modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
list
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
Jeevesh8/init_bert_ft_qqp-75
a0ada8940b467a7d124a2ca4f5088fca3022d841
2022-06-02T12:44:57.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-75
8
null
transformers
13,500
Entry not found
Jeevesh8/init_bert_ft_qqp-76
84e0d05e290506700a58e3795e678c03dc621388
2022-06-02T12:41:11.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-76
8
null
transformers
13,501
Entry not found
Jeevesh8/init_bert_ft_qqp-78
2a1288c7439bae7d22f3c609776996daeba426fa
2022-06-02T12:42:12.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-78
8
null
transformers
13,502
Entry not found
Jeevesh8/init_bert_ft_qqp-80
a4c519ea25f9f1e5aa94282d6066a72c800fd4da
2022-06-02T12:42:15.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-80
8
null
transformers
13,503
Entry not found
Jeevesh8/init_bert_ft_qqp-79
ba8692a3a87b7a8eb7258a88a8b9fd9e729b1aca
2022-06-02T12:42:12.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-79
8
null
transformers
13,504
Entry not found
Jeevesh8/init_bert_ft_qqp-77
6062d444b32992633b4fab7f645cdd6798281e36
2022-06-02T12:42:12.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-77
8
null
transformers
13,505
Entry not found
Jeevesh8/init_bert_ft_qqp-99
668c3092c8b34ae9df7d3a94e25b98fe18dec912
2022-06-02T12:43:58.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-99
8
null
transformers
13,506
Entry not found
Jeevesh8/init_bert_ft_qqp-92
681b119cfb091631b79d50aff29247bf855686e4
2022-06-02T12:41:26.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-92
8
null
transformers
13,507
Entry not found
Jeevesh8/init_bert_ft_qqp-91
6a86e5bd7cb3c2fb929e7ef64d12d0dd2eed323b
2022-06-02T12:41:18.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-91
8
null
transformers
13,508
Entry not found
Jeevesh8/init_bert_ft_qqp-89
d66f520df2d8884b3be138b13d6e760368aca9b3
2022-06-02T12:41:27.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-89
8
null
transformers
13,509
Entry not found
Jeevesh8/init_bert_ft_qqp-81
afd11401892664d7470fd3f85dde2c75f63aa510
2022-06-02T12:41:24.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-81
8
null
transformers
13,510
Entry not found
Jeevesh8/init_bert_ft_qqp-84
14dc960a373ee62b6cb673df04285f49ad731539
2022-06-02T12:41:33.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-84
8
null
transformers
13,511
Entry not found
Jeevesh8/init_bert_ft_qqp-88
010a95442cb29aa8a8cfda7273084044724498ab
2022-06-02T12:41:27.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-88
8
null
transformers
13,512
Entry not found
Jeevesh8/init_bert_ft_qqp-83
70628e02026e820b7cb0396ba710146fde9d75d2
2022-06-02T12:41:34.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-83
8
null
transformers
13,513
Entry not found
Jeevesh8/init_bert_ft_qqp-98
7379dc799a392be56ba4405501f480203153708f
2022-06-02T12:41:42.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-98
8
null
transformers
13,514
Entry not found
Jeevesh8/init_bert_ft_qqp-82
ad2210b9cfd99154786d366acf443ea3f47c56b5
2022-06-02T12:41:27.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-82
8
null
transformers
13,515
Entry not found
Jeevesh8/init_bert_ft_qqp-97
4e2647ff882d4864591183f8968687bcae6a02af
2022-06-02T12:41:29.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-97
8
null
transformers
13,516
Entry not found
Jeevesh8/init_bert_ft_qqp-93
834698602a79c01208db04af60775289f9fdeba6
2022-06-02T12:41:27.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-93
8
null
transformers
13,517
Entry not found
Jeevesh8/init_bert_ft_qqp-87
e32bf0a4bfd414e6d84e9164aca293022eb24b3c
2022-06-02T12:41:42.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-87
8
null
transformers
13,518
Entry not found
Jeevesh8/init_bert_ft_qqp-94
4b797c8df2686d6a6e039b19a8a6a8655c7430a7
2022-06-02T12:41:32.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-94
8
null
transformers
13,519
Entry not found
Jeevesh8/init_bert_ft_qqp-85
e1d5b1119599be2a84dec340df6ab84070f93053
2022-06-02T12:41:34.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-85
8
null
transformers
13,520
Entry not found
Jeevesh8/init_bert_ft_qqp-86
d10100875cfb9ac67a7e63d67bb3fa3d98db7fb7
2022-06-02T12:41:27.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-86
8
null
transformers
13,521
Entry not found
Jeevesh8/init_bert_ft_qqp-95
87356dbb5664d53f73a87de105b498d7d1e5e0b2
2022-06-02T12:41:45.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-95
8
null
transformers
13,522
Entry not found
menbom/distilbert-base-uncased-finetuned-emotion
000db8d5d75399dea19953fa67a7e23b0d1792fe
2022-06-03T09:53:07.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
menbom
null
menbom/distilbert-base-uncased-finetuned-emotion
8
null
transformers
13,523
Entry not found
Jeevesh8/lecun_feather_berts-9
dc57a1528d457b9d3b7b69bbd8e8505d0626d1ad
2022-06-04T06:52:11.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/lecun_feather_berts-9
8
null
transformers
13,524
Entry not found
Jeevesh8/lecun_feather_berts-21
462d568601e833d481578ad0c293cefb19120d4f
2022-06-04T06:52:11.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/lecun_feather_berts-21
8
null
transformers
13,525
Entry not found
ITESM/sentece-embeddings-BETO
59076e57faab03b52224cbadf6c9d8d3d4ced220
2022-06-05T05:05:05.000Z
[ "pytorch", "bert", "feature-extraction", "dataset:stackexchange_xml", "dataset:code_search_net", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
ITESM
null
ITESM/sentece-embeddings-BETO
8
null
sentence-transformers
13,526
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers datasets: - stackexchange_xml - code_search_net --- # ITESM/sentece-embeddings-BETO This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('ITESM/sentece-embeddings-BETO') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('ITESM/sentece-embeddings-BETO') model = AutoModel.from_pretrained('ITESM/sentece-embeddings-BETO') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=ITESM/sentece-embeddings-BETO) ## Training The model was trained with the parameters: **DataLoader**: `sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 16 with parameters: ``` {'batch_size': 100} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 1, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 2, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
clhuang/albert-sentiment
844af8efc9d031e01ca201becbc55922e1222e38
2022-06-07T09:11:08.000Z
[ "pytorch", "bert", "text-classification", "tw", "transformers", "albert", "classification", "license:afl-3.0" ]
text-classification
false
clhuang
null
clhuang/albert-sentiment
8
null
transformers
13,527
--- language: - tw tags: - albert - classification license: afl-3.0 metrics: - Accuracy --- # 繁體中文情緒分類: 負面(0)、正面(1) 依據ckiplab/albert預訓練模型微調,訓練資料集只有8萬筆,做為課程的範例模型。 # 使用範例: from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("clhuang/albert-sentiment") model = AutoModelForSequenceClassification.from_pretrained("clhuang/albert-sentiment") ## Pediction target_names=['Negative','Positive'] max_length = 200 # 最多字數 若超出模型訓練時的字數,以模型最大字數為依據 def get_sentiment_proba(text): # prepare our text into tokenized sequence inputs = tokenizer(text, padding=True, truncation=True, max_length=max_length, return_tensors="pt") # perform inference to our model outputs = model(**inputs) # get output probabilities by doing softmax probs = outputs[0].softmax(1) response = {'Negative': round(float(probs[0, 0]), 2), 'Positive': round(float(probs[0, 1]), 2)} # executing argmax function to get the candidate label #return probs.argmax() return response get_sentiment_proba('我喜歡這本書') get_sentiment_proba('不喜歡這款產品')
anlausch/aq_bert_ibm
b6fae62660e27cce8b180b13012e7e67b86d6de8
2022-06-06T08:10:46.000Z
[ "pytorch", "bert", "text-classification", "transformers", "license:mit" ]
text-classification
false
anlausch
null
anlausch/aq_bert_ibm
8
null
transformers
13,528
--- license: mit --- Model trained on IBMArgRank30k for 2 epochs with a learning rate of 3e-5 (optimised via grid search) in a similar way as in Lauscher et al. 2020 (see below). The original model was Tensorflow-based. This model corresponds to a reimplementation with Transformers & PyTorch. ``` @inproceedings{lauscher-etal-2020-rhetoric, title = "Rhetoric, Logic, and Dialectic: Advancing Theory-based Argument Quality Assessment in Natural Language Processing", author = "Lauscher, Anne and Ng, Lily and Napoles, Courtney and Tetreault, Joel", booktitle = "Proceedings of the 28th International Conference on Computational Linguistics", month = dec, year = "2020", address = "Barcelona, Spain (Online)", publisher = "International Committee on Computational Linguistics", url = "https://aclanthology.org/2020.coling-main.402", doi = "10.18653/v1/2020.coling-main.402", pages = "4563--4574", abstract = "Though preceding work in computational argument quality (AQ) mostly focuses on assessing overall AQ, researchers agree that writers would benefit from feedback targeting individual dimensions of argumentation theory. However, a large-scale theory-based corpus and corresponding computational models are missing. We fill this gap by conducting an extensive analysis covering three diverse domains of online argumentative writing and presenting GAQCorpus: the first large-scale English multi-domain (community Q{\&}A forums, debate forums, review forums) corpus annotated with theory-based AQ scores. We then propose the first computational approaches to theory-based assessment, which can serve as strong baselines for future work. We demonstrate the feasibility of large-scale AQ annotation, show that exploiting relations between dimensions yields performance improvements, and explore the synergies between theory-based prediction and practical AQ assessment.", } ```
