِلْمُتَّقِينَ ``` - ``` يَا أَيُّهَا النَّاسُ اعْبُدُوا رَبَّكُمُ الَّذِي خَلَقَكُمْ وَالَّذِينَ مِنْ قَبْلِكُمْ لَعَلَّكُمْ [MASK] ``` This model is fine-tuned on [Bert Base Arabic](https://huggingface.co/asafaya/bert-base-arabic) for 30 epochs. We have used `Masked Language Modeling` to fine-tune the model. Also, after each 5 epochs, we have completely masked the words again for the model to learn the embeddings very well and not overfit the data.
ghadeermobasher/WLT-PubMedBERT-NCBI-Disease
0123dc837d0515f5eb048fa730f4be8b32da9eac
2022-06-09T11:22:45.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/WLT-PubMedBERT-NCBI-Disease
9
null
transformers
12,674
Entry not found
annazdr/xlm-roberta-ecoicop-polish
48f7116e2902db9ea47382cc9563f4271b8e4bab
2022-06-14T11:50:15.000Z
[ "pytorch", "xlm-roberta", "text-classification", "transformers" ]
text-classification
false
annazdr
null
annazdr/xlm-roberta-ecoicop-polish
9
null
transformers
12,675
Entry not found
ghadeermobasher/WLT-PubMedBERT-BC2GM
0083c6935e7e8712f199c6f41ae43e7128e6bf7a
2022-06-10T16:29:37.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/WLT-PubMedBERT-BC2GM
9
null
transformers
12,676
Entry not found
ghadeermobasher/WLT-SciBERT-BC2GM
94ede29cab8e82b26693710f398f8d277fde2ead
2022-06-09T16:35:37.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/WLT-SciBERT-BC2GM
9
null
transformers
12,677
Entry not found
ghadeermobasher/WLT-BlueBERT-Linnaeus
700ede52186810ea689d01c4943123b2cfaa3aa0
2022-06-10T14:41:57.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/WLT-BlueBERT-Linnaeus
9
null
transformers
12,678
Entry not found
ghadeermobasher/WLT-PubMedBERT-Linnaeus
4bb5bb64e825a889f1790b188d24ccb69a280d8f
2022-06-10T11:05:35.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/WLT-PubMedBERT-Linnaeus
9
null
transformers
12,679
Entry not found
ghadeermobasher/WLT-SciBERT-Linnaeus
243c0715e31f292c90af66f9709134e6514b466c
2022-06-10T14:03:23.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/WLT-SciBERT-Linnaeus
9
null
transformers
12,680
Entry not found
RomanCast/xlmr-miam-loria-finetuned
3ddb8e5c581767910d31bb0adcbe5ac1a97d67f7
2022-06-09T15:14:27.000Z
[ "pytorch", "xlm-roberta", "text-classification", "fr", "transformers" ]
text-classification
false
RomanCast
null
RomanCast/xlmr-miam-loria-finetuned
9
null
transformers
12,681
--- language: - fr ---
huggingtweets/mrbeast
919d541945ad3427edad2af87e2e251772892867
2022-06-09T16:16:29.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/mrbeast
9
null
transformers
12,682
--- language: en thumbnail: http://www.huggingtweets.com/mrbeast/1654791349427/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/994592419705274369/RLplF55e_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">MrBeast</div> <div style="text-align: center; font-size: 14px;">@mrbeast</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from MrBeast. | Data | MrBeast | | --- | --- | | Tweets downloaded | 3246 | | Retweets | 157 | | Short tweets | 713 | | Tweets kept | 2376 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1lj98epf/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mrbeast's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2o881m6c) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2o881m6c/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mrbeast') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
fabianmmueller/deep-haiku-gpt-j-6b-8bit
2ded223ddecb39c99a050ba63d9de22edd3e8311
2022-06-13T15:40:47.000Z
[ "pytorch", "gptj", "text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-generation
false
fabianmmueller
null
fabianmmueller/deep-haiku-gpt-j-6b-8bit
9
null
transformers
12,683
