modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
list
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
karthid/distilbert-base-uncased-finetuned-emotion
3acd64528467d5b8ad01d403d955bead16b5f02b
2022-06-28T14:25:17.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
karthid
null
karthid/distilbert-base-uncased-finetuned-emotion
8
null
transformers
13,600
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.924 - name: F1 type: f1 value: 0.9239800027803069 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2270 - Accuracy: 0.924 - F1: 0.9240 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8568 | 1.0 | 250 | 0.3402 | 0.901 | 0.8970 | | 0.2612 | 2.0 | 500 | 0.2270 | 0.924 | 0.9240 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
philschmid/gpu-xlm-roberta-large-amazon-massive
cf755e436ccb75ec2773c3c4af4bcb7e5b134495
2022-06-30T19:57:39.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "text-classification", "transformers" ]
text-classification
false
philschmid
null
philschmid/gpu-xlm-roberta-large-amazon-massive
8
null
transformers
13,601
Entry not found
annahaz/distilbert-base-multilingual-cased-finetuned-misogyny-sexism-multilingual
1268d3a381451bf45f3b61e0f536be5ed5880250
2022-06-29T01:29:54.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
annahaz
null
annahaz/distilbert-base-multilingual-cased-finetuned-misogyny-sexism-multilingual
8
null
transformers
13,602
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: distilbert-base-multilingual-cased-finetuned-misogyny-sexism-multilingual results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-multilingual-cased-finetuned-misogyny-sexism-multilingual This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2382 - Accuracy: 0.8435 - F1: 0.7857 - Precision: 0.7689 - Recall: 0.8031 - Mae: 0.1565 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Mae | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:|:------:| | 0.3663 | 1.0 | 2062 | 0.3696 | 0.8363 | 0.7605 | 0.7967 | 0.7274 | 0.1637 | | 0.2937 | 2.0 | 4124 | 0.3592 | 0.8504 | 0.7891 | 0.7948 | 0.7834 | 0.1496 | | 0.2189 | 3.0 | 6186 | 0.4189 | 0.8442 | 0.7855 | 0.7727 | 0.7987 | 0.1558 | | 0.1418 | 4.0 | 8248 | 0.6393 | 0.8409 | 0.7863 | 0.7558 | 0.8194 | 0.1591 | | 0.1091 | 5.0 | 10310 | 0.7583 | 0.8284 | 0.7794 | 0.7207 | 0.8486 | 0.1716 | | 0.0901 | 6.0 | 12372 | 0.8695 | 0.8410 | 0.7836 | 0.7628 | 0.8055 | 0.1590 | | 0.0562 | 7.0 | 14434 | 1.0722 | 0.8405 | 0.7838 | 0.7600 | 0.8092 | 0.1595 | | 0.0444 | 8.0 | 16496 | 1.0797 | 0.8433 | 0.7804 | 0.7815 | 0.7794 | 0.1567 | | 0.0227 | 9.0 | 18558 | 1.1605 | 0.8429 | 0.7823 | 0.7743 | 0.7906 | 0.1571 | | 0.0131 | 10.0 | 20620 | 1.2382 | 0.8435 | 0.7857 | 0.7689 | 0.8031 | 0.1565 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.9.0+cu111 - Datasets 2.3.2 - Tokenizers 0.12.1
Smith123/tiny-bert-sst2-distilled_L6_H128
53b38cdfc2eef1784127720f35ec69439098e960
2022-06-29T11:09:44.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Smith123
null
Smith123/tiny-bert-sst2-distilled_L6_H128
8
null
transformers
13,603
Entry not found
Jeevesh8/goog_bert_ft_cola-30
4f6928567682aa230ecab16d68c05a02bb3f0d32
2022-06-29T17:33:41.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/goog_bert_ft_cola-30
8
null
transformers
13,604
Entry not found
Jeevesh8/goog_bert_ft_cola-32
2ffe1553378cea690b7b23bb7cafd066edd5d7fb
2022-06-29T17:33:54.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/goog_bert_ft_cola-32
8
null
transformers
13,605
Entry not found
Jeevesh8/goog_bert_ft_cola-28
8fdf5a09d785469101a0c20290d41ca93d5cd31a
2022-06-29T17:33:56.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/goog_bert_ft_cola-28
8
null
transformers
13,606
Entry not found
Jeevesh8/goog_bert_ft_cola-34
d50dcf789eb54a39a28fa04f9472f5992e3638a6
2022-06-29T17:34:18.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/goog_bert_ft_cola-34
8
null
transformers
13,607
Entry not found
Jeevesh8/goog_bert_ft_cola-37
a78091cbe50c85c0d8d3a36ff7580d1039b15f9e
2022-06-29T17:34:19.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/goog_bert_ft_cola-37
8
null
transformers
13,608
Entry not found
Jeevesh8/goog_bert_ft_cola-36
bbedfe4ab9261a9f0841b470c32f39638ee43100
2022-06-29T17:33:54.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/goog_bert_ft_cola-36
8
null
transformers
13,609
Entry not found
Jeevesh8/goog_bert_ft_cola-41
781a8079d4294d0887e24efd38b62ba13ce208fb
2022-06-29T17:34:06.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/goog_bert_ft_cola-41
8
null
transformers
13,610
Entry not found
Jeevesh8/goog_bert_ft_cola-43
fb1944221861e8be26750e40ac3106d9007c8087
2022-06-29T17:34:02.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/goog_bert_ft_cola-43
8
null
transformers
13,611
Entry not found
Jeevesh8/goog_bert_ft_cola-39
e6ff630bdd84689b001cbeb17acf80c411c28e9e
2022-06-29T17:34:18.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/goog_bert_ft_cola-39
8
null
transformers
13,612
Entry not found
Jeevesh8/goog_bert_ft_cola-42
06ee6ac14a1ce29b419dda360ab1eeb58e3523f4
2022-06-29T17:34:05.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/goog_bert_ft_cola-42
8
null
transformers
13,613
Entry not found
Jeevesh8/goog_bert_ft_cola-47
2bc4d527ab8e73f9767b0a7531df53300f672d6a
2022-06-29T17:34:04.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/goog_bert_ft_cola-47
8
null
transformers
13,614
Entry not found
Jeevesh8/goog_bert_ft_cola-38
af542e6fbe686b54e6008652714730863a5d8d80
2022-06-29T17:34:11.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/goog_bert_ft_cola-38
8
null
transformers
13,615
Entry not found
Jeevesh8/goog_bert_ft_cola-40
00472cb34ecfdf72bf470ff749358de2fedb1076
2022-06-29T17:34:15.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/goog_bert_ft_cola-40
8
null
transformers
13,616
Entry not found
Jeevesh8/goog_bert_ft_cola-71
f483ff420e4813f602e37bd29b27a2cb2f6ffb66
2022-06-29T17:32:51.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/goog_bert_ft_cola-71
8
null
transformers
13,617
Entry not found
Jeevesh8/goog_bert_ft_cola-75
7bdfcd8a4e79993ad683c78d52c9d9f16e4f6844
2022-06-29T17:33:09.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/goog_bert_ft_cola-75
8
null
transformers
13,618
Entry not found
Jeevesh8/goog_bert_ft_cola-69
d2bc1428f94ec11a22630056f58615f85630d9b6
2022-06-29T17:33:04.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/goog_bert_ft_cola-69
8
null
transformers
13,619
Entry not found
Jeevesh8/goog_bert_ft_cola-63
b1426c338665cd06f4b1fc0c33e02d36dcd0abfd
2022-06-29T17:33:10.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/goog_bert_ft_cola-63
8
null
transformers
13,620
Entry not found
Jeevesh8/goog_bert_ft_cola-53
