modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
list
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
kingabzpro/Helsinki-NLP-opus-yor-mul-en
c4b80c5880959550552c8e2c9b639df1fe5bb10c
2021-08-03T08:43:00.000Z
[ "pytorch", "marian", "text2text-generation", "Yorùbá", "dataset:AI4D-Africa - Yorùbá Machine Translation Challenge", "transformers", "text", "machine-translation", "language-translation", "seq2seq", "helsinki-nlp", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
kingabzpro
null
kingabzpro/Helsinki-NLP-opus-yor-mul-en
12
1
transformers
10,600
--- language: Yorùbá datasets: - AI4D-Africa - Yorùbá Machine Translation Challenge tags: - text - machine-translation - language-translation - seq2seq - helsinki-nlp license: apache-2.0 metrics: - ROUGE --- ## Predicting English Translation ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM # Loading tokenizer and model tokenizer = AutoTokenizer.from_pretrained("kingabzpro/Helsinki-NLP-opus-yor-mul-en") model = AutoModelForSeq2SeqLM.from_pretrained("kingabzpro/Helsinki-NLP-opus-yor-mul-en").to('cuda') # Prediction a = model.generate(**tokenizer.prepare_seq2seq_batch('Nínú ìpè kan lẹ́yìn ìgbà náà, wọ́n sọ fún aṣojú iléeṣẹ́ BlaBlaCar pé ètò náà ti yí padà, pé',return_tensors='pt').to('cuda')) text = tokenizer.batch_decode(a) # Cleaning text text = str(text) text = re.sub("<pad> ","",text) text = re.sub("'","",text) text = text.replace("[", "") text = text.replace("]", "") text ``` ## Result ``` 'In a statement after that hearing, the BualaCard’s representative was told that the event had changed, that he had turned up.' ``` ## ROGUE Score **0.3025**
kingabzpro/wav2vec2-60-Urdu-V8
26321cf95b2813b91fcb41ea5b0107d1288dafc5
2022-03-24T11:55:52.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "ur", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "robust-speech-event", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
kingabzpro
null
kingabzpro/wav2vec2-60-Urdu-V8
12
1
transformers
10,601
--- language: - ur license: apache-2.0 tags: - automatic-speech-recognition - robust-speech-event - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 metrics: - wer - cer model-index: - name: wav2vec2-urdu-V8-Abid results: - task: type: automatic-speech-recognition name: Speech Recognition dataset: type: mozilla-foundation/common_voice_8_0 name: Common Voice ur args: ur metrics: - type: wer value: 44.63 name: Test WER args: - learning_rate: 7.5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 50 - mixed_precision_training: Native AMPP - type: cer value: 18.82 name: Test CER args: - learning_rate: 7.5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 50 - mixed_precision_training: Native AMPP --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-60-Urdu-V8 This model is a fine-tuned version of [Harveenchadha/vakyansh-wav2vec2-urdu-urm-60](https://huggingface.co/Harveenchadha/vakyansh-wav2vec2-urdu-urm-60) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 11.4832 - Wer: 0.5729 - Cer: 0.3170 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 19.671 | 8.33 | 100 | 7.7671 | 0.8795 | 0.4492 | | 2.085 | 16.67 | 200 | 9.2759 | 0.6201 | 0.3320 | | 0.6633 | 25.0 | 300 | 8.7025 | 0.5738 | 0.3104 | | 0.388 | 33.33 | 400 | 10.2286 | 0.5852 | 0.3128 | | 0.2822 | 41.67 | 500 | 11.1953 | 0.5738 | 0.3174 | | 0.2293 | 50.0 | 600 | 11.4832 | 0.5729 | 0.3170 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
l3cube-pune/hate-bert-hasoc-marathi
f7fe5eff28b6bcaeacd926f89bc100af394ac210
2022-06-12T12:38:26.000Z
[ "pytorch", "tf", "albert", "text-classification", "mr", "dataset:HASOC 2021", "arxiv:2110.12200", "transformers", "license:cc-by-4.0" ]
text-classification
false
l3cube-pune
null
l3cube-pune/hate-bert-hasoc-marathi
12
1
transformers
10,602
--- language: mr tags: - albert license: cc-by-4.0 datasets: - HASOC 2021 widget: - text: "I like you. </s></s> I love you." --- ## hate-bert-hasoc-marathi hate-bert-hasoc-marathi is a binary hate speech model fine-tuned on Marathi Hasoc Hate Speech Dataset 2021. The label mappings are 0 -> None, 1 -> Hate. More details on the dataset, models, and baseline results can be found in our [paper] (https://arxiv.org/abs/2110.12200) A new version of Marathi Hate Speech Detection models can be found here: <br> binary: https://huggingface.co/l3cube-pune/mahahate-bert <br> multi label: https://huggingface.co/l3cube-pune/mahahate-multi-roberta <br> ``` @article{velankar2021hate, title={Hate and Offensive Speech Detection in Hindi and Marathi}, author={Velankar, Abhishek and Patil, Hrushikesh and Gore, Amol and Salunke, Shubham and Joshi, Raviraj}, journal={arXiv preprint arXiv:2110.12200}, year={2021} } ```
llangnickel/long-covid-classification
d914996f532b6a7b81f375ddc665551eae5099b8
2022-07-04T19:28:06.000Z
[ "pytorch", "bert", "text-classification", "transformers", "license:mit" ]
text-classification
false
llangnickel
null
llangnickel/long-covid-classification
12
null
transformers
10,603
--- license: mit --- ## long-covid-classification We fine-tuned bert-base-cased using a [manually curated dataset](https://huggingface.co/llangnickel/long-covid-classification-data) to train a Sequence Classification model able to distinguish between long COVID and non-long COVID-related documents. ## Used hyper parameters |Parameter|Value| |---|---| |Learning rate|3e-5| |Batch size|16| |Number of epochs|4| |Sequence Length|512| ## Metrics |Precision [%]|Recall [%]|F1-score [%]| |---|---|---| |91.18|91.18|91.18| ## How to load the model ``` from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("llangnickel/long-covid-classification", use_auth_token=True) label_dict = {0: "nonLongCOVID", 1: "longCOVID"} model = AutoModelForSequenceClassification.from_pretrained("llangnickel/long-covid-classification", use_auth_token=True, num_labels=len(label_dict)) ``` ## Citation @article{10.1093/database/baac048, author = {Langnickel, Lisa and Darms, Johannes and Heldt, Katharina and Ducks, Denise and Fluck, Juliane}, title = "{Continuous development of the semantic search engine preVIEW: from COVID-19 to long COVID}", journal = {Database}, volume = {2022}, year = {2022}, month = {07}, issn = {1758-0463}, doi = {10.1093/database/baac048}, url = {https://doi.org/10.1093/database/baac048}, note = {baac048}, eprint = {https://academic.oup.com/database/article-pdf/doi/10.1093/database/baac048/44371817/baac048.pdf}, }
luffycodes/bb_narataka_roberta_large_nli_bsz_16_bb_bsz_16_nli_lr_1e5_bb_lr_1e5_ep_10
f34fe7e07a03c6016d9e1957a5beb11daf35acc6
2021-10-25T19:54:26.000Z
[ "pytorch", "roberta", "transformers" ]
null
false
luffycodes
null
luffycodes/bb_narataka_roberta_large_nli_bsz_16_bb_bsz_16_nli_lr_1e5_bb_lr_1e5_ep_10
12
null
transformers
10,604
Entry not found
luffycodes/bb_narataka_roberta_large_nli_bsz_16_bb_bsz_16_nli_lr_1e5_bb_lr_1e5_oppo
539ca45cfe17fa403bd8e6ed55f37188337100e6
2021-10-26T07:55:09.000Z
[ "pytorch", "roberta", "transformers" ]
null
false
luffycodes
null
luffycodes/bb_narataka_roberta_large_nli_bsz_16_bb_bsz_16_nli_lr_1e5_bb_lr_1e5_oppo
12
null
transformers
10,605
Entry not found
luffycodes/bb_narataka_roberta_large_nli_bsz_16_bb_bsz_16_nli_lr_5e6_bb_lr_5e6_wu_7k_grad_adam
02a8790e1571a2aae34f04791d017da45c010939
2021-10-30T23:35:38.000Z
[ "pytorch", "roberta", "transformers" ]
null
false
luffycodes
null
luffycodes/bb_narataka_roberta_large_nli_bsz_16_bb_bsz_16_nli_lr_5e6_bb_lr_5e6_wu_7k_grad_adam
12
null
transformers
10,606
Entry not found
