modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
list
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
tbosse/bert-base-german-cased-finetuned-subj_v4_5Epoch
85f2c775712cbba3e669e27e7acfb8c708f4310c
2022-04-07T18:32:00.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
tbosse
null
tbosse/bert-base-german-cased-finetuned-subj_v4_5Epoch
9
null
transformers
12,500
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-german-cased-finetuned-subj_v4_5Epoch results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-german-cased-finetuned-subj_v4_5Epoch This model is a fine-tuned version of [bert-base-german-cased](https://huggingface.co/bert-base-german-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3180 - Precision: 0.6640 - Recall: 0.5985 - F1: 0.6296 - Accuracy: 0.8761 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 32 | 0.4471 | 0.4951 | 0.1861 | 0.2706 | 0.8145 | | No log | 2.0 | 64 | 0.3823 | 0.6096 | 0.4161 | 0.4946 | 0.8472 | | No log | 3.0 | 96 | 0.3428 | 0.6744 | 0.5292 | 0.5930 | 0.8698 | | No log | 4.0 | 128 | 0.3216 | 0.6571 | 0.5876 | 0.6204 | 0.8730 | | No log | 5.0 | 160 | 0.3180 | 0.6640 | 0.5985 | 0.6296 | 0.8761 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
Damith/AraELECTRA-discriminator-QuranQA
8ebe071858657a6bd69924908ce0ede3c888fcec
2022-04-08T11:22:10.000Z
[ "pytorch", "electra", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
Damith
null
Damith/AraELECTRA-discriminator-QuranQA
9
null
transformers
12,501
Entry not found
Sleoruiz/roberta-base-bne-finetuned-cola
d057e78a45a4b52ddc3d5fb6fad5685c160c1504
2022-04-12T10:53:47.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "transformers" ]
text-classification
false
Sleoruiz
null
Sleoruiz/roberta-base-bne-finetuned-cola
9
null
transformers
12,502
Entry not found
shniranjan/wav2vec2-large-xlsr-1b-nepali
7ffa019eefb4ffd5dab72e13262c9f665f64a205
2022-04-13T01:48:13.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "ne", "transformers", "speech-to-text" ]
automatic-speech-recognition
false
shniranjan
null
shniranjan/wav2vec2-large-xlsr-1b-nepali
9
null
transformers
12,503
## Usage The model can be used directly (without a language model) as follows: --- language: - ne tags: - speech-to-text --- ```python import soundfile as sf import torch from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import argparse def parse_transcription(wav_file): # load pretrained model processor = Wav2Vec2Processor.from_pretrained("shniranjan/wav2vec2-large-xlsr-1b-nepali") model = Wav2Vec2ForCTC.from_pretrained("shniranjan/wav2vec2-large-xlsr-1b-nepali") # load audio audio_input, sample_rate = sf.read(wav_file) # pad input values and return pt tensor input_values = processor(audio_input, sampling_rate=sample_rate, return_tensors="pt").input_values # INFERENCE # retrieve logits & take argmax logits = model(input_values).logits predicted_ids = torch.argmax(logits, dim=-1) # transcribe transcription = processor.decode(predicted_ids[0], skip_special_tokens=True) print(transcription) ```
raquiba/finetuning-sentiment-model-3000-samples
937cb7d4ec33e3d8ff11a77c8fef4328f6342418
2022-04-11T05:05:28.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
raquiba
null
raquiba/finetuning-sentiment-model-3000-samples
9
null
transformers
12,504
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8633333333333333 - name: F1 type: f1 value: 0.8690095846645367 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3242 - Accuracy: 0.8633 - F1: 0.8690 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
gk07/wikineural-multilingual-ner
d8c2a681a08bad3594193e0588f2ef7da1f11e9c
2022-04-11T14:20:06.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
gk07
null
gk07/wikineural-multilingual-ner
9
null
transformers
12,505
Entry not found
silpa/wikineural-multilingual-ner
1d04244d73e9bce0ae6e76a777c614529cf05d9b
2022-04-11T18:18:02.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
silpa
null
silpa/wikineural-multilingual-ner
9
null
transformers
12,506
Entry not found
nielsr/segformer-test-v7
75a953953155242049b47af5983a1aa3b77f092c
2022-04-11T18:04:13.000Z
[ "pytorch", "segformer", "dataset:segments/sidewalk-semantic", "transformers", "vision", "image-segmentation", "license:apache-2.0" ]
image-segmentation
false
nielsr
null
nielsr/segformer-test-v7
9
null
transformers
12,507
--- license: apache-2.0 tags: - vision - image-segmentation datasets: - segments/sidewalk-semantic widget: - src: https://segmentsai-prod.s3.eu-west-2.amazonaws.com/assets/admin-tobias/439f6843-80c5-47ce-9b17-0b2a1d54dbeb.jpg example_title: Brugge ---
microsoft/reacc-py-retriever
de6f2dd28daea74432154cb14d78859e4bda6198
2022-04-12T08:03:10.000Z
[ "pytorch", "roberta", "feature-extraction", "arxiv:2203.07722", "transformers", "license:mit" ]
feature-extraction
false
microsoft
null
microsoft/reacc-py-retriever
9
2
transformers
12,508
--- license: mit --- # ReACC-py-retriever This is the retrieval model for [ReACC: A Retrieval-Augmented Code Completion Framework](https://arxiv.org/abs/2203.07722). In this paper, the model is used to retrieve similar codes given an incompletion code snippet as query. The model can be also used for incomplete code-to-code search, code clone detection. `py-retriever` is BERT-like encoder consisting of 12 transformer layers. It is continual pre-trained on [GraphCodeBERT](https://huggingface.co/microsoft/graphcodebert-base) with contrastive learning in Python programming language. More details can be found in our paper. Note that the format of input codes is different from original source code. We normalize the source codes to better capture information from line break and indention in Python. An example of input is: ```python sum = 0<endofline>for val in numbers:<endofline><INDENT>sum = sum+val ``` To get more information about how to convert source codes into this format, please refer to [ReACC GitHub repo](https://github.com/microsoft/ReACC).
BigSalmon/GPT2Neo1.3BPoints3
69c3e44c0af16b5ea36cb5aa6cb9940f26574c52
2022-04-12T19:21:58.000Z
[ "pytorch", "gpt_neo", "text-generation", "transformers" ]
text-generation
false
BigSalmon
null
BigSalmon/GPT2Neo1.3BPoints3
9
null
transformers
12,509
``` from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("BigSalmon/GPT2Neo1.3BPoints3") model = AutoModelForCausalLM.from_pretrained("BigSalmon/GPT2Neo1.3BPoints3") ``` ``` - moviepass to return - this summer - swooped up by - original co-founder stacy spikes text: the re-launch of moviepass is set to transpire this summer, ( rescued at the hands of / under the stewardship of / spearheaded by ) its founding father, stacy spikes. *** - middle schools do not have recess - should get back to doing it - amazing for communication - and getting kids to move around text: a casualty of the education reform craze, recess has been excised from middle schools. this is tragic, for it is instrumental in honing children's communication skills and encouraging physical activity. *** - ``` ``` How To Make Prompt: informal english: i am very ready to do that just that. Translated into the Style of Abraham Lincoln: you can assure yourself of my readiness to work toward this end. Translated into the Style of Abraham Lincoln: please be assured that i am most ready to undertake this laborious task. *** informal english: space is huge and needs to be explored. Translated into the Style of Abraham Lincoln: space awaits traversal, a new world whose boundaries are endless. Translated into the Style of Abraham Lincoln: space is a ( limitless / boundless ) expanse, a vast virgin domain awaiting exploration. *** informal english: corn fields are all across illinois, visible once you leave chicago. Translated into the Style of Abraham Lincoln: corn fields ( permeate illinois / span the state of illinois / ( occupy / persist in ) all corners of illinois / line the horizon of illinois / envelop the landscape of illinois ), manifesting themselves visibly as one ventures beyond chicago. informal english: ``` ``` infill: chrome extensions [MASK] accomplish everyday tasks. Translated into the Style of Abraham Lincoln: chrome extensions ( expedite the ability to / unlock the means to more readily ) accomplish everyday tasks. infill: at a time when nintendo has become inflexible, [MASK] consoles that are tethered to a fixed iteration, sega diligently curates its legacy of classic video games on handheld devices. Translated into the Style of Abraham Lincoln: at a time when nintendo has become inflexible, ( stubbornly [MASK] on / firmly set on / unyielding in its insistence on ) consoles that are tethered to a fixed iteration, sega diligently curates its legacy of classic video games on handheld devices. infill: ``` ``` Essay Intro (Warriors vs. Rockets in Game 7): text: eagerly anticipated by fans, game 7's are the highlight of the post-season. text: ever-building in suspense, game 7's have the crowd captivated. *** Essay Intro (South Korean TV Is Becoming Popular): text: maturing into a bona fide paragon of programming, south korean television ( has much to offer / entertains without fail / never disappoints ). text: increasingly held in critical esteem, south korean television continues to impress. text: at the forefront of quality content, south korea is quickly achieving celebrity status. *** Essay Intro ( ``` ``` Search: What is the definition of Checks and Balances? https://en.wikipedia.org/wiki/Checks_and_balances Checks and Balances is the idea of having a system where each and every action in government should be subject to one or more checks that would not allow one branch or the other to overly dominate. https://www.harvard.edu/glossary/Checks_and_Balances Checks and Balances is a system that allows each branch of government to limit the powers of the other branches in order to prevent abuse of power https://www.law.cornell.edu/library/constitution/Checks_and_Balances Checks and Balances is a system of separation through which branches of government can control the other, thus preventing excess power. *** Search: What is the definition of Separation of Powers? https://en.wikipedia.org/wiki/Separation_of_powers The separation of powers is a principle in government, whereby governmental powers are separated into different branches, each with their own set of powers, that are prevent one branch from aggregating too much power. https://www.yale.edu/tcf/Separation_of_Powers.html Separation of Powers is the division of governmental functions between the executive, legislative and judicial branches, clearly demarcating each branch's authority, in the interest of ensuring that individual liberty or security is not undermined. *** Search: What is the definition of Connection of Powers? https://en.wikipedia.org/wiki/Connection_of_powers Connection of Powers is a feature of some parliamentary forms of government where different branches of government are intermingled, typically the executive and legislative branches. https://simple.wikipedia.org/wiki/Connection_of_powers The term Connection of Powers describes a system of government in which there is overlap between different parts of the government. *** Search: What is the definition of ``` ``` Search: What are phrase synonyms for "second-guess"? https://www.powerthesaurus.org/second-guess/synonyms Shortest to Longest: - feel dubious about - raise an eyebrow at - wrinkle their noses at - cast a jaundiced eye at - teeter on the fence about *** Search: What are phrase synonyms for "mean to newbies"? https://www.powerthesaurus.org/mean_to_newbies/synonyms Shortest to Longest: - readiness to balk at rookies - absence of tolerance for novices - hostile attitude toward newcomers *** Search: What are phrase synonyms for "make use of"? https://www.powerthesaurus.org/make_use_of/synonyms Shortest to Longest: - call upon - glean value from - reap benefits from - derive utility from - seize on the merits of - draw on the strength of - tap into the potential of *** Search: What are phrase synonyms for "hurting itself"? https://www.powerthesaurus.org/hurting_itself/synonyms Shortest to Longest: - erring - slighting itself - forfeiting its integrity - doing itself a disservice - evincing a lack of backbone *** Search: What are phrase synonyms for " ``` ``` - declining viewership facing the nba. - does not have to be this way. - in fact, many solutions exist. - the four point line would surely draw in eyes. text: failing to draw in the masses, the nba has ( fallen into / succumb to / bowed to ) disrepair. such does not have to be the case, however. in fact, a myriad of simple, relatively cheap ( solutions / interventions / enhancements ) could revive the league. the addition of the much-hyped four-point line would surely juice viewership. *** - ``` ``` original: sports teams are profitable for owners. [MASK], their valuations experience a dramatic uptick. infill: sports teams are profitable for owners. ( accumulating vast sums / stockpiling treasure / realizing benefits / cashing in / registering robust financials / scoring on balance sheets ), their valuations experience a dramatic uptick. *** original: ``` ``` wordy: classical music is becoming less popular more and more. Translate into Concise Text: interest in classic music is fading. *** wordy: ``` ``` sweet: savvy voters ousted him. longer: voters who were informed delivered his defeat. *** sweet: ``` ``` 1: commercial space company spacex plans to launch a whopping 52 flights in 2022. 2: spacex, a commercial space company, intends to undertake a total of 52 flights in 2022. 3: in 2022, commercial space company spacex has its sights set on undertaking 52 flights. 4: 52 flights are in the pipeline for 2022, according to spacex, a commercial space company. 5: a commercial space company, spacex aims to conduct 52 flights in 2022. *** 1: ``` Keywords to sentences or sentence.
