modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
list
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
sgugger/bert-sharded
e44c936c3858495e1fe46ab1aed01d8a4a15114c
2022-03-22T17:42:29.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
sgugger
null
sgugger/bert-sharded
11
null
transformers
11,200
Entry not found
Yaxin/xlm-roberta-base-yelp-mlm
f44a8c6c6edf028c2a603bf0f7bbb7653f3ac09d
2022-03-24T04:44:37.000Z
[ "pytorch", "xlm-roberta", "fill-mask", "dataset:yelp_review_full", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
fill-mask
false
Yaxin
null
Yaxin/xlm-roberta-base-yelp-mlm
11
null
transformers
11,201
--- license: mit tags: - generated_from_trainer datasets: - yelp_review_full metrics: - accuracy model-index: - name: xlm-roberta-base-yelp-mlm results: - task: name: Masked Language Modeling type: fill-mask dataset: name: yelp_review_full yelp_review_full type: yelp_review_full args: yelp_review_full metrics: - name: Accuracy type: accuracy value: 0.7356223359340127 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-yelp-mlm This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the yelp_review_full yelp_review_full dataset. It achieves the following results on the evaluation set: - Loss: 1.1743 - Accuracy: 0.7356 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.10.0 - Datasets 1.18.3 - Tokenizers 0.11.0
Thant123/distilbert-base-uncased-finetuned-emotion
9c469ce5d1a3b99cdc73e52702b52af2d2cb9ee1
2022-03-24T12:17:39.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Thant123
null
Thant123/distilbert-base-uncased-finetuned-emotion
11
null
transformers
11,202
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.924 - name: F1 type: f1 value: 0.9241019999324234 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2270 - Accuracy: 0.924 - F1: 0.9241 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8204 | 1.0 | 250 | 0.3160 | 0.9035 | 0.9008 | | 0.253 | 2.0 | 500 | 0.2270 | 0.924 | 0.9241 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
celine98/canine-c-finetuned-sst2
e2ed997246d3612291f2ed1e6de408829cfe9284
2022-04-02T19:11:13.000Z
[ "pytorch", "tensorboard", "canine", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
celine98
null
celine98/canine-c-finetuned-sst2
11
null
transformers
11,203
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: canine-c-finetuned-sst2 results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: sst2 metrics: - name: Accuracy type: accuracy value: 0.8486238532110092 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # canine-c-finetuned-sst2 This model is a fine-tuned version of [google/canine-c](https://huggingface.co/google/canine-c) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6025 - Accuracy: 0.8486 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4.9121586874695155e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3415 | 1.0 | 2105 | 0.4196 | 0.8280 | | 0.2265 | 2.0 | 4210 | 0.4924 | 0.8211 | | 0.1439 | 3.0 | 6315 | 0.5726 | 0.8337 | | 0.0974 | 4.0 | 8420 | 0.6025 | 0.8486 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
cdinh2022/distilbert-base-uncased-finetuned-emotion
961aae04da6d585b842ddf49e1cba25faab11baa
2022-03-24T21:44:36.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
cdinh2022
null
cdinh2022/distilbert-base-uncased-finetuned-emotion
11
null
transformers
11,204
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion model-index: - name: distilbert-base-uncased-finetuned-emotion results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 0.1 | 25 | 1.4889 | 0.5195 | 0.3976 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
patrickvonplaten/deberta_amazon_reviews_v1
06f020e0dbf909570eb886423bd3af256b855546
2022-03-25T17:57:32.000Z
[ "pytorch", "tensorboard", "deberta-v2", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
patrickvonplaten
null
patrickvonplaten/deberta_amazon_reviews_v1
11
null
transformers
11,205
--- license: mit tags: - generated_from_trainer model-index: - name: deberta_amazon_reviews_v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta_amazon_reviews_v1 This model is a fine-tuned version of [patrickvonplaten/deberta_v3_amazon_reviews](https://huggingface.co/patrickvonplaten/deberta_v3_amazon_reviews) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 2 ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
hackathon-pln-es/electricidad-small-discriminator-finetuned-clasificacion-comentarios-suicidas
dadb12960f1cc549fe296e86c8362abd3b424451
2022-04-01T01:49:15.000Z
[ "pytorch", "electra", "text-classification", "es", "transformers", "generated_from_trainer", "sentiment", "emotion", "suicide", "depresión", "suicidio", "español", "spanish", "depression", "license:apache-2.0", "model-index" ]
text-classification
false
hackathon-pln-es
null
hackathon-pln-es/electricidad-small-discriminator-finetuned-clasificacion-comentarios-suicidas
11
9
transformers
11,206
--- license: apache-2.0 language: "es" tags: - generated_from_trainer - sentiment - emotion - suicide - depresión - suicidio - español - es - spanish - depression widget: - text: "La vida no merece la pena" example_title: "Ejemplo 1" - text: "Para vivir así lo mejor es estar muerto" example_title: "Ejemplo 2" - text: "me siento triste por no poder viajar" example_title: "Ejemplo 3" - text: "Quiero terminar con todo" example_title: "Ejemplo 4" - text: "Disfruto de la vista" example_title: "Ejemplo 5" metrics: - accuracy model-index: - name: electricidad-small-discriminator-finetuned-clasificacion-comentarios-suicidas results: [] --- # electricidad-small-discriminator-finetuned-clasificacion-comentarios-suicidas El presente modelo se encentra basado en una versión mejorada de [mrm8488/electricidad-small-discriminator](https://huggingface.co/mrm8488/electricidad-small-discriminator), y con el uso de la base de datos [hackathon-pln-es/comentarios_depresivos](https://huggingface.co/datasets/hackathon-pln-es/comentarios_depresivos). Siendo de esta manera los resultados obtenidos en la evaluación del modelo: - Pérdida 0.0458 - Precisión: 0.9916 ## Autores - Danny Vásquez - César Salazar - Alexis Cañar - Yannela Castro - Daniel Patiño ## Descripción del Modelo electricidad-small-discriminator-finetuned-clasificacion-comentarios-suicidas es un modelo Transformers pre-entrenado bajo un largo corpus de comentarios obtenidos de REDDIT traducidos al español, con el fin de poder predecir si un comentario tiene una tendencia suicida en base al contexto. Por ende, recibirá una ENTRADA en la cuál se ingresará el texto a comprobar, para posteriormente obtener como única SALIDA de igual manera dos posibles opciones: “Suicida” o “No Suicida”. ## Motivación Siendo la principal inspiración del modelo que sea utilizado para futuros proyectos que busquen detectar los casos de depresión a tiempo mediante el procesamiento del lenguaje natural, para poder prevenir los casos de suicido en niños, jóvenes y adultos. ## ¿Cómo usarlo? El modelo puede ser utilizado de manera directa mediante la importación de la librería pipeline de transformers: ```python >>> from transformers import pipeline >>> model_name= 'hackathon-pln-es/electricidad-small-discriminator-finetuned-clasificacion-comentarios-suicidas' >>> cls= pipeline("text-classification", model=model_name) >>> cls(“Estoy feliz”)[0]['label'] [{'resultado': "No Suicida" }] >>> cls(“Quiero acabar con todo”)[0]['label'] [{'resultado': " Suicida" }] ``` ## Proceso de entrenamiento ### Datos de entrenamiento Como se declaró anteriormente, el modelo se pre-entrenó basándose en la base de datos [comentarios_depresivos]( https://huggingface.co/datasets/hackathon-pln-es/comentarios_depresivos), el cuál posee una cantidad de 192 347 filas de datos para el entrenamiento, 33 944 para las pruebas y 22630 para la validación. ### Hiper parámetros de entrenamiento - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - lr_scheduler_type: linear - num_epochs: 15 ### Resultados del entrenamiento | Pérdida_entrenamiento | Epoch | Pérdida_Validación | Presición | |:-------------:|:-----:|:---------------:|:--------:| | 0.161100 | 1.0 | 0.133057 | 0.952718 | | 0.134500 | 2.0 | 0.110966 | 0.960804 | | 0.108500 | 3.0 | 0.086417 | 0.970835 | | 0.099400 | 4.0 | 0.073618 | 0.974856 | | 0.090500 | 5.0 | 0.065231 | 0.979629 | | 0.080700 | 6.0 | 0.060849 | 0.982324 | | 0.069200 | 7.0 | 0.054718 | 0.986125 | | 0.060400 | 8.0 | 0.051153 | 0.985948 | | 0.048200 | 9.0 | 0.045747 | 0.989748 | | 0.045500 | 10.0 | 0.049992 | 0.988069 | | 0.043400 | 11.0 | 0.046325 | 0.990234 | | 0.034300 | 12.0 | 0.050746 | 0.989792 | | 0.032900 | 13.0 | 0.043434 | 0.991737 | | 0.028400 | 14.0 | 0.045003 | 0.991869 | | 0.022300 | 15.0 | 0.045819 | 0.991648 | ### Versiones del Framework - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6 ## Citación BibTeX ```bibtex @article{ccs_2022, author = {Danny Vásquez and César Salazar and Alexis Cañar and Yannela Castro and Daniel Patiño}, title = {Modelo Electricidad-small-discriminator-finetuned-clasificacion-comentarios-suicidas}, journal = {Huggingface}, year = {2022}, } ``` <h3>Visualizar en GRADIO:</h3> <a href="https://huggingface.co/spaces/hackathon-pln-es/clasificador-comentarios-suicidas"> <img width="300px" src="https://hf.space/embed/hackathon-pln-es/clasificador-comentarios-suicidas/static/img/logo.svg"> </a> ---
imyday/distilbert-base-uncased-finetuned-emotion
c43f9643670600cb4578e3f1f440895cc69a4f39
2022-03-27T06:59:25.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
imyday
null
imyday/distilbert-base-uncased-finetuned-emotion
11
null
transformers
11,207
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.923 - name: F1 type: f1 value: 0.9233039604362318 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2282 - Accuracy: 0.923 - F1: 0.9233 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8344 | 1.0 | 250 | 0.3317 | 0.8995 | 0.8953 | | 0.2606 | 2.0 | 500 | 0.2282 | 0.923 | 0.9233 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
alefiury/wav2vec2-large-xlsr-53-coraa-brazilian-portuguese-gain-normalization
0d215267ace7b5d297b512e59918cae803780f3e
2022-04-05T16:58:36.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "pt", "dataset:CORAA", "dataset:common_voice", "dataset:mls", "dataset:cetuc", "dataset:voxforge", "transformers", "audio", "speech", "portuguese-speech-corpus", "PyTorch", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
alefiury
null
alefiury/wav2vec2-large-xlsr-53-coraa-brazilian-portuguese-gain-normalization
11
null
transformers
11,208
--- language: pt datasets: - CORAA - common_voice - mls - cetuc - voxforge metrics: - wer tags: - audio - speech - wav2vec2 - pt - portuguese-speech-corpus - automatic-speech-recognition - speech - PyTorch license: apache-2.0 model-index: - name: Alef Iury XLSR Wav2Vec2 Large 53 Portuguese results: - task: name: Speech Recognition type: automatic-speech-recognition metrics: - name: Test CORAA WER type: wer value: 24.89% --- # Wav2vec 2.0 trained with CORAA Portuguese Dataset and Open Portuguese Datasets This a the demonstration of a fine-tuned Wav2vec model for Portuguese using the following datasets: - [CORAA dataset](https://github.com/nilc-nlp/CORAA) - [CETUC](http://www02.smt.ufrj.br/~igor.quintanilha/alcaim.tar.gz). - [Multilingual Librispeech (MLS)](http://www.openslr.org/94/). - [VoxForge](http://www.voxforge.org/). - [Common Voice 6.1](https://commonvoice.mozilla.org/pt). ## Repository The repository that implements the model to be trained and tested is avaible [here](https://github.com/alefiury/SE-R_2022_Challenge_Wav2vec2).