luffycodes/bb_narataka_roberta_large_nli_bsz_16_bb_bsz_16_nli_lr_5e6_bb_lr_5e6_wu_7k_grad_adam_mask
ca63ce03489c34f3306ad7d21496823aa9a2c5c1
2021-10-31T20:56:51.000Z
[ "pytorch", "roberta", "transformers" ]
null
false
luffycodes
null
luffycodes/bb_narataka_roberta_large_nli_bsz_16_bb_bsz_16_nli_lr_5e6_bb_lr_5e6_wu_7k_grad_adam_mask
12
null
transformers
10,607
Entry not found
lvwerra/gpt2-imdb-pos
649cebcaa8604cbf6124f3d26651d9f5cc1e0e56
2021-05-23T08:37:41.000Z
[ "pytorch", "gpt2", "transformers" ]
null
false
lvwerra
null
lvwerra/gpt2-imdb-pos
12
null
transformers
10,608
# GPT2-IMDB-pos ## What is it? A small GPT2 (`lvwerra/gpt2-imdb`) language model fine-tuned to produce positive movie reviews based the [IMDB dataset](https://www.kaggle.com/lakshmi25npathi/imdb-dataset-of-50k-movie-reviews). The model is trained with rewards from a BERT sentiment classifier (`lvwerra/gpt2-imdb`) via PPO. ## Training setting The model was trained for `100` optimisation steps with a batch size of `256` which corresponds to `25600` training samples. The full experiment setup can be found in the Jupyter notebook in the [trl repo](https://lvwerra.github.io/trl/04-gpt2-sentiment-ppo-training/). ## Examples A few examples of the model response to a query before and after optimisation: | query | response (before) | response (after) | rewards (before) | rewards (after) | |-------|-------------------|------------------|------------------|-----------------| |I'd never seen a |heavier, woodier example of Victorian archite... |film of this caliber, and I think it's wonder... |3.297736 |4.158653| |I love John's work |but I actually have to write language as in w... |and I hereby recommend this film. I am really... |-1.904006 |4.159198 | |I's a big struggle |to see anyone who acts in that way. by Jim Th... |, but overall I'm happy with the changes even ... |-1.595925 |2.651260|
m3hrdadfi/albert-fa-base-v2-sentiment-snappfood
e02e74a033a1f3a43b101153c666894f0d40c2df
2020-12-26T08:49:28.000Z
[ "pytorch", "tf", "albert", "text-classification", "fa", "transformers", "license:apache-2.0" ]
text-classification
false
m3hrdadfi
null
m3hrdadfi/albert-fa-base-v2-sentiment-snappfood
12
null
transformers
10,609
--- language: fa license: apache-2.0 --- # ALBERT Persian A Lite BERT for Self-supervised Learning of Language Representations for the Persian Language > میتونی بهش بگی برت_کوچولو [ALBERT-Persian](https://github.com/m3hrdadfi/albert-persian) is the first attempt on ALBERT for the Persian Language. The model was trained based on Google's ALBERT BASE Version 2.0 over various writing styles from numerous subjects (e.g., scientific, novels, news) with more than 3.9M documents, 73M sentences, and 1.3B words, like the way we did for ParsBERT. Please follow the [ALBERT-Persian](https://github.com/m3hrdadfi/albert-persian) repo for the latest information about previous and current models. ## Persian Sentiment [Digikala, SnappFood, DeepSentiPers] It aims to classify text, such as comments, based on their emotional bias. We tested three well-known datasets for this task: `Digikala` user comments, `SnappFood` user comments, and `DeepSentiPers` in two binary-form and multi-form types. ### SnappFood [Snappfood](https://snappfood.ir/) (an online food delivery company) user comments containing 70,000 comments with two labels (i.e. polarity classification): 1. Happy 2. Sad | Label | # | |:--------:|:-----:| | Negative | 35000 | | Positive | 35000 | **Download** You can download the dataset from [here](https://drive.google.com/uc?id=15J4zPN1BD7Q_ZIQ39VeFquwSoW8qTxgu) ## Results The following table summarizes the F1 score obtained as compared to other models and architectures. | Dataset | ALBERT-fa-base-v2 | ParsBERT-v1 | mBERT | DeepSentiPers | |:------------------------:|:-----------------:|:-----------:|:-----:|:-------------:| | SnappFood User Comments | 85.79 | 88.12 | 87.87 | - | ### BibTeX entry and citation info Please cite in publications as the following: ```bibtex @misc{ALBERTPersian, author = {Mehrdad Farahani}, title = {ALBERT-Persian: A Lite BERT for Self-supervised Learning of Language Representations for the Persian Language}, year = {2020}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\url{https://github.com/m3hrdadfi/albert-persian}}, } @article{ParsBERT, title={ParsBERT: Transformer-based Model for Persian Language Understanding}, author={Mehrdad Farahani, Mohammad Gharachorloo, Marzieh Farahani, Mohammad Manthouri}, journal={ArXiv}, year={2020}, volume={abs/2005.12515} } ``` ## Questions? Post a Github issue on the [ALBERT-Persian](https://github.com/m3hrdadfi/albert-persian) repo.
malay-huggingface/t5-small-bahasa-cased
c2bdb69b07dbb25f2b329def9b776210dca6de0d
2021-09-05T12:53:30.000Z
[ "pytorch", "t5", "feature-extraction", "ms", "transformers" ]
feature-extraction
false
malay-huggingface
null
malay-huggingface/t5-small-bahasa-cased
12
null
transformers
10,610
--- language: ms --- # t5-small-bahasa-cased Pretrained T5 small language model for Malay. ## Pretraining Corpus `t5-small-bahasa-cased` model was pretrained on multiple tasks. Below is list of tasks we trained on, 1. Language masking task on bahasa news, bahasa Wikipedia, bahasa Academia.edu, bahasa parliament and translated The Pile. 2. News title prediction on bahasa news. 3. Next sentence prediction on bahasa news, bahasa Wikipedia, bahasa Academia.edu, bahasa parliament and translated The Pile. 4. Translated QA Natural. 5. Text Similarity task on translated SNLI and translated MNLI. 6. EN-MS translation. 7. MS-EN translation. 8. Abstractive Summarization. 9. Knowledge Graph triples generation. 10. Paraphrase. Preparing steps can reproduce at https://github.com/huseinzol05/malaya/tree/master/pretrained-model/t5/prepare ## Pretraining details - This model was trained using Google T5 repository https://github.com/google-research/text-to-text-transfer-transformer, on v3-8 TPU. - All steps can reproduce from here, https://github.com/huseinzol05/Malaya/tree/master/pretrained-model/t5 ## Load Pretrained Model You can use this model by installing `torch` or `tensorflow` and Huggingface library `transformers`. And you can use it directly by initializing it like this: ```python from transformers import T5Tokenizer, T5Model model = T5Model.from_pretrained('malay-huggingface/t5-small-bahasa-cased') tokenizer = T5Tokenizer.from_pretrained('malay-huggingface/t5-small-bahasa-cased') ``` ## Example using T5ForConditionalGeneration ```python from transformers import T5Tokenizer, T5ForConditionalGeneration tokenizer = T5Tokenizer.from_pretrained('malay-huggingface/t5-small-bahasa-cased') model = T5ForConditionalGeneration.from_pretrained('malay-huggingface/t5-small-bahasa-cased') input_ids = tokenizer.encode('soalan: siapakah perdana menteri malaysia?', return_tensors = 'pt') outputs = model.generate(input_ids) print(tokenizer.decode(outputs[0])) ``` Output is, ``` 'Mahathir Mohamad' ``` ## Supported prefix 1. `soalan: {string}`, trained using Natural QA. 2. `ringkasan: {string}`, for abstractive summarization. 3. `tajuk: {string}`, for abstractive title. 4. `parafrasa: {string}`, for abstractive paraphrase. 5. `terjemah Inggeris ke Melayu: {string}`, for EN-MS translation. 6. `terjemah Melayu ke Inggeris: {string}`, for MS-EN translation. 7. `grafik pengetahuan: {string}`, for MS text to EN Knowledge Graph triples format. 8. `ayat1: {string1} ayat2: {string2}`, semantic similarity.
