modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
list
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
tbosse/bert-base-german-cased-noisy-pretrain-fine-tuned_v1.2
67d323d69c21de5bcebfa2cec5703dcd2e357a2e
2022-05-28T00:44:34.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
tbosse
null
tbosse/bert-base-german-cased-noisy-pretrain-fine-tuned_v1.2
12
null
transformers
10,800
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-german-cased-noisy-pretrain-fine-tuned_v1.2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-german-cased-noisy-pretrain-fine-tuned_v1.2 This model is a fine-tuned version of [tbosse/bert-base-german-cased-finetuned-subj_preTrained_with_noisyData_v1.2](https://huggingface.co/tbosse/bert-base-german-cased-finetuned-subj_preTrained_with_noisyData_v1.2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2810 - Precision: 0.7874 - Recall: 0.7514 - F1: 0.7690 - Accuracy: 0.9147 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 33 | 0.3078 | 0.7675 | 0.5943 | 0.6699 | 0.8842 | | No log | 2.0 | 66 | 0.2535 | 0.7729 | 0.7486 | 0.7605 | 0.9073 | | No log | 3.0 | 99 | 0.2417 | 0.7714 | 0.7714 | 0.7714 | 0.9119 | | No log | 4.0 | 132 | 0.2532 | 0.8031 | 0.7343 | 0.7672 | 0.9142 | | No log | 5.0 | 165 | 0.2675 | 0.7834 | 0.7543 | 0.7686 | 0.9142 | | No log | 6.0 | 198 | 0.2750 | 0.7870 | 0.76 | 0.7733 | 0.9159 | | No log | 7.0 | 231 | 0.2810 | 0.7874 | 0.7514 | 0.7690 | 0.9147 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
tbosse/bert-base-german-cased-noisy-pretrain-fine-tuned_v1.1
3bf89cfedc35887b8791d0513203533b91cd7a23
2022-05-28T00:55:39.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
tbosse
null
tbosse/bert-base-german-cased-noisy-pretrain-fine-tuned_v1.1
12
null
transformers
10,801
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-german-cased-noisy-pretrain-fine-tuned_v1.1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-german-cased-noisy-pretrain-fine-tuned_v1.1 This model is a fine-tuned version of [tbosse/bert-base-german-cased-finetuned-subj_preTrained_with_noisyData_v1.1](https://huggingface.co/tbosse/bert-base-german-cased-finetuned-subj_preTrained_with_noisyData_v1.1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2742 - Precision: 0.8072 - Recall: 0.7657 - F1: 0.7859 - Accuracy: 0.9217 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 33 | 0.3112 | 0.7601 | 0.5886 | 0.6634 | 0.8773 | | No log | 2.0 | 66 | 0.2539 | 0.7706 | 0.72 | 0.7445 | 0.9038 | | No log | 3.0 | 99 | 0.2416 | 0.7755 | 0.76 | 0.7677 | 0.9130 | | No log | 4.0 | 132 | 0.2536 | 0.8190 | 0.7371 | 0.7759 | 0.9165 | | No log | 5.0 | 165 | 0.2644 | 0.7982 | 0.7457 | 0.7710 | 0.9176 | | No log | 6.0 | 198 | 0.2735 | 0.8142 | 0.7514 | 0.7816 | 0.9205 | | No log | 7.0 | 231 | 0.2742 | 0.8072 | 0.7657 | 0.7859 | 0.9217 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
CH0KUN/autotrain-TNC_Domain_WangchanBERTa-921730254
717c70412daf75b5670678e02d7abf451f1cf5f5
2022-05-28T12:04:53.000Z
[ "pytorch", "camembert", "text-classification", "unk", "dataset:CH0KUN/autotrain-data-TNC_Domain_WangchanBERTa", "transformers", "autotrain", "co2_eq_emissions" ]
text-classification
false
CH0KUN
null
CH0KUN/autotrain-TNC_Domain_WangchanBERTa-921730254
12
null
transformers
10,802
--- tags: autotrain language: unk widget: - text: "I love AutoTrain 🤗" datasets: - CH0KUN/autotrain-data-TNC_Domain_WangchanBERTa co2_eq_emissions: 25.144394918865913 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 921730254 - CO2 Emissions (in grams): 25.144394918865913 ## Validation Metrics - Loss: 0.7080970406532288 - Accuracy: 0.7775925925925926 - Macro F1: 0.7758012615987406 - Micro F1: 0.7775925925925925 - Weighted F1: 0.7758012615987406 - Macro Precision: 0.7833307663368776 - Micro Precision: 0.7775925925925926 - Weighted Precision: 0.7833307663368777 - Macro Recall: 0.7775925925925926 - Micro Recall: 0.7775925925925926 - Weighted Recall: 0.7775925925925926 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/CH0KUN/autotrain-TNC_Domain_WangchanBERTa-921730254 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("CH0KUN/autotrain-TNC_Domain_WangchanBERTa-921730254", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("CH0KUN/autotrain-TNC_Domain_WangchanBERTa-921730254", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
LinaR/t5-base-medium-title-generation
6f1f242423eb0ed095194d71c230de11df267703
2022-05-28T12:27:56.000Z
[ "pytorch", "tf", "t5", "text2text-generation", "transformers", "generated_from_keras_callback", "model-index", "autotrain_compatible" ]
text2text-generation
false
LinaR
null
LinaR/t5-base-medium-title-generation
12
null
transformers
10,803
--- tags: - generated_from_keras_callback model-index: - name: t5-base-medium-title-generation results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-medium-title-generation This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.19.2 - TensorFlow 2.8.0 - Datasets 2.2.2 - Tokenizers 0.12.1
batya66/bert-finetuned-ner
591d1f808bd28e4961342fe157adbd611e033f7f
2022-05-31T12:02:04.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
batya66
null
batya66/bert-finetuned-ner
12
null
transformers
10,804
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9287951211471898 - name: Recall type: recall value: 0.9483338943116796 - name: F1 type: f1 value: 0.9384628195520027 - name: Accuracy type: accuracy value: 0.985915700241361 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0622 - Precision: 0.9288 - Recall: 0.9483 - F1: 0.9385 - Accuracy: 0.9859 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0876 | 1.0 | 1756 | 0.0657 | 0.9093 | 0.9349 | 0.9219 | 0.9826 | | 0.0412 | 2.0 | 3512 | 0.0555 | 0.9357 | 0.9500 | 0.9428 | 0.9867 | | 0.0205 | 3.0 | 5268 | 0.0622 | 0.9288 | 0.9483 | 0.9385 | 0.9859 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
YeRyeongLee/bert-large-uncased-finetuned-filtered-0602
f990fdeae3d8a80aa0eaa34792771fa83806cde5
2022-06-01T22:57:54.000Z
[ "pytorch", "bert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
YeRyeongLee
null
YeRyeongLee/bert-large-uncased-finetuned-filtered-0602
12
null
transformers
10,805
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: bert-large-uncased-finetuned-filtered-0602 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-large-uncased-finetuned-filtered-0602 This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.8409 - Accuracy: 0.1667 - F1: 0.0476 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:| | 1.8331 | 1.0 | 3180 | 1.8054 | 0.1667 | 0.0476 | | 1.8158 | 2.0 | 6360 | 1.8196 | 0.1667 | 0.0476 | | 1.8088 | 3.0 | 9540 | 1.8059 | 0.1667 | 0.0476 | | 1.8072 | 4.0 | 12720 | 1.7996 | 0.1667 | 0.0476 | | 1.8182 | 5.0 | 15900 | 1.7962 | 0.1667 | 0.0476 | | 1.7993 | 6.0 | 19080 | 1.8622 | 0.1667 | 0.0476 | | 1.7963 | 7.0 | 22260 | 1.8378 | 0.1667 | 0.0476 | | 1.7956 | 8.0 | 25440 | 1.8419 | 0.1667 | 0.0476 | | 1.7913 | 9.0 | 28620 | 1.8406 | 0.1667 | 0.0476 | | 1.7948 | 10.0 | 31800 | 1.8409 | 0.1667 | 0.0476 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.9.0 - Datasets 1.16.1 - Tokenizers 0.12.1
JXL884/distilbert-base-uncased-finetuned-emotion
3484ce4ede20e070fafc972f23d96f7def7975f8
2022-06-02T02:14:26.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
JXL884
null
JXL884/distilbert-base-uncased-finetuned-emotion
12
null
transformers
10,806
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion model-index: - name: distilbert-base-uncased-finetuned-emotion results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0 - Datasets 1.16.1 - Tokenizers 0.10.3
kktoto/tiny_ktoto_punctuator
40605dcc630b08a5eb8fa6f6ab9bf5aca134f257
2022-06-02T03:54:44.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
token-classification
false
kktoto
null
kktoto/tiny_ktoto_punctuator
12
null
transformers
10,807
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: tiny_ktoto_punctuator results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tiny_ktoto_punctuator This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1342 - Precision: 0.6446 - Recall: 0.6184 - F1: 0.6312 - Accuracy: 0.9503 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1452 | 1.0 | 5561 | 0.1409 | 0.6289 | 0.5973 | 0.6127 | 0.9481 | | 0.1389 | 2.0 | 11122 | 0.1358 | 0.6415 | 0.6103 | 0.6255 | 0.9497 | | 0.1352 | 3.0 | 16683 | 0.1342 | 0.6446 | 0.6184 | 0.6312 | 0.9503 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
PontifexMaximus/opus-mt-iir-en-finetuned-fa-to-en-finetuned-fa-to-en
fd77e8a0f3fd094cb31c4933723ddb25545c9227
2022-06-03T10:51:44.000Z
[ "pytorch", "tensorboard", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PontifexMaximus
null
PontifexMaximus/opus-mt-iir-en-finetuned-fa-to-en-finetuned-fa-to-en
12
null
transformers
10,808
Entry not found
SimulSt/distilbert-base-uncased-finetuned-emotion
fbcf0c2ed101a6aaf6b00ccce527049f78ccf301
2022-06-06T13:24:23.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
SimulSt
null
SimulSt/distilbert-base-uncased-finetuned-emotion
12
null
transformers
10,809
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.925 - name: F1 type: f1 value: 0.9250238763128368 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2202 - Accuracy: 0.925 - F1: 0.9250 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8285 | 1.0 | 250 | 0.3203 | 0.905 | 0.9008 | | 0.2544 | 2.0 | 500 | 0.2202 | 0.925 | 0.9250 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
santiviquez/bart-base-finetuned-samsum-en
1021f8c0b1161e0c43c5d346e056b3e63e007725
2022-06-27T20:55:10.000Z
[ "pytorch", "tensorboard", "bart", "text2text-generation", "dataset:samsum", "transformers", "summarization", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
summarization
false
santiviquez
null
santiviquez/bart-base-finetuned-samsum-en
12
null
transformers
10,810
--- license: apache-2.0 tags: - summarization - generated_from_trainer datasets: - samsum metrics: - rouge model-index: - name: bart-base-finetuned-samsum-en results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: samsum type: samsum args: samsum metrics: - name: Rouge1 type: rouge value: 46.8825 - task: type: summarization name: Summarization dataset: name: samsum type: samsum config: samsum split: test metrics: - name: ROUGE-1 type: rouge value: 45.0692 verified: true - name: ROUGE-2 type: rouge value: 20.9049 verified: true - name: ROUGE-L type: rouge value: 37.3128 verified: true - name: ROUGE-LSUM type: rouge value: 40.662 verified: true - name: loss type: loss value: 5.763935565948486 verified: true - name: gen_len type: gen_len value: 18.4921 verified: true --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-base-finetuned-samsum-en This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 2.3676 - Rouge1: 46.8825 - Rouge2: 22.0923 - Rougel: 39.7249 - Rougelsum: 42.9187 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | 0.5172 | 1.0 | 300 | 2.1613 | 47.4152 | 22.8106 | 39.93 | 43.3639 | | 0.3627 | 2.0 | 600 | 2.2771 | 47.2676 | 22.6325 | 40.1345 | 43.19 | | 0.2466 | 3.0 | 900 | 2.3676 | 46.8825 | 22.0923 | 39.7249 | 42.9187 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
kktoto/wwdd_tiny
6a56d1fc1b7781ed8da1ad77ca38a149ee499143
2022-06-04T13:45:05.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
kktoto
null
kktoto/wwdd_tiny
12
null
transformers
10,811
Entry not found
juancavallotti/t5-small-gec
7bafa50ee7e83248fecedfd4cd3ce3ba004fc2ef
2022-06-05T01:51:04.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
juancavallotti
null
juancavallotti/t5-small-gec
12
null
transformers
10,812
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: t5-small-gec results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-gec This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
espejelomar/sentece-embeddings-BETO
b93a4d25f37360c1ebdbc1912100d3c1a70d0af4
2022-06-05T05:32:59.000Z
[ "pytorch", "bert", "feature-extraction", "dataset:flax-sentence-embeddings/stackexchange_xml", "dataset:code_search_net", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
espejelomar
null
espejelomar/sentece-embeddings-BETO
12
null
sentence-transformers
10,813
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers datasets: - flax-sentence-embeddings/stackexchange_xml - code_search_net --- # espejelomar/sentece-embeddings-BETO This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('espejelomar/sentece-embeddings-BETO') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('espejelomar/sentece-embeddings-BETO') model = AutoModel.from_pretrained('espejelomar/sentece-embeddings-BETO') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=espejelomar/sentece-embeddings-BETO) ## Training The model was trained with the parameters: **DataLoader**: `sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 16 with parameters: ``` {'batch_size': 100} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 1, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 2, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