shrishail/t5_paraphrase_msrp_paws
7b81cedc3e75d51475603b2bf35c3511ccb97513
2022-03-30T05:47:27.000Z
[ "pytorch", "t5", "text2text-generation", "en", "transformers", "paraphrase-generation", "text-generation", "Conditional Generation", "autotrain_compatible" ]
text-generation
false
shrishail
null
shrishail/t5_paraphrase_msrp_paws
11
null
transformers
11,209
--- language: "en" tags: - paraphrase-generation - text-generation - Conditional Generation inference: false --- # Simple model for Paraphrase Generation ​ ## Model description ​ T5-based model for generating paraphrased sentences. It is trained on the labeled [MSRP](https://www.microsoft.com/en-us/download/details.aspx?id=52398) and [Google PAWS](https://github.com/google-research-datasets/paws) dataset. ​ ## How to use ​ ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("shrishail/t5_paraphrase_msrp_paws") model = AutoModelForSeq2SeqLM.from_pretrained("shrishail/t5_paraphrase_msrp_paws") ​ sentence = "This is something which i cannot understand at all" text = "paraphrase: " + sentence + " </s>" encoding = tokenizer.encode_plus(text,pad_to_max_length=True, return_tensors="pt") input_ids, attention_masks = encoding["input_ids"].to("cuda"), encoding["attention_mask"].to("cuda") outputs = model.generate( input_ids=input_ids, attention_mask=attention_masks, max_length=256, do_sample=True, top_k=120, top_p=0.95, early_stopping=True, num_return_sequences=5 ) for output in outputs: line = tokenizer.decode(output, skip_special_tokens=True,clean_up_tokenization_spaces=True) print(line) ​ ```
hackathon-pln-es/electricidad-base-generator-fake-news
b4738d0660cd0e74e9e8a151ef236d9be6c16fc6
2022-04-04T04:04:01.000Z
[ "pytorch", "tensorboard", "electra", "text-classification", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
hackathon-pln-es
null
hackathon-pln-es/electricidad-base-generator-fake-news
11
null
transformers
11,210
--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: electricidad-base-generator-fake-news results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # electricidad-base-generator-fake-news This model is a fine-tuned version of [mrm8488/electricidad-base-generator](https://huggingface.co/mrm8488/electricidad-base-generator) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0067 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1136 | 1.0 | 180 | 0.0852 | 1.0 | | 0.0267 | 2.0 | 360 | 0.0219 | 1.0 | | 0.0132 | 3.0 | 540 | 0.0108 | 1.0 | | 0.0091 | 4.0 | 720 | 0.0075 | 1.0 | | 0.0077 | 5.0 | 900 | 0.0067 | 1.0 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
binay1999/bert-finetuned-ner
6f270a7bcbeb21c78eedabb5083f134c9b37d3fc
2022-03-31T05:10:40.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
binay1999
null
binay1999/bert-finetuned-ner
11
null
transformers
11,211
Entry not found
thaind/layoutlmv2-jaen-gemai
d3cd287c939bd67be0216d13ca10a4e074f85ca9
2022-03-31T08:13:42.000Z
[ "pytorch", "layoutlmv2", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
thaind
null
thaind/layoutlmv2-jaen-gemai
11
null
transformers
11,212
This is model fine tune from layoutlmv2 model for japanese and english language
abdusahmbzuai/aradia-ctc-data2vec-ft
c26cc0ccb23b0cd313550f64d1072703af0e75ed
2022-04-01T08:19:29.000Z
[ "pytorch", "data2vec-audio", "automatic-speech-recognition", "transformers", "abdusahmbzuai/arabic_speech_massive_300hrs", "generated_from_trainer", "model-index" ]
automatic-speech-recognition
false
abdusahmbzuai
null
abdusahmbzuai/aradia-ctc-data2vec-ft
11
null
transformers
11,213
--- tags: - automatic-speech-recognition - abdusahmbzuai/arabic_speech_massive_300hrs - generated_from_trainer model-index: - name: aradia-ctc-data2vec-ft results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # aradia-ctc-data2vec-ft This model is a fine-tuned version of [/l/users/abdulwahab.sahyoun/aradia/aradia-ctc-data2vec-ft](https://huggingface.co//l/users/abdulwahab.sahyoun/aradia/aradia-ctc-data2vec-ft) on the ABDUSAHMBZUAI/ARABIC_SPEECH_MASSIVE_300HRS - NA dataset. It achieves the following results on the evaluation set: - Loss: 3.0464 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | No log | 0.43 | 100 | 3.3600 | 1.0 | | No log | 0.87 | 200 | 3.0887 | 1.0 | | No log | 1.3 | 300 | 3.0779 | 1.0 | | No log | 1.74 | 400 | 3.0551 | 1.0 | | 4.8553 | 2.17 | 500 | 3.0526 | 1.0 | | 4.8553 | 2.61 | 600 | 3.0560 | 1.0 | | 4.8553 | 3.04 | 700 | 3.1251 | 1.0 | | 4.8553 | 3.48 | 800 | 3.0870 | 1.0 | | 4.8553 | 3.91 | 900 | 3.0822 | 1.0 | | 3.1133 | 4.35 | 1000 | 3.0484 | 1.0 | | 3.1133 | 4.78 | 1100 | 3.0558 | 1.0 | | 3.1133 | 5.22 | 1200 | 3.1019 | 1.0 | | 3.1133 | 5.65 | 1300 | 3.0914 | 1.0 | | 3.1133 | 6.09 | 1400 | 3.0691 | 1.0 | | 3.109 | 6.52 | 1500 | 3.0589 | 1.0 | | 3.109 | 6.95 | 1600 | 3.0508 | 1.0 | | 3.109 | 7.39 | 1700 | 3.0540 | 1.0 | | 3.109 | 7.82 | 1800 | 3.0546 | 1.0 | | 3.109 | 8.26 | 1900 | 3.0524 | 1.0 | | 3.1106 | 8.69 | 2000 | 3.0569 | 1.0 | | 3.1106 | 9.13 | 2100 | 3.0622 | 1.0 | | 3.1106 | 9.56 | 2200 | 3.0518 | 1.0 | | 3.1106 | 10.0 | 2300 | 3.0749 | 1.0 | | 3.1106 | 10.43 | 2400 | 3.0698 | 1.0 | | 3.1058 | 10.87 | 2500 | 3.0665 | 1.0 | | 3.1058 | 11.3 | 2600 | 3.0555 | 1.0 | | 3.1058 | 11.74 | 2700 | 3.0589 | 1.0 | | 3.1058 | 12.17 | 2800 | 3.0611 | 1.0 | | 3.1058 | 12.61 | 2900 | 3.0561 | 1.0 | | 3.1071 | 13.04 | 3000 | 3.0480 | 1.0 | | 3.1071 | 13.48 | 3100 | 3.0492 | 1.0 | | 3.1071 | 13.91 | 3200 | 3.0574 | 1.0 | | 3.1071 | 14.35 | 3300 | 3.0538 | 1.0 | | 3.1071 | 14.78 | 3400 | 3.0505 | 1.0 | | 3.1061 | 15.22 | 3500 | 3.0600 | 1.0 | | 3.1061 | 15.65 | 3600 | 3.0596 | 1.0 | | 3.1061 | 16.09 | 3700 | 3.0623 | 1.0 | | 3.1061 | 16.52 | 3800 | 3.0800 | 1.0 | | 3.1061 | 16.95 | 3900 | 3.0583 | 1.0 | | 3.1036 | 17.39 | 4000 | 3.0534 | 1.0 | | 3.1036 | 17.82 | 4100 | 3.0563 | 1.0 | | 3.1036 | 18.26 | 4200 | 3.0481 | 1.0 | | 3.1036 | 18.69 | 4300 | 3.0477 | 1.0 | | 3.1036 | 19.13 | 4400 | 3.0505 | 1.0 | | 3.1086 | 19.56 | 4500 | 3.0485 | 1.0 | | 3.1086 | 20.0 | 4600 | 3.0481 | 1.0 | | 3.1086 | 20.43 | 4700 | 3.0615 | 1.0 | | 3.1086 | 20.87 | 4800 | 3.0658 | 1.0 | | 3.1086 | 21.3 | 4900 | 3.0505 | 1.0 | | 3.1028 | 21.74 | 5000 | 3.0492 | 1.0 | | 3.1028 | 22.17 | 5100 | 3.0485 | 1.0 | | 3.1028 | 22.61 | 5200 | 3.0483 | 1.0 | | 3.1028 | 23.04 | 5300 | 3.0479 | 1.0 | | 3.1028 | 23.48 | 5400 | 3.0509 | 1.0 | | 3.1087 | 23.91 | 5500 | 3.0530 | 1.0 | | 3.1087 | 24.35 | 5600 | 3.0486 | 1.0 | | 3.1087 | 24.78 | 5700 | 3.0514 | 1.0 | | 3.1087 | 25.22 | 5800 | 3.0505 | 1.0 | | 3.1087 | 25.65 | 5900 | 3.0508 | 1.0 | | 3.1043 | 26.09 | 6000 | 3.0501 | 1.0 | | 3.1043 | 26.52 | 6100 | 3.0467 | 1.0 | | 3.1043 | 26.95 | 6200 | 3.0466 | 1.0 | | 3.1043 | 27.39 | 6300 | 3.0465 | 1.0 | | 3.1043 | 27.82 | 6400 | 3.0465 | 1.0 | | 3.1175 | 28.26 | 6500 | 3.0466 | 1.0 | | 3.1175 | 28.69 | 6600 | 3.0466 | 1.0 | | 3.1175 | 29.13 | 6700 | 3.0465 | 1.0 | | 3.1175 | 29.56 | 6800 | 3.0465 | 1.0 | | 3.1175 | 30.0 | 6900 | 3.0464 | 1.0 | ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.10.2+cu113 - Datasets 1.18.4 - Tokenizers 0.11.6
blckwdw61/sysformbatches2acs
3f0dffcc1bc157fd7e5b02c51f34cdb023ddcead
2022-04-01T02:17:19.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
blckwdw61
null
blckwdw61/sysformbatches2acs
11
null
transformers
11,214
# Figured out labels
antonio-artur/distilbert-base-uncased-finetuned-emotion
f7a336b540cc2b7d182c2c1cbb851716e5507de8
2022-04-02T14:26:59.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
antonio-artur
null
antonio-artur/distilbert-base-uncased-finetuned-emotion
11
null
transformers
11,215
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.926 - name: F1 type: f1 value: 0.9260113300845928 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2280 - Accuracy: 0.926 - F1: 0.9260 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8646 | 1.0 | 250 | 0.3326 | 0.9045 | 0.9009 | | 0.2663 | 2.0 | 500 | 0.2280 | 0.926 | 0.9260 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu102 - Datasets 2.0.0 - Tokenizers 0.11.6
lgris/bp_400_xlsr2_1B
db451d136eb3387f2b69d2afb61db73371e8a955
2022-04-01T23:52:55.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
lgris
null
lgris/bp_400_xlsr2_1B
11
null
transformers
11,216
Entry not found
Sam4669/distilbert-base-uncased-finetuned-emotion
f9d23f924d402bc92f1082bc8cd93953870b628b
2022-04-02T13:16:26.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Sam4669
null
Sam4669/distilbert-base-uncased-finetuned-emotion
11
null
transformers
11,217
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.923 - name: F1 type: f1 value: 0.9232158277556175 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2317 - Accuracy: 0.923 - F1: 0.9232 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8528 | 1.0 | 250 | 0.3332 | 0.897 | 0.8929 | | 0.26 | 2.0 | 500 | 0.2317 | 0.923 | 0.9232 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
Giyaseddin/distilbert-base-cased-finetuned-fake-and-real-news-dataset
bfef5f3b5eff38f01e4bdd3b1b1427401dae190b
2022-04-03T16:39:39.000Z
[ "pytorch", "distilbert", "text-classification", "en", "dataset:Fake and real news dataset", "transformers", "license:gpl-3.0" ]
text-classification
false
Giyaseddin
null
Giyaseddin/distilbert-base-cased-finetuned-fake-and-real-news-dataset
11
null
transformers
11,218
--- license: gpl-3.0 language: en library: transformers other: distilbert datasets: - Fake and real news dataset --- # DistilBERT base cased model for Fake News Classification ## Model description DistilBERT is a transformers model, smaller and faster than BERT, which was pretrained on the same corpus in a self-supervised fashion, using the BERT base model as a teacher. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts using the BERT base model. This is a Fake News classification model finetuned [pretrained DistilBERT model](https://huggingface.co/distilbert-base-cased) on [Fake and real news dataset](https://www.kaggle.com/datasets/clmentbisaillon/fake-and-real-news-dataset) ## Intended uses & limitations This can only be used for the kind of news that are similar to the ones in the dataset, please visit the [dataset's kaggle page](https://www.kaggle.com/datasets/clmentbisaillon/fake-and-real-news-dataset) to see the data. ### How to use You can use this model directly with a : ```python >>> from transformers import pipeline >>> classifier = pipeline("text-classification", model="Giyaseddin/distilbert-base-cased-finetuned-fake-and-real-news-dataset", return_all_scores=True) >>> examples = ["Yesterday, Speaker Paul Ryan tweeted a video of himself on the Mexican border flying in a helicopter and traveling on horseback with US border agents. RT if you agree It is time for The Wall. pic.twitter.com/s5MO8SG7SL Paul Ryan (@SpeakerRyan) August 1, 2017It makes for great theater to see Republican Speaker Ryan pleading the case for a border wall, but how sincere are the GOP about building the border wall? Even after posting a video that appears to show Ryan s support for the wall, he still seems unsure of himself. It s almost as though he s testing the political winds when he asks Twitter users to retweet if they agree that we need to start building the wall. How committed is the (formerly?) anti-Trump Paul Ryan to building the border wall that would fulfill one of President Trump s most popular campaign promises to the American people? Does he have the what it takes to defy the wishes of corporate donors and the US Chamber of Commerce, and do the right thing for the national security and well-being of our nation?The Last Refuge- Republicans are in control of the House of Representatives, Republicans are in control of the Senate, a Republican President is in the White House, and somehow there s negotiations on how to fund the #1 campaign promise of President Donald Trump, the border wall.Here s the rub.Here s what pundits never discuss.The Republican party doesn t need a single Democrat to fund the border wall.A single spending bill could come from the House of Representatives that fully funds 100% of the border wall. The spending bill then goes to the senate, where again, it doesn t need a single Democrat vote because spending legislation is specifically what reconciliation was designed to facilitate. That House bill can pass the Senate with 51 votes and proceed directly to the President s desk for signature.So, ask yourself: why is this even a point of discussion?The honest answer, for those who are no longer suffering from Battered Conservative Syndrome, is that Republicans don t want to fund or build an actual physical barrier known as the Southern Border Wall.It really is that simple.If one didn t know better, they d almost think Speaker Ryan was attempting to emulate the man he clearly despised during the 2016 presidential campaign."] >>> classifier(examples) [[{'label': 'LABEL_0', 'score': 1.0}, {'label': 'LABEL_1', 'score': 1.0119109106199176e-08}]] ``` ### Limitations and bias Even if the training data used for this model could be characterized as fairly neutral, this model can have biased predictions. It also inherits some of [the bias of its teacher model](https://huggingface.co/bert-base-uncased#limitations-and-bias). This bias will also affect all fine-tuned versions of this model. ## Pre-training data DistilBERT pretrained on the same data as BERT, which is [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers). ## Fine-tuning data [Fake and real news dataset](https://www.kaggle.com/datasets/clmentbisaillon/fake-and-real-news-dataset) ## Training procedure ### Preprocessing In the preprocessing phase, both the title and the text of the news are concatenated using a separator `[SEP]`. This makes the full text as: ``` [CLS] Title Sentence [SEP] News text body [SEP] ``` The data are splitted according to the following ratio: - Training set 60%. - Validation set 20%. - Test set 20%. Lables are mapped as: `{fake: 0, true: 1}` ### Fine-tuning The model was finetuned on GeForce GTX 960M for 5 hours. The parameters are: | Parameter | Value | |:-------------------:|:-----:| | Learning rate | 5e-5 | | Weight decay | 0.01 | | Training batch size | 4 | | Epochs | 3 | Here is the scores during the training: | Epoch | Training Loss | Validation Loss | Accuracy | F1 | Precision | Recall | |:----------:|:-------------:|:-----------------:|:----------:|:---------:|:-----------:|:---------:| | 1 | 0.008300 | 0.005783 | 0.998330 | 0.998252 | 0.996511 | 1.000000 | | 2 | 0.000000 | 0.000161 | 0.999889 | 0.999883 | 0.999767 | 1.000000 | | 3 | 0.000000 | 0.000122 | 0.999889 | 0.999883 | 0.999767 | 1.000000 | ## Evaluation results When fine-tuned on downstream task of fake news binary classification, this model achieved the following results: (scores are rounded to 2 floating points) | | precision | recall | f1-score | support | |:------------:|:---------:|:------:|:--------:|:-------:| | Fake | 1.00 | 1.00 | 1.00 | 4697 | | True | 1.00 | 1.00 | 1.00 | 4283 | | accuracy | - | - | 1.00 | 8980 | | macro avg | 1.00 | 1.00 | 1.00 | 8980 | | weighted avg | 1.00 | 1.00 | 1.00 | 8980 | Confision matrix: | Actual\Predicted | Fake | True | |:-----------------:|:----:|:----:| | Fake | 4696 | 1 | | True | 1 | 4282 | The AUC score is 0.9997