manandey/wav2vec2-large-xlsr-_irish
cd3bd4e5203a049b6739790627cd843fcf5eb287
2022-03-25T16:53:49.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "ga", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
manandey
null
manandey/wav2vec2-large-xlsr-_irish
12
null
transformers
10,611
--- language: ga datasets: - common_voice tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week - hf-asr-leaderboard license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Irish by Manan Dey results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice ga-IE type: common_voice args: ga-IE metrics: - name: Test WER type: wer value: 42.34 --- # Wav2Vec2-Large-XLSR-53-Irish Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Irish using the [Common Voice](https://huggingface.co/datasets/common_voice) When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "ga-IE", split="test[:2%]"). processor = Wav2Vec2Processor.from_pretrained("manandey/wav2vec2-large-xlsr-_irish") model = Wav2Vec2ForCTC.from_pretrained("manandey/wav2vec2-large-xlsr-_irish") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the {language} test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "ga-IE", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("manandey/wav2vec2-large-xlsr-_irish") model = Wav2Vec2ForCTC.from_pretrained("manandey/wav2vec2-large-xlsr-_irish") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\’\–\(\)]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 42.34% ## Training The Common Voice `train`, `validation` datasets were used for training.
manav/causal_qa
cd86c3a19560f9135165aa89c47230681cbcc458
2021-05-19T22:48:49.000Z
[ "pytorch", "jax", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
manav
null
manav/causal_qa
12
null
transformers
10,612
This a BERT-based QA model finetuned to answer causal questions. The original model this is based on can be found [here](https://huggingface.co/deepset/bert-large-uncased-whole-word-masking-squad2). Analysis of this model is associated with the work found at the following [repo](https://github.com/kstats/CausalQG).
maroo93/practice00
2b1969d39fe0e579d21c0c40173e813083b22d7c
2021-05-19T23:05:30.000Z
[ "pytorch", "jax", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
maroo93
null
maroo93/practice00
12
null
transformers
10,613
Entry not found
mbeukman/xlm-roberta-base-finetuned-luganda-finetuned-ner-swahili
c5870bf17c7b54bd658e4a8c29f2bec808fc3934
2021-11-25T09:04:12.000Z
[ "pytorch", "xlm-roberta", "token-classification", "sw", "dataset:masakhaner", "arxiv:2103.11811", "transformers", "NER", "autotrain_compatible" ]
token-classification
false
mbeukman
null
mbeukman/xlm-roberta-base-finetuned-luganda-finetuned-ner-swahili
12
null
transformers
10,614
--- language: - sw tags: - NER datasets: - masakhaner metrics: - f1 - precision - recall widget: - text: "Wizara ya afya ya Tanzania imeripoti Jumatatu kuwa , watu takriban 14 zaidi wamepata maambukizi ya Covid - 19 ." --- # xlm-roberta-base-finetuned-luganda-finetuned-ner-swahili This is a token classification (specifically NER) model that fine-tuned [xlm-roberta-base-finetuned-luganda](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-luganda) on the [MasakhaNER](https://arxiv.org/abs/2103.11811) dataset, specifically the Swahili part. More information, and other similar models can be found in the [main Github repository](https://github.com/Michael-Beukman/NERTransfer). ## About This model is transformer based and was fine-tuned on the MasakhaNER dataset. It is a named entity recognition dataset, containing mostly news articles in 10 different African languages. The model was fine-tuned for 50 epochs, with a maximum sequence length of 200, 32 batch size, 5e-5 learning rate. This process was repeated 5 times (with different random seeds), and this uploaded model performed the best out of those 5 seeds (aggregate F1 on test set). This model was fine-tuned by me, Michael Beukman while doing a project at the University of the Witwatersrand, Johannesburg. This is version 1, as of 20 November 2021. This model is licensed under the [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0). ### Contact & More information For more information about the models, including training scripts, detailed results and further resources, you can visit the the [main Github repository](https://github.com/Michael-Beukman/NERTransfer). You can contact me by filing an issue on this repository. ### Training Resources In the interest of openness, and reporting resources used, we list here how long the training process took, as well as what the minimum resources would be to reproduce this. Fine-tuning each model on the NER dataset took between 10 and 30 minutes, and was performed on a NVIDIA RTX3090 GPU. To use a batch size of 32, at least 14GB of GPU memory was required, although it was just possible to fit these models in around 6.5GB's of VRAM when using a batch size of 1. ## Data The train, evaluation and test datasets were taken directly from the MasakhaNER [Github](https://github.com/masakhane-io/masakhane-ner) repository, with minimal to no preprocessing, as the original dataset is already of high quality. The motivation for the use of this data is that it is the "first large, publicly available, high­ quality dataset for named entity recognition (NER) in ten African languages" ([source](https://arxiv.org/pdf/2103.11811.pdf)). The high-quality data, as well as the groundwork laid by the paper introducing it are some more reasons why this dataset was used. For evaluation, the dedicated test split was used, which is from the same distribution as the training data, so this model may not generalise to other distributions, and further testing would need to be done to investigate this. The exact distribution of the data is covered in detail [here](https://arxiv.org/abs/2103.11811). ## Intended Use This model are intended to be used for NLP research into e.g. interpretability or transfer learning. Using this model in production is not supported, as generalisability and downright performance is limited. In particular, this is not designed to be used in any important downstream task that could affect people, as harm could be caused by the limitations of the model, described next. ## Limitations This model was only trained on one (relatively small) dataset, covering one task (NER) in one domain (news articles) and in a set span of time. The results may not generalise, and the model may perform badly, or in an unfair / biased way if used on other tasks. Although the purpose of this project was to investigate transfer learning, the performance on languages that the model was not trained for does suffer. Because this model used xlm-roberta-base as its starting point (potentially with domain adaptive fine-tuning on specific languages), this model's limitations can also apply here. These can include being biased towards the hegemonic viewpoint of most of its training data, being ungrounded and having subpar results on other languages (possibly due to unbalanced training data). As [Adelani et al. (2021)](https://arxiv.org/abs/2103.11811) showed, the models in general struggled with entities that were either longer than 3 words and entities that were not contained in the training data. This could bias the models towards not finding, e.g. names of people that have many words, possibly leading to a misrepresentation in the results. Similarly, names that are uncommon, and may not have been found in the training data (due to e.g. different languages) would also be predicted less often. Additionally, this model has not been verified in practice, and other, more subtle problems may become prevalent if used without any verification that it does what it is supposed to. ### Privacy & Ethical Considerations The data comes from only publicly available news sources, the only available data should cover public figures and those that agreed to be reported on. See the original MasakhaNER paper for more details. No explicit ethical considerations or adjustments were made during fine-tuning of this model. ## Metrics The language adaptive models achieve (mostly) superior performance over starting with xlm-roberta-base. Our main metric was the aggregate F1 score for all NER categories. These metrics are on the test set for MasakhaNER, so the data distribution is similar to the training set, so these results do not directly indicate how well these models generalise. We do find large variation in transfer results when starting from different seeds (5 different seeds were tested), indicating that the fine-tuning process for transfer might be unstable. The metrics used were chosen to be consistent with previous work, and to facilitate research. Other metrics may be more appropriate for other purposes. ## Caveats and Recommendations In general, this model performed worse on the 'date' category compared to others, so if dates are a critical factor, then that might need to be taken into account and addressed, by for example collecting and annotating more data. ## Model Structure Here are some performance details on this specific model, compared to others we trained. All of these metrics were calculated on the test set, and the seed was chosen that gave the best overall F1 score. The first three result columns are averaged over all categories, and the latter 4 provide