gokuls/tiny-bert-sst2-distilled-model
d403d363429d84e29ea984c56119b572e7cab5e0
2022-06-06T01:31:55.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
gokuls
null
gokuls/tiny-bert-sst2-distilled-model
12
null
transformers
10,814
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: tiny-bert-sst2-distilled-model results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: sst2 metrics: - name: Accuracy type: accuracy value: 0.838302752293578 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tiny-bert-sst2-distilled-model This model is a fine-tuned version of [google/bert_uncased_L-2_H-128_A-2](https://huggingface.co/google/bert_uncased_L-2_H-128_A-2) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 1.2592 - Accuracy: 0.8383 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 33 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.5303 | 1.0 | 4210 | 1.2542 | 0.8222 | | 0.4503 | 2.0 | 8420 | 1.1260 | 0.8211 | | 0.3689 | 3.0 | 12630 | 1.2325 | 0.8234 | | 0.3122 | 4.0 | 16840 | 1.2533 | 0.8337 | | 0.2764 | 5.0 | 21050 | 1.2726 | 0.8337 | | 0.254 | 6.0 | 25260 | 1.2609 | 0.8337 | | 0.2358 | 7.0 | 29470 | 1.2592 | 0.8383 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.10.1+cu113 - Datasets 1.15.1 - Tokenizers 0.12.1
PontifexMaximus/mt5-base-parsinlu-opus-translation_fa_en-finetuned-fa-to-en
fb769c174971f0aa96447960b34ee20c7c6abd65
2022-06-06T07:26:12.000Z
[ "pytorch", "tensorboard", "mt5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PontifexMaximus
null
PontifexMaximus/mt5-base-parsinlu-opus-translation_fa_en-finetuned-fa-to-en
12
null
transformers
10,815
Entry not found
inokufu/bert-base-uncased-xnli-sts-finetuned-education
78279b6df52e606c2024fbbf1f71df24b82f913b
2022-06-07T16:39:43.000Z
[ "pytorch", "bert", "feature-extraction", "en", "dataset:xnli", "dataset:stsb_multi_mt", "arxiv:1810.04805", "arxiv:1809.05053", "sentence-transformers", "sentence-similarity", "transformers", "Education", "xnli", "stsb_multi_mt" ]
sentence-similarity
false
inokufu
null
inokufu/bert-base-uncased-xnli-sts-finetuned-education
12
null
sentence-transformers
10,816
--- pipeline_tag: sentence-similarity language: en tags: - sentence-similarity - transformers - Education - en - bert - sentence-transformers - feature-extraction - xnli - stsb_multi_mt datasets: - xnli - stsb_multi_mt --- # inokufu/bertheo-en A [sentence-transformers](https://www.SBERT.net) model fine-tuned on course sentences. It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Details This model is based on the English bert-base-uncased pre-trained model [1, 2]. It was first fine-tuned on our learning object (LO) sentences dataset. This dataset consists of a sample of 500k sentences of course descriptions. We used standard parameter settings for fine-tuning as mentioned in the original BERT paper [2]. This allows the model to improve its performance on the target task (Masked Language Model) for domain-specific sentences. It was then fine-tuned on a natural language inference task (XNLI) [3]. This task consists in training the model to recognize relations between sentences (contradiction, neutral, implication). It was then fine-tuned on a text semantic similarity task (on STS data) [4]. This task consists in training the model to estimate the similarity between two sentences. This fine-tuning process allows our model to have a semantic representation of words that is much better than the one proposed by the base model. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["Learn to code in python", "Become an expert in accounting"] model = SentenceTransformer('inokufu/bert-base-uncased-xnli-sts-finetuned-education') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ["Learn to code in python", "Become an expert in accounting"] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('inokufu/bert-base-uncased-xnli-sts-finetuned-education') model = AutoModel.from_pretrained('inokufu/bert-base-uncased-xnli-sts-finetuned-education') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results STS (en) score: 84.61% ## Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## References [1] https://huggingface.co/bert-base-uncased <br> [2] https://arxiv.org/abs/1810.04805 <br> [3] https://arxiv.org/abs/1809.05053 <br> [4] https://huggingface.co/datasets/stsb_multi_mt <br>
ghadeermobasher/Original-BioBERT-BC5CDR-Disease
45303d42061def853ab6f40264a20ff7c73ab7da
2022-06-09T11:08:54.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/Original-BioBERT-BC5CDR-Disease
12
null
transformers
10,817
Entry not found
ghadeermobasher/WLT-BlueBERT-BC5CDR-Chemical
19c4ba1c52f325b04f1006547dc7992605dbddbb
2022-06-09T11:51:28.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/WLT-BlueBERT-BC5CDR-Chemical
12
null
transformers
10,818
Entry not found
ghadeermobasher/Original-BioBERT-BC5CDR-Chemical
935286adcee6936f4934142920bda3ad604f4fca
2022-06-09T11:52:23.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/Original-BioBERT-BC5CDR-Chemical
12
null
transformers
10,819
Entry not found
ghadeermobasher/Original-BioBERT-BC2GM
d8f3fb28745873691c37822c1bd5b4f6b7fa7363
2022-06-09T14:21:48.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/Original-BioBERT-BC2GM
12
null
transformers
10,820
Entry not found
ghadeermobasher/Original-BioBERT-Linnaeus
a9dba32da24e0726f1dfb27895d3c08114132e94
2022-06-09T14:58:41.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/Original-BioBERT-Linnaeus
12
null
transformers
10,821
Entry not found
speechbrain/asr-wav2vec2-dvoice-wolof
f6386c7c01da9cc8e483fd37d5dde8c3783adfe1
2022-06-10T00:56:54.000Z
[ "wav2vec2", "feature-extraction", "wo", "dataset:Dvoice", "speechbrain", "CTC", "pytorch", "Transformer", "license:apache-2.0", "automatic-speech-recognition" ]
automatic-speech-recognition
false
speechbrain
null
speechbrain/asr-wav2vec2-dvoice-wolof
12
null
speechbrain
10,822
--- language: "wo" thumbnail: pipeline_tag: automatic-speech-recognition tags: - CTC - pytorch - speechbrain - Transformer license: "apache-2.0" datasets: - Dvoice metrics: - wer - cer --- <iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe> <br/><br/> # wav2vec 2.0 with CTC/Attention trained on DVoice Wolof (No LM) This repository provides all the necessary tools to perform automatic speech recognition from an end-to-end system pretrained on a [ALFFA](https://github.com/besacier/ALFFA_PUBLIC) Wolof dataset within SpeechBrain. For a better experience, we encourage you to learn more about [SpeechBrain](https://speechbrain.github.io). | DVoice Release | Val. CER | Val. WER | Test CER | Test WER | |:-------------:|:---------------------------:| -----:| -----:| -----:| | v2.0 | 4.81 | 16.25 | 4.83 | 16.05 | # Pipeline description This ASR system is composed of 2 different but linked blocks: - Tokenizer (unigram) that transforms words into subword units and is trained with the train transcriptions. - Acoustic model (wav2vec2.0 + CTC). A pretrained wav2vec 2.0 model ([facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53)) is combined with two DNN layers and finetuned on the Darija dataset. The obtained final acoustic representation is given to the CTC greedy decoder. The system is trained with recordings sampled at 16kHz (single channel). The code will automatically normalize your audio (i.e., resampling + mono channel selection) when calling *transcribe_file* if needed. # Install SpeechBrain First of all, please install transformers and SpeechBrain with the following command: ``` pip install speechbrain transformers ``` Please notice that we encourage you to read the SpeechBrain tutorials and learn more about [SpeechBrain](https://speechbrain.github.io). # Transcribing your own audio files (in Wolof) ```python from speechbrain.pretrained import EncoderASR asr_model = EncoderASR.from_hparams(source="speechbrain/asr-wav2vec2-dvoice-wolof", savedir="pretrained_models/asr-wav2vec2-dvoice-wolof") asr_model.transcribe_file('speechbrain/asr-wav2vec2-dvoice-wolof/example_wolof.wav') ``` # Inference on GPU To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method. # Training The model was trained with SpeechBrain. To train it from scratch follow these steps: 1. Clone SpeechBrain: ```bash git clone https://github.com/speechbrain/speechbrain/ ``` 2. Install it: ```bash cd speechbrain pip install -r requirements.txt pip install -e . ``` 3. Run Training: ```bash cd recipes/DVoice/ASR/CTC python train_with_wav2vec2.py hparams/train_wol_with_wav2vec.yaml --data_folder=/localscratch/ALFFA_PUBLIC/ASR/WOLOF/data/ ``` # Limitations The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets. # Referencing SpeechBrain ``` @misc{SB2021, author = {Ravanelli, Mirco and Parcollet, Titouan and Rouhe, Aku and Plantinga, Peter and Rastorgueva, Elena and Lugosch, Loren and Dawalatabad, Nauman and Ju-Chieh, Chou and Heba, Abdel and Grondin, Francois and Aris, William and Liao, Chien-Feng and Cornell, Samuele and Yeh, Sung-Lin and Na, Hwidong and Gao, Yan and Fu, Szu-Wei and Subakan, Cem and De Mori, Renato and Bengio, Yoshua }, title = {SpeechBrain}, year = {2021}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\\\\url{https://github.com/speechbrain/speechbrain}}, } ``` # About DVoice DVoice is a community initiative that aims to provide African low resources languages with data and models to facilitate their use of voice technologies. The lack of data on these languages makes it necessary to collect data using methods that are specific to each one. Two different approaches are currently used: the DVoice platforms ([https://dvoice.ma](https://dvoice.ma) and [https://dvoice.sn](https://dvoice.sn)), which are based on Mozilla Common Voice, for collecting authentic recordings from the community, and transfer learning techniques for automatically labeling recordings that are retrieved from social media. The DVoice platform currently manages 7 languages including Darija (Moroccan Arabic dialect) whose dataset appears on this version, Wolof, Mandingo, Serere, Pular, Diola, and Soninke. For this project, AIOX Labs and the SI2M Laboratory are joining forces to build the future of technologies together. # About AIOX Labs Based in Rabat, London, and Paris, AIOX-Labs mobilizes artificial intelligence technologies to meet the business needs and data projects of companies. - He is at the service of the growth of groups, the optimization of processes, or the improvement of the customer experience. - AIOX-Labs is multi-sector, from fintech to industry, including retail and consumer goods. - Business-ready data products with a solid algorithmic base and adaptability for the specific needs of each client. - A complementary team made up of doctors in AI and business experts with a solid scientific base and international publications. Website: [https://www.aiox-labs.com/](https://www.aiox-labs.com/) # SI2M Laboratory The Information Systems, Intelligent Systems, and Mathematical Modeling Research Laboratory (SI2M) is an academic research laboratory of the National Institute of Statistics and Applied Economics (INSEA). The research areas of the laboratories are Information Systems, Intelligent Systems, Artificial Intelligence, Decision Support, Network, and System Security, and Mathematical Modelling. Website: [SI2M Laboratory](https://insea.ac.ma/index.php/pole-recherche/equipe-de-recherche/150-laboratoire-de-recherche-en-systemes-d-information-systemes-intelligents-et-modelisation-mathematique) # About SpeechBrain SpeechBrain is an open-source and all-in-one speech toolkit. It is designed to be simple, extremely flexible, and user-friendly. Competitive or state-of-the-art performance is obtained in various domains. Website: https://speechbrain.github.io/ GitHub: https://github.com/speechbrain/speechbrain # Referencing SpeechBrain ``` @misc{SB2021, author = {Ravanelli, Mirco and Parcollet, Titouan and Rouhe, Aku and Plantinga, Peter and Rastorgueva, Elena and Lugosch, Loren and Dawalatabad, Nauman and Ju-Chieh, Chou and Heba, Abdel and Grondin, Francois and Aris, William and Liao, Chien-Feng and Cornell, Samuele and Yeh, Sung-Lin and Na, Hwidong and Gao, Yan and Fu, Szu-Wei and Subakan, Cem and De Mori, Renato and Bengio, Yoshua }, title = {SpeechBrain}, year = {2021}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\\\\url{https://github.com/speechbrain/speechbrain}}, } ``` # Acknowledgements This research was supported through computational resources of HPC-MARWAN (www.marwan.ma/hpc) provided by CNRST, Rabat, Morocco. We deeply thank this institution.