miyagawaorj/distilbert-base-uncased-distilled-clinc
172cff6eebb15590363a2e7d384771596327b957
2022-06-06T18:42:51.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:clinc_oos", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
miyagawaorj
null
miyagawaorj/distilbert-base-uncased-distilled-clinc
8
null
transformers
13,529
--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-distilled-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos args: plus metrics: - name: Accuracy type: accuracy value: 0.9506451612903226 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-distilled-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.2466 - Accuracy: 0.9506 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.9383 | 1.0 | 954 | 1.4511 | 0.8397 | | 0.8485 | 2.0 | 1908 | 0.4733 | 0.9255 | | 0.2822 | 3.0 | 2862 | 0.3070 | 0.9429 | | 0.1515 | 4.0 | 3816 | 0.2664 | 0.9490 | | 0.106 | 5.0 | 4770 | 0.2641 | 0.95 | | 0.0874 | 6.0 | 5724 | 0.2536 | 0.9510 | | 0.0764 | 7.0 | 6678 | 0.2475 | 0.9506 | | 0.0718 | 8.0 | 7632 | 0.2450 | 0.9513 | | 0.068 | 9.0 | 8586 | 0.2473 | 0.9497 | | 0.0664 | 10.0 | 9540 | 0.2466 | 0.9506 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0 - Datasets 1.16.1 - Tokenizers 0.12.1
suonbo/bert-finetuned-ner
7340d5af30baf0e5002597558eacee03f7685e38
2022-06-07T07:24:31.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
suonbo
null
suonbo/bert-finetuned-ner
8
null
transformers
13,530
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9335982778605729 - name: Recall type: recall value: 0.9488387748232918 - name: F1 type: f1 value: 0.9411568316501127 - name: Accuracy type: accuracy value: 0.9854447518690763 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0637 - Precision: 0.9336 - Recall: 0.9488 - F1: 0.9412 - Accuracy: 0.9854 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0897 | 1.0 | 1756 | 0.0648 | 0.9152 | 0.9408 | 0.9278 | 0.9837 | | 0.0384 | 2.0 | 3512 | 0.0601 | 0.9277 | 0.9507 | 0.9391 | 0.9859 | | 0.0201 | 3.0 | 5268 | 0.0637 | 0.9336 | 0.9488 | 0.9412 | 0.9854 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
ziq/depression_suggestion
aa16c86702944c32561c2bd2c37d25819087909e
2022-06-07T07:18:44.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-generation
false
ziq
null
ziq/depression_suggestion
8
null
transformers
13,531
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: depression_suggestion results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # depression_suggestion This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.3740 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 70 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 3 | 60.7965 | | No log | 2.0 | 6 | 60.5778 | | No log | 3.0 | 9 | 60.1954 | | No log | 4.0 | 12 | 59.6487 | | No log | 5.0 | 15 | 58.9372 | | No log | 6.0 | 18 | 58.0582 | | No log | 7.0 | 21 | 57.0106 | | No log | 8.0 | 24 | 55.7910 | | No log | 9.0 | 27 | 54.3934 | | No log | 10.0 | 30 | 52.8099 | | No log | 11.0 | 33 | 51.0219 | | No log | 12.0 | 36 | 49.0127 | | No log | 13.0 | 39 | 46.7522 | | No log | 14.0 | 42 | 44.2033 | | No log | 15.0 | 45 | 41.3146 | | No log | 16.0 | 48 | 37.9982 | | No log | 17.0 | 51 | 34.2236 | | No log | 18.0 | 54 | 29.8068 | | No log | 19.0 | 57 | 24.9750 | | No log | 20.0 | 60 | 20.0707 | | No log | 21.0 | 63 | 15.5166 | | No log | 22.0 | 66 | 12.0328 | | No log | 23.0 | 69 | 9.1012 | | No log | 24.0 | 72 | 7.2116 | | No log | 25.0 | 75 | 6.3149 | | No log | 26.0 | 78 | 5.8127 | | No log | 27.0 | 81 | 5.4548 | | No log | 28.0 | 84 | 5.1684 | | No log | 29.0 | 87 | 4.8927 | | No log | 30.0 | 90 | 4.6128 | | No log | 31.0 | 93 | 4.3782 | | No log | 32.0 | 96 | 4.1996 | | No log | 33.0 | 99 | 4.0981 | | No log | 34.0 | 102 | 4.0022 | | No log | 35.0 | 105 | 3.9224 | | No log | 36.0 | 108 | 3.8381 | | No log | 37.0 | 111 | 3.7660 | | No log | 38.0 | 114 | 3.6887 | | No log | 39.0 | 117 | 3.6483 | | No log | 40.0 | 120 | 3.6020 | | No log | 41.0 | 123 | 3.5590 | | No log | 42.0 | 126 | 3.5199 | | No log | 43.0 | 129 | 3.4646 | | No log | 44.0 | 132 | 3.4098 | | No log | 45.0 | 135 | 3.3684 | | No log | 46.0 | 138 | 3.3290 | | No log | 47.0 | 141 | 3.3113 | | No log | 48.0 | 144 | 3.3033 | | No log | 49.0 | 147 | 3.2928 | | No log | 50.0 | 150 | 3.2776 | | No log | 51.0 | 153 | 3.2587 | | No log | 52.0 | 156 | 3.2487 | | No log | 53.0 | 159 | 3.2390 | | No log | 54.0 | 162 | 3.2318 | | No log | 55.0 | 165 | 3.2311 | | No log | 56.0 | 168 | 3.2377 | | No log | 57.0 | 171 | 3.2554 | | No log | 58.0 | 174 | 3.2720 | | No log | 59.0 | 177 | 3.2781 | | No log | 60.0 | 180 | 3.2882 | | No log | 61.0 | 183 | 3.3089 | | No log | 62.0 | 186 | 3.3352 | | No log | 63.0 | 189 | 3.3519 | | No log | 64.0 | 192 | 3.3233 | | No log | 65.0 | 195 | 3.3028 | | No log | 66.0 | 198 | 3.3153 | | No log | 67.0 | 201 | 3.3422 | | No log | 68.0 | 204 | 3.3753 | | No log | 69.0 | 207 | 3.4003 | | No log | 70.0 | 210 | 3.3740 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
RogerKam/roberta_fine_tuned_sentiment_financial_news
dd23f912e7c3977d38aa981a9e678ad577863c9e
2022-06-07T11:25:35.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
RogerKam
null
RogerKam/roberta_fine_tuned_sentiment_financial_news
8
null
transformers
13,532
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: roberta_fine_tuned_sentiment_financial_news results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta_fine_tuned_sentiment_financial_news This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6362 - Accuracy: 0.8826 - F1 Score: 0.8865 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.19.2 - Pytorch 1.10.0+cu111 - Datasets 2.2.2 - Tokenizers 0.12.1
kevincstowe/concept2seq-cefr
41274c9a9c20d078a84a15dad98badc03ea2326f
2022-06-08T13:30:54.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
kevincstowe
null
kevincstowe/concept2seq-cefr
8
null
transformers
13,533
Entry not found
aspis/swin-base-finetuned-snacks
07ee36696cdaa896c28e1dac2686037adbda2e1e
2022-06-08T18:43:00.000Z
[ "pytorch", "tensorboard", "swin", "image-classification", "dataset:snacks", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
image-classification
false
aspis
null
aspis/swin-base-finetuned-snacks
8
null
transformers
13,534
--- license: apache-2.0 tags: - generated_from_trainer datasets: - snacks metrics: - accuracy model-index: - name: swin-base-finetuned-snacks results: - task: name: Image Classification type: image-classification dataset: name: snacks type: snacks args: default metrics: - name: Accuracy type: accuracy value: 0.9455497382198953 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-base-finetuned-snacks This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224](https://huggingface.co/microsoft/swin-base-patch4-window7-224) on the snacks dataset. It achieves the following results on the evaluation set: - Loss: 0.2404 - Accuracy: 0.9455 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0044 | 1.0 | 38 | 0.2981 | 0.9309 | | 0.0023 | 2.0 | 76 | 0.2287 | 0.9445 | | 0.0012 | 3.0 | 114 | 0.2404 | 0.9455 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
RomanCast/camembert-miam-loria-finetuned
41f60ae6b81e3cc8a7050018720de1bf822663c3
2022-06-14T21:35:49.000Z
[ "pytorch", "camembert", "text-classification", "fr", "transformers" ]
text-classification
false
RomanCast
null
RomanCast/camembert-miam-loria-finetuned
8
null
transformers
13,535
--- language: - fr ---
Peltarion/dnabert-minilm-mini
22478613bea9563b77b6a4168300731eb58f9341
2022-07-02T11:29:19.000Z
[ "pytorch", "bert", "transformers", "DNA", "license:mit" ]
null
false
Peltarion
null
Peltarion/dnabert-minilm-mini
8
null
transformers
13,536
--- tags: - DNA license: mit --- ## MiniDNA mini model This is a distilled version of [DNABERT](https://github.com/jerryji1993/DNABERT) by using MiniLM technique. It has a BERT architecture with 3 layers and 384 hidden units, pre-trained on 6-mer DNA sequences. For more details on the pre-training scheme and methods, please check the original [thesis report](http://www.diva-portal.org/smash/record.jsf?dswid=846&pid=diva2%3A1676068&c=1&searchType=SIMPLE&language=en&query=joana+palés&af=%5B%5D&aq=%5B%5B%5D%5D&aq2=%5B%5B%5D%5D&aqe=%5B%5D&noOfRows=50&sortOrder=author_sort_asc&sortOrder2=title_sort_asc&onlyFullText=false&sf=all).. ## How to Use The model can be used to fine-tune on a downstream genomic task, e.g. promoter identification. ```python import torch from transformers import BertForSequenceClassification model = BertForSequenceClassification.from_pretrained('Peltarion/dnabert-minilm-mini') ``` More details on how to fine-tune the model, dataset and additional source codes are available on [github.com/joanaapa/Distillation-DNABERT-Promoter](https://github.com/joanaapa/Distillation-DNABERT-Promoter).
