modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
list
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
โŒ€
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
โŒ€
likes
float64
0
712
โŒ€
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
armgabrielyan/video-summarization
e487ff551cb932519b3608acbed9c9c1beb00b9e
2022-05-22T07:18:33.000Z
[ "pytorch", "vision-encoder-decoder", "transformers" ]
null
false
armgabrielyan
null
armgabrielyan/video-summarization
11
1
transformers
11,300
Entry not found
Nanatan/distilbert-base-uncased-finetuned-emotion
5de7035e1f0a2013e92e91df1871e51c0d29d24e
2022-05-22T21:34:43.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Nanatan
null
Nanatan/distilbert-base-uncased-finetuned-emotion
11
null
transformers
11,301
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9215 - name: F1 type: f1 value: 0.9215313247415522 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2169 - Accuracy: 0.9215 - F1: 0.9215 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.798 | 1.0 | 250 | 0.3098 | 0.899 | 0.8956 | | 0.2422 | 2.0 | 500 | 0.2169 | 0.9215 | 0.9215 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
wonscha/my-awesome-model
7ab8a634d6a41e49e00437f6cf4fcf789e2baa9c
2022-05-23T04:44:48.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "dataset:yelp_review_full", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
wonscha
null
wonscha/my-awesome-model
11
null
transformers
11,302
--- license: apache-2.0 tags: - generated_from_trainer datasets: - yelp_review_full metrics: - accuracy model-index: - name: my-awesome-model results: - task: name: Text Classification type: text-classification dataset: name: yelp_review_full type: yelp_review_full args: yelp_review_full metrics: - name: Accuracy type: accuracy value: 0.559 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my-awesome-model This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the yelp_review_full dataset. It achieves the following results on the evaluation set: - Loss: 1.5680 - Accuracy: 0.559 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 125 | 1.1345 | 0.523 | | No log | 2.0 | 250 | 1.5381 | 0.539 | | No log | 3.0 | 375 | 1.5680 | 0.559 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.10.3
jimypbr/t5-base-test
5656783dfb89fcaf48162bb9158f0b5ad436fbb9
2022-05-25T12:02:55.000Z
[ "pytorch", "t5", "text2text-generation", "dataset:cnn_dailymail", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
jimypbr
null
jimypbr/t5-base-test
11
null
transformers
11,303
--- license: apache-2.0 tags: - generated_from_trainer datasets: - cnn_dailymail model-index: - name: t5-base-summarization results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-summarization This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the cnn_dailymail 3.0.0 dataset. ## Model description More information needed ## Intended uses & limitations This is a work in progress. Please don't use these weights. :) ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 2 - seed: 42 - distributed_type: IPU - gradient_accumulation_steps: 256 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.15 - num_epochs: 5.0 - training precision: Mixed Precision ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cpu - Datasets 2.1.0 - Tokenizers 0.12.1
mrm8488/t5-small-finetuned-qgsquad-qgen
756ac4db6a4cf80974046f6080c6e6f0ee47be5a
2022-05-24T17:20:27.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:qg_squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
mrm8488
null
mrm8488/t5-small-finetuned-qgsquad-qgen
11
null
transformers
11,304
--- license: apache-2.0 tags: - generated_from_trainer datasets: - qg_squad model-index: - name: t5-small-finetuned-qgsquad-qgen results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-qgsquad-qgen This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the qg_squad dataset. It achieves the following results on the evaluation set: - Loss: 0.4039 - Rouge4 Precision: 0.0931 - Rouge4 Recall: 0.0834 - Rouge4 Fmeasure: 0.0843 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge4 Precision | Rouge4 Recall | Rouge4 Fmeasure | |:-------------:|:-----:|:-----:|:---------------:|:----------------:|:-------------:|:---------------:| | 0.4325 | 1.0 | 4733 | 0.3960 | 0.0984 | 0.0867 | 0.0889 | | 0.4137 | 2.0 | 9466 | 0.3863 | 0.1061 | 0.0946 | 0.0963 | | 0.3914 | 3.0 | 14199 | 0.3806 | 0.1051 | 0.0938 | 0.0955 | | 0.3946 | 4.0 | 18932 | 0.3786 | 0.1084 | 0.097 | 0.0986 | | 0.3857 | 5.0 | 23665 | 0.3784 | 0.1101 | 0.0991 | 0.1007 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
Yah216/Arabic_poem_meter_classification
01776dfc0299695a5041b480212b0ce2f388b9e2
2022-05-26T17:45:51.000Z
[ "pytorch", "bert", "text-classification", "ar", "transformers" ]
text-classification
false
Yah216
null
Yah216/Arabic_poem_meter_classification
11
null
transformers
11,305
--- language: ar widget: - text: "ู‚ูุง ู†ุจูƒ ู…ู† ุฐููƒุฑู‰ ุญุจูŠุจ ูˆู…ู†ุฒู„ู ุจุณูู‚ุทู ุงู„ู„ูู‘ูˆู‰ ุจูŠู†ูŽ ุงู„ุฏูŽู‘ุฎูˆู„ ูุญูŽูˆู’ู…ู„ู" - text: "ุณูŽู„ูˆ ู‚ูŽู„ุจูŠ ุบูŽุฏุงุฉูŽ ุณูŽู„ุง ูˆูŽุซุงุจุง ู„ูŽุนูŽู„ูŽู‘ ุนูŽู„ู‰ ุงู„ุฌูŽู…ุงู„ู ู„ูŽู‡ู ุนูุชุงุจุง" --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 913229914 - CO2 Emissions (in grams): 1.8892280988467902 ## Validation Metrics - Loss: 1.0592747926712036 - Accuracy: 0.6535535147098981 - Macro F1: 0.46508274468173677 - Micro F1: 0.6535535147098981 - Weighted F1: 0.6452975497424681 - Macro Precision: 0.6288501119526966 - Micro Precision: 0.6535535147098981 - Weighted Precision: 0.6818087199275457 - Macro Recall: 0.3910156950920188 - Micro Recall: 0.6535535147098981 - Weighted Recall: 0.6535535147098981 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/Yah216/autotrain-poem_meter_classification-913229914 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("Yah216/autotrain-poem_meter_classification-913229914", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("Yah216/autotrain-poem_meter_classification-913229914", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
chrisvinsen/xlsr-wav2vec2-final-1-lm-2
66f307d2a59a857523d9db682a61e537346869a0
2022-06-01T22:29:23.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
chrisvinsen
null
chrisvinsen/xlsr-wav2vec2-final-1-lm-2
11
null
transformers
11,306
Indonli dataset --> Train + Validation + Test WER : 0.216 WER with LM: 0.151
Jrico1981/sentiment-classification
f2648625e3255ef2f972bd646cb889effe030396
2022-05-28T14:32:09.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Jrico1981
null
Jrico1981/sentiment-classification
11
null
transformers
11,307
welcome to my sentiment classification model model trained with the bert-base-uncased base to classify the sentiment of customers who respond to the satisfaction survey. The sentiments that it classifies are positive (1) and negative (0).
GioReg/bertMULTINEGsentiment
2734d1d2d3da1af872cd858f788455da3cb01586
2022-05-29T13:05:08.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
GioReg
null
GioReg/bertMULTINEGsentiment
11
null
transformers
11,308
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bertMULTINEGsentiment results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bertMULTINEGsentiment This model is a fine-tuned version of [bert-base-multilingual-uncased](https://huggingface.co/bert-base-multilingual-uncased) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
wanghao2023/uganda-labor-market-interview-text-classification
ccd60f95571696614d565998bab5a3be0f7e71b5
2022-05-29T23:26:31.000Z
[ "pytorch", "roberta", "text-classification", "en", "transformers", "license:mit" ]
text-classification
false
wanghao2023
null
wanghao2023/uganda-labor-market-interview-text-classification
11
null
transformers
11,309
--- language: en license: mit --- # Uganda Labor Market Interview Text Classification This model is a fine-tuned [Roberta base model](https://huggingface.co/roberta-base) using text transcripts of interviews between Vocational Training Institutes (VTI) students and their successful alumni in Uganda on the subject of the labor market. ## Model description There are 6 categories in total. In the training data, a sentence can get classified as more than one topic. I classify a sentence using the following criteria: info: information about the job market, working conditions, salaries, and what to expect at work. Also alumn's and student's current situation in the job market, career plans, and past experience. Note if the alumn mentions using strategies in her/his experience, I also classify the sentence as a strategy. tip: tips for how to behave and improve ourselves while at work. The majority of tips involve being disciplined, humble, treating colleagues and clients well so that you can learn, and not involving in illegal stuff. If the alumni mention doing so increases the chance of getting jobs, I also classify the sentence as a strategy. strategy: tips that help students get a better chance of getting hired or getting a better job. Including how to search for companies, what kind of companies to apply for, how to write and submit applications, when and how many companies to apply for, how to behave during interviews, how to get jobs through different channels, and making and maintaining connections, and general advice on how to improve job-related abilities. Also tips for starting your own business, including saving for capital, finding locations, business models, purchasing apparatuses, and attracting and treating clients. motivation: General advice of being confident, patient, persistent, engaged, optimistic, etc in the job market. Note if the alumni mention that advice in a particular context, for example "during an interview you need to show that you are a patient person," or "when doing your work you need to be patient," I will also classify these sentences as strategy and tip respectively. referral: referring students to companies and individuals, or affirmative answers to the student's request for connection. neutral: Introductions, exchanging contacts, pure technical stuff, conversations about school or exams that are not related to getting jobs, miscellaneous conversations that do not belong to the 5 topics above, and those whose meaning is unclear due to language improficiency or translation issues. ### How to use You can use this model directly with a pipeline for text classification: ```python >>> from transformers import pipeline >>> pipe = pipeline("text-classification", model= "wanghao2023/uganda-labor-market-interview-text-classification", tokenizer = "wanghao2023/uganda-labor-market-interview-text-classification", return_all_scores = True) >>> pipe("if they think you know too much, they won't teach you.") [[{'label': 'is_info', 'score': 0.18128268420696259}, {'label': 'is_tip', 'score': 0.5684323310852051}, {'label': 'is_strategy', 'score': 0.22818608582019806}, {'label': 'is_motivation', 'score': 0.03250108286738396}, {'label': 'is_neutral', 'score': 0.05972086638212204}, {'label': 'is_referral', 'score': 0.013502764515578747}]] ``` ### Limitations and bias The classification of a sentence is heavily based on the context. For example, "be patient" can be classified as tip and/or strategy and/or motivation depending on which occasion the alumna asks the students to be patient. If the alumna asks the student to be patient during the interview, it's strategy; if the alumna asks the student to be patient while at work, then it's tip; if no specific context is given, then it's motivation. ## Evaluation results This model achieves the following results when tested on the validation dataset (multilabel, threshold = 0.3). There is a huge room for improvement but it performs much better than a dice roll at least: | F1 | Roc Auc | Accuracy | |:----:|:----:|:----:| | 0.655779 | 0.799979 | 0.552670 |
sahn/distilbert-base-uncased-finetuned-imdb
5fcff2b437b90a0501b9adbddf451d0b26f03bf0
2022-05-30T04:41:23.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
sahn
null
sahn/distilbert-base-uncased-finetuned-imdb
11
null
transformers
11,310
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-imdb results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.9294 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.2214 - Accuracy: 0.9294 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2435 | 1.0 | 1250 | 0.2186 | 0.917 | | 0.1495 | 2.0 | 2500 | 0.2214 | 0.9294 | | 0.0829 | 3.0 | 3750 | 0.4892 | 0.8918 | | 0.0472 | 4.0 | 5000 | 0.5189 | 0.8976 | | 0.0268 | 5.0 | 6250 | 0.5478 | 0.8996 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
apple/mobilevit-x-small
1f463474d8900c5cddd0129044b8b31cc2a7e511
2022-06-02T10:55:15.000Z
[ "pytorch", "coreml", "mobilevit", "image-classification", "dataset:imagenet-1k", "arxiv:2110.02178", "transformers", "vision", "license:other" ]
image-classification
false
apple
null
apple/mobilevit-x-small
11
null
transformers
11,311