Deborah/bertimbau-finetuned-pos-accelerate
f89c65d9ff974c1339b253332d7a5beeed166636
2022-06-13T00:14:39.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
Deborah
null
Deborah/bertimbau-finetuned-pos-accelerate
12
null
transformers
10,823
Entry not found
hckhck/AI_Education
9ac244207da302af163aa1dac2ae44b1d10c9f96
2022-06-13T07:38:28.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "license:afl-3.0" ]
text-generation
false
hckhck
null
hckhck/AI_Education
12
null
transformers
10,824
--- license: afl-3.0 ---
ghadeermobasher/CRAFT-Modified-BlueBERT-512
965125cbb5221ec44749e6171b3d35ed59b8652d
2022-06-14T00:11:19.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/CRAFT-Modified-BlueBERT-512
12
null
transformers
10,825
Entry not found
ghadeermobasher/BC5CDR-Chem-Modified-BioBERT-512
62b0040c60a1869b1989fec5469fe49844e15365
2022-06-13T23:09:02.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/BC5CDR-Chem-Modified-BioBERT-512
12
null
transformers
10,826
Entry not found
ghadeermobasher/BC4CHEMD-Chem-Modified-SciBERT-512
659570b8433dbd04312b3aed72f52ff66c88bcd7
2022-06-14T09:45:52.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/BC4CHEMD-Chem-Modified-SciBERT-512
12
null
transformers
10,827
Entry not found
ghadeermobasher/BC4CHEMD-Chem-Original-SciBERT-512
62f88eeb010c4cb038bc43fad5272999b0889594
2022-06-14T09:49:36.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/BC4CHEMD-Chem-Original-SciBERT-512
12
null
transformers
10,828
Entry not found
ghadeermobasher/BC5CDR-Chem-Original-BlueBERT-384
b8c6614c6c71828dab68cdfa06545541fc33e347
2022-06-14T01:43:11.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/BC5CDR-Chem-Original-BlueBERT-384
12
null
transformers
10,829
Entry not found
corgito/finetuning-sentiment-model-3000-samples
61eabcd3f5b366aac66fdad2f4ee3d17a6234a5c
2022-06-15T02:09:05.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
corgito
null
corgito/finetuning-sentiment-model-3000-samples
12
null
transformers
10,830
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.87 - name: F1 type: f1 value: 0.8712871287128714 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3105 - Accuracy: 0.87 - F1: 0.8713 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.3.0 - Tokenizers 0.12.1
ghadeermobasher/BC5CDR-Chem-Modified-BioBERT-384
dda45ae9e8d9ff94798bfa637d1b6fdc7455ca4d
2022-06-15T10:48:08.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/BC5CDR-Chem-Modified-BioBERT-384
12
null
transformers
10,831
Entry not found
ghadeermobasher/BC5CD-Chem-Modified-PubMedBERT-512
31767604ce9b1f2db4dd1061145e0e35a7051310
2022-06-15T11:22:12.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/BC5CD-Chem-Modified-PubMedBERT-512
12
null
transformers
10,832
Entry not found
AidenWilliams/wav2vec2-xls-r-300m-mt-50
dd6738a52c4a9389ef58001d2e8ad960e4a07d9b
2022-07-25T13:03:47.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "mt", "dataset:mozilla-foundation/common_voice_7_0", "dataset:MASRI-HEADSET-V2", "transformers", "generated_from_trainer", "low-resource", "model-index" ]
automatic-speech-recognition
false
AidenWilliams
null
AidenWilliams/wav2vec2-xls-r-300m-mt-50
12
null
transformers
10,833
microsoft/swinv2-base-patch4-window12to24-192to384-22kto1k-ft
6692b9ab6094e3fd4d0dc92a32c5e60c3e47d140
2022-07-09T06:22:34.000Z
[ "pytorch", "swinv2", "transformers" ]
null
false
microsoft
null
microsoft/swinv2-base-patch4-window12to24-192to384-22kto1k-ft
12
null
transformers
10,834
Entry not found
Rajesh222/distilbert-base-uncased-finetuned-emotion
fa7ce29d5078b446840ccaed1c0a72d202a1027a
2022-06-16T14:05:04.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Rajesh222
null
Rajesh222/distilbert-base-uncased-finetuned-emotion
12
null
transformers
10,835
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9265 - name: F1 type: f1 value: 0.9265425929085783 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2133 - Accuracy: 0.9265 - F1: 0.9265 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8085 | 1.0 | 250 | 0.3033 | 0.9065 | 0.9037 | | 0.2458 | 2.0 | 500 | 0.2133 | 0.9265 | 0.9265 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.3.0 - Tokenizers 0.11.6
KoichiYasuoka/deberta-large-japanese-aozora-ud-head
e7e4516cb4eec31179c1aaf4f5e3a904c4eb4c7a
2022-07-23T14:43:58.000Z
[ "pytorch", "deberta-v2", "question-answering", "ja", "dataset:universal_dependencies", "transformers", "japanese", "dependency-parsing", "license:cc-by-sa-4.0", "autotrain_compatible" ]
question-answering
false
KoichiYasuoka
null
KoichiYasuoka/deberta-large-japanese-aozora-ud-head
12
null
transformers
10,836
--- language: - "ja" tags: - "japanese" - "question-answering" - "dependency-parsing" datasets: - "universal_dependencies" license: "cc-by-sa-4.0" pipeline_tag: "question-answering" widget: - text: "国語" context: "全学年にわたって小学校の国語の教科書に挿し絵が用いられている" - text: "教科書" context: "全学年にわたって小学校の国語の教科書に挿し絵が用いられている" - text: "の" context: "全学年にわたって小学校の国語[MASK]教科書に挿し絵が用いられている" --- # deberta-large-japanese-aozora-ud-head ## Model Description This is a DeBERTa(V2) model pretrained on 青空文庫 for dependency-parsing (head-detection on long-unit-words) as question-answering, derived from [deberta-large-japanese-aozora](https://huggingface.co/KoichiYasuoka/deberta-large-japanese-aozora) and [UD_Japanese-GSDLUW](https://github.com/UniversalDependencies/UD_Japanese-GSDLUW). Use [MASK] inside `context` to avoid ambiguity when specifying a multiple-used word as `question`. ## How to Use ```py import torch from transformers import AutoTokenizer,AutoModelForQuestionAnswering tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/deberta-large-japanese-aozora-ud-head") model=AutoModelForQuestionAnswering.from_pretrained("KoichiYasuoka/deberta-large-japanese-aozora-ud-head") question="国語" context="全学年にわたって小学校の国語の教科書に挿し絵が用いられている" inputs=tokenizer(question,context,return_tensors="pt",return_offsets_mapping=True) offsets=inputs.pop("offset_mapping").tolist()[0] outputs=model(**inputs) start,end=torch.argmax(outputs.start_logits),torch.argmax(outputs.end_logits) print(context[offsets[start][0]:offsets[end][-1]]) ``` or (with [ufal.chu-liu-edmonds](https://pypi.org/project/ufal.chu-liu-edmonds/)) ```py class TransformersUD(object): def __init__(self,bert): import os from transformers import (AutoTokenizer,AutoModelForQuestionAnswering, AutoModelForTokenClassification,AutoConfig,TokenClassificationPipeline) self.tokenizer=AutoTokenizer.from_pretrained(bert) self.model=AutoModelForQuestionAnswering.from_pretrained(bert) x=AutoModelForTokenClassification.from_pretrained if os.path.isdir(bert): d,t=x(os.path.join(bert,"deprel")),x(os.path.join(bert,"tagger")) else: from transformers.file_utils import hf_bucket_url c=AutoConfig.from_pretrained(hf_bucket_url(bert,"deprel/config.json")) d=x(hf_bucket_url(bert,"deprel/pytorch_model.bin"),config=c) s=AutoConfig.from_pretrained(hf_bucket_url(bert,"tagger/config.json")) t=x(hf_bucket_url(bert,"tagger/pytorch_model.bin"),config=s) self.deprel=TokenClassificationPipeline(model=d,tokenizer=self.tokenizer, aggregation_strategy="simple") self.tagger=TokenClassificationPipeline(model=t,tokenizer=self.tokenizer) def __call__(self,text): import numpy,torch,ufal.chu_liu_edmonds w=[(t["start"],t["end"],t["entity_group"]) for t in self.deprel(text)] z,n={t["start"]:t["entity"].split("|") for t in self.tagger(text)},len(w) r,m=[text[s:e] for s,e,p in w],numpy.full((n+1,n+1),numpy.nan) v,c=self.tokenizer(r,add_special_tokens=False)["input_ids"],[] for i,t in enumerate(v): q=[self.tokenizer.cls_token_id]+t+[self.tokenizer.sep_token_id] c.append([q]+v[0:i]+[[self.tokenizer.mask_token_id]]+v[i+1:]+[[q[-1]]]) b=[[len(sum(x[0:j+1],[])) for j in range(len(x))] for x in c] with torch.no_grad(): d=self.model(input_ids=torch.tensor([sum(x,[]) for x in c]), token_type_ids=torch.tensor([[0]*x[0]+[1]*(x[-1]-x[0]) for x in b])) s,e=d.start_logits.tolist(),d.end_logits.tolist() for i in range(n): for j in range(n): m[i+1,0 if i==j else j+1]=s[i][b[i][j]]+e[i][b[i][j+1]-1] h=ufal.chu_liu_edmonds.chu_liu_edmonds(m)[0] if [0 for i in h if i==0]!=[0]: i=([p for s,e,p in w]+["root"]).index("root") j=i+1 if i<n else numpy.nanargmax(m[:,0]) m[0:j,0]=m[j+1:,0]=numpy.nan h=ufal.chu_liu_edmonds.chu_liu_edmonds(m)[0] u="# text = "+text.replace("\n"," ")+"\n" for i,(s,e,p) in enumerate(w,1): p="root" if h[i]==0 else "dep" if p=="root" else p u+="\t".join([str(i),r[i-1],"_",z[s][0][2:],"_","|".join(z[s][1:]), str(h[i]),p,"_","_" if i<n and e<w[i][0] else "SpaceAfter=No"])+"\n" return u+"\n" nlp=TransformersUD("KoichiYasuoka/deberta-large-japanese-aozora-ud-head") print(nlp("全学年にわたって小学校の国語の教科書に挿し絵が用いられている")) ``` ## Reference 安岡孝一: [青空文庫DeBERTaモデルによる国語研長単位係り受け解析](http://hdl.handle.net/2433/275409), 東洋学へのコンピュータ利用, 第35回研究セミナー (2022年7月), pp.29-43.