nboudad/Maghribert
496e394fd2fd1f11d2795f14644a92ae7456ccc6
2022-06-14T09:27:08.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
nboudad
null
nboudad/Maghribert
8
null
transformers
13,537
--- widget: - text: "جاب ليا [MASK] ." example_title: "example1" - text: "مشيت نجيب [MASK] فالفرماسيان ." example_title: "example2" ---
speechbrain/asr-wav2vec2-dvoice-swahili
6a20f71cb41407664d7e6bdf315400cd4cefd7e1
2022-06-10T00:57:21.000Z
[ "wav2vec2", "feature-extraction", "sw", "dataset:Dvoice", "speechbrain", "CTC", "pytorch", "Transformer", "license:apache-2.0", "automatic-speech-recognition" ]
automatic-speech-recognition
false
speechbrain
null
speechbrain/asr-wav2vec2-dvoice-swahili
8
null
speechbrain
13,538
--- language: "sw" thumbnail: pipeline_tag: automatic-speech-recognition tags: - CTC - pytorch - speechbrain - Transformer license: "apache-2.0" datasets: - Dvoice metrics: - wer - cer --- <iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe> <br/><br/> # wav2vec 2.0 with CTC/Attention trained on DVoice Swahili (No LM) This repository provides all the necessary tools to perform automatic speech recognition from an end-to-end system pretrained on a [DVoice-VoxLingua107](https://zenodo.org/record/6342622) Swahili dataset within SpeechBrain. For a better experience, we encourage you to learn more about [SpeechBrain](https://speechbrain.github.io). | DVoice Release | Val. CER | Val. WER | Test CER | Test WER | |:-------------:|:---------------------------:| -----:| -----:| -----:| | v2.0 | 8.83 | 22.78 | 9.46 | 23.16 | # Pipeline description This ASR system is composed of 2 different but linked blocks: - Tokenizer (unigram) that transforms words into subword units and is trained with the train transcriptions. - Acoustic model (wav2vec2.0 + CTC). A pretrained wav2vec 2.0 model ([facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53)) is combined with two DNN layers and finetuned on the Darija dataset. The obtained final acoustic representation is given to the CTC greedy decoder. The system is trained with recordings sampled at 16kHz (single channel). The code will automatically normalize your audio (i.e., resampling + mono channel selection) when calling *transcribe_file* if needed. # Install SpeechBrain First of all, please install transformers and SpeechBrain with the following command: ``` pip install speechbrain transformers ``` Please notice that we encourage you to read the SpeechBrain tutorials and learn more about [SpeechBrain](https://speechbrain.github.io). # Transcribing your own audio files (in Swahili) ```python from speechbrain.pretrained import EncoderASR asr_model = EncoderASR.from_hparams(source="speechbrain/asr-wav2vec2-dvoice-swahili", savedir="pretrained_models/asr-wav2vec2-dvoice-swahili") asr_model.transcribe_file('speechbrain/asr-wav2vec2-dvoice-swahili/example_swahili.wav') ``` # Inference on GPU To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method. # Training The model was trained with SpeechBrain. To train it from scratch follow these steps: 1. Clone SpeechBrain: ```bash git clone https://github.com/speechbrain/speechbrain/ ``` 2. Install it: ```bash cd speechbrain pip install -r requirements.txt pip install -e . ``` 3. Run Training: ```bash cd recipes/DVoice/ASR/CTC python train_with_wav2vec2.py hparams/train_sw_with_wav2vec.yaml --data_folder=/localscratch/dvoice_recipe_data/ ``` Please, read the README.md carefully before running the experiment to make sure the dataset is structured as expected. You can find our training results (models, logs, etc) [here](https://drive.google.com/drive/folders/1vNT7RjRuELs7pumBHmfYsrOp9m46D0ym?usp=sharing). # Limitations The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets. # About DVoice DVoice is a community initiative that aims to provide African low resources languages with data and models to facilitate their use of voice technologies. The lack of data on these languages makes it necessary to collect data using methods that are specific to each one. Two different approaches are currently used: the DVoice platforms ([https://dvoice.ma](https://dvoice.ma) and [https://dvoice.sn](https://dvoice.sn)), which are based on Mozilla Common Voice, for collecting authentic recordings from the community, and transfer learning techniques for automatically labeling recordings that are retrieved from social media. The DVoice platform currently manages 7 languages including Darija (Moroccan Arabic dialect) whose dataset appears on this version, Wolof, Mandingo, Serere, Pular, Diola, and Soninke. For this project, AIOX Labs and the SI2M Laboratory are joining forces to build the future of technologies together. # About AIOX Labs Based in Rabat, London, and Paris, AIOX-Labs mobilizes artificial intelligence technologies to meet the business needs and data projects of companies. - He is at the service of the growth of groups, the optimization of processes, or the improvement of the customer experience. - AIOX-Labs is multi-sector, from fintech to industry, including retail and consumer goods. - Business-ready data products with a solid algorithmic base and adaptability for the specific needs of each client. - A complementary team made up of doctors in AI and business experts with a solid scientific base and international publications. Website: [https://www.aiox-labs.com/](https://www.aiox-labs.com/) # SI2M Laboratory The Information Systems, Intelligent Systems, and Mathematical Modeling Research Laboratory (SI2M) is an academic research laboratory of the National Institute of Statistics and Applied Economics (INSEA). The research areas of the laboratories are Information Systems, Intelligent Systems, Artificial Intelligence, Decision Support, Network, and System Security, and Mathematical Modelling. Website: [SI2M Laboratory](https://insea.ac.ma/index.php/pole-recherche/equipe-de-recherche/150-laboratoire-de-recherche-en-systemes-d-information-systemes-intelligents-et-modelisation-mathematique) # About SpeechBrain SpeechBrain is an open-source and all-in-one speech toolkit. It is designed to be simple, extremely flexible, and user-friendly. Competitive or state-of-the-art performance is obtained in various domains. Website: https://speechbrain.github.io/ GitHub: https://github.com/speechbrain/speechbrain # Referencing SpeechBrain ``` @misc{SB2021, author = {Ravanelli, Mirco and Parcollet, Titouan and Rouhe, Aku and Plantinga, Peter and Rastorgueva, Elena and Lugosch, Loren and Dawalatabad, Nauman and Ju-Chieh, Chou and Heba, Abdel and Grondin, Francois and Aris, William and Liao, Chien-Feng and Cornell, Samuele and Yeh, Sung-Lin and Na, Hwidong and Gao, Yan and Fu, Szu-Wei and Subakan, Cem and De Mori, Renato and Bengio, Yoshua }, title = {SpeechBrain}, year = {2021}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\\\\url{https://github.com/speechbrain/speechbrain}}, } ``` # Acknowledgements This research was supported through computational resources of HPC-MARWAN (www.marwan.ma/hpc) provided by CNRST, Rabat, Morocco. We deeply thank this institution.