hackathon-pln-es/readability-es-3class-paragraphs
f6220c636bf2088177773e3a484f5ade1353ccb0
2022-04-04T10:42:19.000Z
[ "pytorch", "roberta", "text-classification", "es", "transformers", "spanish", "bertin", "license:cc-by-4.0" ]
text-classification
false
hackathon-pln-es
null
hackathon-pln-es/readability-es-3class-paragraphs
11
null
transformers
11,219
--- language: es license: cc-by-4.0 tags: - spanish - roberta - bertin pipeline_tag: text-classification widget: - text: Las Líneas de Nazca son una serie de marcas trazadas en el suelo, cuya anchura oscila entre los 40 y los 110 centímetros. - text: Hace mucho tiempo, en el gran océano que baña las costas del Perú no había peces. --- # Readability ES Paragraphs for three classes Model based on the Roberta architecture finetuned on [BERTIN](https://huggingface.co/bertin-project/bertin-roberta-base-spanish) for readability assessment of Spanish texts. ## Description and performance This version of the model was trained on a mix of datasets, using sentence-level granularity when possible. The model performs classification among three complexity levels: - Basic. - Intermediate. - Advanced. The relationship of these categories with the Common European Framework of Reference for Languages is described in [our report](https://wandb.ai/readability-es/readability-es/reports/Texts-Readability-Analysis-for-Spanish--VmlldzoxNzU2MDUx). This model achieves a F1 macro average score of 0.7881, measured on the validation set. ## Model variants - [`readability-es-sentences`](https://huggingface.co/hackathon-pln-es/readability-es-sentences). Two classes, sentence-based dataset. - [`readability-es-paragraphs`](https://huggingface.co/hackathon-pln-es/readability-es-paragraphs). Two classes, paragraph-based dataset. - [`readability-es-3class-sentences`](https://huggingface.co/hackathon-pln-es/readability-es-3class-sentences). Three classes, sentence-based dataset. - `readability-es-3class-paragraphs` (this model). Three classes, paragraph-based dataset. ## Datasets - [`readability-es-hackathon-pln-public`](https://huggingface.co/datasets/hackathon-pln-es/readability-es-hackathon-pln-public), composed of: * coh-metrix-esp corpus. * Various text resources scraped from websites. - Other non-public datasets: newsela-es, simplext. ## Training details Please, refer to [this training run](https://wandb.ai/readability-es/readability-es/runs/22apaysv/overview) for full details on hyperparameters and training regime. ## Biases and Limitations - Due to the scarcity of data and the lack of a reliable gold test set, performance metrics are reported on the validation set. - One of the datasets involved is the Spanish version of newsela, which is frequently used as a reference. However, it was created by translating previous datasets, and therefore it may contain somewhat unnatural phrases. - Some of the datasets used cannot be publicly disseminated, making it more difficult to assess the existence of biases or mistakes. - Language might be biased towards the Spanish dialect spoken in Spain. Other regional variants might be sub-represented. - No effort has been performed to alleviate the shortcomings and biases described in the [original implementation of BERTIN](https://huggingface.co/bertin-project/bertin-roberta-base-spanish#bias-examples-spanish). ## Authors - [Laura Vásquez-Rodríguez](https://lmvasque.github.io/) - [Pedro Cuenca](https://twitter.com/pcuenq) - [Sergio Morales](https://www.fireblend.com/) - [Fernando Alva-Manchego](https://feralvam.github.io/)
aprilzoo/distilbert-base-uncased-finetuned-emotion
f4db81f22d9428276eee34de57ceace08c85690a
2022-04-04T05:50:42.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
aprilzoo
null
aprilzoo/distilbert-base-uncased-finetuned-emotion
11
null
transformers
11,220
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.923 - name: F1 type: f1 value: 0.9232474678171817 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2202 - Accuracy: 0.923 - F1: 0.9232 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8244 | 1.0 | 250 | 0.3104 | 0.9025 | 0.8997 | | 0.2478 | 2.0 | 500 | 0.2202 | 0.923 | 0.9232 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
Kalaoke/bert-finetuned-sentiment
7bb3107c7588fa8d016091b289330fa5779d4094
2022-04-16T09:54:26.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
Kalaoke
null
Kalaoke/bert-finetuned-sentiment
11
null
transformers
11,221
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert-finetuned-sentiment results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-sentiment This model is a fine-tuned version of [nlptown/bert-base-multilingual-uncased-sentiment](https://huggingface.co/nlptown/bert-base-multilingual-uncased-sentiment) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4884 - Accuracy: 0.7698 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6778 | 1.0 | 722 | 0.7149 | 0.7482 | | 0.3768 | 2.0 | 1444 | 0.9821 | 0.7410 | | 0.1612 | 3.0 | 2166 | 1.4027 | 0.7662 | | 0.094 | 4.0 | 2888 | 1.4884 | 0.7698 | | 0.0448 | 5.0 | 3610 | 1.6463 | 0.7590 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
HenryHXR/scibert_scivocab_uncased-finetuned-ner
e7868331f4685b15ad8da241a830bbf820fbbd28
2022-04-05T15:24:38.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
token-classification
false
HenryHXR
null
HenryHXR/scibert_scivocab_uncased-finetuned-ner
11
null
transformers
11,222
--- tags: - generated_from_trainer model-index: - name: scibert_scivocab_uncased-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # scibert_scivocab_uncased-finetuned-ner This model is a fine-tuned version of [allenai/scibert_scivocab_uncased](https://huggingface.co/allenai/scibert_scivocab_uncased) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
Shadman-Rohan/distilbert-base-uncased-finetuned-emotion
5b5678fa6c52b52d3ec164acba12b22d70e9a0cf
2022-04-05T20:40:41.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Shadman-Rohan
null
Shadman-Rohan/distilbert-base-uncased-finetuned-emotion
11
null
transformers
11,223
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9245 - name: F1 type: f1 value: 0.9247907524762314 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2083 - Accuracy: 0.9245 - F1: 0.9248 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.7794 | 1.0 | 250 | 0.2870 | 0.9115 | 0.9099 | | 0.2311 | 2.0 | 500 | 0.2083 | 0.9245 | 0.9248 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
Stremie/roberta-base-clickbait-keywords
5f5b8247ff6e1e3a973b27a059cbf1413b5a6e25
2022-04-18T12:52:44.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
Stremie
null
Stremie/roberta-base-clickbait-keywords
11
null
transformers
11,224
This model classifies whether a tweet is clickbait or not. It has been trained using [Webis-Clickbait-17](https://webis.de/data/webis-clickbait-17.html) dataset. Input is composed of 'postText' + '[SEP]' + 'targetKeywords'. Achieved ~0.7 F1-score on test data.
Sleoruiz/distilbert-base-uncased-finetuned-emotion
7cba274bbba91b6dc3c4c5b78cd216fda02e3db7
2022-04-07T06:34:58.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Sleoruiz
null
Sleoruiz/distilbert-base-uncased-finetuned-emotion
11
null
transformers
11,225
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.927 - name: F1 type: f1 value: 0.9273201074587852 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2176 - Accuracy: 0.927 - F1: 0.9273 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8252 | 1.0 | 250 | 0.3121 | 0.916 | 0.9140 | | 0.2471 | 2.0 | 500 | 0.2176 | 0.927 | 0.9273 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
palakagl/Roberta_Multiclass_TextClassification
2740496d084e8649d34d097bf70cfb6b1f15541b
2022-04-07T17:15:10.000Z
[ "pytorch", "roberta", "text-classification", "en", "dataset:palakagl/autotrain-data-PersonalAssitant", "transformers", "autotrain", "co2_eq_emissions" ]
text-classification
false
palakagl
null
palakagl/Roberta_Multiclass_TextClassification
11
null
transformers
11,226
--- tags: autotrain language: en widget: - text: "I love AutoTrain 🤗" datasets: - palakagl/autotrain-data-PersonalAssitant co2_eq_emissions: 0.014567637985425905 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 717221783 - CO2 Emissions (in grams): 0.014567637985425905 ## Validation Metrics - Loss: 0.38848456740379333 - Accuracy: 0.9180509413067552 - Macro F1: 0.9157418163085091 - Micro F1: 0.9180509413067552 - Weighted F1: 0.9185290137253468 - Macro Precision: 0.9189981206383326 - Micro Precision: 0.9180509413067552 - Weighted Precision: 0.9221607328493303 - Macro Recall: 0.9158232837734661 - Micro Recall: 0.9180509413067552 - Weighted Recall: 0.9180509413067552 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/palakagl/autotrain-PersonalAssitant-717221783 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("palakagl/autotrain-PersonalAssitant-717221783", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("palakagl/autotrain-PersonalAssitant-717221783", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
nielsr/segformer-test-v5
4e96814ca2cdaed1d3154badd6fcd38f53b0a9f9
2022-04-08T15:05:50.000Z
[ "pytorch", "segformer", "dataset:segments/sidewalk-semantic", "transformers", "vision", "image-segmentation", "license:apache-2.0" ]
image-segmentation
false
nielsr
null
nielsr/segformer-test-v5
11
null
transformers
11,227
--- license: apache-2.0 tags: - vision - image-segmentation datasets: - segments/sidewalk-semantic widget: - src: https://segmentsai-prod.s3.eu-west-2.amazonaws.com/assets/admin-tobias/439f6843-80c5-47ce-9b17-0b2a1d54dbeb.jpg example_title: Brugge ---
amrita03/wikineural-multilingual-ner
3d5e0c242bbfed1b5dd21f2a381af3216fde6d8c
2022-04-11T15:34:34.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
amrita03
null
amrita03/wikineural-multilingual-ner
11
null
transformers
11,228
Entry not found
brad1141/baseline_bertv3
547ef8fb339abb40e991cd7277df04d93963e863
2022-04-10T13:16:14.000Z
[ "pytorch", "bert", "token-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
brad1141
null
brad1141/baseline_bertv3
11
null
transformers
11,229
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: baseline_bertv3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # baseline_bertv3 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
Shivanand/wikineural-multilingual-ner
8eacdca39e7aef59bb3c9fb271e3cec87b8a23b8
2022-04-11T21:15:12.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
Shivanand
null
Shivanand/wikineural-multilingual-ner
11
null
transformers
11,230
Entry not found
Toshifumi/distilbert-base-uncased-finetuned-emotion
ecb89630a03c0751bb359245c1f904d56a1feb71
2022-04-13T09:56:27.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Toshifumi
null
Toshifumi/distilbert-base-uncased-finetuned-emotion
11
null
transformers
11,231
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.927 - name: F1 type: f1 value: 0.9271941874206031 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2106 - Accuracy: 0.927 - F1: 0.9272 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8009 | 1.0 | 250 | 0.2968 | 0.912 | 0.9102 | | 0.24 | 2.0 | 500 | 0.2106 | 0.927 | 0.9272 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
Xenova/sponsorblock-classifier-v2
3fd1e1e46d62f4a189d0b5ce3d4c3770bcff7a0a
2022-04-17T18:00:43.000Z
[ "pytorch", "bert", "text-classification", "generic" ]
text-classification
false
Xenova
null
Xenova/sponsorblock-classifier-v2
11
null
generic
11,232
--- tags: - text-classification - generic library_name: generic widget: - text: 'This video is sponsored by squarespace' example_title: Sponsor - text: 'Check out the merch at linustechtips.com' example_title: Unpaid/self promotion - text: "Don't forget to like, comment and subscribe" example_title: Interaction reminder - text: 'pqh4LfPeCYs,824.695,826.267,826.133,829.876,835.933,927.581' example_title: Extract text from video ---