Hardeep/distilbert-base-uncased-finetuned-emotion
ee1699b1c8bb90e4b2ecdcbe4c8fadde18fb98d6
2022-06-19T03:39:41.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Hardeep
null
Hardeep/distilbert-base-uncased-finetuned-emotion
12
null
transformers
10,837
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9225 - name: F1 type: f1 value: 0.9222308123735177 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2118 - Accuracy: 0.9225 - F1: 0.9222 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.7992 | 1.0 | 250 | 0.3046 | 0.9085 | 0.9063 | | 0.2352 | 2.0 | 500 | 0.2118 | 0.9225 | 0.9222 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
Danastos/dpr_passage_el_1
7973271412ffa4c96b3d1b3388025cf00042835b
2022-06-19T20:46:37.000Z
[ "pytorch", "bert", "pretraining", "transformers" ]
null
false
Danastos
null
Danastos/dpr_passage_el_1
12
null
transformers
10,838
Entry not found
swardiantara/distilbert-base-cased-finetuned-ner
e98f4c2f19a2b840bac3e1b7afa1bc42c07f9056
2022-07-14T08:07:57.000Z
[ "pytorch", "tensorboard", "distilbert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
swardiantara
null
swardiantara/distilbert-base-cased-finetuned-ner
12
null
transformers
10,839
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-cased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.916955017301038 - name: Recall type: recall value: 0.9272384712004307 - name: F1 type: f1 value: 0.9220680733371994 - name: Accuracy type: accuracy value: 0.9804409254135515 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-cased-finetuned-ner This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0709 - Precision: 0.9170 - Recall: 0.9272 - F1: 0.9221 - Accuracy: 0.9804 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2732 | 1.0 | 878 | 0.0916 | 0.8931 | 0.8961 | 0.8946 | 0.9736 | | 0.0717 | 2.0 | 1756 | 0.0726 | 0.9166 | 0.9212 | 0.9189 | 0.9794 | | 0.0364 | 3.0 | 2634 | 0.0709 | 0.9170 | 0.9272 | 0.9221 | 0.9804 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.2+cu102 - Datasets 2.0.0 - Tokenizers 0.12.1
Jeevesh8/std_0pnt2_bert_ft_cola-48
5e41e259e00ca08384a1fbce176411e2cfe7cd9c
2022-06-21T13:33:45.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_0pnt2_bert_ft_cola-48
12
null
transformers
10,840
Entry not found
Jeevesh8/std_0pnt2_bert_ft_cola-55
8c705a570df8410562e29295c1bdc14f2f64ffe2
2022-06-21T13:30:12.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_0pnt2_bert_ft_cola-55
12
null
transformers
10,841
Entry not found
Jeevesh8/std_0pnt2_bert_ft_cola-52
0eacc37454ff9511fd6ab270e15b30708fcb523d
2022-06-21T13:28:23.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_0pnt2_bert_ft_cola-52
12
null
transformers
10,842
Entry not found
CobaltAlchemist/Toxicbot
bd43ecdb81b2135e661affe8d40beac8d573f01e
2022-06-24T06:59:40.000Z
[ "pytorch", "roberta", "text-classification", "transformers", "license:gpl-3.0" ]
text-classification
false
CobaltAlchemist
null
CobaltAlchemist/Toxicbot
12
null
transformers
10,843
--- license: gpl-3.0 widget: - text: "I like you. </s></s> I love you." ---
javind/pegasus-xsum-ytubenewssum
430ba226cff539aacf37874708b46ab4c16affa8
2022-07-02T09:08:23.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "license:unlicense", "autotrain_compatible" ]
text2text-generation
false
javind
null
javind/pegasus-xsum-ytubenewssum
12
null
transformers
10,844
--- license: unlicense ---
smangrul/Chat-E
1f28f1516b7d8938247cf9b68cb3ba4118c677dd
2022-06-26T09:40:58.000Z
[ "pytorch", "blenderbot", "text2text-generation", "transformers", "license:cc-by-nc-4.0", "autotrain_compatible" ]
text2text-generation
false
smangrul
null
smangrul/Chat-E
12
null
transformers
10,845
--- license: cc-by-nc-4.0 ---
tsantosh7/Bailii-Roberta
17b595455cced13c3760d3f844fdb66b7ddeb71c
2022-06-26T15:09:54.000Z
[ "pytorch", "roberta", "fill-mask", "en", "arxiv:1907.11692", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
tsantosh7
null
tsantosh7/Bailii-Roberta
12
null
transformers
10,846
--- license: apache-2.0 tags: - fill-mask language: - en widget: - text: "He carefully assessed the financial position of the <mask> disclosed within its accounts, including its pension scheme liabilities." - text: "Moreover, she had chosen not to give <mask> and therefore had not provided any innocent explanation of her communications." --- # Pre-trained Language Model for England and Wales Court of Appeal (Criminal Division) Decisions ## Introduction The research for understanding the bias in criminal court decisions need the support of natural language processing tools. The pre-trained language model has greatly improved the accuracy of text mining in general texts. At present, there is an urgent need for a pre-trained language model specifically for the automatic processing of court decision texts. We used the text from the [Bailii website](https://www.bailii.org/ew/cases/EWCA/Crim/) as the training set. Based on the deep language model framework of RoBERTa, we constructed bailii-roberta pre-training language model by [transformers/run_mlm.py](https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_mlm.py) and [transformers/mlm_wwm](https://github.com/huggingface/transformers/tree/main/examples/research_projects/mlm_wwm). ## How to use ### Huggingface Transformers The `from_pretrained` method based on [Huggingface Transformers](https://github.com/huggingface/transformers) can directly obtain bailii-roberta model online. ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("tsantosh7/bailii-roberta") model = AutoModel.from_pretrained("tsantosh7/bailii-roberta") ``` ### Download Models - The version of the model we provide is `PyTorch`. ### From Huggingface - Download directly through Huggingface's official website. - [tsantosh7/bailii-roberta](https://huggingface.co/tsantosh7/Bailii-Roberta/) ## Disclaimer - The experimental results presented in the report only show the performance under a specific data set and hyperparameter combination, and cannot represent the essence of each model. The experimental results may change due to the random number of seeds and computing equipment. - **Users can use the model arbitrarily within the scope of the license, but we are not responsible for the direct or indirect losses caused by using the content of the project.** ## Acknowledgment - bailii-roberta was trained based on [roberta-base](https://arxiv.org/abs/1907.11692)).
Leo2001/ArmSpellChecker
4c3a663ae302507712704e5c315832f1d523cdad
2022-06-29T07:54:19.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "license:mit", "autotrain_compatible" ]
text2text-generation
false
Leo2001
null
Leo2001/ArmSpellChecker
12
null
transformers
10,847
--- license: mit ---
Salvatore/bert-finetuned-mutation-recognition-3
66e4d886aa9a8baf5e06967bce7c613ae7f95f15
2022-06-29T14:51:06.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
Salvatore
null
Salvatore/bert-finetuned-mutation-recognition-3
12
null
transformers
10,848
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-mutation-recognition-3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-mutation-recognition-3 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0727 - Dnamutation F1: 0.6484 - Proteinmutation F1: 0.8571 - Snp F1: 1.0 - Precision: 0.7966 - Recall: 0.7625 - F1: 0.7792 - Accuracy: 0.9872 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Dnamutation F1 | Proteinmutation F1 | Snp F1 | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:------------------:|:------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 324 | 0.0323 | 0.5996 | 0.7886 | 1.0 | 0.6583 | 0.7982 | 0.7215 | 0.9901 | | 0.0788 | 2.0 | 648 | 0.0314 | 0.6765 | 0.8783 | 1.0 | 0.7453 | 0.8571 | 0.7973 | 0.9907 | | 0.0788 | 3.0 | 972 | 0.0306 | 0.6391 | 0.8679 | 1.0 | 0.7341 | 0.8232 | 0.7761 | 0.9903 | | 0.0273 | 4.0 | 1296 | 0.0424 | 0.6360 | 0.8714 | 1.0 | 0.7792 | 0.775 | 0.7771 | 0.9885 | | 0.0178 | 5.0 | 1620 | 0.0462 | 0.5885 | 0.8683 | 1.0 | 0.7576 | 0.7589 | 0.7583 | 0.9869 | | 0.0178 | 6.0 | 1944 | 0.0531 | 0.6176 | 0.8701 | 1.0 | 0.7734 | 0.7679 | 0.7706 | 0.9873 | | 0.0165 | 7.0 | 2268 | 0.0573 | 0.6597 | 0.8658 | 1.0 | 0.8022 | 0.775 | 0.7884 | 0.9881 | | 0.0144 | 8.0 | 2592 | 0.0636 | 0.6596 | 0.8454 | 1.0 | 0.7919 | 0.7679 | 0.7797 | 0.9871 | | 0.0144 | 9.0 | 2916 | 0.0710 | 0.6568 | 0.8748 | 1.0 | 0.8159 | 0.7679 | 0.7912 | 0.9872 | | 0.0108 | 10.0 | 3240 | 0.0727 | 0.6484 | 0.8571 | 1.0 | 0.7966 | 0.7625 | 0.7792 | 0.9872 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.2 - Datasets 2.0.0 - Tokenizers 0.12.1
Salvatore/bert-finetuned-mutation-recognition-4
118eed2bb3500abe2016927c0f205060a9aad884
2022-06-29T15:20:45.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
Salvatore
null
Salvatore/bert-finetuned-mutation-recognition-4
12
null
transformers
10,849
Entry not found
sanchit-gandhi/wav2vec2-2-bart-large-tedlium
6652985c97ae5f582b86a3b8887a6e8672795845
2022-07-04T12:42:08.000Z
[ "pytorch", "jax", "speech-encoder-decoder", "automatic-speech-recognition", "en", "dataset:LIUM/tedlium", "transformers", "license:cc-by-4.0" ]
automatic-speech-recognition
false
sanchit-gandhi
null
sanchit-gandhi/wav2vec2-2-bart-large-tedlium
12
1
transformers
10,850
--- language: - en tags: - automatic-speech-recognition datasets: - LIUM/tedlium license: cc-by-4.0 metrics: - name: Dev WER type: wer value: 9.0 - name: Test WER type: wer value: 6.4 --- ## Wav2Vec2-2-Bart-Large-Tedlium This model is a sequence-2-sequence (seq2seq) model trained on the [TEDLIUM](https://huggingface.co/datasets/LIUM/tedlium) corpus (release 3). It combines a speech encoder with a text decoder to perform automatic speech recognition. The encoder weights are initialised with the [Wav2Vec2 LV-60k](https://huggingface.co/facebook/wav2vec2-large-lv60) checkpoint from [@facebook](https://huggingface.co/facebook). The decoder weights are initialised with the [Bart large](https://huggingface.co/facebook/bart-large) checkpoint from [@facebook](https://huggingface.co/facebook). When using the model, make sure that your speech input is sampled at 16Khz. The model achieves a word error rate (WER) of 9.0% on the dev set and 6.4% on the test set. [Training logs](https://wandb.ai/sanchit-gandhi/tedlium/runs/1w6frnel?workspace=user-sanchit-gandhi) document the training and evaluation progress over 50k steps of fine-tuning. # Usage To transcribe audio files the model can be used as a standalone acoustic model as follows: ```python from transformers import AutoProcessor, SpeechEncoderDecoderModel from datasets import load_dataset import torch # load model and processor processor = AutoProcessor.from_pretrained("sanchit-gandhi/wav2vec2-2-bart-large-tedlium") model = SpeechEncoderDecoderModel.from_pretrained("sanchit-gandhi/wav2vec2-2-bart-large-tedlium") # load dummy dataset ds = load_dataset("sanchit-gandhi/tedlium_dummy", split="validation") # process audio inputs input_values = processor(ds[0]["audio"]["array"], return_tensors="pt", padding="longest").input_values # Batch size 1 # run inference (greedy search) generated = model.generate(input_values) # decode decoded = processor.batch_decode(generated, skip_special_tokens=True) print("Target: ", ds["text"][0]) print("Transcription: ", decoded[0]) ``` ## Evaluation This code snippet shows how to evaluate **Wav2Vec2-Large-Tedlium** on the TEDLIUM test data. ```python from datasets import load_dataset from transformers import AutoProcessor, SpeechEncoderDecoderModel import torch from jiwer import wer tedlium_eval = load_dataset("LIUM/tedlium", "release3", split="test") def filter_ds(text): return text != "ignore_time_segment_in_scoring" # remove samples ignored from scoring tedlium_eval = tedlium_eval.map(filter_ds, input_columns=["text"]) model = SpeechEncoderDecoderModel.from_pretrained("sanchit-gandhi/wav2vec2-2-bart-large-tedlium").to("cuda") processor = AutoProcessor.from_pretrained("sanchit-gandhi/wav2vec2-2-bart-large-tedlium") gen_kwargs = { "max_length": 200, "num_beams": 5, "length_penalty": 1.2 } def map_to_pred(batch): input_values = processor(batch["audio"]["array"], return_tensors="pt", padding="longest").input_values with torch.no_grad(): generated = model.generate(input_values.to("cuda"), **gen_kwargs) decoded = processor.batch_decode(generated, skip_special_tokens=True) batch["transcription"] = decoded[0] return batch result = tedlium_eval.map(map_to_pred, batched=True, batch_size=1, remove_columns=["speech"]) print("WER:", wer(result["text"], result["transcription"])) ```
