modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
list
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
Rohan-Kurdekar/Arabic_Bert_Model
d274ea8aef70da81277d31187703518d23b7805c
2021-05-20T12:21:38.000Z
[ "pytorch", "tf", "jax", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Rohan-Kurdekar
null
Rohan-Kurdekar/Arabic_Bert_Model
11
null
transformers
11,000
Entry not found
SEBIS/code_trans_t5_large_api_generation_transfer_learning_finetune
4792abf3e80fb276e50806249fbb97c6c3512dc4
2021-06-23T05:50:50.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_large_api_generation_transfer_learning_finetune
11
null
transformers
11,001
--- tags: - summarization widget: - text: "parse the uses licence node of this package , if any , and returns the license definition if theres" --- # CodeTrans model for api recommendation generation Pretrained model for api recommendation generation using the t5 large model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). ## Model description This CodeTrans model is based on the `t5-large` model. It has its own SentencePiece vocabulary model. It used transfer-learning pre-training on 7 unsupervised datasets in the software development domain. It is then fine-tuned on the api recommendation generation task for the java apis. ## Intended uses & limitations The model could be used to generate api usage for the java programming tasks. ### How to use Here is how to use this model to generate java function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_large_api_generation_transfer_learning_finetune"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_large_api_generation_transfer_learning_finetune", skip_special_tokens=True), device=0 ) tokenized_code = "parse the uses licence node of this package , if any , and returns the license definition if theres" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/transfer%20learning%20fine-tuning/api%20generation/large_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Transfer-learning Pretraining The model was trained on a single TPU Pod V3-8 for 240,000 steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Fine-tuning This model was then fine-tuned on a single TPU Pod V3-8 for 180,000 steps in total, using sequence length 512 (batch size 256), using only the dataset only containing api recommendation generation data. ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Java | | -------------------- | :------------: | | CodeTrans-ST-Small | 68.71 | | CodeTrans-ST-Base | 70.45 | | CodeTrans-TF-Small | 68.90 | | CodeTrans-TF-Base | 72.11 | | CodeTrans-TF-Large | 73.26 | | CodeTrans-MT-Small | 58.43 | | CodeTrans-MT-Base | 67.97 | | CodeTrans-MT-Large | 72.29 | | CodeTrans-MT-TF-Small | 69.29 | | CodeTrans-MT-TF-Base | 72.89 | | CodeTrans-MT-TF-Large | **73.39** | | State of the art | 54.42 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_small_commit_generation
e12a8bd060251516b9c12b9ff4c942f83e1a9e2f
2021-06-23T10:14:01.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_small_commit_generation
11
null
transformers
11,002
--- tags: - summarization widget: - text: "new file mode 100644 index 000000000 . . 892fda21b Binary files / dev / null and b / src / plugins / gateway / lib / joscar . jar differ" --- # CodeTrans model for git commit message generation Pretrained model on git commit using the t5 small model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized git commit: it works best with tokenized git commit. ## Model description This CodeTrans model is based on the `t5-small` model. It has its own SentencePiece vocabulary model. It used single-task training on Git Commit Message Generation dataset. ## Intended uses & limitations The model could be used to generate the git commit message for the git commit changes or be fine-tuned on other relevant tasks. It can be used on unparsed and untokenized commit changes. However, if the change is tokenized, the performance should be better. ### How to use Here is how to use this model to generate git commit message using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_small_commit_generation"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_small_commit_generation", skip_special_tokens=True), device=0 ) tokenized_code = "new file mode 100644 index 000000000 . . 892fda21b Binary files / dev / null and b / src / plugins / gateway / lib / joscar . jar differ" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/single%20task/commit%20generation/small_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Evaluation results For the git commit message generation task, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Java | | -------------------- | :------------: | | CodeTrans-ST-Small | 39.61 | | CodeTrans-ST-Base | 38.67 | | CodeTrans-TF-Small | 44.22 | | CodeTrans-TF-Base | 44.17 | | CodeTrans-TF-Large | **44.41** | | CodeTrans-MT-Small | 36.17 | | CodeTrans-MT-Base | 39.25 | | CodeTrans-MT-Large | 41.18 | | CodeTrans-MT-TF-Small | 43.96 | | CodeTrans-MT-TF-Base | 44.19 | | CodeTrans-MT-TF-Large | 44.34 | | State of the art | 32.81 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/legal_t5_small_multitask_en_it
5c41bebe0405e0d3c866d8a6c4978715f5cb427e
2021-06-23T11:00:22.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "English Italian", "dataset:dcep europarl jrc-acquis", "transformers", "translation English Italian model", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_multitask_en_it
11
null
transformers
11,003
--- language: English Italian tags: - translation English Italian model datasets: - dcep europarl jrc-acquis widget: - text: "WRITTEN QUESTION E-1184/07" --- # legal_t5_small_multitask_en_it model Model on translating legal text from English to Italian. It was first released in [this repository](https://github.com/agemagician/LegalTrans). The model is parallely trained on the three parallel corpus with 42 language pair from jrc-acquis, europarl and dcep along with the unsupervised task where the model followed the task of prediction in a masked language model. ## Model description No pretraining is involved in case of legal_t5_small_multitask_en_it model, rather the unsupervised task is added with all the translation task to realize the multitask learning scenario. ## Intended uses & limitations The model could be used for translation of legal texts from English to Italian. ### How to use Here is how to use this model to translate legal text from English to Italian in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_multitask_en_it"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_multitask_en_it", do_lower_case=False, skip_special_tokens=True), device=0 ) en_text = "WRITTEN QUESTION E-1184/07" pipeline([en_text], max_length=512) ``` ## Training data The legal_t5_small_multitask_en_it model (the supervised task which involved only the corresponding langauge pair and as well as unsupervised task where all of the data of all language pairs were available) model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 9 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_multitask_en_it | 47.070| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SergeiGKS/camembert-base-wikipedia-4gb-finetuned-job-ner
ae4a2506da4e4d146e97d9b1c480932b24fba41d
2021-12-14T13:24:57.000Z
[ "pytorch", "tensorboard", "camembert", "token-classification", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
token-classification
false
SergeiGKS
null
SergeiGKS/camembert-base-wikipedia-4gb-finetuned-job-ner
11
null
transformers
11,004
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: camembert-base-wikipedia-4gb-finetuned-job-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # camembert-base-wikipedia-4gb-finetuned-job-ner This model is a fine-tuned version of [camembert/camembert-base-wikipedia-4gb](https://huggingface.co/camembert/camembert-base-wikipedia-4gb) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0435 - Precision: 0.9134 - Recall: 0.9197 - F1: 0.9165 - Accuracy: 0.9873 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0463 | 1.0 | 7543 | 0.0435 | 0.9134 | 0.9197 | 0.9165 | 0.9873 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
Shushant/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext-ContaminationQAmodel_PubmedBERT
71a293ac3a207ce25c3b1add8cbf32ecbc216082
2022-01-16T15:54:15.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
question-answering
false
Shushant
null
Shushant/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext-ContaminationQAmodel_PubmedBERT
11
null
transformers
11,005
--- license: mit tags: - generated_from_trainer model-index: - name: BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext-ContaminationQAmodel_PubmedBERT results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext-ContaminationQAmodel_PubmedBERT This model is a fine-tuned version of [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.7515 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 22 | 3.9518 | | No log | 2.0 | 44 | 3.2703 | | No log | 3.0 | 66 | 2.9308 | | No log | 4.0 | 88 | 2.7806 | | No log | 5.0 | 110 | 2.6926 | | No log | 6.0 | 132 | 2.7043 | | No log | 7.0 | 154 | 2.7113 | | No log | 8.0 | 176 | 2.7236 | | No log | 9.0 | 198 | 2.7559 | | No log | 10.0 | 220 | 2.7515 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
Sindhu/muril-large-squad2
1d998e51bc18d19cb55d7b6c54535caa7ec98089
2021-11-20T09:43:56.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
Sindhu
null
Sindhu/muril-large-squad2
11
null
transformers
11,006
# Muril Large Squad2 This model is finetuned for QA task on Squad2 from [Muril Large checkpoint](https://huggingface.co/google/muril-large-cased). ## Hyperparameters ``` Batch Size: 4 Grad Accumulation Steps = 8 Total epochs = 3 MLM Checkpoint = google/muril-large-cased max_seq_len = 256 learning_rate = 1e-5 lr_schedule = LinearWarmup warmup_ratio = 0.1 doc_stride = 128 ``` ## Squad 2 Evaluation stats: Generated from [the official Squad2 evaluation script](https://worksheets.codalab.org/rest/bundles/0x6b567e1cf2e041ec80d7098f031c5c9e/contents/blob/) ```json { "exact": 82.0180240882675, "f1": 85.10110304685352, "total": 11873, "HasAns_exact": 81.6970310391363, "HasAns_f1": 87.87203044454981, "HasAns_total": 5928, "NoAns_exact": 82.3380992430614, "NoAns_f1": 82.3380992430614, "NoAns_total": 5945 } ``` ## Limitations MuRIL is specifically trained to work on 18 Indic languages and English. This model is not expected to perform well in any other languages. See the MuRIL checkpoint for further details. For any questions, you can reach out to me [on Twitter](https://twitter.com/batw0man)
StivenLancheros/spanberta-base-cased-ner-conll02-finetuned-ner
a66639a2cd9307ffc8f046c038d62ec275025cc9
2021-11-07T11:32:21.000Z
[ "pytorch", "tensorboard", "roberta", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
token-classification
false
StivenLancheros
null
StivenLancheros/spanberta-base-cased-ner-conll02-finetuned-ner
11
null
transformers
11,007
--- tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: spanberta-base-cased-ner-conll02-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.911773494695951 - name: Recall type: recall value: 0.9149861308943699 - name: F1 type: f1 value: 0.9133769878391019 - name: Accuracy type: accuracy value: 0.9803183888541573 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanberta-base-cased-ner-conll02-finetuned-ner This model is a fine-tuned version of [skimai/spanberta-base-cased-ner-conll02](https://huggingface.co/skimai/spanberta-base-cased-ner-conll02) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0824 - Precision: 0.9118 - Recall: 0.9150 - F1: 0.9134 - Accuracy: 0.9803 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2641 | 1.0 | 878 | 0.0923 | 0.8818 | 0.8802 | 0.8810 | 0.9739 | | 0.0648 | 2.0 | 1756 | 0.0817 | 0.9033 | 0.9044 | 0.9038 | 0.9785 | | 0.0314 | 3.0 | 2634 | 0.0824 | 0.9118 | 0.9150 | 0.9134 | 0.9803 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
TehranNLP/bert-base-cased-mnli
31df249aed67164640da2676afbdd73dc39f5d37
2021-06-03T09:18:49.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
TehranNLP
null
TehranNLP/bert-base-cased-mnli
11
null
transformers
11,008
Entry not found
Vivek/GPT2_GSM8k
204965a60b16ed3518b77a64216bd8a58713f613
2021-11-29T15:27:55.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
Vivek
null
Vivek/GPT2_GSM8k
11
null
transformers
11,009
Entry not found
Wikidepia/albert-bahasa-uncased-squad
73eceff56a054d24b0e68cfe603e0cc95934a0b7
2021-01-11T01:39:05.000Z
[ "pytorch", "albert", "question-answering", "id", "transformers", "autotrain_compatible" ]
question-answering
false
Wikidepia
null
Wikidepia/albert-bahasa-uncased-squad
11
null
transformers
11,010
--- language: id inference: false --- # SQuAD IndoBERT-Lite Base Model Fine-tuned IndoBERT-Lite from IndoBenchmark using Translated SQuAD datasets. ## How to use ### Using pipeline ```python from transformers import BertTokenizerFast, pipeline tokenizer = BertTokenizerFast.from_pretrained( 'Wikidepia/albert-bahasa-uncased-squad' ) nlp = pipeline('question-answering', model="Wikidepia/albert-bahasa-uncased-squad", tokenizer=tokenizer) QA_input = { 'question': 'Kapan orang Normandia berada di Normandia?', 'context': 'The Normans (Norman: Nourmands; French: Normands; Latin: Normanni) adalah orang-orang yang pada abad ke-10 dan ke-11 memberikan nama mereka ke Normandia, sebuah wilayah di Prancis. Mereka adalah keturunan dari Norse (\ "Norman \" berasal dari \ "Norseman \") perampok dan perompak dari Denmark, Islandia dan Norwegia yang, di bawah pemimpin mereka Rollo, setuju untuk bersumpah setia kepada Raja Charles III dari Francia Barat. Melalui generasi asimilasi dan pencampuran dengan penduduk asli Franka dan Romawi-Gaul, keturunan mereka secara bertahap akan bergabung dengan budaya Francia Barat yang berbasis di Karoling. Identitas budaya dan etnis orang Normandia yang berbeda awalnya muncul pada paruh pertama abad ke-10, dan terus berkembang selama abad-abad berikutnya.' } res = nlp(QA_input) print(res) ```
aadelucia/GPT2_medium_narrative_finetuned_medium
13f6bed7e075f31e10ec2c3105829bf486ebe588
2021-12-10T17:44:57.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
aadelucia
null
aadelucia/GPT2_medium_narrative_finetuned_medium
11
null
transformers
11,011
Please visit the repo for training details. https://github.com/AADeLucia/gpt2-narrative-decoding
aditeyabaral/additionalpretrained-bert-hinglish-small
adf89296ea3c84bd2a3012d85bda8e5f20063a07
2021-10-20T18:26:17.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
aditeyabaral
null
aditeyabaral/additionalpretrained-bert-hinglish-small
11
null
transformers
11,012
Entry not found
adityavithaldas/distilbert-base-uncased-finetuned-ner
17e3fefebe62c7f30f8b8c4206985d3cc4814e8f
2021-09-22T19:33:37.000Z
[ "pytorch", "tensorboard", "distilbert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
adityavithaldas
null
adityavithaldas/distilbert-base-uncased-finetuned-ner
11
1
transformers
11,013
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 model-index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.10.2 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
adresgezgini/Turkish-GPT-2-Finetuned_digital_ads
3974533f30de8a228353e783f3b8959ca37a5a17
2021-05-21T11:52:06.000Z
[ "pytorch", "tf", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
adresgezgini
null
adresgezgini/Turkish-GPT-2-Finetuned_digital_ads
11
null
transformers
11,014
Entry not found
airKlizz/distilbart-3-3-multi-combine-wiki-news
c364b739fc4e901eb85ee087c804f07fc4c073cb
2020-08-21T12:24:19.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
airKlizz
null
airKlizz/distilbart-3-3-multi-combine-wiki-news
11
null
transformers
11,015
Entry not found
airKlizz/mt5-base-germeval21-toxic-with-task-specific-pretraining-and-data-augmentation
7a68d94637e5e7878a120f44bdfb6ff3b66698fe
2021-07-12T16:04:43.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
airKlizz
null
airKlizz/mt5-base-germeval21-toxic-with-task-specific-pretraining-and-data-augmentation
11
null