performance broken down by category. This model can predict the following label for a token ([source](https://huggingface.co/Davlan/xlm-roberta-large-masakhaner)): Abbreviation|Description -|- O|Outside of a named entity B-DATE |Beginning of a DATE entity right after another DATE entity I-DATE |DATE entity B-PER |Beginning of a person’s name right after another person’s name I-PER |Person’s name B-ORG |Beginning of an organisation right after another organisation I-ORG |Organisation B-LOC |Beginning of a location right after another location I-LOC |Location | Model Name | Staring point | Evaluation / Fine-tune Language | F1 | Precision | Recall | F1 (DATE) | F1 (LOC) | F1 (ORG) | F1 (PER) | | -------------------------------------------------- | -------------------- | -------------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- | | [xlm-roberta-base-finetuned-luganda-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-luganda-finetuned-ner-swahili) (This model) | [lug](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-luganda) | swa | 88.93 | 87.64 | 90.25 | 83.00 | 92.00 | 79.00 | 95.00 | | [xlm-roberta-base-finetuned-hausa-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-hausa-finetuned-ner-swahili) | [hau](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-hausa) | swa | 88.36 | 86.95 | 89.82 | 86.00 | 91.00 | 77.00 | 94.00 | | [xlm-roberta-base-finetuned-igbo-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-igbo-finetuned-ner-swahili) | [ibo](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-igbo) | swa | 87.75 | 86.55 | 88.97 | 85.00 | 92.00 | 77.00 | 91.00 | | [xlm-roberta-base-finetuned-kinyarwanda-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-kinyarwanda-finetuned-ner-swahili) | [kin](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-kinyarwanda) | swa | 87.26 | 85.15 | 89.48 | 83.00 | 91.00 | 75.00 | 93.00 | | [xlm-roberta-base-finetuned-luo-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-luo-finetuned-ner-swahili) | [luo](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-luo) | swa | 87.93 | 86.91 | 88.97 | 83.00 | 91.00 | 76.00 | 94.00 | | [xlm-roberta-base-finetuned-naija-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-naija-finetuned-ner-swahili) | [pcm](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-naija) | swa | 87.26 | 85.15 | 89.48 | 83.00 | 91.00 | 75.00 | 93.00 | | [xlm-roberta-base-finetuned-swahili-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-swahili-finetuned-ner-swahili) | [swa](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-swahili) | swa | 90.36 | 88.59 | 92.20 | 86.00 | 93.00 | 79.00 | 96.00 | | [xlm-roberta-base-finetuned-wolof-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-wolof-finetuned-ner-swahili) | [wol](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-wolof) | swa | 87.80 | 86.50 | 89.14 | 86.00 | 90.00 | 78.00 | 93.00 | | [xlm-roberta-base-finetuned-yoruba-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-yoruba-finetuned-ner-swahili) | [yor](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-yoruba) | swa | 87.73 | 86.67 | 88.80 | 85.00 | 91.00 | 75.00 | 93.00 | | [xlm-roberta-base-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-ner-swahili) | [base](https://huggingface.co/xlm-roberta-base) | swa | 88.71 | 86.84 | 90.67 | 83.00 | 91.00 | 79.00 | 95.00 | ## Usage To use this model (or others), you can do the following, just changing the model name ([source](https://huggingface.co/dslim/bert-base-NER)): ``` from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline model_name = 'mbeukman/xlm-roberta-base-finetuned-luganda-finetuned-ner-swahili' tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForTokenClassification.from_pretrained(model_name) nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "Wizara ya afya ya Tanzania imeripoti Jumatatu kuwa , watu takriban 14 zaidi wamepata maambukizi ya Covid - 19 ." ner_results = nlp(example) print(ner_results) ```
mbeukman/xlm-roberta-base-finetuned-luo-finetuned-ner-luo
04c29cd77e99f5753c55c7023c6500188996147a
2021-11-25T09:04:15.000Z
[ "pytorch", "xlm-roberta", "token-classification", "luo", "dataset:masakhaner", "arxiv:2103.11811", "transformers", "NER", "autotrain_compatible" ]
token-classification
false
mbeukman
null
mbeukman/xlm-roberta-base-finetuned-luo-finetuned-ner-luo
12
null
transformers
10,615
--- language: - luo tags: - NER datasets: - masakhaner metrics: - f1 - precision - recall widget: - text: "Jii 2 moko jowito ngimagi ka machielo 1 to ohinyore marach mokalo e masira makoch mar apaya mane otimore e apaya mawuok Oyugis kochimo Chabera e sub county ma Rachuonyo East e County ma Homa Bay ewii odhiambo makawuononi" --- # xlm-roberta-base-finetuned-luo-finetuned-ner-luo This is a token classification (specifically NER) model that fine-tuned [xlm-roberta-base-finetuned-luo](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-luo) on the [MasakhaNER](https://arxiv.org/abs/2103.11811) dataset, specifically the Luo part. More information, and other similar models can be found in the [main Github repository](https://github.com/Michael-Beukman/NERTransfer). ## About This model is transformer based and was fine-tuned on the MasakhaNER dataset. It is a named entity recognition dataset, containing mostly news articles in 10 different African languages. The model was fine-tuned for 50 epochs, with a maximum sequence length of 200, 32 batch size, 5e-5 learning rate. This process was repeated 5 times (with different random seeds), and this uploaded model performed the best out of those 5 seeds (aggregate F1 on test set). This model was fine-tuned by me, Michael Beukman while doing a project at the University of the Witwatersrand, Johannesburg. This is version 1, as of 20 November 2021. This model is licensed under the [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0). ### Contact & More information For more information about the models, including training scripts, detailed results and further resources, you can visit the the [main Github repository](https://github.com/Michael-Beukman/NERTransfer). You can contact me by filing an issue on this repository. ### Training Resources In the interest of openness, and reporting resources used, we list here how long the training process took, as well as what the minimum resources would be to reproduce this. Fine-tuning each model on the NER dataset took between 10 and 30 minutes, and was performed on a NVIDIA RTX3090 GPU. To use a batch size of 32, at least 14GB of GPU memory was required, although it was just possible to fit these models in around 6.5GB's of VRAM when using a batch size of 1. ## Data The train, evaluation and test datasets were taken directly from the MasakhaNER [Github](https://github.com/masakhane-io/masakhane-ner) repository, with minimal to no preprocessing, as the original dataset is already of high quality. The motivation for the use of this data is that it is the "first large, publicly available, high­ quality dataset for named entity recognition (NER) in ten African languages" ([source](https://arxiv.org/pdf/2103.11811.pdf)). The high-quality data, as well as the groundwork laid by the paper introducing it are some more reasons why this dataset was used. For evaluation, the dedicated test split was used, which is from the same distribution as the training data, so this model may not generalise to other distributions, and further testing would need to be done to investigate this. The exact distribution of the data is covered in detail [here](https://arxiv.org/abs/2103.11811). ## Intended Use This model are intended to be used for NLP research into e.g. interpretability or transfer learning. Using this model in production is not supported, as generalisability and downright performance is limited. In particular, this is not designed to be used in any important downstream task that could affect people, as harm could be caused by the limitations of the model, described next. ## Limitations This model was only trained on one (relatively small) dataset, covering one task (NER) in one domain (news articles) and in a set span of time. The results may not generalise, and the model may perform badly, or in an unfair / biased way if used on other tasks. Although the purpose of this project was to investigate transfer learning, the performance on languages that the model was not trained for does suffer. Because this model used xlm-roberta-base as its starting point (potentially with domain adaptive fine-tuning on specific languages), this model's limitations can also apply here. These can include being biased towards the hegemonic viewpoint of most of its training data, being ungrounded and having subpar results on other languages (possibly due to unbalanced training data). As [Adelani et al. (2021)](https://arxiv.org/abs/2103.11811) showed, the models in general struggled with entities that were either longer than 3 words and entities that were not contained in the training data. This could bias the models towards not finding, e.g. names of people that have many words, possibly leading to a misrepresentation in the results. Similarly, names that are uncommon, and may not have been found in the training data (due to e.g. different languages) would also be predicted less often. Additionally, this model has not been verified in practice, and other, more