Jeevesh8/goog_bert_ft_cola-16
75850edf9684a47324724b786027dc419fb4d94e
2022-06-29T17:33:41.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/goog_bert_ft_cola-16
12
null
transformers
10,851
Entry not found
Jeevesh8/goog_bert_ft_cola-24
9775d864adc37889b2c8ed65ecad915cce7152a9
2022-06-29T17:33:13.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/goog_bert_ft_cola-24
12
null
transformers
10,852
Entry not found
javind/bart-large-cnn-ytubenewssum
ecd4dfef91c4b168e1d1550761efd17e682a06c8
2022-07-02T09:12:22.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "license:unlicense", "autotrain_compatible" ]
text2text-generation
false
javind
null
javind/bart-large-cnn-ytubenewssum
12
null
transformers
10,853
--- license: unlicense ---
javind/t5-base-ytubenewssum
0f3324f269c47da14c82afcecd908ea8a81ab415
2022-07-02T09:15:47.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "license:unlicense", "autotrain_compatible" ]
text2text-generation
false
javind
null
javind/t5-base-ytubenewssum
12
null
transformers
10,854
--- license: unlicense ---
tau/spider-trivia-question-encoder
5ea2279cb019154681c9a530e2b7c54d4953dc5e
2022-07-04T06:59:40.000Z
[ "pytorch", "dpr", "feature-extraction", "transformers" ]
feature-extraction
false
tau
null
tau/spider-trivia-question-encoder
12
null
transformers
10,855
Entry not found
ghadeermobasher/BioRed-Chem-Modified-PubMedBERT-256-40
3fc44537ddd313d7e8835eb6549c358743a4febc
2022-07-05T12:13:55.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/BioRed-Chem-Modified-PubMedBERT-256-40
12
null
transformers
10,856
Entry not found
wiselinjayajos/t5-end2end-questions-generation-cv-squadV2
1d6a4e797d6949a6376d3c090dd2f247e63c850b
2022-07-06T17:20:59.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
wiselinjayajos
null
wiselinjayajos/t5-end2end-questions-generation-cv-squadV2
12
null
transformers
10,857
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: t5-end2end-questions-generation-cv-squadV2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-end2end-questions-generation-cv-squadV2 This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8541 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.6703 | 2.17 | 100 | 1.9685 | | 1.9718 | 4.34 | 200 | 1.8541 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
sports-ru/antihate
f5e50402d8aeb623a530d3a0c9841cc16bbb8873
2022-07-06T12:31:37.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
sports-ru
null
sports-ru/antihate
12
null
transformers
10,858
Entry not found
paola-md/recipe-roberta-is
59d378ee5d5118aa7cb5cba65023b08f11b874a1
2022-07-07T11:53:27.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
fill-mask
false
paola-md
null
paola-md/recipe-roberta-is
12
null
transformers
10,859
--- license: mit tags: - generated_from_trainer model-index: - name: recipe-roberta-is results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # recipe-roberta-is This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8382 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.334 | 1.0 | 961 | 1.1217 | | 1.1638 | 2.0 | 1922 | 1.0369 | | 1.0936 | 3.0 | 2883 | 0.9922 | | 1.0503 | 4.0 | 3844 | 0.9606 | | 1.0188 | 5.0 | 4805 | 0.9314 | | 0.9953 | 6.0 | 5766 | 0.9256 | | 0.9769 | 7.0 | 6727 | 0.9109 | | 0.9599 | 8.0 | 7688 | 0.8978 | | 0.9461 | 9.0 | 8649 | 0.8813 | | 0.9377 | 10.0 | 9610 | 0.8777 | | 0.9253 | 11.0 | 10571 | 0.8755 | | 0.918 | 12.0 | 11532 | 0.8601 | | 0.9112 | 13.0 | 12493 | 0.8541 | | 0.9043 | 14.0 | 13454 | 0.8548 | | 0.8984 | 15.0 | 14415 | 0.8470 | | 0.8958 | 16.0 | 15376 | 0.8412 | | 0.8914 | 17.0 | 16337 | 0.8345 | | 0.8882 | 18.0 | 17298 | 0.8353 | | 0.8871 | 19.0 | 18259 | 0.8344 | | 0.8839 | 20.0 | 19220 | 0.8382 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
tner/twitter-roberta-base-dec2020-tweetner-2020
c3db6c21415a3089141a9615ec47a235947767a9
2022-07-07T10:09:45.000Z
[ "pytorch", "roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
tner
null
tner/twitter-roberta-base-dec2020-tweetner-2020
12
null
transformers
10,860
Entry not found
ghadeermobasher/BioRed-Chem-Modified-PubMedBERT-512-5-30
f67ccd04a96b383c764dffdf58653d1859cad5f5
2022-07-07T14:22:02.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/BioRed-Chem-Modified-PubMedBERT-512-5-30
12
null
transformers
10,861
Entry not found
OFA-Sys/OFA-huge
e8ba0324416869ef9a5ef70c85224ecf8a68e237
2022-07-25T11:49:54.000Z
[ "pytorch", "ofa", "transformers", "license:apache-2.0" ]
null
false
OFA-Sys
null
OFA-Sys/OFA-huge
12
1
transformers
10,862
--- license: apache-2.0 --- # OFA-huge This is the **huge** version of OFA pretrained model. OFA is a unified multimodal pretrained model that unifies modalities (i.e., cross-modality, vision, language) and tasks (e.g., image generation, visual grounding, image captioning, image classification, text generation, etc.) to a simple sequence-to-sequence learning framework. The directory includes 4 files, namely `config.json` which consists of model configuration, `vocab.json` and `merge.txt` for our OFA tokenizer, and lastly `pytorch_model.bin` which consists of model weights. There is no need to worry about the mismatch between Fairseq and transformers, since we have addressed the issue yet. To use it in transformers, please refer to https://github.com/OFA-Sys/OFA/tree/feature/add_transformers. Install the transformers and download the models as shown below. ``` git clone --single-branch --branch feature/add_transformers https://github.com/OFA-Sys/OFA.git pip install OFA/transformers/ git clone https://huggingface.co/OFA-Sys/OFA-huge ``` After, refer the path to OFA-huge to `ckpt_dir`, and prepare an image for the testing example below. Also, ensure that you have pillow and torchvision in your environment. ``` >>> from PIL import Image >>> from torchvision import transforms >>> from transformers import OFATokenizer, OFAModel >>> from generate import sequence_generator >>> mean, std = [0.5, 0.5, 0.5], [0.5, 0.5, 0.5] >>> resolution = 480 >>> patch_resize_transform = transforms.Compose([ lambda image: image.convert("RGB"), transforms.Resize((resolution, resolution), interpolation=Image.BICUBIC), transforms.ToTensor(), transforms.Normalize(mean=mean, std=std) ]) >>> tokenizer = OFATokenizer.from_pretrained(ckpt_dir) >>> txt = " what does the image describe?" >>> inputs = tokenizer([txt], return_tensors="pt").input_ids >>> img = Image.open(path_to_image) >>> patch_img = patch_resize_transform(img).unsqueeze(0) >>> # using the generator of fairseq version >>> model = OFAModel.from_pretrained(ckpt_dir, use_cache=True) >>> generator = sequence_generator.SequenceGenerator( tokenizer=tokenizer, beam_size=5, max_len_b=16, min_len=0, no_repeat_ngram_size=3, ) >>> data = {} >>> data["net_input"] = {"input_ids": inputs, 'patch_images': patch_img, 'patch_masks':torch.tensor([True])} >>> gen_output = generator.generate([model], data) >>> gen = [gen_output[i][0]["tokens"] for i in range(len(gen_output))] >>> # using the generator of huggingface version >>> model = OFAModel.from_pretrained(ckpt_dir, use_cache=False) >>> gen = model.generate(inputs, patch_images=patch_img, num_beams=5, no_repeat_ngram_size=3) >>> print(tokenizer.batch_decode(gen, skip_special_tokens=True)) ```
jonatasgrosman/exp_w2v2t_zh-cn_r-wav2vec2_s237
61b904d36563e597d19a93d1e9f4704f066a0273
2022-07-10T02:50:53.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "zh-CN", "dataset:mozilla-foundation/common_voice_7_0", "transformers", "license:apache-2.0" ]
automatic-speech-recognition
false
jonatasgrosman
null
jonatasgrosman/exp_w2v2t_zh-cn_r-wav2vec2_s237
12
null
transformers
10,863
--- language: - zh-CN license: apache-2.0 tags: - automatic-speech-recognition - zh-CN datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_zh-cn_r-wav2vec2_s237 Fine-tuned [facebook/wav2vec2-large-robust](https://huggingface.co/facebook/wav2vec2-large-robust) for speech recognition using the train split of [Common Voice 7.0 (zh-CN)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jorge-henao/gpt2-small-spanish-historias-conflicto-colpoetry-historias-conflicto-col
47e513280062863ef0cf3ef9c371cf938cf519a2
2022-07-11T16:43:58.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-generation
false
jorge-henao
null
jorge-henao/gpt2-small-spanish-historias-conflicto-colpoetry-historias-conflicto-col
12
null
transformers
10,864
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: gpt2-small-spanish-historias-conflicto-colpoetry-historias-conflicto-col results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-small-spanish-historias-conflicto-colpoetry-historias-conflicto-col This model is a fine-tuned version of [jorge-henao/gpt2-small-spanish-historias-conflicto-col](https://huggingface.co/jorge-henao/gpt2-small-spanish-historias-conflicto-col) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 4.5017 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
MichalRoztocki/finetuning-sentiment-model-3000-samples
1cdd2e2c66172477d79926696228845030261348
2022-07-12T19:48:42.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
MichalRoztocki
null
MichalRoztocki/finetuning-sentiment-model-3000-samples
12
null
transformers
10,865
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8766666666666667 - name: F1 type: f1 value: 0.877887788778878 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3085 - Accuracy: 0.8767 - F1: 0.8779 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Hamzaaa/wav2vec2-base-finetuned-emodb
8b8db9bc6901c6d9516996490b4aba11112631a5
2022-07-13T18:03:33.000Z
[ "pytorch", "tensorboard", "wav2vec2", "audio-classification", "transformers" ]
audio-classification
false
Hamzaaa
null
Hamzaaa/wav2vec2-base-finetuned-emodb
12
null
transformers
10,866
Entry not found
ghadeermobasher/Modified-biobertv1-BioRED-Chem-128-32-30
6e7b108c324fe2a1da7eda37f354a5e40bee83cf
2022-07-13T14:10:35.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/Modified-biobertv1-BioRED-Chem-128-32-30
12
null
transformers
10,867
Entry not found
shivaniNK8/mt5-small-finetuned-amazon-en-es