nmcahill/mtbi-classifier
20919acd120e18b9b6d80756b6490732ef8f0ad4
2022-06-09T22:00:49.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
nmcahill
null
nmcahill/mtbi-classifier
8
null
transformers
13,539
Entry not found
huggingtweets/tonebot_
24005f3cf1334daaebaf48607714803ff3b479ae
2022-06-11T00:15:41.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/tonebot_
8
null
transformers
13,540
--- language: en thumbnail: http://www.huggingtweets.com/tonebot_/1654906535396/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1447253318380793858/VVNhWBGI_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">tone bot</div> <div style="text-align: center; font-size: 14px;">@tonebot_</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from tone bot. | Data | tone bot | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 0 | | Short tweets | 537 | | Tweets kept | 2713 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2ot29sc5/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @tonebot_'s tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3g614pb8) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3g614pb8/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/tonebot_') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
ahmeddbahaa/mt5-base-finetune-ar-xlsum
2d1694c8bafb98d10acae50e28d99266cd897974
2022-06-12T13:55:10.000Z
[ "pytorch", "tensorboard", "mt5", "text2text-generation", "dataset:xlsum", "transformers", "summarization", "mT5_multilingual_XLSum", "abstractive summarization", "ar", "xlsum", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
summarization
false
ahmeddbahaa
null
ahmeddbahaa/mt5-base-finetune-ar-xlsum
8
null
transformers
13,541
--- license: apache-2.0 tags: - summarization - mT5_multilingual_XLSum - mt5 - abstractive summarization - ar - xlsum - generated_from_trainer datasets: - xlsum model-index: - name: mt5-base-finetune-ar-xlsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-base-finetune-ar-xlsum This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on the xlsum dataset. It achieves the following results on the evaluation set: - Loss: 3.2546 - Rouge-1: 22.2 - Rouge-2: 9.57 - Rouge-l: 20.26 - Gen Len: 19.0 - Bertscore: 71.43 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 250 - num_epochs: 10 - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge-1 | Rouge-2 | Rouge-l | Gen Len | Bertscore | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:-------:|:---------:| | 4.9261 | 1.0 | 585 | 3.6314 | 18.19 | 6.49 | 16.37 | 19.0 | 70.17 | | 3.8429 | 2.0 | 1170 | 3.4253 | 19.45 | 7.58 | 17.73 | 19.0 | 70.35 | | 3.6311 | 3.0 | 1755 | 3.3569 | 20.83 | 8.54 | 18.9 | 19.0 | 70.89 | | 3.4917 | 4.0 | 2340 | 3.3101 | 20.77 | 8.53 | 18.89 | 19.0 | 70.98 | | 3.3873 | 5.0 | 2925 | 3.2867 | 21.47 | 9.0 | 19.54 | 19.0 | 71.23 | | 3.3037 | 6.0 | 3510 | 3.2693 | 21.41 | 9.0 | 19.5 | 19.0 | 71.21 | | 3.2357 | 7.0 | 4095 | 3.2581 | 22.05 | 9.36 | 20.04 | 19.0 | 71.43 | | 3.1798 | 8.0 | 4680 | 3.2522 | 22.21 | 9.56 | 20.23 | 19.0 | 71.41 | | 3.1359 | 9.0 | 5265 | 3.2546 | 22.27 | 9.58 | 20.23 | 19.0 | 71.46 | | 3.0997 | 10.0 | 5850 | 3.2546 | 22.2 | 9.57 | 20.26 | 19.0 | 71.43 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
ilhami/Tr_En_AcademicTranslation
ec914b5c8feaf5ff7b89c2d51e4a8e17c8430fee
2022-06-12T19:05:53.000Z
[ "pytorch", "marian", "text2text-generation", "tr", "en", "dataset:Parallel Corpora for Turkish-English Academic Translations", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
ilhami
null
ilhami/Tr_En_AcademicTranslation
8
null
transformers
13,542
--- language: - tr - en tags: - translation license: apache-2.0 datasets: - Parallel Corpora for Turkish-English Academic Translations metrics: - bleu - sacrebleu --- ## Model Details - **Developed by:** İlhami SEL - **Model type:** Turkish-English Machine Translation -- Transformer Based(6 Layer) - **Language:** Turkish - English - **Resources for more information:** Sel, İ. , Üzen, H. & Hanbay, D. (2021). Creating a Parallel Corpora for Turkish-English Academic Translations . Computer Science , 5th International Artificial Intelligence and Data Processing symposium , 335-340 . DOI: 10.53070/bbd.990959 ```python checkpoint = "ilhami/Tr_En_AcademicTranslation" from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained(checkpoint) model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint).to("cuda") tr= ["Sohbet robotları son yıllarda yaygın bir şekilde kullanılmaya başlanmıştır. ", "İnsanları taklit eden ve daha iyi müşteri memnuniyeti sağlayan sohbet robotları en gelişkin doğal dil işleme tekniklerine ihtiyaç duymaktadır. ", "Bu çalışma sohbet robotu konuşmalarının niyet tahminini geliştirmeye odaklanmıştır." , "Kelime gösterimi için TF-IDF, Doc2vec ve BERT gibi geleneksel ve gelişmiş doğal dil işleme yöntemleri, çoklu sınıf ve çoklu etiket tahmini için ise lojistik regresyon, rastgele orman ve yapay sinir ağları kullanılmıştır." , "Sohbet robotu konuşma veri kümeleri, sinema bileti rezervasyonu, restoran rezervasyonu ve taksi çağırma olmak üzere üç farklı alandan alınmıştır. ", "Bu çalışmanın sonunda, BERT ve BERT ile TF-IDF birleşimi modellerin diğer kombinasyonlardan daha iyi sonuç verdiği görülmüştür. ", "BERT gibi ön eğitimli modellerden faydalanmanın daha iyi bağlamsal anlama sağladığı ortaya çıkmıştır. ", "TF-IDF yerleştirmeleri, BERT gösterimi ile birleştirilerek niyet kategorisi tahmininin iyileştirilmesi amaçlanmıştır."] encoded_text = tokenizer(tr, return_tensors="pt", padding = True).to("cuda") generated_tokens = model.generate(**encoded_text) en = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True) ```
c17hawke/first-model
99b891c42e95902a3ed013eebbcc41a9ffa6397a
2022-06-13T14:02:50.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
c17hawke
null
c17hawke/first-model
8
null
transformers
13,543
# First model
ahmeddbahaa/AraT5-base-finetune-ar-xlsum
2b7822f8219d175196c7d8db2508f20d76d5b292
2022-06-13T15:46:47.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:xlsum", "transformers", "summarization", "Arat5-base", "abstractive summarization", "ar", "xlsum", "generated_from_trainer", "model-index", "autotrain_compatible" ]
summarization
false
ahmeddbahaa
null
ahmeddbahaa/AraT5-base-finetune-ar-xlsum
8
null
transformers
13,544
--- tags: - summarization - Arat5-base - abstractive summarization - ar - xlsum - generated_from_trainer datasets: - xlsum model-index: - name: AraT5-base-finetune-ar-xlsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # AraT5-base-finetune-ar-xlsum This model is a fine-tuned version of [UBC-NLP/AraT5-base](https://huggingface.co/UBC-NLP/AraT5-base) on the xlsum dataset. It achieves the following results on the evaluation set: - Loss: 4.4714 - Rouge-1: 29.55 - Rouge-2: 12.63 - Rouge-l: 25.8 - Gen Len: 18.76 - Bertscore: 73.3 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 250 - num_epochs: 10 - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge-1 | Rouge-2 | Rouge-l | Gen Len | Bertscore | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:-------:|:---------:| | 11.9753 | 1.0 | 293 | 7.0887 | 11.93 | 2.56 | 10.93 | 17.19 | 63.85 | | 6.7818 | 2.0 | 586 | 5.7712 | 19.94 | 6.34 | 17.65 | 18.64 | 69.0 | | 5.9434 | 3.0 | 879 | 5.1083 | 23.51 | 8.56 | 20.66 | 18.88 | 70.78 | | 5.451 | 4.0 | 1172 | 4.8538 | 25.84 | 10.05 | 22.63 | 18.42 | 72.04 | | 5.1643 | 5.0 | 1465 | 4.6910 | 27.23 | 11.13 | 23.83 | 18.78 | 72.45 | | 4.9693 | 6.0 | 1758 | 4.5950 | 28.42 | 11.71 | 24.82 | 18.74 | 72.94 | | 4.8308 | 7.0 | 2051 | 4.5323 | 28.95 | 12.19 | 25.3 | 18.74 | 73.13 | | 4.7284 | 8.0 | 2344 | 4.4956 | 29.19 | 12.37 | 25.53 | 18.76 | 73.18 | | 4.653 | 9.0 | 2637 | 4.4757 | 29.44 | 12.48 | 25.63 | 18.78 | 73.23 | | 4.606 | 10.0 | 2930 | 4.4714 | 29.55 | 12.63 | 25.8 | 18.76 | 73.3 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
course5i/SEAD-L-6_H-256_A-8-wnli
e1e67ce62a98cb06953f006c8bf421d4820f9646
2022-06-12T23:05:39.000Z
[ "pytorch", "tf", "jax", "bert", "text-classification", "en", "dataset:glue", "dataset:wnli", "arxiv:1910.01108", "arxiv:1909.10351", "arxiv:2002.10957", "arxiv:1810.04805", "arxiv:1804.07461", "arxiv:1905.00537", "transformers", "SEAD", "license:apache-2.0" ]
text-classification
false
course5i
null
course5i/SEAD-L-6_H-256_A-8-wnli
8
null
transformers
13,545