399d9d58887cfb4ce0f5f7d91d06c18213b5e6e9
2022-06-29T17:34:25.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/goog_bert_ft_cola-53
8
null
transformers
13,621
Entry not found
Jeevesh8/goog_bert_ft_cola-57
a1e20fe380ecd27749966e6b78d93991ebd333c5
2022-06-29T17:34:24.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/goog_bert_ft_cola-57
8
null
transformers
13,622
Entry not found
Jeevesh8/goog_bert_ft_cola-73
da6ca0b0ebdd9b454d8545bc627a41f41cf51979
2022-06-29T17:33:27.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/goog_bert_ft_cola-73
8
null
transformers
13,623
Entry not found
Jeevesh8/goog_bert_ft_cola-54
573b79b3cec326573ffa46a1e9fca18db367ce7e
2022-06-29T17:34:24.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/goog_bert_ft_cola-54
8
null
transformers
13,624
Entry not found
Jeevesh8/goog_bert_ft_cola-72
c3d946dc71b026fe54911272fb96a409a91c2c13
2022-06-29T17:33:23.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/goog_bert_ft_cola-72
8
null
transformers
13,625
Entry not found
Jeevesh8/goog_bert_ft_cola-50
f1d1dc6563dc8c2c872b98c31fbbee23740c6091
2022-06-29T17:34:27.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/goog_bert_ft_cola-50
8
null
transformers
13,626
Entry not found
Jeevesh8/goog_bert_ft_cola-70
61b3f82e773785c91df7f62180dab065023a8f60
2022-06-29T17:36:20.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/goog_bert_ft_cola-70
8
null
transformers
13,627
Entry not found
Jeevesh8/goog_bert_ft_cola-67
0823fb30b595cce40022e3ff998d262bd392c9e8
2022-06-29T17:32:48.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/goog_bert_ft_cola-67
8
null
transformers
13,628
Entry not found
Jeevesh8/goog_bert_ft_cola-59
ab0e8b6f434399edfce6c074c8a54c6b03077c56
2022-06-29T17:33:46.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/goog_bert_ft_cola-59
8
null
transformers
13,629
Entry not found
Jeevesh8/goog_bert_ft_cola-62
f5911e68f0faefc7f09810f5dd974d9982064833
2022-06-29T17:33:14.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/goog_bert_ft_cola-62
8
null
transformers
13,630
Entry not found
Jeevesh8/goog_bert_ft_cola-66
6d2169245852eac0d501984683745067152cef76
2022-06-29T17:35:06.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/goog_bert_ft_cola-66
8
null
transformers
13,631
Entry not found
Jeevesh8/goog_bert_ft_cola-76
c65a9ebbea0026372768e01fb3fa7108978a8f84
2022-06-29T17:34:04.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/goog_bert_ft_cola-76
8
null
transformers
13,632
Entry not found
Jeevesh8/goog_bert_ft_cola-86
74917213a0db55137fb1dccb9f951760f5dcb85c
2022-06-29T17:35:54.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/goog_bert_ft_cola-86
8
null
transformers
13,633
Entry not found
Jeevesh8/goog_bert_ft_cola-87
7b8b0ecf47df25cac54d0e9edcdc8d5dcc7ec5dd
2022-06-29T17:34:04.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/goog_bert_ft_cola-87
8
null
transformers
13,634
Entry not found
Jeevesh8/goog_bert_ft_cola-84
e765f9d090cb301226aa756d11028887c73f1507
2022-06-29T17:34:05.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/goog_bert_ft_cola-84
8
null
transformers
13,635
Entry not found
Jeevesh8/goog_bert_ft_cola-79
6b45ea6ae8a91750c51758780f7a34313cf9dda8
2022-06-29T17:34:01.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/goog_bert_ft_cola-79
8
null
transformers
13,636
Entry not found
Jeevesh8/goog_bert_ft_cola-80
b14bea6ed189c58dc07aede97a956e973e1a61d5
2022-06-29T17:34:01.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/goog_bert_ft_cola-80
8
null
transformers
13,637
Entry not found
ardauzunoglu/opus-mt-en-trk-finetuned-en-to-tr
4fa4f189d7f917a4b3482e1ab49c25d5300b506f
2022-06-30T13:02:40.000Z
[ "pytorch", "tensorboard", "marian", "text2text-generation", "dataset:wmt16", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
ardauzunoglu
null
ardauzunoglu/opus-mt-en-trk-finetuned-en-to-tr
8
null
transformers
13,638
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wmt16 metrics: - bleu model-index: - name: opus-mt-en-trk-finetuned-en-to-tr results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: wmt16 type: wmt16 args: tr-en metrics: - name: Bleu type: bleu value: 11.8334 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-en-trk-finetuned-en-to-tr This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-trk](https://huggingface.co/Helsinki-NLP/opus-mt-en-trk) on the wmt16 dataset. It achieves the following results on the evaluation set: - Loss: 1.9617 - Bleu: 11.8334 - Gen Len: 33.4745 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| | 1.3129 | 1.0 | 12860 | 2.0276 | 11.1299 | 33.7083 | | 1.1484 | 2.0 | 25720 | 1.9789 | 11.4466 | 33.3876 | | 1.0854 | 3.0 | 38580 | 1.9617 | 11.8334 | 33.4745 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Akihiro2/bert-finetuned-squad
aa805cf9e1600825d2ff8362cfd8bd066869400a
2022-06-30T07:20:29.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
Akihiro2
null
Akihiro2/bert-finetuned-squad
8
null
transformers
13,639
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
luffycodes/t5_small_v1
749fe99e24d6c9f10c34799808b3617b06731796
2022-07-01T06:18:47.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
luffycodes
null
luffycodes/t5_small_v1
8
null
transformers
13,640
Entry not found
dminiotas05/distilbert-base-uncased-finetuned-ft500
65bf0259cdf4566e0e2d9307b547b0eca1458c60
2022-06-30T16:57:26.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
dminiotas05
null
dminiotas05/distilbert-base-uncased-finetuned-ft500
8
null
transformers
13,641
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-ft500 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ft500 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1340 - Accuracy: 0.5433 - F1: 0.5118 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 1.16 | 1.0 | 188 | 1.0855 | 0.5493 | 0.4985 | | 1.0291 | 2.0 | 376 | 1.0792 | 0.5587 | 0.5114 | | 0.9661 | 3.0 | 564 | 1.0798 | 0.558 | 0.5267 | | 0.9104 | 4.0 | 752 | 1.0935 | 0.5447 | 0.5136 | | 0.8611 | 5.0 | 940 | 1.1340 | 0.5433 | 0.5118 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Sayan01/tiny-bert-mnli-m-distilled
69a372c41db00242bb858d9a306bbb2251ccd679
2022-07-02T23:44:47.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Sayan01
null
Sayan01/tiny-bert-mnli-m-distilled
8
null
transformers
13,642
Entry not found
Hyeongdon/t5-large-qgen-SciQ
bb93eb047c3af33de3aebf396cfeae30bf585af8
2022-07-03T11:22:14.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
Hyeongdon
null
Hyeongdon/t5-large-qgen-SciQ
8
null
transformers
13,643
--- license: apache-2.0 --- T5-large Distractor generation model fine-tuned on SciQ dataset. Input Format ``` {correct_answer} <sep> {context} ``` The paper is not published yet.