--- license: other tags: - vision - image-classification datasets: - imagenet-1k widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace --- # MobileViT (extra small-sized model) MobileViT model pre-trained on ImageNet-1k at resolution 256x256. It was introduced in [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) by Sachin Mehta and Mohammad Rastegari, and first released in [this repository](https://github.com/apple/ml-cvnets). The license used is [Apple sample code license](https://github.com/apple/ml-cvnets/blob/main/LICENSE). Disclaimer: The team releasing MobileViT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description MobileViT is a light-weight, low latency convolutional neural network that combines MobileNetV2-style layers with a new block that replaces local processing in convolutions with global processing using transformers. As with ViT (Vision Transformer), the image data is converted into flattened patches before it is processed by the transformer layers. Afterwards, the patches are "unflattened" back into feature maps. This allows the MobileViT-block to be placed anywhere inside a CNN. MobileViT does not require any positional embeddings. ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=mobilevit) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import MobileViTFeatureExtractor, MobileViTForImageClassification from PIL import Image import requests url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) feature_extractor = MobileViTFeatureExtractor.from_pretrained("apple/mobilevit-x-small") model = MobileViTForImageClassification.from_pretrained("apple/mobilevit-x-small") inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` Currently, both the feature extractor and model support PyTorch. ## Training data The MobileViT model was pretrained on [ImageNet-1k](https://huggingface.co/datasets/imagenet-1k), a dataset consisting of 1 million images and 1,000 classes. ## Training procedure ### Preprocessing Training requires only basic data augmentation, i.e. random resized cropping and horizontal flipping. To learn multi-scale representations without requiring fine-tuning, a multi-scale sampler was used during training, with image sizes randomly sampled from: (160, 160), (192, 192), (256, 256), (288, 288), (320, 320). At inference time, images are resized/rescaled to the same resolution (288x288), and center-cropped at 256x256. Pixels are normalized to the range [0, 1]. Images are expected to be in BGR pixel order, not RGB. ### Pretraining The MobileViT networks are trained from scratch for 300 epochs on ImageNet-1k on 8 NVIDIA GPUs with an effective batch size of 1024 and learning rate warmup for 3k steps, followed by cosine annealing. Also used were label smoothing cross-entropy loss and L2 weight decay. Training resolution varies from 160x160 to 320x320, using multi-scale sampling. ## Evaluation results | Model | ImageNet top-1 accuracy | ImageNet top-5 accuracy | # params | URL | |------------------|-------------------------|-------------------------|-----------|-------------------------------------------------| | MobileViT-XXS | 69.0 | 88.9 | 1.3 M | https://huggingface.co/apple/mobilevit-xx-small | | **MobileViT-XS** | **74.8** | **92.3** | **2.3 M** | https://huggingface.co/apple/mobilevit-x-small | | MobileViT-S | 78.4 | 94.1 | 5.6 M | https://huggingface.co/apple/mobilevit-small | ### BibTeX entry and citation info ```bibtex @inproceedings{vision-transformer, title = {MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer}, author = {Sachin Mehta and Mohammad Rastegari}, year = {2022}, URL = {https://arxiv.org/abs/2110.02178} } ```
Yuliya-HV/distilbert-base-uncased-finetuned-emotion-tweets
ea5d8e84192fd6f99b9917bc9d0c56de71f6f77f
2022-05-30T18:39:27.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Yuliya-HV
null
Yuliya-HV/distilbert-base-uncased-finetuned-emotion-tweets
11
null
transformers
11,312
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion-tweets results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9355 - name: F1 type: f1 value: 0.9358599960917737 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion-tweets This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1572 - Accuracy: 0.9355 - F1: 0.9359 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 250 | 0.1672 | 0.932 | 0.9320 | | No log | 2.0 | 500 | 0.1572 | 0.9355 | 0.9359 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
RANG012/SENATOR-Scaled
e4fa97a447462dacff3f3a5ebc2a9d05d374bb2c
2022-06-01T08:10:34.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
RANG012
null
RANG012/SENATOR-Scaled
11
null
transformers
11,313
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: SENATOR-Scaled results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.89 - name: F1 type: f1 value: 0.8897795591182365 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SENATOR-Scaled This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.2670 - Accuracy: 0.89 - F1: 0.8898 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
Abderrahim2/bert-finetuned-Age
205ca2b61761091787d472a1021a385e45f43924
2022-06-02T16:37:58.000Z
[ "pytorch", "bert", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
Abderrahim2
null
Abderrahim2/bert-finetuned-Age
11
1
transformers
11,314
--- license: mit tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: bert-finetuned-Age results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-Age This model is a fine-tuned version of [dbmdz/bert-base-french-europeana-cased](https://huggingface.co/dbmdz/bert-base-french-europeana-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4642 - F1: 0.7254 - Roc Auc: 0.7940 - Accuracy: 0.7249 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | 0.4564 | 1.0 | 965 | 0.4642 | 0.7254 | 0.7940 | 0.7254 | | 0.4443 | 2.0 | 1930 | 0.4662 | 0.7254 | 0.7940 | 0.7254 | | 0.4388 | 3.0 | 2895 | 0.4628 | 0.7254 | 0.7940 | 0.7254 | | 0.4486 | 4.0 | 3860 | 0.4642 | 0.7254 | 0.7940 | 0.7249 | | 0.4287 | 5.0 | 4825 | 0.4958 | 0.7214 | 0.7907 | 0.7150 | | 0.4055 | 6.0 | 5790 | 0.5325 | 0.6961 | 0.7715 | 0.6782 | | 0.3514 | 7.0 | 6755 | 0.5588 | 0.6586 | 0.7443 | 0.6223 | | 0.3227 | 8.0 | 7720 | 0.5944 | 0.6625 | 0.7470 | 0.6295 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
Jeevesh8/init_bert_ft_qqp-58
adb129bcb03fe426a47c15db5171aac20fa634f8
2022-06-02T12:39:36.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-58
11
null
transformers
11,315
Entry not found
Jeevesh8/init_bert_ft_qqp-56
5d6a7eb9d10e20374bfc95d431e63ef6d99965c1
2022-06-02T12:39:34.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-56
11
null
transformers
11,316
Entry not found
Jeevesh8/init_bert_ft_qqp-51
5336d616552fb1360f6e1ef4421fad176c787a95
2022-06-02T12:39:27.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/init_bert_ft_qqp-51
11
null
transformers
11,317
Entry not found
yanekyuk/berturk-128k-keyword-discriminator
37f253be49edbe087d827ffa0b58eced6fe8cf13
2022-06-05T12:54:08.000Z
[ "pytorch", "bert", "token-classification", "tr", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
yanekyuk
null
yanekyuk/berturk-128k-keyword-discriminator
11
null
transformers
11,318
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - accuracy - f1 language: - tr widget: - text: "ฤฐngiltere'de dรผzenlenen Avrupa Tekvando ve Para Tekvando ลžampiyonasฤฑโ€™nda millรฎ tekvandocular 5 altฤฑn, 2 gรผmรผลŸ ve 4 bronz olmak รผzere 11, millรฎ para tekvandocular ise 4 altฤฑn, 3 gรผmรผลŸ ve 1 bronz olmak รผzere 8 madalya kazanarak takฤฑm halinde Avrupa ลŸampiyonu oldu." - text: "Fรผme somon dedik ama aslฤฑnda lox salamuralanmฤฑลŸ somon anlamฤฑna geliyor, fรผme etme opsiyonel. Lox bagel, 1930'larda Eggs Benedict furyasฤฑnda New Yorklu Yahudi cemaati tarafฤฑndan koลŸer bir alternatif olarak รงฤฑkan bir lezzet. Gรผnรผmรผzde benim hangover yรผreฤŸim dรขhil dรผnyanฤฑn birรงok yerinde enfes bir kahvaltฤฑ sandviรงi." - text: "Tรผrkiye'de son aylarda sฤฑklฤฑkla tartฤฑลŸฤฑlan konut satฤฑลŸฤฑ karลŸฤฑlฤฑฤŸฤฑnda yabancฤฑlara vatandaลŸlฤฑk verilmesi konusunu beyin gรถรงรผ kapsamฤฑnda ele almak mรผmkรผn. Daha รถnce 250 bin dolar olan vatandaลŸlฤฑk bedeli yรผkselen tepkiler รผzerine 400 bin dolara รงฤฑkarฤฑlmฤฑลŸtฤฑ. Tรผrkiye'den gรถรง eden iyi eฤŸitimli kiลŸilerin , gittikleri รผlkelerde 250 bin dolar tutarฤฑnda yabancฤฑ yatฤฑrฤฑma denk olduฤŸu gรถz รถnรผne alฤฑndฤฑฤŸฤฑnda nitelikli insan gรผcรผnรผn yabancฤฑlara konut karลŸฤฑlฤฑฤŸฤฑnda satฤฑlan vatandaลŸlฤฑk bedelin eลŸ olduฤŸunu gรถrรผyoruz. Yurt dฤฑลŸฤฑna giden her bir vatandaลŸฤฑn yรผksek teknolojili katma deฤŸer รผreten sektรถrlere yapacaฤŸฤฑ katkฤฑlar gรถz รถnรผnde bulundurulduฤŸunda bu aรงฤฑฤŸฤฑn inลŸaat sektรถrรผyle kapatฤฑldฤฑฤŸฤฑnฤฑ da gรถrรผyoruz. Beyin gรถรงรผ konusunda sadece ekonomik perspektiften bakฤฑldฤฑฤŸฤฑnda bile kฤฑsa vadeli dรถviz kaynaฤŸฤฑ yaratmak iรงin kullanฤฑlan vatandaลŸlฤฑk satฤฑลŸฤฑ yerine beyin gรถรงรผnรผ รถnleyecek รถnlemler alฤฑnmasฤฑnฤฑn รผlkemize รงok daha faydalฤฑ olacaฤŸฤฑ sonucunu รงฤฑkarฤฑyoruz." - text: "Tรผrkiyeโ€™de resmรฎ verilere gรถre, 15 ve daha yukarฤฑ yaลŸtaki kiลŸilerde mevsim etkisinden arฤฑndฤฑrฤฑlmฤฑลŸ iลŸsiz sayฤฑsฤฑ, bu yฤฑlฤฑn ilk รงeyreฤŸinde bir รถnceki รงeyreฤŸe gรถre 50 bin kiลŸi artarak 3 milyon 845 bin kiลŸi oldu. Mevsim etkisinden arฤฑndฤฑrฤฑlmฤฑลŸ iลŸsizlik oranฤฑ ise 0,1 puanlฤฑk artฤฑลŸla %11,4 seviyesinde gerรงekleลŸti. ฤฐลŸsizlik oranฤฑ, ilk รงeyrekte geรงen yฤฑlฤฑn aynฤฑ รงeyreฤŸine gรถre 1,7 puan azaldฤฑ." - text: "Boeingโ€™in insansฤฑz uzay aracฤฑ Starliner, birtakฤฑm sorunlara raฤŸmen Uluslararasฤฑ Uzay ฤฐstasyonuna (ISS) ulaลŸarak ilk kez baลŸarฤฑlฤฑ bir ลŸekilde kenetlendi. Aracฤฑn ISSโ€™te beลŸ gรผn kalmasฤฑnฤฑ takiben sorunsuz bir ลŸekilde New Mexicoโ€™ya inmesi halinde Boeing, sonbaharda astronotlarฤฑ yรถrรผngeye gรถndermek iรงin Starlinerโ€™ฤฑ kullanabilir.\n\nNeden รถnemli? NASAโ€™nฤฑn personal aracฤฑ รผretmeyi durdurmasฤฑndan kaynaklฤฑ olarak gรถrevli astronotlar ve kozmonotlar, ISSโ€™te Rusyaโ€™nฤฑn รผrettiฤŸi uzay araรงlarฤฑ ile taลŸฤฑnฤฑyordu. Starlinerโ€™ฤฑn kendini kanฤฑtlamasฤฑ ise bu konuda Rusyaโ€™ya olan baฤŸฤฑmlฤฑlฤฑฤŸฤฑn potansiyel olarak ortadan kalkabileceฤŸi anlamฤฑna geliyor." model-index: - name: berturk-128k-keyword-discriminator results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # berturk-128k-keyword-discriminator This model is a fine-tuned version of [dbmdz/bert-base-turkish-128k-cased](https://huggingface.co/dbmdz/bert-base-turkish-128k-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3828 - Precision: 0.6791 - Recall: 0.7234 - Accuracy: 0.9294 - F1: 0.7006 - Ent/precision: 0.6931 - Ent/accuracy: 0.7715 - Ent/f1: 0.7302 - Con/precision: 0.6473 - Con/accuracy: 0.6282 - Con/f1: 0.6376 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | Accuracy | F1 | Ent/precision | Ent/accuracy | Ent/f1 | Con/precision | Con/accuracy | Con/f1 | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:--------:|:------:|:-------------:|:------------:|:------:|:-------------:|:------------:|:------:| | 0.1632 | 1.0 | 1875 | 0.1637 | 0.6661 | 0.6900 | 0.9320 | 0.6778 | 0.6649 | 0.7401 | 0.7005 | 0.6692 | 0.5907 | 0.6275 | | 0.1151 | 2.0 | 3750 | 0.1709 | 0.6538 | 0.7446 | 0.9292 | 0.6963 | 0.6682 | 0.7864 | 0.7225 | 0.6223 | 0.6619 | 0.6415 | | 0.0817 | 3.0 | 5625 | 0.1931 | 0.6667 | 0.7292 | 0.9294 | 0.6965 | 0.6843 | 0.7677 | 0.7236 | 0.6290 | 0.6529 | 0.6407 | | 0.057 | 4.0 | 7500 | 0.2375 | 0.6578 | 0.7486 | 0.9277 | 0.7002 | 0.6708 | 0.7950 | 0.7277 | 0.6284 | 0.6567 | 0.6422 | | 0.041 | 5.0 | 9375 | 0.2765 | 0.6683 | 0.7390 | 0.9284 | 0.7019 | 0.6834 | 0.7821 | 0.7294 | 0.6351 | 0.6538 | 0.6444 | | 0.0297 | 6.0 | 11250 | 0.3128 | 0.6811 | 0.7249 | 0.9295 | 0.7023 | 0.6979 | 0.7710 | 0.7327 | 0.6438 | 0.6334 | 0.6386 | | 0.0211 | 7.0 | 13125 | 0.3633 | 0.6780 | 0.7236 | 0.9290 | 0.7001 | 0.6919 | 0.7722 | 0.7299 | 0.6463 | 0.6273 | 0.6366 | | 0.0165 | 8.0 | 15000 | 0.3828 | 0.6791 | 0.7234 | 0.9294 | 0.7006 | 0.6931 | 0.7715 | 0.7302 | 0.6473 | 0.6282 | 0.6376 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
murdockthedude/distilbert-base-uncased-finetuned-ner
591a4f78d95c6529e74b37744fac7838b10817e3
2022-06-05T00:57:57.000Z
[ "pytorch", "tensorboard", "distilbert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
murdockthedude
null
murdockthedude/distilbert-base-uncased-finetuned-ner
11
null
transformers
11,319
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.8664567296477723 - name: Recall type: recall value: 0.8816757654877759 - name: F1 type: f1 value: 0.8740000000000001 - name: Accuracy type: accuracy value: 0.9716525101857606 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.1078 - Precision: 0.8665 - Recall: 0.8817 - F1: 0.8740 - Accuracy: 0.9717 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 220 | 0.0993 | 0.8511 | 0.8780 | 0.8643 | 0.9721 | | No log | 2.0 | 440 | 0.0732 | 0.8913 | 0.9122 | 0.9016 | 0.9783 | | 0.1878 | 3.0 | 660 | 0.0681 | 0.8984 | 0.9186 | 0.9083 | 0.9797 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
Erland/distilbert-base-uncased-finetuned-emotion
969c9b7e367723d5ef31299e4f93277579273eca
2022-06-06T02:45:50.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Erland
null
Erland/distilbert-base-uncased-finetuned-emotion
11
null
transformers
11,320
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.927 - name: F1 type: f1 value: 0.9268682520975888 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2128 - Accuracy: 0.927 - F1: 0.9269 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8246 | 1.0 | 250 | 0.3061 | 0.913 | 0.9118 | | 0.2398 | 2.0 | 500 | 0.2128 | 0.927 | 0.9269 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
Jherb/finetuning-sentiment-model-3000-samples
112a0307addd51f4aff137db503f5de958106243
2022-06-05T21:21:18.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Jherb
null
Jherb/finetuning-sentiment-model-3000-samples
11
null
transformers
11,321
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8666666666666667 - name: F1 type: f1 value: 0.8666666666666667 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3063 - Accuracy: 0.8667 - F1: 0.8667 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
binaya-s/xls-r-300m-en
84eaf67e5490f9e8bccd2687ce2d5680082119fa
2022-06-07T07:58:50.000Z
[ "pytorch", "tf", "wav2vec2", "automatic-speech-recognition", "en", "dataset:librispeech_asr", "arxiv:2006.11477", "transformers", "audio", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
binaya-s
null
binaya-s/xls-r-300m-en
11
null
transformers
11,322