transformers
11,016
Entry not found
airKlizz/mt5-base-wikinewssum-portuguese
e3fc8ed890f93f8cf6ab2ed1dea305308ef101c9
2021-12-26T08:03:49.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "summarization", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
summarization
false
airKlizz
null
airKlizz/mt5-base-wikinewssum-portuguese
11
null
transformers
11,017
--- license: apache-2.0 tags: - summarization - generated_from_trainer metrics: - rouge model-index: - name: mt5-base-wikinewssum-portuguese results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-base-wikinewssum-portuguese This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.0428 - Rouge1: 9.4966 - Rouge2: 4.2224 - Rougel: 7.9845 - Rougelsum: 8.8641 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| | No log | 1.0 | 334 | 2.2258 | 7.3686 | 2.9066 | 6.3167 | 6.8758 | | No log | 2.0 | 668 | 2.1389 | 9.0551 | 3.8395 | 7.6578 | 8.4641 | | No log | 3.0 | 1002 | 2.1030 | 9.2792 | 3.9352 | 7.8259 | 8.663 | | No log | 4.0 | 1336 | 2.0841 | 9.337 | 4.0647 | 7.8662 | 8.693 | | 3.2831 | 5.0 | 1670 | 2.0487 | 9.4244 | 4.0821 | 7.8633 | 8.7111 | | 3.2831 | 6.0 | 2004 | 2.0580 | 9.4598 | 4.1598 | 7.9511 | 8.8299 | | 3.2831 | 7.0 | 2338 | 2.0426 | 9.501 | 4.1885 | 7.9803 | 8.8612 | | 3.2831 | 8.0 | 2672 | 2.0428 | 9.4966 | 4.2224 | 7.9845 | 8.8641 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.10.1 - Datasets 1.16.1 - Tokenizers 0.10.3
airKlizz/xlm-roberta-base-germeval21-toxic-with-task-specific-pretraining-and-data-augmentation
be93cd64989d3b0c9d4dd6516dd477f4156aef23
2021-07-12T15:01:58.000Z
[ "pytorch", "xlm-roberta", "text-classification", "transformers" ]
text-classification
false
airKlizz
null
airKlizz/xlm-roberta-base-germeval21-toxic-with-task-specific-pretraining-and-data-augmentation
11
null
transformers
11,018
Entry not found
allenai/dsp_roberta_base_tapt_rct_500
def5439c85ce5f29981f5868a21c452b31956c92
2021-05-20T13:32:43.000Z
[ "pytorch", "jax", "roberta", "transformers" ]
null
false
allenai
null
allenai/dsp_roberta_base_tapt_rct_500
11
null
transformers
11,019
Entry not found
allenai/longformer-large-4096-extra.pos.embd.only
3d7ed69023d5e6e9df4454011950d1a199666ef0
2021-03-10T02:32:43.000Z
[ "pytorch", "tf", "longformer", "transformers" ]
null
false
allenai
null
allenai/longformer-large-4096-extra.pos.embd.only
11
null
transformers
11,020
Entry not found
anirudh21/bert-base-uncased-finetuned-qnli
ebb68e464834a6340176695880c746b19d057ff7
2022-01-27T08:21:03.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
anirudh21
null
anirudh21/bert-base-uncased-finetuned-qnli
11
null
transformers
11,021
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: bert-base-uncased-finetuned-qnli results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: qnli metrics: - name: Accuracy type: accuracy value: 0.791689547867472 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-qnli This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6268 - Accuracy: 0.7917 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 63 | 0.5339 | 0.7620 | | No log | 2.0 | 126 | 0.4728 | 0.7866 | | No log | 3.0 | 189 | 0.5386 | 0.7847 | | No log | 4.0 | 252 | 0.6096 | 0.7904 | | No log | 5.0 | 315 | 0.6268 | 0.7917 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.1 - Tokenizers 0.10.3
annafavaro/bert-base-uncased-finetuned-addresso
86e360532bd486d2f54a5ea7e577751e6580ad3a
2021-12-03T23:48:50.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
annafavaro
null
annafavaro/bert-base-uncased-finetuned-addresso
11
null
transformers
11,022
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-base-uncased-finetuned-addresso results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-addresso This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 5 - eval_batch_size: 5 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Framework versions - Transformers 4.12.5 - Pytorch 1.8.1 - Datasets 1.15.1 - Tokenizers 0.10.3
anthonymirand/haha_2019_adaptation_task
b2aeba7ee0ad1724511327d98f673c3b485a56ee
2021-05-30T21:16:48.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
anthonymirand
null
anthonymirand/haha_2019_adaptation_task
11
null
transformers
11,023
Entry not found
anton-l/sew-mid-100k-ft-keyword-spotting
68e0aa1aa0e2b91f33be1472a8d9a641b927e49d
2022-01-26T14:43:39.000Z
[ "pytorch", "tensorboard", "sew", "audio-classification", "dataset:superb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
audio-classification
false
anton-l
null
anton-l/sew-mid-100k-ft-keyword-spotting
11
null
transformers
11,024
--- license: apache-2.0 tags: - audio-classification - generated_from_trainer datasets: - superb metrics: - accuracy model-index: - name: sew-mid-100k-ft-keyword-spotting results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sew-mid-100k-ft-keyword-spotting This model is a fine-tuned version of [asapp/sew-mid-100k](https://huggingface.co/asapp/sew-mid-100k) on the superb dataset. It achieves the following results on the evaluation set: - Loss: 0.0975 - Accuracy: 0.9757 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 0 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5999 | 1.0 | 399 | 0.2262 | 0.9635 | | 0.4271 | 2.0 | 798 | 0.1230 | 0.9697 | | 0.3778 | 3.0 | 1197 | 0.1052 | 0.9731 | | 0.3227 | 4.0 | 1596 | 0.0975 | 0.9757 | | 0.3081 | 5.0 | 1995 | 0.0962 | 0.9753 | ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.9.1+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
anton-l/wav2vec2-base-keyword-spotting
b1943623613298087ca1cc4a0fe68dd4ee5277ec
2021-09-29T16:28:27.000Z
[ "pytorch", "tensorboard", "wav2vec2", "audio-classification", "dataset:superb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
audio-classification
false
anton-l
null
anton-l/wav2vec2-base-keyword-spotting
11
null
transformers
11,025
--- license: apache-2.0 tags: - audio-classification - generated_from_trainer datasets: - superb metrics: - accuracy model-index: - name: wav2vec2-base-keyword-spotting results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-keyword-spotting This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the superb dataset. It achieves the following results on the evaluation set: - Loss: 0.0746 - Accuracy: 0.9843 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 0 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.8279 | 1.0 | 399 | 0.6792 | 0.8558 | | 0.2961 | 2.0 | 798 | 0.1383 | 0.9798 | | 0.2069 | 3.0 | 1197 | 0.0972 | 0.9809 | | 0.1757 | 4.0 | 1596 | 0.0843 | 0.9825 | | 0.1607 | 5.0 | 1995 | 0.0746 | 0.9843 | ### Framework versions - Transformers 4.11.0.dev0 - Pytorch 1.9.1+cu111 - Datasets 1.12.1 - Tokenizers 0.10.3
aravind-812/roberta-train-json
a2d3b345e2a51cf7d089425ffde55ff24c9c3981
2021-05-20T14:12:53.000Z
[ "pytorch", "jax", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
aravind-812
null
aravind-812/roberta-train-json
11
null
transformers
11,026
--- datasets: - squad widget: - text: "Which name is also used to describe the Amazon rainforest in English?" context: "The Amazon rainforest (Portuguese: Floresta Amazônica or Amazônia; Spanish: Selva Amazónica, Amazonía or usually Amazonia; French: Forêt amazonienne; Dutch: Amazoneregenwoud), also known in English as Amazonia or the Amazon Jungle, is a moist broadleaf forest that covers most of the Amazon basin of South America. This basin encompasses 7,000,000 square kilometres (2,700,000 sq mi), of which 5,500,000 square kilometres (2,100,000 sq mi) are covered by the rainforest. This region includes territory belonging to nine nations. The majority of the forest is contained within Brazil, with 60% of the rainforest, followed by Peru with 13%, Colombia with 10%, and with minor amounts in Venezuela, Ecuador, Bolivia, Guyana, Suriname and French Guiana. States or departments in four nations contain \"Amazonas\" in their names. The Amazon represents over half of the planet's remaining rainforests, and comprises the largest and most biodiverse tract of tropical rainforest in the world, with an estimated 390 billion individual trees divided into 16,000 species." - text: "How many square kilometers of rainforest is covered in the basin?" context: "The Amazon rainforest (Portuguese: Floresta Amazônica or Amazônia; Spanish: Selva Amazónica, Amazonía or usually Amazonia; French: Forêt amazonienne; Dutch: Amazoneregenwoud), also known in English as Amazonia or the Amazon Jungle, is a moist broadleaf forest that covers most of the Amazon basin of South America. This basin encompasses 7,000,000 square kilometres (2,700,000 sq mi), of which 5,500,000 square kilometres (2,100,000 sq mi) are covered by the rainforest. This region includes territory belonging to nine nations. The majority of the forest is contained within Brazil, with 60% of the rainforest, followed by Peru with 13%, Colombia with 10%, and with minor amounts in Venezuela, Ecuador, Bolivia, Guyana, Suriname and French Guiana. States or departments in four nations contain \"Amazonas\" in their names. The Amazon represents over half of the planet's remaining rainforests, and comprises the largest and most biodiverse tract of tropical rainforest in the world, with an estimated 390 billion individual trees divided into 16,000 species."
arnolfokam/bert-base-uncased-kin
156043cdfa14ecf2bbdd99f68e2b43e04b805476
2021-11-24T11:07:08.000Z
[ "pytorch", "bert", "token-classification", "kin", "dataset:masakhaner", "transformers", "NER", "license:apache-2.0", "autotrain_compatible" ]
token-classification
false
arnolfokam
null
arnolfokam/bert-base-uncased-kin
11
null
transformers
11,027
--- language: - kin tags: - NER datasets: - masakhaner metrics: - f1 - precision - recall license: apache-2.0 widget: - text: "Ambasaderi Bellomo yavuze ko bishimira ubufatanye burambye hagati ya EU n’u Rwanda, bushingiye nanone ku bufatanye hagati y’imigabane ya Afurika n’u Burayi." --- # Model description **bert-base-uncased-kin** is a model based on the fine-tuned BERT base uncased model. It has been trained to recognize four types of entities: - dates & time (DATE) - Location (LOC) - Organizations (ORG) - Person (PER) # Intended Use - Intended to be used for research purposes concerning Named Entity Recognition for African Languages. - Not intended for practical purposes. # Training Data This model was fine-tuned on the Kinyarwanda corpus **(kin)** of the [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) dataset. However, we thresholded the number of entity groups per sentence in this dataset to 10 entity groups. # Training procedure This model was trained on a single NVIDIA P5000 from [Paperspace](https://www.paperspace.com) #### Hyperparameters - **Learning Rate:** 5e-5 - **Batch Size:** 32 - **Maximum Sequence Length:** 164 - **Epochs:** 30 # Evaluation Data We evaluated this model on the test split of the Kinyarwandan corpus **(kin)** present in the [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) with no thresholding. # Metrics - Precision - Recall - F1-score # Limitations - The size of the pre-trained language model prevents its usage in anything other than research. - Lack of analysis concerning the bias and fairness in these models may make them dangerous if deployed into production system. - The train data is a less populated version of the original dataset in terms of entity groups per sentence. Therefore, this can negatively impact the performance. # Caveats and Recommendations - The topics in the dataset corpus are centered around **News**. Future training could be done with a more diverse corpus. # Results Model Name| Precision | Recall | F1-score -|-|-|- **bert-base-uncased-kin**| 75.00 |80.09|77.47 # Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline tokenizer = AutoTokenizer.from_pretrained("arnolfokam/bert-base-uncased-kin") model = AutoModelForTokenClassification.from_pretrained("arnolfokam/bert-base-uncased-kin") nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "Rayon Sports yasinyishije rutahizamu w’Umurundi" ner_results = nlp(example) print(ner_results) ```
ayameRushia/indobert-base-uncased-finetuned-indonlu-smsa
0b25a99d2d40c3fa900e0d5c487752c045ae1bf7
2021-12-22T16:23:37.000Z
[ "pytorch", "bert", "text-classification", "dataset:indonlu", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
ayameRushia
null
ayameRushia/indobert-base-uncased-finetuned-indonlu-smsa
11
null
transformers
11,028
--- license: mit tags: - generated_from_trainer datasets: - indonlu metrics: - accuracy - f1 - precision - recall model-index: - name: indobert-base-uncased-finetuned-indonlu-smsa results: - task: name: Text Classification type: text-classification dataset: name: indonlu type: indonlu args: smsa metrics: - name: Accuracy type: accuracy value: 0.9301587301587302 - name: F1 type: f1 value: 0.9066105299178986 - name: Precision type: precision value: 0.8992078788375845 - name: Recall type: recall value: 0.9147307323234121 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # indobert-base-uncased-finetuned-indonlu-smsa This model is a fine-tuned version of [indolem/indobert-base-uncased](https://huggingface.co/indolem/indobert-base-uncased) on the indonlu dataset. It achieves the following results on the evaluation set: - Loss: 0.2277 - Accuracy: 0.9302 - F1: 0.9066 - Precision: 0.8992 - Recall: 0.9147 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1500 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | No log | 1.0 | 344 | 0.3831 | 0.8476 | 0.7715 | 0.7817 | 0.7627 | | 0.4167 | 2.0 | 688 | 0.2809 | 0.8905 | 0.8406 | 0.8699 | 0.8185 | | 0.2624 | 3.0 | 1032 | 0.2254 | 0.9230 | 0.8842 | 0.9004 | 0.8714 | | 0.2624 | 4.0 | 1376 | 0.2378 | 0.9238 | 0.8797 | 0.9180 | 0.8594 | | 0.1865 | 5.0 | 1720 | 0.2277 | 0.9302 | 0.9066 | 0.8992 | 0.9147 | | 0.1217 | 6.0 | 2064 | 0.2444 | 0.9262 | 0.8981 | 0.9013 | 0.8957 | | 0.1217 | 7.0 | 2408 | 0.2985 | 0.9286 | 0.8999 | 0.9035 | 0.8971 | | 0.0847 | 8.0 | 2752 | 0.3397 | 0.9278 | 0.8969 | 0.9090 | 0.8871 | | 0.0551 | 9.0 | 3096 | 0.3542 | 0.9270 | 0.8961 | 0.9010 | 0.8924 | | 0.0551 | 10.0 | 3440 | 0.3862 | 0.9222 | 0.8895 | 0.8970 | 0.8846 | ### Framework versions - Transformers 4.14.1 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
baffo32/gpt2-ptmap
e1509c6a886f78039ee944060e2a04ef4b86e7f9
2021-12-24T13:45:44.000Z
[ "pytorch", "tf", "jax", "tflite", "rust", "gpt2", "text-generation", "en", "transformers", "exbert", "license:mit" ]
text-generation
false
baffo32
null
baffo32/gpt2-ptmap
11
null
transformers
11,029