svalabs/german-gpl-adapted-covid
1d77df9e895e8516e451e5506b45b4ebd0124751
2022-07-01T08:05:54.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
svalabs
null
svalabs/german-gpl-adapted-covid
8
null
sentence-transformers
13,644
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # svalabs/german-gpl-adapted-covid This is a german on covid adapted [sentence-transformers](https://www.SBERT.net) model: It is adapted on covid related documents using the [GPL](https://github.com/UKPLab/gpl) integration of [Haystack](https://github.com/deepset-ai/haystack). We used the [svalabs/cross-electra-ms-marco-german-uncased](https://huggingface.co/svalabs/cross-electra-ms-marco-german-uncased) as CrossEncoder and [svalabs/mt5-large-german-query-gen-v1](https://huggingface.co/svalabs/mt5-large-german-query-gen-v1) for query generation. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer, util from transformers import AutoTokenizer, AutoModel org_model = SentenceTransformer("sentence-transformers/msmarco-distilbert-multilingual-en-de-v2-tmp-trained-scratch") org_model.max_seq_length = max_seq_length model = SentenceTransformer('svalabs/german-gpl-adapted-covid') def show_examples(model): query = "Wie wird Covid-19 übermittelt" docs = [ "Corona ist sehr ansteckend", "Corona wird über die Luft verbreitet", "Ebola wird durch direkten Kontakt mit Blut übertragen", "HIV wird durch Sex oder den Austausch von Nadeln übertragen", "Polio wird durch kontaminiertes Wasser oder Lebensmittel übertragen", ] query_emb = model.encode(query) docs_emb = model.encode(docs) scores = util.dot_score(query_emb, docs_emb)[0] doc_scores = sorted(zip(docs, scores), key=lambda x: x[1], reverse=True) print("Query:", query) for doc, score in doc_scores: # print(doc, score) print(f"{score:0.02f}\t{doc}") print("Original Model") show_examples(org_model) print("\n\nAdapted Model") show_examples(model) ``` ## Evaluation Results ``` Original Model Query: Wie wird Covid-19 übermittelt 33.01 HIV wird durch Sex oder den Austausch von Nadeln übertragen 32.78 Polio wird durch kontaminiertes Wasser oder Lebensmittel übertragen 29.10 Corona wird über die Luft verbreitet 24.41 Ebola wird durch direkten Kontakt mit Blut übertragen 10.85 Corona ist sehr ansteckend Adapted Model Query: Wie wird Covid-19 übermittelt 29.82 Corona wird über die Luft verbreitet 27.44 Polio wird durch kontaminiertes Wasser oder Lebensmittel übertragen 24.89 Ebola wird durch direkten Kontakt mit Blut übertragen 23.81 HIV wird durch Sex oder den Austausch von Nadeln übertragen 20.03 Corona ist sehr ansteckend ``` ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 125 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MarginMSELoss.MarginMSELoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 12, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 200, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
dminiotas05/distilbert-base-uncased-finetuned-ft500_4class
eae38ef0ff7b892c08d9a37843ba58895fa7075e
2022-07-01T12:43:59.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
dminiotas05
null
dminiotas05/distilbert-base-uncased-finetuned-ft500_4class
8
null
transformers
13,645
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-ft500_4class results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ft500_4class This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1343 - Accuracy: 0.4853 - F1: 0.4777 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 1.1837 | 1.0 | 188 | 1.1606 | 0.4313 | 0.4104 | | 1.0972 | 2.0 | 376 | 1.0929 | 0.488 | 0.4697 | | 1.0343 | 3.0 | 564 | 1.1017 | 0.4893 | 0.4651 | | 0.9781 | 4.0 | 752 | 1.1065 | 0.4993 | 0.4900 | | 0.9346 | 5.0 | 940 | 1.1343 | 0.4853 | 0.4777 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
WalidLak/Testmodel
e6013edb8e0be33651e8a6d771b79a650f6cf3b6
2022-07-01T19:33:02.000Z
[ "pytorch", "bert", "feature-extraction", "sentence-transformers", "sentence-similarity" ]
sentence-similarity
false
WalidLak
null
WalidLak/Testmodel
8
null
sentence-transformers
13,646
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 207 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 7, "evaluation_steps": 500, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 145, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Aktsvigun/bart-base-aeslc-705525
e5fcb1b87d2b87e029463a884235dc19277a8003
2022-07-01T15:27:53.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base-aeslc-705525
8
null
transformers
13,647
Entry not found
Eleven/distilbert-base-uncased-finetuned-news
65996b819248b2e61f053f05ad454a53bf8a877f
2022-07-02T17:44:43.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Eleven
null
Eleven/distilbert-base-uncased-finetuned-news
8
null
transformers
13,648
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-news results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-news This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1667 - Accuracy: 0.9447 - F1: 0.9448 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.2355 | 1.0 | 1875 | 0.1790 | 0.94 | 0.9401 | | 0.1406 | 2.0 | 3750 | 0.1667 | 0.9447 | 0.9448 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Tokenizers 0.12.1
Kayvane/distilbert-complaints-wandb
7be5890e6062da85250558168f9eb0255984ff3e
2022-07-03T21:51:10.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:consumer-finance-complaints", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Kayvane
null
Kayvane/distilbert-complaints-wandb
8
null
transformers
13,649
--- license: apache-2.0 tags: - generated_from_trainer datasets: - consumer-finance-complaints metrics: - accuracy - f1 - recall - precision model-index: - name: distilbert-complaints-wandb results: - task: name: Text Classification type: text-classification dataset: name: consumer-finance-complaints type: consumer-finance-complaints args: default metrics: - name: Accuracy type: accuracy value: 0.868877906608376 - name: F1 type: f1 value: 0.8630522401242867 - name: Recall type: recall value: 0.868877906608376 - name: Precision type: precision value: 0.8616053523512515 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-complaints-wandb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the consumer-finance-complaints dataset. It achieves the following results on the evaluation set: - Loss: 0.4448 - Accuracy: 0.8689 - F1: 0.8631 - Recall: 0.8689 - Precision: 0.8616 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:------:|:---------:| | 0.571 | 0.51 | 2000 | 0.5150 | 0.8469 | 0.8349 | 0.8469 | 0.8249 | | 0.4765 | 1.01 | 4000 | 0.4676 | 0.8561 | 0.8451 | 0.8561 | 0.8376 | | 0.3376 | 1.52 | 6000 | 0.4560 | 0.8609 | 0.8546 | 0.8609 | 0.8547 | | 0.268 | 2.03 | 8000 | 0.4399 | 0.8684 | 0.8611 | 0.8684 | 0.8607 | | 0.2654 | 2.53 | 10000 | 0.4448 | 0.8689 | 0.8631 | 0.8689 | 0.8616 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
plncmm/mdeberta-cowese-base-es
1f13ae1282c79d7c6e8b46a36cdfdb8fd046e7e5
2022-07-04T02:37:23.000Z
[ "pytorch", "deberta-v2", "fill-mask", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
fill-mask
false
plncmm
null
plncmm/mdeberta-cowese-base-es
8
null
transformers
13,650
--- license: mit tags: - generated_from_trainer model-index: - name: mdeberta-cowese-base-es results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mdeberta-cowese-base-es This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.3.dev0 - Tokenizers 0.12.1
juridics/bert-base-multilingual-sts
cd718bae8b2eeb7bd79c3d55294c9da81f07b4cd
2022-07-04T16:01:29.000Z
[ "pytorch", "bert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
juridics
null
juridics/bert-base-multilingual-sts
8
null
sentence-transformers
13,651
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # juridics/bert-base-multilingual-sts-scale This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('juridics/bert-base-multilingual-sts-scale') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('juridics/bert-base-multilingual-sts-scale') model = AutoModel.from_pretrained('juridics/bert-base-multilingual-sts-scale') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=juridics/bert-base-multilingual-sts-scale) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 4985 with parameters: ``` {'batch_size': 4, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 3, "evaluation_steps": 4985, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 5e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1496, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
ghadeermobasher/BioRed-Chem-Modified-PubMedBERT-384-8-10
5e2188d7d96328690d7811316a84e2606abf1a97
2022-07-04T17:10:16.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/BioRed-Chem-Modified-PubMedBERT-384-8-10