SiriusRen/my-rubbish-model
cc80313e8fdbe1cdb3186b0973ca992cd9ff15e9
2022-04-14T07:11:40.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
SiriusRen
null
SiriusRen/my-rubbish-model
11
null
transformers
11,233
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: my-rubbish-model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my-rubbish-model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.10.0 - Datasets 2.0.1.dev0 - Tokenizers 0.11.6
luquesky/distilbert-base-uncased-finetuned-emotion
4ed1f8a48479262a92e36f9a9fba24233bfdf767
2022-04-14T17:48:19.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
luquesky
null
luquesky/distilbert-base-uncased-finetuned-emotion
11
null
transformers
11,234
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.934 - name: F1 type: f1 value: 0.9337817808480242 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2155 - Accuracy: 0.934 - F1: 0.9338 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.1768 | 1.0 | 250 | 0.1867 | 0.924 | 0.9235 | | 0.1227 | 2.0 | 500 | 0.1588 | 0.934 | 0.9346 | | 0.1031 | 3.0 | 750 | 0.1656 | 0.931 | 0.9306 | | 0.0843 | 4.0 | 1000 | 0.1662 | 0.9395 | 0.9392 | | 0.0662 | 5.0 | 1250 | 0.1714 | 0.9325 | 0.9326 | | 0.0504 | 6.0 | 1500 | 0.1821 | 0.934 | 0.9338 | | 0.0429 | 7.0 | 1750 | 0.2038 | 0.933 | 0.9324 | | 0.0342 | 8.0 | 2000 | 0.2054 | 0.938 | 0.9379 | | 0.0296 | 9.0 | 2250 | 0.2128 | 0.9345 | 0.9345 | | 0.0211 | 10.0 | 2500 | 0.2155 | 0.934 | 0.9338 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6
lewtun/MiniLMv2-L12-H384-distilled-finetuned-clinc
63195386e6cfcc5f5d3c3bae998acb3c666f267e
2022-04-25T14:10:02.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "dataset:clinc_oos", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
lewtun
null
lewtun/MiniLMv2-L12-H384-distilled-finetuned-clinc
11
null
transformers
11,235
--- tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: MiniLMv2-L12-H384-distilled-finetuned-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos config: plus split: validation revision: b189f1fa78f41282a748b673231c21dfb07182b5 metrics: - name: Accuracy type: accuracy value: 0.9529032258064516 verified: false --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # MiniLMv2-L12-H384-distilled-finetuned-clinc This model is a fine-tuned version of [nreimers/MiniLMv2-L12-H384-distilled-from-RoBERTa-Large](https://huggingface.co/nreimers/MiniLMv2-L12-H384-distilled-from-RoBERTa-Large) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.3058 - Accuracy: 0.9529 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 33 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.9908 | 1.0 | 239 | 1.6816 | 0.3910 | | 1.5212 | 2.0 | 478 | 1.2365 | 0.7697 | | 1.129 | 3.0 | 717 | 0.9209 | 0.8706 | | 0.8462 | 4.0 | 956 | 0.6978 | 0.9152 | | 0.6497 | 5.0 | 1195 | 0.5499 | 0.9342 | | 0.5124 | 6.0 | 1434 | 0.4447 | 0.9445 | | 0.4196 | 7.0 | 1673 | 0.3797 | 0.9455 | | 0.3587 | 8.0 | 1912 | 0.3358 | 0.95 | | 0.3228 | 9.0 | 2151 | 0.3133 | 0.9513 | | 0.3052 | 10.0 | 2390 | 0.3058 | 0.9529 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.2+cu113 - Datasets 1.18.4 - Tokenizers 0.11.6
flood/distilbert-base-uncased-finetuned-emotion
3e8a74238b4335587ca3740ea56c5407090b7405
2022-05-27T07:34:17.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
flood
null
flood/distilbert-base-uncased-finetuned-emotion
11
null
transformers
11,236
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: F1 type: f1 value: 0.9334621346059612 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1698 - Accuracy : 0.933 - F1: 0.9335 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:| | 0.6265 | 1.0 | 500 | 0.2137 | 0.926 | 0.9256 | | 0.1795 | 2.0 | 1000 | 0.1698 | 0.933 | 0.9335 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu102 - Datasets 2.2.2 - Tokenizers 0.12.1
MartinoMensio/racism-models-raw-label-epoch-4
ffc8ad492bc87e476619082ab7cd0cac0d49aebb
2022-05-04T16:06:20.000Z
[ "pytorch", "bert", "text-classification", "es", "transformers", "license:mit" ]
text-classification
false
MartinoMensio
null
MartinoMensio/racism-models-raw-label-epoch-4
11
null
transformers
11,237
--- language: es license: mit widget: - text: "y porqué es lo que hay que hacer con los menas y con los adultos también!!!! NO a los inmigrantes ilegales!!!!" --- ### Description This model is a fine-tuned version of [BETO (spanish bert)](https://huggingface.co/dccuchile/bert-base-spanish-wwm-uncased) that has been trained on the *Datathon Against Racism* dataset (2022) We performed several experiments that will be described in the upcoming paper "Estimating Ground Truth in a Low-labelled Data Regime:A Study of Racism Detection in Spanish" (NEATClasS 2022) We applied 6 different methods ground-truth estimations, and for each one we performed 4 epochs of fine-tuning. The result is made of 24 models: | method | epoch 1 | epoch 3 | epoch 3 | epoch 4 | |--- |--- |--- |--- |--- | | raw-label | [raw-label-epoch-1](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-1) | [raw-label-epoch-2](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-2) | [raw-label-epoch-3](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-3) | [raw-label-epoch-4](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-4) | | m-vote-strict | [m-vote-strict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-1) | [m-vote-strict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-2) | [m-vote-strict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-3) | [m-vote-strict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-4) | | m-vote-nonstrict | [m-vote-nonstrict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-1) | [m-vote-nonstrict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-2) | [m-vote-nonstrict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-3) | [m-vote-nonstrict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-4) | | regression-w-m-vote | [regression-w-m-vote-epoch-1](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-1) | [regression-w-m-vote-epoch-2](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-2) | [regression-w-m-vote-epoch-3](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-3) | [regression-w-m-vote-epoch-4](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-4) | | w-m-vote-strict | [w-m-vote-strict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-1) | [w-m-vote-strict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-2) | [w-m-vote-strict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-3) | [w-m-vote-strict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-4) | | w-m-vote-nonstrict | [w-m-vote-nonstrict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-1) | [w-m-vote-nonstrict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-2) | [w-m-vote-nonstrict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-3) | [w-m-vote-nonstrict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-4) | This model is `raw-label-epoch-4` ### Usage ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline model_name = 'raw-label-epoch-4' tokenizer = AutoTokenizer.from_pretrained("dccuchile/bert-base-spanish-wwm-uncased") full_model_path = f'MartinoMensio/racism-models-{model_name}' model = AutoModelForSequenceClassification.from_pretrained(full_model_path) pipe = pipeline("text-classification", model = model, tokenizer = tokenizer) texts = [ 'y porqué es lo que hay que hacer con los menas y con los adultos también!!!! NO a los inmigrantes ilegales!!!!', 'Es que los judíos controlan el mundo' ] print(pipe(texts)) # [{'label': 'racist', 'score': 0.921501636505127}, {'label': 'non-racist', 'score': 0.9459075331687927}] ``` For more details, see https://github.com/preyero/neatclass22
MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-4
6022ba170584f5eab3c4eed86252494a7993a516
2022-05-04T16:29:35.000Z
[ "pytorch", "bert", "text-classification", "es", "transformers", "license:mit" ]
text-classification
false
MartinoMensio
null
MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-4
11
null
transformers
11,238
--- language: es license: mit widget: - text: "y porqué es lo que hay que hacer con los menas y con los adultos también!!!! NO a los inmigrantes ilegales!!!!" --- ### Description This model is a fine-tuned version of [BETO (spanish bert)](https://huggingface.co/dccuchile/bert-base-spanish-wwm-uncased) that has been trained on the *Datathon Against Racism* dataset (2022) We performed several experiments that will be described in the upcoming paper "Estimating Ground Truth in a Low-labelled Data Regime:A Study of Racism Detection in Spanish" (NEATClasS 2022) We applied 6 different methods ground-truth estimations, and for each one we performed 4 epochs of fine-tuning. The result is made of 24 models: | method | epoch 1 | epoch 3 | epoch 3 | epoch 4 | |--- |--- |--- |--- |--- | | raw-label | [raw-label-epoch-1](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-1) | [raw-label-epoch-2](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-2) | [raw-label-epoch-3](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-3) | [raw-label-epoch-4](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-4) | | m-vote-strict | [m-vote-strict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-1) | [m-vote-strict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-2) | [m-vote-strict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-3) | [m-vote-strict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-4) | | m-vote-nonstrict | [m-vote-nonstrict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-1) | [m-vote-nonstrict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-2) | [m-vote-nonstrict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-3) | [m-vote-nonstrict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-4) | | regression-w-m-vote | [regression-w-m-vote-epoch-1](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-1) | [regression-w-m-vote-epoch-2](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-2) | [regression-w-m-vote-epoch-3](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-3) | [regression-w-m-vote-epoch-4](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-4) | | w-m-vote-strict | [w-m-vote-strict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-1) | [w-m-vote-strict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-2) | [w-m-vote-strict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-3) | [w-m-vote-strict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-4) | | w-m-vote-nonstrict | [w-m-vote-nonstrict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-1) | [w-m-vote-nonstrict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-2) | [w-m-vote-nonstrict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-3) | [w-m-vote-nonstrict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-4) | This model is `w-m-vote-nonstrict-epoch-4` ### Usage ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline model_name = 'w-m-vote-nonstrict-epoch-4' tokenizer = AutoTokenizer.from_pretrained("dccuchile/bert-base-spanish-wwm-uncased") full_model_path = f'MartinoMensio/racism-models-{model_name}' model = AutoModelForSequenceClassification.from_pretrained(full_model_path) pipe = pipeline("text-classification", model = model, tokenizer = tokenizer) texts = [ 'y porqué es lo que hay que hacer con los menas y con los adultos también!!!! NO a los inmigrantes ilegales!!!!', 'Es que los judíos controlan el mundo' ] print(pipe(texts)) # [{'label': 'racist', 'score': 0.996863842010498}, {'label': 'non-racist', 'score': 0.9982976317405701}] ``` For more details, see https://github.com/preyero/neatclass22
Artyom/ArmSpellcheck_beta
ecbb5813f74cf73a1604f70d07b43e17b252bc52
2022-05-02T09:54:31.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Artyom
null
Artyom/ArmSpellcheck_beta
11
null
transformers
11,239
Entry not found
ShreyaR/finetuned-distil-bert-depression
c0eba014619e85b72fc2a8c4efc66b03be4483d2
2022-05-03T20:44:08.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
ShreyaR
null
ShreyaR/finetuned-distil-bert-depression
11
null
transformers
11,240
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: finetuned-distil-bert-depression results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned-distil-bert-depression This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1695 - Accuracy: 0.9445 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0243 | 1.0 | 625 | 0.2303 | 0.9205 | | 0.0341 | 2.0 | 1250 | 0.1541 | 0.933 | | 0.0244 | 3.0 | 1875 | 0.1495 | 0.9445 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
theta/Argument_Type_Bert
1d837cddb63efae0c0e48b46ee3c5b6dea4454a8
2022-07-11T14:29:03.000Z
[ "pytorch", "bert", "text-classification", "zh", "transformers", "Argument_Type_Bert", "zh-tw", "generated_from_trainer", "model-index" ]
text-classification
false
theta
null
theta/Argument_Type_Bert
11
null
transformers
11,241
--- language: - zh tags: - Argument_Type_Bert - zh - zh-tw - generated_from_trainer model-index: - name: Argument_Type_Bert results: [] --- 這邊是開發分支,不穩定。
gzomer/claim-spotter-multilingual
79e06688513ce607df5c29b0b229a2706d1969cd
2022-04-17T18:04:09.000Z
[ "pytorch", "bert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
gzomer
null