subtle problems may become prevalent if used without any verification that it does what it is supposed to. ### Privacy & Ethical Considerations The data comes from only publicly available news sources, the only available data should cover public figures and those that agreed to be reported on. See the original MasakhaNER paper for more details. No explicit ethical considerations or adjustments were made during fine-tuning of this model. ## Metrics The language adaptive models achieve (mostly) superior performance over starting with xlm-roberta-base. Our main metric was the aggregate F1 score for all NER categories. These metrics are on the test set for MasakhaNER, so the data distribution is similar to the training set, so these results do not directly indicate how well these models generalise. We do find large variation in transfer results when starting from different seeds (5 different seeds were tested), indicating that the fine-tuning process for transfer might be unstable. The metrics used were chosen to be consistent with previous work, and to facilitate research. Other metrics may be more appropriate for other purposes. ## Caveats and Recommendations In general, this model performed worse on the 'date' category compared to others, so if dates are a critical factor, then that might need to be taken into account and addressed, by for example collecting and annotating more data. ## Model Structure Here are some performance details on this specific model, compared to others we trained. All of these metrics were calculated on the test set, and the seed was chosen that gave the best overall F1 score. The first three result columns are averaged over all categories, and the latter 4 provide performance broken down by category. This model can predict the following label for a token ([source](https://huggingface.co/Davlan/xlm-roberta-large-masakhaner)): Abbreviation|Description -|- O|Outside of a named entity B-DATE |Beginning of a DATE entity right after another DATE entity I-DATE |DATE entity B-PER |Beginning of a person’s name right after another person’s name I-PER |Person’s name B-ORG |Beginning of an organisation right after another organisation I-ORG |Organisation B-LOC |Beginning of a location right after another location I-LOC |Location | Model Name | Staring point | Evaluation / Fine-tune Language | F1 | Precision | Recall | F1 (DATE) | F1 (LOC) | F1 (ORG) | F1 (PER) | | -------------------------------------------------- | -------------------- | -------------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- | | [xlm-roberta-base-finetuned-luo-finetuned-ner-luo](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-luo-finetuned-ner-luo) (This model) | [luo](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-luo) | luo | 78.71 | 78.91 | 78.52 | 72.00 | 84.00 | 59.00 | 87.00 | | [xlm-roberta-base-finetuned-swahili-finetuned-ner-luo](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-swahili-finetuned-ner-luo) | [swa](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-swahili) | luo | 78.13 | 77.75 | 78.52 | 65.00 | 82.00 | 61.00 | 89.00 | | [xlm-roberta-base-finetuned-ner-luo](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-ner-luo) | [base](https://huggingface.co/xlm-roberta-base) | luo | 75.99 | 76.18 | 75.80 | 71.00 | 76.00 | 62.00 | 85.00 | ## Usage To use this model (or others), you can do the following, just changing the model name ([source](https://huggingface.co/dslim/bert-base-NER)): ``` from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline model_name = 'mbeukman/xlm-roberta-base-finetuned-luo-finetuned-ner-luo' tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForTokenClassification.from_pretrained(model_name) nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "Jii 2 moko jowito ngimagi ka machielo 1 to ohinyore marach mokalo e masira makoch mar apaya mane otimore e apaya mawuok Oyugis kochimo Chabera e sub county ma Rachuonyo East e County ma Homa Bay ewii odhiambo makawuononi" ner_results = nlp(example) print(ner_results) ```
mbeukman/xlm-roberta-base-finetuned-ner-kinyarwanda
5dba1567dba74cdf572df06b6f69b8e6cd19d665
2021-11-25T09:04:30.000Z
[ "pytorch", "xlm-roberta", "token-classification", "rw", "dataset:masakhaner", "arxiv:2103.11811", "transformers", "NER", "autotrain_compatible" ]
token-classification
false
mbeukman
null
mbeukman/xlm-roberta-base-finetuned-ner-kinyarwanda
12
null
transformers
10,616
--- language: - rw tags: - NER datasets: - masakhaner metrics: - f1 - precision - recall widget: - text: "Ambasaderi wa EU mu Rwanda , Nicola Bellomo yagize ati “ Inkunga yacu ni imwe mu nkunga yagutse yiswe # TeamEurope ." --- # xlm-roberta-base-finetuned-ner-kinyarwanda This is a token classification (specifically NER) model that fine-tuned [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the [MasakhaNER](https://arxiv.org/abs/2103.11811) dataset, specifically the Kinyarwanda part. More information, and other similar models can be found in the [main Github repository](https://github.com/Michael-Beukman/NERTransfer). ## About This model is transformer based and was fine-tuned on the MasakhaNER dataset. It is a named entity recognition dataset, containing mostly news articles in 10 different African languages. The model was fine-tuned for 50 epochs, with a maximum sequence length of 200, 32 batch size, 5e-5 learning rate. This process was repeated 5 times (with different random seeds), and this uploaded model performed the best out of those 5 seeds (aggregate F1 on test set). This model was fine-tuned by me, Michael Beukman while doing a project at the University of the Witwatersrand, Johannesburg. This is version 1, as of 20 November 2021. This model is licensed under the [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0). ### Contact & More information For more information about the models, including training scripts, detailed results and further resources, you can visit the the [main Github repository](https://github.com/Michael-Beukman/NERTransfer). You can contact me by filing an issue on this repository. ### Training Resources In the interest of openness, and reporting resources used, we list here how long the training process took, as well as what the minimum resources would be to reproduce this. Fine-tuning each model on the NER dataset took between 10 and 30 minutes, and was performed on a NVIDIA RTX3090 GPU. To use a batch size of 32, at least 14GB of GPU memory was required, although it was just possible to fit these models in around 6.5GB's of VRAM when using a batch size of 1. ## Data The train, evaluation and test datasets were taken directly from the MasakhaNER [Github](https://github.com/masakhane-io/masakhane-ner) repository, with minimal to no preprocessing, as the original dataset is already of high quality. The motivation for the use of this data is that it is the "first large, publicly available, high­ quality dataset for named entity recognition (NER) in ten African languages" ([source](https://arxiv.org/pdf/2103.11811.pdf)). The high-quality data, as well as the groundwork laid by the paper introducing it are some more reasons why this dataset was used. For evaluation, the dedicated test split was used, which is from the same distribution as the training data, so this model may not generalise to other distributions, and further testing would need to be done to investigate this. The exact distribution of the data is covered in detail [here](https://arxiv.org/abs/2103.11811). ## Intended Use This model are intended to be used for NLP research into e.g. interpretability or transfer learning. Using this model in production is not supported, as generalisability and downright performance is limited. In particular, this is not designed to be used in any important downstream task that could affect people, as harm could be caused by the limitations of the model, described next. ## Limitations This model was only trained on one (relatively small) dataset, covering one task (NER) in one domain (news articles) and in a set span of time. The results may not generalise, and the model may perform badly, or in an unfair / biased way if used on other tasks. Although the purpose of this project was to investigate transfer learning, the performance on languages that the model was not trained for does suffer. Because this model used xlm-roberta-base as its starting point (potentially with domain adaptive fine-tuning on specific languages), this model's limitations can also apply here. These can include being biased towards the hegemonic viewpoint of most of its training data, being ungrounded and having subpar results on other languages (possibly due to unbalanced training data). As [Adelani et al. (2021)](https://arxiv.org/abs/2103.11811) showed, the models in general struggled with entities that were either longer than 3 words and entities that were not contained in the training data. This could bias the models towards not finding, e.g. names of people that have many words, possibly leading to a misrepresentation in the results. Similarly, names that are uncommon, and may not have been found in the training data (due to e.g. different languages) would also be predicted less often. Additionally, this model has not been verified in practice, and other, more subtle problems may become prevalent if used without any verification