8
null
transformers
13,652
Entry not found
juridics/jurisbert-base-portuguese-sts
a5125569169b3001e6d060cdebfcbb5bea69de8c
2022-07-04T18:30:34.000Z
[ "pytorch", "bert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
juridics
null
juridics/jurisbert-base-portuguese-sts
8
null
sentence-transformers
13,653
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # juridics/bertlaw-base-portuguese-sts-scale This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('juridics/bertlaw-base-portuguese-sts-scale') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('juridics/bertlaw-base-portuguese-sts-scale') model = AutoModel.from_pretrained('juridics/bertlaw-base-portuguese-sts-scale') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=juridics/bertlaw-base-portuguese-sts-scale) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 2492 with parameters: ``` {'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 3, "evaluation_steps": 2492, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 5e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 748, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
teven/all_bs160_allneg
2c9546b2623a308bf559c53f3619df8dd25c6c9c
2022-07-05T00:14:56.000Z
[ "pytorch", "mpnet", "feature-extraction", "sentence-transformers", "sentence-similarity" ]
sentence-similarity
false
teven
null
teven/all_bs160_allneg
8
null
sentence-transformers
13,654
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # teven/all_bs160_allneg This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('teven/all_bs160_allneg') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=teven/all_bs160_allneg) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 780828 with parameters: ``` {'batch_size': 20, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 315504 with parameters: ``` {'batch_size': 20, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 300017 with parameters: ``` {'batch_size': 20, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 2000, "evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
NimaBoscarino/albert-nima
d1f5ba38bc27444d377bc5f96acfb2edf833a609
2022-07-05T02:51:22.000Z
[ "pytorch", "albert", "feature-extraction", "arxiv:1908.10084", "sentence-transformers", "sentence-similarity", "transformers", "license:apache-2.0" ]
sentence-similarity
false
NimaBoscarino
null
NimaBoscarino/albert-nima
8
null
sentence-transformers
13,655
--- pipeline_tag: sentence-similarity license: apache-2.0 tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # sentence-transformers/paraphrase-albert-small-v2 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('sentence-transformers/paraphrase-albert-small-v2') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/paraphrase-albert-small-v2') model = AutoModel.from_pretrained('sentence-transformers/paraphrase-albert-small-v2') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/paraphrase-albert-small-v2) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 100, 'do_lower_case': False}) with Transformer model: AlbertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors This model was trained by [sentence-transformers](https://www.sbert.net/). If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084): ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "http://arxiv.org/abs/1908.10084", } ```
sepidmnorozy/sentiment-10Epochs
5a618f73828122e25eaf401c6568de1370a6e62f
2022-07-05T21:33:17.000Z
[ "pytorch", "xlm-roberta", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
sepidmnorozy
null
sepidmnorozy/sentiment-10Epochs
8
null
transformers
13,656
--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: sentiment-10Epochs results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sentiment-10Epochs This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7030 - Accuracy: 0.8603 - F1: 0.8585 - Precision: 0.8699 - Recall: 0.8473 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.3645 | 1.0 | 7088 | 0.4315 | 0.8603 | 0.8466 | 0.9386 | 0.7711 | | 0.374 | 2.0 | 14176 | 0.4015 | 0.8713 | 0.8648 | 0.9105 | 0.8235 | | 0.3363 | 3.0 | 21264 | 0.4772 | 0.8705 | 0.8615 | 0.9256 | 0.8057 | | 0.3131 | 4.0 | 28352 | 0.4579 | 0.8702 | 0.8650 | 0.9007 | 0.8321 | | 0.3097 | 5.0 | 35440 | 0.4160 | 0.8721 | 0.8663 | 0.9069 | 0.8292 | | 0.2921 | 6.0 | 42528 | 0.4638 | 0.8673 | 0.8630 | 0.8917 | 0.8362 | | 0.2725 | 7.0 | 49616 | 0.5183 | 0.8654 | 0.8602 | 0.8947 | 0.8283 | | 0.2481 | 8.0 | 56704 | 0.5846 | 0.8649 | 0.8624 | 0.8787 | 0.8467 | | 0.192 | 9.0 | 63792 | 0.6481 | 0.8610 | 0.8596 | 0.8680 | 0.8514 | | 0.1945 | 10.0 | 70880 | 0.7030 | 0.8603 | 0.8585 | 0.8699 | 0.8473 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0 - Datasets 2.0.0 - Tokenizers 0.11.6
akhisreelibra/xlmR-finetuned-pos
ec69b8ebd608c6b7351caf9697a1710319f9e543
2022-07-05T14:06:46.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
akhisreelibra
null
akhisreelibra/xlmR-finetuned-pos
8
null
transformers
13,657
ricardo-filho/bert_base_tcm_teste
1a37cacc22aeee6dc1fd6414d83716c02ac9acb9
2022-07-06T23:23:13.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
ricardo-filho
null
ricardo-filho/bert_base_tcm_teste
8
null
transformers
13,658
--- license: mit tags: - generated_from_trainer model-index: - name: bert_base_tcm_teste results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert_base_tcm_teste This model is a fine-tuned version of [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0192 - Criterio Julgamento Precision: 0.7209 - Criterio Julgamento Recall: 0.8942 - Criterio Julgamento F1: 0.7983 - Criterio Julgamento Number: 104 - Data Sessao Precision: 0.6351 - Data Sessao Recall: 0.8545 - Data Sessao F1: 0.7287 - Data Sessao Number: 55 - Modalidade Licitacao Precision: 0.9224 - Modalidade Licitacao Recall: 0.9596 - Modalidade Licitacao F1: 0.9406 - Modalidade Licitacao Number: 421 - Numero Exercicio Precision: 0.8872 - Numero Exercicio Recall: 0.9351 - Numero Exercicio F1: 0.9105 - Numero Exercicio Number: 185 - Objeto Licitacao Precision: 0.2348 - Objeto Licitacao Recall: 0.4576 - Objeto Licitacao F1: 0.3103 - Objeto Licitacao Number: 59 - Valor Objeto Precision: 0.5424 - Valor Objeto Recall: 0.7805 - Valor Objeto F1: 0.64 - Valor Objeto Number: 41 - Overall Precision: 0.7683 - Overall Recall: 0.8971 - Overall F1: 0.8277 - Overall Accuracy: 0.9948 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Criterio Julgamento Precision | Criterio Julgamento Recall | Criterio Julgamento F1 | Criterio Julgamento Number | Data Sessao Precision | Data Sessao Recall | Data Sessao F1 | Data Sessao Number | Modalidade Licitacao Precision | Modalidade Licitacao Recall | Modalidade Licitacao F1 | Modalidade Licitacao Number | Numero Exercicio Precision | Numero Exercicio Recall | Numero Exercicio F1 | Numero Exercicio Number | Objeto Licitacao Precision | Objeto Licitacao Recall | Objeto Licitacao F1 | Objeto Licitacao Number | Valor Objeto Precision | Valor Objeto Recall | Valor Objeto F1 | Valor Objeto Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:-----------------------------:|:--------------------------:|:----------------------:|:--------------------------:|:---------------------:|:------------------:|:--------------:|:------------------:|:------------------------------:|:---------------------------:|:-----------------------:|:---------------------------:|:--------------------------:|:-----------------------:|:-------------------:|:-----------------------:|:--------------------------:|:-----------------------:|:-------------------:|:-----------------------:|:----------------------:|:-------------------:|:---------------:|:-------------------:|:-----------------:|:--------------:|:----------:|:----------------:| | 0.0346 | 0.96 | 2750 | 0.0329 | 0.6154 | 0.8462 | 0.7126 | 104 | 0.5495 | 0.9091 | 0.6849 | 55 | 0.8482 | 0.9287 | 0.8866 | 421 | 0.7438 | 0.9730 | 0.8431 | 185 | 0.0525 | 0.3220 | 0.0903 | 59 | 0.4762 | 0.7317 | 0.5769 | 41 | 0.5565 | 0.8763 | 0.6807 | 0.9880 | | 0.0309 | 1.92 | 5500 | 0.0322 | 0.6694 | 0.7788 | 0.72 | 104 | 0.5976 | 0.8909 | 0.7153 | 55 | 0.9178 | 0.9549 | 0.9360 | 421 | 0.8211 | 0.8432 | 0.8320 | 185 | 0.15 | 0.2034 | 0.1727 | 59 | 0.2203 | 0.3171 | 0.26 | 41 | 0.7351 | 0.8243 | 0.7771 | 0.9934 | | 0.0179 | 2.88 | 8250 | 0.0192 | 0.7209 | 0.8942 | 0.7983 | 104 | 0.6351 | 0.8545 | 0.7287 | 55 | 0.9224 | 0.9596 | 0.9406 | 421 | 0.8872 | 0.9351 | 0.9105 | 185 | 0.2348 | 0.4576 | 0.3103 | 59 | 0.5424 | 0.7805 | 0.64 | 41 | 0.7683 | 0.8971 | 0.8277 | 0.9948 | | 0.0174 | 3.84 | 11000 | 0.0320 | 0.7522 | 0.8173 | 0.7834 | 104 | 0.5741 | 0.5636 | 0.5688 | 55 | 0.8881 | 0.9430 | 0.9147 | 421 | 0.8490 | 0.8811 | 0.8647 | 185 | 0.2436 | 0.3220 | 0.2774 | 59 | 0.5370 | 0.7073 | 0.6105 | 41 | 0.7719 | 0.8370 | 0.8031 | 0.9946 | | 0.0192 | 4.8 | 13750 | 0.0261 | 0.6744 | 0.8365 | 0.7468 | 104 | 0.6190 | 0.7091 | 0.6610 | 55 | 0.9169 | 0.9430 | 0.9297 | 421 | 0.8404 | 0.8541 | 0.8472 | 185 | 0.2059 | 0.3559 | 0.2609 | 59 | 0.5088 | 0.7073 | 0.5918 | 41 | 0.7521 | 0.8451 | 0.7959 | 0.9949 | | 0.0158 | 5.76 | 16500 | 0.0250 | 0.6641 | 0.8173 | 0.7328 | 104 | 0.5610 | 0.8364 | 0.6715 | 55 | 0.9199 | 0.9549 | 0.9371 | 421 | 0.9167 | 0.9514 | 0.9337 | 185 | 0.1912 | 0.4407 | 0.2667 | 59 | 0.4828 | 0.6829 | 0.5657 | 41 | 0.7386 | 0.8821 | 0.8040 | 0.9948 | | 0.0126 | 6.72 | 19250 | 0.0267 | 0.6694 | 0.7981 | 0.7281 | 104 | 0.6386 | 0.9636 | 0.7681 | 55 | 0.8723 | 0.9572 | 0.9128 | 421 | 0.8812 | 0.9622 | 0.9199 | 185 | 0.2180 | 0.4915 | 0.3021 | 59 | 0.5323 | 0.8049 | 0.6408 | 41 | 0.7308 | 0.9006 | 0.8068 | 0.9945 | | 0.0162 | 7.68 | 22000 | 0.0328 | 0.675 | 0.7788 | 0.7232 | 104 | 0.6604 | 0.6364 | 0.6481 | 55 | 0.9263 | 0.9549 | 0.9404 | 421 | 0.8535 | 0.9135 | 0.8825 | 185 | 0.2471 | 0.3559 | 0.2917 | 59 | 0.5091 | 0.6829 | 0.5833 | 41 | 0.7788 | 0.8509 | 0.8133 | 0.9948 | ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Aktsvigun/bart-base_aeslc_919213