gzomer/claim-spotter-multilingual
11
null
transformers
11,242
--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 model-index: - name: claim-spotter-multilingual results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # claim-spotter-multilingual This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3285 - F1: 0.7996 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.5098 | 1.0 | 830 | 0.3507 | 0.7779 | | 0.3577 | 2.0 | 1660 | 0.3285 | 0.7996 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
ardallie/distilbert-base-uncased-finetuned-emotion
9b817c394503b6feefdb6cb3d571c1da0e173cbf
2022-04-18T03:22:40.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers" ]
text-classification
false
ardallie
null
ardallie/distilbert-base-uncased-finetuned-emotion
11
null
transformers
11,243
Entry not found
dfsj/distilbert-base-uncased-finetuned-emotion
fcc1fcaafae3a01a7d38f73e7789ffb7f25e2c65
2022-04-18T07:12:17.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
dfsj
null
dfsj/distilbert-base-uncased-finetuned-emotion
11
null
transformers
11,244
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.922 - name: F1 type: f1 value: 0.9222074564200887 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2170 - Accuracy: 0.922 - F1: 0.9222 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8116 | 1.0 | 250 | 0.3076 | 0.9035 | 0.9013 | | 0.2426 | 2.0 | 500 | 0.2170 | 0.922 | 0.9222 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu102 - Datasets 2.0.0 - Tokenizers 0.12.1
rabiaqayyum/autotrain-mental-health-analysis-752423172
cd50cab9bd84a0601023e9667a55d5b377c6caa3
2022-04-19T06:45:00.000Z
[ "pytorch", "roberta", "text-classification", "en", "dataset:rabiaqayyum/autotrain-data-mental-health-analysis", "transformers", "autotrain", "co2_eq_emissions" ]
text-classification
false
rabiaqayyum
null
rabiaqayyum/autotrain-mental-health-analysis-752423172
11
null
transformers
11,245
--- tags: autotrain language: en widget: - text: "I love AutoTrain 🤗" datasets: - rabiaqayyum/autotrain-data-mental-health-analysis co2_eq_emissions: 313.3534743349287 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 752423172 - CO2 Emissions (in grams): 313.3534743349287 ## Validation Metrics - Loss: 0.6064515113830566 - Accuracy: 0.805171240644137 - Macro F1: 0.7253473044054398 - Micro F1: 0.805171240644137 - Weighted F1: 0.7970679970423672 - Macro Precision: 0.7477679873153633 - Micro Precision: 0.805171240644137 - Weighted Precision: 0.7966263131173029 - Macro Recall: 0.7143231260991618 - Micro Recall: 0.805171240644137 - Weighted Recall: 0.805171240644137 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/rabiaqayyum/autotrain-mental-health-analysis-752423172 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("rabiaqayyum/autotrain-mental-health-analysis-752423172", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("rabiaqayyum/autotrain-mental-health-analysis-752423172", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
GPL/arguana-tsdae-msmarco-distilbert-gpl
25f2ca96fa0f3d3f9838168389b433e3a500c2b0
2022-04-19T15:20:05.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
GPL
null
GPL/arguana-tsdae-msmarco-distilbert-gpl
11
null
sentence-transformers
11,246
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 140000 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `gpl.toolkit.loss.MarginDistillationLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 140000, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
robkayinto/xlm-roberta-base-finetuned-panx-fr
0f14785b4b5c9602d0bb5177570e6a64572c7cec
2022-07-13T18:11:49.000Z
[ "pytorch", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
robkayinto
null
robkayinto/xlm-roberta-base-finetuned-panx-fr
11
null
transformers
11,247
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-fr results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.fr metrics: - name: F1 type: f1 value: 0.8299296953465015 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2848 - F1: 0.8299 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.5989 | 1.0 | 191 | 0.3383 | 0.7928 | | 0.2617 | 2.0 | 382 | 0.2966 | 0.8318 | | 0.1672 | 3.0 | 573 | 0.2848 | 0.8299 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
demdecuong/vihealthbert-base-syllable
419317680eaa513e6cc786f55dd9316d5e446e9a
2022-04-20T07:57:30.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
demdecuong
null
demdecuong/vihealthbert-base-syllable
11
1
transformers
11,248
# <a name="introduction"></a> ViHealthBERT: Pre-trained Language Models for Vietnamese in Health Text Mining ViHealthBERT is the a strong baseline language models for Vietnamese in Healthcare domain. We empirically investigate our model with different training strategies, achieving state of the art (SOTA) performances on 3 downstream tasks: NER (COVID-19 & ViMQ), Acronym Disambiguation, and Summarization. We introduce two Vietnamese datasets: the acronym dataset (acrDrAid) and the FAQ summarization dataset in the healthcare domain. Our acrDrAid dataset is annotated with 135 sets of keywords. The general approaches and experimental results of ViHealthBERT can be found in our LREC-2022 Poster [paper]() (updated soon): @article{vihealthbert, title = {{ViHealthBERT: Pre-trained Language Models for Vietnamese in Health Text Mining}}, author = {Minh Phuc Nguyen, Vu Hoang Tran, Vu Hoang, Ta Duc Huy, Trung H. Bui, Steven Q. H. Truong }, journal = {13th Edition of its Language Resources and Evaluation Conference}, year = {2022} } ### Installation <a name="install2"></a> - Python 3.6+, and PyTorch >= 1.6 - Install `transformers`: `pip install transformers==4.2.0` ### Pre-trained models <a name="models2"></a> Model | #params | Arch. | Tokenizer ---|---|---|--- `demdecuong/vihealthbert-base-word` | 135M | base | Word-level `demdecuong/vihealthbert-base-syllable` | 135M | base | Syllable-level ### Example usage <a name="usage1"></a> ```python import torch from transformers import AutoModel, AutoTokenizer vihealthbert = AutoModel.from_pretrained("demdecuong/vihealthbert-base-word") tokenizer = AutoTokenizer.from_pretrained("demdecuong/vihealthbert-base-word") # INPUT TEXT MUST BE ALREADY WORD-SEGMENTED! line = "Tôi là sinh_viên trường đại_học Công_nghệ ." input_ids = torch.tensor([tokenizer.encode(line)]) with torch.no_grad(): features = vihealthbert(input_ids) # Models outputs are now tuples ``` ### Example usage for raw text <a name="usage2"></a> Since ViHealthBERT used the [RDRSegmenter](https://github.com/datquocnguyen/RDRsegmenter) from [VnCoreNLP](https://github.com/vncorenlp/VnCoreNLP) to pre-process the pre-training data. We highly recommend use the same word-segmenter for ViHealthBERT downstream applications. #### Installation ``` # Install the vncorenlp python wrapper pip3 install vncorenlp # Download VnCoreNLP-1.1.1.jar & its word segmentation component (i.e. RDRSegmenter) mkdir -p vncorenlp/models/wordsegmenter wget https://raw.githubusercontent.com/vncorenlp/VnCoreNLP/master/VnCoreNLP-1.1.1.jar wget https://raw.githubusercontent.com/vncorenlp/VnCoreNLP/master/models/wordsegmenter/vi-vocab wget https://raw.githubusercontent.com/vncorenlp/VnCoreNLP/master/models/wordsegmenter/wordsegmenter.rdr mv VnCoreNLP-1.1.1.jar vncorenlp/ mv vi-vocab vncorenlp/models/wordsegmenter/ mv wordsegmenter.rdr vncorenlp/models/wordsegmenter/ ``` `VnCoreNLP-1.1.1.jar` (27MB) and folder `models/` must be placed in the same working folder. #### Example usage ``` # See more details at: https://github.com/vncorenlp/VnCoreNLP # Load rdrsegmenter from VnCoreNLP from vncorenlp import VnCoreNLP rdrsegmenter = VnCoreNLP("/Absolute-path-to/vncorenlp/VnCoreNLP-1.1.1.jar", annotators="wseg", max_heap_size='-Xmx500m') # Input text = "Ông Nguyễn Khắc Chúc đang làm việc tại Đại học Quốc gia Hà Nội. Bà Lan, vợ ông Chúc, cũng làm việc tại đây." # To perform word (and sentence) segmentation sentences = rdrsegmenter.tokenize(text) for sentence in sentences: print(" ".join(sentence)) ```
mateusqc/ner-bert-base-cased-pt-lenerbr
f404d870be2b50291502aadba3e0d810111f33ba
2022-04-20T19:48:09.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
mateusqc
null
mateusqc/ner-bert-base-cased-pt-lenerbr
11
null
transformers
11,249
Entry not found
brad1141/GPT2_v5
93b6430a8512ed2ee3d120cf286b44f31f5fc90c
2022-04-21T05:44:56.000Z
[ "pytorch", "tensorboard", "gpt2", "token-classification", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
brad1141
null
brad1141/GPT2_v5
11
null
transformers
11,250
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: GPT2_v5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # GPT2_v5 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7670 - Precision: 0.7725 - Recall: 0.8367 - F1: 0.4733 - Accuracy: 0.7646 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 1.2212 | 1.0 | 1012 | 0.7874 | 0.7557 | 0.7560 | 0.4041 | 0.7150 | | 0.7162 | 2.0 | 2024 | 0.7007 | 0.7495 | 0.8714 | 0.4855 | 0.7647 | | 0.6241 | 3.0 | 3036 | 0.6799 | 0.7681 | 0.8532 | 0.4804 | 0.7702 | | 0.5545 | 4.0 | 4048 | 0.6997 | 0.7635 | 0.8658 | 0.4814 | 0.7714 | | 0.4963 | 5.0 | 5060 | 0.7186 | 0.7696 | 0.8470 | 0.4764 | 0.7669 | | 0.449 | 6.0 | 6072 | 0.7436 | 0.7711 | 0.8382 | 0.4731 | 0.7644 | | 0.4182 | 7.0 | 7084 | 0.7670 | 0.7725 | 0.8367 | 0.4733 | 0.7646 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
Wootang01/gpt-neo-125M-finetuned-hkdse-english-paper4
9ab9405ced2bf5c2edf29e086aca0ba61bc48b2a
2022-04-22T15:26:00.000Z
[ "pytorch", "gpt_neo", "text-generation", "transformers" ]
text-generation
false
Wootang01
null
Wootang01/gpt-neo-125M-finetuned-hkdse-english-paper4
11
1
transformers
11,251
Entry not found
PrasunMishra/finetuning-sentiment-model-3000-samples
1d474973ea5bd6fe8d4c1e2fd3b6315c7db1339f
2022-04-22T01:20:52.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
PrasunMishra
null
PrasunMishra/finetuning-sentiment-model-3000-samples
11
null
transformers
11,252
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: finetuning-sentiment-model-3000-samples results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.9.1 - Datasets 2.1.0 - Tokenizers 0.11.6
okho0653/distilbert-base-uncased-zero-shot-sentiment-model
b0f4edb1bc7a4dbed1103dc48245698aaf948a5f
2022-04-22T01:33:28.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
okho0653
null
okho0653/distilbert-base-uncased-zero-shot-sentiment-model
11
null
transformers
11,253
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-zero-shot-sentiment-model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-zero-shot-sentiment-model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
Xibanya/DS9Bot
5b3310e5f6ca1acc144144597ef272d1476e82cb
2022-04-24T22:32:34.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-generation
false
Xibanya
null
Xibanya/DS9Bot
11
null
transformers
11,254
--- license: mit tags: - generated_from_trainer model-index: - name: ds9_all results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ds9_all This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.4079 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.372e-07 - train_batch_size: 1 - eval_batch_size: 1 - seed: 3138344630 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.1261 | 13.0 | 8619 | 3.4600 | | 1.141 | 14.0 | 9282 | 3.4634 | | 1.1278 | 15.0 | 9945 | 3.4665 | | 1.1183 | 16.0 | 10608 | 3.4697 | | 1.1048 | 17.0 | 11271 | 3.4714 | | 1.1061 | 18.0 | 11934 | 3.4752 | | 1.1471 | 19.0 | 12597 | 3.4773 | | 1.1402 | 20.0 | 13260 | 3.4798 | | 1.0847 | 21.0 | 13923 | 3.4811 | | 1.1462 | 22.0 | 14586 | 3.4841 | | 1.1107 | 23.0 | 15249 | 3.4852 | | 1.1192 | 24.0 | 15912 | 3.4873 | | 1.0868 | 25.0 | 16575 | 3.4879 | | 1.1313 | 26.0 | 17238 | 3.4898 | | 1.1033 | 27.0 | 17901 | 3.4915 | | 1.1578 | 28.0 | 18564 | 3.4939 | | 1.0987 | 29.0 | 19227 | 3.4947 | | 1.0779 | 30.0 | 19890 | 3.4972 | | 1.3567 | 61.0 | 20191 | 3.4576 | | 1.3278 | 62.0 | 20522 | 3.4528 | | 1.3292 | 63.0 | 20853 | 3.4468 | | 1.3285 | 64.0 | 21184 | 3.4431 | | 1.3032 | 65.0 | 21515 | 3.4370 | | 1.318 | 66.0 | 21846 | 3.4345 | | 1.3003 | 67.0 | 22177 | 3.4289 | | 1.3202 | 68.0 | 22508 | 3.4274 | | 1.2643 | 69.0 | 22839 | 3.4232 | | 1.2862 | 70.0 | 23170 | 3.4223 | | 1.2597 | 71.0 | 23501 | 3.4186 | | 1.2426 | 72.0 | 23832 | 3.4176 | | 1.2539 | 73.0 | 24163 | 3.4152 | | 1.2604 | 74.0 | 24494 | 3.4147 | | 1.263 | 75.0 | 24825 | 3.4128 | | 1.2642 | 76.0 | 25156 | 3.4127 | | 1.2694 | 77.0 | 25487 | 3.4109 | | 1.2251 | 78.0 | 25818 | 3.4106 | | 1.2673 | 79.0 | 26149 | 3.4097 | | 1.233 | 80.0 | 26480 | 3.4096 | | 1.2408 | 81.0 | 26811 | 3.4087 | | 1.2579 | 82.0 | 27142 | 3.4088 | | 1.2346 | 83.0 | 27473 | 3.4081 | | 1.2298 | 84.0 | 27804 | 3.4082 | | 1.219 | 85.0 | 28135 | 3.4079 | | 1.2515 | 86.0 | 28466 | 3.4080 | | 1.2316 | 87.0 | 28797 | 3.4084 | | 1.2085 | 88.0 | 29128 | 3.4085 | | 1.2334 | 89.0 | 29459 | 3.4085 | | 1.2263 | 90.0 | 29790 | 3.4084 | | 1.2312 | 91.0 | 30121 | 3.4084 | | 1.2584 | 92.0 | 30452 | 3.4086 | | 1.2106 | 93.0 | 30783 | 3.4089 | | 1.2078 | 94.0 | 31114 | 3.4091 | | 1.2329 | 95.0 | 31445 | 3.4090 | | 1.1836 | 96.0 | 31776 | 3.4097 | | 1.2135 | 97.0 | 32107 | 3.4097 | | 1.2372 | 98.0 | 32438 | 3.4099 | | 1.2163 | 99.0 | 32769 | 3.4107 | | 1.1937 | 100.0 | 33100 | 3.4110 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0+cu113 - Datasets 1.15.1 - Tokenizers 0.10.3
allenai/aspire-contextualsentence-multim-biomed
b7900aff86c9b8b608dfa1989f69fd6489d1903f
2022-04-24T20:05:33.000Z