that it does what it is supposed to. ### Privacy & Ethical Considerations The data comes from only publicly available news sources, the only available data should cover public figures and those that agreed to be reported on. See the original MasakhaNER paper for more details. No explicit ethical considerations or adjustments were made during fine-tuning of this model. ## Metrics The language adaptive models achieve (mostly) superior performance over starting with xlm-roberta-base. Our main metric was the aggregate F1 score for all NER categories. These metrics are on the test set for MasakhaNER, so the data distribution is similar to the training set, so these results do not directly indicate how well these models generalise. We do find large variation in transfer results when starting from different seeds (5 different seeds were tested), indicating that the fine-tuning process for transfer might be unstable. The metrics used were chosen to be consistent with previous work, and to facilitate research. Other metrics may be more appropriate for other purposes. ## Caveats and Recommendations In general, this model performed worse on the 'date' category compared to others, so if dates are a critical factor, then that might need to be taken into account and addressed, by for example collecting and annotating more data. ## Model Structure Here are some performance details on this specific model, compared to others we trained. All of these metrics were calculated on the test set, and the seed was chosen that gave the best overall F1 score. The first three result columns are averaged over all categories, and the latter 4 provide performance broken down by category. This model can predict the following label for a token ([source](https://huggingface.co/Davlan/xlm-roberta-large-masakhaner)): Abbreviation|Description -|- O|Outside of a named entity B-DATE |Beginning of a DATE entity right after another DATE entity I-DATE |DATE entity B-PER |Beginning of a person’s name right after another person’s name I-PER |Person’s name B-ORG |Beginning of an organisation right after another organisation I-ORG |Organisation B-LOC |Beginning of a location right after another location I-LOC |Location | Model Name | Staring point | Evaluation / Fine-tune Language | F1 | Precision | Recall | F1 (DATE) | F1 (LOC) | F1 (ORG) | F1 (PER) | | -------------------------------------------------- | -------------------- | -------------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- | | [xlm-roberta-base-finetuned-ner-kinyarwanda](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-ner-kinyarwanda) (This model) | [base](https://huggingface.co/xlm-roberta-base) | kin | 74.59 | 72.17 | 77.17 | 70.00 | 75.00 | 70.00 | 82.00 | | [xlm-roberta-base-finetuned-kinyarwanda-finetuned-ner-kinyarwanda](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-kinyarwanda-finetuned-ner-kinyarwanda) | [kin](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-kinyarwanda) | kin | 79.55 | 75.56 | 83.99 | 69.00 | 79.00 | 77.00 | 90.00 | | [xlm-roberta-base-finetuned-swahili-finetuned-ner-kinyarwanda](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-swahili-finetuned-ner-kinyarwanda) | [swa](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-swahili) | kin | 76.31 | 72.64 | 80.37 | 70.00 | 76.00 | 75.00 | 84.00 | ## Usage To use this model (or others), you can do the following, just changing the model name ([source](https://huggingface.co/dslim/bert-base-NER)): ``` from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline model_name = 'mbeukman/xlm-roberta-base-finetuned-ner-kinyarwanda' tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForTokenClassification.from_pretrained(model_name) nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "Ambasaderi wa EU mu Rwanda , Nicola Bellomo yagize ati “ Inkunga yacu ni imwe mu nkunga yagutse yiswe # TeamEurope ." ner_results = nlp(example) print(ner_results) ```
mbeukman/xlm-roberta-base-finetuned-swahili-finetuned-ner-kinyarwanda
f5dbc45ebe3cc5a1735dd354bf45d009f6793d26
2021-11-25T09:04:53.000Z
[ "pytorch", "xlm-roberta", "token-classification", "rw", "dataset:masakhaner", "arxiv:2103.11811", "transformers", "NER", "autotrain_compatible" ]
token-classification
false
mbeukman
null
mbeukman/xlm-roberta-base-finetuned-swahili-finetuned-ner-kinyarwanda
12
null
transformers
10,617
--- language: - rw tags: - NER datasets: - masakhaner metrics: - f1 - precision - recall widget: - text: "Ambasaderi wa EU mu Rwanda , Nicola Bellomo yagize ati “ Inkunga yacu ni imwe mu nkunga yagutse yiswe # TeamEurope ." --- # xlm-roberta-base-finetuned-swahili-finetuned-ner-kinyarwanda This is a token classification (specifically NER) model that fine-tuned [xlm-roberta-base-finetuned-swahili](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-swahili) on the [MasakhaNER](https://arxiv.org/abs/2103.11811) dataset, specifically the Kinyarwanda part. More information, and other similar models can be found in the [main Github repository](https://github.com/Michael-Beukman/NERTransfer). ## About This model is transformer based and was fine-tuned on the MasakhaNER dataset. It is a named entity recognition dataset, containing mostly news articles in 10 different African languages. The model was fine-tuned for 50 epochs, with a maximum sequence length of 200, 32 batch size, 5e-5 learning rate. This process was repeated 5 times (with different random seeds), and this uploaded model performed the best out of those 5 seeds (aggregate F1 on test set). This model was fine-tuned by me, Michael Beukman while doing a project at the University of the Witwatersrand, Johannesburg. This is version 1, as of 20 November 2021. This model is licensed under the [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0). ### Contact & More information For more information about the models, including training scripts, detailed results and further resources, you can visit the the [main Github repository](https://github.com/Michael-Beukman/NERTransfer). You can contact me by filing an issue on this repository. ### Training Resources In the interest of openness, and reporting resources used, we list here how long the training process took, as well as what the minimum resources would be to reproduce this. Fine-tuning each model on the NER dataset took between 10 and 30 minutes, and was performed on a NVIDIA RTX3090 GPU. To use a batch size of 32, at least 14GB of GPU memory was required, although it was just possible to fit these models in around 6.5GB's of VRAM when using a batch size of 1. ## Data The train, evaluation and test datasets were taken directly from the MasakhaNER [Github](https://github.com/masakhane-io/masakhane-ner) repository, with minimal to no preprocessing, as the original dataset is already of high quality. The motivation for the use of this data is that it is the "first large, publicly available, high­ quality dataset for named entity recognition (NER) in ten African languages" ([source](https://arxiv.org/pdf/2103.11811.pdf)). The high-quality data, as well as the groundwork laid by the paper introducing it are some more reasons why this dataset was used. For evaluation, the dedicated test split was used, which is from the same distribution as the training data, so this model may not generalise to other distributions, and further testing would need to be done to investigate this. The exact distribution of the data is covered in detail [here](https://arxiv.org/abs/2103.11811). ## Intended Use This model are intended to be used for NLP research into e.g. interpretability or transfer learning. Using this model in production is not supported, as generalisability and downright performance is limited. In particular, this is not designed to be used in any important downstream task that could affect people, as harm could be caused by the limitations of the model, described next. ## Limitations This model was only trained on one (relatively small) dataset, covering one task (NER) in one domain (news articles) and in a set span of time. The results may not generalise, and the model may perform badly, or in an unfair / biased way if used on other tasks. Although the purpose of this project was to investigate transfer learning, the performance on languages that the model was not trained for does suffer. Because this model used xlm-roberta-base as its starting point (potentially with domain adaptive fine-tuning on specific languages), this model's limitations can also apply here. These can include being biased towards the hegemonic viewpoint of most of its training data, being ungrounded and having subpar results on other languages (possibly due to unbalanced training data). As [Adelani et al. (2021)](https://arxiv.org/abs/2103.11811) showed, the models in general struggled with entities that were either longer than 3 words and entities that were not contained in the training data. This could bias the models towards not finding, e.g. names of people that have many words, possibly leading to a misrepresentation in the results. Similarly, names that are uncommon, and may not have been found in the training data (due to e.g. different languages) would also be predicted less often. Additionally, this model has not been verified in practice, and other, more subtle problems may become prevalent if used without any verification that