--- language: en tags: - exbert license: mit --- # GPT-2 Test the whole generation capabilities here: https://transformer.huggingface.co/doc/gpt2-large Pretrained model on English language using a causal language modeling (CLM) objective. It was introduced in [this paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) and first released at [this page](https://openai.com/blog/better-language-models/). Disclaimer: The team releasing GPT-2 also wrote a [model card](https://github.com/openai/gpt-2/blob/master/model_card.md) for their model. Content from this model card has been written by the Hugging Face team to complete the information they provided and give specific examples of bias. ## Model description GPT-2 is a transformers model pretrained on a very large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was trained to guess the next word in sentences. More precisely, inputs are sequences of continuous text of a certain length and the targets are the same sequence, shifted one token (word or piece of word) to the right. The model uses internally a mask-mechanism to make sure the predictions for the token `i` only uses the inputs from `1` to `i` but not the future tokens. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks. The model is best at what it was pretrained for however, which is generating texts from a prompt. ## Intended uses & limitations You can use the raw model for text generation or fine-tune it to a downstream task. See the [model hub](https://huggingface.co/models?filter=gpt2) to look for fine-tuned versions on a task that interests you. ### How to use You can use this model directly with a pipeline for text generation. Since the generation relies on some randomness, we set a seed for reproducibility: ```python >>> from transformers import pipeline, set_seed >>> generator = pipeline('text-generation', model='gpt2') >>> set_seed(42) >>> generator("Hello, I'm a language model,", max_length=30, num_return_sequences=5) [{'generated_text': "Hello, I'm a language model, a language for thinking, a language for expressing thoughts."}, {'generated_text': "Hello, I'm a language model, a compiler, a compiler library, I just want to know how I build this kind of stuff. I don"}, {'generated_text': "Hello, I'm a language model, and also have more than a few of your own, but I understand that they're going to need some help"}, {'generated_text': "Hello, I'm a language model, a system model. I want to know my language so that it might be more interesting, more user-friendly"}, {'generated_text': 'Hello, I\'m a language model, not a language model"\n\nThe concept of "no-tricks" comes in handy later with new'}] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import GPT2Tokenizer, GPT2Model tokenizer = GPT2Tokenizer.from_pretrained('gpt2') model = GPT2Model.from_pretrained('gpt2') text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import GPT2Tokenizer, TFGPT2Model tokenizer = GPT2Tokenizer.from_pretrained('gpt2') model = TFGPT2Model.from_pretrained('gpt2') text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ### Limitations and bias The training data used for this model has not been released as a dataset one can browse. We know it contains a lot of unfiltered content from the internet, which is far from neutral. As the openAI team themselves point out in their [model card](https://github.com/openai/gpt-2/blob/master/model_card.md#out-of-scope-use-cases): > Because large-scale language models like GPT-2 do not distinguish fact from fiction, we don’t support use-cases > that require the generated text to be true. > > Additionally, language models like GPT-2 reflect the biases inherent to the systems they were trained on, so we do > not recommend that they be deployed into systems that interact with humans > unless the deployers first carry out a > study of biases relevant to the intended use-case. We found no statistically significant difference in gender, race, > and religious bias probes between 774M and 1.5B, implying all versions of GPT-2 should be approached with similar > levels of caution around use cases that are sensitive to biases around human attributes. Here's an example of how the model can have biased predictions: ```python >>> from transformers import pipeline, set_seed >>> generator = pipeline('text-generation', model='gpt2') >>> set_seed(42) >>> generator("The White man worked as a", max_length=10, num_return_sequences=5) [{'generated_text': 'The White man worked as a mannequin for'}, {'generated_text': 'The White man worked as a maniser of the'}, {'generated_text': 'The White man worked as a bus conductor by day'}, {'generated_text': 'The White man worked as a plumber at the'}, {'generated_text': 'The White man worked as a journalist. He had'}] >>> set_seed(42) >>> generator("The Black man worked as a", max_length=10, num_return_sequences=5) [{'generated_text': 'The Black man worked as a man at a restaurant'}, {'generated_text': 'The Black man worked as a car salesman in a'}, {'generated_text': 'The Black man worked as a police sergeant at the'}, {'generated_text': 'The Black man worked as a man-eating monster'}, {'generated_text': 'The Black man worked as a slave, and was'}] ``` This bias will also affect all fine-tuned versions of this model. ## Training data The OpenAI team wanted to train this model on a corpus as large as possible. To build it, they scraped all the web pages from outbound links on Reddit which received at least 3 karma. Note that all Wikipedia pages were removed from this dataset, so the model was not trained on any part of Wikipedia. The resulting dataset (called WebText) weights 40GB of texts but has not been publicly released. You can find a list of the top 1,000 domains present in WebText [here](https://github.com/openai/gpt-2/blob/master/domains.txt). ## Training procedure ### Preprocessing The texts are tokenized using a byte-level version of Byte Pair Encoding (BPE) (for unicode characters) and a vocabulary size of 50,257. The inputs are sequences of 1024 consecutive tokens. The larger model was trained on 256 cloud TPU v3 cores. The training duration was not disclosed, nor were the exact details of training. ## Evaluation results The model achieves the following results without any fine-tuning (zero-shot): | Dataset | LAMBADA | LAMBADA | CBT-CN | CBT-NE | WikiText2 | PTB | enwiki8 | text8 | WikiText103 | 1BW | |:--------:|:-------:|:-------:|:------:|:------:|:---------:|:------:|:-------:|:------:|:-----------:|:-----:| | (metric) | (PPL) | (ACC) | (ACC) | (ACC) | (PPL) | (PPL) | (BPB) | (BPC) | (PPL) | (PPL) | | | 35.13 | 45.99 | 87.65 | 83.4 | 29.41 | 65.85 | 1.16 | 1,17 | 37.50 | 75.20 | ### BibTeX entry and citation info ```bibtex @article{radford2019language, title={Language Models are Unsupervised Multitask Learners}, author={Radford, Alec and Wu, Jeff and Child, Rewon and Luan, David and Amodei, Dario and Sutskever, Ilya}, year={2019} } ``` <a href="https://huggingface.co/exbert/?model=gpt2"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
baykenney/bert-base-gpt2detector-topp96
b1f7c7588100e58f2a68ce02d1da24e2724c4e2b
2021-05-19T12:12:07.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
baykenney
null
baykenney/bert-base-gpt2detector-topp96
11
null
transformers
11,030
Entry not found
bhavikardeshna/xlm-roberta-base-hindi
414a7949deb43cf5e3c828359b26c44b2dca3467
2021-12-21T11:40:15.000Z
[ "pytorch", "xlm-roberta", "question-answering", "arxiv:2112.09866", "transformers", "autotrain_compatible" ]
question-answering
false
bhavikardeshna
null
bhavikardeshna/xlm-roberta-base-hindi
11
null
transformers
11,031
# BibTeX entry and citation info ``` @misc{pandya2021cascading, title={Cascading Adaptors to Leverage English Data to Improve Performance of Question Answering for Low-Resource Languages}, author={Hariom A. Pandya and Bhavik Ardeshna and Dr. Brijesh S. Bhatt}, year={2021}, eprint={2112.09866}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
bhavikardeshna/xlm-roberta-base-spanish
25912d55fd381e4b2d199dcdae3bd9422e898f88
2021-12-21T11:39:52.000Z
[ "pytorch", "xlm-roberta", "question-answering", "arxiv:2112.09866", "transformers", "autotrain_compatible" ]
question-answering
false
bhavikardeshna
null
bhavikardeshna/xlm-roberta-base-spanish
11
null
transformers
11,032
# BibTeX entry and citation info ``` @misc{pandya2021cascading, title={Cascading Adaptors to Leverage English Data to Improve Performance of Question Answering for Low-Resource Languages}, author={Hariom A. Pandya and Bhavik Ardeshna and Dr. Brijesh S. Bhatt}, year={2021}, eprint={2112.09866}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
bhavikardeshna/xlm-roberta-base-vietnamese
98a34fe48206b64acaac2e419ef3273cbc7a3d3e
2021-12-21T11:39:18.000Z
[ "pytorch", "xlm-roberta", "question-answering", "arxiv:2112.09866", "transformers", "autotrain_compatible" ]
question-answering
false
bhavikardeshna
null
bhavikardeshna/xlm-roberta-base-vietnamese
11
null
transformers
11,033
# BibTeX entry and citation info ``` @misc{pandya2021cascading, title={Cascading Adaptors to Leverage English Data to Improve Performance of Question Answering for Low-Resource Languages}, author={Hariom A. Pandya and Bhavik Ardeshna and Dr. Brijesh S. Bhatt}, year={2021}, eprint={2112.09866}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
bhuvaneswari/t5-small-text_summarization
4fc3afa436f85dd36a0c557ca4fd92d0742852f7
2021-11-15T04:29:51.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:xsum", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
bhuvaneswari
null
bhuvaneswari/t5-small-text_summarization
11
null
transformers
11,034
--- license: apache-2.0 tags: - generated_from_trainer datasets: - xsum metrics: - rouge model-index: - name: t5-small-text_summarization results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: xsum type: xsum args: default metrics: - name: Rouge1 type: rouge value: 28.6917 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-text_summarization This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xsum dataset. It achieves the following results on the evaluation set: - Loss: 2.4591 - Rouge1: 28.6917 - Rouge2: 7.976 - Rougel: 22.6383 - Rougelsum: 22.6353 - Gen Len: 18.8185 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 25 - eval_batch_size: 25 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 2.7006 | 1.0 | 8162 | 2.4591 | 28.6917 | 7.976 | 22.6383 | 22.6353 | 18.8185 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
boychaboy/MNLI_roberta-base
75af53aa738071d3d96276741961022fe43b9078
2021-05-20T14:31:05.000Z
[ "pytorch", "jax", "roberta", "text-classification", "transformers" ]
text-classification
false
boychaboy
null
boychaboy/MNLI_roberta-base
11
null
transformers
11,035
Entry not found
brunodorneles/biobertpt-all-finetuned-ner
455b762a4b98b7250b04fd1ad9252f62b0474bcf
2021-11-03T14:40:02.000Z
[ "pytorch", "bert", "token-classification", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
token-classification
false
brunodorneles
null
brunodorneles/biobertpt-all-finetuned-ner
11
null
transformers
11,036
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: biobertpt-all-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # biobertpt-all-finetuned-ner This model is a fine-tuned version of [pucpr/biobertpt-all](https://huggingface.co/pucpr/biobertpt-all) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.3721 - Precision: 0.0179 - Recall: 0.0149 - F1: 0.0163 - Accuracy: 0.6790 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 1 | 2.7864 | 0.0091 | 0.0448 | 0.0152 | 0.3339 | | No log | 2.0 | 2 | 2.5096 | 0.0097 | 0.0149 | 0.0118 | 0.6292 | | No log | 3.0 | 3 | 2.3721 | 0.0179 | 0.0149 | 0.0163 | 0.6790 | ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.9.1+cu102 - Datasets 1.13.3 - Tokenizers 0.10.3
cahya/bert2bert-indonesian-summarization
2be9212d2b3fb688c461406853bebf54715d635f
2021-01-29T11:39:42.000Z
[ "pytorch", "encoder-decoder", "text2text-generation", "id", "dataset:id_liputan6", "transformers", "pipeline:summarization", "summarization", "bert2bert", "license:apache-2.0", "autotrain_compatible" ]
summarization
false
cahya
null
cahya/bert2bert-indonesian-summarization
11
1
transformers
11,037
--- language: id tags: - pipeline:summarization - summarization - bert2bert datasets: - id_liputan6 license: apache-2.0 --- # Indonesian BERT2BERT Summarization Model Finetuned BERT-base summarization model for Indonesian. ## Finetuning Corpus `bert2bert-indonesian-summarization` model is based on `cahya/bert-base-indonesian-1.5G` by [cahya](https://huggingface.co/cahya), finetuned using [id_liputan6](https://huggingface.co/datasets/id_liputan6) dataset. ## Load Finetuned Model ```python from transformers import BertTokenizer, EncoderDecoderModel tokenizer = BertTokenizer.from_pretrained("cahya/bert2bert-indonesian-summarization") tokenizer.bos_token = tokenizer.cls_token tokenizer.eos_token = tokenizer.sep_token model = EncoderDecoderModel.from_pretrained("cahya/bert2bert-indonesian-summarization") ``` ## Code Sample ```python from transformers import BertTokenizer, EncoderDecoderModel tokenizer = BertTokenizer.from_pretrained("cahya/bert2bert-indonesian-summarization") tokenizer.bos_token = tokenizer.cls_token tokenizer.eos_token = tokenizer.sep_token model = EncoderDecoderModel.from_pretrained("cahya/bert2bert-indonesian-summarization") # ARTICLE_TO_SUMMARIZE = "" # generate summary input_ids = tokenizer.encode(ARTICLE_TO_SUMMARIZE, return_tensors='pt') summary_ids = model.generate(input_ids, min_length=20, max_length=80, num_beams=10, repetition_penalty=2.5, length_penalty=1.0, early_stopping=True, no_repeat_ngram_size=2, use_cache=True, do_sample = True, temperature = 0.8, top_k = 50, top_p = 0.95) summary_text = tokenizer.decode(summary_ids[0], skip_special_tokens=True) print(summary_text) ``` Output: ``` ```
cahya/gpt2-medium-indonesian-story
21366a4240e1903ff85b8a6cd936b4c6288bfc7e
2021-09-03T17:46:01.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
cahya
null
cahya/gpt2-medium-indonesian-story
11
1
transformers
11,038
Entry not found
cahya/wav2vec2-large-xlsr-basque
7cb9afa381bfe89d8e221126cbd59dfd17bcbf79
2021-07-05T23:41:21.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "eu", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
cahya
null
cahya/wav2vec2-large-xlsr-basque
11
null
transformers
11,039
--- language: eu datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Basque by Cahya results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice eu type: common_voice args: eu metrics: - name: Test WER type: wer value: 12.44 --- # Wav2Vec2-Large-XLSR-Basque This is the model for Wav2Vec2-Large-XLSR-Basque, a fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) model on the [Basque Common Voice dataset](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "eu", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("cahya-wirawan/wav2vec2-large-xlsr-basque") model = Wav2Vec2ForCTC.from_pretrained("cahya-wirawan/wav2vec2-large-xlsr-basque") # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) resampler = torchaudio.transforms.Resample(sampling_rate, 16_000) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset[:2]["sentence"]) ``` ## Evaluation The model can be evaluated as follows on the Basque test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "eu", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("cahya-wirawan/wav2vec2-large-xlsr-basque") model = Wav2Vec2ForCTC.from_pretrained("cahya-wirawan/wav2vec2-large-xlsr-basque") model.to("cuda") chars_to_ignore_regex = '[\,\¿\?\.\¡\!\-\;\:\"\“\%\‘\”\\…\’\ː\'\‹\›\`\´\®\—\→]' # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) resampler = torchaudio.transforms.Resample(sampling_rate, 16_000) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 12.44 % ## Training The Common Voice `train`, `validation`, and ... datasets were used for training as well as ... and ... # TODO The script used for training can be found [here](https://github.com/cahya-wirawan/indonesian-speech-recognition)
cahya/wav2vec2-large-xlsr-turkish
fca7ef60a379c49399cee2a18fa7f67f1e47f2ed
2021-07-06T00:06:48.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "tr", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
cahya
null
cahya/wav2vec2-large-xlsr-turkish
11
null
transformers
11,040
--- language: tr datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Turkish by Cahya results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice tr type: common_voice args: tr metrics: - name: Test WER type: wer value: 21.13 --- # Wav2Vec2-Large-XLSR-Turkish This is the model for Wav2Vec2-Large-XLSR-Turkish, a fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) model on the [Turkish Common Voice dataset](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "tr", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("cahya-wirawan/wav2vec2-large-xlsr-turkish") model = Wav2Vec2ForCTC.from_pretrained("cahya-wirawan/wav2vec2-large-xlsr-turkish") # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) resampler = torchaudio.transforms.Resample(sampling_rate, 16_000) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset[:2]["sentence"]) ``` ## Evaluation The model can be evaluated as follows on the Turkish test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "tr", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("cahya-wirawan/wav2vec2-large-xlsr-turkish") model = Wav2Vec2ForCTC.from_pretrained("cahya-wirawan/wav2vec2-large-xlsr-turkish") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\‘\”\'\`…\’»«]' # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) resampler = torchaudio.transforms.Resample(sampling_rate, 16_000) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 21.13 % ## Training The Common Voice `train`, `validation`, other and invalidated The script used for training can be found [here](https://github.com/cahya-wirawan/indonesian-speech-recognition)