lucaordronneau/twitter-roberta-base-sentiment-latest-finetuned-FG-SINGLE_SENTENCE-NEWS
8a58a103a7098c8bce92b8e55081afc91c1e6d6c
2022-05-03T11:29:22.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
lucaordronneau
null
lucaordronneau/twitter-roberta-base-sentiment-latest-finetuned-FG-SINGLE_SENTENCE-NEWS
9
null
transformers
12,510
--- tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: twitter-roberta-base-sentiment-latest-finetuned-FG-SINGLE_SENTENCE-NEWS results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # twitter-roberta-base-sentiment-latest-finetuned-FG-SINGLE_SENTENCE-NEWS This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-sentiment-latest](https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment-latest) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.2822 - Accuracy: 0.6305 - F1: 0.6250 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 321 | 0.9646 | 0.5624 | 0.4048 | | 0.9537 | 2.0 | 642 | 0.9474 | 0.5644 | 0.4176 | | 0.9537 | 3.0 | 963 | 0.9008 | 0.5903 | 0.5240 | | 0.858 | 4.0 | 1284 | 0.9939 | 0.5999 | 0.5846 | | 0.5908 | 5.0 | 1605 | 1.0947 | 0.6108 | 0.6026 | | 0.5908 | 6.0 | 1926 | 1.2507 | 0.5740 | 0.5823 | | 0.3676 | 7.0 | 2247 | 1.4717 | 0.6128 | 0.6017 | | 0.2246 | 8.0 | 2568 | 1.6726 | 0.5965 | 0.6003 | | 0.2246 | 9.0 | 2889 | 1.8041 | 0.6380 | 0.6298 | | 0.1468 | 10.0 | 3210 | 1.9796 | 0.6053 | 0.6026 | | 0.1161 | 11.0 | 3531 | 2.0988 | 0.6237 | 0.6202 | | 0.1161 | 12.0 | 3852 | 2.4171 | 0.5944 | 0.5989 | | 0.0916 | 13.0 | 4173 | 2.3326 | 0.6374 | 0.6288 | | 0.0916 | 14.0 | 4494 | 2.5472 | 0.6360 | 0.6245 | | 0.0661 | 15.0 | 4815 | 2.9127 | 0.6176 | 0.6187 | | 0.0454 | 16.0 | 5136 | 2.9133 | 0.6326 | 0.6276 | | 0.0454 | 17.0 | 5457 | 3.1299 | 0.6210 | 0.6162 | | 0.0337 | 18.0 | 5778 | 3.1828 | 0.6224 | 0.6188 | | 0.0223 | 19.0 | 6099 | 3.2655 | 0.6299 | 0.6223 | | 0.0223 | 20.0 | 6420 | 3.2822 | 0.6305 | 0.6250 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.9.1 - Datasets 1.18.4 - Tokenizers 0.11.6
maretamasaeva/thesis-freeform-yesno
e19347b582c491a37563a72f6d24b41f8bfaf7e4
2022-04-22T12:14:20.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
maretamasaeva
null
maretamasaeva/thesis-freeform-yesno
9
null
transformers
12,511
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: thesis-freeform-yesno results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # thesis-freeform-yesno This model is a fine-tuned version of [maretamasaeva/thesis-freeform](https://huggingface.co/maretamasaeva/thesis-freeform) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.4547 - Accuracy: 0.0194 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 2.5001 | 1.0 | 9052 | 2.4600 | 0.0194 | | 2.4921 | 2.0 | 18104 | 2.4595 | 0.0194 | | 2.4879 | 3.0 | 27156 | 2.4576 | 0.0194 | | 2.4793 | 4.0 | 36208 | 2.4547 | 0.0194 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
Helsinki-NLP/opus-mt-tc-big-ces_slk-en
45416949bc1778108950f304dff42159b5630737
2022-06-01T12:58:39.000Z
[ "pytorch", "marian", "text2text-generation", "cs", "en", "sk", "transformers", "translation", "opus-mt-tc", "license:cc-by-4.0", "model-index", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-tc-big-ces_slk-en
9
null
transformers
12,512
--- language: - cs - en - sk tags: - translation - opus-mt-tc license: cc-by-4.0 model-index: - name: opus-mt-tc-big-ces_slk-en results: - task: name: Translation ces-eng type: translation args: ces-eng dataset: name: flores101-devtest type: flores_101 args: ces eng devtest metrics: - name: BLEU type: bleu value: 41.2 - task: name: Translation slk-eng type: translation args: slk-eng dataset: name: flores101-devtest type: flores_101 args: slk eng devtest metrics: - name: BLEU type: bleu value: 40.1 - task: name: Translation ces-eng type: translation args: ces-eng dataset: name: multi30k_test_2016_flickr type: multi30k-2016_flickr args: ces-eng metrics: - name: BLEU type: bleu value: 38.6 - task: name: Translation ces-eng type: translation args: ces-eng dataset: name: multi30k_test_2018_flickr type: multi30k-2018_flickr args: ces-eng metrics: - name: BLEU type: bleu value: 37.9 - task: name: Translation ces-eng type: translation args: ces-eng dataset: name: news-test2008 type: news-test2008 args: ces-eng metrics: - name: BLEU type: bleu value: 26.2 - task: name: Translation ces-eng type: translation args: ces-eng dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: ces-eng metrics: - name: BLEU type: bleu value: 57.7 - task: name: Translation ces-eng type: translation args: ces-eng dataset: name: newstest2009 type: wmt-2009-news args: ces-eng metrics: - name: BLEU type: bleu value: 28.8 - task: name: Translation ces-eng type: translation args: ces-eng dataset: name: newstest2010 type: wmt-2010-news args: ces-eng metrics: - name: BLEU type: bleu value: 30.3 - task: name: Translation ces-eng type: translation args: ces-eng dataset: name: newstest2011 type: wmt-2011-news args: ces-eng metrics: - name: BLEU type: bleu value: 30.3 - task: name: Translation ces-eng type: translation args: ces-eng dataset: name: newstest2012 type: wmt-2012-news args: ces-eng metrics: - name: BLEU type: bleu value: 29.4 - task: name: Translation ces-eng type: translation args: ces-eng dataset: name: newstest2013 type: wmt-2013-news args: ces-eng metrics: - name: BLEU type: bleu value: 33.1 - task: name: Translation ces-eng type: translation args: ces-eng dataset: name: newstest2014 type: wmt-2014-news args: ces-eng metrics: - name: BLEU type: bleu value: 38.3 - task: name: Translation ces-eng type: translation args: ces-eng dataset: name: newstest2015 type: wmt-2015-news args: ces-eng metrics: - name: BLEU type: bleu value: 33.6 - task: name: Translation ces-eng type: translation args: ces-eng dataset: name: newstest2016 type: wmt-2016-news args: ces-eng metrics: - name: BLEU type: bleu value: 36.8 - task: name: Translation ces-eng type: translation args: ces-eng dataset: name: newstest2017 type: wmt-2017-news args: ces-eng metrics: - name: BLEU type: bleu value: 32.3 - task: name: Translation ces-eng type: translation args: ces-eng dataset: name: newstest2018 type: wmt-2018-news args: ces-eng metrics: - name: BLEU type: bleu value: 33.0 --- # opus-mt-tc-big-ces_slk-en Neural machine translation model for translating from Czech and Slovak (ces+slk) to English (en). This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train). * Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.) ``` @inproceedings{tiedemann-thottingal-2020-opus, title = "{OPUS}-{MT} {--} Building open translation services for the World", author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh}, booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation", month = nov, year = "2020", address = "Lisboa, Portugal", publisher = "European Association for Machine Translation", url = "https://aclanthology.org/2020.eamt-1.61", pages = "479--480", } @inproceedings{tiedemann-2020-tatoeba, title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}", author = {Tiedemann, J{\"o}rg}, booktitle = "Proceedings of the Fifth Conference on Machine Translation", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.wmt-1.139", pages = "1174--1182", } ``` ## Model info * Release: 2022-03-17 * source language(s): ces * target language(s): eng * model: transformer-big * data: opusTCv20210807+bt ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge)) * tokenization: SentencePiece (spm32k,spm32k) * original model: [opusTCv20210807+bt_transformer-big_2022-03-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/ces+slk-eng/opusTCv20210807+bt_transformer-big_2022-03-17.zip) * more information released models: [OPUS-MT ces+slk-eng README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ces+slk-eng/README.md) ## Usage A short example code: ```python from transformers import MarianMTModel, MarianTokenizer src_text = [ "Podívej se na své kalhoty! Zapni si je na zip.", "Mrzí mě, že Tom odchází." ] model_name = "pytorch-models/opus-mt-tc-big-ces_slk-en" tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) for t in translated: print( tokenizer.decode(t, skip_special_tokens=True) ) # expected output: # Look at your pants, zip them up. # I'm sorry Tom's leaving. ``` You can also use OPUS-MT models with the transformers pipelines, for example: ```python from transformers import pipeline pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-ces_slk-en") print(pipe("Podívej se na své kalhoty! Zapni si je na zip.")) # expected output: Look at your pants, zip them up. ``` ## Benchmarks * test set translations: [opusTCv20210807+bt_transformer-big_2022-03-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ces+slk-eng/opusTCv20210807+bt_transformer-big_2022-03-17.test.txt) * test set scores: [opusTCv20210807+bt_transformer-big_2022-03-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ces+slk-eng/opusTCv20210807+bt_transformer-big_2022-03-17.eval.txt) * benchmark results: [benchmark_results.txt](benchmark_results.txt) * benchmark output: [benchmark_translations.zip](benchmark_translations.zip) | langpair | testset | chr-F | BLEU | #sent | #words | |----------|---------|-------|-------|-------|--------| | ces-eng | tatoeba-test-v2021-08-07 | 0.72120 | 57.7 | 13824 | 105010 | | ces-eng | flores101-devtest | 0.66511 | 41.2 | 1012 | 24721 | | slk-eng | flores101-devtest | 0.66084 | 40.1 | 1012 | 24721 | | ces-eng | multi30k_test_2016_flickr | 0.62216 | 38.6 | 1000 | 12955 | | ces-eng | multi30k_test_2018_flickr | 0.61838 | 37.9 | 1071 | 14689 | | ces-eng | newssyscomb2009 | 0.56380 | 29.9 | 502 | 11818 | | ces-eng | news-test2008 | 0.54071 | 26.2 | 2051 | 49380 | | ces-eng | newstest2009 | 0.55871 | 28.8 | 2525 | 65399 | | ces-eng | newstest2010 | 0.57634 | 30.3 | 2489 | 61711 | | ces-eng | newstest2011 | 0.57002 | 30.3 | 3003 | 74681 | | ces-eng | newstest2012 | 0.56564 | 29.4 | 3003 | 72812 | | ces-eng | newstest2013 | 0.58723 | 33.1 | 3000 | 64505 | | ces-eng | newstest2014 | 0.64192 | 38.3 | 3003 | 68065 | | ces-eng | newstest2015 | 0.58688 | 33.6 | 2656 | 53569 | | ces-eng | newstest2016 | 0.61544 | 36.8 | 2999 | 64670 | | ces-eng | newstest2017 | 0.58085 | 32.3 | 3005 | 61721 | | ces-eng | newstest2018 | 0.58627 | 33.0 | 2983 | 63495 | ## Acknowledgements The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland. ## Model conversion info * transformers version: 4.16.2 * OPUS-MT git hash: 3405783 * port time: Wed Apr 13 18:42:25 EEST 2022 * port machine: LM0-400-22516.local
caotianyu1996/bert_finetuned_ner
f5d5d65fad803915a7580e4896dbd079b13a32b4
2022-04-14T06:51:31.000Z
[ "pytorch", "tf", "bert", "token-classification", "transformers", "generated_from_keras_callback", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
caotianyu1996
null
caotianyu1996/bert_finetuned_ner
9
null
transformers
12,513
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: caotianyu1996/bert_finetuned_ner results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # caotianyu1996/bert_finetuned_ner This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0247 - Validation Loss: 0.0593 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1017, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.1275 | 0.0574 | 0 | | 0.0414 | 0.0569 | 1 | | 0.0247 | 0.0593 | 2 | ### Framework versions - Transformers 4.18.0 - TensorFlow 2.8.0 - Datasets 2.0.0 - Tokenizers 0.12.1
Raychanan/bert-base-chinese-first512
a5f110b6b0c80e0518fc065d8eac42a0ae201bfe
2022-04-15T02:50:33.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Raychanan
null
Raychanan/bert-base-chinese-first512
9
null
transformers
12,514
first 512 training_args = TrainingArguments( output_dir="./results", learning_rate=5e-5, per_device_train_batch_size=16, per_device_eval_batch_size=16, num_train_epochs=5, weight_decay=0.01, evaluation_strategy="epoch", push_to_hub=True )
MartinoMensio/racism-models-w-m-vote-strict-epoch-1
77a98c18c09c0a9e38c28bc3604f66acedfd7c1d
2022-05-04T16:24:13.000Z
[ "pytorch", "bert", "text-classification", "es", "transformers", "license:mit" ]
text-classification
false
MartinoMensio
null
MartinoMensio/racism-models-w-m-vote-strict-epoch-1
9
null
transformers
12,515
--- language: es license: mit widget: - text: "y porqué es lo que hay que hacer con los menas y con los adultos también!!!! NO a los inmigrantes ilegales!!!!" --- ### Description This model is a fine-tuned version of [BETO (spanish bert)](https://huggingface.co/dccuchile/bert-base-spanish-wwm-uncased) that has been trained on the *Datathon Against Racism* dataset (2022) We performed several experiments that will be described in the upcoming paper "Estimating Ground Truth in a Low-labelled Data Regime:A Study of Racism Detection in Spanish" (NEATClasS 2022) We applied 6 different methods ground-truth estimations, and for each one we performed 4 epochs of fine-tuning. The result is made of 24 models: | method | epoch 1 | epoch 3 | epoch 3 | epoch 4 | |--- |--- |--- |--- |--- | | raw-label | [raw-label-epoch-1](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-1) | [raw-label-epoch-2](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-2) | [raw-label-epoch-3](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-3) | [raw-label-epoch-4](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-4) | | m-vote-strict | [m-vote-strict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-1) | [m-vote-strict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-2) | [m-vote-strict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-3) | [m-vote-strict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-4) | | m-vote-nonstrict | [m-vote-nonstrict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-1) | [m-vote-nonstrict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-2) | [m-vote-nonstrict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-3) | [m-vote-nonstrict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-4) | | regression-w-m-vote | [regression-w-m-vote-epoch-1](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-1) | [regression-w-m-vote-epoch-2](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-2) | [regression-w-m-vote-epoch-3](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-3) | [regression-w-m-vote-epoch-4](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-4) | | w-m-vote-strict | [w-m-vote-strict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-1) | [w-m-vote-strict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-2) | [w-m-vote-strict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-3) | [w-m-vote-strict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-4) | | w-m-vote-nonstrict | [w-m-vote-nonstrict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-1) | [w-m-vote-nonstrict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-2) | [w-m-vote-nonstrict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-3) | [w-m-vote-nonstrict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-4) | This model is `w-m-vote-strict-epoch-1` ### Usage ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline model_name = 'w-m-vote-strict-epoch-1' tokenizer = AutoTokenizer.from_pretrained("dccuchile/bert-base-spanish-wwm-uncased") full_model_path = f'MartinoMensio/racism-models-{model_name}' model = AutoModelForSequenceClassification.from_pretrained(full_model_path) pipe = pipeline("text-classification", model = model, tokenizer = tokenizer) texts = [ 'y porqué es lo que hay que hacer con los menas y con los adultos también!!!! NO a los inmigrantes ilegales!!!!', 'Es que los judíos controlan el mundo' ] print(pipe(texts)) # [{'label': 'racist', 'score': 0.9342454075813293}, {'label': 'non-racist', 'score': 0.7690662741661072}] ``` For more details, see https://github.com/preyero/neatclass22