[ "pytorch", "bert", "feature-extraction", "arxiv:2111.08366", "transformers", "license:apache-2.0" ]
feature-extraction
false
allenai
null
allenai/aspire-contextualsentence-multim-biomed
11
null
transformers
11,255
--- license: apache-2.0 --- ## Overview Model included in a paper for modeling fine grained similarity between documents: **Title**: "Multi-Vector Models with Textual Guidance for Fine-Grained Scientific Document Similarity" **Authors**: Sheshera Mysore, Arman Cohan, Tom Hope **Paper**: https://arxiv.org/abs/2111.08366 **Github**: https://github.com/allenai/aspire **Note**: In the context of the paper, this model is referred to as `tsAspire` and represents the papers proposed multi-vector model for fine-grained scientific document similarity. ## Model Card ### Model description This model is a BERT based multi-vector model trained for fine-grained similarity of biomedical papers. This model inputs the title and abstract of a paper and represents a paper with a contextual sentence vectors obtained by averaging the token representations of individual sentences - the whole title and abstract are encoded with cross-attention in the encoder block before obtaining sentence embeddings. The model is trained by minimizing an Wasserstein/Earth Movers Distance between sentence vectors for a pair of documents - in the process also learning a sparse alignment between sentences in both documents. Test time behavior ranks documents based on the Wasserstein Distance between all sentences of documents or a set of query sentences and a candidate documents sentences. ### Training data The model is trained on pairs of co-cited papers with their sentences aligned by the co-citation context in a contrastive learning setup. The model is trained on 1.2 million biomedical paper pairs. In training the model, negative examples for the contrastive loss are obtained as random in-batch negatives. Co-citations are obtained from the full text of papers. For example - the papers in brackets below are all co-cited and each pair of papers would be used as a training pair: > The idea of distant supervision has been proposed and used widely in Relation Extraction (Mintz et al., 2009; Riedel et al., 2010; Hoffmann et al., 2011; Surdeanu et al., 2012) , where the source of labels is an external knowledge base. ### Training procedure The model was trained with the Adam Optimizer and a learning rate of 2e-5 with 1000 warm-up steps followed by linear decay of the learning rate. The model training convergence is checked with the loss on a held out dev set consisting of co-cited paper pairs. ### Intended uses & limitations This model is trained for fine-grained document similarity tasks in **biomedical** scientific text using multiple vectors per document. The model allows _multiple_ fine grained sentence-to-sentence similarities between documents. The model is well suited to an aspect conditional task formulation where a query might consist of sentence_s_ in a query document and candidates must be retrieved along the specified sentences. Here, the documents are the title and abstract of a paper. With appropriate fine-tuning the model can also be used for other tasks such as document or sentence level classification. Since the training data comes primarily from biomedical, performance on other domains may be poorer. ### How to use This model can be used via the `transformers` library, and some additional code to compute contextual sentence vectors and to make multiple matches using optimal transport. View example usage and sample document matches in the model github repo: [`examples/demo-contextualsentence-multim.ipynb`](https://github.com/allenai/aspire/blob/main/examples/demo-contextualsentence-multim.ipynb) ### Variable and metrics This model is evaluated on information retrieval datasets with document level queries. Here we report performance on RELISH (biomedical/English), and TRECCOVID (biomedical/English). These are detailed on [github](https://github.com/allenai/aspire) and in our [paper](https://arxiv.org/abs/2111.08366). These datasets represent a abstract level retrieval task, where given a query scientific abstract the task requires the retrieval of relevant candidate abstracts. In using this model we rank documents by the Wasserstein distance between the query sentences and a candidates sentences. ### Evaluation results The released model `aspire-contextualsentence-multim-biomed` is compared against `allenai/specter`. `aspire-contextualsentence-multim-biomed`<sup>*</sup> is the performance reported in our paper by averaging over 3 re-runs of the model. The released models `aspire-contextualsentence-multim-biomed` is the single best run among the 3 re-runs. | | TRECCOVID | TRECCOVID | RELISH | RELISH | |-------------------------------------------:|:---------:|:-------:|:------:|:-------:| | | MAP | NDCG%20 | MAP | NDCG%20 | | `specter` | 28.24 | 59.28 | 60.62 | 77.20 | | `aspire-contextualsentence-multim-biomed`<sup>*</sup> | 30.92 | 62.23 | 62.57 | 78.95 | | `aspire-contextualsentence-multim-biomed` | 31.25 | 62.99 | 62.24 | 78.65 | **Alternative models:** Besides the above models consider these alternative models also released in the Aspire paper: [`aspire-contextualsentence-multim-compsci`](https://huggingface.co/allenai/aspire-contextualsentence-multim-compsci): If you wanted to run on computer science papers and want to use a model trained to match _multiple_ sentences between documents. [`aspire-contextualsentence-singlem-biomed`](https://huggingface.co/allenai/aspire-contextualsentence-singlem-biomed): If you wanted to run on biomedical papers and want to use a model trained to match _single_ sentences between documents. [`aspire-contextualsentence-singlem-compsci`](https://huggingface.co/allenai/aspire-contextualsentence-singlem-compsci): If you wanted to run on computer science papers and want to use a model trained to match _single_ sentences between documents.
mrosinski/distilbert-base-uncased-finetuned-emotion
c1feeb777f2aa1094979f7cf5448cbcd8e3b9fab
2022-07-21T03:22:06.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
mrosinski
null
mrosinski/distilbert-base-uncased-finetuned-emotion
11
null
transformers
11,256
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.923 - name: F1 type: f1 value: 0.923306902377617 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2317 - Accuracy: 0.923 - F1: 0.9233 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8669 | 1.0 | 250 | 0.3344 | 0.9025 | 0.9004 | | 0.2607 | 2.0 | 500 | 0.2317 | 0.923 | 0.9233 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
avacaondata/bertin-exist22-task1
f497100c3c7aad178e992a62322c0217b49c0943
2022-04-23T23:28:22.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
avacaondata
null
avacaondata/bertin-exist22-task1
11
null
transformers
11,257
Entry not found
PdF/xlm-roberta-base-finetuned-panx-de
4c36892395f28edab0d8eadec8762025ddead40f
2022-04-24T01:31:50.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
PdF
null
PdF/xlm-roberta-base-finetuned-panx-de
11
null
transformers
11,258
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8657802022957154 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1348 - F1: 0.8658 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.254 | 1.0 | 525 | 0.1647 | 0.8200 | | 0.1285 | 2.0 | 1050 | 0.1454 | 0.8443 | | 0.0808 | 3.0 | 1575 | 0.1348 | 0.8658 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.2 - Datasets 2.1.0 - Tokenizers 0.10.3
IDEA-CCNL/Yuyuan-Bart-400M
c1bdb55f4151278bd236d74ccd6d7d684d5118a7
2022-04-24T10:07:05.000Z
[ "pytorch", "bart", "text2text-generation", "en", "arxiv:2204.03905", "transformers", "biobart", "biomedical", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
IDEA-CCNL
null
IDEA-CCNL/Yuyuan-Bart-400M
11
2
transformers
11,259
--- language: - en license: apache-2.0 tags: - bart - biobart - biomedical inference: true widget: - text: "Influenza is a <mask> disease." - types: "text-generation" --- # Yuyuan-Bart-400M, one model of [Fengshenbang-LM](https://github.com/IDEA-CCNL/Fengshenbang-LM). The Yuyuan-Bart-400M is a biomedical generative language model jointly produced by Tsinghua University and International Digital Economy Academy. Paper: [BioBART: Pretraining and Evaluation of A Biomedical Generative Language Model](https://arxiv.org/pdf/2204.03905.pdf) ## Pretraining Corpora We use PubMed abstracts as the pretraining corpora. The corpora contain about 41 GB of biomedical research paper abstracts on PubMed. ## Pretraining Setup We continuously pretrain large versions of BART for 120k steps with a batch size of 2560. We use the same vocabulary as BART to tokenize the texts. Although the input length limitation of BART is 1024, the tokenized PubMed abstracts rarely exceed 512. Therefore, for the sake of training efficiency, we truncate all the input texts to 512 maximum length. We mask 30% of the input tokens and the masked span length is determined by sampling from a Poisson distribution (λ = 3) as used in BART. We use a learning rate scheduler of 0.02 warm-up ratio and linear decay. The learning rate is set to 1e-4. We train the large version of BioBART(400M parameters) on 2 DGX with 16 40GB A100 GPUs for about 168 hours with the help of the open-resource framework DeepSpeed. ## Usage ```python from transformers import BartForConditionalGeneration, BartTokenizer tokenizer = BartTokenizer.from_pretrained('IDEA-CCNL/Yuyuan-Bart-400M') model = BartForConditionalGeneration.from_pretrained('IDEA-CCNL/Yuyuan-Bart-400M') text = 'Influenza is a <mask> disease.' input_ids = tokenizer([text], return_tensors="pt")['input_ids'] model.eval() generated_ids = model.generate( input_ids=input_ids, ) preds = [tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=True) for g in generated_ids] print(preds) ``` ## Citation If you find the resource is useful, please cite the following website in your paper. ``` @misc{BioBART, title={BioBART: Pretraining and Evaluation of A Biomedical Generative Language Model}, author={Hongyi Yuan and Zheng Yuan and Ruyi Gan and Jiaxing Zhang and Yutao Xie and Sheng Yu}, year={2022}, eprint={2204.03905}, archivePrefix={arXiv} } ```
Hate-speech-CNERG/malayalam-codemixed-abusive-MuRIL
91522d2bbcbc8d1e786500e37c30b1f44135ee33
2022-05-03T08:47:17.000Z
[ "pytorch", "bert", "text-classification", "ma-en", "arxiv:2204.12543", "transformers", "license:afl-3.0" ]
text-classification
false
Hate-speech-CNERG
null
Hate-speech-CNERG/malayalam-codemixed-abusive-MuRIL
11
null
transformers
11,260
--- language: ma-en license: afl-3.0 --- This model is used to detect **abusive speech** in **Code-Mixed Malayalam**. It is finetuned on MuRIL model using Code-Mixed Malayalam abusive speech dataset. The model is trained with learning rates of 2e-5. Training code can be found at this [url](https://github.com/hate-alert/IndicAbusive) LABEL_0 :-> Normal LABEL_1 :-> Abusive ### For more details about our paper Mithun Das, Somnath Banerjee and Animesh Mukherjee. "[Data Bootstrapping Approaches to Improve Low Resource Abusive Language Detection for Indic Languages](https://arxiv.org/abs/2204.12543)". Accepted at ACM HT 2022. ***Please cite our paper in any published work that uses any of these resources.*** ~~~ @article{das2022data, title={Data Bootstrapping Approaches to Improve Low Resource Abusive Language Detection for Indic Languages}, author={Das, Mithun and Banerjee, Somnath and Mukherjee, Animesh}, journal={arXiv preprint arXiv:2204.12543}, year={2022} } ~~~
cynthiachan/procedure_classification_distilbert
f5fa41c5b143d745308d66d4eb0167a557cb501b
2022-04-26T05:42:29.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
cynthiachan
null
cynthiachan/procedure_classification_distilbert
11
null
transformers
11,261
Entry not found
gagan3012/ArOCRv3
7612e56dc32637b2a8901fd10c485801caccdc06
2022-04-27T09:56:43.000Z
[ "pytorch", "tensorboard", "vision-encoder-decoder", "transformers" ]
null
false
gagan3012
null
gagan3012/ArOCRv3
11
null
transformers
11,262
Entry not found
manueltonneau/bert-twitter-pt-job-search
ed4429390acf6e83fcdc0fa496c782b1539cf61e
2022-04-27T10:25:44.000Z
[ "pytorch", "bert", "text-classification", "pt", "arxiv:2203.09178", "transformers" ]
text-classification
false
manueltonneau
null
manueltonneau/bert-twitter-pt-job-search
11
null
transformers
11,263
--- language: pt # <-- my language widget: - text: "Preciso de um emprego" --- # Detection of employment status disclosures on Twitter ## Model main characteristics: - class: Job Search (1), else (0) - country: BR - language: Portuguese - architecture: BERT base ## Model description This model is a version of `neuralmind/bert-base-portuguese-cased` finetuned to recognize Portuguese tweets mentioning that the user is currently looking for a job. It was trained on Portuguese tweets from users based in Brazil. The task is framed as a binary classification problem with: - the positive class referring to tweets mentioning that the user is looking for a job (label=1) - the negative class referring to all other tweets (label=0) ## Resources The dataset of Portuguese tweets on which this classifier was trained is open-sourced [here](https://github.com/manueltonneau/twitter-unemployment). Details on the performance can be found in our [ACL 2022 paper](https://arxiv.org/abs/2203.09178). ## Citation If you find this model useful, please cite our paper (citation to come soon).