caixin1998/chinese-poetry-gpt2-pretrain
3893b84e24410e9ca26db68ca772a6b2de2398b4
2021-05-21T14:42:36.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
caixin1998
null
caixin1998/chinese-poetry-gpt2-pretrain
11
null
transformers
11,041
Entry not found
cartyparty/DialoGPT-small-nerdherd
2702a93c623602354261223661a84abebdf081c1
2021-09-01T00:42:04.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
cartyparty
null
cartyparty/DialoGPT-small-nerdherd
11
null
transformers
11,042
--- tags: - conversational --- # inspired by greentext
ccdv/lsg-camembert-base-4096
9808534d305a0f46101928c6be6b72410a3e051c
2022-07-27T04:49:56.000Z
[ "pytorch", "camembert", "fill-mask", "fr", "transformers", "long context", "autotrain_compatible" ]
fill-mask
false
ccdv
null
ccdv/lsg-camembert-base-4096
11
1
transformers
11,043
--- language: fr tags: - long context pipeline_tag: fill-mask --- # LSG model **Transformers >= 4.18.0**\ **This model relies on a custom modeling file, you need to add trust_remote_code=True**\ **See [\#13467](https://github.com/huggingface/transformers/pull/13467)** * [Usage](#usage) * [Parameters](#parameters) * [Sparse selection type](#sparse-selection-type) * [Tasks](#tasks) * [Training global tokens](#training-global-tokens) This model is adapted from [CamemBERT-base](https://huggingface.co/camembert-base) without additional pretraining yet. It uses the same number of parameters/layers and the same tokenizer. This model can handle long sequences but faster and more efficiently than Longformer or BigBird (from Transformers) and relies on Local + Sparse + Global attention (LSG). The model requires sequences whose length is a multiple of the block size. The model is "adaptive" and automatically pads the sequences if needed (adaptive=True in config). It is however recommended, thanks to the tokenizer, to truncate the inputs (truncation=True) and optionally to pad with a multiple of the block size (pad_to_multiple_of=...). \ Support encoder-decoder but I didnt test it extensively.\ Implemented in PyTorch. ![attn](attn.png) ## Usage The model relies on a custom modeling file, you need to add trust_remote_code=True to use it. ```python: from transformers import AutoModel, AutoTokenizer model = AutoModel.from_pretrained("ccdv/lsg-camembert-base-4096", trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained("ccdv/lsg-camembert-base-4096") ``` ## Parameters You can change various parameters like : * the number of global tokens (num_global_tokens=1) * local block size (block_size=128) * sparse block size (sparse_block_size=128) * sparsity factor (sparsity_factor=2) * mask_first_token (mask first token since it is redundant with the first global token) * see config.json file Default parameters work well in practice. If you are short on memory, reduce block sizes, increase sparsity factor and remove dropout in the attention score matrix. ```python: from transformers import AutoModel model = AutoModel.from_pretrained("ccdv/lsg-camembert-base-4096", trust_remote_code=True, num_global_tokens=16, block_size=64, sparse_block_size=64, attention_probs_dropout_prob=0.0 sparsity_factor=4, sparsity_type="none", mask_first_token=True ) ``` ## Sparse selection type There are 5 different sparse selection patterns. The best type is task dependent. \ Note that for sequences with length < 2*block_size, the type has no effect. * sparsity_type="norm", select highest norm tokens * Works best for a small sparsity_factor (2 to 4) * Additional parameters: * None * sparsity_type="pooling", use average pooling to merge tokens * Works best for a small sparsity_factor (2 to 4) * Additional parameters: * None * sparsity_type="lsh", use the LSH algorithm to cluster similar tokens * Works best for a large sparsity_factor (4+) * LSH relies on random projections, thus inference may differ slightly with different seeds * Additional parameters: * lsg_num_pre_rounds=1, pre merge tokens n times before computing centroids * sparsity_type="stride", use a striding mecanism per head * Each head will use different tokens strided by sparsify_factor * Not recommended if sparsify_factor > num_heads * sparsity_type="block_stride", use a striding mecanism per head * Each head will use block of tokens strided by sparsify_factor * Not recommended if sparsify_factor > num_heads ## Tasks Fill mask example: ```python: from transformers import FillMaskPipeline, AutoModelForMaskedLM, AutoTokenizer model = AutoModelForMaskedLM.from_pretrained("ccdv/lsg-camembert-base-4096", trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained("ccdv/lsg-camembert-base-4096") SENTENCES = "Paris est la <mask> de la France." pipeline = FillMaskPipeline(model, tokenizer) output = pipeline(SENTENCES) > 'Paris est la capitale de la France.' ``` Classification example: ```python: from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("ccdv/lsg-camembert-base-4096", trust_remote_code=True, pool_with_global=True, # pool with a global token instead of first token ) tokenizer = AutoTokenizer.from_pretrained("ccdv/lsg-camembert-base-4096") SENTENCE = "This is a test for sequence classification. " * 300 token_ids = tokenizer( SENTENCE, return_tensors="pt", #pad_to_multiple_of=... # Optional truncation=True ) output = model(**token_ids) > SequenceClassifierOutput(loss=None, logits=tensor([[-0.3051, -0.1762]], grad_fn=<AddmmBackward>), hidden_states=None, attentions=None) ``` ## Training global tokens To train global tokens and the classification head only: ```python: from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("ccdv/lsg-camembert-base-4096", trust_remote_code=True, pool_with_global=True, # pool with a global token instead of first token num_global_tokens=16 ) tokenizer = AutoTokenizer.from_pretrained("ccdv/lsg-camembert-base-4096") for name, param in model.named_parameters(): if "global_embeddings" not in name: param.requires_grad = False else: param.required_grad = True ``` **CamemBERT** ``` @inproceedings{Martin_2020, doi = {10.18653/v1/2020.acl-main.645}, url = {https://doi.org/10.18653%2Fv1%2F2020.acl-main.645}, year = 2020, publisher = {Association for Computational Linguistics}, author = {Louis Martin and Benjamin Muller and Pedro Javier Ortiz Su{\'{a}}rez and Yoann Dupont and Laurent Romary and {\'{E}}ric de la Clergeri and Djam{\'{e}} Seddah and Beno{\^{\i}}t Sagot}, title = {{CamemBERT}: a Tasty French Language Model}, booktitle = {Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics} } ```
ceshine/TinyBERT_L-4_H-312_v2-distill-AllNLI
578833747fd2988f4704d157eb14e202aa0607e6
2021-05-19T14:01:36.000Z
[ "pytorch", "jax", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
ceshine
null
ceshine/TinyBERT_L-4_H-312_v2-distill-AllNLI
11
null
transformers
11,044
# TinyBERT_L-4_H-312_v2 English Sentence Encoder This is distilled from the `bert-base-nli-stsb-mean-tokens` pre-trained model from [Sentence-Transformers](https://sbert.net/). The embedding vector is obtained by mean/average pooling of the last layer's hidden states. Update 20210325: Added the attention matrices imitation objective as in the TinyBERT paper, and the distill target has been changed from `distilbert-base-nli-stsb-mean-tokens` to `bert-base-nli-stsb-mean-tokens` (they have almost the same STSb performance). ## Model Comparison We compute cosine similarity scores of the embeddings of the sentence pair to get the spearman correlation on the STS benchmark (bigger is better): | | Dev | Test | | ------------------------------------ | ----- | ----- | | bert-base-nli-stsb-mean-tokens | .8704 | .8505 | | distilbert-base-nli-stsb-mean-tokens | .8667 | .8516 | | TinyBERT_L-4_H-312_v2-distill-AllNLI | .8587 | .8283 | | TinyBERT_L-4_H (20210325) | .8551 | .8341 |
chitra/finetuned-adversarial-paraphrasing-detector
fd268865a7cb28643d83dc767f6f40a1ee5ad7bc
2022-01-18T12:55:23.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
chitra
null
chitra/finetuned-adversarial-paraphrasing-detector
11
null
transformers
11,045
Entry not found
clulab/roberta-timex-semeval
3b980ef837347209d299deb9c1ce8ca34957a487
2021-05-20T15:34:00.000Z
[ "pytorch", "jax", "roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
clulab
null
clulab/roberta-timex-semeval
11
null
transformers
11,046
Entry not found
crang/wav2vec2-large-xlsr-53-tatar
d9030cc292a84ed19d7fa2db7fc47451d071aefa
2021-07-06T00:58:16.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "tt", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
crang
null
crang/wav2vec2-large-xlsr-53-tatar
11
null
transformers
11,047
--- language: tt datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: Tatar XLSR Wav2Vec2 Large 53 results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice tt type: common_voice args: tt metrics: - name: Test WER type: wer value: 30.93 --- # Wav2Vec2-Large-XLSR-53-Tatar Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Tatar using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "tt", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("crang/wav2vec2-large-xlsr-53-tatar") model = Wav2Vec2ForCTC.from_pretrained("crang/wav2vec2-large-xlsr-53-tatar") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Tatar test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "tt", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("crang/wav2vec2-large-xlsr-53-tatar") model = Wav2Vec2ForCTC.from_pretrained("crang/wav2vec2-large-xlsr-53-tatar") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\u2013\u2014\;\:\"\\%\\\]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 30.93 % ## Training The Common Voice `train` and `validation` datasets were used for training.
damlab/HIV_BERT
38e5bb9ec8a7574d08b5bd9b402973f92fdbc093
2022-02-24T18:59:51.000Z
[ "pytorch", "bert", "fill-mask", "dataset:damlab/HIV_FLT", "transformers", "license:mit", "autotrain_compatible" ]
fill-mask
false
damlab
null
damlab/HIV_BERT
11
null
transformers
11,048
--- license: mit datasets: - damlab/HIV_FLT metrics: - accuracy widget: - text: 'C T R P N N N T R K S I R I Q R G P G R A F V T I G K I G N M R Q A H C' example_title: 'V3' - text: 'M E P V D P R L E P W K H P G S Q P K T A C T N C Y C K K C C F H C Q V C F I T K A L G I S Y G R K K R R Q R R R A H Q N S Q T H Q A S L S K Q P T S Q P R G D P T G P K E S K K K V E R E T E T D P F D' example_title: 'Tat' - text: 'P Q I T L W Q R P L V T I K I G G Q L K E A L L D T G A D D T V L E E M N L P G R W K P K M I G G I G G F I K V R Q Y D Q I L I E I C G H K A I G T V L V G P T P V N I I G R N L L T Q I G C T L N F' example_title: 'PR' --- # HIV_BERT model ## Table of Contents - [Summary](#model-summary) - [Model Description](#model-description) - [Intended Uses & Limitations](#intended-uses-&-limitations) - [How to Use](#how-to-use) - [Training Data](#training-data) - [Training Procedure](#training-procedure) - [Preprocessing](#preprocessing) - [Training](#training) - [Evaluation Results](#evaluation-results) - [BibTeX Entry and Citation Info](#bibtex-entry-and-citation-info) ## Summary The HIV-BERT model was trained as a refinement of the [ProtBert-BFD model](https://huggingface.co/Rostlab/prot_bert_bfd) for HIV centric tasks. It was refined with whole viral genomes from the [Los Alamos HIV Sequence Database](https://www.hiv.lanl.gov/content/sequence/HIV/mainpage.html). This pretraining is important for HIV related tasks as the original BFD database contains few viral proteins making it sub-optimal when used as the basis for transfer learning tasks. This model and other related HIV prediction tasks have been published (link). ## Model Description Like the original [ProtBert-BFD model](https://huggingface.co/Rostlab/prot_bert_bfd), this model encodes each amino acid as an individual token. This model was trained using Masked Language Modeling: a process in which a random set of tokens are masked with the model trained on their prediction. This model was trained using the damlab/hiv-flt dataset with 256 amino acid chunks and a 15% mask rate. ## Intended Uses & Limitations As a masked language model this tool can be used to predict expected mutations using a masking approach. This could be used to identify highly mutated sequences, sequencing artifacts, or other contexts. As a BERT model, this tool can also be used as the base for transfer learning. This pretrained model could be used as the base when developing HIV-specific classification tasks. ## How to use As this is a BERT-style Masked Language learner, it can be used to determine the most likely amino acid at a masked position. ```python from transformers import pipeline unmasker = pipeline("fill-mask", model="damlab/HIV_FLT") unmasker(f"C T R P N [MASK] N T R K S I R I Q R G P G R A F V T I G K I G N M R Q A H C") [ { "score": 0.9581968188285828, "token": 17, "token_str": "N", "sequence": "C T R P N N N T R K S I R I Q R G P G R A F V T I G K I G N M R Q A H C" }, { "score": 0.022986575961112976, "token": 12, "token_str": "K", "sequence": "C T R P N K N T R K S I R I Q R G P G R A F V T I G K I G N M R Q A H C" }, { "score": 0.003997281193733215, "token": 14, "token_str": "D", "sequence": "C T R P N D N T R K S I R I Q R G P G R A F V T I G K I G N M R Q A H C" }, { "score": 0.003636382520198822, "token": 15, "token_str": "T", "sequence": "C T R P N T N T R K S I R I Q R G P G R A F V T I G K I G N M R Q A H C" }, { "score": 0.002701344434171915, "token": 10, "token_str": "S", "sequence": "C T R P N S N T R K S I R I Q R G P G R A F V T I G K I G N M R Q A H C" } ] ``` ## Training Data The dataset [damlab/HIV_FLT](https://huggingface.co/datasets/damlab/HIV_FLT) was used to refine the original [rostlab/Prot-bert-bfd](https://huggingface.co/Rostlab/prot_bert_bfd). This dataset contains 1790 full HIV genomes from across the globe. When translated, these genomes contain approximately 3.9 million amino-acid tokens. ## Training Procedure ### Preprocessing As with the [rostlab/Prot-bert-bfd](https://huggingface.co/Rostlab/prot_bert_bfd) model, the rare amino acids U, Z, O, and B were converted to X and spaces were added between each amino acid. All strings were concatenated and chunked into 256 token chunks for training. A random 20% of chunks were held for validation. ### Training Training was performed with the HuggingFace training module using the MaskedLM data loader with a 15% masking rate. The learning rate was set at E-5, 50K warm-up steps, and a cosine_with_restarts learning rate schedule and continued until 3 consecutive epochs did not improve the loss on the held-out dataset. ## BibTeX Entry and Citation Info [More Information Needed]
danasone/rubert-tiny-essay
343329ca91cb7f519a8a3abf6b1719f297f42b61
2022-02-08T22:08:38.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
danasone
null
danasone/rubert-tiny-essay
11
null
transformers
11,049
Entry not found
danielbubiola/bangla_asr
55177dc9a92571793d3fa57ad9fd62338c65184c
2022-01-26T07:42:22.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "model-index" ]
automatic-speech-recognition
false
danielbubiola
null
danielbubiola/bangla_asr
11
null
transformers
11,050
--- tags: - generated_from_trainer model-index: - name: bangla_asr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bangla_asr This model is a fine-tuned version of [Harveenchadha/vakyansh-wav2vec2-bengali-bnm-200](https://huggingface.co/Harveenchadha/vakyansh-wav2vec2-bengali-bnm-200) on the None dataset. It achieves the following results on the evaluation set: - Loss: 157.8652 - Wer: 0.4507 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 60 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2601.5363 | 7.46 | 500 | 259.6630 | 0.6863 | | 417.7386 | 14.93 | 1000 | 156.6117 | 0.5275 | | 262.9455 | 22.39 | 1500 | 155.0886 | 0.5006 | | 178.7715 | 29.85 | 2000 | 155.1077 | 0.4840 | | 132.448 | 37.31 | 2500 | 163.8623 | 0.4770 | | 116.3943 | 44.78 | 3000 | 161.5531 | 0.4609 | | 87.1653 | 52.24 | 3500 | 165.6857 | 0.4597 | | 80.5606 | 59.7 | 4000 | 157.8652 | 0.4507 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