MartinoMensio/racism-models-w-m-vote-strict-epoch-4
01e5904ed76a49e34ef6f432a4ef46bc1e430f28
2022-05-04T16:26:42.000Z
[ "pytorch", "bert", "text-classification", "es", "transformers", "license:mit" ]
text-classification
false
MartinoMensio
null
MartinoMensio/racism-models-w-m-vote-strict-epoch-4
9
null
transformers
12,516
--- language: es license: mit widget: - text: "y porqué es lo que hay que hacer con los menas y con los adultos también!!!! NO a los inmigrantes ilegales!!!!" --- ### Description This model is a fine-tuned version of [BETO (spanish bert)](https://huggingface.co/dccuchile/bert-base-spanish-wwm-uncased) that has been trained on the *Datathon Against Racism* dataset (2022) We performed several experiments that will be described in the upcoming paper "Estimating Ground Truth in a Low-labelled Data Regime:A Study of Racism Detection in Spanish" (NEATClasS 2022) We applied 6 different methods ground-truth estimations, and for each one we performed 4 epochs of fine-tuning. The result is made of 24 models: | method | epoch 1 | epoch 3 | epoch 3 | epoch 4 | |--- |--- |--- |--- |--- | | raw-label | [raw-label-epoch-1](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-1) | [raw-label-epoch-2](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-2) | [raw-label-epoch-3](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-3) | [raw-label-epoch-4](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-4) | | m-vote-strict | [m-vote-strict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-1) | [m-vote-strict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-2) | [m-vote-strict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-3) | [m-vote-strict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-4) | | m-vote-nonstrict | [m-vote-nonstrict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-1) | [m-vote-nonstrict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-2) | [m-vote-nonstrict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-3) | [m-vote-nonstrict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-4) | | regression-w-m-vote | [regression-w-m-vote-epoch-1](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-1) | [regression-w-m-vote-epoch-2](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-2) | [regression-w-m-vote-epoch-3](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-3) | [regression-w-m-vote-epoch-4](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-4) | | w-m-vote-strict | [w-m-vote-strict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-1) | [w-m-vote-strict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-2) | [w-m-vote-strict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-3) | [w-m-vote-strict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-4) | | w-m-vote-nonstrict | [w-m-vote-nonstrict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-1) | [w-m-vote-nonstrict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-2) | [w-m-vote-nonstrict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-3) | [w-m-vote-nonstrict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-4) | This model is `w-m-vote-strict-epoch-4` ### Usage ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline model_name = 'w-m-vote-strict-epoch-4' tokenizer = AutoTokenizer.from_pretrained("dccuchile/bert-base-spanish-wwm-uncased") full_model_path = f'MartinoMensio/racism-models-{model_name}' model = AutoModelForSequenceClassification.from_pretrained(full_model_path) pipe = pipeline("text-classification", model = model, tokenizer = tokenizer) texts = [ 'y porqué es lo que hay que hacer con los menas y con los adultos también!!!! NO a los inmigrantes ilegales!!!!', 'Es que los judíos controlan el mundo' ] print(pipe(texts)) # [{'label': 'racist', 'score': 0.9834708571434021}, {'label': 'non-racist', 'score': 0.995682954788208}] ``` For more details, see https://github.com/preyero/neatclass22
jason9693/koelectra-base-v3-discriminator-apeach
890a73095ea8edf183f211239e30ef5b8928db18
2022-04-16T14:21:01.000Z
[ "pytorch", "electra", "text-classification", "ko", "dataset:jason9693/APEACH", "transformers" ]
text-classification
false
jason9693
null
jason9693/koelectra-base-v3-discriminator-apeach
9
null
transformers
12,517
--- language: ko widget: - text: "응 어쩔티비~~" datasets: - jason9693/APEACH ---
rmihaylov/bert-base-bg
985c9aa785a4573f7d7915f49c0a3a6ff911a110
2022-04-17T05:15:10.000Z
[ "pytorch", "bert", "fill-mask", "bg", "dataset:oscar", "dataset:chitanka", "dataset:wikipedia", "arxiv:1810.04805", "arxiv:1905.07213", "transformers", "torch", "license:mit", "autotrain_compatible" ]
fill-mask
false
rmihaylov
null
rmihaylov/bert-base-bg
9
null
transformers
12,518
--- inference: false language: - bg license: mit datasets: - oscar - chitanka - wikipedia tags: - torch --- # BERT BASE (cased) Pretrained model on Bulgarian language using a masked language modeling (MLM) objective. It was introduced in [this paper](https://arxiv.org/abs/1810.04805) and first released in [this repository](https://github.com/google-research/bert). This model is cased: it does make a difference between bulgarian and Bulgarian. ## Model description The model was trained similarly to [RuBert](https://arxiv.org/pdf/1905.07213.pdf) wherein the Multilingual Bert was adapted for the Russian language. The training data was Bulgarian text from [OSCAR](https://oscar-corpus.com/post/oscar-2019/), [Chitanka](https://chitanka.info/) and [Wikipedia](https://bg.wikipedia.org/). ### How to use Here is how to use this model in PyTorch: ```python >>> from transformers import pipeline >>> >>> model = pipeline( >>> 'fill-mask', >>> model='rmihaylov/bert-base-bg', >>> tokenizer='rmihaylov/bert-base-bg', >>> device=0, >>> revision=None) >>> output = model("София е [MASK] на България.") >>> print(output) [{'score': 0.12665307521820068, 'sequence': 'София е столица на България.', 'token': 2659, 'token_str': 'столица'}, {'score': 0.07470757514238358, 'sequence': 'София е Перлата на България.', 'token': 102146, 'token_str': 'Перлата'}, {'score': 0.06786204129457474, 'sequence': 'София е Столицата на България.', 'token': 45495, 'token_str': 'Столицата'}, {'score': 0.05533991754055023, 'sequence': 'София е Столица на България.', 'token': 100524, 'token_str': 'Столица'}, {'score': 0.05485989898443222, 'sequence': 'София е столицата на България.', 'token': 2294, 'token_str': 'столицата'}] ```
ttwj-sutd/finetuning-sentiment-model-3000-samples-5pm
b0a0445d7f4a499d0a20d456935760403bc3a9a7
2022-04-17T09:11:22.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
ttwj-sutd
null
ttwj-sutd/finetuning-sentiment-model-3000-samples-5pm
9
null
transformers
12,519
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy model-index: - name: finetuning-sentiment-model-3000-samples-5pm results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.88 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples-5pm This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.4325 - Accuracy: 0.88 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 188 | 0.3858 | 0.84 | | No log | 2.0 | 376 | 0.3146 | 0.8833 | | 0.2573 | 3.0 | 564 | 0.3938 | 0.8833 | | 0.2573 | 4.0 | 752 | 0.4325 | 0.88 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
varinner/jaredbotmark1point5
5b6bdfd9db53ea8d6955d3e658fd7fd0a7887335
2022-04-17T11:13:08.000Z
[ "pytorch", "gpt2", "text-generation", "en", "dataset:basement", "transformers", "conversational" ]
conversational
false
varinner
null
varinner/jaredbotmark1point5
9
null
transformers
12,520
dont worry about it --- language: - en tags: - conversational datasets: - basement ---
Sarmila/layoutlmv2-finetuned-funsd-test
e3d27fb0c1243482765059f17d7b094882fb3c12
2022-04-19T09:26:04.000Z
[ "pytorch", "tensorboard", "layoutlmv2", "transformers" ]
null
false
Sarmila
null
Sarmila/layoutlmv2-finetuned-funsd-test
9
null
transformers
12,521
Entry not found
tuhailong/cross_encoder_electra-180g-large-discriminator
94093faaf7d589b223bf67d43e0bf6ec00cc6594
2022-04-20T02:40:23.000Z
[ "pytorch", "electra", "text-classification", "zh", "dataset:dialogue", "transformers", "cross-encoder" ]
text-classification
false
tuhailong
null
tuhailong/cross_encoder_electra-180g-large-discriminator
9
null
transformers
12,522
--- language: zh tags: - cross-encoder datasets: - dialogue --- # Data train data is similarity sentence data from E-commerce dialogue, about 50w sentence pairs. ## Model model created by [sentence-tansformers](https://www.sbert.net/index.html),model struct is cross-encoder,pretrained model is hfl/chinese-electra-180g-large-discriminator. ### Usage ```python >>> from sentence_transformers.cross_encoder import CrossEncoder >>> model = CrossEncoder(model_save_path, device="cuda", max_length=64) >>> sentences = ["今天天气不错", "今天心情不错"] >>> score = model.predict([sentences]) >>> print(score[0]) ``` #### Code train code from https://github.com/TTurn/cross-encoder
domenicrosati/t5-finetuned-parasci
2370d10ec37aa30704c349dfaf21e4f71b765d87
2022-04-24T14:51:43.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "summarization", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
summarization
false
domenicrosati
null
domenicrosati/t5-finetuned-parasci
9
1
transformers
12,523
--- license: apache-2.0 tags: - summarization - generated_from_trainer metrics: - bleu model-index: - name: t5-finetuned-parasci results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-finetuned-parasci This model is a fine-tuned version of [domenicrosati/t5-finetuned-parasci](https://huggingface.co/domenicrosati/t5-finetuned-parasci) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0845 - Bleu: 19.5623 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
cammy/pegasus-cnn_dailymail-100-lit-evalMA-new
ab7cfe4095d0f853d82af3f07443cc9f1adbb4d6
2022-04-21T02:57:43.000Z
[ "pytorch", "tensorboard", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
cammy
null
cammy/pegasus-cnn_dailymail-100-lit-evalMA-new
9
null
transformers
12,524
Entry not found
Shivierra/DialoGPT-small-technoblade
c823e78b187ac8dfd8efb60bba4d72627fb4bcab
2022-04-21T05:08:02.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Shivierra
null
Shivierra/DialoGPT-small-technoblade
9
null
transformers
12,525
--- tags: - conversational --- # Technoblade DialoGPT Model
SCAI-BIO/bio-gottbert-base
b9805330174419a55ac147f79e8bb312195e4ce7
2022-04-21T07:58:37.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
SCAI-BIO
null
SCAI-BIO/bio-gottbert-base
9
null
transformers
12,526
Entry not found
rdchambers/distilbert-base-uncased-finetuned-emotion
4bfec69ac9efab40bf53417fd507a4bbbc695bc9
2022-04-21T18:00:04.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
rdchambers
null
rdchambers/distilbert-base-uncased-finetuned-emotion
9
null
transformers
12,527
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.922 - name: F1 type: f1 value: 0.9221171029763118 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2238 - Accuracy: 0.922 - F1: 0.9221 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.829 | 1.0 | 250 | 0.3173 | 0.9005 | 0.8980 | | 0.247 | 2.0 | 500 | 0.2238 | 0.922 | 0.9221 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
Truefilter/btwt_identity_subclasses
2e0587b2aaba9a0778b48131dda1a384aff85e58
2022-04-22T13:25:52.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
Truefilter
null
Truefilter/btwt_identity_subclasses
9
null
transformers
12,528
Entry not found
naomiyjchen/distilbert-base-uncased-finetuned-emotion
874c906484b35d886d22ea5147252f2ed3fb9ea7
2022-04-24T04:43:15.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
naomiyjchen
null
naomiyjchen/distilbert-base-uncased-finetuned-emotion
9
null
transformers
12,529
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9215 - name: F1 type: f1 value: 0.9217262923032896 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2208 - Accuracy: 0.9215 - F1: 0.9217 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8381 | 1.0 | 250 | 0.3167 | 0.8995 | 0.8960 | | 0.2493 | 2.0 | 500 | 0.2208 | 0.9215 | 0.9217 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
Manauu17/enhanced_roberta_sentiments_es
b797d000f45071ba7d45890170db64c2f82e3637
2022-04-24T22:30:23.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
Manauu17
null
Manauu17/enhanced_roberta_sentiments_es
9
1
transformers
12,530