--- license: mit tags: - generated_from_trainer model-index: - name: deep-haiku-gpt-j-6b-8bit results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deep-haiku-gpt-j-6b-8bit This model is a fine-tuned version of [gpt-j-6B-8bit](https://huggingface.co/hivemind/gpt-j-6B-8bit) on the [haiku](https://huggingface.co/datasets/statworx/haiku) dataset. ## Model description The model is a fine-tuned version of GPT-J-6B-8Bit for generation of [Haikus](https://en.wikipedia.org/wiki/Haiku). The model, data and training procedure is inspired by a [blog post by Robert A. Gonsalves](https://towardsdatascience.com/deep-haiku-teaching-gpt-j-to-compose-with-syllable-patterns-5234bca9701). We used the same multitask training approach as in der post, but significantly extended the dataset (almost double the size of the original one). A prepared version of the dataset can be found [here](https://huggingface.co/datasets/statworx/haiku). ## Intended uses & limitations The model is intended to generate Haikus. To do so, it was trained using a multitask learning approach (see [Caruana 1997](http://www.cs.cornell.edu/~caruana/mlj97.pdf)) with the following four different tasks: : - topic2graphemes `(keywords = text)` - topic2phonemes `<keyword_phonemes = text_phonemes>` - graphemes2phonemes `[text = text_phonemes]` - phonemes2graphemes `{text_phonemes = text}` To use the model, use an appropriate prompt like `"(dog rain ="` and let the model generate a Haiku given the keyword. ## Training and evaluation data We used a collection of existing haikus for training. Furthermore, all haikus were used in their graphemes version as well as a phonemes version. In addition, we extracted key word for all haikus using [KeyBERT](https://github.com/MaartenGr/KeyBERT) and sorted out haikus with a low text quality according to the [GRUEN score](https://github.com/WanzhengZhu/GRUEN). ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 10 ### Training results ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu102 - Datasets 2.2.1 - Tokenizers 0.12.1
rsuwaileh/IDRISI-LMR-HD-TB-partition
a5f82732a1d0644770403fad0f88233ed31d8be5
2022-07-18T09:17:11.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
rsuwaileh
null
rsuwaileh/IDRISI-LMR-HD-TB-partition
9
null
transformers
12,684
This model is a BERT-based Location Mention Recognition model that is adopted from the [TLLMR4CM GitHub](https://github.com/rsuwaileh/TLLMR4CM/). The model is trained using Hurricane Dorian 2019 event (only the training data is used for training) from [IDRISI-R dataset](https://github.com/rsuwaileh/IDRISI) under the Type-based LMR mode and using the random version of the data. You can download this data in BILOU format from [here](https://github.com/rsuwaileh/IDRISI/tree/main/data/LMR/EN/gold-random-bilou/hurricane_dorian_2019). * Different variants of the model are available through HuggingFace: - [rsuwaileh/IDRISI-LMR-HD-TB](https://huggingface.co/rsuwaileh/IDRISI-LMR-HD-TB) - [rsuwaileh/IDRISI-LMR-HD-TL](https://huggingface.co/rsuwaileh/IDRISI-LMR-HD-TL) - [rsuwaileh/IDRISI-LMR-HD-TL-partition](https://huggingface.co/rsuwaileh/IDRISI-LMR-HD-TL-partition/) * Larger models are available at [TLLMR4CM GitHub](https://github.com/rsuwaileh/TLLMR4CM/). * Models trained on the entire IDRISI-R dataset: - [rsuwaileh/IDRISI-LMR-EN-random-typeless](https://huggingface.co/rsuwaileh/IDRISI-LMR-EN-random-typeless/) - [rsuwaileh/IDRISI-LMR-EN-random-typebased](https://huggingface.co/rsuwaileh/IDRISI-LMR-EN-random-typebased/) - [rsuwaileh/IDRISI-LMR-EN-timebased-typeless](https://huggingface.co/rsuwaileh/IDRISI-LMR-EN-timebased-typeless/) - [rsuwaileh/IDRISI-LMR-EN-timebased-typebased](https://huggingface.co/rsuwaileh/IDRISI-LMR-EN-timebased-typebased/) To cite this model: ``` @article{suwaileh2022tlLMR4disaster, title={When a Disaster Happens, We Are Ready: Location Mention Recognition from Crisis Tweets}, author={Suwaileh, Reem and Elsayed, Tamer and Imran, Muhammad and