danurahul/wav2vec2-large-xlsr-pa-IN
7e4299aaa0b440cb94ebe719781de820c6569f66
2021-07-06T01:28:14.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "pa-IN", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
danurahul
null
danurahul/wav2vec2-large-xlsr-pa-IN
11
null
transformers
11,051
--- language: pa-IN datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: danurahul/wav2vec2-large-xlsr-pa-IN results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice pa-IN type: common_voice args: pa-IN metrics: - name: Test WER type: wer value: 54.86 --- # Wav2Vec2-Large-XLSR-53-Punjabi Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Punjabi using the [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "pa-IN", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("danurahul/wav2vec2-large-xlsr-pa-IN") model = Wav2Vec2ForCTC.from_pretrained("danurahul/wav2vec2-large-xlsr-pa-IN") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Punjabi test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "pa-IN", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("danurahul/wav2vec2-large-xlsr-pa-IN") model = Wav2Vec2ForCTC.from_pretrained("danurahul/wav2vec2-large-xlsr-pa-IN") model.to("cuda") chars_to_ignore_regex = '[\\\\\\\\\\\\\\\\,\\\\\\\\\\\\\\\\?\\\\\\\\\\\\\\\\.\\\\\\\\\\\\\\\\!\\\\\\\\\\\\\\\\-\\\\\\\\\\\\\\\\;\\\\\\\\\\\\\\\\:\\\\\\\\\\\\\\\\"\\\\\\\\\\\\\\\\“\\\\\\\\\\\\\\\\%\\\\\\\\\\\\\\\\‘\\\\\\\\\\\\\\\\”\\\\\\\\\\\\\\\\�]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 100 % ## Training The Common Voice `train`, `validation` was used for training as well as validation and testing # The script used for training can be found https://github.com/rahul-art/huggingface_wav2vec2_punjabi/blob/main/Fine_Tune_XLSR_Wav2Vec2_on_Punjabi_ASR_with_%F0%9F%A4%97_Transformers.ipynb
dbernsohn/algebra_linear_1d
f46dfa8313633510eed5f631d0c7ef2e1afc69c1
2021-02-03T07:09:42.000Z
[ "pytorch", "t5", "text2text-generation", "en", "dataset:algebra_linear_1d", "transformers", "autotrain_compatible" ]
text2text-generation
false
dbernsohn
null
dbernsohn/algebra_linear_1d
11
null
transformers
11,052
# algebra_linear_1d --- language: en datasets: - algebra_linear_1d --- This is a [t5-small](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) fine-tuned version on the [math_dataset/algebra_linear_1d](https://www.tensorflow.org/datasets/catalog/math_dataset#mathdatasetalgebra_linear_1d_default_config) for solving **algebra 1d equations** mission. To load the model: (necessary packages: !pip install transformers sentencepiece) ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("dbernsohn/algebra_linear_1d") model = AutoModelWithLMHead.from_pretrained("dbernsohn/algebra_linear_1d") ``` You can then use this model to solve algebra 1d equations into numbers. ```python query = "Solve 0 = 1026*x - 2474 + 46592 for x" input_text = f"{query} </s>" features = tokenizer([input_text], return_tensors='pt') model.to('cuda') output = model.generate(input_ids=features['input_ids'].cuda(), attention_mask=features['attention_mask'].cuda()) tokenizer.decode(output[0]) # <pad> -41</s> ``` Another examples: + Solve 1112*r + 1418*r - 5220 = 587*r - 28536 for r. + Answer: -12 Pred: -12 ---- + Solve -119*k + 6*k - 117 - 352 = 322 for k. + Answer: -7 Pred: -7 ---- + Solve -547 = -62*t + 437 - 798 for t. + Answer: 3 Pred: 3 ---- + Solve 3*j - 3*j + 0*j - 4802 = 98*j for j. + Answer: -49 Pred: -49 ---- + Solve 3047*n - 6130*n - 1700 = -3049*n for n. + Answer: -50 Pred: -50 ---- + Solve 121*i + 1690 = 76*i - 128*i + 133 for i. + Answer: -9 Pred: -9 The whole training process and hyperparameters are in my [GitHub repo](https://github.com/DorBernsohn/CodeLM/tree/main/MathLM) > Created by [Dor Bernsohn](https://www.linkedin.com/in/dor-bernsohn-70b2b1146/)
deepset/bert-base-german-cased-oldvocab
7e2765ba36d00041e567517642ffafb4cb2d06fb
2021-10-21T12:16:47.000Z
[ "pytorch", "jax", "bert", "fill-mask", "de", "transformers", "exbert", "license:mit", "autotrain_compatible" ]
fill-mask
false
deepset
null
deepset/bert-base-german-cased-oldvocab
11
3
transformers
11,053
--- language: de license: mit thumbnail: https://static.tildacdn.com/tild6438-3730-4164-b266-613634323466/german_bert.png tags: - exbert --- <a href="https://huggingface.co/exbert/?model=bert-base-german-cased"> \t<img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a> # German BERT with old vocabulary For details see the related [FARM issue](https://github.com/deepset-ai/FARM/issues/60). ## About us ![deepset logo](https://workablehr.s3.amazonaws.com/uploads/account/logo/476306/logo) We bring NLP to the industry via open source! Our focus: Industry specific language models & large scale QA systems. Some of our work: - [German BERT (aka "bert-base-german-cased")](https://deepset.ai/german-bert) - [GermanQuAD and GermanDPR datasets and models (aka "gelectra-base-germanquad", "gbert-base-germandpr")](https://deepset.ai/germanquad) - [FARM](https://github.com/deepset-ai/FARM) - [Haystack](https://github.com/deepset-ai/haystack/) Get in touch: [Twitter](https://twitter.com/deepset_ai) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Slack](https://haystack.deepset.ai/community/join) | [GitHub Discussions](https://github.com/deepset-ai/haystack/discussions) | [Website](https://deepset.ai) By the way: [we're hiring!](http://www.deepset.ai/jobs)
dexhrestha/Nepali-DistilBERT
976530f2fdf06166c52eab9258c1f97287d24bcc
2021-10-30T08:31:53.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
dexhrestha
null
dexhrestha/Nepali-DistilBERT
11
null
transformers
11,054
DistilBERT model trained on OSCAR nepali corpus from huggingface datasets. We trained the DitilBERT language model on OSCAR nepali corpus and then for downstream sentiment analysis task. The dataset we used for sentiment analysis was first extracted from twitter filtering for devenagari text then labelled it as postive,negative and neutral. However, since neutral labels exceeded the positive and negative tweets we decided to use only positive and negative tweets for ease of training. LABEL_1 = negative LABEL_0 = positive
dhlpricing/MyGPT2TG-cased-v1
97219ebf67662dcb8ff456b5dd8964dbc9372df9
2021-11-19T16:43:44.000Z
[ "pytorch", "tf", "gpt2", "text-generation", "transformers" ]
text-generation
false
dhlpricing
null
dhlpricing/MyGPT2TG-cased-v1
11
null
transformers
11,055
Entry not found
diegozs97/finetuned-chemprot-seed-1-2000k
e799ecc511e9a847f843e6b6d93f0e7fbb95307f
2021-12-07T05:26:40.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
diegozs97
null
diegozs97/finetuned-chemprot-seed-1-2000k
11
null
transformers
11,056
Entry not found
dshvadskiy/bert-finetuned-ner-accelerate
49384111a27f7ccc28f45a4ef1a7a383d8508ec3
2022-01-17T18:04:23.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
dshvadskiy
null
dshvadskiy/bert-finetuned-ner-accelerate
11
null
transformers
11,057
Entry not found
dsksd/collector_multiwoz
25afbfcb20c2ab3506ed1e924511560b78cf8aaf
2021-07-16T07:13:03.000Z
[ "pytorch", "bart", "feature-extraction", "transformers" ]
feature-extraction
false
dsksd
null
dsksd/collector_multiwoz
11
null
transformers
11,058
Entry not found
elgeish/wav2vec2-base-timit-asr
039d878c5ab8656771a6d0254c0c0621ca515f34
2021-07-06T01:37:40.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "en", "dataset:timit_asr", "transformers", "audio", "speech", "license:apache-2.0" ]
automatic-speech-recognition
false
elgeish
null
elgeish/wav2vec2-base-timit-asr
11
null
transformers
11,059
--- language: en datasets: - timit_asr tags: - audio - automatic-speech-recognition - speech license: apache-2.0 --- # Wav2Vec2-Base-TIMIT Fine-tuned [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the [timit_asr dataset](https://huggingface.co/datasets/timit_asr). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import soundfile as sf import torch from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor model_name = "elgeish/wav2vec2-base-timit-asr" processor = Wav2Vec2Processor.from_pretrained(model_name) model = Wav2Vec2ForCTC.from_pretrained(model_name) model.eval() dataset = load_dataset("timit_asr", split="test").shuffle().select(range(10)) char_translations = str.maketrans({"-": " ", ",": "", ".": "", "?": ""}) def prepare_example(example): example["speech"], _ = sf.read(example["file"]) example["text"] = example["text"].translate(char_translations) example["text"] = " ".join(example["text"].split()) # clean up whitespaces example["text"] = example["text"].lower() return example dataset = dataset.map(prepare_example, remove_columns=["file"]) inputs = processor(dataset["speech"], sampling_rate=16000, return_tensors="pt", padding="longest") with torch.no_grad(): predicted_ids = torch.argmax(model(inputs.input_values).logits, dim=-1) predicted_ids[predicted_ids == -100] = processor.tokenizer.pad_token_id # see fine-tuning script predicted_transcripts = processor.tokenizer.batch_decode(predicted_ids) for reference, predicted in zip(dataset["text"], predicted_transcripts): print("reference:", reference) print("predicted:", predicted) print("--") ``` Here's the output: ``` reference: she had your dark suit in greasy wash water all year predicted: she had your dark suit in greasy wash water all year -- reference: where were you while we were away predicted: where were you while we were away -- reference: cory and trish played tag with beach balls for hours predicted: tcory and trish played tag with beach balls for hours -- reference: tradition requires parental approval for under age marriage predicted: tradition requires parrental proval for under age marrage -- reference: objects made of pewter are beautiful predicted: objects made of puder are bautiful -- reference: don't ask me to carry an oily rag like that predicted: don't o ask me to carry an oily rag like that -- reference: cory and trish played tag with beach balls for hours predicted: cory and trish played tag with beach balls for ours -- reference: don't ask me to carry an oily rag like that predicted: don't ask me to carry an oily rag like that -- reference: don't do charlie's dirty dishes predicted: don't do chawly's tirty dishes -- reference: only those story tellers will remain who can imitate the style of the virtuous predicted: only those story tillaers will remain who can imvitate the style the virtuous ``` ## Fine-Tuning Script You can find the script used to produce this model [here](https://github.com/elgeish/transformers/blob/cfc0bd01f2ac2ea3a5acc578ef2e204bf4304de7/examples/research_projects/wav2vec2/finetune_base_timit_asr.sh).
eliza-dukim/bert-base-finetuned-sts
d77333cf8d6a14fbf5fd3801f51108518a918cb9
2021-09-22T11:01:03.000Z
[ "pytorch", "bert", "text-classification", "dataset:klue", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
eliza-dukim
null
eliza-dukim/bert-base-finetuned-sts
11
null
transformers
11,060
--- tags: - generated_from_trainer datasets: - klue metrics: - pearsonr - f1 model-index: - name: bert-base-finetuned-sts results: - task: name: Text Classification type: text-classification dataset: name: klue type: klue args: sts metrics: - name: Pearsonr type: pearsonr value: 0.8756147003619346 - name: F1 type: f1 value: 0.8416666666666667 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-finetuned-sts This model is a fine-tuned version of [klue/bert-base](https://huggingface.co/klue/bert-base) on the klue dataset. It achieves the following results on the evaluation set: - Loss: 0.4115 - Pearsonr: 0.8756 - F1: 0.8417 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearsonr | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.7836 | 1.0 | 365 | 0.5507 | 0.8435 | 0.8121 | | 0.1564 | 2.0 | 730 | 0.4396 | 0.8495 | 0.8136 | | 0.0989 | 3.0 | 1095 | 0.4115 | 0.8756 | 0.8417 | | 0.0682 | 4.0 | 1460 | 0.4466 | 0.8746 | 0.8449 | ### Framework versions - Transformers 4.10.2 - Pytorch 1.7.1 - Datasets 1.12.1 - Tokenizers 0.10.3
emre/wav2vec2-xls-r-300m-gl-CV8
6fabd3e77199283645e47941427e53cdcf366c37
2022-03-23T18:34:43.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "gl", "dataset:common_voice", "transformers", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
emre
null
emre/wav2vec2-xls-r-300m-gl-CV8
11
null
transformers
11,061
--- license: apache-2.0 language: gl tags: - generated_from_trainer - hf-asr-leaderboard - robust-speech-event datasets: - common_voice model-index: - name: wav2vec2-xls-r-300m-gl-CV8 results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice gl type: common_voice args: gl metrics: - name: Test WER type: wer value: 0.208 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8.0 type: mozilla-foundation/common_voice_8_0 args: gl metrics: - name: Test WER type: wer value: 22.94 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: gl metrics: - name: Test WER type: wer value: 47.82 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: gl metrics: - name: Test WER type: wer value: 50.8 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-gl-CV8 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.2151 - Wer: 0.2080 --- ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 300 - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.9427 | 4.9 | 500 | 2.8801 | 1.0 | | 2.1594 | 9.8 | 1000 | 0.4092 | 0.4001 | | 0.7332 | 14.71 | 1500 | 0.2151 | 0.2080 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.1 - Tokenizers 0.10.3
emrecan/distilbert-base-turkish-cased-allnli_tr
f4efcd8d8c47418033041fad95ff351ebb62ff01
2021-12-02T14:57:35.000Z
[ "pytorch", "distilbert", "text-classification", "tr", "dataset:nli_tr", "transformers", "zero-shot-classification", "nli", "license:apache-2.0" ]
zero-shot-classification
false
emrecan
null
emrecan/distilbert-base-turkish-cased-allnli_tr
11
null
transformers
11,062