ajtamayoh/bert-finetuned-ADEs_model_1
d0d7256e39b46017a47e8b7b4f40240511490bcc
2022-04-27T15:20:54.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
token-classification
false
ajtamayoh
null
ajtamayoh/bert-finetuned-ADEs_model_1
11
null
transformers
11,264
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ADEs_model_1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ADEs_model_1 This model is a fine-tuned version of [jsylee/scibert_scivocab_uncased-finetuned-ner](https://huggingface.co/jsylee/scibert_scivocab_uncased-finetuned-ner) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1938 - Precision: 0.6759 - Recall: 0.6710 - F1: 0.6735 - Accuracy: 0.9132 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1987 | 1.0 | 640 | 0.1989 | 0.6618 | 0.6692 | 0.6655 | 0.9116 | | 0.1954 | 2.0 | 1280 | 0.1953 | 0.6710 | 0.6532 | 0.6620 | 0.9132 | | 0.1934 | 3.0 | 1920 | 0.1961 | 0.6586 | 0.6823 | 0.6702 | 0.9120 | | 0.1879 | 4.0 | 2560 | 0.1940 | 0.6727 | 0.6718 | 0.6722 | 0.9133 | | 0.1897 | 5.0 | 3200 | 0.1938 | 0.6759 | 0.6710 | 0.6735 | 0.9132 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
classla/wav2vec2-xls-r-parlaspeech-hr-lm
5032954a2c46442d3bcd7aedea30b23829b7cbd7
2022-05-18T14:20:40.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "hr", "dataset:parlaspeech-hr", "transformers", "audio", "parlaspeech" ]
automatic-speech-recognition
false
classla
null
classla/wav2vec2-xls-r-parlaspeech-hr-lm
11
null
transformers
11,265
--- language: hr datasets: - parlaspeech-hr tags: - audio - automatic-speech-recognition - parlaspeech widget: - example_title: example 1 src: https://huggingface.co/classla/wav2vec2-xls-r-parlaspeech-hr-lm/raw/main/1800.m4a - example_title: example 2 src: https://huggingface.co/classla/wav2vec2-xls-r-parlaspeech-hr-lm/raw/main/00020578b.flac.wav - example_title: example 3 src: https://huggingface.co/classla/wav2vec2-xls-r-parlaspeech-hr-lm/raw/main/00020570a.flac.wav --- # wav2vec2-xls-r-parlaspeech-hr-lm This model for Croatian ASR is based on the [facebook/wav2vec2-xls-r-300m model](https://huggingface.co/facebook/wav2vec2-xls-r-300m) and was fine-tuned with 300 hours of recordings and transcripts from the ASR Croatian parliament dataset [ParlaSpeech-HR v1.0](http://hdl.handle.net/11356/1494). If you use this model, please cite the following paper: Nikola Ljubešić, Danijel Koržinek, Peter Rupnik, Ivo-Pavao Jazbec. ParlaSpeech-HR -- a freely available ASR dataset for Croatian bootstrapped from the ParlaMint corpus. Accepted at ParlaCLARIN@LREC. ## Metrics Evaluation is performed on the dev and test portions of the [ParlaSpeech-HR v1.0](http://hdl.handle.net/11356/1494) dataset. |split|CER|WER| |---|---|---| |dev|0.0448|0.1129| |test|0.0363|0.0985| ## Usage in `transformers` Tested with `transformers==4.18.0`, `torch==1.11.0`, and `SoundFile==0.10.3.post1`. ```python from transformers import Wav2Vec2ProcessorWithLM, Wav2Vec2ForCTC import soundfile as sf import torch import os device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # load model and tokenizer processor = Wav2Vec2ProcessorWithLM.from_pretrained( "classla/wav2vec2-xls-r-parlaspeech-hr-lm") model = Wav2Vec2ForCTC.from_pretrained("classla/wav2vec2-xls-r-parlaspeech-hr-lm") # download the example wav files: os.system("wget https://huggingface.co/classla/wav2vec2-large-slavic-parlaspeech-hr/raw/main/00020570a.flac.wav") # read the wav file speech, sample_rate = sf.read("00020570a.flac.wav") input_values = processor(speech, sampling_rate=sample_rate, return_tensors="pt").input_values.cuda() inputs = processor(speech, sampling_rate=sample_rate, return_tensors="pt") with torch.no_grad(): logits = model(**inputs).logits transcription = processor.batch_decode(logits.numpy()).text[0] # remove the raw wav file os.system("rm 00020570a.flac.wav") transcription # transcription: 'velik broj poslovnih subjekata posluje sa minusom velik dio' ``` ## Training hyperparameters In fine-tuning, the following arguments were used: | arg | value | |-------------------------------|-------| | `per_device_train_batch_size` | 16 | | `gradient_accumulation_steps` | 4 | | `num_train_epochs` | 8 | | `learning_rate` | 3e-4 | | `warmup_steps` | 500 |
schnell/wakaformer
07cc721f4ae1bf5256117f79f8fcddf45cb54c9c
2022-04-29T15:18:00.000Z
[ "pytorch", "bert", "token-classification", "transformers", "license:apache-2.0", "autotrain_compatible" ]
token-classification
false
schnell
null
schnell/wakaformer
11
0
transformers
11,266
--- license: apache-2.0 ---
cfilt/HiNER-collapsed-muril-base-cased
b88260cea1f9cb60dfc73581d041b1cc6e6f4486
2022-05-01T19:48:15.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "dataset:cfilt/HiNER-collapsed", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
token-classification
false
cfilt
null
cfilt/HiNER-collapsed-muril-base-cased
11
null
transformers
11,267
--- tags: - generated_from_trainer datasets: - cfilt/HiNER-collapsed metrics: - precision - recall - f1 model-index: - name: HiNER-collapsed-muril-base-cased results: - task: name: Token Classification type: token-classification dataset: type: cfilt/HiNER-collapsed name: HiNER Collapsed metrics: - name: Precision type: precision value: 0.9049101352603298 - name: Recall type: recall value: 0.9209156735555891 - name: F1 type: f1 value: 0.9128427506027924 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # HiNER-collapsed-muril-base-cased This model was trained from scratch on the cfilt/HiNER-collapsed dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 1 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Framework versions - Transformers 4.14.0 - Pytorch 1.9.1 - Datasets 1.15.1 - Tokenizers 0.10.3
ChrisZeng/t5-base-detox
03ecfe96e3a425dc8227be124f492c16271ef0d8
2022-04-30T21:53:04.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
ChrisZeng
null
ChrisZeng/t5-base-detox
11
null
transformers
11,268
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: t5-base-detox results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-detox This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2615 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.337 | 1.0 | 135 | 0.4810 | | 0.5238 | 2.0 | 270 | 0.3886 | | 0.4301 | 3.0 | 405 | 0.3378 | | 0.3755 | 4.0 | 540 | 0.3122 | | 0.3359 | 5.0 | 675 | 0.2910 | | 0.3068 | 6.0 | 810 | 0.2737 | | 0.2861 | 7.0 | 945 | 0.2710 | | 0.2744 | 8.0 | 1080 | 0.2617 | | 0.2649 | 9.0 | 1215 | 0.2630 | | 0.2585 | 10.0 | 1350 | 0.2615 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.12.0.dev20220429 - Datasets 2.1.0 - Tokenizers 0.10.3
hf-internal-testing/wav2vec2-conformer-xvector
4096302af149a7fd6384a9b489e69588017ee245
2022-05-01T16:03:28.000Z
[ "pytorch", "wav2vec2-conformer", "audio-xvector", "transformers" ]
null
false
hf-internal-testing
null
hf-internal-testing/wav2vec2-conformer-xvector
11
null
transformers
11,269
Entry not found
Preetiha/clause_classification
bef152c6d44e2e2a87dd6cf70c2d571df021a322
2022-05-02T00:07:12.000Z
[ "pytorch", "distilbert", "text-classification", "en", "dataset:Preetiha/autotrain-data-clause-classification", "transformers", "autotrain", "co2_eq_emissions" ]
text-classification
false
Preetiha
null
Preetiha/clause_classification
11
1
transformers
11,270
--- tags: autotrain language: en widget: - text: "I love AutoTrain 🤗" datasets: - Preetiha/autotrain-data-clause-classification co2_eq_emissions: 44.494127975699804 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 812025458 - CO2 Emissions (in grams): 44.494127975699804 ## Validation Metrics - Loss: 0.5240132808685303 - Accuracy: 0.8673 - Macro F1: 0.7979496833221609 - Micro F1: 0.8673 - Weighted F1: 0.8616433030199793 - Macro Precision: 0.8263528446923423 - Micro Precision: 0.8673 - Weighted Precision: 0.8702574307362431 - Macro Recall: 0.7953048612545152 - Micro Recall: 0.8673 - Weighted Recall: 0.8673 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/Preetiha/autotrain-clause-classification-812025458 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("Preetiha/autotrain-clause-classification-812025458", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("Preetiha/autotrain-clause-classification-812025458", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
alla1101/distilbert-base-uncased-finetuned-emotion
e19f6592135c7851815fd0e28447487bf404d3f6
2022-05-03T08:11:40.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
alla1101
null
alla1101/distilbert-base-uncased-finetuned-emotion
11
null
transformers
11,271
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.924 - name: F1 type: f1 value: 0.9240869504197766 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2236 - Accuracy: 0.924 - F1: 0.9241 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 250 | 0.3293 | 0.901 | 0.8979 | | No log | 2.0 | 500 | 0.2236 | 0.924 | 0.9241 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
0x7194633/BulgakovLM-tur
27434232933ace59d1e03dc9896c6938f782a19c
2022-05-03T08:56:52.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
0x7194633
null
0x7194633/BulgakovLM-tur
11
null
transformers
11,272
Entry not found
iis2009002/distilbert-base-uncased-finetuned-emotion
7d2aaf6b3e4a957540e87728a43ff7852ad1b402
2022-05-04T07:49:35.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
iis2009002
null
iis2009002/distilbert-base-uncased-finetuned-emotion
11
null
transformers
11,273
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.926 - name: F1 type: f1 value: 0.925904463781861 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2133 - Accuracy: 0.926 - F1: 0.9259 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.827 | 1.0 | 250 | 0.3060 | 0.9075 | 0.9044 | | 0.2452 | 2.0 | 500 | 0.2133 | 0.926 | 0.9259 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
varsha12/BERT_DNRTI
fdd9ff8dd442d04205a14f745be8b6e086e1721b
2022-06-28T17:26:26.000Z
[ "pytorch", "bert", "token-classification", "transformers", "license:afl-3.0", "autotrain_compatible" ]
token-classification
false
varsha12
null
varsha12/BERT_DNRTI
11
null
transformers
11,274
--- license: afl-3.0 ---
vumichien/wav2vec2-xls-r-300m-japanese-large-ver2
74f6be34415dca7aa9b1ba7e41f5d44fdc06fe5d
2022-05-17T10:41:08.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
vumichien
null
vumichien/wav2vec2-xls-r-300m-japanese-large-ver2
11
null
transformers
11,275
Entry not found
vuiseng9/bert-l-squadv1.1-sl384
8177c08284262c5cdae638fa035eb40783596b97
2022-05-07T00:15:48.000Z
[ "pytorch", "tf", "jax", "onnx", "bert", "question-answering", "dataset:squad", "transformers", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
vuiseng9
null
vuiseng9/bert-l-squadv1.1-sl384
11
null
transformers
11,276
--- license: apache-2.0 datasets: - squad model-index: - name: bert-l-squadv1.1-sl384 results: [] --- This model is a fork of [bert-large-uncased-whole-word-masking-finetuned-squad](https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad). ONNX and OpenVINO-IR models are enclosed. ### Evaluation evaluated in ```v4.9.2```. ``` eval_exact_match = 86.9253 eval_f1 = 93.1563 eval_samples = 10784 ```
hidude562/Wiki-Complexity
d511307f0a832e9b586b69c4e5a9c4149a112708
2022-05-08T15:11:01.000Z
[ "pytorch", "jax", "distilbert", "text-classification", "en", "dataset:hidude562/autotrain-data-SimpleDetect", "transformers", "autotrain", "co2_eq_emissions" ]
text-classification
false
hidude562
null
hidude562/Wiki-Complexity
11
null
transformers
11,277
--- tags: autotrain language: en widget: - text: "I quite enjoy using AutoTrain due to its simplicity." datasets: - hidude562/autotrain-data-SimpleDetect co2_eq_emissions: 0.21691606119445225 --- # Model Description This model detects if you are writing in a format that is more similar to Simple English Wikipedia or English Wikipedia. This can be extended to applications that aren't Wikipedia as well and to some extent, it can be used for other languages. Please also note there is a major bias to special characters (Mainly the hyphen mark, but it also applies to others) so I would recommend removing them from your input text. # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 837726721 - CO2 Emissions (in grams): 0.21691606119445225 ## Validation Metrics - Loss: 0.010096958838403225 - Accuracy: 0.996223414828066 - Macro F1: 0.996179398826373 - Micro F1: 0.996223414828066 - Weighted F1: 0.996223414828066 - Macro Precision: 0.996179398826373 - Micro Precision: 0.996223414828066 - Weighted Precision: 0.996223414828066 - Macro Recall: 0.996179398826373 - Micro Recall: 0.996223414828066 - Weighted Recall: 0.996223414828066 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I quite enjoy using AutoTrain due to its simplicity."}' https://api-inference.huggingface.co/models/hidude562/Wiki-Complexity ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("hidude562/Wiki-Complexity", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("hidude562/Wiki-Complexity", use_auth_token=True) inputs = tokenizer("I quite enjoy using AutoTrain due to its simplicity.", return_tensors="pt") outputs = model(**inputs) ```