# roberta_sentiments_es_en , A Sentiment Analysis model for Spanish sentences This is a roBERTa-base model trained on ~58M tweets and finetuned for sentiment analysis. This model currently supports Spanish sentences This is a enhanced version of 'Manauu17/roberta_sentiments_es' following the BERT's SOAT to acquire best results. The last 4 hidden layers were concatenated folowing dense layers to get classification results. ## Example of classification ```python from transformers import AutoModelForSequenceClassification from transformers import AutoTokenizer import numpy as np import pandas as pd from scipy.special import softmax MODEL = 'Manauu17/enhanced_roberta_sentiments_es' tokenizer = AutoTokenizer.from_pretrained(MODEL) # PyTorch model = AutoModelForSequenceClassification.from_pretrained(MODEL) text = ['@usuario siempre es bueno la opinión de un playo', 'Bendito año el que me espera'] encoded_input = tokenizer(text, return_tensors='pt', padding=True, truncation=True) output = model(**encoded_input) scores = output[0].detach().numpy() labels_dict = model.config.id2label # Results def get_scores(model_output, labels_dict): scores = softmax(model_output) frame = pd.DataFrame(scores, columns=model.config.id2label.values()) frame.style.highlight_max(axis=1,color="green") return frame # PyTorch get_scores(scores, labels_dict).style.highlight_max(axis=1, color="green") ``` Output: ``` # PyTorch get_scores(scores, labels_dict).style.highlight_max(axis=1, color="green") Negative Neutral Positive 0 0.000607 0.004851 0.906596 1 0.079812 0.006650 0.001484 ```
Danni/distilbert-base-uncased-finetuned-dbpedia
d790e018913a2d5d1c1360123c8a30a589387d84
2022-04-26T02:04:00.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Danni
null
Danni/distilbert-base-uncased-finetuned-dbpedia
9
null
transformers
12,531
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-dbpedia results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-dbpedia This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 0.4338 - eval_matthews_correlation: 0.7817 - eval_runtime: 1094.9103 - eval_samples_per_second: 60.777 - eval_steps_per_second: 3.799 - epoch: 1.0 - step: 23568 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.0.0 - Tokenizers 0.11.6
Hate-speech-CNERG/hindi-codemixed-abusive-MuRIL
9a8cab5d2fb4fc7241e9f2bec5e71a0e4872b1d4
2022-05-03T06:03:59.000Z
[ "pytorch", "bert", "text-classification", "hi-en", "arxiv:2204.12543", "transformers", "license:afl-3.0" ]
text-classification
false
Hate-speech-CNERG
null
Hate-speech-CNERG/hindi-codemixed-abusive-MuRIL
9
null
transformers
12,532
--- language: hi-en license: afl-3.0 --- This model is used detecting **abusive speech** in **Code-Mixed Hindi**. It is finetuned on MuRIL model using code-mixed hindi abusive speech dataset. The model is trained with learning rates of 2e-5. Training code can be found at this [url](https://github.com/hate-alert/IndicAbusive) LABEL_0 :-> Normal LABEL_1 :-> Abusive ### For more details about our paper Mithun Das, Somnath Banerjee and Animesh Mukherjee. "[Data Bootstrapping Approaches to Improve Low Resource Abusive Language Detection for Indic Languages](https://arxiv.org/abs/2204.12543)". Accepted at ACM HT 2022. ***Please cite our paper in any published work that uses any of these resources.*** ~~~ @article{das2022data, title={Data Bootstrapping Approaches to Improve Low Resource Abusive Language Detection for Indic Languages}, author={Das, Mithun and Banerjee, Somnath and Mukherjee, Animesh}, journal={arXiv preprint arXiv:2204.12543}, year={2022} } ~~~
xfbai/AMRBART-large-finetuned-AMR3.0-AMR2Text
17bc8ea418cfb45b2642305d0ea3428e161af448
2022-04-26T05:57:10.000Z
[ "pytorch", "bart", "text2text-generation", "en", "arxiv:2203.07836", "transformers", "AMRBART", "license:mit", "autotrain_compatible" ]
text2text-generation
false
xfbai
null
xfbai/AMRBART-large-finetuned-AMR3.0-AMR2Text
9
null
transformers
12,533
--- language: en tags: - AMRBART license: mit --- ## AMRBART-large-finetuned-AMR3.0-AMR2Text This model is a fine-tuned version of [AMRBART-large](https://huggingface.co/xfbai/AMRBART-large) on an AMR3.0 dataset. It achieves a sacre-bleu score of 45.0 on the evaluation set: More details are introduced in the paper: [Graph Pre-training for AMR Parsing and Generation](https://arxiv.org/pdf/2203.07836.pdf) by bai et al. in ACL 2022. ## Model description Same with AMRBART. ## Training data The model is finetuned on [AMR2.0](https://catalog.ldc.upenn.edu/LDC2020T02), a dataset consisting of 55,635 training instances, 1,722 validation instances, and 1,898 test instances. ## Intended uses & limitations You can use the model for AMR-to-text generation, but it's mostly intended to be used in the domain of News. ## How to use Here is how to initialize this model in PyTorch: ```python from transformers import BartForConditionalGeneration model = BartForConditionalGeneration.from_pretrained("xfbai/AMRBART-large-finetuned-AMR3.0-AMR2Text") ``` Please refer to [this repository](https://github.com/muyeby/AMRBART) for tokenizer initialization and data preprocessing. ## BibTeX entry and citation info Please cite this paper if you find this model helpful ```bibtex @inproceedings{bai-etal-2022-graph, title = "Graph Pre-training for {AMR} Parsing and Generation", author = "Bai, Xuefeng and Chen, Yulong and Zhang, Yue", booktitle = "Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)", month = may, year = "2022", address = "Online", publisher = "Association for Computational Linguistics", url = "todo", doi = "todo", pages = "todo" } ```
Cheatham/xlm-roberta-large-finetuned-dA-002
ff36b4822c6333778ca9c155349a0721b49264b0
2022-04-25T13:03:18.000Z
[ "pytorch", "xlm-roberta", "text-classification", "transformers" ]
text-classification
false
Cheatham
null
Cheatham/xlm-roberta-large-finetuned-dA-002
9
null
transformers
12,534
Entry not found
Rodion/sbert_uno_sustainable_development_goals
a685ad29ba12967407f6aaa5ddc8b85015882e58
2022-05-01T14:33:23.000Z
[ "pytorch", "mpnet", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
Rodion
null
Rodion/sbert_uno_sustainable_development_goals
9
null
sentence-transformers
12,535
The SBERT model was trained on the dataset of UNO sustainable development goals. The total dataset size is 20000 records. 16000 were used for training and 4000 for evaluation. The similarity between records was calculated based on the class similarity: 0 (case 1 - no common classes) (number of common classes)/(number of all classes) (case 2) (number of common classes)/(maximal number of record classes)+(number of common classes)/(number of all classes) (case 3) --- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 219 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "callback": null, "epochs": 2, "evaluation_steps": 5, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 0, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Sie-BERT/glue_sst_classifier
ccc3e9df2bc3c2395f0e4e350a8c8e83ddae6fe6
2022-04-26T11:38:30.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Sie-BERT
null
Sie-BERT/glue_sst_classifier
9
null
transformers
12,536
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - f1 - accuracy model-index: - name: glue_sst_classifier results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: sst2 metrics: - name: F1 type: f1 value: 0.9033707865168539 - name: Accuracy type: accuracy value: 0.9013761467889908 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # glue_sst_classifier This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.2359 - F1: 0.9034 - Accuracy: 0.9014 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:--------:| | 0.3653 | 0.19 | 100 | 0.3213 | 0.8717 | 0.8727 | | 0.291 | 0.38 | 200 | 0.2662 | 0.8936 | 0.8911 | | 0.2239 | 0.57 | 300 | 0.2417 | 0.9081 | 0.9060 | | 0.2306 | 0.76 | 400 | 0.2359 | 0.9105 | 0.9094 | | 0.2185 | 0.95 | 500 | 0.2371 | 0.9011 | 0.8991 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
manueltonneau/bert-twitter-en-job-offer
685e09fd8e41a73739f8b5a4c467be88ec9179a7
2022-04-26T15:54:55.000Z
[ "pytorch", "bert", "text-classification", "en", "arxiv:2203.09178", "transformers" ]
text-classification
false
manueltonneau
null
manueltonneau/bert-twitter-en-job-offer
9
null
transformers
12,537
--- language: en # <-- my language widget: - text: "Software Engineer job at Amazon in Seattle, WA" --- # Detection of employment status disclosures on Twitter ## Model main characteristics: - class: Job Offer (1), else (0) - country: US - language: English - architecture: BERT base ## Model description This model is a version of `DeepPavlov/bert-base-cased-conversational` finetuned to recognize English tweets containing a job offer. It was trained on English tweets from US-based users. The task is framed as a binary classification problem with: - the positive class referring to tweets containing a job offer (label=1) - the negative class referring to all other tweets (label=0) ## Resources The dataset of English tweets on which this classifier was trained is open-sourced [here](https://github.com/manueltonneau/twitter-unemployment). Details on the performance can be found in our [ACL 2022 paper](https://arxiv.org/abs/2203.09178). ## Citation If you find this model useful, please cite our paper (citation to come soon).
luccazen/finetuning-sentiment-model-3000-samples
ed7b36ea5aaf7d36a6be21d2cb5692a68b840cd6
2022-04-27T01:58:12.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
luccazen
null
luccazen/finetuning-sentiment-model-3000-samples
9
null
transformers
12,538
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8666666666666667 - name: F1 type: f1 value: 0.8666666666666667 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3026 - Accuracy: 0.8667 - F1: 0.8667 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
fgravelaine/ner-test
a116eaa7f8704b1b7cefaf6bec886579b1998ae2
2022-04-27T19:50:39.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
fgravelaine
null
fgravelaine/ner-test
9
null
transformers
12,539
Entry not found
talaugust/bart-sci-definition
54297b31ebbe7fb1a312399f2b0e38c2a966697c
2022-04-28T19:24:58.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
talaugust
null
talaugust/bart-sci-definition
9
null
transformers
12,540
## BART Scientific Definition Generation This is a finetuned BART Large model from the paper: "Generating Scientific Definitions with Controllable Complexity" By Tal August, Katharina Reinecke, and Noah A. Smith Abstract: Unfamiliar terminology and complex language can present barriers to understanding science. Natural language processing stands to help address these issues by automatically defining unfamiliar terms. We introduce a new task and dataset for defining scientific terms and controlling the complexity of gen- erated definitions as a way of adapting to a specific reader’s background knowledge. We test four definition generation methods for this new task, finding that a sequence-to-sequence approach is most successful. We then explore the version of the task in which definitions are generated at a target complexity level. We in- troduce a novel reranking approach and find in human evaluations that it offers superior fluency while also controlling complexity, compared to several controllable generation baselines. ## Description The model is finetuned on the task of generating definitions of scientific terms. We frame our task as generating an answer to the question “What is (are) X?” Along with the question, the model takes a support document of scientific abstracted related to the term being defined. ## Intended use The intended use of this model is to generate definitions of scientific terms. It is NOT intended for public deployment due to the risk of hallucinated information in model output. Strong supervision of definition factuality is important for any future deployment of such a system. While hallucinated information can be damaging in any generation context, incorrect scientific definitions could mislead readers and potentially contribute to broader scientific misinformation. The model is trained on data we believe is trustworthy (e.g., questions and answers from NIH websites); however, this is no guarantee that model output will be. ## Training data The model is trained on data from two sources: Wikipedia science glossaries and a portion of the [MedQuAD dataset](https://github.com/abachaa/MedQuAD), which contains healthcare consumer questions and answers from NIH websites. For more information on these data sources, see the [github repository](https://github.com/talaugust/definition-complexity) for the paper. ## How to use Note that this model was trained and evaluated using transformers version 4.2.2 from transformers import ( AutoTokenizer, AutoModelForSeq2SeqLM, AutoConfig, ) bart_sci_def_tokenizer = AutoTokenizer.from_pretrained("talaugust/bart-sci-definition") bart_sci_def_model = AutoModelForSeq2SeqLM.from_pretrained("talaugust/bart-sci-definition") inputs = bart_sci_def_tokenizer("question: What is (are) surfactants? context: <P> .... <P> ...." , return_tensors='pt') outputs = bart_sci_def_model.generate(**inputs, decoder_start_token_id=tokenizer.bos_token_id, num_return_sequences=1, num_beams=5, max_length=64, min_length=8, early_stopping=True, temperature=None, do_sample=True, top_k=50, top_p=0.9, max_input_length=1024, no_repeat_ngram_size=3, device=None) answers = [bart_sci_def_tokenizer.decode(ans_ids, skip_special_tokens=True).strip() for ans_ids in outputs[0]] ## Biases & Limitations The goal of this model is to enable a wider audience of readers to understand and engage with scientific writing. A risk, though, is that such attempts might instead widen the gap to accessing scientific information. The texts in the datasets we train our models on are in General or Academic American. English. Many people, especially those who have been historically underrepresented in STEM disciplines and medicine, may not be comfortable with this dialect of English. This risks further alienating the readers we hope to serve. An important and exciting direction in NLP is making models more flexible to dialects and low-resource languages.