Sajjad, Hassan}, journal={International Journal of Disaster Risk Reduction}, year={2022} } @inproceedings{suwaileh2020tlLMR4disaster, title={Are We Ready for this Disaster? Towards Location Mention Recognition from Crisis Tweets}, author={Suwaileh, Reem and Imran, Muhammad and Elsayed, Tamer and Sajjad, Hassan}, booktitle={Proceedings of the 28th International Conference on Computational Linguistics}, pages={6252--6263}, year={2020} } ``` To cite the IDRISI-R dataset: ``` @article{rsuwaileh2022Idrisi-r, title={IDRISI-R: Large-scale English and Arabic Location Mention Recognition Datasets for Disaster Response over Twitter}, author={Suwaileh, Reem and Elsayed, Tamer and Imran, Muhammad}, journal={...}, volume={...}, pages={...}, year={2022}, publisher={...} } ```
tauseefr84/distilbert-base-uncased-finetuned-emotion
507db90411300ea5138671586d7ad3137a6b575f
2022-06-12T20:52:51.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
tauseefr84
null
tauseefr84/distilbert-base-uncased-finetuned-emotion
9
null
transformers
12,685
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.838 - name: F1 type: f1 value: 0.822753081351476 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.5268 - Accuracy: 0.838 - F1: 0.8228 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.9225 | 1.0 | 250 | 0.5268 | 0.838 | 0.8228 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
course5i/SEAD-L-6_H-256_A-8-mnli
82c7987b2cac657291d9e1684b43853e45812ca8
2022-06-12T22:43:38.000Z
[ "pytorch", "tf", "jax", "bert", "text-classification", "en", "dataset:glue", "dataset:mnli", "arxiv:1910.01108", "arxiv:1909.10351", "arxiv:2002.10957", "arxiv:1810.04805", "arxiv:1804.07461", "arxiv:1905.00537", "transformers", "SEAD", "license:apache-2.0" ]
text-classification
false
course5i
null
course5i/SEAD-L-6_H-256_A-8-mnli
9
null
transformers
12,686
--- language: - en license: apache-2.0 tags: - SEAD datasets: - glue - mnli --- ## Paper ## [SEAD: SIMPLE ENSEMBLE AND KNOWLEDGE DISTILLATION FRAMEWORK FOR NATURAL LANGUAGE UNDERSTANDING](https://www.adasci.org/journals/lattice-35309407/?volumes=true&open=621a3b18edc4364e8a96cb63) Aurthors: *Moyan Mei*, *Rohit Sroch* ## Abstract With the widespread use of pre-trained language models (PLM), there has been increased research on how to make them applicable, especially in limited-resource or low latency high throughput scenarios. One of the dominant approaches is knowledge distillation (KD), where a smaller model is trained by receiving guidance from a large PLM. While there are many successful designs for learning knowledge from teachers, it remains unclear how students can learn better. Inspired by real university teaching processes, in this work we further explore knowledge distillation and propose a very simple yet effective framework, SEAD, to further improve task-specific generalization by utilizing multiple teachers. Our experiments show that SEAD leads to better performance compared to other popular KD methods [[1](https://arxiv.org/abs/1910.01108)] [[2](https://arxiv.org/abs/1909.10351)] [[3](https://arxiv.org/abs/2002.10957)] and achieves comparable or superior performance to its teacher model such as BERT [[4](https://arxiv.org/abs/1810.04805)] on total 13 tasks for the GLUE [[5](https://arxiv.org/abs/1804.07461)] and SuperGLUE [[6](https://arxiv.org/abs/1905.00537)] benchmarks. *Moyan Mei and Rohit Sroch. 2022. [SEAD: Simple ensemble and knowledge distillation framework for natural language understanding](https://www.adasci.org/journals/lattice-35309407/?volumes=true&open=621a3b18edc4364e8a96cb63). Lattice, THE MACHINE LEARNING JOURNAL by Association of Data Scientists, 3(1).