--- language: - en license: apache-2.0 tags: - SEAD datasets: - glue - wnli --- ## Paper ## [SEAD: SIMPLE ENSEMBLE AND KNOWLEDGE DISTILLATION FRAMEWORK FOR NATURAL LANGUAGE UNDERSTANDING](https://www.adasci.org/journals/lattice-35309407/?volumes=true&open=621a3b18edc4364e8a96cb63) Aurthors: *Moyan Mei*, *Rohit Sroch* ## Abstract With the widespread use of pre-trained language models (PLM), there has been increased research on how to make them applicable, especially in limited-resource or low latency high throughput scenarios. One of the dominant approaches is knowledge distillation (KD), where a smaller model is trained by receiving guidance from a large PLM. While there are many successful designs for learning knowledge from teachers, it remains unclear how students can learn better. Inspired by real university teaching processes, in this work we further explore knowledge distillation and propose a very simple yet effective framework, SEAD, to further improve task-specific generalization by utilizing multiple teachers. Our experiments show that SEAD leads to better performance compared to other popular KD methods [[1](https://arxiv.org/abs/1910.01108)] [[2](https://arxiv.org/abs/1909.10351)] [[3](https://arxiv.org/abs/2002.10957)] and achieves comparable or superior performance to its teacher model such as BERT [[4](https://arxiv.org/abs/1810.04805)] on total 13 tasks for the GLUE [[5](https://arxiv.org/abs/1804.07461)] and SuperGLUE [[6](https://arxiv.org/abs/1905.00537)] benchmarks. *Moyan Mei and Rohit Sroch. 2022. [SEAD: Simple ensemble and knowledge distillation framework for natural language understanding](https://www.adasci.org/journals/lattice-35309407/?volumes=true&open=621a3b18edc4364e8a96cb63). Lattice, THE MACHINE LEARNING JOURNAL by Association of Data Scientists, 3(1).* ## SEAD-L-6_H-256_A-8-wnli This is a student model distilled from [**BERT base**](https://huggingface.co/bert-base-uncased) as teacher by using SEAD framework on **wnli** task. For weights initialization, we used [microsoft/xtremedistil-l6-h256-uncased](https://huggingface.co/microsoft/xtremedistil-l6-h256-uncased) ## All SEAD Checkpoints Other Community Checkpoints: [here](https://huggingface.co/models?search=SEAD) ## Intended uses & limitations More information needed ### Training hyperparameters Please take a look at the `training_args.bin` file ```python $ import torch $ hyperparameters = torch.load(os.path.join('training_args.bin')) ``` ### Evaluation results | eval_accuracy | eval_runtime | eval_samples_per_second | eval_steps_per_second | eval_loss | eval_samples | |:-------------:|:------------:|:-----------------------:|:---------------------:|:---------:|:------------:| | 0.5634 | 1.2474 | 56.919 | 2.405 | 0.6859 | 71 | ### Framework versions - Transformers >=4.8.0 - Pytorch >=1.6.0 - TensorFlow >=2.5.0 - Flax >=0.3.5 - Datasets >=1.10.2 - Tokenizers >=0.11.6 If you use these models, please cite the following paper: ``` @article{article, author={Mei, Moyan and Sroch, Rohit}, title={SEAD: Simple Ensemble and Knowledge Distillation Framework for Natural Language Understanding}, volume={3}, number={1}, journal={Lattice, The Machine Learning Journal by Association of Data Scientists}, day={26}, year={2022}, month={Feb}, url = {www.adasci.org/journals/lattice-35309407/?volumes=true&open=621a3b18edc4364e8a96cb63} } ```
binay1999/distilbert-cybertexts-text-classification
d67f6896bf4a4496ee27848b347d9ac344723d9f
2022-06-13T08:09:15.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
binay1999
null
binay1999/distilbert-cybertexts-text-classification
8
null
transformers
13,546
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-cybertexts-text-classification results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-cybertexts-text-classification This model is a fine-tuned version of [binay1999/distilbert-cybertexts-preprocessed](https://huggingface.co/binay1999/distilbert-cybertexts-preprocessed) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1104 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.1374 | 1.0 | 1000 | 0.1215 | | 0.0769 | 2.0 | 2000 | 0.0959 | | 0.039 | 3.0 | 3000 | 0.1104 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
sampras343/wav2vec2-keyword-spotting-int8
794ac9baf8839daf6e4be2ac319faa57604b6277
2022-06-13T09:32:43.000Z
[ "pytorch", "wav2vec2", "audio-classification", "transformers" ]
audio-classification
false
sampras343
null
sampras343/wav2vec2-keyword-spotting-int8
8
null
transformers
13,547
[anton-l/wav2vec2-base-ft-keyword-spotting](https://huggingface.co/anton-l/wav2vec2-base-ft-keyword-spotting) model quantized with [Optimum OpenVINO](https://github.com/dkurt/optimum-openvino/). | Accuracy on eval (baseline) | Accuracy on eval (quantized) | |-----------------------------|----------------------------------------| | 0.9828 | 0.9553 (-0.0274) |
Alireza1044/mobilebert_cola
6ff2be205729195ac1817d7bdbb93716078e97c6
2022-06-14T09:02:15.000Z
[ "pytorch", "tensorboard", "mobilebert", "text-classification", "en", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Alireza1044
null
Alireza1044/mobilebert_cola
8
null
transformers
13,548
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: cola results: - task: name: Text Classification type: text-classification dataset: name: GLUE COLA type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5277813760438573 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # cola This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE COLA dataset. It achieves the following results on the evaluation set: - Loss: 0.6337 - Matthews Correlation: 0.5278 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0 - Datasets 2.2.2 - Tokenizers 0.12.1
kpeyton/distilbert-base-uncased-finetuned-atuscol
1fd4092c3e5754607e3bf081febbaade1a44a5c0
2022-06-20T10:28:05.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
kpeyton
null
kpeyton/distilbert-base-uncased-finetuned-atuscol
8
null
transformers
13,549
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-atuscol results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-atuscol This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6200 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 65 | 2.4169 | | No log | 2.0 | 130 | 1.0977 | | No log | 3.0 | 195 | 0.8621 | | No log | 4.0 | 260 | 0.6932 | | No log | 5.0 | 325 | 0.6200 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
jkhan447/sarcasm-detection-Bert-base-uncased-newdata
bf014d357894ff205db3ebf79c3191cbe627ddfa
2022-06-17T07:56:08.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
jkhan447
null
jkhan447/sarcasm-detection-Bert-base-uncased-newdata
8
null
transformers
13,550
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: sarcasm-detection-Bert-base-uncased-newdata results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sarcasm-detection-Bert-base-uncased-newdata This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5383 - Accuracy: 0.7766 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Makabaka/bert-base-uncased-EnglishLawAI
7ba3fd35e474af7c65b209a3029120d18477fb1c
2022-06-15T17:56:31.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
Makabaka
null
Makabaka/bert-base-uncased-EnglishLawAI
8
null
transformers
13,551
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-base-uncased-issues-128 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-issues-128 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6174 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 16 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.5225 | 1.0 | 670 | 2.4071 | | 2.2459 | 2.0 | 1340 | 2.0490 | | 2.1137 | 3.0 | 2010 | 2.1236 | | 2.0192 | 4.0 | 2680 | 2.0374 | | 1.9307 | 5.0 | 3350 | 1.9619 | | 1.8619 | 6.0 | 4020 | 1.9072 | | 1.823 | 7.0 | 4690 | 1.8499 | | 1.7415 | 8.0 | 5360 | 1.7408 | | 1.6994 | 9.0 | 6030 | 1.7243 | | 1.6576 | 10.0 | 6700 | 1.7139 | | 1.6109 | 11.0 | 7370 | 1.8658 | | 1.593 | 12.0 | 8040 | 1.9678 | | 1.5501 | 13.0 | 8710 | 1.7578 | | 1.5288 | 14.0 | 9380 | 1.7830 | | 1.5135 | 15.0 | 10050 | 1.8932 | | 1.4906 | 16.0 | 10720 | 1.6174 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.3.1 - Tokenizers 0.12.1
Willy/bert-base-spanish-wwm-cased-finetuned-NLP-IE
af8d38679f9452ad203f2be60e5745c7f658061d
2022-06-15T23:52:05.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
Willy
null
Willy/bert-base-spanish-wwm-cased-finetuned-NLP-IE
8
null
transformers
13,552
--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert-base-spanish-wwm-cased-finetuned-NLP-IE results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-spanish-wwm-cased-finetuned-NLP-IE This model is a fine-tuned version of [dccuchile/bert-base-spanish-wwm-cased](https://huggingface.co/dccuchile/bert-base-spanish-wwm-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6260 - Accuracy: 0.7015 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6052 | 1.0 | 9 | 0.6370 | 0.7015 | | 0.5501 | 2.0 | 18 | 0.6260 | 0.7015 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
jhliu/ClinicalNoteBERT-base-uncased-MIMIC-segment-note
3923155620a7bc3fe0a4a034ea4ea4f7ea621973