fractalego/samsumbot
81e2151776c24746f3da4527b4b3797eca90478f
2022-06-05T13:26:08.000Z
[ "pytorch", "gptj", "text-generation", "arxiv:2106.09685", "transformers" ]
text-generation
false
fractalego
null
fractalego/samsumbot
9
null
transformers
12,541
# What is SamSum Bot? This is a model fine-tuned on the [SamSum dataset](https://huggingface.co/datasets/samsum). However, instead of training the system to summarize conversations, the model is trained to predict a conversation given a summary. The prompt needs to be in the following form ```python A partial summary of the conversation is: {summary} With the dialogue being: {dialogue} ``` where *{summary}* is a text as in ```python John went out to buy groceries. He meets Jane on the way and they talk about the weather. ``` and the *{dialogue}* needs to be structured with speaking lines preceded by the speaking character ```python John: Oh hi Jane. Jane: Nice to see you? John: The weather looks nice today Jane: [PREDICTION] ``` The system is based on the GPTJ-6B by EleutherAI, [quantized by Hivemind](https://huggingface.co/hivemind/gpt-j-6B-8bit). It has been fine-tuned according to the [LoRa method](https://arxiv.org/abs/2106.09685). A simple back-end is available in [this repo](https://github.com/fractalego/samsum-bot), where the model is served using Torchserve. A terminal-like front-end interface is available [here](https://github.com/fractalego/samsumbot_client). This interface is the one used in my website [http://fractalego.io](http://fractalego.io).
pszemraj/mGPT-Peter-mwe
096e796b71fd5da55cc550a01e074d776141e1a3
2022-04-29T11:44:22.000Z
[ "pytorch", "gpt2", "text-generation", "dataset:mc4", "dataset:Wikipedia", "transformers", "multilingual", "PyTorch", "Transformers", "gpt3", "Deepspeed", "Megatron", "license:apache-2.0" ]
text-generation
false
pszemraj
null
pszemraj/mGPT-Peter-mwe
9
null
transformers
12,542
--- license: apache-2.0 pipeline_tag: text-generation tags: - multilingual - PyTorch - Transformers - gpt3 - gpt2 - Deepspeed - Megatron datasets: - mc4 - Wikipedia widget: - text: "I know you're tired, but can we go for another walk this evening?\npeter szemraj:\n\n" example_title: "walk" - text: "What do you call an alligator who's just had surgery to remove his left arm?\npeter szemraj:\n\n" example_title: "alligator" - text: "If you could live anywhere, where would it be?\npeter szemraj:\n\n" example_title: "dream living place" - text: "What really makes you angry?\npeter szemraj:\n\n" example_title: "pet peeve" - text: "My friend says that she knows every language, but she doesn't speak any of them.. what's wrong with her?\npeter szemraj:\n\n" example_title: "language" - text: "What would you change about yourself if you could?\npeter szemraj:\n\n" example_title: "change" - text: "My first is in Asia, my second is in Europe, my third is in North America, and my fourth is in South America. What am I?\npeter szemraj:\n\n" example_title: "continent" - text: "Can you take me for dinner somewhere nice this time?\npeter szemraj:\n\n" example_title: "dinner" - text: "Honey, I have clogged the toilet for the third time this month.. sorry..\npeter szemraj:\n\n" example_title: "overflow" - text: "A man pushes his car to a hotel and tells the owner he's bankrupt. Why?\npeter szemraj:\n\n" example_title: "brain teaser" inference: parameters: min_length: 2 max_length: 64 length_penalty: 0.4 no_repeat_ngram_size: 3 do_sample: True top_p: 0.95 top_k: 30 temperature: 0.65 repetition_penalty: 3.5 --- # mGPT: fine-tune on message data MWE This model is a fine-tuned version of [sberbank-ai/mGPT](https://huggingface.co/sberbank-ai/mGPT) on 80k messages. Trained for one epoch, will be updated in a (separate) model repo later. ## Model description - testing if fine-tuned personality data bleeds over to other languages without being trained in them explicitly ### Usage in python Install the transformers library if you don't have it: ``` pip install -U transformers ``` load the model into a pipeline object: ``` from transformers import pipeline import torch device = 'cuda' if torch.cuda.is_available() else 'cpu' my_chatbot = pipeline('text-generation', 'pszemraj/mGPT-Peter-mwe', device=0 if device == 'cuda' else -1, ) ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 1 ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
pkushiqiang/bert-split-title-org
18670d83c9f78505010ce0fa2c8a47a8e23de316
2022-04-29T04:43:51.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
pkushiqiang
null
pkushiqiang/bert-split-title-org
9
1
transformers
12,543
Entry not found
Sindhu/emo_roberta
a0e23e9fdc0cc3311526b7ce640ff29ba566c2aa
2022-04-29T15:20:46.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
Sindhu
null
Sindhu/emo_roberta
9
null
transformers
12,544
Pytorch Port of [EmoRoberta model](https://huggingface.co/arpanghoshal/EmoRoBERTa).
cfilt/HiNER-collapsed-xlm-roberta-large
1df6591c6b4c71eb34c251fb48a7bb643f2b86de
2022-05-01T19:47:49.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "token-classification", "dataset:cfilt/HiNER-collapsed", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
token-classification
false
cfilt
null
cfilt/HiNER-collapsed-xlm-roberta-large
9
null
transformers
12,545
--- tags: - generated_from_trainer datasets: - cfilt/HiNER-collapsed metrics: - precision - recall - f1 model-index: - name: HiNER-collapsed-xlm-roberta-base results: - task: name: Token Classification type: token-classification dataset: type: cfilt/HiNER-collapsed name: HiNER Collapsed metrics: - name: Precision type: precision value: 0.9137448834064936 - name: Recall type: recall value: 0.9296549644788663 - name: F1 type: f1 value: 0.9216312652954473 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # HiNER-collapsed-xlm-roberta-base This model was trained from scratch on the cfilt/HiNER-collapsed dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 1 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Framework versions - Transformers 4.14.0 - Pytorch 1.9.1 - Datasets 1.15.1 - Tokenizers 0.10.3
rjuez00/meddocan-beto-ner
cf3f81d5a6f3cdf13240899d72565ad08b8b8697
2022-05-01T16:23:58.000Z
[ "pytorch", "bert", "token-classification", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
token-classification
false
rjuez00
null
rjuez00/meddocan-beto-ner
9
null
transformers
12,546
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: beto_full_train_3_epochs results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # beto_full_train_3_epochs This model is a fine-tuned version of [dccuchile/bert-base-spanish-wwm-cased](https://huggingface.co/dccuchile/bert-base-spanish-wwm-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0445 - Precision: 0.9541 - Recall: 0.9481 - F1: 0.9511 - Accuracy: 0.9951 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 3 - eval_batch_size: 3 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.11.6
Parsa/Chemical_explosion_classification
adc7007de931756d430732d4cff0427c3c232ca6
2022-06-01T22:05:37.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
Parsa
null
Parsa/Chemical_explosion_classification
9
null
transformers
12,547
For testing it yourself, the easiest way is using the colab link below. Github repo: https://github.com/mephisto121/Chemical_explosion_classification [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1GQmh1g2bRdqgQCnM6b_iY-eAQCRfhMJP?usp=sharing)
ptaszynski/japan-orientalization-pl
10b0e4ed78c9b51b012dedc5cee6c1b0e84031df
2022-05-06T06:51:13.000Z
[ "pytorch", "bert", "text-classification", "pl", "dataset:18th and 19th century articles mentioning Japan", "transformers", "license:cc-by-sa-4.0" ]
text-classification
false
ptaszynski
null
ptaszynski/japan-orientalization-pl
9
1
transformers
12,548
--- language: pl license: cc-by-sa-4.0 datasets: - 18th and 19th century articles mentioning Japan --- # Model for detection of Orientalization of Japan in newspaper articles This model was based on the original [HerBERT](https://huggingface.co/allegro/herbert-base-cased) Base. The model was finetuned on a set of Polish press articles mentioning Japan from the years 1818-1939 to recognize if an article (or any input text) presents a genuine description of Japan, or whether it is an example of the orientalization of Japan. By orientalization we mean when a text represents Japan through the lenses of [Orientalism](https://en.wikipedia.org/wiki/Orientalism), or a viewpoint that presents a piece of Eastern culture, in this case - Japan - in a deformed, distorted, and idealized form. In the definition of Orientalism we follow the work by [Edward Said](https://en.wikipedia.org/wiki/Edward_Said), especially his book "[Orientalism](https://en.wikipedia.org/wiki/Orientalism_(book))". ## Licenses The finetuned model with all attached files is licensed under [CC BY-SA 4.0](http://creativecommons.org/licenses/by-sa/4.0/), or Creative Commons Attribution-ShareAlike 4.0 International License. <a rel="license" href="http://creativecommons.org/licenses/by-sa/4.0/"><img alt="Creative Commons License" style="border-width:0" src="https://i.creativecommons.org/l/by-sa/4.0/88x31.png" /></a> ## Citations Please, cite this model using the following citation. ``` @inproceedings{ptaszynski2022herbert-japan, title={Finetuned HerBERT model for detecting orientalization of Japan in newspaper articles}, author={Michal Ptaszynski and Pawel Dybala and Zuzanna Barczyk}, booktitle={HuggingFace}, url={https://huggingface.co/ptaszynski/japan-topic-detection} year={2022} } ```
niklaspm/linkbert-base-finetuned-squad
f4e3fbf5fca84d21fc49db6137ffbbc4cccaf913
2022-05-03T07:50:32.000Z
[ "pytorch", "bert", "question-answering", "arxiv:2203.15827", "transformers", "license:apache-2.0", "autotrain_compatible" ]
question-answering
false
niklaspm
null
niklaspm/linkbert-base-finetuned-squad
9
null
transformers
12,549