--- language: en datasets: - librispeech_asr tags: - audio - automatic-speech-recognition - hf-asr-leaderboard license: apache-2.0 widget: - example_title: Librispeech sample 1 src: https://cdn-media.huggingface.co/speech_samples/sample1.flac - example_title: Librispeech sample 2 src: https://cdn-media.huggingface.co/speech_samples/sample2.flac model-index: - name: wav2vec2-base-960h results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: LibriSpeech (clean) type: librispeech_asr config: clean split: test args: language: en metrics: - name: Test WER type: wer value: 3.4 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: LibriSpeech (other) type: librispeech_asr config: other split: test args: language: en metrics: - name: Test WER type: wer value: 8.6 --- # Wav2Vec2-Base-960h [Facebook's Wav2Vec2](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/) The base model pretrained and fine-tuned on 960 hours of Librispeech on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. [Paper](https://arxiv.org/abs/2006.11477) Authors: Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli **Abstract** We show for the first time that learning powerful representations from speech audio alone followed by fine-tuning on transcribed speech can outperform the best semi-supervised methods while being conceptually simpler. wav2vec 2.0 masks the speech input in the latent space and solves a contrastive task defined over a quantization of the latent representations which are jointly learned. Experiments using all labeled data of Librispeech achieve 1.8/3.3 WER on the clean/other test sets. When lowering the amount of labeled data to one hour, wav2vec 2.0 outperforms the previous state of the art on the 100 hour subset while using 100 times less labeled data. Using just ten minutes of labeled data and pre-training on 53k hours of unlabeled data still achieves 4.8/8.2 WER. This demonstrates the feasibility of speech recognition with limited amounts of labeled data. The original model can be found under https://github.com/pytorch/fairseq/tree/master/examples/wav2vec#wav2vec-20. # Usage To transcribe audio files the model can be used as a standalone acoustic model as follows: ```python from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC from datasets import load_dataset import soundfile as sf import torch # load model and tokenizer processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h") model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h") # load dummy dataset and read soundfiles ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation") # tokenize input_values = processor(ds[0]["audio"]["array"], return_tensors="pt", padding="longest").input_values # Batch size 1 # retrieve logits logits = model(input_values).logits # take argmax and decode predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(predicted_ids) ``` ## Evaluation This code snippet shows how to evaluate **facebook/wav2vec2-base-960h** on LibriSpeech's "clean" and "other" test data. ```python from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import torch from jiwer import wer librispeech_eval = load_dataset("librispeech_asr", "clean", split="test") model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h").to("cuda") processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h") def map_to_pred(batch): input_values = processor(batch["audio"]["array"], return_tensors="pt", padding="longest").input_values with torch.no_grad(): logits = model(input_values.to("cuda")).logits predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(predicted_ids) batch["transcription"] = transcription return batch result = librispeech_eval.map(map_to_pred, batched=True, batch_size=1, remove_columns=["audio"]) print("WER:", wer(result["text"], result["transcription"])) ``` *Result (WER)*: | "clean" | "other" | |---|---| | 3.4 | 8.6 |
QuentinKemperino/ECHR_test_2
2457ef10cc1511a76b0264bf9048bf27ad7971be
2022-06-21T20:44:10.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "dataset:lex_glue", "transformers", "generated_from_trainer", "license:cc-by-sa-4.0", "model-index" ]
text-classification
false
QuentinKemperino
null
QuentinKemperino/ECHR_test_2
11
null
transformers
11,323
--- license: cc-by-sa-4.0 tags: - generated_from_trainer datasets: - lex_glue model-index: - name: ECHR_test_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ECHR_test_2 Task A This model is a fine-tuned version of [nlpaueb/legal-bert-base-uncased](https://huggingface.co/nlpaueb/legal-bert-base-uncased) on the lex_glue dataset. It achieves the following results on the evaluation set: - Loss: 0.1998 - Macro-f1: 0.5295 - Micro-f1: 0.6157 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Macro-f1 | Micro-f1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:| | 0.2142 | 0.44 | 500 | 0.2887 | 0.2391 | 0.4263 | | 0.172 | 0.89 | 1000 | 0.2672 | 0.2908 | 0.4628 | | 0.1737 | 1.33 | 1500 | 0.2612 | 0.3657 | 0.5102 | | 0.1581 | 1.78 | 2000 | 0.2412 | 0.3958 | 0.5468 | | 0.1509 | 2.22 | 2500 | 0.2264 | 0.3950 | 0.5552 | | 0.1606 | 2.67 | 3000 | 0.2342 | 0.4006 | 0.5511 | | 0.1491 | 3.11 | 3500 | 0.2176 | 0.4558 | 0.5622 | | 0.1392 | 3.56 | 4000 | 0.2454 | 0.4128 | 0.5596 | | 0.15 | 4.0 | 4500 | 0.2113 | 0.4684 | 0.5874 | | 0.1461 | 4.44 | 5000 | 0.2179 | 0.4631 | 0.5815 | | 0.1457 | 4.89 | 5500 | 0.2151 | 0.4805 | 0.5949 | | 0.1443 | 5.33 | 6000 | 0.2155 | 0.5123 | 0.5917 | | 0.1279 | 5.78 | 6500 | 0.2131 | 0.4915 | 0.5998 | | 0.1377 | 6.22 | 7000 | 0.2244 | 0.4705 | 0.5944 | | 0.1242 | 6.67 | 7500 | 0.2150 | 0.5089 | 0.5918 | | 0.1222 | 7.11 | 8000 | 0.2045 | 0.4801 | 0.5981 | | 0.1372 | 7.56 | 8500 | 0.2074 | 0.5317 | 0.5962 | | 0.1289 | 8.0 | 9000 | 0.2035 | 0.5323 | 0.6126 | | 0.1295 | 8.44 | 9500 | 0.2058 | 0.5213 | 0.6073 | | 0.123 | 8.89 | 10000 | 0.2027 | 0.5486 | 0.6135 | | 0.1335 | 9.33 | 10500 | 0.1984 | 0.5442 | 0.6249 | | 0.1258 | 9.78 | 11000 | 0.1998 | 0.5295 | 0.6157 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
chanifrusydi/t5-dialogue-summarization
bb486e7e0c4adfbec13b4a109adb79258f09780c
2022-06-09T13:43:18.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:samsum", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
chanifrusydi
null
chanifrusydi/t5-dialogue-summarization
11
null
transformers
11,324
--- license: apache-2.0 tags: - generated_from_trainer datasets: - samsum model-index: - name: t5-dialogue-summarization results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-dialogue-summarization This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the samsum dataset. dataset: type: {summarization} name: {samsum} ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
victorlee071200/bert-base-cased-finetuned-squad_v2
fecd1da01c4ef50ed9d74d8781b0e8769833eb01
2022-06-09T13:16:06.000Z
[ "pytorch", "bert", "question-answering", "dataset:squad_v2", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
victorlee071200
null
victorlee071200/bert-base-cased-finetuned-squad_v2
11
null
transformers
11,325
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: bert-base-cased-finetuned-squad_v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-finetuned-squad_v2 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad_v2 dataset. It achieves the following results on the evaluation set: - Loss: 1.3226 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.03 | 1.0 | 8255 | 1.1334 | | 0.7511 | 2.0 | 16510 | 1.1299 | | 0.5376 | 3.0 | 24765 | 1.3226 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
russellc/bert-finetuned-ner
45bcf27d2f103cfc770031f36fa7ac041feb6cdb
2022-06-09T11:11:34.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
russellc
null
russellc/bert-finetuned-ner
11
1
transformers
11,326
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9344479390829333 - name: Recall type: recall value: 0.9500168293503871 - name: F1 type: f1 value: 0.9421680714345323 - name: Accuracy type: accuracy value: 0.9859745687878966 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0644 - Precision: 0.9344 - Recall: 0.9500 - F1: 0.9422 - Accuracy: 0.9860 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0854 | 1.0 | 1756 | 0.0632 | 0.9080 | 0.9352 | 0.9214 | 0.9822 | | 0.0401 | 2.0 | 3512 | 0.0605 | 0.9302 | 0.9485 | 0.9393 | 0.9856 | | 0.0204 | 3.0 | 5268 | 0.0644 | 0.9344 | 0.9500 | 0.9422 | 0.9860 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
enoriega/rule_softmatching
edba9f8ba72d2bf6f823f0e8095f47e008641ca5
2022-06-10T03:59:51.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
enoriega
null
enoriega/rule_softmatching
11
null
transformers
11,327
Entry not found
ahmeddbahaa/t5-arabic-base-finetuned-wikilingua-ar
f50f753cde0a17cb315bc640691c141a692a846a
2022-06-10T23:54:52.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:wiki_lingua", "transformers", "summarization", "mt5", "ar", "abstractive summarization", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
summarization
false
ahmeddbahaa
null
ahmeddbahaa/t5-arabic-base-finetuned-wikilingua-ar
11
null
transformers
11,328
--- license: apache-2.0 tags: - summarization - mt5 - ar - abstractive summarization - generated_from_trainer datasets: - wiki_lingua model-index: - name: t5-arabic-base-finetuned-wikilingua-ar results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-arabic-base-finetuned-wikilingua-ar This model is a fine-tuned version of [bakrianoo/t5-arabic-base](https://huggingface.co/bakrianoo/t5-arabic-base) on the wiki_lingua dataset. It achieves the following results on the evaluation set: - Loss: 3.2735 - Rouge-1: 20.72 - Rouge-2: 7.63 - Rouge-l: 18.75 - Gen Len: 18.74 - Bertscore: 70.79 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 250 - num_epochs: 8 - label_smoothing_factor: 0.1 ### Training results ### Framework versions - Transformers 4.19.3 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
ghadeermobasher/BC5CDR-Chem-Modified-SciBERT-384
666a5ddc7599170530a1034abb8c6dc50d4d045a
2022-06-14T00:24:57.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/BC5CDR-Chem-Modified-SciBERT-384
11
null
transformers
11,329
Entry not found
dexay/Ner2HgF
e00ed50f4d40beaad19f51f7358d03abe5de9f7e
2022-06-14T12:12:33.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
dexay
null
dexay/Ner2HgF
11
null
transformers
11,330
Entry not found
cindy203cc/finetuning-sentiment-model-3000-samples
940c3b83c3457ac3b39f3c8da343b7901f991191
2022-06-14T19:16:33.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
cindy203cc
null
cindy203cc/finetuning-sentiment-model-3000-samples
11
null
transformers
11,331
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8633333333333333 - name: F1 type: f1 value: 0.8628762541806019 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3187 - Accuracy: 0.8633 - F1: 0.8629 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.3.0 - Tokenizers 0.12.1
AnyaSchen/rugpt3_esenin
c9b714edb93aeb9b19407846176a8b7623b54cbc
2022-06-15T11:26:44.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
AnyaSchen
null
AnyaSchen/rugpt3_esenin
11
null
transformers
11,332
This model was created as a fine-tuned GPT-3 medium model, which is tuned to the style of Yesenin's poetry in Russian. You can give her a word, a phrase, or just an empty line as an input, and she will give out a poem in Yesenin's style. ![alt text](https://lh3.googleusercontent.com/GFvLjpEgChuXAalHquE3zl22Cqx7ipO233pNHxI_A3tK3jAF0ylRnNuDRdki9O19vVQ=w2400)
AnyaSchen/rugpt3_blok
bbf7576baee480407c7a306076c478bf00b762ab
2022-06-15T11:24:59.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
AnyaSchen
null
AnyaSchen/rugpt3_blok
11
null
transformers
11,333
This model was created as a fine-tuned GPT-3 medium model, which is tuned to the style of Blok's poetry in Russian. You can give her a word, a phrase, or just an empty line as an input, and she will give out a poem in Blok's style. ![alt text](https://lh4.googleusercontent.com/BxsTIgzhQesSrRY-7erc7S3fFOQxkj1sXEnnYN-6Pr_Q71K0gq2IFh6odpFlwPpyaJM=w2400)
eunbeee/hyunwoongko-kobart-eb-finetuned-papers-meetings
86a3974a03aba6372ca3aaa62d00f99901e25493
2022-06-16T17:43:44.000Z
[ "pytorch", "tensorboard", "bart", "text2text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
text2text-generation
false
eunbeee
null
eunbeee/hyunwoongko-kobart-eb-finetuned-papers-meetings
11
null
transformers
11,334
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: hyunwoongko-kobart-eb-finetuned-papers-meetings results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hyunwoongko-kobart-eb-finetuned-papers-meetings This model is a fine-tuned version of [hyunwoongko/kobart](https://huggingface.co/hyunwoongko/kobart) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3136 - Rouge1: 18.3166 - Rouge2: 8.0509 - Rougel: 18.3332 - Rougelsum: 18.3146 - Gen Len: 19.9143 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 0.2118 | 1.0 | 7739 | 0.2951 | 18.0837 | 7.9585 | 18.0787 | 18.0784 | 19.896 | | 0.1598 | 2.0 | 15478 | 0.2812 | 18.529 | 7.9891 | 18.5421 | 18.5271 | 19.8977 | | 0.1289 | 3.0 | 23217 | 0.2807 | 18.0638 | 7.8086 | 18.0787 | 18.0583 | 19.9129 | | 0.0873 | 4.0 | 30956 | 0.2923 | 18.3483 | 8.0233 | 18.3716 | 18.3696 | 19.914 | | 0.0844 | 5.0 | 38695 | 0.3136 | 18.3166 | 8.0509 | 18.3332 | 18.3146 | 19.9143 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
chlab/efficientnet_61_planet_detection
a29a99abd85bcc28a3d9525632648803b980c4e1
2022-06-17T17:12:07.000Z
[ "pytorch", "efficientnet_61_planet_detection", "Python 3.7+", "dataset:imagenet", "dataset:imagenet-21k", "transformers", "vision", "image-classification", "license:apache-2.0" ]
image-classification
false
chlab
null
chlab/efficientnet_61_planet_detection
11
null
transformers
11,335
--- language: - Python 3.7+ license: apache-2.0 tags: - vision - image-classification datasets: - imagenet - imagenet-21k widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace --- # Efficientnetv2 (61 channels)
dennis-fast/DialoGPT-ElonMusk
e7353c25d80f21c8e1d23ce281a7dfef306b7c55
2022-06-18T15:13:23.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational", "license:mit" ]
conversational
false
dennis-fast
null
dennis-fast/DialoGPT-ElonMusk
11
null
transformers
11,336
--- tags: - conversational license: mit --- # DialoGPT-ElonMusk: Chat with Elon Musk This is a conversational language model of Elon Musk. The bot's conversation abilities come from Microsoft's [DialoGPT-small conversational model](https://huggingface.co/microsoft/DialoGPT-small) fine-tuned on conversation transcripts of 22 interviews with Elon Musk from [here](https://elon-musk-interviews.com/category/english/).