* ## SEAD-L-6_H-256_A-8-mnli This is a student model distilled from [**BERT base**](https://huggingface.co/bert-base-uncased) as teacher by using SEAD framework on **mnli** task. For weights initialization, we used [microsoft/xtremedistil-l6-h256-uncased](https://huggingface.co/microsoft/xtremedistil-l6-h256-uncased) ## All SEAD Checkpoints Other Community Checkpoints: [here](https://huggingface.co/models?search=SEAD) ## Intended uses & limitations More information needed ### Training hyperparameters Please take a look at the `training_args.bin` file ```python $ import torch $ hyperparameters = torch.load(os.path.join('training_args.bin')) ``` ### Evaluation results | eval_m-accuracy | eval_m-runtime | eval_m-samples_per_second | eval_m-steps_per_second | eval_m-loss | eval_m-samples | eval_mm-accuracy | eval_mm-runtime | eval_mm-samples_per_second | eval_mm-steps_per_second | eval_mm-loss | eval_mm-samples | |:---------------:|:--------------:|:-------------------------:|:-----------------------:|:-----------:|:--------------:|:----------------:|:---------------:|:--------------------------:|:------------------------:|:------------:|:---------------:| | 0.8277 | 6.4665 | 1517.828 | 47.476 | 0.6014 | 9815 | 0.8310 | 5.3528 | 1836.786 | 57.54 | 0.5724 | 9832 | ### Framework versions - Transformers >=4.8.0 - Pytorch >=1.6.0 - TensorFlow >=2.5.0 - Flax >=0.3.5 - Datasets >=1.10.2 - Tokenizers >=0.11.6 If you use these models, please cite the following paper: ``` @article{article, author={Mei, Moyan and Sroch, Rohit}, title={SEAD: Simple Ensemble and Knowledge Distillation Framework for Natural Language Understanding}, volume={3}, number={1}, journal={Lattice, The Machine Learning Journal by Association of Data Scientists}, day={26}, year={2022}, month={Feb}, url = {www.adasci.org/journals/lattice-35309407/?volumes=true&open=621a3b18edc4364e8a96cb63} } ```
EventMiner/xlm-roberta-large-en-pt-es-doc
7e3d9465fc56872f5857e77ba2cfa31cdecc9f13
2022-06-19T15:22:42.000Z
[ "pytorch", "xlm-roberta", "text-classification", "multilingual", "transformers", "news event detection", "document level", "EventMiner", "license:apache-2.0" ]
text-classification
false
EventMiner
null
EventMiner/xlm-roberta-large-en-pt-es-doc
9
null
transformers
12,687
--- language: multilingual tags: - news event detection - document level - EventMiner license: apache-2.0 --- # EventMiner EventMiner is designed for multilingual news event detection. The goal of news event detection is the automatic extraction of event details from news articles. This event extraction can be done at different levels: document, sentence and word ranging from coarse-granular information to fine-granular information. We submitted the best results based on EventMiner to [CASE 2021 shared task 1: *Multilingual Protest News Detection*](https://competitions.codalab.org/competitions/31247). Our approach won first place in English for the document level task while ranking within the top four solutions for other languages: Portuguese, Spanish, and Hindi. *EventMiner/xlm-roberta-large-en-pt-es-doc* is a xlm-roberta-large sequence classification model fine-tuned on English, Portuguese and Spanish document level data of the multilingual version of GLOCON gold standard dataset released with [CASE 2021](https://aclanthology.org/2021.case-1.11/). <br> Labels: - Label_0: News article does not contain information about a past or ongoing socio-political event - Label_1: News article contains information about a past or ongoing socio-political event More details about the training procedure are available with our [codebase](https://github.com/HHansi/EventMiner). # How to Use ## Load Model ```python from transformers import XLMRobertaTokenizer, XLMRobertaForSequenceClassification model_name = 'EventMiner/xlm-roberta-large-en-pt-es-doc' tokenizer = XLMRobertaTokenizer.from_pretrained(model_name) model = XLMRobertaForSequenceClassification.from_pretrained(model_name) ``` ## Classification ```python from transformers import pipeline classifier = pipeline("text-classification", model=model, tokenizer=tokenizer) classifier("Police arrested five more student leaders on Monday when implementing the strike call given by MSU students union as a mark of protest against the decision to introduce payment seats in first-year commerce programme.") ``` # Citation If you use this model, please consider citing the following paper. ``` @inproceedings{hettiarachchi-etal-2021-daai, title = "{DAAI} at {CASE} 2021 Task 1: Transformer-based Multilingual Socio-political and Crisis Event Detection", author = "Hettiarachchi, Hansi and Adedoyin-Olowe, Mariam and Bhogal, Jagdev and Gaber, Mohamed Medhat", booktitle = "Proceedings of the 4th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE 2021)", month = aug, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.case-1.16", doi = "10.18653/v1/2021.case-1.16", pages = "120--130", } ```
ghadeermobasher/BC5CDR-Chem-Modified-SciBERT-512
32ede9744bc23150a93ddd2264539f57aeb93143
2022-06-13T23:03:10.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/BC5CDR-Chem-Modified-SciBERT-512
9
null
transformers
12,688
Entry not found
Jerimee/autotrain-dontknowwhatImdoing-980432459
8ce64189b4e0eca357183a93bb7ba0ac42a55a24
2022-06-14T01:36:33.000Z
[ "pytorch", "bert", "text-classification", "en", "dataset:Jerimee/autotrain-data-dontknowwhatImdoing", "transformers", "autotrain", "co2_eq_emissions" ]
text-classification
false
Jerimee
null
Jerimee/autotrain-dontknowwhatImdoing-980432459
9
1
transformers
12,689
--- tags: autotrain language: en widget: - text: "Jerimee" example_title: "a weird human name" - text: "Curtastica" example_title: "a goblin name" - text: "Fatima" example_title: "a common human name" datasets: - Jerimee/autotrain-data-dontknowwhatImdoing co2_eq_emissions: 0.012147398577917884 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 980432459 - CO2 Emissions (in grams): 0.012147398577917884 ## Validation Metrics - Loss: 0.0469294898211956 - Accuracy: 0.9917355371900827 - Precision: 0.9936708860759493 - Recall: 0.9936708860759493 - AUC: 0.9990958408679927 - F1: 0.9936708860759493 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/Jerimee/autotrain-dontknowwhatImdoing-980432459 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("Jerimee/autotrain-dontknowwhatImdoing-980432459", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("Jerimee/autotrain-dontknowwhatImdoing-980432459", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
ghadeermobasher/BC5CDR-Chem-Original-SciBERT-384
f5cddc5ca3bc5a630e0e08602dd0865fa5ca1b71
2022-06-14T01:35:05.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/BC5CDR-Chem-Original-SciBERT-384
9
null
transformers
12,690
Entry not found
olivia371/finetuning-sentiment-model-3000-samples
02d4d1332d397984b05363471f3aed2968a6568c
2022-06-14T15:05:10.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
olivia371
null
olivia371/finetuning-sentiment-model-3000-samples
9
null
transformers
12,691
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.925 - name: F1 type: f1 value: 0.9253731343283581 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.2348 - Accuracy: 0.925 - F1: 0.9254 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
ghadeermobasher/BC5CDR-Chem-Original-PubMedBERT-512
0a5396ae4673ef2d9d181f18afdd49f0cbd68038
2022-06-15T11:35:31.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/BC5CDR-Chem-Original-PubMedBERT-512
9
null
transformers
12,692
Entry not found
cookpad/mt5-base-indonesia-recipe-query-generation_v2
b4ddb0fb466ed531a8af996314a22e8cadb8f782
2022-06-16T14:48:45.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
cookpad
null
cookpad/mt5-base-indonesia-recipe-query-generation_v2
9
null
transformers
12,693
Entry not found