--- license: apache-2.0 --- **Exact Match** 83.19 **F1** 90.46 Checkout [linkbert-large-finetuned-squad](https://huggingface.co/niklaspm/linkbert-large-finetuned-squad) which achives F1:92.68 and EM:86.5 See [LinkBERT Paper](https://arxiv.org/abs/2203.15827)
henry931007/mfma
ad7b949f2a0a200cc4fe773aef2b11f000190826
2022-05-31T08:23:15.000Z
[ "pytorch", "electra", "text-classification", "transformers" ]
text-classification
false
henry931007
null
henry931007/mfma
9
null
transformers
12,550
## Pre-trained factual consistency checking model for abstractive summaries introduced in the following NAACL-22 paper. from transformers import AutoModelforSequenceClassification model = AutoModelforSequenceClassification("henry931007/mfma") ``` @inproceedings{lee2022mfma, title={Masked Summarization to Generate Factually Inconsistent Summaries for Improved Factual Consistency Checking}, author={Hwanhee Lee and Kang Min Yoo and Joonsuk Park and Hwaran Lee and Kyomin Jung}, year={2022}, month={july}, booktitle={Findings of the Association for Computational Linguistics: NAACL 2022}, } ```
GonzaloA/distilroberta-base-finetuned-fakeNews
3094c38ff7754eab86b8991a4237abc735994d49
2022-07-04T17:56:04.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
GonzaloA
null
GonzaloA/distilroberta-base-finetuned-fakeNews
9
1
transformers
12,551
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilroberta-base-finetuned-fakeNews results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-finetuned-fakeNews This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0355 - Accuracy: 0.9910 ## Training and evaluation data All of the process to train this model is available in this repository: https://github.com/G0nz4lo-4lvarez-H3rv4s/FakeNewsDetection ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0301 | 1.0 | 1523 | 0.0322 | 0.9868 | | 0.0165 | 2.0 | 3046 | 0.0292 | 0.9892 | | 0.0088 | 3.0 | 4569 | 0.0355 | 0.9910 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
sangjeedondrub/tibetan-roberta-causal-base
8de94327831c4594328bfd432f1f27deec63ba10
2022-05-05T02:17:14.000Z
[ "pytorch", "roberta", "text-generation", "bo", "transformers", "tibetan", "pretrained causal language model", "license:mit" ]
text-generation
false
sangjeedondrub
null
sangjeedondrub/tibetan-roberta-causal-base
9
1
transformers
12,552
--- language: - bo tags: - tibetan - pretrained causal language model - roberta widget: - text: "རིན་" - text: "རྫོགས་པའི་" - text: "ཆོས་ཀྱི་" - text: "གངས་རིའི་" - text: "བོད་ཀྱི་སྨན་" license: "mit" --- # A demo for generating text using `Tibetan Roberta Causal Language Model` ``` from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline model_name = 'sangjeedondrub/tibetan-roberta-causal-base' model = AutoModelForCausalLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) text_gen_pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer ) init_text = 'རིན་' outputs = text_gen_pipe(init_text, do_sample=True, max_new_tokens=200, temperature=.9, top_k=10, top_p=0.92, num_return_sequences=10, truncate=True) for idx, output in enumerate(outputs, start=1): print(idx) print(output['generated_text']) ``` # Output ``` 1 རིན་ཆེན་མཚོས་བསྒྱུར།" མི་འགྱུར་རིན་ཆེན་མཚོས་བསྒྱུར་བའི 《 བོད་ཡིག་རིག་མཛོད་ཆེན་མོ 》 ལས། “ ལོ་རྒྱུས་ནི་ཤིན་ཏུ་རྒྱ་ཆེ་བའི་རིན་ཆེན་མཚོན་བྱེད་ཡིན། འདི་ནི་མི་འགྱུར་རིན་ཆེན་མཚོས་ར་གླིང་ཡིན་ད་ད་གྱི་མཚན་པར་གྱི་བོདེ་བོདེན་མ་དེ་ཡིནི་ལས་ར་ལས། ཁོད་ད་དུ་མིན་དེ། དུངས་ད་ལས། ” ཞེདེ། “ མ 2 རིན་ཐང་གཞལ་དུ་མེད་པའི་སེམས་ཀྱི་གཏིང་མཐའ་རུ། ལུས་པོའི་བདེ་ཐང་དང་འབྲེལ་བའི་སེམས་ཀྱི་བདེ་ཐང་ནི་ཁྱོད་དང་འབྲེལ་བ་དམ་པོ་ཡོད། གལ་ཏེ་སེམས་ཀྱི་བདེ་ཐང་ལ་གནོད་པ་མེད་ན་ཁྱོད་ཀྱིས་འཚོ་བ་དང་འབྲེལེགས་དེ་འབྲེལ་པ་ཁྱོརྒྱུ་མཚན་ཉེན་བ་མི་གླེང་དོང་འབྲེལོངས་པ་ལོསོངས་འབྲེལོསོང་འབྲེལ། འབྲེལ་མོགོགོང་པོ་ས། ཁྱོ 3 རིན་ཆེན་ནི་བོད་ལྗོངས་ལྷ་ས་གྲོང་ཁྱེར་ཆུ་ཤུར་རྫོང་ཆུ་ཤུར་གྲོང་ཚོའི་ཡིག་ཚགས་དང་གཱ་བཟོས་པའི་དུད་ཚང་དབུལ་པོ་ཡིན་པ་དང་གྲོང་མི་ཚོས་ལོ་ལྟར་ཁྱིམ་དུ་མི་ཁྲིད་པ་མ་ཟད། གླ་པ་ཁྱིམིགླ་གླ་བྱར་ཁོའོའོའི་གླ་ཕོར་ཡོའོའང་ས་ཡོས་ཡོའོས་ས་ས་ཡོས་ཡོས་ཁུར་ས་འོས་ཁྱིས་མིགེར་ 4 རིན་ཆེན་ནོར་བུ་རིན་ཆེན་གྱི་གསུང་འབུམ་པར་སྐྲུན་དང་འབྲེལ་ཏེ་རྔ་བའི་པར་ཁང་ཆེན་མོ་བཞི་དང་རྔ་བའི་པར་ཁང་ཆེན་མོ་གཅིག། རྔ་བའི་པར་ཁང་ཆེན་མོ་དྲུག་བཅས་ཀྱི་པར་ཤིང་ལྡེབ་རེ་རེ་བཞིན་པར་ཁང་གྲངས་རྒྱལྔ་སྔརྒྱལྔ་བའི་ཕྱགྱགྱི་དཔར་དུ་བསྒྲིགྱང་དང་བཞི་དཔར་བཞེངས་གྲུབ་སྒྲིག་བཞི་ཕུང་ཕྱགྲགས་སྒྲིགུ་ཕེངས་སྒྲིག་སྒྲིགི་ 5 རིན་པོ་ཆེ། དེས་ན་ང་ལ་ང་སྐྱེས་དུས་ཀྱང་ང་སྐྱེས་ཡོད་ཅེས་བཤད་འདོད། དེ་ལྟར་བྱས་ཚེ་ང་སྐྱེས་ཚེ་ལོངས་སྤྱོད་ཀྱི་རྒྱུར་འགྱུར་རྒྱུ་ནི་ང་རང་སྐྱེས་དུས་ཀྱི་ཉི་མ་དེ་ཡིན་ནམ། ངས་བསམས་ན། ངས་ན། ང་ན་ཀྱང་དོསྐྱིདེ་འདོངས་ནི་ང་དེ་ནི་རང་དེ་སྣང་འདི་ལོམི་སྐྱིད་སྐྱིདེ་བས་དང་སྐྱིདོམས་སྐྱིད་དང་ས་སྐྱིད་ཁོངས་ 6 རིན་ཆེན་ནོར་བུའི་གསེང་དུ་བསྐྱིལ་བའི་བུ་མོ་ཞིག་ཡིན་པའི་ཆ་ནས། ད་ལོའི་ཟླ་བཅུ་བར་ཨ་མ་ཁོས་སྡེ་བའི་ཏང་ཡོན་རྒན་པ་ཞིག་ལ་ཁྱིམ་ཚང་རེར་སྒོར་སྟོང་གཅིག་ལྷག་རོགས་སྐྱོར་བྱས་ཏེ། “ ང་པ་ང་མེད། ང་ང་ང་ཚང་ང་ཚང་ལ་ཚང་ཚང་ང་ག ” གྲོང་དང་། རྫོང་ར། ” གྲོང་ས་ལ། གྲོང་བཅས་བ། “ དོལོས་བ་སོས་དང 7 རིན་ཆེན་ནོར་བུ་ཡི་བྱ་བ་སྒྲུབ་མཁན་ཚོས་རྒྱུན་དུ་མཐོང་ཐུབ་པ་ནི་སྙན་ངག་པ་རྣམས་ཀྱི་མིག་ལ་ལྟ་ཞིང་སྙན་ངག་པས་བྲིས་པའི་ཚིག་རྐང་རེ་རེར་བརྗོད་དོན་ནི་སྙན་ངག་ལ་སྤྱིར་བཏང་གི་ཚིག་རིག་ད་མོརྣམོརྩེ་བ་གྱི་ཚིགྱི་ས་ཤིང་ས་སྣ་ལྟ་ཞིགྱི་ས་དང་ད་ད་དང་། སྙན་ལ་རྩེ་ན་རྩེརྩེ་སྣ་སྙན་མ་རྩེ་ 8 རིན་ཆེན་སྒྲོལ་མ། བོད་རིགས། བོད་རིགས། མཚོ་སྔོན་མི་རིགས་སློབ་ཆེན་བོད་རིག་པའི་སློབ་གླིང་གི 2012 ལོའི་ཞིབ་འཇུག་སློབ་མ། རྨ་ལྷོ་ཁུལ་མི་རིགས་དགེ་ཐོན་སློབ་གྲྭ་ཡི་སྤྱི་ལོ 2008 ལོའི་ཞིར་དངོའི་ཞིང་སྒོར་སྒོར་སྒོར་སྒོར་ས་སྟོདུག་དང་སྟོནུག་ཕྱི་ས་ག་ཕྱི་ས་སྟོད་ར་ག་ཕྱི་དུལི་ཞིས་ས་འབུལ་ 9 རིན་ཆེན་རིན་ཆེན་རྒྱལ་དང་ལྷ་རྒྱལ་སོགས་ཀྱི་རིགས་རྒྱུད་སྣ་ཚོགས་པའི་རིག་རྫས་རིན་ཐང་བྲལ་བ་ཞིག་ཡིན་པར་མ་ཟད། རྒྱལ་ཁབ་རིམ་པའི་གཟུགས་འདས་ཤུལ་བཞག་རིག་གནས་རྒྱུད་འཛིན་པ་རྣམས་པར་ལ་པ་ཞིན་གསར་པ་ག་པའི་མ་གས་གསར་རུ་ཐོནུས་པ་བ་ར་ཞིགྱུང་ཞེའི་ར་ས་ཐུལ། ཀྲུང་པ་ས་ར་ས་ག་ག་ར་ག་ 10 རིན་ཐང་ལྟ་བའི་སློབ་ཁྲིད་བྱེད་ཐབས་ལ་སློབ་ཁྲིད་ཀྱི་གོ་རིམ་ཁྲོད་དུ་རིག་གཞུང་གི་ཤེས་བྱ་དང་སློབ་ཁྲིད་ཀྱི་ནུས་པ་ལྡན་པ་མ་ཟད། ད་དུང་རིག་གནས་ཀྱི་ཁྱད་པར་ཡང་ལྡན། དེང་སྐབས་དགེ་ཚང་དགེ་ཚང་ཚང་དགེ་རྫོང་ཆེ་རིན་པ་ཆེརྫོང་དགེ་ཆུའི་ཡིན་ག་ས་པོ་དགོན་ཆོན་ཆོང་སེར་ས་སློབ་ཡུའི་དགོག་ས་ ``` # About This model is trained and released by Sangjee Dondrub [sangjeedondrub at live dot com], the mere purpose of conducting these experiments is to improve my familiarity with Transformers APIs.
heranm/finetuning-sentiment-model-3000-samples
8962664ddb80f0992a420b07a6079a28c2905461
2022-05-05T16:50:21.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
heranm
null
heranm/finetuning-sentiment-model-3000-samples
9
null
transformers
12,553
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8733333333333333 - name: F1 type: f1 value: 0.8766233766233766 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3131 - Accuracy: 0.8733 - F1: 0.8766 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cpu - Datasets 2.1.0 - Tokenizers 0.12.1
kSaluja/test-ner
ed3109f7a95127bb7cbf1b0d143b3e02717e8e76
2022-05-06T10:11:19.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
kSaluja
null
kSaluja/test-ner
9
null
transformers
12,554
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: test-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test-ner This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1014 - Precision: 0.9609 - Recall: 0.9574 - F1: 0.9591 - Accuracy: 0.9732 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 151 | 0.1848 | 0.9060 | 0.9184 | 0.9122 | 0.9490 | | No log | 2.0 | 302 | 0.1137 | 0.9548 | 0.9529 | 0.9538 | 0.9705 | | No log | 3.0 | 453 | 0.1014 | 0.9609 | 0.9574 | 0.9591 | 0.9732 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
thusken/nb-bert-base-ctr-regression
d1b506627500a23af91f8414b9f909765c7325e0
2022-05-10T13:41:25.000Z
[ "pytorch", "bert", "text-classification", "transformers", "generated_from_trainer", "license:cc-by-4.0", "model-index" ]
text-classification
false
thusken
null
thusken/nb-bert-base-ctr-regression
9
null
transformers
12,555
--- license: cc-by-4.0 tags: - generated_from_trainer model-index: - name: nb-bert-base-ctr-regression results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # nb-bert-base-ctr-regression This model is a fine-tuned version of [NbAiLab/nb-bert-base](https://huggingface.co/NbAiLab/nb-bert-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0073 - Mse: 0.0073 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Mse | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.0106 | 1.0 | 1103 | 0.0069 | 0.0069 | | 0.0073 | 2.0 | 2206 | 0.0072 | 0.0072 | | 0.0058 | 3.0 | 3309 | 0.0063 | 0.0063 | | 0.0038 | 4.0 | 4412 | 0.0073 | 0.0073 | | 0.0025 | 5.0 | 5515 | 0.0064 | 0.0064 | | 0.0019 | 6.0 | 6618 | 0.0065 | 0.0065 | | 0.0014 | 7.0 | 7721 | 0.0066 | 0.0066 | | 0.0011 | 8.0 | 8824 | 0.0067 | 0.0067 | | 0.0008 | 9.0 | 9927 | 0.0066 | 0.0066 | | 0.0007 | 10.0 | 11030 | 0.0066 | 0.0066 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.2+cu113 - Datasets 1.18.4 - Tokenizers 0.12.1
LiYuan/Amazon-Cross-Encoder-Classification
e7706e84fe6bdd8e26f53be2d705c84facfbb1ed
2022-05-08T17:52:56.000Z
[ "pytorch", "bert", "text-classification", "transformers", "license:afl-3.0" ]
text-classification
false
LiYuan
null
LiYuan/Amazon-Cross-Encoder-Classification
9
null
transformers
12,556
--- license: afl-3.0 --- There are two types of Cross-Encoder models. One is the Cross-Encoder Regression model that we fine-tuned and mentioned in the previous section. Next, we have the Cross-Encoder Classification model. These two models are introduced in the same paper https://doi.org/10.48550/arxiv.1908.10084 Both models resolve the issue that the BERT model is too time-consuming and resource-consuming to train in pairwised sentences. These two model weights are initialized as the BERT and RoBERTa networks. We only need to fine-tune them, spending much less time to yield a comparable or even better sentence embedding. The below figure \ref{figure:5} shows the architecture of Cross-Encoder Classification. ![](1.png) Then we evaluated the model performance on the 2,000 held-out test set. We also got a test accuracy **46.05%** that is almost identical to the best validation accuracy, suggesting a good generalization model.