c27929bf03c02b16eacbda400ae5c18b8c4f92e7
2022-07-07T15:08:52.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_aeslc_919213
8
null
transformers
13,659
Entry not found
Aktsvigun/bart-base_aeslc_2930982
0d903ed01de870c741f610b5007ce266b2c3bab7
2022-07-07T15:10:51.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_aeslc_2930982
8
null
transformers
13,660
Entry not found
Aktsvigun/bart-base_aeslc_3449378
97ba13d534d0d3e70a3262360391adf96ef18ac9
2022-07-07T15:12:50.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_aeslc_3449378
8
null
transformers
13,661
Entry not found
Mascariddu8/bert-finetuned-ner-accelerate
a41cadd9411915fe57cc677083349bade672d405
2022-07-07T14:58:23.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
Mascariddu8
null
Mascariddu8/bert-finetuned-ner-accelerate
8
null
transformers
13,662
Entry not found
swtx/simcse-chinese-roberta-www-ext
9c669aab5c0a5b2547fc9df9ac6f75bff1fa0397
2022-07-08T12:12:38.000Z
[ "pytorch", "bert", "feature-extraction", "arxiv:2104.08821", "transformers" ]
feature-extraction
false
swtx
null
swtx/simcse-chinese-roberta-www-ext
8
null
transformers
13,663
## swtx SIMCSE RoBERTa WWM Ext Chinese This model provides simplified Chinese sentence embeddings encoding based on [Simple Contrastive Learning](https://arxiv.org/abs/2104.08821). The pretrained model(Chinese RoBERTa WWM Ext) is used for token encoding. ## How to use ```Python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("swtx/simcse-chinese-roberta-wwm-ext") model = AutoModel.from_pretrained("swtx/simcse-chinese-roberta-wwm-ext") ```
jonatasgrosman/exp_w2v2t_fr_vp-it_s924
7b1762364372c411ebe24749d3d2fcc60a40c2e2
2022-07-09T02:07:50.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "fr", "dataset:mozilla-foundation/common_voice_7_0", "transformers", "license:apache-2.0" ]
automatic-speech-recognition
false
jonatasgrosman
null
jonatasgrosman/exp_w2v2t_fr_vp-it_s924
8
null
transformers
13,664
--- language: - fr license: apache-2.0 tags: - automatic-speech-recognition - fr datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_fr_vp-it_s924 Fine-tuned [facebook/wav2vec2-large-it-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-it-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (fr)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
huggingtweets/bobdylan-elonmusk-moogmusic
9af1645b2412e807b78d3eb5c42942d60274c3ef
2022-07-09T05:09:49.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/bobdylan-elonmusk-moogmusic
8
null
transformers
13,665
--- language: en thumbnail: http://www.huggingtweets.com/bobdylan-elonmusk-moogmusic/1657343271423/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1529956155937759233/Nyn1HZWF_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1442355893589401600/22Q1iPAj_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/86771494/Satisfied_Moog_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Elon Musk & Bob Dylan & DrT</div> <div style="text-align: center; font-size: 14px;">@bobdylan-elonmusk-moogmusic</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Elon Musk & Bob Dylan & DrT. | Data | Elon Musk | Bob Dylan | DrT | | --- | --- | --- | --- | | Tweets downloaded | 3250 | 678 | 2721 | | Retweets | 144 | 43 | 1183 | | Short tweets | 981 | 9 | 243 | | Tweets kept | 2125 | 626 | 1295 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/334mchd1/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bobdylan-elonmusk-moogmusic's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3iruorvp) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3iruorvp/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/bobdylan-elonmusk-moogmusic') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
adamlin/trash_mail_cls_2022
73f11dc066aab1a28beabe453d0dea376236a866
2022-07-11T04:25:36.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
adamlin
null
adamlin/trash_mail_cls_2022
8
null
transformers
13,666
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: trash_mail_cls_2022 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # trash_mail_cls_2022 This model is a fine-tuned version of [hfl/chinese-macbert-base](https://huggingface.co/hfl/chinese-macbert-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0382 - Accuracy: 0.9937 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 80 | 0.1528 | 0.9438 | | No log | 2.0 | 160 | 0.0808 | 0.9812 | | No log | 3.0 | 240 | 0.1004 | 0.9563 | | No log | 4.0 | 320 | 0.0456 | 0.9812 | | No log | 5.0 | 400 | 0.0541 | 0.9875 | | No log | 6.0 | 480 | 0.0382 | 0.9937 | | 0.0949 | 7.0 | 560 | 0.0501 | 0.9937 | | 0.0949 | 8.0 | 640 | 0.0384 | 0.9937 | | 0.0949 | 9.0 | 720 | 0.0384 | 0.9812 | | 0.0949 | 10.0 | 800 | 0.0391 | 0.9875 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu102 - Datasets 2.3.1 - Tokenizers 0.11.6
wooihen/distilbert-base-uncased-finetuned-emotion
ed0e99b98024a4b31b7b3307c1fd044ebe79c40a
2022-07-11T10:28:32.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
wooihen
null
wooihen/distilbert-base-uncased-finetuned-emotion
8
null
transformers
13,667
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9225 - name: F1 type: f1 value: 0.922771245052197 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2146 - Accuracy: 0.9225 - F1: 0.9228 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8233 | 1.0 | 250 | 0.3068 | 0.9025 | 0.8995 | | 0.2394 | 2.0 | 500 | 0.2146 | 0.9225 | 0.9228 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.11.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
tner/roberta-large-tweetner-random
f12441ef53b5adc04906c685e8b577086ea67a1c
2022-07-11T11:25:12.000Z
[ "pytorch", "roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
tner
null
tner/roberta-large-tweetner-random
8
null
transformers
13,668
Entry not found
skr1125/distilbert-base-uncased-finetuned-emotion
db6887965defcdae4930262f4d452e6baea403f7
2022-07-11T20:35:19.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
skr1125
null
skr1125/distilbert-base-uncased-finetuned-emotion
8
null
transformers
13,669
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.927 - name: F1 type: f1 value: 0.9267721491352747 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2253 - Accuracy: 0.927 - F1: 0.9268 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8507 | 1.0 | 250 | 0.3406 | 0.899 | 0.8954 | | 0.2546 | 2.0 | 500 | 0.2253 | 0.927 | 0.9268 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.11.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
tner/bertweet-large-tweetner-random
20153ecbe4716d48b04baa7eac989c849af09459
2022-07-11T22:51:23.000Z
[ "pytorch", "roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
tner
null
tner/bertweet-large-tweetner-random
8
null
transformers
13,670
Entry not found
Evelyn18/legalectra-small-spanish-becasv3-2
317652ebcf571ef6f1a39a096f499fe817200d52
2022-07-12T04:24:24.000Z
[ "pytorch", "tensorboard", "electra", "question-answering", "dataset:becasv2", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
Evelyn18
null
Evelyn18/legalectra-small-spanish-becasv3-2
8
null
transformers
13,671