EddieChen372/incoder-1B-finetuned-jest
3b5a09653641c0963b31fedca70e11a55f4dda7e
2022-06-26T17:44:58.000Z
[ "pytorch", "xglm", "text-generation", "transformers" ]
text-generation
false
EddieChen372
null
EddieChen372/incoder-1B-finetuned-jest
9
null
transformers
12,694
Entry not found
johntang/finetuning-sentiment-model-3000-samples
559451ae43523527ba4320593a675cb0296c317f
2022-07-13T14:02:11.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
johntang
null
johntang/finetuning-sentiment-model-3000-samples
9
null
transformers
12,695
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8766666666666667 - name: F1 type: f1 value: 0.8786885245901639 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3426 - Accuracy: 0.8767 - F1: 0.8787 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0 - Datasets 2.3.2 - Tokenizers 0.12.1
chandrasutrisnotjhong/distilbert-base-uncased-finetuned-imdb
ad4e869af8cb93253b3ebbed0a50b376743cb8dd
2022-06-20T04:59:03.000Z
[ "pytorch", "tensorboard", "distilbert", "fill-mask", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
chandrasutrisnotjhong
null
chandrasutrisnotjhong/distilbert-base-uncased-finetuned-imdb
9
null
transformers
12,696
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.4721 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7086 | 1.0 | 157 | 2.4897 | | 2.5796 | 2.0 | 314 | 2.4230 | | 2.5269 | 3.0 | 471 | 2.4354 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
theojolliffe/bart-cnn-science-v3-e2-v4-e2-manual
b28f8adb5c0e9b801440c91ac9dcb257cc0067ab
2022-06-18T18:01:15.000Z
[ "pytorch", "tensorboard", "bart", "text2text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
text2text-generation
false
theojolliffe
null
theojolliffe/bart-cnn-science-v3-e2-v4-e2-manual
9
null
transformers
12,697
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-cnn-science-v3-e2-v4-e2-manual results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-cnn-science-v3-e2-v4-e2-manual This model is a fine-tuned version of [theojolliffe/bart-cnn-science-v3-e2](https://huggingface.co/theojolliffe/bart-cnn-science-v3-e2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9189 - Rouge1: 55.982 - Rouge2: 36.9147 - Rougel: 39.1563 - Rougelsum: 53.5959 - Gen Len: 142.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 42 | 0.9365 | 53.4332 | 34.0477 | 36.9735 | 51.1918 | 142.0 | | No log | 2.0 | 84 | 0.9189 | 55.982 | 36.9147 | 39.1563 | 53.5959 | 142.0 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Onlydrinkwater/t5-small-de-en-mt
908bb3688db73af544531b64dad0135fe1a4cab1
2022-06-18T23:25:21.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Onlydrinkwater
null
Onlydrinkwater/t5-small-de-en-mt
9
null
transformers
12,698
Entry not found
amissier/distilbert-amazon-shoe-reviews
fc8bac23745a37e69b6837570ac84c3631436a11
2022-06-19T08:02:49.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
amissier
null
amissier/distilbert-amazon-shoe-reviews
9
null
transformers
12,699
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: distilbert-amazon-shoe-reviews results: - task: type: text-classification name: Text Classification dataset: type: amazon_us_reviews name: Amazon US reviews split: Shoes metrics: - type: accuracy value: 0.48 name: Accuracy --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-amazon-shoe-reviews This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3445 - Accuracy: 0.48 - F1: [0. 0. 0. 0. 0.64864865] - Precision: [0. 0. 0. 0. 0.48] - Recall: [0. 0. 0. 0. 1.] ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------------------------------------------------------:|:--------------------------:|:----------------:| | No log | 1.0 | 15 | 1.3445 | 0.48 | [0. 0. 0. 0. 0.64864865] | [0. 0. 0. 0. 0.48] | [0. 0. 0. 0. 1.] | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0 - Datasets 2.3.2 - Tokenizers 0.12.1