eslamxm/AraT5-base-title-generation-finetune-ar-xlsum
949723db7b5c82d9ccb4825779b16b27628fe0e8
2022-06-19T05:23:32.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:xlsum", "transformers", "summarization", "Arat5-base", "abstractive summarization", "ar", "xlsum", "generated_from_trainer", "model-index", "autotrain_compatible" ]
summarization
false
eslamxm
null
eslamxm/AraT5-base-title-generation-finetune-ar-xlsum
11
null
transformers
11,337
--- tags: - summarization - Arat5-base - abstractive summarization - ar - xlsum - generated_from_trainer datasets: - xlsum model-index: - name: AraT5-base-title-generation-finetune-ar-xlsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # AraT5-base-title-generation-finetune-ar-xlsum This model is a fine-tuned version of [UBC-NLP/AraT5-base-title-generation](https://huggingface.co/UBC-NLP/AraT5-base-title-generation) on the xlsum dataset. It achieves the following results on the evaluation set: - Loss: 4.2837 - Rouge-1: 32.46 - Rouge-2: 15.15 - Rouge-l: 28.38 - Gen Len: 18.48 - Bertscore: 74.24 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 250 - num_epochs: 10 - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge-1 | Rouge-2 | Rouge-l | Gen Len | Bertscore | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:-------:|:---------:| | 5.815 | 1.0 | 293 | 4.7437 | 27.05 | 10.49 | 23.56 | 18.03 | 72.56 | | 5.0818 | 2.0 | 586 | 4.5004 | 28.92 | 11.97 | 25.09 | 18.61 | 73.08 | | 4.7855 | 3.0 | 879 | 4.3910 | 29.66 | 12.57 | 25.79 | 18.58 | 73.3 | | 4.588 | 4.0 | 1172 | 4.3469 | 30.22 | 13.05 | 26.36 | 18.59 | 73.61 | | 4.4388 | 5.0 | 1465 | 4.3226 | 30.88 | 13.81 | 27.01 | 18.65 | 73.78 | | 4.3162 | 6.0 | 1758 | 4.2990 | 30.9 | 13.6 | 26.92 | 18.68 | 73.78 | | 4.2178 | 7.0 | 2051 | 4.2869 | 31.35 | 14.01 | 27.41 | 18.57 | 73.96 | | 4.1387 | 8.0 | 2344 | 4.2794 | 31.28 | 13.98 | 27.34 | 18.6 | 73.87 | | 4.0787 | 9.0 | 2637 | 4.2806 | 31.45 | 14.17 | 27.46 | 18.66 | 73.97 | | 4.0371 | 10.0 | 2930 | 4.2837 | 31.55 | 14.19 | 27.52 | 18.65 | 74.0 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Danastos/dpr_query_el_1
f11e6622a2b4f4e07b8b1b74f0964fab0c75f8ff
2022-06-19T18:41:51.000Z
[ "pytorch", "bert", "pretraining", "transformers" ]
null
false
Danastos
null
Danastos/dpr_query_el_1
11
null
transformers
11,338
Entry not found
chradden/generation_xyz
d4e8cc9fced8bb2f2c1d88ef0af3cb93c4e5b3a2
2022-06-19T21:33:52.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "huggingpics", "model-index" ]
image-classification
false
chradden
null
chradden/generation_xyz
11
null
transformers
11,339
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: generation_xyz results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.5504587292671204 --- # generation_xyz Autogenerated by HuggingPics๐Ÿค—๐Ÿ–ผ๏ธ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### Baby Boomers ![Baby Boomers](images/Baby_Boomers.jpg) #### Generation Alpha ![Generation Alpha](images/Generation_Alpha.jpg) #### Generation X ![Generation X](images/Generation_X.jpg) #### Generation Z ![Generation Z](images/Generation_Z.jpg) #### Millennials ![Millennials](images/Millennials.jpg)
gauravnuti/agro-ner
e163978ab308e29e4be2a2a797b5dd08e17d048b
2022-06-20T12:12:39.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
gauravnuti
null
gauravnuti/agro-ner
11
null
transformers
11,340
Entry not found
Jeevesh8/std_0pnt2_bert_ft_cola-17
e8b4ca4de589a81a8eeb36127700749b92cadb0c
2022-06-21T13:29:18.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_0pnt2_bert_ft_cola-17
11
null
transformers
11,341
Entry not found
Jeevesh8/std_0pnt2_bert_ft_cola-6
55b6d3ea7539213338b67d3e37ca1079ecfaa47b
2022-06-21T13:28:04.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_0pnt2_bert_ft_cola-6
11
null
transformers
11,342
Entry not found
Jeevesh8/std_0pnt2_bert_ft_cola-70
78f2bd0bf0c25b8466a2d9c26f4c03a05501c3d7
2022-06-21T13:28:32.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_0pnt2_bert_ft_cola-70
11
null
transformers
11,343
Entry not found
Jeevesh8/std_0pnt2_bert_ft_cola-43
c957272e710a3e00081ef0bf118aed80868c3420
2022-06-21T13:28:22.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_0pnt2_bert_ft_cola-43
11
null
transformers
11,344
Entry not found
Jeevesh8/std_0pnt2_bert_ft_cola-2
48153c5108fc78804f29cb410909d8454b24a152
2022-06-21T13:27:58.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_0pnt2_bert_ft_cola-2
11
null
transformers
11,345
Entry not found
kktoto/tiny_no_focal_v2
105c02ab71aa56d268939033a8b566bb9c9cfd15
2022-06-22T08:50:37.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
token-classification
false
kktoto
null
kktoto/tiny_no_focal_v2
11
null
transformers
11,346
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: tiny_no_focal_v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tiny_no_focal_v2 This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1314 - Precision: 0.7013 - Recall: 0.6837 - F1: 0.6924 - Accuracy: 0.9522 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1574 | 1.0 | 5561 | 0.1471 | 0.6907 | 0.6186 | 0.6527 | 0.9462 | | 0.1456 | 2.0 | 11122 | 0.1396 | 0.6923 | 0.6473 | 0.6690 | 0.9485 | | 0.1412 | 3.0 | 16683 | 0.1373 | 0.6845 | 0.6705 | 0.6774 | 0.9490 | | 0.1338 | 4.0 | 22244 | 0.1343 | 0.6988 | 0.6640 | 0.6810 | 0.9505 | | 0.1311 | 5.0 | 27805 | 0.1342 | 0.6971 | 0.6751 | 0.6859 | 0.9510 | | 0.1289 | 6.0 | 33366 | 0.1324 | 0.7081 | 0.6653 | 0.6860 | 0.9517 | | 0.1258 | 7.0 | 38927 | 0.1309 | 0.7053 | 0.6731 | 0.6888 | 0.9521 | | 0.1223 | 8.0 | 44488 | 0.1325 | 0.7001 | 0.6818 | 0.6908 | 0.9519 | | 0.1213 | 9.0 | 50049 | 0.1316 | 0.7020 | 0.6813 | 0.6915 | 0.9522 | | 0.1197 | 10.0 | 55610 | 0.1314 | 0.7013 | 0.6837 | 0.6924 | 0.9522 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
kunalr63/simple_transformer
fa3f934a64c3034210bb88ceb67f42af60818c63
2022-06-22T10:01:23.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
kunalr63
null
kunalr63/simple_transformer
11
null
transformers
11,347
Entry not found
JamesStratford/Pidrow-bot-DialoGPT-Medium
0458aca4e6cd429db57b7fd9ade39796fe952e4c
2022-06-24T01:11:28.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
JamesStratford
null
JamesStratford/Pidrow-bot-DialoGPT-Medium
11
null
transformers
11,348
--- tags: - conversational --- # Pidrow bot - medium Pidrow is a person in a discord server that talks a lot and has a very unique personality. So I made this API for a discord bot to talk to in the server... It's like talking to Pidrow 24/7
Aktsvigun/bert-base-wikihow
76ccf8b2a709dc8f1c365699ec2488f953c10e00
2022-07-05T17:22:48.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Aktsvigun
null
Aktsvigun/bert-base-wikihow
11
null
transformers
11,349
Entry not found
BigSalmon/TextbookInformalFormalEnglish
11d3b8af3fa1f4ae41ea79b1620cbce061d27925
2022-06-25T02:25:15.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
BigSalmon
null
BigSalmon/TextbookInformalFormalEnglish
11
null
transformers
11,350
``` from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("BigSalmon/TextbookInformalFormalEnglish") model = AutoModelForCausalLM.from_pretrained("BigSalmon/TextbookInformalFormalEnglish") ``` ``` How To Make Prompt: informal english: i am very ready to do that just that. Translated into the Style of Abraham Lincoln: you can assure yourself of my readiness to work toward this end. Translated into the Style of Abraham Lincoln: please be assured that i am most ready to undertake this laborious task. *** informal english: space is huge and needs to be explored. Translated into the Style of Abraham Lincoln: space awaits traversal, a new world whose boundaries are endless. Translated into the Style of Abraham Lincoln: space is a ( limitless / boundless ) expanse, a vast virgin domain awaiting exploration. *** informal english: corn fields are all across illinois, visible once you leave chicago. Translated into the Style of Abraham Lincoln: corn fields ( permeate illinois / span the state of illinois / ( occupy / persist in ) all corners of illinois / line the horizon of illinois / envelop the landscape of illinois ), manifesting themselves visibly as one ventures beyond chicago. informal english: ``` ``` infill: chrome extensions [MASK] accomplish everyday tasks. Translated into the Style of Abraham Lincoln: chrome extensions ( expedite the ability to / unlock the means to more readily ) accomplish everyday tasks. infill: at a time when nintendo has become inflexible, [MASK] consoles that are tethered to a fixed iteration, sega diligently curates its legacy of classic video games on handheld devices. Translated into the Style of Abraham Lincoln: at a time when nintendo has become inflexible, ( stubbornly [MASK] on / firmly set on / unyielding in its insistence on ) consoles that are tethered to a fixed iteration, sega diligently curates its legacy of classic video games on handheld devices. infill: ``` ``` Essay Intro (Warriors vs. Rockets in Game 7): text: eagerly anticipated by fans, game 7's are the highlight of the post-season. text: ever-building in suspense, game 7's have the crowd captivated. *** Essay Intro (South Korean TV Is Becoming Popular): text: maturing into a bona fide paragon of programming, south korean television ( has much to offer / entertains without fail / never disappoints ). text: increasingly held in critical esteem, south korean television continues to impress. text: at the forefront of quality content, south korea is quickly achieving celebrity status. *** Essay Intro ( ``` ``` Search: What is the definition of Checks and Balances? https://en.wikipedia.org/wiki/Checks_and_balances Checks and Balances is the idea of having a system where each and every action in government should be subject to one or more checks that would not allow one branch or the other to overly dominate. https://www.harvard.edu/glossary/Checks_and_Balances Checks and Balances is a system that allows each branch of government to limit the powers of the other branches in order to prevent abuse of power https://www.law.cornell.edu/library/constitution/Checks_and_Balances Checks and Balances is a system of separation through which branches of government can control the other, thus preventing excess power. *** Search: What is the definition of Separation of Powers? https://en.wikipedia.org/wiki/Separation_of_powers The separation of powers is a principle in government, whereby governmental powers are separated into different branches, each with their own set of powers, that are prevent one branch from aggregating too much power. https://www.yale.edu/tcf/Separation_of_Powers.html Separation of Powers is the division of governmental functions between the executive, legislative and judicial branches, clearly demarcating each branch's authority, in the interest of ensuring that individual liberty or security is not undermined. *** Search: What is the definition of Connection of Powers? https://en.wikipedia.org/wiki/Connection_of_powers Connection of Powers is a feature of some parliamentary forms of government where different branches of government are intermingled, typically the executive and legislative branches. https://simple.wikipedia.org/wiki/Connection_of_powers The term Connection of Powers describes a system of government in which there is overlap between different parts of the government. *** Search: What is the definition of ``` ``` Search: What are phrase synonyms for "second-guess"? https://www.powerthesaurus.org/second-guess/synonyms Shortest to Longest: - feel dubious about - raise an eyebrow at - wrinkle their noses at - cast a jaundiced eye at - teeter on the fence about *** Search: What are phrase synonyms for "mean to newbies"? https://www.powerthesaurus.org/mean_to_newbies/synonyms Shortest to Longest: - readiness to balk at rookies - absence of tolerance for novices - hostile attitude toward newcomers *** Search: What are phrase synonyms for "make use of"? https://www.powerthesaurus.org/make_use_of/synonyms Shortest to Longest: - call upon - glean value from - reap benefits from - derive utility from - seize on the merits of - draw on the strength of - tap into the potential of *** Search: What are phrase synonyms for "hurting itself"? https://www.powerthesaurus.org/hurting_itself/synonyms Shortest to Longest: - erring - slighting itself - forfeiting its integrity - doing itself a disservice - evincing a lack of backbone *** Search: What are phrase synonyms for " ``` ``` - nebraska - unicamerical legislature - different from federal house and senate text: featuring a unicameral legislature, nebraska's political system stands in stark contrast to the federal model, comprised of a house and senate. *** - ``` ``` original: sports teams are profitable for owners. [MASK], their valuations experience a dramatic uptick. infill: sports teams are profitable for owners. ( accumulating vast sums / stockpiling treasure / realizing benefits / cashing in / registering robust financials / scoring on balance sheets ), their valuations experience a dramatic uptick. *** original: ``` ``` wordy: classical music is becoming less popular more and more. Translate into Concise Text: interest in classic music is fading. *** wordy: ``` ``` sweet: savvy voters ousted him. longer: voters who were informed delivered his defeat. *** sweet: ``` ``` 1: commercial space company spacex plans to launch a whopping 52 flights in 2022. 2: spacex, a commercial space company, intends to undertake a total of 52 flights in 2022. 3: in 2022, commercial space company spacex has its sights set on undertaking 52 flights. 4: 52 flights are in the pipeline for 2022, according to spacex, a commercial space company. 5: a commercial space company, spacex aims to conduct 52 flights in 2022. *** 1: ``` Keywords to sentences or sentence. ``` ngos are characterized by: โ–ก voluntary citizens' group that is organized on a local, national or international level โ–ก encourage political participation โ–ก often serve humanitarian functions โ–ก work for social, economic, or environmental change *** what are the drawbacks of living near an airbnb? โ–ก noise โ–ก parking โ–ก traffic โ–ก security โ–ก strangers *** ``` ``` original: musicals generally use spoken dialogue as well as songs to convey the story. operas are usually fully sung. adapted: musicals generally use spoken dialogue as well as songs to convey the story. ( in a stark departure / on the other hand / in contrast / by comparison / at odds with this practice / far from being alike / in defiance of this standard / running counter to this convention ), operas are usually fully sung. *** original: akoya and tahitian are types of pearls. akoya pearls are mostly white, and tahitian pearls are naturally dark. adapted: akoya and tahitian are types of pearls. ( a far cry from being indistinguishable / easily distinguished / on closer inspection / setting them apart / not to be mistaken for one another / hardly an instance of mere synonymy / differentiating the two ), akoya pearls are mostly white, and tahitian pearls are naturally dark. *** original: ``` ``` original: had trouble deciding. translated into journalism speak: wrestled with the question, agonized over the matter, furrowed their brows in contemplation. *** original: ``` ``` input: not loyal 1800s english: ( two-faced / inimical / perfidious / duplicitous / mendacious / double-dealing / shifty ). *** input: ```