Jeevesh8/bert_ft_qqp-8
d1da2132679d2c2f83fb52feaddbd2c754f59e3b
2022-05-09T09:50:31.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-8
9
null
transformers
12,557
Entry not found
Jeevesh8/bert_ft_qqp-15
3d6616214af890c9be426203516d6c219aa083fc
2022-05-09T10:08:34.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-15
9
null
transformers
12,558
Entry not found
Jeevesh8/bert_ft_qqp-16
71e3e87ec376b36a538eb1d1e16f856e09a3f124
2022-05-09T10:11:05.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-16
9
null
transformers
12,559
Entry not found
Jeevesh8/bert_ft_qqp-21
9700bc3f23a78b3b141d49f6ab384b56cf64e668
2022-05-09T10:23:50.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-21
9
null
transformers
12,560
Entry not found
Jeevesh8/bert_ft_qqp-30
a008c61ed1c0d984e18eb1b95fdfc558beb65c6d
2022-05-09T10:46:55.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-30
9
null
transformers
12,561
Entry not found
Jeevesh8/bert_ft_qqp-32
014be90258a2c21ae7b17b3bb7058f88a89a98b2
2022-05-09T10:51:57.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-32
9
null
transformers
12,562
Entry not found
Jeevesh8/bert_ft_qqp-33
0d8dcefc08a646decbcafa4363b02fab3f65ad5a
2022-05-09T10:54:42.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-33
9
null
transformers
12,563
Entry not found
Jeevesh8/bert_ft_qqp-43
31856e693a5b7e490b0c3d9d04605b24011b626e
2022-05-09T11:20:05.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-43
9
null
transformers
12,564
Entry not found
Jeevesh8/bert_ft_qqp-51
09ea0c682d9c720bd6f99799ed6a450d69f6a780
2022-05-09T11:40:22.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-51
9
null
transformers
12,565
Entry not found
Jeevesh8/bert_ft_qqp-76
e4925fe807d9d99b035e58a2d1e2ff6301672a71
2022-05-09T12:44:37.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-76
9
null
transformers
12,566
Entry not found
Jeevesh8/bert_ft_qqp-83
d41773cecfd538ebb8526486ea957c0758a7dc76
2022-05-09T13:02:41.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-83
9
null
transformers
12,567
Entry not found
Jeevesh8/bert_ft_qqp-86
2636314e1f3335aad48f1128ce60dec2b9b9ae32
2022-05-09T13:10:16.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-86
9
null
transformers
12,568
Entry not found
Jeevesh8/bert_ft_qqp-97
8af5c74fef84d26f657dbc383cbff1b83a15a219
2022-05-09T13:38:16.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-97
9
null
transformers
12,569
Entry not found
princeton-nlp/CoFi-MRPC-s95
429d63c589fe51ad2edb9998ccff154b3001c7cb
2022-05-09T15:24:40.000Z
[ "pytorch", "bert", "text-classification", "arxiv:2204.00408", "transformers" ]
text-classification
false
princeton-nlp
null
princeton-nlp/CoFi-MRPC-s95
9
null
transformers
12,570
This is a model checkpoint for "[Structured Pruning Learns Compact and Accurate Models](https://arxiv.org/pdf/2204.00408.pdf)". The model is pruned from `bert-base-uncased` to a 95% sparsity on dataset MRPC. Please go to [our repository](https://github.com/princeton-nlp/CoFiPruning) for more details on how to use the model for inference. Note that you would have to use the model class specified in our repository to load the model.
fujiki/t5-3b-en2ja
45f72fd1cd645cde6a8c42f96394564a959ba2fd
2022-07-12T12:59:13.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "license:cc-by-sa-3.0", "autotrain_compatible" ]
text2text-generation
false
fujiki
null
fujiki/t5-3b-en2ja
9
null
transformers
12,571
# Tokenizer - the tokenizer is imported from [sonoisa/t5-base-japanese](https://huggingface.co/sonoisa/t5-base-japanese) # License [CC-BY SA 3.0](https://creativecommons.org/licenses/by-sa/3.0/deed.ja) --- license: cc-by-sa-3.0 ---
usmanazhar/finetuning-sentiment-model-3000-samples
6b4dc49f2dbe971799229c21eb4736d4da3701f1
2022-05-10T09:27:23.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
usmanazhar
null
usmanazhar/finetuning-sentiment-model-3000-samples
9
null
transformers
12,572
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8733333333333333 - name: F1 type: f1 value: 0.8766233766233766 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3346 - Accuracy: 0.8733 - F1: 0.8766 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
Udi-Aharon/distilbert-base-uncased-finetuned-ner
05d0da03674d209404a9b267532a0afe66b7a0a8
2022-05-10T15:59:20.000Z
[ "pytorch", "tensorboard", "distilbert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
Udi-Aharon
null
Udi-Aharon/distilbert-base-uncased-finetuned-ner
9
null
transformers
12,573
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.924327912379688 - name: Recall type: recall value: 0.9346683074169371 - name: F1 type: f1 value: 0.9294693514295249 - name: Accuracy type: accuracy value: 0.9836529143565221 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0615 - Precision: 0.9243 - Recall: 0.9347 - F1: 0.9295 - Accuracy: 0.9837 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2396 | 1.0 | 878 | 0.0715 | 0.9135 | 0.9228 | 0.9181 | 0.9805 | | 0.051 | 2.0 | 1756 | 0.0617 | 0.9192 | 0.9334 | 0.9263 | 0.9826 | | 0.0295 | 3.0 | 2634 | 0.0615 | 0.9243 | 0.9347 | 0.9295 | 0.9837 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
CleveGreen/JobClassifier_v3_gpt
3ce6c6302339162e0c42d66027545b58e0ad8e4e
2022-05-11T20:40:57.000Z
[ "pytorch", "gpt2", "text-classification", "transformers" ]
text-classification
false
CleveGreen
null
CleveGreen/JobClassifier_v3_gpt
9
null
transformers
12,574
Entry not found
Khyeyoon/MRC_roberta
34d904282df98b0f07c9fa16e03b3a4094ce5a72
2022-05-12T03:22:47.000Z
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
Khyeyoon
null
Khyeyoon/MRC_roberta
9
null
transformers
12,575
src/models/0511_hard_dataset
sagerpascal/bert-finetuned-ner
c1e9c30d9b41980d49dbfb959aa086ed92797ae7
2022-05-12T07:11:31.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
sagerpascal
null
sagerpascal/bert-finetuned-ner
9
null
transformers
12,576
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9349014411131357 - name: Recall type: recall value: 0.9498485358465163 - name: F1 type: f1 value: 0.9423157191752232 - name: Accuracy type: accuracy value: 0.9858862659680933 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0646 - Precision: 0.9349 - Recall: 0.9498 - F1: 0.9423 - Accuracy: 0.9859 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0834 | 1.0 | 1756 | 0.0686 | 0.9140 | 0.9354 | 0.9246 | 0.9825 | | 0.0421 | 2.0 | 3512 | 0.0596 | 0.9205 | 0.9472 | 0.9336 | 0.9849 | | 0.0183 | 3.0 | 5268 | 0.0646 | 0.9349 | 0.9498 | 0.9423 | 0.9859 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
upsalite/distilbert-base-uncased-finetuned-emotion
8944cf17db5c2a71bde4d5dd2758f9b04570cf7e
2022-05-31T13:37:38.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
upsalite
null
upsalite/distilbert-base-uncased-finetuned-emotion
9
null
transformers
12,577
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9285 - name: F1 type: f1 value: 0.9284995196221415 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2083 - Accuracy: 0.9285 - F1: 0.9285 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8128 | 1.0 | 250 | 0.3000 | 0.914 | 0.9109 | | 0.2423 | 2.0 | 500 | 0.2083 | 0.9285 | 0.9285 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 1.16.1 - Tokenizers 0.12.1
gaganpathre/amgerindaf
5750109a650474107308521553e86a193d2933b3
2022-05-13T10:06:53.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "huggingpics", "model-index" ]
image-classification
false
gaganpathre
null
gaganpathre/amgerindaf
9
1
transformers
12,578
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: amgerindaf results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.8469750881195068 --- # amgerindaf Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### african ![african](images/african.png) #### american ![american](images/american.jpg) #### german ![german](images/german.jpg) #### indian ![indian](images/indian.jpg)
dreamerdeo/ground-en-roberta-large
6acfd925405e2241178d33b22ec316b9a83c69d4
2022-05-16T05:37:21.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
dreamerdeo
null
dreamerdeo/ground-en-roberta-large
9
null
transformers
12,579
Entry not found
kaushalkhator/bert-to-distilbert-NER
39ba995c428bd6dd9e81b670499a661070fd46d5
2022-05-14T16:01:17.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
kaushalkhator
null
kaushalkhator/bert-to-distilbert-NER
9
null
transformers
12,580
Entry not found
mertyrgn/distilbert-base-uncased-finetuned-emotion
2bd0f7c21b2fc7b8832841d6eb3be70f5771175c
2022-05-15T13:58:23.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
mertyrgn
null
mertyrgn/distilbert-base-uncased-finetuned-emotion
9
null
transformers
12,581
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9235 - name: F1 type: f1 value: 0.9235106231638174 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2064 - Accuracy: 0.9235 - F1: 0.9235 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8272 | 1.0 | 250 | 0.2939 | 0.917 | 0.9153 | | 0.2414 | 2.0 | 500 | 0.2064 | 0.9235 | 0.9235 | ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu102 - Datasets 2.2.1 - Tokenizers 0.12.1
kktoto/kt_punc
a15b8358ca8d3b706852f6d3efb9a5ef54c5ad91
2022-05-15T15:16:29.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "dataset:chn_senti_corp", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
token-classification
false
kktoto
null
kktoto/kt_punc
9
null
transformers
12,582
--- tags: - generated_from_trainer datasets: - chn_senti_corp metrics: - precision - recall - f1 - accuracy model-index: - name: kt_punc results: - task: name: Token Classification type: token-classification dataset: name: chn_senti_corp type: chn_senti_corp args: default metrics: - name: Precision type: precision value: 0.7078651685393258 - name: Recall type: recall value: 0.7313662547821116 - name: F1 type: f1 value: 0.7194238380517767 - name: Accuracy type: accuracy value: 0.957316742326961 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # kt_punc This model is a fine-tuned version of [bert-base-chinese](https://huggingface.co/bert-base-chinese) on the chn_senti_corp dataset. It achieves the following results on the evaluation set: - Loss: 0.1703 - Precision: 0.7079 - Recall: 0.7314 - F1: 0.7194 - Accuracy: 0.9573 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1661 | 1.0 | 600 | 0.1351 | 0.6566 | 0.6833 | 0.6697 | 0.9498 | | 0.1246 | 2.0 | 1200 | 0.1330 | 0.6854 | 0.6665 | 0.6758 | 0.9521 | | 0.1121 | 3.0 | 1800 | 0.1303 | 0.6885 | 0.6994 | 0.6939 | 0.9537 | | 0.1008 | 4.0 | 2400 | 0.1359 | 0.6836 | 0.7248 | 0.7036 | 0.9543 | | 0.0809 | 5.0 | 3000 | 0.1404 | 0.7035 | 0.7082 | 0.7059 | 0.9559 | | 0.0696 | 6.0 | 3600 | 0.1449 | 0.6986 | 0.7224 | 0.7103 | 0.9560 | | 0.0628 | 7.0 | 4200 | 0.1563 | 0.7063 | 0.7214 | 0.7138 | 0.9567 | | 0.0561 | 8.0 | 4800 | 0.1618 | 0.7024 | 0.7333 | 0.7175 | 0.9568 | | 0.0525 | 9.0 | 5400 | 0.1669 | 0.7083 | 0.7335 | 0.7207 | 0.9574 | | 0.0453 | 10.0 | 6000 | 0.1703 | 0.7079 | 0.7314 | 0.7194 | 0.9573 | ### Framework versions - Transformers 4.19.1 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
tbosse/bert-base-german-cased-finetuned-subj_preTrained_with_noisyData
e42f0533d87516bb9ebe2af76459c58ed992ddf9
2022-05-16T01:21:42.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
tbosse
null
tbosse/bert-base-german-cased-finetuned-subj_preTrained_with_noisyData
9
null
transformers
12,583
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-german-cased-finetuned-subj_preTrained_with_noisyData results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-german-cased-finetuned-subj_preTrained_with_noisyData This model is a fine-tuned version of [bert-base-german-cased](https://huggingface.co/bert-base-german-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0192 - Precision: 0.9203 - Recall: 0.8703 - F1: 0.8946 - Accuracy: 0.9939 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 245 | 0.0258 | 0.9172 | 0.7990 | 0.8540 | 0.9918 | | No log | 2.0 | 490 | 0.0192 | 0.9203 | 0.8703 | 0.8946 | 0.9939 | ### Framework versions - Transformers 4.19.1 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
huawei-noah/AutoTinyBERT-KD-S4
9c07af1b1cb3cc40ba3e550cc2d20e6fbcaef0db
2022-05-16T15:14:43.000Z
[ "pytorch", "transformers", "license:other" ]
null
false
huawei-noah
null
huawei-noah/AutoTinyBERT-KD-S4
9
null
transformers
12,584
--- license: other --- Pre-trained language models (PLMs) have achieved great success in natural language processing. Most of PLMs follow the default setting of architecture hyper-parameters (e.g., the hidden dimension is a quarter of the intermediate dimension in feed-forward sub-networks) in BERT. In this paper, we adopt the one-shot Neural Architecture Search (NAS) to automatically search architecture hyper-parameters for efficient pre-trained language models (at least 6x faster than BERT-base). AutoTinyBERT provides a model zoo that can meet different latency requirements.