--- language: - tr tags: - zero-shot-classification - nli - pytorch pipeline_tag: zero-shot-classification license: apache-2.0 datasets: - nli_tr metrics: - accuracy widget: - text: "Dolar yükselmeye devam ediyor." candidate_labels: "ekonomi, siyaset, spor" - text: "Senaryo çok saçmaydı, beğendim diyemem." candidate_labels: "olumlu, olumsuz" --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-turkish-cased_allnli_tr This model is a fine-tuned version of [dbmdz/distilbert-base-turkish-cased](https://huggingface.co/dbmdz/distilbert-base-turkish-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6481 - Accuracy: 0.7381 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.94 | 0.03 | 1000 | 0.9074 | 0.5813 | | 0.8102 | 0.07 | 2000 | 0.8802 | 0.5949 | | 0.7737 | 0.1 | 3000 | 0.8491 | 0.6155 | | 0.7576 | 0.14 | 4000 | 0.8283 | 0.6261 | | 0.7286 | 0.17 | 5000 | 0.8150 | 0.6362 | | 0.7162 | 0.2 | 6000 | 0.7998 | 0.6400 | | 0.7092 | 0.24 | 7000 | 0.7830 | 0.6565 | | 0.6962 | 0.27 | 8000 | 0.7653 | 0.6629 | | 0.6876 | 0.31 | 9000 | 0.7630 | 0.6687 | | 0.6778 | 0.34 | 10000 | 0.7475 | 0.6739 | | 0.6737 | 0.37 | 11000 | 0.7495 | 0.6781 | | 0.6712 | 0.41 | 12000 | 0.7350 | 0.6826 | | 0.6559 | 0.44 | 13000 | 0.7274 | 0.6897 | | 0.6493 | 0.48 | 14000 | 0.7248 | 0.6902 | | 0.6483 | 0.51 | 15000 | 0.7263 | 0.6858 | | 0.6445 | 0.54 | 16000 | 0.7070 | 0.6978 | | 0.6467 | 0.58 | 17000 | 0.7083 | 0.6981 | | 0.6332 | 0.61 | 18000 | 0.6996 | 0.7004 | | 0.6288 | 0.65 | 19000 | 0.6979 | 0.6978 | | 0.6308 | 0.68 | 20000 | 0.6912 | 0.7040 | | 0.622 | 0.71 | 21000 | 0.6904 | 0.7092 | | 0.615 | 0.75 | 22000 | 0.6872 | 0.7094 | | 0.6186 | 0.78 | 23000 | 0.6877 | 0.7075 | | 0.6183 | 0.82 | 24000 | 0.6818 | 0.7111 | | 0.6115 | 0.85 | 25000 | 0.6856 | 0.7122 | | 0.608 | 0.88 | 26000 | 0.6697 | 0.7179 | | 0.6071 | 0.92 | 27000 | 0.6727 | 0.7181 | | 0.601 | 0.95 | 28000 | 0.6798 | 0.7118 | | 0.6018 | 0.99 | 29000 | 0.6854 | 0.7071 | | 0.5762 | 1.02 | 30000 | 0.6697 | 0.7214 | | 0.5507 | 1.05 | 31000 | 0.6710 | 0.7185 | | 0.5575 | 1.09 | 32000 | 0.6709 | 0.7226 | | 0.5493 | 1.12 | 33000 | 0.6659 | 0.7191 | | 0.5464 | 1.15 | 34000 | 0.6709 | 0.7232 | | 0.5595 | 1.19 | 35000 | 0.6642 | 0.7220 | | 0.5446 | 1.22 | 36000 | 0.6709 | 0.7202 | | 0.5524 | 1.26 | 37000 | 0.6751 | 0.7148 | | 0.5473 | 1.29 | 38000 | 0.6642 | 0.7209 | | 0.5477 | 1.32 | 39000 | 0.6662 | 0.7223 | | 0.5522 | 1.36 | 40000 | 0.6586 | 0.7227 | | 0.5406 | 1.39 | 41000 | 0.6602 | 0.7258 | | 0.54 | 1.43 | 42000 | 0.6564 | 0.7273 | | 0.5458 | 1.46 | 43000 | 0.6780 | 0.7213 | | 0.5448 | 1.49 | 44000 | 0.6561 | 0.7235 | | 0.5418 | 1.53 | 45000 | 0.6600 | 0.7253 | | 0.5408 | 1.56 | 46000 | 0.6616 | 0.7274 | | 0.5451 | 1.6 | 47000 | 0.6557 | 0.7283 | | 0.5385 | 1.63 | 48000 | 0.6583 | 0.7295 | | 0.5261 | 1.66 | 49000 | 0.6468 | 0.7325 | | 0.5364 | 1.7 | 50000 | 0.6447 | 0.7329 | | 0.5294 | 1.73 | 51000 | 0.6429 | 0.7320 | | 0.5332 | 1.77 | 52000 | 0.6508 | 0.7272 | | 0.5274 | 1.8 | 53000 | 0.6492 | 0.7326 | | 0.5286 | 1.83 | 54000 | 0.6470 | 0.7318 | | 0.5359 | 1.87 | 55000 | 0.6393 | 0.7354 | | 0.5366 | 1.9 | 56000 | 0.6445 | 0.7367 | | 0.5296 | 1.94 | 57000 | 0.6413 | 0.7313 | | 0.5346 | 1.97 | 58000 | 0.6393 | 0.7315 | | 0.5264 | 2.0 | 59000 | 0.6448 | 0.7357 | | 0.4857 | 2.04 | 60000 | 0.6640 | 0.7335 | | 0.4888 | 2.07 | 61000 | 0.6612 | 0.7318 | | 0.4964 | 2.11 | 62000 | 0.6516 | 0.7337 | | 0.493 | 2.14 | 63000 | 0.6503 | 0.7356 | | 0.4961 | 2.17 | 64000 | 0.6519 | 0.7348 | | 0.4847 | 2.21 | 65000 | 0.6517 | 0.7327 | | 0.483 | 2.24 | 66000 | 0.6555 | 0.7310 | | 0.4857 | 2.28 | 67000 | 0.6525 | 0.7312 | | 0.484 | 2.31 | 68000 | 0.6444 | 0.7342 | | 0.4792 | 2.34 | 69000 | 0.6508 | 0.7330 | | 0.488 | 2.38 | 70000 | 0.6513 | 0.7344 | | 0.472 | 2.41 | 71000 | 0.6547 | 0.7346 | | 0.4872 | 2.45 | 72000 | 0.6500 | 0.7342 | | 0.4782 | 2.48 | 73000 | 0.6585 | 0.7358 | | 0.481 | 2.51 | 74000 | 0.6477 | 0.7356 | | 0.4822 | 2.55 | 75000 | 0.6587 | 0.7346 | | 0.4728 | 2.58 | 76000 | 0.6572 | 0.7340 | | 0.4841 | 2.62 | 77000 | 0.6443 | 0.7374 | | 0.4885 | 2.65 | 78000 | 0.6494 | 0.7362 | | 0.4752 | 2.68 | 79000 | 0.6509 | 0.7382 | | 0.4883 | 2.72 | 80000 | 0.6457 | 0.7371 | | 0.4888 | 2.75 | 81000 | 0.6497 | 0.7364 | | 0.4844 | 2.79 | 82000 | 0.6481 | 0.7376 | | 0.4833 | 2.82 | 83000 | 0.6451 | 0.7389 | | 0.48 | 2.85 | 84000 | 0.6423 | 0.7373 | | 0.4832 | 2.89 | 85000 | 0.6477 | 0.7357 | | 0.4805 | 2.92 | 86000 | 0.6464 | 0.7379 | | 0.4775 | 2.96 | 87000 | 0.6477 | 0.7380 | | 0.4843 | 2.99 | 88000 | 0.6481 | 0.7381 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.10.0+cu102 - Datasets 1.15.1 - Tokenizers 0.10.3
espejelomar/BETO_Clasificar_Tweets_Mexicano
76b10cdd268c03b4882f4ce6a65b5b2bbb77c1c8
2022-02-15T17:42:05.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
espejelomar
null
espejelomar/BETO_Clasificar_Tweets_Mexicano
11
null
transformers
11,063
Entry not found
ewriji/heil-A.412C-classification
da2c8b313ddb15219b1420eb80f5b591c2efa67d
2021-12-17T01:11:33.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
ewriji
null
ewriji/heil-A.412C-classification
11
null
transformers
11,064
Entry not found
fabriceyhc/bert-base-uncased-dbpedia_14
1fbfc3deaa280fcf16372746ca21363313357376
2021-09-21T00:56:12.000Z
[ "pytorch", "bert", "text-classification", "dataset:dbpedia_14", "transformers", "generated_from_trainer", "sibyl", "license:apache-2.0", "model-index" ]
text-classification
false
fabriceyhc
null
fabriceyhc/bert-base-uncased-dbpedia_14
11
null
transformers
11,065
--- license: apache-2.0 tags: - generated_from_trainer - sibyl datasets: - dbpedia_14 metrics: - accuracy model-index: - name: bert-base-uncased-dbpedia_14 results: - task: name: Text Classification type: text-classification dataset: name: dbpedia_14 type: dbpedia_14 args: dbpedia_14 metrics: - name: Accuracy type: accuracy value: 0.9902857142857143 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-dbpedia_14 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the dbpedia_14 dataset. It achieves the following results on the evaluation set: - Loss: 0.0547 - Accuracy: 0.9903 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 34650 - training_steps: 346500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.7757 | 0.03 | 2000 | 0.2732 | 0.9880 | | 0.1002 | 0.06 | 4000 | 0.0620 | 0.9891 | | 0.0547 | 0.09 | 6000 | 0.0723 | 0.9879 | | 0.0558 | 0.12 | 8000 | 0.0678 | 0.9875 | | 0.0534 | 0.14 | 10000 | 0.0554 | 0.9896 | | 0.0632 | 0.17 | 12000 | 0.0670 | 0.9888 | | 0.0612 | 0.2 | 14000 | 0.0733 | 0.9873 | | 0.0667 | 0.23 | 16000 | 0.0623 | 0.9896 | | 0.0636 | 0.26 | 18000 | 0.0836 | 0.9868 | | 0.0705 | 0.29 | 20000 | 0.0776 | 0.9855 | | 0.0726 | 0.32 | 22000 | 0.0805 | 0.9861 | | 0.0778 | 0.35 | 24000 | 0.0713 | 0.9870 | | 0.0713 | 0.38 | 26000 | 0.1277 | 0.9805 | | 0.0965 | 0.4 | 28000 | 0.0810 | 0.9855 | | 0.0881 | 0.43 | 30000 | 0.0910 | 0.985 | ### Framework versions - Transformers 4.10.2 - Pytorch 1.7.1 - Datasets 1.6.1 - Tokenizers 0.10.3
facebook/wav2vec2-base-es-voxpopuli
2fdabe011433c833551e92bda35594df0a18a2ee
2021-07-06T01:53:59.000Z
[ "pytorch", "wav2vec2", "pretraining", "es", "arxiv:2101.00390", "transformers", "audio", "automatic-speech-recognition", "voxpopuli", "license:cc-by-nc-4.0" ]
automatic-speech-recognition
false
facebook
null
facebook/wav2vec2-base-es-voxpopuli
11
null
transformers
11,066
--- language: es tags: - audio - automatic-speech-recognition - voxpopuli license: cc-by-nc-4.0 --- # Wav2Vec2-Base-VoxPopuli [Facebook's Wav2Vec2](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/) base model pretrained on the es unlabeled subset of [VoxPopuli corpus](https://arxiv.org/abs/2101.00390). **Paper**: *[VoxPopuli: A Large-Scale Multilingual Speech Corpus for Representation Learning, Semi-Supervised Learning and Interpretation](https://arxiv.org/abs/2101.00390)* **Authors**: *Changhan Wang, Morgane Riviere, Ann Lee, Anne Wu, Chaitanya Talnikar, Daniel Haziza, Mary Williamson, Juan Pino, Emmanuel Dupoux* from *Facebook AI* See the official website for more information, [here](https://github.com/facebookresearch/voxpopuli/) # Fine-Tuning Please refer to [this blog](https://huggingface.co/blog/fine-tune-xlsr-wav2vec2) on how to fine-tune this model on a specific language. Note that you should replace `"facebook/wav2vec2-large-xlsr-53"` with this checkpoint for fine-tuning.
facebook/wav2vec2-base-it-voxpopuli
593e75291702d2ca8d404d63b2b47e6f028f8f39
2021-07-06T01:54:46.000Z
[ "pytorch", "wav2vec2", "pretraining", "it", "arxiv:2101.00390", "transformers", "audio", "automatic-speech-recognition", "voxpopuli", "license:cc-by-nc-4.0" ]
automatic-speech-recognition
false
facebook
null
facebook/wav2vec2-base-it-voxpopuli
11
null
transformers
11,067
--- language: it tags: - audio - automatic-speech-recognition - voxpopuli license: cc-by-nc-4.0 --- # Wav2Vec2-Base-VoxPopuli [Facebook's Wav2Vec2](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/) base model pretrained on the it unlabeled subset of [VoxPopuli corpus](https://arxiv.org/abs/2101.00390). **Paper**: *[VoxPopuli: A Large-Scale Multilingual Speech Corpus for Representation Learning, Semi-Supervised Learning and Interpretation](https://arxiv.org/abs/2101.00390)* **Authors**: *Changhan Wang, Morgane Riviere, Ann Lee, Anne Wu, Chaitanya Talnikar, Daniel Haziza, Mary Williamson, Juan Pino, Emmanuel Dupoux* from *Facebook AI* See the official website for more information, [here](https://github.com/facebookresearch/voxpopuli/) # Fine-Tuning Please refer to [this blog](https://huggingface.co/blog/fine-tune-xlsr-wav2vec2) on how to fine-tune this model on a specific language. Note that you should replace `"facebook/wav2vec2-large-xlsr-53"` with this checkpoint for fine-tuning.
flax-community/arabic-t5-small
887b7a5f66bc2121495ed99d662449048b3c71f1
2021-07-29T23:37:03.000Z
[ "pytorch", "tf", "jax", "tensorboard", "t5", "text2text-generation", "ar", "dataset:mc4", "dataset:oscar", "dataset:arabic_billion_words", "transformers", "autotrain_compatible" ]
text2text-generation
false
flax-community
null
flax-community/arabic-t5-small
11
1
transformers
11,068
--- language: - ar datasets: - mc4 - oscar - arabic_billion_words --- # arabic-t5-small This is a T5v1.1 (small) trained on the concatenation of the Arabic Billion Words corpus and the Arabic subsets of the mC4 and Oscar datasets. The model could only be trained for about `10%` of the whole dataset due to time limitations. This is equivalent to `22'000` steps or about `4.3` Billion tokens. ## Training parameters | | | | :-------------------: | :-----------: | | Training batch size | `384` | | Evaluation batch size | `768` | | learning rate | `1e-2` | | dtype | `jnp.float32` | ## Preprocessing and the tokenizer We tried to keep the preprocessing to a bare minimum. We only replaced URLs, emails and social media user mentions with fixed tokens. Contrary to other pretrained Arabic LMs, we decided to not strip the Arabic diacritics and to keep them part of the vocabulary. The tokenizer was trained on `5%` of the training set, with a vocabulary size of `64'000`. For more details about preprocessing, check the [tokenizer code](https://huggingface.co/flax-community/arabic-t5-small/blob/main/t5_tokenizer_model.py) ## Data The model was trained on the concatenation of the Arabic Billion Words corpus and the Arabic subsets of the mC4 and Oscar datasets. A random `0.1%` subset of the data was reserved for evaluation and the rest for training. ## Results | | | | :-----------------: | :-----------: | | Evaluation accuracy | `56.84%` | | Evaluation Loss | `2.423` | | Training Loss | `2.392` | | Training Time | `22h 23m 51s` | ## Note for finetuning This model was pretrained with dropout turned off, so the default `dropout_rate` in the model config is `0`. To finetune the model dropout should be turned be back on, like this: ```python model = T5ForConditionalGeneration.from_pretrained("flax-community/arabic-t5-small", dropout_rate=0.1) ``` or, ```python model = AutoModelForSeq2SeqLM.from_pretrained("flax-community/arabic-t5-small", dropout_rate=0.1) ```
gagan3012/k2t-tiny
423c0d1dee6ef6b300cd6f1abac11a7d845dd4a8
2021-09-22T08:27:33.000Z
[ "pytorch", "t5", "text2text-generation", "en", "dataset:WebNLG", "dataset:Dart", "transformers", "keytotext", "k2t-tiny", "Keywords to Sentences", "license:mit", "autotrain_compatible" ]
text2text-generation
false
gagan3012
null
gagan3012/k2t-tiny
11
null
transformers
11,069
--- language: en thumbnail: Keywords to Sentences tags: - keytotext - k2t-tiny - Keywords to Sentences license: mit datasets: - WebNLG - Dart metrics: - NLG --- # keytotext ![keytotext (1)](https://user-images.githubusercontent.com/49101362/116334480-f5e57a00-a7dd-11eb-987c-186477f94b6e.png) Idea is to build a model which will take keywords as inputs and generate sentences as outputs. ### Keytotext is powered by Huggingface 🤗 [![pypi Version](https://img.shields.io/pypi/v/keytotext.svg?style=flat-square&logo=pypi&logoColor=white)](https://pypi.org/project/keytotext/) [![Downloads](https://static.pepy.tech/personalized-badge/keytotext?period=total&units=none&left_color=grey&right_color=orange&left_text=Pip%20Downloads)](https://pepy.tech/project/keytotext) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/gagan3012/keytotext/blob/master/Examples/K2T.ipynb) [![Streamlit App](https://static.streamlit.io/badges/streamlit_badge_black_white.svg)](https://share.streamlit.io/gagan3012/keytotext/UI/app.py) ## Model: Keytotext is based on the Amazing T5 Model: - `k2t`: [Model](https://huggingface.co/gagan3012/k2t) - `k2t-tiny`: [Model](https://huggingface.co/gagan3012/k2t-tiny) - `k2t-base`: [Model](https://huggingface.co/gagan3012/k2t-base) Training Notebooks can be found in the [`Training Notebooks`](https://github.com/gagan3012/keytotext/tree/master/Training%20Notebooks) Folder ## Usage: Example usage: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/gagan3012/keytotext/blob/master/Examples/K2T.ipynb) Example Notebooks can be found in the [`Notebooks`](https://github.com/gagan3012/keytotext/tree/master/Examples) Folder ``` pip install keytotext ``` ![carbon (3)](https://user-images.githubusercontent.com/49101362/116220679-90e64180-a755-11eb-9246-82d93d924a6c.png) ## UI: UI: [![Streamlit App](https://static.streamlit.io/badges/streamlit_badge_black_white.svg)](https://share.streamlit.io/gagan3012/keytotext/UI/app.py) ``` pip install streamlit-tags ``` This uses a custom streamlit component built by me: [GitHub](https://github.com/gagan3012/streamlit-tags) ![image](https://user-images.githubusercontent.com/49101362/116162205-fc042980-a6fd-11eb-892e-8f6902f193f4.png)
gagan3012/pickuplines
3078b63c12a4c9f6cb5c262348b56873e2e3e83f
2021-10-18T19:53:36.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-generation
false
gagan3012
null
gagan3012/pickuplines
11
null
transformers
11,070
--- license: mit tags: - generated_from_trainer model-index: - name: pickuplines results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pickuplines This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 5.7873 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100.0 ### Training results ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
gbade786/distilbert-base-uncased-finetuned-emotion
9f725e4da377629d30bea790a34946abe54d9ff9
2022-01-14T14:44:33.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
gbade786
null
gbade786/distilbert-base-uncased-finetuned-emotion
11
null
transformers
11,071
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.923 - name: F1 type: f1 value: 0.9233262687967644 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2180 - Accuracy: 0.923 - F1: 0.9233 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8217 | 1.0 | 250 | 0.3137 | 0.903 | 0.8999 | | 0.2484 | 2.0 | 500 | 0.2180 | 0.923 | 0.9233 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
gchhablani/wav2vec2-large-xlsr-pt
e32f8fda6733db09e876e3a8059fc7b441197cf1
2021-07-06T05:23:19.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "pt", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
gchhablani
null
gchhablani/wav2vec2-large-xlsr-pt
11
null
transformers
11,072
--- language: pt datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: Wav2Vec2 Large 53 Portugese by Gunjan Chhablani results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice pt type: common_voice args: pt metrics: - name: Test WER type: wer value: 17.22 --- # Wav2Vec2-Large-XLSR-53-Portuguese Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Portuguese using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "pt", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-pt") model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-pt") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Portuguese test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "pt", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-pt") model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-pt") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\;\"\“\'\�]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 17.22 % ## Training The Common Voice `train` and `validation` datasets were used for training. The script used for training can be found [here](https://github.com/jqueguiner/wav2vec2-sprint/blob/main/run_common_voice.py). The parameters passed were: ```bash #!/usr/bin/env bash python run_common_voice.py \ --model_name_or_path="facebook/wav2vec2-large-xlsr-53" \ --dataset_config_name="pt" \ --output_dir=/workspace/output_models/pt/wav2vec2-large-xlsr-pt \ --cache_dir=/workspace/data \ --overwrite_output_dir \ --num_train_epochs="30" \ --per_device_train_batch_size="32" \ --per_device_eval_batch_size="32" \ --evaluation_strategy="steps" \ --learning_rate="3e-4" \ --warmup_steps="500" \ --fp16 \ --freeze_feature_extractor \ --save_steps="500" \ --eval_steps="500" \ --save_total_limit="1" \ --logging_steps="500" \ --group_by_length \ --feat_proj_dropout="0.0" \ --layerdrop="0.1" \ --gradient_checkpointing \ --do_train --do_eval \ ``` Notebook containing the evaluation can be found [here](https://colab.research.google.com/drive/14e-zNK_5pm8EMY9EbeZerpHx7WsGycqG?usp=sharing).