2022-06-16T05:17:00.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
jhliu
null
jhliu/ClinicalNoteBERT-base-uncased-MIMIC-segment-note
8
null
transformers
13,553
Entry not found
waboucay/camembert-base-finetuned-repnum_wl_3_classes
67db19a015847ac77d558c98d232d9c753633647
2022-06-16T07:42:03.000Z
[ "pytorch", "camembert", "text-classification", "fr", "transformers", "nli" ]
text-classification
false
waboucay
null
waboucay/camembert-base-finetuned-repnum_wl_3_classes
8
null
transformers
13,554
--- language: - fr tags: - nli metrics: - f1 --- ## Eval results We obtain the following results on ```validation``` and ```test``` sets: | Set | F1<sub>micro</sub> | F1<sub>macro</sub> | |------------|--------------------|--------------------| | validation | 74.5 | 74.5 | | test | 74.9 | 74.8 |
income/bpr-gpl-bioasq-base-msmarco-distilbert-tas-b
8d3baa64b96a1bc262acf1d94ec04946d056f598
2022-06-16T18:26:16.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
income
null
income/bpr-gpl-bioasq-base-msmarco-distilbert-tas-b
8
null
sentence-transformers
13,555
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 92924 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `gpl.toolkit.loss.MarginDistillationLoss` Parameters of the fit()-Method: ``` { "callback": null, "epochs": 2, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
S2312dal/M6_cross
6242a1fedda3dbd6fbdbaa01a4cc2e2d113fd890
2022-06-18T14:10:31.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
S2312dal
null
S2312dal/M6_cross
8
null
transformers
13,556
--- license: apache-2.0 tags: - generated_from_trainer metrics: - spearmanr model-index: - name: M6_cross results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # M6_cross This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0084 - Pearson: 0.9811 - Spearmanr: 0.9075 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 20 - eval_batch_size: 20 - seed: 25 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 6.0 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr | |:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:| | 0.0059 | 1.0 | 105 | 0.0158 | 0.9633 | 0.9054 | | 0.001 | 2.0 | 210 | 0.0102 | 0.9770 | 0.9103 | | 0.0008 | 3.0 | 315 | 0.0083 | 0.9805 | 0.9052 | | 0.0011 | 4.0 | 420 | 0.0075 | 0.9812 | 0.9082 | | 0.0017 | 5.0 | 525 | 0.0084 | 0.9811 | 0.9075 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
BM-K/KoMiniLM-68M
68692fc3cb6c472e9ca4850a1c62b66e873a2616
2022-06-23T12:00:07.000Z
[ "pytorch", "bert", "text-classification", "arxiv:2002.10957", "transformers" ]
text-classification
false
BM-K
null
BM-K/KoMiniLM-68M
8
1
transformers
13,557
# KoMiniLM 🐣 Korean mini language model ## Overview Current language models usually consist of hundreds of millions of parameters which brings challenges for fine-tuning and online serving in real-life applications due to latency and capacity constraints. In this project, we release a light weight korean language model to address the aforementioned shortcomings of existing language models. ## Quick tour ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("BM-K/KoMiniLM-68M") # 68M model model = AutoModel.from_pretrained("BM-K/KoMiniLM-68M") inputs = tokenizer("안녕 세상아!", return_tensors="pt") outputs = model(**inputs) ``` ## Update history ** Updates on 2022.06.20 ** - Release KoMiniLM-bert-68M ** Updates on 2022.05.24 ** - Release KoMiniLM-bert-23M ## Pre-training `Teacher Model`: [KLUE-BERT(base)](https://github.com/KLUE-benchmark/KLUE) ### Object Self-Attention Distribution and Self-Attention Value-Relation [[Wang et al., 2020]](https://arxiv.org/abs/2002.10957) were distilled from each discrete layer of the teacher model to the student model. Wang et al. distilled in the last layer of the transformer, but that was not the case in this project. ### Data sets |Data|News comments|News article| |:----:|:----:|:----:| |size|10G|10G| ### Config - **KoMiniLM-68M** ```json { "architectures": [ "BertForPreTraining" ], "attention_probs_dropout_prob": 0.1, "classifier_dropout": null, "hidden_act": "gelu", "hidden_dropout_prob": 0.1, "hidden_size": 768, "initializer_range": 0.02, "intermediate_size": 3072, "layer_norm_eps": 1e-12, "max_position_embeddings": 512, "model_type": "bert", "num_attention_heads": 12, "num_hidden_layers": 6, "output_attentions": true, "pad_token_id": 0, "position_embedding_type": "absolute", "return_dict": false, "torch_dtype": "float32", "transformers_version": "4.13.0", "type_vocab_size": 2, "use_cache": true, "vocab_size": 32000 } ``` ### Performance on subtasks - The results of our fine-tuning experiments are an average of 3 runs for each task. ``` cd KoMiniLM-Finetune bash scripts/run_all_kominilm.sh ``` || #Param | Average | NSMC<br>(Acc) | Naver NER<br>(F1) | PAWS<br>(Acc) | KorNLI<br>(Acc) | KorSTS<br>(Spearman) | Question Pair<br>(Acc) | KorQuaD<br>(Dev)<br>(EM/F1) | |:----:|:----:|:----:|:----:|:----:|:----:|:----:|:----:|:----:|:----:| |KoBERT(KLUE)| 110M | 86.84 | 90.20±0.07 | 87.11±0.05 | 81.36±0.21 | 81.06±0.33 | 82.47±0.14 | 95.03±0.44 | 84.43±0.18 / <br>93.05±0.04 | |KcBERT| 108M | 78.94 | 89.60±0.10 | 84.34±0.13 | 67.02±0.42| 74.17±0.52 | 76.57±0.51 | 93.97±0.27 | 60.87±0.27 / <br>85.01±0.14 | |KoBERT(SKT)| 92M | 79.73 | 89.28±0.42 | 87.54±0.04 | 80.93±0.91 | 78.18±0.45 | 75.98±2.81 | 94.37±0.31 | 51.94±0.60 / <br>79.69±0.66 | |DistilKoBERT| 28M | 74.73 | 88.39±0.08 | 84.22±0.01 | 61.74±0.45 | 70.22±0.14 | 72.11±0.27 | 92.65±0.16 | 52.52±0.48 / <br>76.00±0.71 | | | | | | | | | | | |**KoMiniLM<sup>†</sup>**| **68M** | 85.90 | 89.84±0.02 | 85.98±0.09 | 80.78±0.30 | 79.28±0.17 | 81.00±0.07 | 94.89±0.37 | 83.27±0.08 / <br>92.08±0.06 | |**KoMiniLM<sup>†</sup>**| **23M** | 84.79 | 89.67±0.03 | 84.79±0.09 | 78.67±0.45 | 78.10±0.07 | 78.90±0.11 | 94.81±0.12 | 82.11±0.42 / <br>91.21±0.29 | - [NSMC](https://github.com/e9t/nsmc) (Naver Sentiment Movie Corpus) - [Naver NER](https://github.com/naver/nlp-challenge) (NER task on Naver NLP Challenge 2018) - [PAWS](https://github.com/google-research-datasets/paws) (Korean Paraphrase Adversaries from Word Scrambling) - [KorNLI/KorSTS](https://github.com/kakaobrain/KorNLUDatasets) (Korean Natural Language Understanding) - [Question Pair](https://github.com/songys/Question_pair) (Paired Question) - [KorQuAD](https://korquad.github.io/) (The Korean Question Answering Dataset) <img src = "https://user-images.githubusercontent.com/55969260/174229747-279122dc-9d27-4da9-a6e7-f9f1fe1651f7.png"> <br> ### User Contributed Examples - ## Reference - [KLUE BERT](https://github.com/KLUE-benchmark/KLUE) - [KcBERT](https://github.com/Beomi/KcBERT) - [SKT KoBERT](https://github.com/SKTBrain/KoBERT) - [DistilKoBERT](https://github.com/monologg/DistilKoBERT) - [lassl](https://github.com/lassl/lassl)
Hardeep/distilbert-base-uncased-finetuned-emotion-01
b50e4c7d1b5b17fe91415ef95605614d6eb0d864
2022-06-19T09:16:57.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers" ]
text-classification
false
Hardeep
null
Hardeep/distilbert-base-uncased-finetuned-emotion-01
8
null
transformers
13,558
Entry not found
Splend1dchan/wav2vec2-large-lv60_mt5lephone-small_textdecoderonly_bs64
0af345f14ebf0a75e3633b12bdf27c1afcfda5f2
2022-06-21T06:37:00.000Z
[ "pytorch", "speechmix", "transformers" ]
null
false
Splend1dchan
null
Splend1dchan/wav2vec2-large-lv60_mt5lephone-small_textdecoderonly_bs64
8
null
transformers
13,559
Entry not found
huggingtweets/alpha_convert
0bf8ac8d7be2f9e4dbcb8a116d5773a854e7b6cd
2022-06-20T03:39:10.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/alpha_convert
8
null
transformers
13,560
--- language: en thumbnail: http://www.huggingtweets.com/alpha_convert/1655696345558/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1510046460556980225/LEbmoGEz_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Joe Cutler</div> <div style="text-align: center; font-size: 14px;">@alpha_convert</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Joe Cutler. | Data | Joe Cutler | | --- | --- | | Tweets downloaded | 3246 | | Retweets | 300 | | Short tweets | 435 | | Tweets kept | 2511 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2p03ahbk/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @alpha_convert's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/37xwt5py) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/37xwt5py/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/alpha_convert') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
joshanashakya/codebert_sourcecode_nmt_pn2ja_100E_2e-05LR_16B_6E_6D
3f39fd76b1462015949fea6f23324662ba8a0556
2022-06-20T03:50:11.000Z
[ "pytorch", "encoder-decoder", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
joshanashakya
null