danielmantisnlp/autotrain-oms-ner-bi-1044135953
cb49c258f7b7e6f62764e55476c04395f0601af4
2022-06-27T09:39:42.000Z
[ "pytorch", "bert", "token-classification", "en", "dataset:danielmantisnlp/autotrain-data-oms-ner-bi", "transformers", "autotrain", "co2_eq_emissions", "autotrain_compatible" ]
token-classification
false
danielmantisnlp
null
danielmantisnlp/autotrain-oms-ner-bi-1044135953
11
null
transformers
11,351
--- tags: autotrain language: en widget: - text: "I love AutoTrain ๐Ÿค—" datasets: - danielmantisnlp/autotrain-data-oms-ner-bi co2_eq_emissions: 1.425282392185522 --- # Model Trained Using AutoTrain - Problem type: Entity Extraction - Model ID: 1044135953 - CO2 Emissions (in grams): 1.425282392185522 ## Validation Metrics - Loss: 0.4587894678115845 - Accuracy: 0.8957797220792589 - Precision: 0.553921568627451 - Recall: 0.6793587174348698 - F1: 0.6102610261026103 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/danielmantisnlp/autotrain-oms-ner-bi-1044135953 ``` Or Python API: ``` from transformers import AutoModelForTokenClassification, AutoTokenizer model = AutoModelForTokenClassification.from_pretrained("danielmantisnlp/autotrain-oms-ner-bi-1044135953", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("danielmantisnlp/autotrain-oms-ner-bi-1044135953", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
kktoto/tiny_focal_alpah75
3c4b6424f05c3a2acb9c38b40f76e303aef23c8a
2022-06-28T05:34:25.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
kktoto
null
kktoto/tiny_focal_alpah75
11
null
transformers
11,352
Entry not found
Hartmann/DialoGPT-small-koishikomeiji
794664e06deb5d68e2c0ba0685980a5448676548
2022-06-28T04:08:31.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Hartmann
null
Hartmann/DialoGPT-small-koishikomeiji
11
1
transformers
11,353
--- tags: - conversational --- # Koishi Komeiji DialoGPT Model
21iridescent/MRC-RE
509f1250ab8c85f226cadbe8ab3456e74b223d1e
2022-06-28T09:46:14.000Z
[ "pytorch", "roberta", "question-answering", "transformers", "license:afl-3.0", "autotrain_compatible" ]
question-answering
false
21iridescent
null
21iridescent/MRC-RE
11
null
transformers
11,354
--- license: afl-3.0 ---
abhiBatu/MeetingSumm
132e9286c90085450647333f983affd20d0f5e9e
2022-06-28T14:27:35.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
abhiBatu
null
abhiBatu/MeetingSumm
11
null
transformers
11,355
Entry not found
robingeibel/bigbird-large-finetuned-big_patent
dd09c8e04a6584689597ca8f71bb51507cb44f28
2022-06-29T22:17:27.000Z
[ "pytorch", "tensorboard", "big_bird", "fill-mask", "dataset:big_patent", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
robingeibel
null
robingeibel/bigbird-large-finetuned-big_patent
11
null
transformers
11,356
--- license: apache-2.0 tags: - generated_from_trainer datasets: - big_patent model-index: - name: bigbird-large-finetuned-big_patent results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bigbird-large-finetuned-big_patent This model is a fine-tuned version of [robingeibel/bigbird-large-finetuned-big_patent](https://huggingface.co/robingeibel/bigbird-large-finetuned-big_patent) on the big_patent dataset. It achieves the following results on the evaluation set: - Loss: 1.0460 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.0301 | 1.0 | 80099 | 1.0460 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Lamine/bert-finetuned-ner_SourceRecognition
01ce3faaf64aeffbdb7845ab40d3a03f6485094d
2022-06-28T14:08:26.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
Lamine
null
Lamine/bert-finetuned-ner_SourceRecognition
11
null
transformers
11,357
Entry not found
AlekseyKorshuk/books-v2-3500
5a16ba78c992f4c31f0204794afb583e4d53e93e
2022-06-28T15:11:32.000Z
[ "pytorch", "gptj", "text-generation", "transformers" ]
text-generation
false
AlekseyKorshuk
null
AlekseyKorshuk/books-v2-3500
11
1
transformers
11,358
Entry not found
ubikpt/t5-small-finetuned-cnn
7fe47a7eec5dc33b39bee16aebec3beabf4be20d
2022-06-30T10:07:16.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:cnn_dailymail", "transformers", "summarization", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
summarization
false
ubikpt
null
ubikpt/t5-small-finetuned-cnn
11
null
transformers
11,359
--- license: apache-2.0 tags: - summarization - generated_from_trainer datasets: - cnn_dailymail metrics: - rouge model-index: - name: t5-small-finetuned-cnn results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: cnn_dailymail type: cnn_dailymail args: 3.0.0 metrics: - name: Rouge1 type: rouge value: 33.2082 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-cnn This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the cnn_dailymail dataset. It achieves the following results on the evaluation set: - Loss: 1.8436 - Rouge1: 33.2082 - Rouge2: 16.798 - Rougel: 28.9573 - Rougelsum: 31.1044 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | 2.3793 | 1.0 | 359 | 1.8885 | 33.0321 | 16.7798 | 28.9367 | 30.9509 | | 2.1432 | 2.0 | 718 | 1.8481 | 33.1559 | 16.8557 | 29.015 | 31.1122 | | 2.0571 | 3.0 | 1077 | 1.8391 | 32.99 | 16.716 | 28.8118 | 30.9178 | | 2.0001 | 4.0 | 1436 | 1.8357 | 33.0543 | 16.6731 | 28.8375 | 30.9604 | | 1.9609 | 5.0 | 1795 | 1.8437 | 33.1019 | 16.7576 | 28.8669 | 31.001 | | 1.925 | 6.0 | 2154 | 1.8402 | 33.1388 | 16.7539 | 28.8887 | 31.0262 | | 1.9036 | 7.0 | 2513 | 1.8423 | 33.1825 | 16.759 | 28.9154 | 31.0656 | | 1.8821 | 8.0 | 2872 | 1.8436 | 33.2082 | 16.798 | 28.9573 | 31.1044 | ### Framework versions - Transformers 4.14.0 - Pytorch 1.5.0 - Datasets 2.3.2 - Tokenizers 0.10.3
Jeevesh8/goog_bert_ft_cola-22
3ca27d096e98dc874284f27b1776315f4bbbe91b
2022-06-29T17:33:13.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/goog_bert_ft_cola-22
11
null
transformers
11,360
Entry not found
Jeevesh8/goog_bert_ft_cola-20
1b16f5378cda9f16efaa33f25d601c1e9fea564d
2022-06-29T17:33:32.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/goog_bert_ft_cola-20
11
null
transformers
11,361
Entry not found
Jeevesh8/goog_bert_ft_cola-21
fb2602ae6e19e5b9459313d21f6975df3edd0eda
2022-06-29T17:33:01.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/goog_bert_ft_cola-21
11
null
transformers
11,362
Entry not found
Jeevesh8/goog_bert_ft_cola-92
c8f71ca9413a89c706de55ae5b3b8331dec0cc61
2022-06-29T17:35:50.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/goog_bert_ft_cola-92
11
null
transformers
11,363
Entry not found
Jeevesh8/goog_bert_ft_cola-96
d480b3c57502cc627b98b93ef47f36797e53d7d5
2022-06-29T17:36:06.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/goog_bert_ft_cola-96
11
null
transformers
11,364
Entry not found
Jeevesh8/goog_bert_ft_cola-97
b01f2a49db5b4da1ca37cda69cabe9e1ea9d058b
2022-06-29T17:38:49.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/goog_bert_ft_cola-97
11
null
transformers
11,365
Entry not found
nvidia/stt_zh_conformer_transducer_large
232d284afc458714611424210124d1f3b714c284
2022-07-12T16:23:40.000Z
[ "nemo", "zh", "dataset:AISHELL-2", "arxiv:2005.08100", "arxiv:1808.10583", "automatic-speech-recognition", "speech", "audio", "Transducer", "Conformer", "Transformer", "pytorch", "NeMo", "hf-asr-leaderboard", "license:cc-by-4.0", "model-index" ]
automatic-speech-recognition
false
nvidia
null
nvidia/stt_zh_conformer_transducer_large
11
2
nemo
11,366
--- language: - zh library_name: nemo datasets: - AISHELL-2 thumbnail: null tags: - automatic-speech-recognition - speech - audio - Transducer - Conformer - Transformer - pytorch - NeMo - hf-asr-leaderboard license: cc-by-4.0 model-index: - name: stt_zh_conformer_transducer_large results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: AISHELL-2 IOS type: aishell2_ios split: test args: language: zh metrics: - name: Test CER type: cer value: 5.3 - task: type: Automatic Speech Recognition name: automatic-speech-recognition dataset: name: AISHELL-2 Android type: aishell2_android split: test args: language: zh metrics: - name: Test CER type: cer value: 5.7 - task: type: Automatic Speech Recognition name: automatic-speech-recognition dataset: name: AISHELL-2 Mic type: aishell2_mic split: test args: language: zh metrics: - name: Test CER type: cer value: 5.6 --- # NVIDIA Conformer-Transducer Large (zh-ZH) <style> img { display: inline; } </style> | [![Model architecture](https://img.shields.io/badge/Model_Arch-Conformer--Transducer-lightgrey#model-badge)](#model-architecture) | [![Model size](https://img.shields.io/badge/Params-120M-lightgrey#model-badge)](#model-architecture) | [![Language](https://img.shields.io/badge/Language-zh--ZH-lightgrey#model-badge)](#datasets) This model transcribes speech in Mandarin alphabet. It is a large version of Conformer-Transducer (around 120M parameters) model. See the [model architecture](#model-architecture) section and [NeMo documentation](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/models.html#conformer-transducer) for complete architecture details. ## NVIDIA NeMo: Training To train, fine-tune or play with the model you will need to install [NVIDIA NeMo](https://github.com/NVIDIA/NeMo). We recommend you install it after you've installed latest Pytorch version. ``` pip install nemo_toolkit['all'] ``` ## How to Use this Model The model is available for use in the NeMo toolkit [3], and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset. ### Automatically instantiate the model ```python import nemo.collections.asr as nemo_asr asr_model = nemo_asr.models.EncDecRNNTBPEModel.from_pretrained("nvidia/stt_zh_conformer_transducer_large") ``` ### Transcribing using Python You may transcribe an audio file like this: ``` asr_model.transcribe([PATH_TO_THE_AUDIO]) ``` ### Transcribing many audio files ```shell python [NEMO_GIT_FOLDER]/examples/asr/transcribe_speech.py pretrained_name="nvidia/stt_zh_conformer_transducer_large" audio_dir="<DIRECTORY CONTAINING AUDIO FILES>" ``` ### Input This model accepts 16000 KHz Mono-channel Audio (wav files) as input. ### Output This model provides transcribed speech as a string for a given audio sample. ## Model Architecture Conformer-Transducer model is an autoregressive variant of Conformer model [1] for Automatic Speech Recognition which uses Transducer loss/decoding instead of CTC Loss. You may find more info on the detail of this model here: [Conformer-Transducer Model](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/models.html). ## Training The NeMo toolkit [3] was used for training the models for over several hundred epochs. These model are trained with this [example script](https://github.com/NVIDIA/NeMo/blob/main/examples/asr/asr_transducer/speech_to_text_rnnt_bpe.py) and this [base config](https://github.com/NVIDIA/NeMo/blob/main/examples/asr/conf/conformer/conformer_transducer_bpe.yaml). ### Datasets All the models in this collection are trained on AISHELL2 [4] comprising of Mandarin speech: ## Performance The list of the available models in this collection is shown in the following table. Performances of the ASR models are reported in terms of Word Error Rate (WER%) with greedy decoding. | Version | Tokenizer | Vocabulary Size | AISHELL2 Test IOS | AISHELL2 Test Android | AISHELL2 Test Mic | Train Dataset | |---------|-----------|-----------------|-------------------|-----------------------|-------------------|---------------| | 1.10.0 | Characters| 5026 | 5.3 | 5.7 | 5.6 | AISHELL-2 | ## Limitations Since this model was trained on publicly available speech datasets, the performance of this model might degrade for speech which includes technical terms, or vernacular that the model has not been trained on. The model might also perform worse for accented speech. ## NVIDIA Riva: Deployment [NVIDIA Riva](https://developer.nvidia.com/riva), is an accelerated speech AI SDK deployable on-prem, in all clouds, multi-cloud, hybrid, on edge, and embedded. Additionally, Riva provides: * World-class out-of-the-box accuracy for the most common languages with model checkpoints trained on proprietary data with hundreds of thousands of GPU-compute hours * Best in class accuracy with run-time word boosting (e.g., brand and product names) and customization of acoustic model, language model, and inverse text normalization * Streaming speech recognition, Kubernetes compatible scaling, and enterprise-grade support Although this model isnโ€™t supported yet by Riva, the [list of supported models is here](https://huggingface.co/models?other=Riva). Check out [Riva live demo](https://developer.nvidia.com/riva#demos). ## References [1] [Conformer: Convolution-augmented Transformer for Speech Recognition](https://arxiv.org/abs/2005.08100) [2] [Google Sentencepiece Tokenizer](https://github.com/google/sentencepiece) [3] [NVIDIA NeMo Toolkit](https://github.com/NVIDIA/NeMo) [4] [AISHELL-2: Transforming Mandarin ASR Research Into Industrial Scale](https://arxiv.org/abs/1808.10583) ## Licence License to use this model is covered by the [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/). By downloading the public and release version of the model, you accept the terms and conditions of the [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/) license.