--- tags: - generated_from_trainer datasets: - becasv2 model-index: - name: legalectra-small-spanish-becasv3-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # legalectra-small-spanish-becasv3-2 This model is a fine-tuned version of [mrm8488/legalectra-small-spanish](https://huggingface.co/mrm8488/legalectra-small-spanish) on the becasv2 dataset. It achieves the following results on the evaluation set: - Loss: 4.7145 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 5 | 5.7994 | | No log | 2.0 | 10 | 5.6445 | | No log | 3.0 | 15 | 5.5595 | | No log | 4.0 | 20 | 5.4933 | | No log | 5.0 | 25 | 5.4248 | | No log | 6.0 | 30 | 5.3547 | | No log | 7.0 | 35 | 5.2872 | | No log | 8.0 | 40 | 5.2187 | | No log | 9.0 | 45 | 5.1585 | | No log | 10.0 | 50 | 5.1038 | | No log | 11.0 | 55 | 5.0451 | | No log | 12.0 | 60 | 5.0015 | | No log | 13.0 | 65 | 4.9638 | | No log | 14.0 | 70 | 4.9350 | | No log | 15.0 | 75 | 4.9034 | | No log | 16.0 | 80 | 4.8741 | | No log | 17.0 | 85 | 4.8496 | | No log | 18.0 | 90 | 4.8275 | | No log | 19.0 | 95 | 4.8139 | | No log | 20.0 | 100 | 4.7878 | | No log | 21.0 | 105 | 4.7672 | | No log | 22.0 | 110 | 4.7671 | | No log | 23.0 | 115 | 4.7611 | | No log | 24.0 | 120 | 4.7412 | | No log | 25.0 | 125 | 4.7307 | | No log | 26.0 | 130 | 4.7232 | | No log | 27.0 | 135 | 4.7208 | | No log | 28.0 | 140 | 4.7186 | | No log | 29.0 | 145 | 4.7158 | | No log | 30.0 | 150 | 4.7145 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
lysandre/test-dynamic-pipeline
9df94906999007831601eb36f26c5d77df437484
2022-07-12T14:19:49.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
lysandre
null
lysandre/test-dynamic-pipeline
8
null
transformers
13,672
Entry not found
jimacasaet/SalamaThanksFIL2ENv3
09ac958a85ba194de22890814eb1805df8df6a8c
2022-07-13T11:10:38.000Z
[ "pytorch", "marian", "text2text-generation", "transformers", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
jimacasaet
null
jimacasaet/SalamaThanksFIL2ENv3
8
null
transformers
13,673
--- license: apache-2.0 ---
Evelyn18/distilbert-base-uncased-prueba
11a4f3faf7a5342d32bb2a31295a222180e74691
2022-07-13T19:48:19.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "dataset:becasv3", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
Evelyn18
null
Evelyn18/distilbert-base-uncased-prueba
8
null
transformers
13,674
--- license: apache-2.0 tags: - generated_from_trainer datasets: - becasv3 model-index: - name: distilbert-base-uncased-prueba results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-prueba This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the becasv3 dataset. It achieves the following results on the evaluation set: - Loss: 3.3077 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 8 | 3.3077 | | No log | 2.0 | 16 | 3.3077 | | No log | 3.0 | 24 | 3.3077 | | No log | 4.0 | 32 | 3.3077 | | No log | 5.0 | 40 | 3.3077 | | No log | 6.0 | 48 | 3.3077 | | No log | 7.0 | 56 | 3.3077 | | No log | 8.0 | 64 | 3.3077 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
pthpth/ViTune
b14a48b012ae64633d225f8f94181d89e8ab3eae
2022-07-15T07:10:08.000Z
[ "pytorch", "vit", "image-classification", "transformers" ]
image-classification
false
pthpth
null
pthpth/ViTune
8
null
transformers
13,675
Entry not found
pthpth/ViTFineTuned
8036da39244f11393d2868e7085c1be8e376bfc1
2022-07-15T09:43:28.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "dataset:imagefolder", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
image-classification
false
pthpth
null
pthpth/ViTFineTuned
8
null
transformers
13,676
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: ViTFineTuned results: - task: name: Image Classification type: image-classification dataset: name: KTH-TIPS2-b type: images args: default metrics: - name: Accuracy type: accuracy value: 1.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ViTFineTuned This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the KTH-TIPS2-b dataset. It achieves the following results on the evaluation set: - Loss: 0.0075 - Accuracy: 1.0 ## Model description Transfer learning by fine tuning the Vision Transformer by Google on KTP-TIP2-b dataset. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2859 | 0.99 | 67 | 0.2180 | 0.9784 | | 0.293 | 1.99 | 134 | 0.3308 | 0.9185 | | 0.1444 | 2.99 | 201 | 0.1532 | 0.9568 | | 0.0833 | 3.99 | 268 | 0.0515 | 0.9856 | | 0.1007 | 4.99 | 335 | 0.0295 | 0.9904 | | 0.0372 | 5.99 | 402 | 0.0574 | 0.9808 | | 0.0919 | 6.99 | 469 | 0.0537 | 0.9880 | | 0.0135 | 7.99 | 536 | 0.0117 | 0.9952 | | 0.0472 | 8.99 | 603 | 0.0075 | 1.0 | | 0.0151 | 9.99 | 670 | 0.0048 | 1.0 | | 0.0052 | 10.99 | 737 | 0.0073 | 0.9976 | | 0.0109 | 11.99 | 804 | 0.0198 | 0.9952 | | 0.0033 | 12.99 | 871 | 0.0066 | 0.9976 | | 0.011 | 13.99 | 938 | 0.0067 | 0.9976 | | 0.0032 | 14.99 | 1005 | 0.0060 | 0.9976 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
jinwooChoi/hjw_small_1
9d433e3c7bd391092dc1db64192312ad8b7f4d75
2022-07-15T08:09:11.000Z
[ "pytorch", "electra", "text-classification", "transformers" ]
text-classification
false
jinwooChoi
null
jinwooChoi/hjw_small_1
8
null
transformers
13,677
Entry not found
AlexWortega/T5_potter
54bd8f1e82e781ddfa714ccd1708e343782f3254
2022-07-15T10:31:04.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
AlexWortega
null
AlexWortega/T5_potter
8
null
transformers
13,678
Entry not found
Jinchen/Optimum-Graphcore-Demo
23b68874945609b45c1effc7c9c7ec10a33171a6
2022-07-15T14:48:08.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
Jinchen
null
Jinchen/Optimum-Graphcore-Demo
8
null
transformers
13,679
Entry not found
Hamzaaa/wav2vec2-base-finetuned-3-eng-greek
d23283fd77a50c3eef37652d20d742228aa0277a
2022-07-16T10:30:23.000Z
[ "pytorch", "tensorboard", "wav2vec2", "audio-classification", "transformers" ]
audio-classification
false
Hamzaaa
null
Hamzaaa/wav2vec2-base-finetuned-3-eng-greek
8
null
transformers
13,680
Entry not found
mrm8488/bloom-1b3-8bit
03aef4bf1067599dd45b76c4b1188ad724d92178
2022-07-17T11:58:29.000Z
[ "pytorch", "bloom", "text-generation", "ak", "ar", "as", "bm", "bn", "ca", "en", "es", "eu", "fon", "fr", "gu", "hi", "id", "ig", "ki", "kn", "lg", "ln", "ml", "mr", "ne", "nso", "ny", "or", "pa", "pt", "rn", "rw", "sn", "st", "sw", "ta", "te", "tn", "ts", "tum", "tw", "ur", "vi", "wo", "xh", "yo", "zh", "zu", "arxiv:2106.09685", "transformers", "license:bigscience-bloom-rail-1.0" ]
text-generation
false
mrm8488
null
mrm8488/bloom-1b3-8bit
8
null
transformers
13,681
--- inference: false license: bigscience-bloom-rail-1.0 language: - ak - ar - as - bm - bn - ca - en - es - eu - fon - fr - gu - hi - id - ig - ki - kn - lg - ln - ml - mr - ne - nso - ny - or - pa - pt - rn - rw - sn - st - sw - ta - te - tn - ts - tum - tw - ur - vi - wo - xh - yo - zh - zu pipeline_tag: text-generation --- ### Quantized bigscience/bloom 1B3 with 8-bit weights Heavily inspired by [Hivemind's GPT-J-6B with 8-bit weights](https://huggingface.co/hivemind/gpt-j-6B-8bit), this is a version of [bigscience/bloom](https://huggingface.co/bigscience/bloom-1b3) a ~1 billion parameters language model that you run and fine-tune with less memory. Here, we also apply [LoRA (Low Rank Adaptation)](https://arxiv.org/abs/2106.09685) to reduce model size. ### How to fine-tune TBA ### How to use This model can be used by adapting Bloom original implementation. This is an adaptation from [Hivemind's GPT-J 8-bit](https://nbviewer.org/urls/huggingface.co/hivemind/gpt-j-6B-8bit/raw/main/convert-gpt-j.ipynb): ```python import transformers import torch import torch.nn as nn import torch.nn.functional as F from bitsandbytes.functional import quantize_blockwise, dequantize_blockwise from typing import Tuple from torch.cuda.amp import custom_fwd, custom_bwd class FrozenBNBLinear(nn.Module): def __init__(self, weight, absmax, code, bias=None): assert isinstance(bias, nn.Parameter) or bias is None super().__init__() self.out_features, self.in_features = weight.shape self.register_buffer("weight", weight.requires_grad_(False)) self.register_buffer("absmax", absmax.requires_grad_(False)) self.register_buffer("code", code.requires_grad_(False)) self.adapter = None self.bias = bias def forward(self, input): output = DequantizeAndLinear.apply(input, self.weight, self.absmax, self.code, self.bias) if self.adapter: output += self.adapter(input) return output @classmethod def from_linear(cls, linear: nn.Linear) -> "FrozenBNBLinear": weights_int8, state = quantize_blockise_lowmemory(linear.weight) return cls(weights_int8, *state, linear.bias) def __repr__(self): return f"{self.__class__.