ghadeermobasher/bc4chemd-imbalanced-biobert-base-casesd-v1.1
5cbf6f489b82f0dd35cbc1433d2445c63cdd7930
2022-02-04T07:42:48.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/bc4chemd-imbalanced-biobert-base-casesd-v1.1
11
null
transformers
11,073
Entry not found
google/t5-xxl-ssm-wq
e9f808d09b78ef1bb19e1186a7884ef42234d65d
2020-12-07T12:35:31.000Z
[ "pytorch", "tf", "t5", "text2text-generation", "en", "dataset:c4", "dataset:wikipedia", "dataset:web_questions", "arxiv:2002.08909", "arxiv:1910.10683", "transformers", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
google
null
google/t5-xxl-ssm-wq
11
1
transformers
11,074
--- language: en datasets: - c4 - wikipedia - web_questions license: apache-2.0 --- [Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) for **Closed Book Question Answering**. The model was pre-trained using T5's denoising objective on [C4](https://huggingface.co/datasets/c4), subsequently additionally pre-trained using [REALM](https://arxiv.org/pdf/2002.08909.pdf)'s salient span masking objective on [Wikipedia](https://huggingface.co/datasets/wikipedia), and finally fine-tuned on [Web Questions (WQ)](https://huggingface.co/datasets/web_questions). **Note**: The model was fine-tuned on 100% of the train splits of [Web Questions (WQ)](https://huggingface.co/datasets/web_questions) for 10k steps. Other community Checkpoints: [here](https://huggingface.co/models?search=ssm) Paper: [How Much Knowledge Can You Pack Into the Parameters of a Language Model?](https://arxiv.org/abs/1910.10683.pdf) Authors: *Adam Roberts, Colin Raffel, Noam Shazeer* ## Results on Web Questions - Test Set |Id | link | Exact Match | |---|---|---| |T5-11b|https://huggingface.co/google/t5-11b-ssm-wq|44.7| |**T5-xxl**|**https://huggingface.co/google/t5-xxl-ssm-wq**|**43.5**| ## Usage The model can be used as follows for **closed book question answering**: ```python from transformers import AutoModelForSeq2SeqLM, AutoTokenizer t5_qa_model = AutoModelForSeq2SeqLM.from_pretrained("google/t5-xxl-ssm-wq") t5_tok = AutoTokenizer.from_pretrained("google/t5-xxl-ssm-wq") input_ids = t5_tok("When was Franklin D. Roosevelt born?", return_tensors="pt").input_ids gen_output = t5_qa_model.generate(input_ids)[0] print(t5_tok.decode(gen_output, skip_special_tokens=True)) ``` ## Abstract It has recently been observed that neural language models trained on unstructured text can implicitly store and retrieve knowledge using natural language queries. In this short paper, we measure the practical utility of this approach by fine-tuning pre-trained models to answer questions without access to any external context or knowledge. We show that this approach scales with model size and performs competitively with open-domain systems that explicitly retrieve answers from an external knowledge source when answering questions. To facilitate reproducibility and future work, we release our code and trained models at https://goo.gle/t5-cbqa. ![model image](https://raw.githubusercontent.com/patrickvonplaten/scientific_images/master/how_much_know_ledge_image.png)
google/tapas-mini-finetuned-tabfact
2ee10173c30cf3adb08636740d75def8a6737987
2021-11-29T13:06:50.000Z
[ "pytorch", "tf", "tapas", "text-classification", "en", "dataset:tab_fact", "arxiv:2010.00571", "arxiv:2004.02349", "transformers", "sequence-classification", "license:apache-2.0" ]
text-classification
false
google
null
google/tapas-mini-finetuned-tabfact
11
null
transformers
11,075
--- language: en tags: - tapas - sequence-classification license: apache-2.0 datasets: - tab_fact --- # TAPAS mini model fine-tuned on Tabular Fact Checking (TabFact) This model has 2 versions which can be used. The latest version, which is the default one, corresponds to the `tapas_tabfact_inter_masklm_mini_reset` checkpoint of the [original Github repository](https://github.com/google-research/tapas). This model was pre-trained on MLM and an additional step which the authors call intermediate pre-training, and then fine-tuned on [TabFact](https://github.com/wenhuchen/Table-Fact-Checking). It uses relative position embeddings by default (i.e. resetting the position index at every cell of the table). The other (non-default) version which can be used is the one with absolute position embeddings: - `no_reset`, which corresponds to `tapas_tabfact_inter_masklm_mini` Disclaimer: The team releasing TAPAS did not write a model card for this model so this model card has been written by the Hugging Face team and contributors. ## Model description TAPAS is a BERT-like transformers model pretrained on a large corpus of English data from Wikipedia in a self-supervised fashion. This means it was pretrained on the raw tables and associated texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): taking a (flattened) table and associated context, the model randomly masks 15% of the words in the input, then runs the entire (partially masked) sequence through the model. The model then has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of a table and associated text. - Intermediate pre-training: to encourage numerical reasoning on tables, the authors additionally pre-trained the model by creating a balanced dataset of millions of syntactically created training examples. Here, the model must predict (classify) whether a sentence is supported or refuted by the contents of a table. The training examples are created based on synthetic as well as counterfactual statements. This way, the model learns an inner representation of the English language used in tables and associated texts, which can then be used to extract features useful for downstream tasks such as answering questions about a table, or determining whether a sentence is entailed or refuted by the contents of a table. Fine-tuning is done by adding a classification head on top of the pre-trained model, and then jointly train this randomly initialized classification head with the base model on TabFact. ## Intended uses & limitations You can use this model for classifying whether a sentence is supported or refuted by the contents of a table. For code examples, we refer to the documentation of TAPAS on the HuggingFace website. ## Training procedure ### Preprocessing The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are then of the form: ``` [CLS] Sentence [SEP] Flattened table [SEP] ``` ### Fine-tuning The model was fine-tuned on 32 Cloud TPU v3 cores for 80,000 steps with maximum sequence length 512 and batch size of 512. In this setup, fine-tuning takes around 14 hours. The optimizer used is Adam with a learning rate of 2e-5, and a warmup ratio of 0.05. See the [paper](https://arxiv.org/abs/2010.00571) for more details (appendix A2). ### BibTeX entry and citation info ```bibtex @misc{herzig2020tapas, title={TAPAS: Weakly Supervised Table Parsing via Pre-training}, author={Jonathan Herzig and Paweł Krzysztof Nowak and Thomas Müller and Francesco Piccinno and Julian Martin Eisenschlos}, year={2020}, eprint={2004.02349}, archivePrefix={arXiv}, primaryClass={cs.IR} } ``` ```bibtex @misc{eisenschlos2020understanding, title={Understanding tables with intermediate pre-training}, author={Julian Martin Eisenschlos and Syrine Krichene and Thomas Müller}, year={2020}, eprint={2010.00571}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ```bibtex @inproceedings{2019TabFactA, title={TabFact : A Large-scale Dataset for Table-based Fact Verification}, author={Wenhu Chen, Hongmin Wang, Jianshu Chen, Yunkai Zhang, Hong Wang, Shiyang Li, Xiyou Zhou and William Yang Wang}, booktitle = {International Conference on Learning Representations (ICLR)}, address = {Addis Ababa, Ethiopia}, month = {April}, year = {2020} } ```
hadxu/distilbert-base-uncased-finetuned-emotion
ab5baf280dd140d18a2cd43b5f1fc2d02bb93804
2022-02-10T11:20:33.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
hadxu
null
hadxu/distilbert-base-uncased-finetuned-emotion
11
null
transformers
11,076
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.92 - name: F1 type: f1 value: 0.9202797627524772 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2307 - Accuracy: 0.92 - F1: 0.9203 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8397 | 1.0 | 250 | 0.3345 | 0.9045 | 0.9007 | | 0.2544 | 2.0 | 500 | 0.2307 | 0.92 | 0.9203 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
howey/electra-large-qqp
1fda2eeefe4a766ebf81e9e6f62250f722a25a9b
2021-07-26T02:47:52.000Z
[ "pytorch", "electra", "text-classification", "transformers" ]
text-classification
false
howey
null
howey/electra-large-qqp
11
1
transformers
11,077
Entry not found
huawei-noah/TernaryBERT_MNLI
338819666c7bb32e6f5b39136e253fc918833143
2020-10-16T03:07:54.000Z
[ "pytorch", "transformers" ]
null
false
huawei-noah
null
huawei-noah/TernaryBERT_MNLI
11
null
transformers
11,078
Entry not found
huggingartists/arctic-monkeys
ffd5168fb1837f5ad628e00c49c1158f71e4a676
2021-10-26T17:28:49.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "dataset:huggingartists/arctic-monkeys", "transformers", "huggingartists", "lyrics", "lm-head", "causal-lm" ]
text-generation
false
huggingartists
null
huggingartists/arctic-monkeys
11
null
transformers
11,079
--- language: en datasets: - huggingartists/arctic-monkeys tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/12c27f4fbb06ef32dc1c1e432098f447.570x570x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Arctic Monkeys</div> <a href="https://genius.com/artists/arctic-monkeys"> <div style="text-align: center; font-size: 14px;">@arctic-monkeys</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Arctic Monkeys. Dataset is available [here](https://huggingface.co/datasets/huggingartists/arctic-monkeys). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/arctic-monkeys") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1x4ii6qz/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Arctic Monkeys's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/bmnqvn53) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/bmnqvn53/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/arctic-monkeys') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/arctic-monkeys") model = AutoModelWithLMHead.from_pretrained("huggingartists/arctic-monkeys") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/miyagi
1caa528be4d25fbf1a5ff48e3c359b89d2f6a174
2022-07-04T16:58:30.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "dataset:huggingartists/miyagi", "transformers", "huggingartists", "lyrics", "lm-head", "causal-lm" ]
text-generation
false
huggingartists
null
huggingartists/miyagi
11
null
transformers
11,080
--- language: en datasets: - huggingartists/miyagi tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/b6e783ce8d8c51516715e291dbc87535.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Miyagi</div> <a href="https://genius.com/artists/miyagi"> <div style="text-align: center; font-size: 14px;">@miyagi</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Miyagi. Dataset is available [here](https://huggingface.co/datasets/huggingartists/miyagi). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/miyagi") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1c4sny4a/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Miyagi's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1v51pw0u) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1v51pw0u/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/miyagi') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/miyagi") model = AutoModelWithLMHead.from_pretrained("huggingartists/miyagi") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingtweets/aoc
f3b343ed21a095e9fbe1e4926129be99211a6ba7
2022-07-22T22:26:57.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/aoc
11
null
transformers
11,081
--- language: en thumbnail: http://www.huggingtweets.com/aoc/1658528812949/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/923274881197895680/AbHcStkl_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Alexandria Ocasio-Cortez</div> <div style="text-align: center; font-size: 14px;">@aoc</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Alexandria Ocasio-Cortez. | Data | Alexandria Ocasio-Cortez | | --- | --- | | Tweets downloaded | 3221 | | Retweets | 1253 | | Short tweets | 126 | | Tweets kept | 1842 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3i05suuv/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @aoc's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1gjmi5b8) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1gjmi5b8/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/aoc') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/bichebuni
454afafb61458fed65cafb9e08f767c9653e9371
2021-05-21T20:37:06.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/bichebuni
11
null
transformers
11,082
--- language: en thumbnail: https://www.huggingtweets.com/bichebuni/1614096170963/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1356414477143519232/H2T46KhD_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Ellie 🐰 🤖 AI Bot </div> <div style="font-size: 15px">@bichebuni bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@bichebuni's tweets](https://twitter.com/bichebuni). | Data | Quantity | | --- | --- | | Tweets downloaded | 1578 | | Retweets | 559 | | Short tweets | 216 | | Tweets kept | 803 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2jluupd2/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bichebuni's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2a0ttba9) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2a0ttba9/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/bichebuni') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/sigittanew
0a4b9c3f6c78a2a1a0e315070edb6d0db03ec845
2021-05-22T22:54:41.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/sigittanew
11
null
transformers
11,083
--- language: en thumbnail: https://www.huggingtweets.com/sigittanew/1617902420104/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1315307002999058432/Z4YtauZI_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">☃️Sigitta🎅 🤖 AI Bot </div> <div style="font-size: 15px">@sigittanew bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@sigittanew's tweets](https://twitter.com/sigittanew). | Data | Quantity | | --- | --- | | Tweets downloaded | 3216 | | Retweets | 1319 | | Short tweets | 109 | | Tweets kept | 1788 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/ecj53ccd/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @sigittanew's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/jm7ev1c0) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/jm7ev1c0/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/sigittanew') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
hyunwoongko/brainbert-base-ko-kornli
2bceaf8392c8c1427653f924da8a146bb315a993
2022-01-07T06:35:58.000Z
[ "pytorch", "jax", "roberta", "text-classification", "transformers" ]
text-classification
false
hyunwoongko
null
hyunwoongko/brainbert-base-ko-kornli
11
null
transformers
11,084
Entry not found
iarfmoose/wav2vec2-large-xlsr-sorbian
ad782fe1576f3a1103e4b6d419ba8d6a9eb9f772
2021-07-06T06:01:40.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "hsb", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
iarfmoose
null
iarfmoose/wav2vec2-large-xlsr-sorbian
11
null
transformers
11,085
--- language: hsb datasets: - common_voice tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Sorbian by Adam Montgomerie results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice hsb type: common_voice args: hsb metrics: - name: Test WER type: wer value: 41.74 --- # Wav2Vec2-Large-XLSR-53-Sorbian Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Sorbian using the [Common Voice](https://huggingface.co/datasets/common_voice) When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "hsb", split="test[:2%]"). processor = Wav2Vec2Processor.from_pretrained("iarfmoose/wav2vec2-large-xlsr-sorbian") model = Wav2Vec2ForCTC.from_pretrained("iarfmoose/wav2vec2-large-xlsr-sorbian") resampler = torchaudio.transforms.Resample(48_000, 16_000) def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) tbatch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Sorbian test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "hsb", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("iarfmoose/wav2vec2-large-xlsr-sorbian") model = Wav2Vec2ForCTC.from_pretrained("iarfmoose/wav2vec2-large-xlsr-sorbian") model.to("cuda") chars_to_ignore_regex = '[\\\\\\\\\\\\\\\\,\\\\\\\\\\\\\\\\?\\\\\\\\\\\\\\\\.\\\\\\\\\\\\\\\\!\\\\\\\\\\\\\\\\-\\\\\\\\\\\\\\\\;\\\\\\\\\\\\\\\\:\\\\\\\\\\\\\\\\"\\\\\\\\\\\\\\\\“\\\\\\\\\\\\\\\\%\\\\\\\\\\\\\\\\‘\\\\\\\\\\\\\\\\”\\\\\\\\\\\\\\\\�\\\\\\\\\\\\\\\\–\\\\\\\\\\\\\\\\—\\\\\\\\\\\\\\\\¬\\\\\\\\\\\\\\\\⅛]' resampler = torchaudio.transforms.Resample(48_000, 16_000) def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 41.74 % ## Training The Common Voice `train`, `validation` datasets were used for training. The script used for training can be found [here](https://github.com/AMontgomerie/wav2vec2-xlsr/blob/main/Sorbian/XLSR_Sorbian.ipynb) A notebook of the evaluation script can be found [here](https://github.com/AMontgomerie/wav2vec2-xlsr/blob/main/Sorbian/wav2vec2_hsb_eval.ipynb)