austinmw/distilbert-base-uncased-finetuned-tweets-sentiment
bfc594502f76647e9eea90a38b796915960235f3
2022-06-29T22:18:47.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:tweet_eval", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
austinmw
null
austinmw/distilbert-base-uncased-finetuned-tweets-sentiment
11
null
transformers
11,367
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tweet_eval metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-tweets-sentiment results: - task: name: Text Classification type: text-classification dataset: name: tweet_eval type: tweet_eval args: sentiment metrics: - name: Accuracy type: accuracy value: 0.7295 - name: F1 type: f1 value: 0.7303196028048928 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-tweets-sentiment This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 0.8192 - Accuracy: 0.7295 - F1: 0.7303 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.7126 | 1.0 | 713 | 0.6578 | 0.7185 | 0.7181 | | 0.5514 | 2.0 | 1426 | 0.6249 | 0.7005 | 0.7046 | | 0.4406 | 3.0 | 2139 | 0.7053 | 0.731 | 0.7296 | | 0.3511 | 4.0 | 2852 | 0.7580 | 0.718 | 0.7180 | | 0.2809 | 5.0 | 3565 | 0.8192 | 0.7295 | 0.7303 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0 - Datasets 1.16.1 - Tokenizers 0.10.3
RuiqianLi/Malaya-speech_fine-tune_realcase_30_Jun_lm
04d74bada071eda783f65224cd999f231e977437
2022-06-30T05:43:57.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:uob_singlish", "transformers", "generated_from_trainer", "model-index" ]
automatic-speech-recognition
false
RuiqianLi
null
RuiqianLi/Malaya-speech_fine-tune_realcase_30_Jun_lm
11
null
transformers
11,368
--- tags: - generated_from_trainer datasets: - uob_singlish model-index: - name: Malaya-speech_fine-tune_realcase_30_Jun_lm results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Malaya-speech_fine-tune_realcase_30_Jun_lm This model is a fine-tuned version of [malay-huggingface/wav2vec2-xls-r-300m-mixed](https://huggingface.co/malay-huggingface/wav2vec2-xls-r-300m-mixed) on the uob_singlish dataset. It achieves the following results on the evaluation set: - Loss: 0.7669 - Wer: 0.3194 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.2487 | 1.82 | 20 | 0.7188 | 0.3403 | | 0.6386 | 3.64 | 40 | 0.7061 | 0.3264 | | 0.3525 | 5.45 | 60 | 0.7403 | 0.3542 | | 0.3088 | 7.27 | 80 | 0.7483 | 0.2986 | | 0.2609 | 9.09 | 100 | 0.7669 | 0.3194 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
mesolitica/finetuned-bert-base-multilingual-cased-noisy-en-ms
43eac456719ff48b47db05bb70443e64404d8d4c
2022-06-30T12:32:59.000Z
[ "pytorch", "tf", "tensorboard", "bert", "fill-mask", "transformers", "generated_from_keras_callback", "model-index", "autotrain_compatible" ]
fill-mask
false
mesolitica
null
mesolitica/finetuned-bert-base-multilingual-cased-noisy-en-ms
11
null
transformers
11,369
--- tags: - generated_from_keras_callback model-index: - name: finetuned-bert-base-multilingual-cased-noisy-en-ms results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned-bert-base-multilingual-cased-noisy-en-ms This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.18.0 - TensorFlow 2.6.0 - Datasets 2.1.0 - Tokenizers 0.12.1
qfrodicio/bert-base-cased-finetuned-gesture_prediction
3baca517608dca6e5b600edb1a1a0cc7e207d901
2022-06-30T20:21:09.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
qfrodicio
null
qfrodicio/bert-base-cased-finetuned-gesture_prediction
11
null
transformers
11,370
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-cased-finetuned-gesture_prediction results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-finetuned-gesture_prediction This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3875 - Precision: 0.6404 - Recall: 0.7109 - F1: 0.6738 - Accuracy: 0.8135 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 104 | 1.3672 | 0.3313 | 0.4468 | 0.3805 | 0.6480 | | No log | 2.0 | 208 | 0.9858 | 0.4122 | 0.5520 | 0.472 | 0.7532 | | No log | 3.0 | 312 | 0.9603 | 0.4783 | 0.6070 | 0.5351 | 0.7648 | | No log | 4.0 | 416 | 0.8777 | 0.5602 | 0.6643 | 0.6078 | 0.7952 | | 0.9471 | 5.0 | 520 | 0.8859 | 0.5827 | 0.6795 | 0.6274 | 0.8057 | | 0.9471 | 6.0 | 624 | 0.9515 | 0.5604 | 0.6620 | 0.6070 | 0.8000 | | 0.9471 | 7.0 | 728 | 1.0203 | 0.6142 | 0.6982 | 0.6535 | 0.8037 | | 0.9471 | 8.0 | 832 | 1.0422 | 0.6058 | 0.7029 | 0.6508 | 0.8085 | | 0.9471 | 9.0 | 936 | 1.0426 | 0.6227 | 0.7006 | 0.6593 | 0.8045 | | 0.1111 | 10.0 | 1040 | 1.1450 | 0.6229 | 0.7263 | 0.6706 | 0.8080 | | 0.1111 | 11.0 | 1144 | 1.1765 | 0.6580 | 0.7111 | 0.6835 | 0.8134 | | 0.1111 | 12.0 | 1248 | 1.1905 | 0.6396 | 0.7099 | 0.6729 | 0.8124 | | 0.1111 | 13.0 | 1352 | 1.1967 | 0.6148 | 0.7111 | 0.6594 | 0.8055 | | 0.1111 | 14.0 | 1456 | 1.2124 | 0.6415 | 0.7158 | 0.6766 | 0.8085 | | 0.0225 | 15.0 | 1560 | 1.2407 | 0.6351 | 0.7146 | 0.6725 | 0.8114 | | 0.0225 | 16.0 | 1664 | 1.2745 | 0.6391 | 0.7041 | 0.6700 | 0.8073 | | 0.0225 | 17.0 | 1768 | 1.2878 | 0.6466 | 0.7146 | 0.6789 | 0.8169 | | 0.0225 | 18.0 | 1872 | 1.3091 | 0.6412 | 0.7170 | 0.6770 | 0.8101 | | 0.0225 | 19.0 | 1976 | 1.3373 | 0.6490 | 0.7181 | 0.6818 | 0.8101 | | 0.0075 | 20.0 | 2080 | 1.3352 | 0.6448 | 0.7135 | 0.6774 | 0.8101 | | 0.0075 | 21.0 | 2184 | 1.3328 | 0.6477 | 0.7205 | 0.6822 | 0.8114 | | 0.0075 | 22.0 | 2288 | 1.3498 | 0.6610 | 0.7251 | 0.6916 | 0.8129 | | 0.0075 | 23.0 | 2392 | 1.3464 | 0.6606 | 0.7216 | 0.6898 | 0.8090 | | 0.0075 | 24.0 | 2496 | 1.3580 | 0.6551 | 0.7263 | 0.6889 | 0.8144 | | 0.0036 | 25.0 | 2600 | 1.3687 | 0.6547 | 0.7228 | 0.6870 | 0.8114 | | 0.0036 | 26.0 | 2704 | 1.3730 | 0.6471 | 0.7228 | 0.6829 | 0.8149 | | 0.0036 | 27.0 | 2808 | 1.3808 | 0.6505 | 0.7228 | 0.6848 | 0.8124 | | 0.0036 | 28.0 | 2912 | 1.3869 | 0.6603 | 0.7228 | 0.6901 | 0.8111 | | 0.0024 | 29.0 | 3016 | 1.3907 | 0.6624 | 0.7228 | 0.6913 | 0.8113 | | 0.0024 | 30.0 | 3120 | 1.3913 | 0.6667 | 0.7251 | 0.6947 | 0.8121 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
zluvolyote/s288cExpressionPrediction_k4
25aa83bfd2a8a8f2065dedcf2e50f29f10cd8705
2022-06-30T16:48:34.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
zluvolyote
null
zluvolyote/s288cExpressionPrediction_k4
11
null
transformers
11,371
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: s288cExpressionPrediction_k4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # s288cExpressionPrediction_k4 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
domenicrosati/deberta-v3-large-dapt-tapt-scientific-papers-pubmed-finetuned-DAGPap22
856d6739857cdc234a1fbd7ad5b0a125804cd1dc
2022-06-30T23:08:57.000Z
[ "pytorch", "tensorboard", "deberta-v2", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
domenicrosati
null
domenicrosati/deberta-v3-large-dapt-tapt-scientific-papers-pubmed-finetuned-DAGPap22
11
null
transformers
11,372
--- license: mit tags: - text-classification - generated_from_trainer metrics: - accuracy - f1 model-index: - name: deberta-v3-large-dapt-tapt-scientific-papers-pubmed-finetuned-DAGPap22 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-large-dapt-tapt-scientific-papers-pubmed-finetuned-DAGPap22 This model is a fine-tuned version of [domenicrosati/deberta-v3-large-dapt-scientific-papers-pubmed-tapt](https://huggingface.co/domenicrosati/deberta-v3-large-dapt-scientific-papers-pubmed-tapt) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0002 - Accuracy: 0.9998 - F1: 0.9999 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 12 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.1884 | 1.0 | 669 | 0.0248 | 0.9951 | 0.9964 | | 0.0494 | 2.0 | 1338 | 0.0084 | 0.9987 | 0.9990 | | 0.0199 | 3.0 | 2007 | 0.0051 | 0.9991 | 0.9993 | | 0.0079 | 4.0 | 2676 | 0.0030 | 0.9993 | 0.9995 | | 0.0 | 5.0 | 3345 | 0.0026 | 0.9994 | 0.9996 | | 0.0 | 6.0 | 4014 | 0.0014 | 0.9996 | 0.9997 | | 0.0 | 7.0 | 4683 | 0.0015 | 0.9996 | 0.9997 | | 0.0 | 8.0 | 5352 | 0.0011 | 0.9996 | 0.9997 | | 0.0143 | 9.0 | 6021 | 0.0000 | 1.0 | 1.0 | | 0.0 | 10.0 | 6690 | 0.0035 | 0.9991 | 0.9993 | | 0.0 | 11.0 | 7359 | 0.0004 | 0.9998 | 0.9999 | | 0.0 | 12.0 | 8028 | 0.0002 | 0.9998 | 0.9999 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
ardauzunoglu/mT5-en-to-tr
1bc2b13f35489e25dc17b2d0fc97341d9fdfaa74
2022-06-30T20:32:33.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
ardauzunoglu
null
ardauzunoglu/mT5-en-to-tr
11
null
transformers
11,373
Entry not found
FabianWillner/bert-base-uncased-finetuned-triviaqa-finetuned-squad
09a3a079e92631cb9742bae0318d4a74f967a169
2022-07-01T10:42:12.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
FabianWillner
null
FabianWillner/bert-base-uncased-finetuned-triviaqa-finetuned-squad
11
null
transformers
11,374
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-base-uncased-finetuned-triviaqa-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-triviaqa-finetuned-squad This model is a fine-tuned version of [FabianWillner/bert-base-uncased-finetuned-triviaqa](https://huggingface.co/FabianWillner/bert-base-uncased-finetuned-triviaqa) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 0.9981 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.0184 | 1.0 | 5533 | 0.9733 | | 0.7496 | 2.0 | 11066 | 0.9981 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Vlasta/L3UOT_best_K6Stride1Wide1epoch10percent_size
d9ac106e1484309806b476474dcf962a3d87af44
2022-07-01T17:02:37.000Z
[ "pytorch", "deberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Vlasta
null
Vlasta/L3UOT_best_K6Stride1Wide1epoch10percent_size
11
null
transformers
11,375
Entry not found
tner/bertweet-base-tweetner-2020
07c93da9edf45a9b09946d611e32fc086354c382
2022-07-07T23:35:25.000Z
[ "pytorch", "roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
tner
null
tner/bertweet-base-tweetner-2020
11
null
transformers
11,376
Entry not found
Gorilla115/t5-austen
47afcc5d5adc78e0aada2a942560e9f8ac260eab
2022-07-03T07:59:25.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
Gorilla115
null
Gorilla115/t5-austen
11
null
transformers
11,377
--- tags: - generated_from_trainer model-index: - name: t5-austen results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-austen This model was trained from scratch on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Tokenizers 0.12.1
Hyeongdon/t5-large-dgen-SciQ
79fa6bddaf18f2b3d2926ee3b06bc6635a7193d6
2022-07-03T10:26:16.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
Hyeongdon
null
Hyeongdon/t5-large-dgen-SciQ
11
null
transformers
11,378
--- license: apache-2.0 --- T5-large Distractor generation model fine-tuned on SciQ dataset. Input Format ``` {correct_answer} <sep> {question} <sep> {context} ``` Output Format ``` {Option1}</s>{Option2}</s>{Option3} ``` The paper is not published yet.