__name__}({self.in_features}, {self.out_features})" class DequantizeAndLinear(torch.autograd.Function): @staticmethod @custom_fwd def forward(ctx, input: torch.Tensor, weights_quantized: torch.ByteTensor, absmax: torch.FloatTensor, code: torch.FloatTensor, bias: torch.FloatTensor): weights_deq = dequantize_blockwise(weights_quantized, absmax=absmax, code=code) ctx.save_for_backward(input, weights_quantized, absmax, code) ctx._has_bias = bias is not None return F.linear(input, weights_deq, bias) @staticmethod @custom_bwd def backward(ctx, grad_output: torch.Tensor): assert not ctx.needs_input_grad[1] and not ctx.needs_input_grad[2] and not ctx.needs_input_grad[3] input, weights_quantized, absmax, code = ctx.saved_tensors # grad_output: [*batch, out_features] weights_deq = dequantize_blockwise(weights_quantized, absmax=absmax, code=code) grad_input = grad_output @ weights_deq grad_bias = grad_output.flatten(0, -2).sum(dim=0) if ctx._has_bias else None return grad_input, None, None, None, grad_bias class FrozenBNBEmbedding(nn.Module): def __init__(self, weight, absmax, code): super().__init__() self.num_embeddings, self.embedding_dim = weight.shape self.register_buffer("weight", weight.requires_grad_(False)) self.register_buffer("absmax", absmax.requires_grad_(False)) self.register_buffer("code", code.requires_grad_(False)) self.adapter = None def forward(self, input, **kwargs): with torch.no_grad(): # note: both quantuized weights and input indices are *not* differentiable weight_deq = dequantize_blockwise(self.weight, absmax=self.absmax, code=self.code) output = F.embedding(input, weight_deq, **kwargs) if self.adapter: output += self.adapter(input) return output @classmethod def from_embedding(cls, embedding: nn.Embedding) -> "FrozenBNBEmbedding": weights_int8, state = quantize_blockise_lowmemory(embedding.weight) return cls(weights_int8, *state) def __repr__(self): return f"{self.__class__.__name__}({self.num_embeddings}, {self.embedding_dim})" def quantize_blockise_lowmemory(matrix: torch.Tensor, chunk_size: int = 2 ** 20): assert chunk_size % 4096 == 0 code = None chunks = [] absmaxes = [] flat_tensor = matrix.view(-1) for i in range((matrix.numel() - 1) // chunk_size + 1): input_chunk = flat_tensor[i * chunk_size: (i + 1) * chunk_size].clone() quantized_chunk, (absmax_chunk, code) = quantize_blockwise(input_chunk, code=code) chunks.append(quantized_chunk) absmaxes.append(absmax_chunk) matrix_i8 = torch.cat(chunks).reshape_as(matrix) absmax = torch.cat(absmaxes) return matrix_i8, (absmax, code) def convert_to_int8(model): """Convert linear and embedding modules to 8-bit with optional adapters""" for module in list(model.modules()): for name, child in module.named_children(): if isinstance(child, nn.Linear): print(name, child) setattr( module, name, FrozenBNBLinear( weight=torch.zeros(child.out_features, child.in_features, dtype=torch.uint8), absmax=torch.zeros((child.weight.numel() - 1) // 4096 + 1), code=torch.zeros(256), bias=child.bias, ), ) elif isinstance(child, nn.Embedding): setattr( module, name, FrozenBNBEmbedding( weight=torch.zeros(child.num_embeddings, child.embedding_dim, dtype=torch.uint8), absmax=torch.zeros((child.weight.numel() - 1) // 4096 + 1), code=torch.zeros(256), ) ) class BloomBlock(transformers.models.bloom.modeling_bloom.BloomBlock): def __init__(self, config, layer_number=None): super().__init__(config, layer_number) convert_to_int8(self.self_attention) convert_to_int8(self.mlp) class BloomModel(transformers.models.bloom.modeling_bloom.BloomModel): def __init__(self, config): super().__init__(config) convert_to_int8(self) class BloomForCausalLM(transformers.models.bloom.modeling_bloom.BloomForCausalLM): def __init__(self, config): super().__init__(config) convert_to_int8(self) transformers.models.bloom.modeling_bloom.BloomBlock = BloomBlock model_name = 'mrm8488/bloom-1b3-8bit' model = BloomForCausalLM.from_pretrained(model_name, low_cpu_mem_usage=True) tokenizer = BloomTokenizerFast.from_pretrained(model_name) prompt = tokenizer("Given a table named salaries and columns id, created_at, salary, age. Creates a SQL to answer What is the average salary for 22 years old:", return_tensors='pt') out = model.generate(**prompt, min_length=10, do_sample=True) tokenizer.decode(out[0]) ```
jinwooChoi/hjw_small2
4e187bca58cb3a398770279133e0c05ce729d8d4
2022-07-18T08:44:46.000Z
[ "pytorch", "electra", "text-classification", "transformers" ]
text-classification
false
jinwooChoi
null
jinwooChoi/hjw_small2
8
null
transformers
13,682
Entry not found
huggingtweets/repmtg
97c49e5b2e4ae92578f2a89e7d3039599ff1d98e
2022-07-18T23:59:31.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/repmtg
8
null
transformers
13,683
--- language: en thumbnail: http://www.huggingtweets.com/repmtg/1658188604932/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1522919169599184896/CVPC3b3M_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Rep. Marjorie Taylor Greene🇺🇸</div> <div style="text-align: center; font-size: 14px;">@repmtg</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Rep. Marjorie Taylor Greene🇺🇸. | Data | Rep. Marjorie Taylor Greene🇺🇸 | | --- | --- | | Tweets downloaded | 1806 | | Retweets | 230 | | Short tweets | 114 | | Tweets kept | 1462 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1shyu2gl/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @repmtg's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/ald5krkg) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/ald5krkg/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/repmtg') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
jinwooChoi/hjw_small3
556d464d1528511c19f506665044927ff5688ec6
2022-07-20T06:18:30.000Z
[ "pytorch", "electra", "text-classification", "transformers" ]
text-classification
false
jinwooChoi
null
jinwooChoi/hjw_small3
8
null
transformers
13,684
Entry not found
furrutiav/beto_question_type
8c6b84aa370aeca89f194668ea292970f4288365
2022-07-21T18:58:03.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
furrutiav
null
furrutiav/beto_question_type
8
1
transformers
13,685
Entry not found
steven123/Check_Aligned_Teeth
2d01acc8d67f432f93eae967c028e5cc88c8cada
2022-07-20T00:59:05.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "huggingpics", "model-index" ]
image-classification
false
steven123
null
steven123/Check_Aligned_Teeth
8
null
transformers
13,686
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: Check_Aligned_Teeth results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9473684430122375 --- # Check_Aligned_Teeth Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### Aligned Teeth ![Aligned Teeth](images/Aligned_Teeth.jpg) #### Crooked Teeth ![Crooked Teeth](images/Crooked_Teeth.jpg)
jinwooChoi/SKKU_AP_SA_KES_trained2
ae99901a9b43da8942799c03f36fe36a38d31019
2022-07-21T04:11:50.000Z
[ "pytorch", "electra", "text-classification", "transformers" ]
text-classification
false
jinwooChoi
null
jinwooChoi/SKKU_AP_SA_KES_trained2
8
null
transformers
13,687
Entry not found
ar2rpapian/autotrain-Flexport_Classification_Desc-1155542601
e22acac10f854c77b4f2386a77330021d0fcc7f5
2022-07-20T10:12:11.000Z
[ "pytorch", "bert", "text-classification", "en", "dataset:ar2rpapian/autotrain-data-Flexport_Classification_Desc", "transformers", "autotrain", "co2_eq_emissions" ]
text-classification
false
ar2rpapian
null
ar2rpapian/autotrain-Flexport_Classification_Desc-1155542601
8
null
transformers
13,688
--- tags: autotrain language: en widget: - text: "I love AutoTrain 🤗" datasets: - ar2rpapian/autotrain-data-Flexport_Classification_Desc co2_eq_emissions: 206.60369255723003 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 1155542601 - CO2 Emissions (in grams): 206.60369255723003 ## Validation Metrics - Loss: 0.22105568647384644 - Accuracy: 0.9578838092484789 - Macro F1: 0.9360695960738429 - Micro F1: 0.9578838092484788 - Weighted F1: 0.957863360811612 - Macro Precision: 0.9415730549729362 - Micro Precision: 0.9578838092484789 - Weighted Precision: 0.9586754512711492 - Macro Recall: 0.9329742157218464 - Micro Recall: 0.9578838092484789 - Weighted Recall: 0.9578838092484789 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/ar2rpapian/autotrain-Flexport_Classification_Desc-1155542601 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("ar2rpapian/autotrain-Flexport_Classification_Desc-1155542601", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("ar2rpapian/autotrain-Flexport_Classification_Desc-1155542601", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
jordyvl/biobert-base-cased-v1.2_ncbi_disease-lowC-CRF-first-ner
e16228d628f07f4bdb0a569ed29c9452e9de6b2b
2022-07-20T09:06:41.000Z
[ "pytorch", "tensorboard", "bert", "transformers" ]
null
false
jordyvl
null
jordyvl/biobert-base-cased-v1.2_ncbi_disease-lowC-CRF-first-ner
8
null
transformers
13,689
Entry not found
ardauzunoglu/ConvBERTurk-NLI
c75e15a9bc9118df415b17b835bf0e3697c2226c
2022-07-20T19:55:47.000Z
[ "pytorch", "convbert", "feature-extraction", "sentence-transformers", "sentence-similarity" ]
sentence-similarity
false
ardauzunoglu