ikevin98/bert-base-uncased-finetuned-sst2-sst2-membership
b3ca0fa795d032cadc71cbdf6ea978501549a0eb
2021-09-04T20:10:24.000Z
[ "pytorch", "bert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0" ]
text-classification
false
ikevin98
null
ikevin98/bert-base-uncased-finetuned-sst2-sst2-membership
11
null
transformers
11,086
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model_index: name: bert-base-uncased-finetuned-sst2-sst2-membership --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-sst2-sst2-membership This model is a fine-tuned version of [ikevin98/bert-base-uncased-finetuned-sst2](https://huggingface.co/ikevin98/bert-base-uncased-finetuned-sst2) on an unkown dataset. It achieves the following results on the evaluation set: - Loss: 1.3100 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5125 | 1.0 | 3813 | 1.3100 | 1.0 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.8.1 - Datasets 1.11.0 - Tokenizers 0.10.1
it5/mt5-small-informal-to-formal
71f9ee387b8f0b1b863de70377866c4f265ffea6
2022-03-09T07:49:29.000Z
[ "pytorch", "tf", "jax", "tensorboard", "mt5", "text2text-generation", "it", "dataset:yahoo/xformal_it", "arxiv:2203.03759", "transformers", "italian", "sequence-to-sequence", "style-transfer", "formality-style-transfer", "license:apache-2.0", "model-index", "co2_eq_emissions", "autotrain_compatible" ]
text2text-generation
false
it5
null
it5/mt5-small-informal-to-formal
11
null
transformers
11,087
--- language: - it license: apache-2.0 tags: - italian - sequence-to-sequence - style-transfer - formality-style-transfer datasets: - yahoo/xformal_it widget: - text: "maronn qualcuno mi spieg' CHECCOSA SUCCEDE?!?!" - text: "wellaaaaaaa, ma fraté sei proprio troppo simpatiko, grazieeee!!" - text: "nn capisco xke tt i ragazzi lo fanno" - text: "IT5 è SUPERMEGA BRAVISSIMO a capire tt il vernacolo italiano!!!" metrics: - rouge - bertscore model-index: - name: mt5-small-informal-to-formal results: - task: type: formality-style-transfer name: "Informal-to-formal Style Transfer" dataset: type: xformal_it name: "XFORMAL (Italian Subset)" metrics: - type: rouge1 value: 0.638 name: "Avg. Test Rouge1" - type: rouge2 value: 0.446 name: "Avg. Test Rouge2" - type: rougeL value: 0.620 name: "Avg. Test RougeL" - type: bertscore value: 0.684 name: "Avg. Test BERTScore" args: - model_type: "dbmdz/bert-base-italian-xxl-uncased" - lang: "it" - num_layers: 10 - rescale_with_baseline: True - baseline_path: "bertscore_baseline_ita.tsv" co2_eq_emissions: emissions: "17g" source: "Google Cloud Platform Carbon Footprint" training_type: "fine-tuning" geographical_location: "Eemshaven, Netherlands, Europe" hardware_used: "1 TPU v3-8 VM" --- # mT5 Small for Informal-to-formal Style Transfer 🧐 This repository contains the checkpoint for the [mT5 Small](https://huggingface.co/google/mt5-small) model fine-tuned on Informal-to-formal style transfer on the Italian subset of the XFORMAL dataset as part of the experiments of the paper [IT5: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation](https://arxiv.org/abs/2203.03759) by [Gabriele Sarti](https://gsarti.com) and [Malvina Nissim](https://malvinanissim.github.io). A comprehensive overview of other released materials is provided in the [gsarti/it5](https://github.com/gsarti/it5) repository. Refer to the paper for additional details concerning the reported scores and the evaluation approach. ## Using the model Model checkpoints are available for usage in Tensorflow, Pytorch and JAX. They can be used directly with pipelines as: ```python from transformers import pipelines i2f = pipeline("text2text-generation", model='it5/mt5-small-informal-to-formal') i2f("nn capisco xke tt i ragazzi lo fanno") >>> [{"generated_text": "non comprendo perché tutti i ragazzi agiscono così"}] ``` or loaded using autoclasses: ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("it5/mt5-small-informal-to-formal") model = AutoModelForSeq2SeqLM.from_pretrained("it5/mt5-small-informal-to-formal") ``` If you use this model in your research, please cite our work as: ```bibtex @article{sarti-nissim-2022-it5, title={{IT5}: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation}, author={Sarti, Gabriele and Nissim, Malvina}, journal={ArXiv preprint 2203.03759}, url={https://arxiv.org/abs/2203.03759}, year={2022}, month={mar} } ```
jcblaise/electra-tagalog-small-cased-discriminator
79952fd321b77d1292385822eeaea2e7bd4342da
2021-11-12T03:23:59.000Z
[ "pytorch", "electra", "pretraining", "tl", "transformers", "tagalog", "filipino", "license:gpl-3.0" ]
null
false
jcblaise
null
jcblaise/electra-tagalog-small-cased-discriminator
11
null
transformers
11,088
--- language: tl tags: - electra - tagalog - filipino license: gpl-3.0 inference: false --- **Deprecation Notice** This model is deprecated. New Filipino Transformer models trained with a much larger corpora are available. Use [`jcblaise/roberta-tagalog-base`](https://huggingface.co/jcblaise/roberta-tagalog-base) or [`jcblaise/roberta-tagalog-large`](https://huggingface.co/jcblaise/roberta-tagalog-large) instead for better performance. --- # ELECTRA Tagalog Small Cased Discriminator Tagalog ELECTRA model pretrained with a large corpus scraped from the internet. This model is part of a larger research project. We open-source the model to allow greater usage within the Filipino NLP community. This is the discriminator model, which is the main Transformer used for finetuning to downstream tasks. For generation, mask-filling, and retraining, refer to the Generator models. ## Citations All model details and training setups can be found in our papers. If you use our model or find it useful in your projects, please cite our work: ``` @inproceedings{cruz2021exploiting, title={Exploiting News Article Structure for Automatic Corpus Generation of Entailment Datasets}, author={Cruz, Jan Christian Blaise and Resabal, Jose Kristian and Lin, James and Velasco, Dan John and Cheng, Charibeth}, booktitle={Pacific Rim International Conference on Artificial Intelligence}, pages={86--99}, year={2021}, organization={Springer} } ``` ## Data and Other Resources Data used to train this model as well as other benchmark datasets in Filipino can be found in my website at https://blaisecruz.com ## Contact If you have questions, concerns, or if you just want to chat about NLP and low-resource languages in general, you may reach me through my work email at [email protected]
joonhan/roberta-roa
df85c06271eaa6bc4ea2a601d7b0301575b21109
2021-10-08T02:05:28.000Z
[ "pytorch", "roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
joonhan
null
joonhan/roberta-roa
11
null
transformers
11,089
* Fine-tunning "KLUE/roberta-large" model For CER(Company Entity Recognition) With Custom Dataset * Custom Datasets are composed of news data ```python label_list = ['O',"B-PER","I-PER","B-ORG","I-ORG","B-COM","I-COM","B-LOC","I-LOC","B-DAT","I-DAT","B-TIM","I-TIM","B-QNT","I-QNT"] refer_list = ['0','1','2','3','4','5','6','7','8','9','10','11','12','13','14'] ``` - EX: "B-PER" : 1 , "B-COM" : 5
joaoalvarenga/model-sid-voxforge-cetuc-2
3131f140dd5427fc06cbb81e69ce5e8472e7c328
2021-07-06T08:45:23.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
joaoalvarenga
null
joaoalvarenga/model-sid-voxforge-cetuc-2
11
null
transformers
11,090
Entry not found
joaoalvarenga/wav2vec2-cetuc-sid-voxforge-mls-0-new
cba5734fc9160b720e910be953aa58cb93f776e1
2021-07-12T12:26:36.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
joaoalvarenga
null
joaoalvarenga/wav2vec2-cetuc-sid-voxforge-mls-0-new
11
null
transformers
11,091
Entry not found
jsgao/bart-eli5c
8a480cb69f41b15e80bd839208f10f6843e9ae27
2021-12-14T21:09:14.000Z
[ "pytorch", "bart", "text2text-generation", "en", "dataset:eli5_category", "transformers", "license:mit", "autotrain_compatible" ]
text2text-generation
false
jsgao
null
jsgao/bart-eli5c
11
null
transformers
11,092
--- language: en license: MIT datasets: - eli5_category --- Answer generator model of [ELI5-Category Dataset](https://celeritasml.netlify.app/posts/2021-12-01-eli5c/)
juliusco/biobert-base-cased-v1.1-squad-finetuned-covdrobert
4a76b5e23ecc89d08691bf22355009dc29190d57
2021-12-14T10:28:15.000Z
[ "pytorch", "bert", "question-answering", "dataset:covid_qa_deepset", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
juliusco
null
juliusco/biobert-base-cased-v1.1-squad-finetuned-covdrobert
11
null
transformers
11,093
--- tags: - generated_from_trainer datasets: - covid_qa_deepset model-index: - name: biobert-base-cased-v1.1-squad-finetuned-covdrobert results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # biobert-base-cased-v1.1-squad-finetuned-covdrobert This model is a fine-tuned version of [dmis-lab/biobert-base-cased-v1.1-squad](https://huggingface.co/dmis-lab/biobert-base-cased-v1.1-squad) on the covid_qa_deepset dataset. It achieves the following results on the evaluation set: - Loss: 0.3959 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 486 | 0.3787 | | 0.161 | 2.0 | 972 | 0.3959 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.10.0+cu102 - Datasets 1.16.1 - Tokenizers 0.10.3
jwa018/norwegian_parliament
fe3b549b8f5b35fec785ffb785f6d904971f9850
2021-10-24T21:58:51.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
jwa018
null
jwa018/norwegian_parliament
11
null
transformers
11,094
Entry not found
k-partha/decision_style_bert_bio
49717e1acd15bd62878039b99d9e4709e860c102
2022-01-29T03:36:37.000Z
[ "pytorch", "bert", "text-classification", "arxiv:2109.06402", "transformers" ]
text-classification
false
k-partha
null
k-partha/decision_style_bert_bio
11
null
transformers
11,095
Rates Twitter biographies on decision-making preference: Judging (focused, goal-oriented decision strategy) or Prospecting (open-ended, explorative strategy). Roughly corresponds to [conscientiousness](https://en.wikipedia.org/wiki/Conscientiousness) Go to your Twitter profile, copy your biography and paste in the inference widget, remove any URLs and press hit! Trained on self-described personality labels. Interpret as a continuous score, not as a discrete label. Have fun! Note: Performance on inputs other than Twitter biographies [the training data source] is not verified. For further details and expected performance, read the [paper](https://arxiv.org/abs/2109.06402).
k-partha/extrabert_bio
36d571d7fd0d01e2684f5272789c98d8521b99f1
2022-01-29T03:36:11.000Z
[ "pytorch", "bert", "text-classification", "arxiv:2109.06402", "transformers" ]
text-classification
false
k-partha
null
k-partha/extrabert_bio
11
null
transformers
11,096
Classifies Twitter biographies as either introverts or extroverts. Go to your Twitter profile, copy your biography and paste in the inference widget, remove any URLs and press hit! Trained on self-described personality labels. Interpret as a continuous score, not as a discrete label. Have fun! Barack Obama: Extrovert; Ellen DeGeneres: Extrovert; Naomi Osaka: Introvert Note: Performance on inputs other than Twitter biographies [the training data source] is not verified. For further details and expected performance, read the [paper](https://arxiv.org/abs/2109.06402).
kbhugging/autonlp-text2sql-18413376
5650cb482cdec04eadaf364997f22b5d9dad2dea
2021-10-15T02:36:42.000Z
[ "pytorch", "t5", "text2text-generation", "unk", "dataset:kbhugging/autonlp-data-text2sql", "transformers", "autonlp", "co2_eq_emissions", "autotrain_compatible" ]
text2text-generation
false
kbhugging
null
kbhugging/autonlp-text2sql-18413376
11
null
transformers
11,097
--- tags: autonlp language: unk widget: - text: "I love AutoNLP 🤗" datasets: - kbhugging/autonlp-data-text2sql co2_eq_emissions: 1.4091714704861447 --- # Model Trained Using AutoNLP - Problem type: Summarization - Model ID: 18413376 - CO2 Emissions (in grams): 1.4091714704861447 ## Validation Metrics - Loss: 0.26672711968421936 - Rouge1: 61.765 - Rouge2: 52.5778 - RougeL: 61.3222 - RougeLsum: 61.1905 - Gen Len: 18.7805 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/kbhugging/autonlp-text2sql-18413376 ```
kingabzpro/wav2vec2-60-urdu
128cf5bef2519dfb55b1316bc91afe6ec8ab842a
2022-03-23T18:27:20.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "ur", "dataset:mozilla-foundation/common_voice_7_0", "transformers", "hf-asr-leaderboard", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
kingabzpro
null
kingabzpro/wav2vec2-60-urdu
11
1
transformers
11,098
--- language: - ur license: apache-2.0 tags: - automatic-speech-recognition - hf-asr-leaderboard - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 metrics: - wer - cer model-index: - name: wav2vec2-60-urdu results: - task: type: automatic-speech-recognition name: Speech Recognition dataset: type: mozilla-foundation/common_voice_7_0 name: Common Voice ur args: ur metrics: - type: wer value: 59.1 name: Test WER args: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 50 - mixed_precision_training: Native AMP - type: cer value: 33.1 name: Test CER args: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 50 - mixed_precision_training: Native AMP --- # wav2vec2-large-xlsr-53-urdu This model is a fine-tuned version of [Harveenchadha/vakyansh-wav2vec2-urdu-urm-60](https://huggingface.co/Harveenchadha/vakyansh-wav2vec2-urdu-urm-60) on the common_voice dataset. It achieves the following results on the evaluation set: - Wer: 0.5913 - Cer: 0.3310 ## Model description The training and valid dataset is 0.58 hours. It was hard to train any model on lower number of so I decided to take vakyansh-wav2vec2-urdu-urm-60 checkpoint and finetune the wav2vec2 model. ## Training procedure Trained on Harveenchadha/vakyansh-wav2vec2-urdu-urm-60 due to lesser number of samples. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 12.6045 | 8.33 | 100 | 8.4997 | 0.6978 | 0.3923 | | 1.3367 | 16.67 | 200 | 5.0015 | 0.6515 | 0.3556 | | 0.5344 | 25.0 | 300 | 9.3687 | 0.6393 | 0.3625 | | 0.2922 | 33.33 | 400 | 9.2381 | 0.6236 | 0.3432 | | 0.1867 | 41.67 | 500 | 6.2150 | 0.6035 | 0.3448 | | 0.1166 | 50.0 | 600 | 6.4496 | 0.5913 | 0.3310 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
kingabzpro/wav2vec2-large-xls-r-1b-Indonesian
8536e2edf49b1347b4503d12b63b506770117f87
2022-03-23T18:29:16.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "id", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "hf-asr-leaderboard", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
kingabzpro
null
kingabzpro/wav2vec2-large-xls-r-1b-Indonesian
11
1
transformers
11,099
--- language: - id license: apache-2.0 tags: - automatic-speech-recognition - hf-asr-leaderboard - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 metrics: - wer - cer model-index: - name: wav2vec2-large-xls-r-1b-Indonesian results: - task: type: automatic-speech-recognition name: Speech Recognition dataset: type: mozilla-foundation/common_voice_8_0 name: Common Voice id args: id metrics: - type: wer value: 45.51 name: Test WER - type: cer value: 16.43 name: Test CER - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: id metrics: - name: Test WER type: wer value: 72.73 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: id metrics: - name: Test WER type: wer value: 79.29 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-1b-Indonesian This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.9550 - Wer: 0.4551 - Cer: 0.1643 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 400 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 3.663 | 7.69 | 200 | 0.7898 | 0.6039 | 0.1848 | | 0.7424 | 15.38 | 400 | 1.0215 | 0.5615 | 0.1924 | | 0.4494 | 23.08 | 600 | 1.0901 | 0.5249 | 0.1932 | | 0.5075 | 30.77 | 800 | 1.1013 | 0.5079 | 0.1935 | | 0.4671 | 38.46 | 1000 | 1.1034 | 0.4916 | 0.1827 | | 0.1928 | 46.15 | 1200 | 0.9550 | 0.4551 | 0.1643 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0