datien228/distilbart-wikilingua-autotrain
0275c4a0d86e0307775c0fcbf98144f1c70eaef9
2022-07-05T00:53:41.000Z
[ "pytorch", "bart", "text2text-generation", "unk", "dataset:datien228/autotrain-data-summary-text", "transformers", "autotrain", "co2_eq_emissions", "autotrain_compatible" ]
text2text-generation
false
datien228
null
datien228/distilbart-wikilingua-autotrain
11
null
transformers
11,379
--- tags: autotrain language: unk widget: - text: "I love AutoTrain ๐Ÿค—" datasets: - datien228/autotrain-data-summary-text co2_eq_emissions: 1850.790132860878 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 1079039131 - CO2 Emissions (in grams): 1850.790132860878 ## Validation Metrics - Loss: 1.8720897436141968 - Rouge1: 40.3451 - Rouge2: 17.4156 - RougeL: 30.9608 - RougeLsum: 38.8329 - Gen Len: 67.0434 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/datien228/autotrain-summary-text-1079039131 ```
sanchit-gandhi/wav2vec2-large-tedlium
b77192000300e9cbb5e22864d80d9c4a69f3a047
2022-07-04T11:10:28.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "en", "dataset:LIUM/tedlium", "transformers", "speech", "license:apache-2.0" ]
automatic-speech-recognition
false
sanchit-gandhi
null
sanchit-gandhi/wav2vec2-large-tedlium
11
1
transformers
11,380
--- language: en datasets: - LIUM/tedlium tags: - speech license: apache-2.0 --- # Wav2Vec2-Large-Tedlium The Wav2Vec2 large model fine-tuned on the TEDLIUM corpus. The model is initialised with Facebook's [Wav2Vec2 large LV-60k](https://huggingface.co/facebook/wav2vec2-large-lv60) checkpoint pre-trained on 60,000h of audiobooks from the LibriVox project. It is fine-tuned on 452h of TED talks from the [TEDLIUM](https://huggingface.co/datasets/LIUM/tedlium) corpus (Release 3). When using the model, make sure that your speech input is sampled at 16Khz. The model achieves a word error rate (WER) of 8.4% on the dev set and 8.2% on the test set. [Training logs](https://wandb.ai/sanchit-gandhi/tedlium/runs/10c85yc4?workspace=user-sanchit-gandhi) document the training and evaluation progress over 50k steps of fine-tuning. See [this notebook](https://colab.research.google.com/drive/1FjTsqbYKphl9kL-eILgUc-bl4zVThL8F?usp=sharing) for more information on how this model was fine-tuned. # Usage To transcribe audio files the model can be used as a standalone acoustic model as follows: ```python from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC from datasets import load_dataset import torch # load model and processor processor = Wav2Vec2Processor.from_pretrained("sanchit-gandhi/wav2vec2-large-tedlium") model = Wav2Vec2ForCTC.from_pretrained("sanchit-gandhi/wav2vec2-large-tedlium") # load dummy dataset ds = load_dataset("sanchit-gandhi/tedlium_dummy", split="validation") # process audio inputs input_values = processor(ds[0]["audio"]["array"], return_tensors="pt", padding="longest").input_values # Batch size 1 # retrieve logits logits = model(input_values).logits # take argmax and decode predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(predicted_ids) print("Target: ", ds["text"][0]) print("Transcription: ", transcription[0]) ``` ## Evaluation This code snippet shows how to evaluate **Wav2Vec2-Large-Tedlium** on the TEDLIUM test data. ```python from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import torch from jiwer import wer tedlium_eval = load_dataset("LIUM/tedlium", "release3", split="test") model = Wav2Vec2ForCTC.from_pretrained("sanchit-gandhi/wav2vec2-large-tedlium").to("cuda") processor = Wav2Vec2Processor.from_pretrained("sanchit-gandhi/wav2vec2-large-tedlium") def map_to_pred(batch): input_values = processor(batch["audio"]["array"], return_tensors="pt", padding="longest").input_values with torch.no_grad(): logits = model(input_values.to("cuda")).logits predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(predicted_ids) batch["transcription"] = transcription return batch result = tedlium_eval.map(map_to_pred, batched=True, batch_size=1, remove_columns=["speech"]) print("WER:", wer(result["text"], result["transcription"])) ```
ricardo-filho/bert_base_tcm_no_objeto_0.8
9dc724ed47ea520e05974001c6eedda2ce2246c1
2022-07-04T13:21:15.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
ricardo-filho
null
ricardo-filho/bert_base_tcm_no_objeto_0.8
11
null
transformers
11,381
--- license: mit tags: - generated_from_trainer model-index: - name: bert_base_tcm_no_objeto_0.8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert_base_tcm_no_objeto_0.8 This model is a fine-tuned version of [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0076 - Criterio Julgamento Precision: 0.7444 - Criterio Julgamento Recall: 0.8684 - Criterio Julgamento F1: 0.8016 - Criterio Julgamento Number: 114 - Data Sessao Precision: 0.7297 - Data Sessao Recall: 0.9153 - Data Sessao F1: 0.8120 - Data Sessao Number: 59 - Modalidade Licitacao Precision: 0.9412 - Modalidade Licitacao Recall: 0.9697 - Modalidade Licitacao F1: 0.9552 - Modalidade Licitacao Number: 462 - Numero Exercicio Precision: 0.9018 - Numero Exercicio Recall: 0.9619 - Numero Exercicio F1: 0.9309 - Numero Exercicio Number: 210 - Valor Objeto Precision: 0.7778 - Valor Objeto Recall: 0.8537 - Valor Objeto F1: 0.8140 - Valor Objeto Number: 41 - Overall Precision: 0.8803 - Overall Recall: 0.9458 - Overall F1: 0.9119 - Overall Accuracy: 0.9983 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Criterio Julgamento Precision | Criterio Julgamento Recall | Criterio Julgamento F1 | Criterio Julgamento Number | Data Sessao Precision | Data Sessao Recall | Data Sessao F1 | Data Sessao Number | Modalidade Licitacao Precision | Modalidade Licitacao Recall | Modalidade Licitacao F1 | Modalidade Licitacao Number | Numero Exercicio Precision | Numero Exercicio Recall | Numero Exercicio F1 | Numero Exercicio Number | Valor Objeto Precision | Valor Objeto Recall | Valor Objeto F1 | Valor Objeto Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:-----------------------------:|:--------------------------:|:----------------------:|:--------------------------:|:---------------------:|:------------------:|:--------------:|:------------------:|:------------------------------:|:---------------------------:|:-----------------------:|:---------------------------:|:--------------------------:|:-----------------------:|:-------------------:|:-----------------------:|:----------------------:|:-------------------:|:---------------:|:-------------------:|:-----------------:|:--------------:|:----------:|:----------------:| | 0.012 | 1.0 | 2863 | 0.0099 | 0.7059 | 0.8421 | 0.7680 | 114 | 0.7013 | 0.9153 | 0.7941 | 59 | 0.9366 | 0.9589 | 0.9476 | 462 | 0.9136 | 0.9571 | 0.9349 | 210 | 0.5902 | 0.8780 | 0.7059 | 41 | 0.8583 | 0.9368 | 0.8958 | 0.9974 | | 0.0095 | 2.0 | 5726 | 0.0076 | 0.8095 | 0.8947 | 0.8500 | 114 | 0.6935 | 0.7288 | 0.7107 | 59 | 0.9346 | 0.9589 | 0.9466 | 462 | 0.9054 | 0.9571 | 0.9306 | 210 | 0.8409 | 0.9024 | 0.8706 | 41 | 0.8901 | 0.9323 | 0.9107 | 0.9981 | | 0.005 | 3.0 | 8589 | 0.0091 | 0.7574 | 0.9035 | 0.8240 | 114 | 0.6471 | 0.9322 | 0.7639 | 59 | 0.9371 | 0.9675 | 0.9521 | 462 | 0.9091 | 0.9524 | 0.9302 | 210 | 0.7660 | 0.8780 | 0.8182 | 41 | 0.8715 | 0.9492 | 0.9087 | 0.9978 | | 0.0042 | 4.0 | 11452 | 0.0076 | 0.7444 | 0.8684 | 0.8016 | 114 | 0.7297 | 0.9153 | 0.8120 | 59 | 0.9412 | 0.9697 | 0.9552 | 462 | 0.9018 | 0.9619 | 0.9309 | 210 | 0.7778 | 0.8537 | 0.8140 | 41 | 0.8803 | 0.9458 | 0.9119 | 0.9983 | | 0.004 | 5.0 | 14315 | 0.0100 | 0.7373 | 0.7632 | 0.7500 | 114 | 0.7534 | 0.9322 | 0.8333 | 59 | 0.9124 | 0.9697 | 0.9402 | 462 | 0.9196 | 0.9810 | 0.9493 | 210 | 0.76 | 0.9268 | 0.8352 | 41 | 0.8724 | 0.9413 | 0.9055 | 0.9979 | | 0.0041 | 6.0 | 17178 | 0.0103 | 0.7377 | 0.7895 | 0.7627 | 114 | 0.75 | 0.8644 | 0.8031 | 59 | 0.9492 | 0.9697 | 0.9593 | 462 | 0.92 | 0.9857 | 0.9517 | 210 | 0.7872 | 0.9024 | 0.8409 | 41 | 0.8919 | 0.9402 | 0.9154 | 0.9980 | | 0.002 | 7.0 | 20041 | 0.0092 | 0.7984 | 0.8684 | 0.8319 | 114 | 0.68 | 0.8644 | 0.7612 | 59 | 0.9471 | 0.9697 | 0.9583 | 462 | 0.9196 | 0.9810 | 0.9493 | 210 | 0.7872 | 0.9024 | 0.8409 | 41 | 0.8918 | 0.9492 | 0.9196 | 0.9983 | | 0.0014 | 8.0 | 22904 | 0.0100 | 0.8033 | 0.8596 | 0.8305 | 114 | 0.7612 | 0.8644 | 0.8095 | 59 | 0.9532 | 0.9697 | 0.9614 | 462 | 0.9186 | 0.9667 | 0.9420 | 210 | 0.8222 | 0.9024 | 0.8605 | 41 | 0.9049 | 0.9447 | 0.9244 | 0.9983 | | 0.0015 | 9.0 | 25767 | 0.0108 | 0.7787 | 0.8333 | 0.8051 | 114 | 0.7067 | 0.8983 | 0.7910 | 59 | 0.9513 | 0.9719 | 0.9615 | 462 | 0.9107 | 0.9714 | 0.9401 | 210 | 0.8409 | 0.9024 | 0.8706 | 41 | 0.8943 | 0.9458 | 0.9194 | 0.9984 | | 0.0008 | 10.0 | 28630 | 0.0112 | 0.7934 | 0.8421 | 0.8170 | 114 | 0.7222 | 0.8814 | 0.7939 | 59 | 0.9533 | 0.9719 | 0.9625 | 462 | 0.9193 | 0.9762 | 0.9469 | 210 | 0.8409 | 0.9024 | 0.8706 | 41 | 0.9012 | 0.9470 | 0.9235 | 0.9984 | ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
jakka/t5_small_NCC-finetuned-sv-frp-classifier
b221f9052655bdf174e526b6600f6b28c6f6fc7c
2022-07-04T16:03:42.000Z
[ "pytorch", "t5", "text2text-generation", "dataset:norwegian_parliament", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
jakka
null
jakka/t5_small_NCC-finetuned-sv-frp-classifier
11
null
transformers
11,382
--- license: apache-2.0 tags: - generated_from_trainer datasets: - norwegian_parliament model-index: - name: t5_small_NCC-finetuned-sv-frp-classifier results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5_small_NCC-finetuned-sv-frp-classifier This model is a fine-tuned version of [north/t5_small_NCC](https://huggingface.co/north/t5_small_NCC) on the norwegian_parliament dataset. It achieves the following results on the evaluation set: - Loss: nan - Sequence Accuracy: 69.7875 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Sequence Accuracy | |:-------------:|:-----:|:----:|:---------------:|:-----------------:| | No log | 1.0 | 113 | nan | 69.7875 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.9.0 - Datasets 2.3.2 - Tokenizers 0.11.0
juridics/bertimbaulaw-base-portuguese-sts
03a50eea489a9f7c8a18f8ed617815d7437937d9
2022-07-04T22:35:51.000Z
[ "pytorch", "bert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
juridics
null
juridics/bertimbaulaw-base-portuguese-sts
11
null
sentence-transformers
11,383
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # juridics/bertimbaulaw-base-portuguese-sts-scale This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('juridics/bertimbaulaw-base-portuguese-sts-scale') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('juridics/bertimbaulaw-base-portuguese-sts-scale') model = AutoModel.from_pretrained('juridics/bertimbaulaw-base-portuguese-sts-scale') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=juridics/bertimbaulaw-base-portuguese-sts-scale) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 2492 with parameters: ``` {'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 3, "evaluation_steps": 2492, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 5e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 748, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
enoriega/rule_learning_margin_1mm_spanpred_nospec
5657f714254d1cdcbaf0cf825b5e6a0881a5660d
2022-07-05T13:56:15.000Z
[ "pytorch", "tensorboard", "bert", "dataset:enoriega/odinsynth_dataset", "transformers", "generated_from_trainer", "model-index" ]
null
false
enoriega
null
enoriega/rule_learning_margin_1mm_spanpred_nospec
11
null
transformers
11,384