joshanashakya/codebert_sourcecode_nmt_pn2ja_100E_2e-05LR_16B_6E_6D
8
null
transformers
13,561
Entry not found
Jeevesh8/std_0pnt2_bert_ft_cola-28
1ab65358de5893f5c4bb7881af2d7619bd8c8caa
2022-06-21T13:28:11.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_0pnt2_bert_ft_cola-28
8
null
transformers
13,562
Entry not found
Jeevesh8/std_0pnt2_bert_ft_cola-33
68789ba636027585e434666a5d20ffa8131bb13e
2022-06-21T13:27:50.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_0pnt2_bert_ft_cola-33
8
null
transformers
13,563
Entry not found
Jeevesh8/std_0pnt2_bert_ft_cola-56
ff59a6c90f3641c087b15d5db39bd42595ab2d68
2022-06-21T13:28:09.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_0pnt2_bert_ft_cola-56
8
null
transformers
13,564
Entry not found
Jeevesh8/std_0pnt2_bert_ft_cola-30
476d571dd5cd3455836c40c89422c1c0557fd07c
2022-06-21T13:27:49.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_0pnt2_bert_ft_cola-30
8
null
transformers
13,565
Entry not found
Jeevesh8/std_0pnt2_bert_ft_cola-5
4419a18f6ec50e051dfea0cfa6f5b48f3065dbb3
2022-06-21T13:28:08.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_0pnt2_bert_ft_cola-5
8
null
transformers
13,566
Entry not found
Jeevesh8/std_0pnt2_bert_ft_cola-22
56034a76d6a9ecaf66b25583c30e88b6a49e1dac
2022-06-21T13:27:52.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_0pnt2_bert_ft_cola-22
8
null
transformers
13,567
Entry not found
Jeevesh8/std_0pnt2_bert_ft_cola-37
a3409aafe3fd2bcca578e3208d29d5b7aee561a4
2022-06-21T13:27:43.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_0pnt2_bert_ft_cola-37
8
null
transformers
13,568
Entry not found
Jeevesh8/std_0pnt2_bert_ft_cola-12
f3605f52cf2e877927947ac56dea2f7dc2aa42cf
2022-06-21T13:28:08.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_0pnt2_bert_ft_cola-12
8
null
transformers
13,569
Entry not found
Jeevesh8/std_0pnt2_bert_ft_cola-36
2f70413f7da1ed794261a154b5417eb5b465d404
2022-06-21T13:27:54.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_0pnt2_bert_ft_cola-36
8
null
transformers
13,570
Entry not found
Jeevesh8/std_0pnt2_bert_ft_cola-4
ee81845271584d37f59a95bed909e82e9dcd729c
2022-06-21T13:28:08.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_0pnt2_bert_ft_cola-4
8
null
transformers
13,571
Entry not found
Jeevesh8/std_0pnt2_bert_ft_cola-20
5ffca570e72bbef89715d10b151db60644adea35
2022-06-21T13:28:14.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_0pnt2_bert_ft_cola-20
8
null
transformers
13,572
Entry not found
Jeevesh8/std_0pnt2_bert_ft_cola-58
76286d01ee45d4819e5cb3368010fda185e53047
2022-06-21T13:30:14.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_0pnt2_bert_ft_cola-58
8
null
transformers
13,573
Entry not found
Jeevesh8/std_0pnt2_bert_ft_cola-41
01f975a0dc9d9314254cac7cb696d6c5317e9e23
2022-06-21T13:28:08.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_0pnt2_bert_ft_cola-41
8
null
transformers
13,574
Entry not found
Jeevesh8/std_0pnt2_bert_ft_cola-24
76019c51f1b7ed8df08b167f5ed1ea24bbf79050
2022-06-21T13:28:15.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_0pnt2_bert_ft_cola-24
8
null
transformers
13,575
Entry not found
Jeevesh8/std_0pnt2_bert_ft_cola-49
b231efc77898a3fde0f1e12fe84ca3f411d12539
2022-06-21T13:33:43.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_0pnt2_bert_ft_cola-49
8
null
transformers
13,576
Entry not found
Jeevesh8/std_0pnt2_bert_ft_cola-50
61d5499d6a05d5d4b779be056ac377be34094ee0
2022-06-21T13:28:19.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_0pnt2_bert_ft_cola-50
8
null
transformers
13,577
Entry not found
Jeevesh8/std_0pnt2_bert_ft_cola-60
7fba36f981842f17b96487fc21e92457974179d0
2022-06-21T13:30:07.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_0pnt2_bert_ft_cola-60
8
null
transformers
13,578
Entry not found
Jeevesh8/std_0pnt2_bert_ft_cola-1
559e7cbd271bdc614c620fc3f4642f4975401a25
2022-06-21T13:32:05.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_0pnt2_bert_ft_cola-1
8
null
transformers
13,579
Entry not found
Jeevesh8/std_0pnt2_bert_ft_cola-51
1d39933f516978ae3181282e13a6a8a0606a3727
2022-06-21T13:28:16.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_0pnt2_bert_ft_cola-51
8
null
transformers
13,580
Entry not found
Jeevesh8/std_0pnt2_bert_ft_cola-14
c25154d7928fb4e4b1845de1f38f175a69be5821
2022-06-21T13:28:16.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_0pnt2_bert_ft_cola-14
8
null
transformers
13,581
Entry not found
Jeevesh8/std_0pnt2_bert_ft_cola-54
ff1db086166fddbeaf98b1b2894152437c6aa6fd
2022-06-21T13:28:35.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_0pnt2_bert_ft_cola-54
8
null
transformers
13,582
Entry not found
Jeevesh8/std_0pnt2_bert_ft_cola-16
96101ebf83e98a4ca3150010197f858e306b0099
2022-06-21T13:28:14.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_0pnt2_bert_ft_cola-16
8
null
transformers
13,583
Entry not found
Jeevesh8/std_0pnt2_bert_ft_cola-25
a0ac7b807c91be59b4c7a5b2c71ba0bc6d3c68bd
2022-06-21T13:28:24.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_0pnt2_bert_ft_cola-25
8
null
transformers
13,584
Entry not found
Jeevesh8/std_0pnt2_bert_ft_cola-53
60a94d02159471211319862a7c16acc9b96243e0
2022-06-21T13:28:20.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_0pnt2_bert_ft_cola-53
8
null
transformers
13,585
Entry not found
Jeevesh8/std_0pnt2_bert_ft_cola-15
47d61d6fabe051ce3f48985cd92e83da47221fbe
2022-06-21T13:28:15.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_0pnt2_bert_ft_cola-15
8
null
transformers
13,586
Entry not found
Jeevesh8/std_0pnt2_bert_ft_cola-3
5c0712091aa0e6ee24f7279c0f60c16cf9ff4444
2022-06-21T13:30:02.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_0pnt2_bert_ft_cola-3
8
null
transformers
13,587
Entry not found
paola-md/recipe-tis
9d1d95595001c4d645e9cf44b3afcd6efde69bb1
2022-06-21T14:51:37.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
paola-md
null
paola-md/recipe-tis
8
null
transformers
13,588
Entry not found
mmillet/distilrubert_tiny-2nd-finetune-epru
5f7dbf6c2b67ef630fd43efeadb02294a505ea70
2022-06-21T14:58:30.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
mmillet
null
mmillet/distilrubert_tiny-2nd-finetune-epru
8
null
transformers
13,589
--- tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: distilrubert_tiny-2nd-finetune-epru results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilrubert_tiny-2nd-finetune-epru This model is a fine-tuned version of [mmillet/distilrubert-tiny-cased-conversational-v1_single_finetuned_on_cedr_augmented](https://huggingface.co/mmillet/distilrubert-tiny-cased-conversational-v1_single_finetuned_on_cedr_augmented) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4467 - Accuracy: 0.8712 - F1: 0.8718 - Precision: 0.8867 - Recall: 0.8712 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.4947 | 1.0 | 12 | 0.4142 | 0.8773 | 0.8777 | 0.8907 | 0.8773 | | 0.2614 | 2.0 | 24 | 0.3178 | 0.9018 | 0.9011 | 0.9069 | 0.9018 | | 0.2079 | 3.0 | 36 | 0.3234 | 0.8773 | 0.8784 | 0.8850 | 0.8773 | | 0.1545 | 4.0 | 48 | 0.3729 | 0.8834 | 0.8830 | 0.8946 | 0.8834 | | 0.1028 | 5.0 | 60 | 0.2964 | 0.9018 | 0.9016 | 0.9073 | 0.9018 | | 0.0986 | 6.0 | 72 | 0.2971 | 0.9141 | 0.9139 | 0.9152 | 0.9141 | | 0.0561 | 7.0 | 84 | 0.3482 | 0.8957 | 0.8962 | 0.9023 | 0.8957 | | 0.0336 | 8.0 | 96 | 0.3731 | 0.8957 | 0.8953 | 0.9014 | 0.8957 | | 0.0364 | 9.0 | 108 | 0.4467 | 0.8712 | 0.8718 | 0.8867 | 0.8712 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Sayan01/tiny-bert-rte-distilled
50f27f7eef078efdde174a3f94d981d4649961f6
2022-06-30T16:03:25.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Sayan01
null
Sayan01/tiny-bert-rte-distilled
8
null
transformers
13,590
Entry not found
kenobi/SDO_VT1
cf8994669127c049ccecb1fd42bcdd60eb3a7fa6
2022-06-22T18:40:36.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "arxiv:2006.03677", "transformers", "model-index" ]
image-classification
false
kenobi
null
kenobi/SDO_VT1
8
null
transformers
13,591