Jeevesh8/bert_ft_qqp-26
5fd9081fcd8511de41b2ba425884d4e90921106b
2022-05-09T10:36:44.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-26
11
null
transformers
11,278
Entry not found
Jeevesh8/bert_ft_qqp-99
e429b7cd0c1dd70376f8dc03dfa8b773fda50395
2022-05-09T13:43:31.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/bert_ft_qqp-99
11
null
transformers
11,279
Entry not found
tomhosking/deberta-v3-base-debiased-nli
2d83b2709292f3d9cca8c35d43137f9b17750753
2022-05-10T08:15:40.000Z
[ "pytorch", "deberta-v2", "text-classification", "transformers", "license:apache-2.0" ]
text-classification
false
tomhosking
null
tomhosking/deberta-v3-base-debiased-nli
11
null
transformers
11,280
--- license: apache-2.0 widget: - text: "[CLS] Rover is a dog. [SEP] Rover is a cat. [SEP]" --- `deberta-v3-base`, fine tuned on the debiased NLI dataset from "Generating Data to Mitigate Spurious Correlations in Natural Language Inference Datasets", Wu et al., 2022. Tuned using the code at https://github.com/jimmycode/gen-debiased-nli
CEBaB/gpt2.CEBaB.sa.3-class.exclusive.seed_42
4b070292a79109ada92daf31c0747a6172cb2fd4
2022-05-10T23:49:46.000Z
[ "pytorch", "gpt2", "transformers" ]
null
false
CEBaB
null
CEBaB/gpt2.CEBaB.sa.3-class.exclusive.seed_42
11
null
transformers
11,281
Entry not found
CEBaB/gpt2.CEBaB.sa.2-class.exclusive.seed_66
7b0e049d8a8856580ed00dd480f7d46532c8acb8
2022-05-11T00:24:10.000Z
[ "pytorch", "gpt2", "transformers" ]
null
false
CEBaB
null
CEBaB/gpt2.CEBaB.sa.2-class.exclusive.seed_66
11
null
transformers
11,282
Entry not found
CEBaB/gpt2.CEBaB.sa.3-class.exclusive.seed_66
c1063edfd01082a9856ee9698a3b7c8574bd26fa
2022-05-11T00:41:15.000Z
[ "pytorch", "gpt2", "transformers" ]
null
false
CEBaB
null
CEBaB/gpt2.CEBaB.sa.3-class.exclusive.seed_66
11
null
transformers
11,283
Entry not found
CEBaB/gpt2.CEBaB.sa.2-class.exclusive.seed_77
97fb2f754530aaf0b7b035ac3b9e05e1b233cb77
2022-05-11T01:16:26.000Z
[ "pytorch", "gpt2", "transformers" ]
null
false
CEBaB
null
CEBaB/gpt2.CEBaB.sa.2-class.exclusive.seed_77
11
null
transformers
11,284
Entry not found
CEBaB/gpt2.CEBaB.sa.2-class.exclusive.seed_88
f0bf69b8bb96d123a0b259678962ffc9af3bb290
2022-05-11T02:08:44.000Z
[ "pytorch", "gpt2", "transformers" ]
null
false
CEBaB
null
CEBaB/gpt2.CEBaB.sa.2-class.exclusive.seed_88
11
null
transformers
11,285
Entry not found
CEBaB/gpt2.CEBaB.sa.3-class.exclusive.seed_88
fb2abe7a7d3198f7c1c5e4691d191c4cf5b61c18
2022-05-11T02:25:44.000Z
[ "pytorch", "gpt2", "transformers" ]
null
false
CEBaB
null
CEBaB/gpt2.CEBaB.sa.3-class.exclusive.seed_88
11
null
transformers
11,286
Entry not found
CEBaB/gpt2.CEBaB.sa.5-class.exclusive.seed_88
c15391964ea7e04635988233f98701c06ee39415
2022-05-11T02:42:44.000Z
[ "pytorch", "gpt2", "transformers" ]
null
false
CEBaB
null
CEBaB/gpt2.CEBaB.sa.5-class.exclusive.seed_88
11
null
transformers
11,287
Entry not found
CEBaB/gpt2.CEBaB.sa.2-class.exclusive.seed_99
9ba9e845e50ecc41762ba9bc5215d7b5e6f389ba
2022-05-11T03:00:02.000Z
[ "pytorch", "gpt2", "transformers" ]
null
false
CEBaB
null
CEBaB/gpt2.CEBaB.sa.2-class.exclusive.seed_99
11
null
transformers
11,288
Entry not found
CEBaB/gpt2.CEBaB.sa.3-class.exclusive.seed_99
f9aa79a382a34016fc1c5bf6bccd4971bc33a19b
2022-05-11T03:17:19.000Z
[ "pytorch", "gpt2", "transformers" ]
null
false
CEBaB
null
CEBaB/gpt2.CEBaB.sa.3-class.exclusive.seed_99
11
null
transformers
11,289
Entry not found
CEBaB/gpt2.CEBaB.sa.5-class.exclusive.seed_99
51cae8e619ab8bcb01a3f1238da48d9849a7fc76
2022-05-11T03:34:36.000Z
[ "pytorch", "gpt2", "transformers" ]
null
false
CEBaB
null
CEBaB/gpt2.CEBaB.sa.5-class.exclusive.seed_99
11
null
transformers
11,290
Entry not found
AndyGo/speechbrain-asr-crdnn-rnnlm-buriy-audiobooks-2-val
a0dbdbfcdc6df87094a1cc83770664da9bfeec58
2022-05-19T14:53:31.000Z
[ "ru", "dataset:buriy-audiobooks-2-val", "arxiv:2106.04624", "speechbrain", "automatic-speech-recognition", "CTC", "Attention", "pytorch", "license:apache-2.0" ]
automatic-speech-recognition
false
AndyGo
null
AndyGo/speechbrain-asr-crdnn-rnnlm-buriy-audiobooks-2-val
11
null
speechbrain
11,291
--- language: "ru" thumbnail: tags: - automatic-speech-recognition - CTC - Attention - pytorch - speechbrain license: "apache-2.0" datasets: - buriy-audiobooks-2-val metrics: - wer - cer --- | Release | Test WER | GPUs | |:-------------:|:--------------:| :--------:| | 22-05-11 | - | 1xK80 24GB | after 9 epochs training - valid %WER: 4.09e+02 after 12 epochs training - valid %WER: 2.07e+02, test WER: 1.78e+02 ## Pipeline description (by SpeechBrain text) This ASR system is composed with 3 different but linked blocks: - Tokenizer (unigram) that transforms words into subword units and trained with the train transcriptions of LibriSpeech. - Neural language model (RNNLM) trained on the full (380K) words dataset. - Acoustic model (CRDNN + CTC/Attention). The CRDNN architecture is made of N blocks of convolutional neural networks with normalisation and pooling on the frequency domain. Then, a bidirectional LSTM is connected to a final DNN to obtain the final acoustic representation that is given to the CTC and attention decoders. The system is trained with recordings sampled at 16kHz (single channel). The code will automatically normalize your audio (i.e., resampling + mono channel selection) when calling *transcribe_file* if needed. ## Install SpeechBrain First of all, please install SpeechBrain with the following command: ``` pip install speechbrain ``` Please notice that SpeechBrain encourage you to read tutorials and learn more about [SpeechBrain](https://speechbrain.github.io). ### Transcribing your own audio files (in Russian) ```python from speechbrain.pretrained import EncoderDecoderASR asr_model = EncoderDecoderASR.from_hparams(source="AndyGo/speechbrain-asr-crdnn-rnnlm-buriy-audiobooks-2-val", savedir="pretrained_models/speech-brain-asr-crdnn-rnnlm-buriy-audiobooks-2-val") asr_model.transcribe_file('speechbrain-asr-crdnn-rnnlm-buriy-audiobooks-2-val/example.wav') ``` ### Inference on GPU To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method. ### Russian Speech Datasets Russian Speech Datasets are provided by Microsoft Corporation with CC BY-NC license. Instructions by downloading - https://github.com/snakers4/open_stt The CC BY-NC license requires that the original copyright owner be listed as the author and the work be used only for non-commercial purposes We used buriy-audiobooks-2-val dataset ## About SpeechBrain Website: https://speechbrain.github.io/ Code: https://github.com/speechbrain/speechbrain/ HuggingFace: https://huggingface.co/speechbrain/ ## Citing SpeechBrain Please, cite SpeechBrain if you use it for your research or business. @misc{speechbrain, title={{SpeechBrain}: A General-Purpose Speech Toolkit}, author={Mirco Ravanelli and Titouan Parcollet and Peter Plantinga and Aku Rouhe and Samuele Cornell and Loren Lugosch and Cem Subakan and Nauman Dawalatabad and Abdelwahab Heba and Jianyuan Zhong and Ju-Chieh Chou and Sung-Lin Yeh and Szu-Wei Fu and Chien-Feng Liao and Elena Rastorgueva and François Grondin and William Aris and Hwidong Na and Yan Gao and Renato De Mori and Yoshua Bengio}, year={2021}, eprint={2106.04624}, archivePrefix={arXiv}, primaryClass={eess.AS}, note={arXiv:2106.04624} }
sismetanin/rubert-rusentitweet
3d0096723baa6adbe1052ce4277bcc6982dfdddd
2022-05-12T20:53:24.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
sismetanin
null
sismetanin/rubert-rusentitweet
11
null
transformers
11,292
precision recall f1-score support negative 0.681957 0.675758 0.678843 660 neutral 0.707845 0.735019 0.721176 1068 positive 0.596591 0.652174 0.623145 483 skip 0.583062 0.485095 0.529586 369 speech 0.827160 0.676768 0.744444 99 accuracy 0.668906 2679 macro avg 0.679323 0.644963 0.659439 2679 w avg 0.668631 0.668906 0.667543 2679 3 Runs: Avg macro Precision 0.6747772329026972 Avg macro Recall 0.6436866944877477 Avg macro F1 0.654867154097531 Avg weighted F1 0.6649503767906553
Ninh/distilbert-base-uncased-finetuned-emotion
d8843939d3478c5a8a56e4fc63b9b260d5107e53
2022-05-13T02:41:30.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Ninh
null
Ninh/distilbert-base-uncased-finetuned-emotion
11
null
transformers
11,293
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.924 - name: F1 type: f1 value: 0.9241543444176422 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2144 - Accuracy: 0.924 - F1: 0.9242 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8028 | 1.0 | 250 | 0.3015 | 0.91 | 0.9089 | | 0.2382 | 2.0 | 500 | 0.2144 | 0.924 | 0.9242 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
maazmikail/finetuning-sentiment-model-urdu-roberta
f558ad46571eac72b6cb0c436f4290b9f3744007
2022-05-16T19:01:35.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
maazmikail
null
maazmikail/finetuning-sentiment-model-urdu-roberta
11
null
transformers
11,294
--- license: mit tags: - generated_from_trainer model-index: - name: finetuning-sentiment-model-urdu-roberta results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-urdu-roberta This model is a fine-tuned version of [urduhack/roberta-urdu-small](https://huggingface.co/urduhack/roberta-urdu-small) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results ### Framework versions - Transformers 4.19.1 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
W42/distilbert-base-uncased-finetuned-emotion
03eece33d522ae6094b10f1d231a3633abc58eb7
2022-05-16T15:20:30.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
W42
null
W42/distilbert-base-uncased-finetuned-emotion
11
null
transformers
11,295
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.927 - name: F1 type: f1 value: 0.9271021143652434 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2158 - Accuracy: 0.927 - F1: 0.9271 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8302 | 1.0 | 250 | 0.3104 | 0.905 | 0.9032 | | 0.2499 | 2.0 | 500 | 0.2158 | 0.927 | 0.9271 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu102 - Datasets 2.2.1 - Tokenizers 0.12.1
CEBaB/bert-base-uncased.CEBaB.absa.exclusive.seed_66
806e243a2f86975faef20b95e8c73556e4f9705c
2022-05-17T18:48:27.000Z
[ "pytorch", "bert", "transformers" ]
null
false
CEBaB
null
CEBaB/bert-base-uncased.CEBaB.absa.exclusive.seed_66
11
null
transformers
11,296
Entry not found
CEBaB/bert-base-uncased.CEBaB.absa.exclusive.seed_77
333e40b6570ed7666306339f8914d1bfac4f5ae5
2022-05-17T18:53:17.000Z
[ "pytorch", "bert", "transformers" ]
null
false
CEBaB
null
CEBaB/bert-base-uncased.CEBaB.absa.exclusive.seed_77
11
null
transformers
11,297
Entry not found
imohammad12/GRS-Constrained-Paraphrasing-Bart
28ca61cc4b875b83b0c0fbaa6d84e00b7b7d5d75
2022-05-26T10:49:26.000Z
[ "pytorch", "bart", "text2text-generation", "en", "transformers", "grs", "autotrain_compatible" ]
text2text-generation
false
imohammad12
null
imohammad12/GRS-Constrained-Paraphrasing-Bart
11
null
transformers
11,298
--- language: en tags: grs --- ## Citation Please star the [GRS GitHub repo](https://github.com/imohammad12/GRS) and cite the paper if you found our model useful: ``` @inproceedings{dehghan-etal-2022-grs, title = "{GRS}: Combining Generation and Revision in Unsupervised Sentence Simplification", author = "Dehghan, Mohammad and Kumar, Dhruv and Golab, Lukasz", booktitle = "Findings of the Association for Computational Linguistics: ACL 2022", month = may, year = "2022", address = "Dublin, Ireland", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.findings-acl.77", pages = "949--960", abstract = "We propose GRS: an unsupervised approach to sentence simplification that combines text generation and text revision. We start with an iterative framework in which an input sentence is revised using explicit edit operations, and add paraphrasing as a new edit operation. This allows us to combine the advantages of generative and revision-based approaches: paraphrasing captures complex edit operations, and the use of explicit edit operations in an iterative manner provides controllability and interpretability. We demonstrate these advantages of GRS compared to existing methods on the Newsela and ASSET datasets.", } ```
elvaklose/finetuning-sentiment-model-3000-samples
b0677146365d9a2022231bf7bcd8bb68e5f768b7
2022-05-20T05:51:48.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
elvaklose
null
elvaklose/finetuning-sentiment-model-3000-samples
11
null
transformers
11,299
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8766666666666667 - name: F1 type: f1 value: 0.8786885245901639 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.2896 - Accuracy: 0.8767 - F1: 0.8787 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1