--- tags: - generated_from_trainer datasets: - enoriega/odinsynth_dataset model-index: - name: rule_learning_margin_1mm_spanpred_nospec results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # rule_learning_margin_1mm_spanpred_nospec This model is a fine-tuned version of [enoriega/rule_softmatching](https://huggingface.co/enoriega/rule_softmatching) on the enoriega/odinsynth_dataset dataset. It achieves the following results on the evaluation set: - Loss: 0.3972 - Margin Accuracy: 0.8136 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2000 - total_train_batch_size: 8000 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Margin Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------------:| | 0.5864 | 0.16 | 20 | 0.5454 | 0.7564 | | 0.4995 | 0.32 | 40 | 0.4761 | 0.7867 | | 0.4866 | 0.48 | 60 | 0.4353 | 0.8057 | | 0.4568 | 0.64 | 80 | 0.4229 | 0.8098 | | 0.4409 | 0.8 | 100 | 0.4136 | 0.8140 | | 0.4369 | 0.96 | 120 | 0.4124 | 0.8118 | | 0.4172 | 1.12 | 140 | 0.4043 | 0.8118 | | 0.4208 | 1.28 | 160 | 0.4072 | 0.8119 | | 0.4256 | 1.44 | 180 | 0.4041 | 0.8124 | | 0.4201 | 1.6 | 200 | 0.4041 | 0.8127 | | 0.4159 | 1.76 | 220 | 0.4006 | 0.8125 | | 0.4103 | 1.92 | 240 | 0.4004 | 0.8131 | | 0.4282 | 2.08 | 260 | 0.3999 | 0.8138 | | 0.4169 | 2.24 | 280 | 0.4006 | 0.8136 | | 0.4263 | 2.4 | 300 | 0.3962 | 0.8133 | | 0.4252 | 2.56 | 320 | 0.3994 | 0.8137 | | 0.4202 | 2.72 | 340 | 0.3965 | 0.8137 | | 0.4146 | 2.88 | 360 | 0.3967 | 0.8139 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0 - Datasets 2.2.1 - Tokenizers 0.12.1
domenicrosati/deberta-v3-xsmall-finetuned-review_classifier
c2eac86ff4103773240ef2d48b64dddbcb24c30b
2022-07-06T01:09:25.000Z
[ "pytorch", "tensorboard", "deberta-v2", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
domenicrosati
null
domenicrosati/deberta-v3-xsmall-finetuned-review_classifier
11
null
transformers
11,385
--- license: mit tags: - text-classification - generated_from_trainer metrics: - accuracy - f1 model-index: - name: deberta-v3-xsmall-finetuned-review_classifier results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-xsmall-finetuned-review_classifier This model is a fine-tuned version of [microsoft/deberta-v3-xsmall](https://huggingface.co/microsoft/deberta-v3-xsmall) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1441 - Accuracy: 0.9513 - F1: 0.7458 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4.5e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:| | 0.1518 | 1.0 | 6667 | 0.1575 | 0.9510 | 0.7155 | | 0.1247 | 2.0 | 13334 | 0.1441 | 0.9513 | 0.7458 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
ghadeermobasher/Modified-BlueBERT-BioRED-Chem
a07392c011f9771022acdc38bec2e900ea3ce936
2022-07-06T14:52:30.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/Modified-BlueBERT-BioRED-Chem
11
null
transformers
11,386
Entry not found
saekomdalkom/long-t5-local-base-finetuned-xsum
935edc43ccd1d551d7884e5403869e8d49c6fbd9
2022-07-06T15:59:44.000Z
[ "pytorch", "longt5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
saekomdalkom
null
saekomdalkom/long-t5-local-base-finetuned-xsum
11
null
transformers
11,387
Entry not found
Aktsvigun/bart-base_aeslc_12345
cd288721c3ed7edc23f16180d65c1feb6a24e01f
2022-07-07T15:42:28.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_aeslc_12345
11
null
transformers
11,388
Entry not found
tner/twitter-roberta-base-2019-90m-tweetner-2020
a1c1fb1ac5c3cdfdf48f12f72127f1eb1a184db1
2022-07-07T10:09:38.000Z
[ "pytorch", "roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
tner
null
tner/twitter-roberta-base-2019-90m-tweetner-2020
11
null
transformers
11,389
Entry not found
mbyanfei/autotrain-amazon-shoe-reviews-classification-1104340243
12d61c59030a9dd9cfb6b6efd0c7176899203b5b
2022-07-07T20:02:39.000Z
[ "pytorch", "roberta", "text-classification", "en", "dataset:mbyanfei/autotrain-data-amazon-shoe-reviews-classification", "transformers", "autotrain", "co2_eq_emissions" ]
text-classification
false
mbyanfei
null
mbyanfei/autotrain-amazon-shoe-reviews-classification-1104340243
11
null
transformers
11,390
--- tags: autotrain language: en widget: - text: "I love AutoTrain ๐Ÿค—" datasets: - mbyanfei/autotrain-data-amazon-shoe-reviews-classification co2_eq_emissions: 27.982443349742287 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 1104340243 - CO2 Emissions (in grams): 27.982443349742287 ## Validation Metrics - Loss: 0.9584922790527344 - Accuracy: 0.5843 - Macro F1: 0.5801009597024507 - Micro F1: 0.5843 - Weighted F1: 0.5792137097243996 - Macro Precision: 0.5897236028586046 - Micro Precision: 0.5843 - Weighted Precision: 0.5896188517045103 - Macro Recall: 0.5857983081566331 - Micro Recall: 0.5843 - Weighted Recall: 0.5843 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/mbyanfei/autotrain-amazon-shoe-reviews-classification-1104340243 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("mbyanfei/autotrain-amazon-shoe-reviews-classification-1104340243", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("mbyanfei/autotrain-amazon-shoe-reviews-classification-1104340243", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
huggingtweets/gassy_dragon
191a24ba02a728a701edc88742766140c7ddb930
2022-07-07T21:05:38.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/gassy_dragon
11
null
transformers
11,391
--- language: en thumbnail: http://www.huggingtweets.com/gassy_dragon/1657227895422/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1423289998544044032/vc29B5yA_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">๐Ÿค– AI BOT ๐Ÿค–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Bau be tootin on ur butt.</div> <div style="text-align: center; font-size: 14px;">@gassy_dragon</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Bau be tootin on ur butt.. | Data | Bau be tootin on ur butt. | | --- | --- | | Tweets downloaded | 3188 | | Retweets | 953 | | Short tweets | 487 | | Tweets kept | 1748 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3puk9479/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @gassy_dragon's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3cp8z35e) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3cp8z35e/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/gassy_dragon') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
nateraw/resnet50d
662b2093d2a0d37f9e4ac6f1326d8aff30c01604
2022-07-08T05:34:39.000Z
[ "pytorch", "timm", "image-classification" ]
image-classification
false
nateraw
null
nateraw/resnet50d
11
null
timm
11,392
--- tags: - image-classification - timm library_tag: timm --- # Model card for resnet50d
domenicrosati/SPECTER-with-biblio-context-finetuned-review_classifier
be1b9f63adf023ca28788034503b4939fd8958a4
2022-07-08T18:53:09.000Z
[ "pytorch", "bert", "transformers", "text-classification", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
domenicrosati
null
domenicrosati/SPECTER-with-biblio-context-finetuned-review_classifier
11
null
transformers
11,393
--- license: apache-2.0 tags: - text-classification - generated_from_trainer metrics: - accuracy - f1 - recall - precision model-index: - name: SPECTER-with-biblio-context-finetuned-review_classifier results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SPECTER-with-biblio-context-finetuned-review_classifier This model is a fine-tuned version of [allenai/specter](https://huggingface.co/allenai/specter) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1284 - Accuracy: 0.962 - F1: 0.7892 - Recall: 0.7593 - Precision: 0.8216 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4.5e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:------:|:---------:| | 0.1956 | 1.0 | 6667 | 0.1805 | 0.9514 | 0.7257 | 0.6860 | 0.7702 | | 0.135 | 2.0 | 13334 | 0.1284 | 0.962 | 0.7892 | 0.7593 | 0.8216 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
robb17/XLNet-finetuned-sentiment-analysis
af80e39e4a66f7dd16220574fbf54ded780486b4
2022-07-10T11:53:27.000Z
[ "pytorch", "xlnet", "text-classification", "transformers" ]
text-classification
false
robb17
null
robb17/XLNet-finetuned-sentiment-analysis
11
null
transformers
11,394
Entry not found
Zamachi/RoBERTa-for-multilabel-sentence-classification
f8d542318fae3affd54b48577eab964e700d3f72
2022-07-14T13:19:22.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
Zamachi
null
Zamachi/RoBERTa-for-multilabel-sentence-classification
11
null
transformers
11,395
Entry not found
camilag/t5-end2end-questions-generation
a331016f052175e3b388f0b5c1dc778566dd65d8
2022-07-11T20:52:28.000Z
[ "pytorch", "t5", "text2text-generation", "dataset:squad_modified_for_t5_qg", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
camilag
null
camilag/t5-end2end-questions-generation
11
null
transformers
11,396
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad_modified_for_t5_qg model-index: - name: t5-end2end-questions-generation results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-end2end-questions-generation This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the squad_modified_for_t5_qg dataset. It achieves the following results on the evaluation set: - Loss: 1.7927 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.5425 | 0.34 | 100 | 1.9416 | | 2.0221 | 0.68 | 200 | 1.7927 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
omarxadel/hubert-large-arabic-egyptian
a3dbba3a3b6f0ee6c80a3dbd18fc557b8f31dcd7
2022-07-12T14:10:51.000Z
[ "pytorch", "hubert", "automatic-speech-recognition", "ar", "dataset:MGB-3", "dataset:egyptian-arabic-conversational-speech-corpus", "arxiv:2106.07447", "transformers", "CTC", "Attention", "Transformer", "license:cc-by-nc-4.0", "model-index" ]
automatic-speech-recognition
false
omarxadel
null
omarxadel/hubert-large-arabic-egyptian
11
1
transformers
11,397
--- language: "ar" pipeline_tag: automatic-speech-recognition tags: - CTC - Attention - pytorch - Transformer license: "cc-by-nc-4.0" datasets: - MGB-3 - egyptian-arabic-conversational-speech-corpus metrics: - wer model-index: - name: omarxadel/hubert-large-arabic-egyptian results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition metrics: - name: Test WER type: wer value: 25.9 - name: Validation WER type: wer value: 23.5 --- # Arabic Hubert-Large - with CTC fine-tuned on MGB-3 and Egyptian Arabic Conversational Speech Corpus (No LM) This model is a fine-tuned version of [Arabic Hubert-Large](https://huggingface.co/asafaya/hubert-large-arabic). We finetuned this model on the MGB-3 and Egyptian Arabic Conversational Speech Corpus datasets, acheiving a state of the art for Egyptian Arabic with WER of `25.9%`. The original model was pre-trained on 2,000 hours of 16kHz sampled Arabic speech audio. When using the model make sure that your speech input is also sampled at 16Khz, see the original [paper](https://arxiv.org/abs/2106.07447) for more details on the model. The performance of the model on the datasets is the following: | Valid WER | Test WER | |:---------:|:--------:| | 23.55 | 25.59 | # Acknowledgement Model fine-tuning and data processing for this work were performed as a part of a Graduation Project from Faculty of Engineering, Alexandria University, CCE Program.
Doohae/lassl-kobart
303823d25fc627dd513d442bb422aedbb4247b65
2022-07-12T18:28:33.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Doohae
null
Doohae/lassl-kobart
11
null
transformers
11,398
Entry not found
jimacasaet/SalamaThanksEN2FILv3
30983a9aae35be45f612f0199d486e97ded3bdff
2022-07-13T09:09:11.000Z
[ "pytorch", "marian", "text2text-generation", "transformers", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
jimacasaet
null
jimacasaet/SalamaThanksEN2FILv3
11
null
transformers
11,399
--- license: apache-2.0 ---