--- tags: - image-classification - pytorch metrics: - accuracy model-index: - name: SDO_VT1 results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.8695651888847351 --- # NASA Solar Dynamics Observatory Vision Transformer v.1 (SDO_VT1) ## Authors: [Frank Soboczenski](https://h21k.github.io/), King's College London, London, UK<br> [Paul Wright](https://www.wrightai.com/), Wright AI Ltd, Leeds, UK ## General: This Vision Transformer model has been fine-tuned on Solar Dynamics Observatory (SDO) data. The images used are available here: [Solar Dynamics Observatory Gallery](https://sdo.gsfc.nasa.gov/gallery/main). This is a Vision Transformer model fine-tuned on SDO data in an active region classification task. We aim to highlight the ease of use of the HuggingFace platform, integration with popular deep learning frameworks such as PyTorch, TensorFlow, or JAX, performance monitoring with Weights and Biases, and the ability to effortlessly utilize pre-trained large scale Transformer models for targeted fine-tuning purposes. This is to our knowledge the first Vision Transformer model on NASA SDO mission data and we are working on additional versions to address challenges in this domain. <b>The data used was provided courtesy of NASA/SDO and the AIA, EVE, and HMI science teams. The authors gratefully acknowledge the entire NASA Solar Dynamics Observatory Mission Team.</b><br> For the SDO team: this model is the first version for demonstration purposes. It is only trained on the SDO Gallery data atm and we're working on additional data. We will include more technical details here soon. ## Example Images --> Drag one of the images below into the inference API field on the upper right. Additional images for testing can be found at: [Solar Dynamics Observatory Gallery](https://sdo.gsfc.nasa.gov/gallery/main) You can use the following tags to further select images for testing: "coronal holes", "loops" or "flares" You can also choose "active regions" to get a general pool for testing. ### NASA_SDO_Coronal_Hole ![NASA_SDO_Coronal_Hole](images/NASA_SDO_Coronal_Hole2.jpg) ### NASA_SDO_Coronal_Loop ![NASA_SDO_Coronal_Loop](images/NASA_SDO_Coronal_Loop.jpg) ### NASA_SDO_Solar_Flare ![NASA_SDO_Solar_Flare](images/NASA_SDO_Solar_Flare.jpg) ## Training data The ViT model was pretrained on a dataset consisting of 14 million images and 21k classes ([ImageNet-21k](http://www.image-net.org/). More information on the base model used can be found here: (https://huggingface.co/google/vit-base-patch16-224-in21k) ## How to use this Model (quick snippet to work on Google Colab - comment the pip install for local use if you have transformers already installed) ```python !pip install transformers --quiet from transformers import AutoFeatureExtractor, AutoModelForImageClassification from PIL import Image import requests url = 'https://sdo.gsfc.nasa.gov/assets/gallery/preview/211_coronalhole.jpg' image = Image.open(requests.get(url, stream=True).raw) feature_extractor = AutoFeatureExtractor.from_pretrained("kenobi/SDO_VT1") model = AutoModelForImageClassification.from_pretrained("kenobi/SDO_VT1") inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # model predicts one of the three fine-tuned classes (NASA_SDO_Coronal_Hole, NASA_SDO_Coronal_Loop or NASA_SDO_Solar_Flare) predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` ## BibTeX & References A publication on this work is currently in preparation. In the meantime, please refer to this model by using the following citation: ``` @misc{sdovt2022, author = {Frank Soboczenski and Paul J Wright}, title = {SDOVT: A Vision Transformer Model for Solar Dynamics Observatory (SDO) Data}, url = {https://huggingface.co/kenobi/SDO_VT1/}, version = {1.0}, year = {2022}, } ``` For the base ViT model used please refer to: ```bibtex @misc{wu2020visual, title={Visual Transformers: Token-based Image Representation and Processing for Computer Vision}, author={Bichen Wu and Chenfeng Xu and Xiaoliang Dai and Alvin Wan and Peizhao Zhang and Zhicheng Yan and Masayoshi Tomizuka and Joseph Gonzalez and Kurt Keutzer and Peter Vajda}, year={2020}, eprint={2006.03677}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` For referring to Imagenet: ```bibtex @inproceedings{deng2009imagenet, title={Imagenet: A large-scale hierarchical image database}, author={Deng, Jia and Dong, Wei and Socher, Richard and Li, Li-Jia and Li, Kai and Fei-Fei, Li}, booktitle={2009 IEEE conference on computer vision and pattern recognition}, pages={248--255}, year={2009}, organization={Ieee} } ```
anita-clmnt/distilbert-base-uncased-finetuned-emotion
c0a5552ef0e033dcfb67ca4f762a1feaa502749b
2022-06-22T18:17:24.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
anita-clmnt
null
anita-clmnt/distilbert-base-uncased-finetuned-emotion
8
null
transformers
13,592
Entry not found
deepesh0x/bert_wikipedia_sst2
3025e84049b0ade8b4251aab83165f16cb6a16fd
2022-06-22T21:27:21.000Z
[ "pytorch", "bert", "text-classification", "unk", "dataset:deepesh0x/autotrain-data-bert_wikipedia_sst2", "transformers", "autotrain", "co2_eq_emissions" ]
text-classification
false
deepesh0x
null
deepesh0x/bert_wikipedia_sst2
8
null
transformers
13,593
--- tags: autotrain language: unk widget: - text: "I love AutoTrain 🤗" datasets: - deepesh0x/autotrain-data-bert_wikipedia_sst2 co2_eq_emissions: 16.368556687663705 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 1021934687 - CO2 Emissions (in grams): 16.368556687663705 ## Validation Metrics - Loss: 0.15712647140026093 - Accuracy: 0.9503340757238308 - Precision: 0.9515767251616308 - Recall: 0.9598083577322332 - AUC: 0.9857179850355002 - F1: 0.9556748161399324 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/deepesh0x/autotrain-bert_wikipedia_sst2-1021934687 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("deepesh0x/autotrain-bert_wikipedia_sst2-1021934687", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("deepesh0x/autotrain-bert_wikipedia_sst2-1021934687", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
upsalite/bert-base-german-cased-finetuned-emotion-2-labels
0801445b23bbe65eef4c70bf6038a57d89c390bd
2022-07-05T12:50:50.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
upsalite
null
upsalite/bert-base-german-cased-finetuned-emotion-2-labels
8
null
transformers
13,594
--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: bert-base-german-cased-finetuned-emotion-2-labels results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-german-cased-finetuned-emotion-2-labels This model is a fine-tuned version of [bert-base-german-cased](https://huggingface.co/bert-base-german-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9788 - Accuracy: 0.835 - F1: 0.8345 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.6249 | 1.0 | 25 | 0.4990 | 0.775 | 0.7743 | | 0.4072 | 2.0 | 50 | 0.4041 | 0.825 | 0.8250 | | 0.2202 | 3.0 | 75 | 0.4166 | 0.84 | 0.8400 | | 0.1028 | 4.0 | 100 | 0.4974 | 0.82 | 0.8191 | | 0.0391 | 5.0 | 125 | 0.6061 | 0.79 | 0.7892 | | 0.0175 | 6.0 | 150 | 0.6459 | 0.845 | 0.8449 | | 0.0039 | 7.0 | 175 | 0.6933 | 0.84 | 0.8400 | | 0.0033 | 8.0 | 200 | 0.7915 | 0.84 | 0.8396 | | 0.001 | 9.0 | 225 | 0.9425 | 0.825 | 0.8250 | | 0.0046 | 10.0 | 250 | 0.9074 | 0.82 | 0.82 | | 0.001 | 11.0 | 275 | 0.9323 | 0.835 | 0.8348 | | 0.0009 | 12.0 | 300 | 0.9144 | 0.84 | 0.8394 | | 0.0003 | 13.0 | 325 | 0.9082 | 0.845 | 0.8450 | | 0.0003 | 14.0 | 350 | 0.8913 | 0.84 | 0.8397 | | 0.0003 | 15.0 | 375 | 0.9534 | 0.845 | 0.8450 | | 0.0004 | 16.0 | 400 | 0.9498 | 0.835 | 0.8349 | | 0.0027 | 17.0 | 425 | 0.9838 | 0.84 | 0.8400 | | 0.0006 | 18.0 | 450 | 0.9853 | 0.845 | 0.8450 | | 0.0003 | 19.0 | 475 | 0.9768 | 0.825 | 0.8243 | | 0.0002 | 20.0 | 500 | 0.9788 | 0.835 | 0.8345 | ### Framework versions - Transformers 4.19.0 - Pytorch 1.11.0+cu113 - Datasets 1.16.1 - Tokenizers 0.12.1
ryo0634/bert-base-zip-dependency-encoder-en
c9d1d1418e046f7553811f3e9737c60582ae1cc6
2022-06-23T11:43:51.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
ryo0634
null
ryo0634/bert-base-zip-dependency-encoder-en
8
null
transformers
13,595
Entry not found
cambridgeltl/simctgt5_small_xsum
6aba26df353f181e4d19456f438474fee2367250
2022-06-25T20:30:10.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
cambridgeltl
null
cambridgeltl/simctgt5_small_xsum
8
null
transformers
13,596
Entry not found
Lvxue/distilled_t_1.5
366366d140565a3bae95f1d0bb63f3c9dfda091a
2022-06-30T05:53:42.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Lvxue
null
Lvxue/distilled_t_1.5
8
null
transformers
13,597
Average latency (ms) - 220.21 +\- 2.28 {'bleu': 4.90075699047093}
cambridgeltl/mle_one_billion_word
6e0dfa210a0511c1e62afa139a256a55146b780b
2022-06-28T08:14:09.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
cambridgeltl
null
cambridgeltl/mle_one_billion_word
8
null
transformers
13,598
Entry not found
xliu128/distilbert-base-uncased-finetuned-emotion
abfa04e3ae0771d39368e8dfaf233268d0c33115
2022-07-13T13:16:07.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
xliu128
null
xliu128/distilbert-base-uncased-finetuned-emotion
8
null
transformers
13,599
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.925 - name: F1 type: f1 value: 0.924714869006902 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2168 - Accuracy: 0.925 - F1: 0.9247 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8435 | 1.0 | 250 | 0.3160 | 0.9065 | 0.9045 | | 0.2457 | 2.0 | 500 | 0.2168 | 0.925 | 0.9247 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3