itzo/distilbert-base-uncased-fine-tuned-on-emotion-dataset
44ce44b184b84b9b84b1455e721e73ff469c8652
2022-05-17T08:25:17.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
itzo
null
itzo/distilbert-base-uncased-fine-tuned-on-emotion-dataset
9
null
transformers
12,585
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion model-index: - name: distilbert-base-uncased-fine-tuned-on-emotion-dataset results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-fine-tuned-on-emotion-dataset This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2138 - Accuracy Score: 0.9275 - F1 Score: 0.9275 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy Score | F1 Score | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:--------:| | 0.8024 | 1.0 | 250 | 0.3089 | 0.906 | 0.9021 | | 0.2448 | 2.0 | 500 | 0.2138 | 0.9275 | 0.9275 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
CEBaB/roberta-base.CEBaB.absa.inclusive.seed_42
d264d748f5d2374a9a62a9e03d03b818505b9ed8
2022-05-17T23:41:41.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
CEBaB
null
CEBaB/roberta-base.CEBaB.absa.inclusive.seed_42
9
null
transformers
12,586
Entry not found
CEBaB/roberta-base.CEBaB.absa.inclusive.seed_66
a8a176c1f6d644c479780d6e519701079fb37905
2022-05-17T23:58:09.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
CEBaB
null
CEBaB/roberta-base.CEBaB.absa.inclusive.seed_66
9
null
transformers
12,587
Entry not found
CEBaB/roberta-base.CEBaB.absa.inclusive.seed_88
a41a0fa98571e89e6121b64c6b9baf47546de6b8
2022-05-18T00:31:49.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
CEBaB
null
CEBaB/roberta-base.CEBaB.absa.inclusive.seed_88
9
null
transformers
12,588
Entry not found
CEBaB/lstm.CEBaB.absa.inclusive.seed_88
cb8653f9e69c2621786fb4f08e7ffdbda9a098c9
2022-05-18T00:43:46.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
CEBaB
null
CEBaB/lstm.CEBaB.absa.inclusive.seed_88
9
null
transformers
12,589
Entry not found
wooglee/distilbert-imdb
b79dde4fd5510260c897a12556f4ab88877bb4a7
2022-05-19T03:32:08.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
wooglee
null
wooglee/distilbert-imdb
9
null
transformers
12,590
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 196 | 0.1951 | 0.9240 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0a0+17540c5 - Datasets 2.2.1 - Tokenizers 0.12.1
austin/medberta_v2
6105b09d9f64db7e6d9eee265a4cecd33ffcef56
2022-05-25T13:39:50.000Z
[ "pytorch", "deberta", "fill-mask", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
fill-mask
false
austin
null
austin/medberta_v2
9
null
transformers
12,591
--- tags: - generated_from_trainer model-index: - name: medberta_v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # medberta_v2 This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7111 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 72 - eval_batch_size: 72 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:------:|:---------------:| | 0.9168 | 0.96 | 40000 | 0.8666 | | 0.8392 | 1.91 | 80000 | 0.7871 | | 0.7867 | 2.87 | 120000 | 0.7432 | | 0.7418 | 3.83 | 160000 | 0.7111 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.10.0+cu113 - Datasets 1.16.1 - Tokenizers 0.12.1
ENM/scibert_scivocab_cased-new-finetuned-leukaemia
05038e706e1a3cc029c66a97a339d94d32335fbb
2022-05-25T16:50:41.000Z
[ "pytorch", "tensorboard", "bert", "text-generation", "transformers", "generated_from_trainer", "model-index" ]
text-generation
false
ENM
null
ENM/scibert_scivocab_cased-new-finetuned-leukaemia
9
null
transformers
12,592
--- tags: - generated_from_trainer model-index: - name: scibert_scivocab_cased-new-finetuned-leukaemia results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # scibert_scivocab_cased-new-finetuned-leukaemia This model is a fine-tuned version of [allenai/scibert_scivocab_cased](https://huggingface.co/allenai/scibert_scivocab_cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9055 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 51 | 2.9065 | | No log | 2.0 | 102 | 1.1973 | | No log | 3.0 | 153 | 0.9055 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
connectivity/bert_ft_qqp-6
92330357bd05984438849534fe8a2d516d63088e
2022-05-21T16:31:24.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
connectivity
null
connectivity/bert_ft_qqp-6
9
null
transformers
12,593
Entry not found
connectivity/bert_ft_qqp-10
3a948a5e1b4787f552da809baad476ccb5f00386
2022-05-21T16:31:45.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
connectivity
null
connectivity/bert_ft_qqp-10
9
null
transformers
12,594
Entry not found
ThePixOne/gptcb
80566986ab584e825475d420c00e246ea3e0d85f
2022-05-21T19:11:35.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
ThePixOne
null
ThePixOne/gptcb
9
1
transformers
12,595
GPT2 345M trained on 30 years of CentraBank's speeches
pritoms/opt-350m-opt-350m-pretrained
c0ce395d367d0a7a026a19a5d34e0e6c1b0dea28
2022-05-21T20:53:36.000Z
[ "pytorch", "tensorboard", "opt", "text-generation", "transformers" ]
text-generation
false
pritoms
null
pritoms/opt-350m-opt-350m-pretrained
9
null
transformers
12,596
Entry not found
spital/gpt2-small-czech-cs
8995bc6ac4b78abaee3f0c46a1e211fa576dac11
2022-05-25T15:11:14.000Z
[ "pytorch", "gpt2", "text-generation", "cs", "dataset:wikipedia", "transformers", "license:cc-by-sa-4.0" ]
text-generation
false
spital
null
spital/gpt2-small-czech-cs
9
null
transformers
12,597
--- language: cs widget: - text: "Umělá inteligence pomůže lidstvu překonat budoucí" example_title: "Umělá inteligence ..." - text: "Současný pokrok v oblasti umělých neuronových sítí představuje" example_title: "Současný pokrok ..." - text: "Z hlediska obecné teorie relativity" example_title: "Z hlediska ..." - text: "Vědci objevili šokující nález - stádo jednorožců žijící v odlehlém, dosud neprobádaném údolí v Andách. Ještě větším překvapením pro vědce byla skutečnost, že jednorožci mluvili" example_title: "Vědci objevili ..." license: cc-by-sa-4.0 tags: - text-generation - transformers - pytorch - gpt2 datasets: - wikipedia --- # GPT2-small-czech-cs: a Language Model for Czech text generation (and more NLP tasks ...) ## Introduction GPT2-small-czech-cs is a first experimental model for Czech language based on the GPT-2 small model. It was trained on Czech Wikipedia using **Transfer Learning and Fine-tuning techniques** in about over a weekend on one GPU NVIDIA GTX 1080ti and with about 1GB of training data (cswiki). A training server with couple GPUs for experiments and one RTX 3080 ti was generously provided by [ONYX engineering, spol. s r.o.](http://www.onyx.cz/). This experiment is a proof-of-concept that it is possible to get a state-of-the-art language model in any language with low resources. It was fine-tuned from the [English pre-trained GPT-2 small](https://huggingface.co/gpt2) using the Hugging Face libraries (Transformers and Tokenizers) wrapped into the [fastai2](https://dev.fast.ai/) Deep Learning framework. All the fine-tuning fastai v2 techniques were used. This work was inspired by [Faster than training from scratch — Fine-tuning the English GPT-2 in any language with Hugging Face and fastai v2 (practical case with Portuguese)](https://medium.com/@pierre_guillou/faster-than-training-from-scratch-fine-tuning-the-english-gpt-2-in-any-language-with-hugging-f2ec05c98787), citation below. It is now available on Hugging Face under [gpt2-small-czech-cs](https://huggingface.co/spital/gpt2-small-czech-cs). We release it under [CC BY SA 4.0 license](https://creativecommons.org/licenses/by-sa/4.0/) (i.e. allowing commercial use). For further information or requests, please post a Github issue at [Github - gpt2-small-czech-cs](https://github.com/spital/gpt2-small-czech-cs). ## Model description *Note: information copied/pasted from [Model: gpt2 >> Model description](https://huggingface.co/gpt2#model-description)* GPT-2 is a transformers model pretrained on a very large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was trained to guess the next word in sentences. More precisely, inputs are sequences of continuous text of a certain length and the targets are the same sequence, shifted one token (word or piece of word) to the right. The model uses internally a mask-mechanism to make sure the predictions for the token `i` only uses the inputs from `1` to `i` but not the future tokens. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks. The model is best at what it was pretrained for however, which is generating texts from a prompt. ## How to use GPT2-small-czech-cs with HuggingFace (PyTorch) ### Load the model and its sub-word tokenizer (Byte-level BPE) ```python from transformers import GPT2Tokenizer, GPT2LMHeadModel pretrained = 'spital/gpt2-small-czech-cs' # a local directory or huggingface model name tokenizer = GPT2Tokenizer.from_pretrained(pretrained) model = GPT2LMHeadModel.from_pretrained(pretrained, pad_token_id=tokenizer.eos_token_id) # Sequence length max is 1024 tokenizer.model_max_length = 1024 # disable dropout (or leave in train mode to finetune) model.eval() ``` ### Generate one word ```python import torch # input sequence text = "Umělá inteligence pomůže lidstvu překonat budoucí" inp_tokens = tokenizer(text, return_tensors="pt") # model output outputs = model(**inp_tokens, labels=inp_tokens["input_ids"]) loss, logits = outputs[:2] predicted_index = torch.argmax(logits[0, -1, :]).item() predicted_text = tokenizer.decode([predicted_index]) # results print('input text:', text) print('predicted text:', predicted_text) # predicted text: problémy ``` ### Generate few full sequences ```python text = "Umělá inteligence pomůže lidstvu překonat budoucí" encoded = tokenizer.encode(text, return_tensors='pt') # torch.random.manual_seed(0) # if you need reproducibility sample_outputs = model.generate(encoded, do_sample=True, max_length=encoded.size()[1]+20, no_repeat_ngram_size=2, top_p=0.95, top_k=50, temperature=0.65, num_return_sequences=3) for i, sample_output in enumerate(sample_outputs): print("{}: {}\n".format(i, tokenizer.decode(sample_output, skip_special_tokens=True))) ``` ## Limitations and bias The training data used for this model come from Czech Wikipedia dump. We know it contains a lot of unfiltered content from the internet, which is far from neutral. As the openAI team themselves point out in their model card: > Because large-scale language models like GPT-2 do not distinguish fact from fiction, we don't support use-cases that require the generated text to be true. Additionally, language models like GPT-2 reflect the biases inherent to the systems they were trained on, so we do not recommend that they be deployed into systems that interact with humans > unless the deployers first carry out a study of biases relevant to the intended use-case. We found no statistically significant difference in gender, race, and religious bias probes between 774M and 1.5B, implying all versions of GPT-2 should be approached with similar levels of caution around use cases that are sensitive to biases around human attributes. ## Author Czech GPT-2 small was trained and evaluated by [Jiri Spitalsky](https://www.linkedin.com/in/jiri-spitalsky-09400a2) thanks to the computing power of the GPUs and other hardware generously provided by [ONYX engineering, spol. s r.o.](http://www.onyx.cz/). ## Citation My special thanks go to Pierre Guillou for his work **GPorTuguese-2 (Portuguese GPT-2 small): a Language Model for Portuguese text generation (and more NLP tasks...)**, my work would not be possible without it.
BaxterAI/finetuning-sentiment-model-3000-samples
ab22bd8bccef536ed64ca7db8e0c46f754e50d65
2022-05-24T01:22:20.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:amazon_polarity", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
BaxterAI
null
BaxterAI/finetuning-sentiment-model-3000-samples
9
null
transformers
12,598
--- license: apache-2.0 tags: - generated_from_trainer datasets: - amazon_polarity metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: amazon_polarity type: amazon_polarity args: amazon_polarity metrics: - name: Accuracy type: accuracy value: 0.9225 - name: F1 type: f1 value: 0.9240816326530612 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the amazon_polarity dataset. It achieves the following results on the evaluation set: - Loss: 0.8170 - Accuracy: 0.9225 - F1: 0.9241 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
unlisboa/bart_qa_assistant
255f622844fd8aafde30beaa8e54a6e42619dc5d
2022-05-24T18:39:18.000Z
[ "pytorch", "bart", "text2text-generation", "en", "dataset:eli5", "dataset:stackexchange(pets, cooking, gardening, diy, crafts)", "transformers", "generative qa", "autotrain_compatible" ]
text2text-generation
false
unlisboa
null
unlisboa/bart_qa_assistant
9
2
transformers
12,599
--- language: en tags: - generative qa datasets: - eli5 - stackexchange(pets, cooking, gardening, diy, crafts) --- Work by [Frederico Vicente](https://huggingface.co/mrvicente) & [Diogo Tavares](https://huggingface.co/d-c-t). We finetuned BART Large for the task of generative question answering. It was trained on eli5, askScience and stackexchange using the following forums: pets, cooking, gardening, diy, crafts. ### Usage ```python from transformers import ( BartForConditionalGeneration, BartTokenizer ) import torch import json def read_json_file_2_dict(filename, store_dir='.'): with open(f'{store_dir}/{filename}', 'r', encoding='utf-8') as file: return json.load(file) def get_device(): # If there's a GPU available... if torch.cuda.is_available(): device = torch.device("cuda") n_gpus = torch.cuda.device_count() first_gpu = torch.cuda.get_device_name(0) print(f'There are {n_gpus} GPU(s) available.') print(f'GPU gonna be used: {first_gpu}') else: print('No GPU available, using the CPU instead.') device = torch.device("cpu") return device model_name = 'unlisboa/bart_qa_assistant' tokenizer = BartTokenizer.from_pretrained(model_name) device = get_device() model = BartForConditionalGeneration.from_pretrained(model_name).to(device) model.eval() model_input = tokenizer(question, truncation=True, padding=True, return_tensors="pt") generated_answers_encoded = model.generate(input_ids=model_input["input_ids"].to(device),attention_mask=model_input["attention_mask"].to(device), force_words_ids=None, min_length=1, max_length=100, do_sample=True, early_stopping=True, num_beams=4, temperature=1.0, top_k=None, top_p=None, # eos_token_id=tokenizer.eos_token_id, no_repeat_ngram_size=2, num_return_sequences=1, return_dict_in_generate=True, output_scores=True) response = tokenizer.batch_decode(generated_answers_encoded['sequences'], skip_special_tokens=True,clean_up_tokenization_spaces=True) print(response) ``` Have fun!