f1d113002a53bf0d1407b83a22a60005450f929c
2022-07-14T06:39:22.000Z
[ "pytorch", "tensorboard", "mt5", "text2text-generation", "dataset:cnn_dailymail", "transformers", "summarization", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
summarization
false
shivaniNK8
null
shivaniNK8/mt5-small-finetuned-amazon-en-es
12
null
transformers
10,868
--- license: apache-2.0 tags: - summarization - generated_from_trainer datasets: - cnn_dailymail metrics: - rouge model-index: - name: mt5-small-finetuned-amazon-en-es results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: cnn_dailymail type: cnn_dailymail args: 3.0.0 metrics: - name: Rouge1 type: rouge value: 22.6804 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-finetuned-amazon-en-es This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the cnn_dailymail dataset. It achieves the following results on the evaluation set: - Loss: 2.4413 - Rouge1: 22.6804 - Rouge2: 8.3299 - Rougel: 17.9992 - Rougelsum: 20.7342 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:| | 7.77 | 1.0 | 240 | 2.7230 | 17.25 | 5.629 | 14.0381 | 15.8959 | | 3.7586 | 2.0 | 480 | 2.5949 | 19.4577 | 6.9354 | 15.772 | 17.8773 | | 3.4314 | 3.0 | 720 | 2.5355 | 20.0511 | 7.6417 | 16.0889 | 18.4551 | | 3.2892 | 4.0 | 960 | 2.4845 | 20.3951 | 7.88 | 16.601 | 19.0048 | | 3.1954 | 5.0 | 1200 | 2.4612 | 20.1806 | 7.2656 | 16.2658 | 18.6222 | | 3.1128 | 6.0 | 1440 | 2.4544 | 22.5647 | 8.0899 | 17.8057 | 20.487 | | 3.103 | 7.0 | 1680 | 2.4498 | 22.7048 | 8.384 | 17.978 | 20.6871 | | 3.0708 | 8.0 | 1920 | 2.4413 | 22.6804 | 8.3299 | 17.9992 | 20.7342 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
helena-balabin/qt-xlm-r-en-nl-mini
c3a8f109e208797cab4c8f500c6fb95ec870db34
2022-07-14T07:33:27.000Z
[ "pytorch", "xlm-roberta", "feature-extraction", "transformers" ]
feature-extraction
false
helena-balabin
null
helena-balabin/qt-xlm-r-en-nl-mini
12
null
transformers
10,869
Entry not found
Ngit/clip-rsicd
631c7a8536ba4c6c8a65cd6f0295256fae5e5db6
2022-07-14T18:52:25.000Z
[ "pytorch", "jax", "clip", "feature-extraction", "transformers" ]
feature-extraction
false
Ngit
null
Ngit/clip-rsicd
12
null
transformers
10,870
Entry not found
nateraw/resnet18-random
a47034ff419d0d042c72ac5eb44e1f7c71cc04bd
2022-07-14T20:46:45.000Z
[ "pytorch", "timm", "image-classification" ]
image-classification
false
nateraw
null
nateraw/resnet18-random
12
null
timm
10,871
--- tags: - image-classification - timm library_tag: timm --- # Model card for resnet18-random
Amir-UL/JimBot
f390fc2b50aad0e6a74803a11cfa6d89dcbf9690
2022-07-15T11:15:30.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Amir-UL
null
Amir-UL/JimBot
12
null
transformers
10,872
--- tags: - conversational --- # Jim from The Office
yongjian/wav2vec2-large-a
5312b0749f31f41a396daaf1de4d9a3e5d65243a
2022-07-16T02:43:10.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "en", "dataset:LIUM/tedlium", "transformers", "speech", "audio" ]
automatic-speech-recognition
false
yongjian
null
yongjian/wav2vec2-large-a
12
null
transformers
10,873
--- language: en datasets: - LIUM/tedlium tags: - speech - audio - automatic-speech-recognition --- Finetuned from [facebook/wav2vec2-large-960h-lv60-self](https://huggingface.co/facebook/wav2vec2-large-960h-lv60-self). # Installation 1. PyTorch installation: https://pytorch.org/ 2. Install transformers: https://huggingface.co/docs/transformers/installation e.g., installation by conda ``` >> conda create -n wav2vec2 python=3.8 >> conda install pytorch cudatoolkit=11.3 -c pytorch >> conda install -c conda-forge transformers ``` # Usage ```python # Load the model and processor from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC import numpy as np import torch model = Wav2Vec2ForCTC.from_pretrained(r'yongjian/wav2vec2-large-a') processor = Wav2Vec2Processor.from_pretrained(r'yongjian/wav2vec2-large-a') # Load input np_wav = np.random.normal(size=(16000)).clip(-1, 1) # change it to your sample # Inference sample_rate = processor.feature_extractor.sampling_rate with torch.no_grad(): model_inputs = processor(np_wav, sampling_rate=sample_rate, return_tensors="pt", padding=True) logits = model(model_inputs.input_values, attention_mask=model_inputs.attention_mask).logits # use .cuda() for GPU acceleration pred_ids = torch.argmax(logits, dim=-1).cpu() pred_text = processor.batch_decode(pred_ids) print('Transcription:', pred_text) ```
KoichiYasuoka/roberta-base-thai-spm-ud-head
75f4eb52eb62aae2c9cdc464fefc58d7d721378f
2022-07-20T03:52:20.000Z
[ "pytorch", "roberta", "question-answering", "th", "dataset:universal_dependencies", "transformers", "thai", "dependency-parsing", "license:apache-2.0", "autotrain_compatible" ]
question-answering
false
KoichiYasuoka
null
KoichiYasuoka/roberta-base-thai-spm-ud-head
12
null
transformers
10,874
--- language: - "th" tags: - "thai" - "question-answering" - "dependency-parsing" datasets: - "universal_dependencies" license: "apache-2.0" pipeline_tag: "question-answering" widget: - text: "กว่า" context: "หลายหัวดีกว่าหัวเดียว" - text: "หลาย" context: "หลายหัวดีกว่าหัวเดียว" - text: "หัว" context: "หลาย[MASK]ดีกว่าหัวเดียว" --- # roberta-base-thai-spm-ud-head ## Model Description This is a DeBERTa(V2) model pretrained on Thai Wikipedia texts for dependency-parsing (head-detection on Universal Dependencies) as question-answering, derived from [roberta-base-thai-spm](https://huggingface.co/KoichiYasuoka/roberta-base-thai-spm). Use [MASK] inside `context` to avoid ambiguity when specifying a multiple-used word as `question`. ## How to Use ```py import torch from transformers import AutoTokenizer,AutoModelForQuestionAnswering tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-base-thai-spm-ud-head") model=AutoModelForQuestionAnswering.from_pretrained("KoichiYasuoka/roberta-base-thai-spm-ud-head") question="กว่า" context="หลายหัวดีกว่าหัวเดียว" inputs=tokenizer(question,context,return_tensors="pt",return_offsets_mapping=True) offsets=inputs.pop("offset_mapping").tolist()[0] outputs=model(**inputs) start,end=torch.argmax(outputs.start_logits),torch.argmax(outputs.end_logits) print(context[offsets[start][0]:offsets[end][-1]]) ``` or (with [ufal.chu-liu-edmonds](https://pypi.org/project/ufal.chu-liu-edmonds/)) ```py class TransformersUD(object): def __init__(self,bert): import os from transformers import (AutoTokenizer,AutoModelForQuestionAnswering, AutoModelForTokenClassification,AutoConfig,TokenClassificationPipeline) self.tokenizer=AutoTokenizer.from_pretrained(bert) self.model=AutoModelForQuestionAnswering.from_pretrained(bert) x=AutoModelForTokenClassification.from_pretrained if os.path.isdir(bert): d,t=x(os.path.join(bert,"deprel")),x(os.path.join(bert,"tagger")) else: from transformers.file_utils import hf_bucket_url c=AutoConfig.from_pretrained(hf_bucket_url(bert,"deprel/config.json")) d=x(hf_bucket_url(bert,"deprel/pytorch_model.bin"),config=c) s=AutoConfig.from_pretrained(hf_bucket_url(bert,"tagger/config.json")) t=x(hf_bucket_url(bert,"tagger/pytorch_model.bin"),config=s) self.deprel=TokenClassificationPipeline(model=d,tokenizer=self.tokenizer, aggregation_strategy="simple") self.tagger=TokenClassificationPipeline(model=t,tokenizer=self.tokenizer) def __call__(self,text): import numpy,torch,ufal.chu_liu_edmonds w=[(t["start"],t["end"],t["entity_group"]) for t in self.deprel(text)] z,n={t["start"]:t["entity"].split("|") for t in self.tagger(text)},len(w) r,m=[text[s:e] for s,e,p in w],numpy.full((n+1,n+1),numpy.nan) v,c=self.tokenizer(r,add_special_tokens=False)["input_ids"],[] for i,t in enumerate(v): q=[self.tokenizer.cls_token_id]+t+[self.tokenizer.sep_token_id] c.append([q]+v[0:i]+[[self.tokenizer.mask_token_id]]+v[i+1:]+[[q[-1]]]) b=[[len(sum(x[0:j+1],[])) for j in range(len(x))] for x in c] with torch.no_grad(): d=self.model(input_ids=torch.tensor([sum(x,[]) for x in c]), token_type_ids=torch.tensor([[0]*x[0]+[1]*(x[-1]-x[0]) for x in b])) s,e=d.start_logits.tolist(),d.end_logits.tolist() for i in range(n): for j in range(n): m[i+1,0 if i==j else j+1]=s[i][b[i][j]]+e[i][b[i][j+1]-1] h=ufal.chu_liu_edmonds.chu_liu_edmonds(m)[0] if [0 for i in h if i==0]!=[0]: i=([p for s,e,p in w]+["root"]).index("root") j=i+1 if i<n else numpy.nanargmax(m[:,0]) m[0:j,0]=m[j+1:,0]=numpy.nan h=ufal.chu_liu_edmonds.chu_liu_edmonds(m)[0] u="# text = "+text.replace("\n"," ")+"\n" for i,(s,e,p) in enumerate(w,1): p="root" if h[i]==0 else "dep" if p=="root" else p u+="\t".join([str(i),r[i-1],"_",z[s][0][2:],"_","|".join(z[s][1:]), str(h[i]),p,"_","_" if i<n and e<w[i][0] else "SpaceAfter=No"])+"\n" return u+"\n" nlp=TransformersUD("KoichiYasuoka/roberta-base-thai-spm-ud-head") print(nlp("หลายหัวดีกว่าหัวเดียว")) ```
pardeep/distilbert-base-uncased-finetuned-emotion-ch02
823d89023d9fd5ab5030a1c661b449659833ae1b
2022-07-17T10:54:29.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
pardeep
null
pardeep/distilbert-base-uncased-finetuned-emotion-ch02
12
null
transformers
10,875
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion-ch02 results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.934 - name: F1 type: f1 value: 0.9341801255709286 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion-ch02 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1703 - Accuracy: 0.934 - F1: 0.9342 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.2923 | 1.0 | 250 | 0.2001 | 0.9275 | 0.9263 | | 0.1485 | 2.0 | 500 | 0.1703 | 0.934 | 0.9342 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
ardauzunoglu/BERT-SGM
570da99e5846e69dc6f1fd589918307a42a75c96
2022-07-17T17:27:22.000Z
[ "pytorch", "bert", "feature-extraction", "sentence-transformers", "sentence-similarity" ]
sentence-similarity
false
ardauzunoglu
null
ardauzunoglu/BERT-SGM
12
null
sentence-transformers
10,876
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # ardauzunoglu/BERT-SGM This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 256 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('ardauzunoglu/BERT-SGM') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=ardauzunoglu/BERT-SGM) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 441 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 3, "evaluation_steps": 100, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 100, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Dense({'in_features': 768, 'out_features': 256, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
yixi/bert-finetuned-ner
c6c3a6a51124e0e13bc68405723b935d6dbc2364
2022-07-18T13:42:24.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
yixi
null
yixi/bert-finetuned-ner
12
null
transformers
10,877
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.934260639178672 - name: Recall type: recall value: 0.9495119488387749 - name: F1 type: f1 value: 0.9418245555462816 - name: Accuracy type: accuracy value: 0.9868281627126626 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0573 - Precision: 0.9343 - Recall: 0.9495 - F1: 0.9418 - Accuracy: 0.9868 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0854 | 1.0 | 1756 | 0.0639 | 0.9148 | 0.9329 | 0.9238 | 0.9822 | | 0.0403 | 2.0 | 3512 | 0.0542 | 0.9370 | 0.9512 | 0.9440 | 0.9866 | | 0.0204 | 3.0 | 5268 | 0.0573 | 0.9343 | 0.9495 | 0.9418 | 0.9868 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