null
ardauzunoglu/ConvBERTurk-NLI
8
null
sentence-transformers
13,690
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # ardauzunoglu/ConvBERTurk-NLI This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 256 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('ardauzunoglu/ConvBERTurk-NLI') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=ardauzunoglu/ConvBERTurk-NLI) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 34385 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 3, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 100, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: ConvBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Dense({'in_features': 768, 'out_features': 256, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Billwzl/20split_dataset_version1
7025069f365f1e0ae2764811b25516544679e99c
2022-07-24T20:49:31.000Z
[ "pytorch", "distilbert", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
Billwzl
null
Billwzl/20split_dataset_version1
8
null
transformers
13,691
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: 20split_dataset_version1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 20split_dataset_version1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.1942 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 12 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:------:|:---------------:| | 2.7475 | 1.0 | 11851 | 2.5194 | | 2.5528 | 2.0 | 23702 | 2.4191 | | 2.4649 | 3.0 | 35553 | 2.3646 | | 2.4038 | 4.0 | 47404 | 2.3289 | | 2.3632 | 5.0 | 59255 | 2.2922 | | 2.3273 | 6.0 | 71106 | 2.2739 | | 2.2964 | 7.0 | 82957 | 2.2494 | | 2.2732 | 8.0 | 94808 | 2.2217 | | 2.2526 | 9.0 | 106659 | 2.2149 | | 2.2369 | 10.0 | 118510 | 2.2029 | | 2.222 | 11.0 | 130361 | 2.2020 | | 2.2135 | 12.0 | 142212 | 2.1942 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
ASCCCCCCCC/PENGMENGJIE-finetuned-mix_info
d2f65fbb5853ab8e632a93388b56808674fd0bcd
2022-07-22T05:50:27.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
ASCCCCCCCC
null
ASCCCCCCCC/PENGMENGJIE-finetuned-mix_info
8
null
transformers
13,692
Entry not found
jegormeister/mmarco-mMiniLMv2-L12-H384-v1-pruned
3f21480bc346689730a97451d0d8bd7e698fd572
2022-07-22T08:21:26.000Z
[ "pytorch" ]
null
false
jegormeister
null
jegormeister/mmarco-mMiniLMv2-L12-H384-v1-pruned
8
null
null
13,693
Entry not found
abdulmatinomotoso/combined_headline_generator
0545bcb2a70cf06f021bd5fdbdbc2eadace8abba
2022-07-22T21:39:39.000Z
[ "pytorch", "tensorboard", "pegasus", "text2text-generation", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
abdulmatinomotoso
null
abdulmatinomotoso/combined_headline_generator
8
null
transformers
13,694
--- tags: - generated_from_trainer model-index: - name: combined_headline_generator results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # combined_headline_generator This model is a fine-tuned version of [google/pegasus-multi_news](https://huggingface.co/google/pegasus-multi_news) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.2719 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 300 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.5723 | 0.96 | 300 | 3.2719 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
Evelyn18/roberta-base-spanish-squades-modelo1
ccbb55eed032d11be0b18d0805bda6b8cbd91577
2022-07-22T23:02:37.000Z
[ "pytorch", "tensorboard", "roberta", "question-answering", "dataset:becasv2", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
Evelyn18
null
Evelyn18/roberta-base-spanish-squades-modelo1
8
null
transformers
13,695
--- tags: - generated_from_trainer datasets: - becasv2 model-index: - name: roberta-base-spanish-squades-modelo1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-spanish-squades-modelo1 This model is a fine-tuned version of [IIC/roberta-base-spanish-squades](https://huggingface.co/IIC/roberta-base-spanish-squades) on the becasv2 dataset. It achieves the following results on the evaluation set: - Loss: 5.7001 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 11 - eval_batch_size: 11 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 6 | 2.7892 | | No log | 2.0 | 12 | 3.7037 | | No log | 3.0 | 18 | 5.1221 | | No log | 4.0 | 24 | 4.5988 | | No log | 5.0 | 30 | 5.9202 | | No log | 6.0 | 36 | 5.0345 | | No log | 7.0 | 42 | 4.4421 | | No log | 8.0 | 48 | 4.6969 | | No log | 9.0 | 54 | 5.2084 | | No log | 10.0 | 60 | 5.7001 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Ahmed007/bart-large-cnn-ibn-Shaddad-v1
117f1187c37cef7526839cb7b0a9c0b75820e390
2022-07-23T10:01:13.000Z
[ "pytorch", "tensorboard", "bart", "text2text-generation", "transformers", "Poet", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
text2text-generation
false
Ahmed007
null
Ahmed007/bart-large-cnn-ibn-Shaddad-v1
8
null
transformers
13,696
--- license: mit tags: - Poet - generated_from_trainer metrics: - rouge model-index: - name: bart-large-cnn-ibn-Shaddad-v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-cnn-ibn-Shaddad-v1 This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9162 - Rouge1: 0.0 - Rouge2: 0.0 - Rougel: 0.0 - Rougelsum: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 30 - eval_batch_size: 30 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| | 1.0752 | 1.0 | 569 | 1.3579 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.8769 | 2.0 | 1138 | 1.3172 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.7833 | 3.0 | 1707 | 0.9982 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.707 | 4.0 | 2276 | 0.9162 | 0.0 | 0.0 | 0.0 | 0.0 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
domenicrosati/deberta-v3-large-finetuned-synthetic-multi-class
a9b9dabd745824dcffbdac02a1237f69f553f72e
2022-07-24T02:51:13.000Z
[ "pytorch", "tensorboard", "deberta-v2", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
domenicrosati
null
domenicrosati/deberta-v3-large-finetuned-synthetic-multi-class
8
null
transformers
13,697
--- license: mit tags: - text-classification - generated_from_trainer metrics: - f1 - precision - recall model-index: - name: deberta-v3-large-finetuned-synthetic-multi-class results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-large-finetuned-synthetic-multi-class This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0223 - F1: 0.9961 - Precision: 0.9961 - Recall: 0.9961 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Precision | Recall | |:-------------:|:-----:|:-----:|:---------------:|:------:|:---------:|:------:| | 0.0278 | 1.0 | 10953 | 0.0352 | 0.9936 | 0.9935 | 0.9936 | | 0.0143 | 2.0 | 21906 | 0.0252 | 0.9952 | 0.9952 | 0.9953 | | 0.0014 | 3.0 | 32859 | 0.0267 | 0.9955 | 0.9955 | 0.9955 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
ydmeira/segformer-b0-finetuned-pokemon
0a6e016902e777a11ba729f38d32ae03fb837a0d
2022-07-25T13:53:55.000Z
[ "pytorch", "segformer", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
null
false
ydmeira
null
ydmeira/segformer-b0-finetuned-pokemon
8
null
transformers
13,698
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: segformer-b0-finetuned-pokemon results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # segformer-b0-finetuned-pokemon This model is a fine-tuned version of [ydmeira/segformer-b0-finetuned-pokemon](https://huggingface.co/ydmeira/segformer-b0-finetuned-pokemon) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0157 - Mean Iou: 0.4970 - Mean Accuracy: 0.9940 - Overall Accuracy: 0.9940 - Per Category Iou: [0.0, 0.9940101727137823] - Per Category Accuracy: [nan, 0.9940101727137823] ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------------:|:-------------------------:| | 0.0175 | 45.0 | 1305 | 0.0157 | 0.4971 | 0.9943 | 0.9943 | [0.0, 0.9942906494536522] | [nan, 0.9942906494536522] | | 0.018 | 46.0 | 1334 | 0.0157 | 0.4968 | 0.9936 | 0.9936 | [0.0, 0.9936369941650801] | [nan, 0.9936369941650801] | | 0.0185 | 47.0 | 1363 | 0.0157 | 0.4971 | 0.9943 | 0.9943 | [0.0, 0.9942791789145462] | [nan, 0.9942791789145462] | | 0.018 | 48.0 | 1392 | 0.0157 | 0.4969 | 0.9937 | 0.9937 | [0.0, 0.9937245121725857] | [nan, 0.9937245121725857] | | 0.0183 | 49.0 | 1421 | 0.0157 | 0.4969 | 0.9939 | 0.9939 | [0.0, 0.9938530594161242] | [nan, 0.9938530594161242] | | 0.0196 | 50.0 | 1450 | 0.0157 | 0.4970 | 0.9940 | 0.9940 | [0.0, 0.9940101727137823] | [nan, 0.9940101727137823] | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
akshatpandeyme/DialoGPT-small-parthiv
e69693357691e448cd97baeb812d1f04de19f995
2022-07-25T10:43:29.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
akshatpandeyme
null
akshatpandeyme/DialoGPT-small-parthiv
8
null
transformers
13,699
--- tags: - conversational --- # parthiv DialoGPT Model