shivarama23/DiT_image_quality
812bcba4f7823a82712ace84e08b3be54f6c9e21
2022-07-19T04:57:58.000Z
[ "pytorch", "beit", "image-classification", "transformers" ]
image-classification
false
shivarama23
null
shivarama23/DiT_image_quality
12
null
transformers
10,878
Entry not found
juancopi81/distilbert-base-uncased-finetuned-squad-d5716d28
1fe3a71a8d751bb22ddfd9cf049b779181e96cd5
2022-07-19T14:15:17.000Z
[ "pytorch", "distilbert", "fill-mask", "en", "dataset:squad", "arxiv:1910.01108", "transformers", "question-answering", "license:apache-2.0", "autotrain_compatible" ]
question-answering
false
juancopi81
null
juancopi81/distilbert-base-uncased-finetuned-squad-d5716d28
12
null
transformers
10,879
--- language: - en thumbnail: https://github.com/karanchahal/distiller/blob/master/distiller.jpg tags: - question-answering license: apache-2.0 datasets: - squad metrics: - squad --- # DistilBERT with a second step of distillation ## Model description This model replicates the "DistilBERT (D)" model from Table 2 of the [DistilBERT paper](https://arxiv.org/pdf/1910.01108.pdf). In this approach, a DistilBERT student is fine-tuned on SQuAD v1.1, but with a BERT model (also fine-tuned on SQuAD v1.1) acting as a teacher for a second step of task-specific distillation. In this version, the following pre-trained models were used: * Student: `distilbert-base-uncased` * Teacher: `lewtun/bert-base-uncased-finetuned-squad-v1` ## Training data This model was trained on the SQuAD v1.1 dataset which can be obtained from the `datasets` library as follows: ```python from datasets import load_dataset squad = load_dataset('squad') ``` ## Training procedure ## Eval results | | Exact Match | F1 | |------------------|-------------|------| | DistilBERT paper | 79.1 | 86.9 | | Ours | 78.4 | 86.5 | The scores were calculated using the `squad` metric from `datasets`. ### BibTeX entry and citation info ```bibtex @misc{sanh2020distilbert, title={DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter}, author={Victor Sanh and Lysandre Debut and Julien Chaumond and Thomas Wolf}, year={2020}, eprint={1910.01108}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
gemasphi/laprador_pt_pb
32b5b7f8cad05f0d374fe69ba4882f6de31aa88c
2022-07-19T17:23:19.000Z
[ "pytorch", "bert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
gemasphi
null
gemasphi/laprador_pt_pb
12
null
sentence-transformers
10,880
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # gemasphi/laprador_pt This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('gemasphi/laprador_pt') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('gemasphi/laprador_pt') model = AutoModel.from_pretrained('gemasphi/laprador_pt') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=gemasphi/laprador_pt) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
leokai/distilbert-base-uncased-finetuned-wikiandmark_epoch20
452c427ed75d2d3196305d1399487cf8e1210671
2022-07-20T07:33:19.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
leokai
null
leokai/distilbert-base-uncased-finetuned-wikiandmark_epoch20
12
null
transformers
10,881
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-wikiandmark_epoch20 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-wikiandmark_epoch20 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0561 - Accuracy: 0.9944 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.0224 | 1.0 | 1859 | 0.0277 | 0.9919 | | 0.0103 | 2.0 | 3718 | 0.0298 | 0.9925 | | 0.0047 | 3.0 | 5577 | 0.0429 | 0.9924 | | 0.0038 | 4.0 | 7436 | 0.0569 | 0.9922 | | 0.0019 | 5.0 | 9295 | 0.0554 | 0.9936 | | 0.0028 | 6.0 | 11154 | 0.0575 | 0.9928 | | 0.002 | 7.0 | 13013 | 0.0544 | 0.9926 | | 0.0017 | 8.0 | 14872 | 0.0553 | 0.9935 | | 0.001 | 9.0 | 16731 | 0.0498 | 0.9924 | | 0.0001 | 10.0 | 18590 | 0.0398 | 0.9934 | | 0.0 | 11.0 | 20449 | 0.0617 | 0.9935 | | 0.0002 | 12.0 | 22308 | 0.0561 | 0.9944 | | 0.0002 | 13.0 | 24167 | 0.0755 | 0.9934 | | 0.0 | 14.0 | 26026 | 0.0592 | 0.9941 | | 0.0 | 15.0 | 27885 | 0.0572 | 0.9939 | | 0.0 | 16.0 | 29744 | 0.0563 | 0.9941 | | 0.0 | 17.0 | 31603 | 0.0587 | 0.9936 | | 0.0005 | 18.0 | 33462 | 0.0673 | 0.9937 | | 0.0 | 19.0 | 35321 | 0.0651 | 0.9933 | | 0.0 | 20.0 | 37180 | 0.0683 | 0.9936 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Dizzykong/large-commands
01e086b04dae5fce469fc30bfa873a33edad30a8
2022-07-21T04:20:09.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "model-index" ]
text-generation
false
Dizzykong
null
Dizzykong/large-commands
12
null
transformers
10,882
--- tags: - generated_from_trainer model-index: - name: large-commands results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # large-commands This model is a fine-tuned version of [gpt2-large](https://huggingface.co/gpt2-large) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
buvata/bertTitle
2ef225cc466d34aa8e795cc5f8ad255653fdba07
2022-07-21T02:16:41.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
buvata
null
buvata/bertTitle
12
null
transformers
10,883
Entry not found
jinwooChoi/SKKU_SA_KES
843148b90713d68909a3375a689d53763d02d19b
2022-07-22T05:18:16.000Z
[ "pytorch", "electra", "text-classification", "transformers" ]
text-classification
false
jinwooChoi
null
jinwooChoi/SKKU_SA_KES
12
null
transformers
10,884
Entry not found
mtreviso/ct5-small-en-wiki
7400ba7a47220a7c9949d7d62190eb3b676ab186
2022-07-25T13:19:21.000Z
[ "pytorch", "jax", "tensorboard", "t5", "text2text-generation", "en", "dataset:wikipedia", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
mtreviso
null
mtreviso/ct5-small-en-wiki
12
null
transformers
10,885
--- license: afl-3.0 language: en tags: - t5 datasets: - wikipedia --- # chunked T5 - small (cT5-small) Github: https://github.com/mtreviso/chunked-t5 A T5 model that uses a new loss where a special end-of-chunk token `</c>` is appended after sentinel tokens. The decoder has to predict the full input with masked tokens followed by `</c>`. This allows a much faster auto-regressive generation since the decoder can predict multiple tokens in parallel. For example, for the input `the quick brown fox jumps over the lazy dog`: ``` encoder: the <extra_id_0> fox jumps <extra_id_1> the lazy dog T5 decoder : <extra_id_0> quick brown <extra_id_1> over <extra_id_2> cT5 decoder: <extra_id_0> quick brown </c> <extra_id_1> over </c> <extra_id_2> ``` The generation may look like this for T5 and cT5: ``` T5: <extra_id_0> T5: <extra_id_0> quick T5: <extra_id_0> quick brown T5: <extra_id_0> quick brown <extra_id_1> T5: <extra_id_0> quick brown <extra_id_1> over T5: <extra_id_0> quick brown <extra_id_1> over <extra_id_2> T5: <extra_id_0> quick brown <extra_id_1> over <extra_id_2> </s> cT5: <extra_id_0> <pad> <extra_id_1> <pad> <extra_id_2> </s> cT5: <extra_id_0> quick <pad> <extra_id_1> over <pad> <extra_id_2> </s> cT5: <extra_id_0> quick brown <pad> <extra_id_1> over </c> <extra_id_2> </s> cT5: <extra_id_0> quick brown </c> <extra_id_1> over </c> <extra_id_2> </s> ``` In the original T5, the decoder is called \\(n_s + 1 + \sum_i |s_i|\\) times autoregressively, where \\(n_s\\) is the number of sentinel tokens and \\(s_1,...,s_{n_s}\\) are the predicted chunks. In contrast, cT5's decoder is called just \\(max_i |s_i| + 1\\) times. The generation stops when all sentences were fully translated to complete chunks, i.e., until all `</c>` tokens were generated. Alternatively, you can also set `max_chunk_size` to manually force the model to stop after generating a chunk with `max_chunk_size` tokens. The overhead of calling the decoder with a longer input is less pronounced since this computation can be parallelized in GPUs/TPUs. ## Training details cT5 models used T5's weights as a starting point, and then it was finetuned on the English [wikipedia](https://huggingface.co/datasets/wikipedia) for 3 epochs, achieving ~74% validation accuracy (ct5-small). The training script is in JAX + Flax and can be found in `pretrain_ct5.py`. Flax checkpoints can be converted to PyTorch via `convert_flax_to_pytorch.py [flax_dirname]`. ## Checkpoints - ct5-small: https://huggingface.co/mtreviso/ct5-small-en-wiki - ct5-base: todo - ct5-large: todo ## Usage ```python from transformers import AutoTokenizer from modeling_ct5 import CT5ForConditionalGeneration tokenizer = AutoTokenizer.from_pretrained("mtreviso/ct5-small-en-wiki") model = CT5ForConditionalGeneration.from_pretrained("mtreviso/ct5-small-en-wiki") ``` For training: ```python input_ids = tokenizer("The <extra_id_0> walks in <extra_id_1> park", return_tensors="pt").input_ids labels = tokenizer("<extra_id_0> man </c> <extra_id_1> the </c> <extra_id_2>", return_tensors="pt").input_ids outputs = model(input_ids=input_ids, labels=labels) loss = outputs.loss logits = outputs.logits ``` For generation: ```python texts = [ "The <extra_id_0> walks in <extra_id_1> park", "UN Chief says there is no way to <extra_id_0> in Syria", ] input_ids = tokenizer(texts, return_tensors="pt", padding=True).input_ids generated_ids = model.generate( input_ids, use_cache=False, # important to set to False to avoid caching eoc_token_id=tokenizer.vocab['</c>'], # important to set to the correct end-of-chunk id max_chunk_size=5, # the default is 9999999, which is a large number ) ``` This will produce the following tokens: ```python >> ['<pad>', '<extra_id_0>', '▁Walking', '▁Trail', '</c>', '<extra_id_1>', '▁the', '</c>', '<extra_id_2>', '</s>'] >> ['<pad>', '<extra_id_0>', '▁treat', '▁Syria', '</c>', '<extra_id_1>', '</s>', '<pad>', '<pad>', '<pad>'] ``` You have to pass `use_cache=False` to `generate()` in order to avoid caching during the generation procedure as caching is not available for parallel decoding. Currently, parallel decoding is only supported for PyTorch (greedy search, greedy sampling, beam search, beam sampling) and JAX (greedy search and greedy sampling). **Note on the beam search implementation**: my beam search implementation is slower than optimal. This is because I use the structures provided by HuggingFace's implementation, namely, BeamScores and BeamHypotheses to store the beam search results for each chunk in the input. In other words, my implementation computes independent "beams" for each chunk rather than for each input sequence. It is possible to make it faster by using a custom BeamScores and BeamHypotheses class, but I haven't done that yet. ## Evaluation See the notebook `evaluate_ct5.ipynb` for an example of how to evaluate cT5 in terms of accuracy and perplexity. The notebook `profile.ipynb` shows how to profile the model to get runtimes. Here is a comparison between cT5-small and T5-small on a subset of the WikiText-103 dataset using deterministic greedy search: | Model | Exact match ↑ | Edit distance ratio ↑ | Perplexity ↓ | Time (seconds) ↓ | |-------|---------------|----------------------|--------------|-----------------| | T5-small | 0.11 | 0.60 | 2.22 | 44.71 | | cT5-small | 0.09 | 0.58 | 1.48 | 10.63 | On this toy dataset, cT5-small has a lower perplexity while being faster than T5-small. However, more experiments are needed for a rigorous evaluation. If you are interested in applying cT5 to real data, please contact me.
AndyChiang/my-test-model
e6392a97d572dd50121bb398803a008dc230bb60
2022-07-21T08:08:01.000Z
[ "pytorch", "tf", "bert", "text-classification", "transformers", "generated_from_keras_callback", "model-index" ]
text-classification
false
AndyChiang
null
AndyChiang/my-test-model
12
1
transformers
10,886
--- tags: - generated_from_keras_callback model-index: - name: my-test-model results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # my-test-model This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.20.1 - TensorFlow 2.8.2 - Datasets 2.3.2 - Tokenizers 0.12.1
Krs/distilbert-base-uncased-finetuned-emotion
a58bdb9584d6394c59cfcb610a707a8860049241
2022-07-22T08:08:46.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Krs
null
Krs/distilbert-base-uncased-finetuned-emotion
12
null
transformers
10,887
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.921 - name: F1 type: f1 value: 0.9213674244320441 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2197 - Accuracy: 0.921 - F1: 0.9214 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8255 | 1.0 | 250 | 0.3172 | 0.9055 | 0.9039 | | 0.2506 | 2.0 | 500 | 0.2197 | 0.921 | 0.9214 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.2 - Datasets 2.3.2 - Tokenizers 0.12.1
RohanKapur3/test-model
1524d0ce942cead01996aec6f22b968bb147abf0
2022-07-22T05:56:44.000Z
[ "pytorch", "camembert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
RohanKapur3
null
RohanKapur3/test-model
12
null
transformers
10,888
Entry not found
jinwooChoi/SKKU_KDW_SA_0722_2
a8055dce9a20202e559d6e5ba197a0910d4753c9
2022-07-25T06:42:57.000Z
[ "pytorch", "electra", "text-classification", "transformers" ]
text-classification
false
jinwooChoi
null
jinwooChoi/SKKU_KDW_SA_0722_2
12
null
transformers
10,889
Entry not found
erikanesse/test-trainer-gbb-7
405fbaf0e420370c557cc3f761e22b3e4b28b78a
2022-07-22T17:48:14.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
erikanesse
null
erikanesse/test-trainer-gbb-7
12
null
transformers
10,890
Entry not found
domenicrosati/deberta-v3-large-finetuned-DAGPap22-synthetic-all
0c344a01add2bcf5cc99677bb2f33fa45cbd84c5
2022-07-23T10:13:32.000Z
[ "pytorch", "tensorboard", "deberta-v2", "text-classification", "transformers" ]
text-classification
false
domenicrosati
null
domenicrosati/deberta-v3-large-finetuned-DAGPap22-synthetic-all
12
null
transformers
10,891
Entry not found
huggingtweets/hillaryclinton-maddow-speakerpelosi
1831c005cf7c446a1bb3e554c6b0affe7cbefc89
2022-07-22T23:16:37.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/hillaryclinton-maddow-speakerpelosi
12
1
transformers
10,892
--- language: en thumbnail: http://www.huggingtweets.com/hillaryclinton-maddow-speakerpelosi/1658531793071/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/59437078/icon-200x200_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1114294290375688193/P9mcJNGb_400x400.png&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1291192333199958017/SvH8J8_P_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Rachel Maddow MSNBC & Nancy Pelosi & Hillary Clinton</div> <div style="text-align: center; font-size: 14px;">@hillaryclinton-maddow-speakerpelosi</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Rachel Maddow MSNBC & Nancy Pelosi & Hillary Clinton. | Data | Rachel Maddow MSNBC | Nancy Pelosi | Hillary Clinton | | --- | --- | --- | --- | | Tweets downloaded | 3249 | 3250 | 3247 | | Retweets | 1848 | 277 | 789 | | Short tweets | 254 | 2 | 63 | | Tweets kept | 1147 | 2971 | 2395 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/329g8cj3/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @hillaryclinton-maddow-speakerpelosi's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/149xp72s) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/149xp72s/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/hillaryclinton-maddow-speakerpelosi') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Shenzy/Sentence_Classification4DesignTutor
34e4ef5afee7b3f08e234e57afd8bfe77351113d
2022-07-26T03:25:26.000Z
[ "pytorch", "roberta", "text-classification", "en", "dataset:Shenzy/autotrain-data-sentence_classification", "transformers", "autotrain", "co2_eq_emissions" ]
text-classification
false
Shenzy
null
Shenzy/Sentence_Classification4DesignTutor
12
null
transformers
10,893
--- tags: autotrain language: en widget: - text: "An unusual hierarchy in the section near the top where the design seems to prioritise running time over a compacted artist name." datasets: - Shenzy/autotrain-data-sentence_classification co2_eq_emissions: 0.00986494387043499 --- ## Validation Metrics - Loss: 0.6447726488113403 - Accuracy: 0.8263473053892215 - Macro F1: 0.7776555055392036 - Micro F1: 0.8263473053892215 - Weighted F1: 0.8161511591973788 - Macro Precision: 0.8273504273504274 - Micro Precision: 0.8263473053892215 - Weighted Precision: 0.8266697374481806 - Macro Recall: 0.7615518744551003 - Micro Recall: 0.8263473053892215 - Weighted Recall: 0.8263473053892215 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "An unusual hierarchy in the section near the top where the design seems to prioritise running time over a compacted artist name."}' https://api-inference.huggingface.co/models/Shenzy/Sentence_Classification4DesignTutor ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer import numpy as np labdic ={ 0: "rationale", 1: "suggestion", 2: "specific_critique"} model = AutoModelForSequenceClassification.from_pretrained("Shenzy/Sentence_Classification4DesignTutor") tokenizer = AutoTokenizer.from_pretrained("Shenzy/Sentence_Classification4DesignTutor") inputs = tokenizer("An unusual hierarchy in the section near the top where the design seems to prioritise running time over a compacted artist name.", return_tensors="pt") outputs = model(**inputs) print(labdic[np.argmax(outputs)]) ```
phamvanlinh143/bert-fine-tuned-cola
303716edca581322e47999a19a10bf70c00c19a5
2022-07-24T17:40:41.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
phamvanlinh143
null
phamvanlinh143/bert-fine-tuned-cola
12
null
transformers
10,894
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: bert-fine-tuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5675682416159784 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-fine-tuned-cola This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8760 - Matthews Correlation: 0.5676 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.4768 | 1.0 | 1069 | 0.5682 | 0.5183 | | 0.3134 | 2.0 | 2138 | 0.6110 | 0.5789 | | 0.1627 | 3.0 | 3207 | 0.8760 | 0.5676 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Bogula/samsum-512
957020bd297916fe52ebd5932faeca6fddbcd218
2022-07-25T21:34:21.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Bogula
null
Bogula/samsum-512
12
null
transformers
10,895
smaller version of Samsum fine-tuning on CNN/DailyMail-Pegasus 512 token input / 64 token output (reduced due to memory shortage on Colab)
d2niraj555/distilbert-base-uncased-finetuned-emotion
d9e838a13db9e85bf9a9fecd59eb4c07d1c5882b
2022-07-27T17:24:50.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
d2niraj555
null
d2niraj555/distilbert-base-uncased-finetuned-emotion
12
null
transformers
10,896
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.924 - name: F1 type: f1 value: 0.9241328800048197 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2133 - Accuracy: 0.924 - F1: 0.9241 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8087 | 1.0 | 250 | 0.3067 | 0.905 | 0.9030 | | 0.2439 | 2.0 | 500 | 0.2133 | 0.924 | 0.9241 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.12.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
BramVanroy/bert-base-multilingual-cased-hebban-reviews
d385a288dd48791c869c6a77a7f30123fffc0919
2022-07-29T09:41:16.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "nl", "dataset:BramVanroy/hebban-reviews", "transformers", "sentiment-analysis", "dutch", "text", "license:mit", "model-index" ]
text-classification
false
BramVanroy
null
BramVanroy/bert-base-multilingual-cased-hebban-reviews
12
null
transformers
10,897
--- datasets: - BramVanroy/hebban-reviews language: - nl license: mit metrics: - accuracy - f1 - precision - qwk - recall model-index: - name: bert-base-multilingual-cased-hebban-reviews results: - dataset: config: filtered_sentiment name: BramVanroy/hebban-reviews - filtered_sentiment - 2.0.0 revision: 2.0.0 split: test type: BramVanroy/hebban-reviews metrics: - name: Test accuracy type: accuracy value: 0.7764792899408284 - name: Test f1 type: f1 value: 0.7821329848271866 - name: Test precision type: precision value: 0.7907660190770787 - name: Test qwk type: qwk value: 0.6813121109021326 - name: Test recall type: recall value: 0.7764792899408284 task: name: sentiment analysis type: text-classification tags: - sentiment-analysis - dutch - text widget: - text: Wauw, wat een leuk boek! Ik heb me er er goed mee vermaakt. - text: Nee, deze vond ik niet goed. De auteur doet zijn best om je als lezer mee te trekken in het verhaal maar mij overtuigt het alleszins niet. - text: Ik vind het niet slecht maar de schrijfstijl trekt me ook niet echt aan. Het wordt een beetje saai vanaf het vijfde hoofdstuk --- # bert-base-multilingual-cased-hebban-reviews # Dataset - dataset_name: BramVanroy/hebban-reviews - dataset_config: filtered_sentiment - dataset_revision: 2.0.0 - labelcolumn: review_sentiment - textcolumn: review_text_without_quotes # Training - optim: adamw_hf - learning_rate: 5e-05 - per_device_train_batch_size: 64 - per_device_eval_batch_size: 64 - gradient_accumulation_steps: 1 - max_steps: 5001 - save_steps: 500 - metric_for_best_model: qwk # Best checkedpoint based on validation - best_metric: 0.6828581526810108 - best_model_checkpoint: trained/hebban-reviews/bert-base-multilingual-cased/checkpoint-1500 # Test results of best checkpoint - accuracy: 0.7764792899408284 - f1: 0.7821329848271866 - precision: 0.7907660190770787 - qwk: 0.6813121109021326 - recall: 0.7764792899408284 ## Confusion matric ![cfm](fig/test_confusion_matrix.png) ## Normalized confusion matrix ![norm cfm](fig/test_confusion_matrix_norm.png) # Environment - cuda_capabilities: 8.0; 8.0 - cuda_device_count: 2 - cuda_devices: NVIDIA A100-SXM4-80GB; NVIDIA A100-SXM4-80GB - finetuner_commit: 66294c815326c93682003119534cb72009f558c2 - platform: Linux-4.18.0-305.49.1.el8_4.x86_64-x86_64-with-glibc2.28 - python_version: 3.9.5 - toch_version: 1.10.0 - transformers_version: 4.21.0
yanaiela/roberta-base-epoch_81
3feb9aef44461a6a63f27dfe729e13c2e09f995c
2022-07-29T23:09:21.000Z
[ "pytorch", "roberta", "fill-mask", "en", "dataset:wikipedia", "dataset:bookcorpus", "arxiv:1907.11692", "arxiv:2207.14251", "transformers", "roberta-base", "roberta-base-epoch_81", "license:mit", "autotrain_compatible" ]
fill-mask
false
yanaiela
null
yanaiela/roberta-base-epoch_81
12
null
transformers
10,898
--- language: en tags: - roberta-base - roberta-base-epoch_81 license: mit datasets: - wikipedia - bookcorpus --- # RoBERTa, Intermediate Checkpoint - Epoch 81 This model is part of our reimplementation of the [RoBERTa model](https://arxiv.org/abs/1907.11692), trained on Wikipedia and the Book Corpus only. We train this model for almost 100K steps, corresponding to 83 epochs. We provide the 84 checkpoints (including the randomly initialized weights before the training) to provide the ability to study the training dynamics of such models, and other possible use-cases. These models were trained in part of a work that studies how simple statistics from data, such as co-occurrences affects model predictions, which are described in the paper [Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions](https://arxiv.org/abs/2207.14251). This is RoBERTa-base epoch_81. ## Model Description This model was captured during a reproduction of [RoBERTa-base](https://huggingface.co/roberta-base), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM). The intended uses, limitations, training data and training procedure for the fully trained model are similar to [RoBERTa-base](https://huggingface.co/roberta-base). Two major differences with the original model: * We trained our model for 100K steps, instead of 500K * We only use Wikipedia and the Book Corpus, as corpora which are publicly available. ### How to use Using code from [RoBERTa-base](https://huggingface.co/roberta-base), here is an example based on PyTorch: ``` from transformers import pipeline model = pipeline("fill-mask", model='yanaiela/roberta-base-epoch_83', device=-1, top_k=10) model("Hello, I'm the <mask> RoBERTa-base language model") ``` ## Citation info ```bibtex @article{2207.14251, Author = {Yanai Elazar and Nora Kassner and Shauli Ravfogel and Amir Feder and Abhilasha Ravichander and Marius Mosbach and Yonatan Belinkov and Hinrich Schütze and Yoav Goldberg}, Title = {Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions}, Year = {2022}, Eprint = {arXiv:2207.14251}, } ```
Evelyn18/roberta-base-spanish-squades-becasIncentivos6
8c10020ced5ecf4c4e2b15b27c6560ea0674bebb
2022-07-28T21:38:04.000Z
[ "pytorch", "tensorboard", "roberta", "question-answering", "dataset:becasv2", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
Evelyn18
null
Evelyn18/roberta-base-spanish-squades-becasIncentivos6
12
null
transformers
10,899
--- tags: - generated_from_trainer datasets: - becasv2 model-index: - name: roberta-base-spanish-squades-becasIncentivos6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-spanish-squades-becasIncentivos6 This model is a fine-tuned version of [IIC/roberta-base-spanish-squades](https://huggingface.co/IIC/roberta-base-spanish-squades) on the becasv2 dataset. It achieves the following results on the evaluation set: - Loss: 2.0023 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 3 | 2.2257 | | No log | 2.0 | 6 | 1.8301 | | No log | 3.0 | 9 | 1.7627 | | No log | 4.0 | 12 | 1.8773 | | No log | 5.0 | 15 | 1.9731 | | No log | 6.0 | 18 | 2.0023 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1