it does what it is supposed to. ### Privacy & Ethical Considerations The data comes from only publicly available news sources, the only available data should cover public figures and those that agreed to be reported on. See the original MasakhaNER paper for more details. No explicit ethical considerations or adjustments were made during fine-tuning of this model. ## Metrics The language adaptive models achieve (mostly) superior performance over starting with xlm-roberta-base. Our main metric was the aggregate F1 score for all NER categories. These metrics are on the test set for MasakhaNER, so the data distribution is similar to the training set, so these results do not directly indicate how well these models generalise. We do find large variation in transfer results when starting from different seeds (5 different seeds were tested), indicating that the fine-tuning process for transfer might be unstable. The metrics used were chosen to be consistent with previous work, and to facilitate research. Other metrics may be more appropriate for other purposes. ## Caveats and Recommendations In general, this model performed worse on the 'date' category compared to others, so if dates are a critical factor, then that might need to be taken into account and addressed, by for example collecting and annotating more data. ## Model Structure Here are some performance details on this specific model, compared to others we trained. All of these metrics were calculated on the test set, and the seed was chosen that gave the best overall F1 score. The first three result columns are averaged over all categories, and the latter 4 provide performance broken down by category. This model can predict the following label for a token ([source](https://huggingface.co/Davlan/xlm-roberta-large-masakhaner)): Abbreviation|Description -|- O|Outside of a named entity B-DATE |Beginning of a DATE entity right after another DATE entity I-DATE |DATE entity B-PER |Beginning of a person’s name right after another person’s name I-PER |Person’s name B-ORG |Beginning of an organisation right after another organisation I-ORG |Organisation B-LOC |Beginning of a location right after another location I-LOC |Location | Model Name | Staring point | Evaluation / Fine-tune Language | F1 | Precision | Recall | F1 (DATE) | F1 (LOC) | F1 (ORG) | F1 (PER) | | -------------------------------------------------- | -------------------- | -------------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- | | [xlm-roberta-base-finetuned-swahili-finetuned-ner-kinyarwanda](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-swahili-finetuned-ner-kinyarwanda) (This model) | [swa](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-swahili) | kin | 76.31 | 72.64 | 80.37 | 70.00 | 76.00 | 75.00 | 84.00 | | [xlm-roberta-base-finetuned-kinyarwanda-finetuned-ner-kinyarwanda](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-kinyarwanda-finetuned-ner-kinyarwanda) | [kin](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-kinyarwanda) | kin | 79.55 | 75.56 | 83.99 | 69.00 | 79.00 | 77.00 | 90.00 | | [xlm-roberta-base-finetuned-ner-kinyarwanda](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-ner-kinyarwanda) | [base](https://huggingface.co/xlm-roberta-base) | kin | 74.59 | 72.17 | 77.17 | 70.00 | 75.00 | 70.00 | 82.00 | ## Usage To use this model (or others), you can do the following, just changing the model name ([source](https://huggingface.co/dslim/bert-base-NER)): ``` from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline model_name = 'mbeukman/xlm-roberta-base-finetuned-swahili-finetuned-ner-kinyarwanda' tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForTokenClassification.from_pretrained(model_name) nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "Ambasaderi wa EU mu Rwanda , Nicola Bellomo yagize ati “ Inkunga yacu ni imwe mu nkunga yagutse yiswe # TeamEurope ." ner_results = nlp(example) print(ner_results) ```
mgreenbe/bertlet-base-uncased-for-sequence-classification
4304bae03a8712c21a223b933283ad0c827577ac
2021-11-20T17:23:02.000Z
[ "pytorch", "bert", "text-classification", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
mgreenbe
null
mgreenbe/bertlet-base-uncased-for-sequence-classification
12
1
transformers
10,618
--- tags: - generated_from_trainer model-index: - name: bertlet-base-uncased-for-sequence-classification results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bertlet-base-uncased-for-sequence-classification This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 0 ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
microsoft/unihanlm-base
af5693b4a92ba50b66c557868cf83ef2dfadc392
2021-09-22T09:00:56.000Z
[ "pytorch", "tf", "xlm", "feature-extraction", "zh", "ja", "dataset:Wikipedia", "transformers", "crosslingual", "license:apache-2.0" ]
feature-extraction
false
microsoft
null
microsoft/unihanlm-base
12
1
transformers
10,619
--- language: - zh - ja tags: - crosslingual license: apache-2.0 datasets: - Wikipedia --- # Unihan LM: Coarse-to-Fine Chinese-Japanese Language Model Pretraining with the Unihan Database ## Model description Chinese and Japanese share many characters with similar surface morphology. To better utilize the shared knowledge across the languages, we propose UnihanLM, a self-supervised Chinese-Japanese pretrained masked language model (MLM) with a novel two-stage coarse-to-fine training approach. We exploit Unihan, a ready-made database constructed by linguistic experts to first merge morphologically similar characters into clusters. The resulting clusters are used to replace the original characters in sentences for the coarse-grained pretraining of the MLM. Then, we restore the clusters back to the original characters in sentences for the fine-grained pretraining to learn the representation of the specific characters. We conduct extensive experiments on a variety of Chinese and Japanese NLP benchmarks, showing that our proposed UnihanLM is effective on both mono- and cross-lingual Chinese and Japanese tasks, shedding light on a new path to exploit the homology of languages. [Paper](https://www.aclweb.org/anthology/2020.aacl-main.24/) ## Intended uses & limitations #### How to use Use it like how you use XLM :) #### Limitations and bias The training corpus is solely from Wikipedia so the model may perform worse on informal text data. Be careful with English words! The tokenizer would cut it to characters. ## Training data We use Chinese and Japanese Wikipedia to train the model. ## Training procedure Please refer to our paper: https://www.aclweb.org/anthology/2020.aacl-main.24/ ## Eval results Please refer to our paper: https://www.aclweb.org/anthology/2020.aacl-main.24/ ### BibTeX entry and citation info ```bibtex @inproceedings{xu-etal-2020-unihanlm, title = "{U}nihan{LM}: Coarse-to-Fine {C}hinese-{J}apanese Language Model Pretraining with the Unihan Database", author = "Xu, Canwen and Ge, Tao and Li, Chenliang and Wei, Furu", booktitle = "Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing", month = dec, year = "2020", address = "Suzhou, China", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.aacl-main.24", pages = "201--211" } ```
microsoft/unilm-large-cased
5818e0466f86ed8e4b2be9423afca2a6398ac2b9
2020-04-28T21:22:59.000Z
[ "pytorch", "transformers" ]
null
false
microsoft
null
microsoft/unilm-large-cased
12
null
transformers
10,620
Entry not found
midas/gupshup_e2e_gpt
3d81322149ff40f77f9861498e390ebfdebf06c9
2021-11-14T02:08:59.000Z
[ "pytorch", "gpt2", "text-generation", "arxiv:1910.04073", "transformers" ]
text-generation
false
midas
null
midas/gupshup_e2e_gpt
12
null
transformers
10,621
# Gupshup GupShup: Summarizing Open-Domain Code-Switched Conversations EMNLP 2021 Paper: [https://aclanthology.org/2021.emnlp-main.499.pdf](https://aclanthology.org/2021.emnlp-main.499.pdf) Github: [https://github.com/midas-research/gupshup](https://github.com/midas-research/gupshup) ### Dataset Please request for the Gupshup data using [this Google form](https://docs.google.com/forms/d/1zvUk7WcldVF3RCoHdWzQPzPprtSJClrnHoIOYbzaJEI/edit?ts=61381ec0). Dataset is available for `Hinglish Dilaogues to English Summarization`(h2e) and `English Dialogues to English Summarization`(e2e). For each task, Dialogues/conversastion have `.source`(train.source) as file extension whereas Summary has `.target`(train.target) file extension. ".source" file need to be provided to `input_path` and ".target" file to `reference_path` argument in the scripts. ## Models All model weights are available on the Huggingface model hub. Users can either directly download these weights in their local and provide this path to `model_name` argument in the scripts or use the provided alias (to `model_name` argument) in scripts directly; this will lead to download weights automatically by scripts. Model names were aliased in "gupshup_TASK_MODEL" sense, where "TASK" can be h2e,e2e and MODEL can be mbart, pegasus, etc., as listed below. **1. Hinglish Dialogues to English Summary (h2e)** | Model | Huggingface Alias | |---------|-------------------------------------------------------------------------------| | mBART | [midas/gupshup_h2e_mbart](https://huggingface.co/midas/gupshup_h2e_mbart) | | PEGASUS | [midas/gupshup_h2e_pegasus](https://huggingface.co/midas/gupshup_h2e_pegasus) | | T5 MTL | [midas/gupshup_h2e_t5_mtl](https://huggingface.co/midas/gupshup_h2e_t5_mtl) | | T5 | [midas/gupshup_h2e_t5](https://huggingface.co/midas/gupshup_h2e_t5) | | BART | [midas/gupshup_h2e_bart](https://huggingface.co/midas/gupshup_h2e_bart) | | GPT-2 | [midas/gupshup_h2e_gpt](https://huggingface.co/midas/gupshup_h2e_gpt) | **2. English Dialogues to English Summary (e2e)** | Model | Huggingface Alias | |---------|-------------------------------------------------------------------------------| | mBART | [midas/gupshup_e2e_mbart](https://huggingface.co/midas/gupshup_e2e_mbart) | | PEGASUS | [midas/gupshup_e2e_pegasus](https://huggingface.co/midas/gupshup_e2e_pegasus) | | T5 MTL | [midas/gupshup_e2e_t5_mtl](https://huggingface.co/midas/gupshup_e2e_t5_mtl) | | T5 | [midas/gupshup_e2e_t5](https://huggingface.co/midas/gupshup_e2e_t5) | | BART | [midas/gupshup_e2e_bart](https://huggingface.co/midas/gupshup_e2e_bart) | | GPT-2 | [midas/gupshup_e2e_gpt](https://huggingface.co/midas/gupshup_e2e_gpt) | ## Inference ### Using command line 1. Clone this repo and create a python virtual environment (https://docs.python.org/3/library/venv.html). Install the required packages using ``` git clone https://github.com/midas-research/gupshup.git pip install -r requirements.txt ``` 2. run_eval script has the following arguments. * **model_name** : Path or alias to one of our models available on Huggingface as listed above. * **input_path** : Source file or path to file containing conversations, which will be summarized. * **save_path** : File path where to save summaries generated by the model. * **reference_path** : Target file or path to file containing summaries, used to calculate matrices. * **score_path** : File path where to save scores. * **bs** : Batch size * **device**: Cuda devices to use. Please make sure you have downloaded the Gupshup dataset using the above google form and provide the correct path to these files in the argument's `input_path` and `refrence_path.` Or you can simply put `test.source` and `test.target` in `data/h2e/`(hinglish to english) or `data/e2e/`(english to english) folder. For example, to generate English summaries from Hinglish dialogues using the mbart model, run the following command ``` python run_eval.py \ --model_name midas/gupshup_h2e_mbart \ --input_path data/h2e/test.source \ --save_path generated_summary.txt \ --reference_path data/h2e/test.target \ --score_path scores.txt \ --bs 8 ``` Another example, to generate English summaries from English dialogues using the Pegasus model ``` python run_eval.py \ --model_name midas/gupshup_e2e_pegasus \ --input_path data/e2e/test.source \ --save_path generated_summary.txt \ --reference_path data/e2e/test.target \ --score_path scores.txt \ --bs 8 ``` Please create an issue if you are facing any difficulties in replicating the results. ### References Please cite [[1]](https://arxiv.org/abs/1910.04073) if you found the resources in this repository useful. [1] Mehnaz, Laiba, Debanjan Mahata, Rakesh Gosangi, Uma Sushmitha Gunturi, Riya Jain, Gauri Gupta, Amardeep Kumar, Isabelle G. Lee, Anish Acharya, and Rajiv Shah. [*GupShup: Summarizing Open-Domain Code-Switched Conversations*](https://aclanthology.org/2021.emnlp-main.499.pdf) ``` @inproceedings{mehnaz2021gupshup, title={GupShup: Summarizing Open-Domain Code-Switched Conversations}, author={Mehnaz, Laiba and Mahata, Debanjan and Gosangi, Rakesh and Gunturi, Uma Sushmitha and Jain, Riya and Gupta, Gauri and Kumar, Amardeep and Lee, Isabelle G and Acharya, Anish and Shah, Rajiv}, booktitle={Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing}, pages={6177--6192}, year={2021} } ```
mlkorra/OGBV-gender-bert-hi-en
b494c489a82b7c0f9f44804d3d7398b1d3b33e32
2021-09-07T15:13:25.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
mlkorra
null
mlkorra/OGBV-gender-bert-hi-en
12
null
transformers
10,622
## BERT Model for OGBV gendered text classification ## How to use ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("mlkorra/OGBV-gender-bert-hi-en") model = AutoModelForSequenceClassification.from_pretrained("mlkorra/OGBV-gender-bert-hi-en") ``` ## Model Performance |Metric|dev|test| |---|--|--| |Accuracy|0.88|0.81| |F1(weighted)|0.86|0.80|
mobedkova/wav2vec2-large-xls-r-300m-ru-test
042ee97adccd20b0b161130bb3edcba574e9abbb
2022-03-23T18:27:44.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "ru", "dataset:common_voice", "transformers", "hf-asr-leaderboard", "robust-speech-event", "model-index" ]
automatic-speech-recognition
false
mobedkova
null
mobedkova/wav2vec2-large-xls-r-300m-ru-test
12
null
transformers
10,623
--- language: - ru tags: - automatic-speech-recognition - hf-asr-leaderboard - robust-speech-event datasets: - common_voice model-index: - name: Russian Wav2Vec2 XLS-R 300m results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice-7.0 type: mozilla-foundation/common_voice_7_0 args: ru metrics: - name: Test WER type: wer value: 27.81 - name: Test CER type: cer value: 8.83 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: ru metrics: - name: Test WER type: wer value: 44.64 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: ru metrics: - name: Test WER type: wer value: 42.51 --- # Russian Speech Recognition model
mrm8488/AfricanBERTa
d8817ee58e1a854a2b33604b229fb18356e49b2c
2021-05-20T18:00:12.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
mrm8488
null
mrm8488/AfricanBERTa
12
null
transformers
10,624
Entry not found
mrm8488/RuPERTa-base-finetuned-ner
c33c7f9b31937060377e5fd630e50dce23cd1b3c
2021-05-20T18:06:10.000Z
[ "pytorch", "jax", "roberta", "token-classification", "es", "transformers", "autotrain_compatible" ]
token-classification
false
mrm8488
null
mrm8488/RuPERTa-base-finetuned-ner
12
1
transformers
10,625
--- language: es thumbnail: --- # RuPERTa-base (Spanish RoBERTa) + NER 🎃🏷 This model is a fine-tuned on [NER-C](https://www.kaggle.com/nltkdata/conll-corpora) version of [RuPERTa-base](https://huggingface.co/mrm8488/RuPERTa-base) for **NER** downstream task. ## Details of the downstream task (NER) - Dataset - [Dataset: CONLL Corpora ES](https://www.kaggle.com/nltkdata/conll-corpora) 📚 | Dataset | # Examples | | ---------------------- | ----- | | Train | 329 K | | Dev | 40 K | - [Fine-tune on NER script provided by Huggingface](https://github.com/huggingface/transformers/blob/master/examples/token-classification/run_ner_old.py) - Labels covered: ``` B-LOC B-MISC B-ORG B-PER I-LOC I-MISC I-ORG I-PER O ``` ## Metrics on evaluation set 🧾 | Metric | # score | | :------------------------------------------------------------------------------------: | :-------: | | F1 | **77.55** | Precision | **75.53** | | Recall | **79.68** | ## Model in action 🔨 Example of usage: ```python import torch from transformers import AutoModelForTokenClassification, AutoTokenizer id2label = { "0": "B-LOC", "1": "B-MISC", "2": "B-ORG", "3": "B-PER", "4": "I-LOC", "5": "I-MISC", "6": "I-ORG", "7": "I-PER", "8": "O" } text ="Julien, CEO de HF, nació en Francia." input_ids = torch.tensor(tokenizer.encode(text)).unsqueeze(0) outputs = model(input_ids) last_hidden_states = outputs[0] for m in last_hidden_states: for index, n in enumerate(m): if(index > 0 and index <= len(text.split(" "))): print(text.split(" ")[index-1] + ": " + id2label[str(torch.argmax(n).item())]) ''' Output: -------- Julien,: I-PER CEO: O de: O HF,: B-ORG nació: I-PER en: I-PER Francia.: I-LOC ''' ``` Yeah! Not too bad 🎉 > Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488) > Made with <span style="color: #e25555;">&hearts;</span> in Spain
mrm8488/distilgpt2-finedtuned-meditations
61c307b75f644636aa761587461f3eda8ba643be
2021-05-23T10:20:32.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
mrm8488
null
mrm8488/distilgpt2-finedtuned-meditations
12
1
transformers
10,626
Entry not found
mrm8488/funnel-transformer-intermediate-mnli
0d61e100a125b14a793f332085594790fdff1b51
2020-11-09T00:09:39.000Z
[ "pytorch", "funnel", "text-classification", "transformers" ]
text-classification
false
mrm8488
null
mrm8488/funnel-transformer-intermediate-mnli
12
null
transformers
10,627
Entry not found
mrm8488/t5-base-finetuned-tab_fact
f3ccb2da496d7757953e8f68cdb20f5cfab672ae
2021-06-23T13:04:31.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
mrm8488
null
mrm8488/t5-base-finetuned-tab_fact
12
null
transformers
10,628
Entry not found
napsternxg/scibert_scivocab_cased_SDU21_AI
9a1bcabf4e9905d0633a5c3c72aba58188b5c364
2021-05-20T01:08:08.000Z
[ "pytorch", "jax", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
napsternxg
null
napsternxg/scibert_scivocab_cased_SDU21_AI
12
null
transformers
10,629
scibert_scivocab_cased submission for SDU21 Task 1 AI
napsternxg/scibert_scivocab_uncased_ft_SDU21_AI
2cc94528633a521bf71a3d64794941fdd9ce54a3
2021-05-20T01:09:59.000Z
[ "pytorch", "jax", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
napsternxg
null
napsternxg/scibert_scivocab_uncased_ft_SDU21_AI
12
null
transformers
10,630
scibert_scivocab_uncased_ft MLM pretrained on SDU21 Task 1 + 2
ncoop57/code-clippy-125M-py
8b49d56310bcbbfb6c6d02c28e2becba641d5a20
2021-12-29T13:11:41.000Z
[ "pytorch", "gpt_neo", "text-generation", "transformers" ]
text-generation
false
ncoop57
null
ncoop57/code-clippy-125M-py
12
null
transformers
10,631
Entry not found
neuralspace-reverie/indic-transformers-bn-bert
571ae80ab32841d55a114ab44708c4e9eb3fe3fc
2021-05-20T01:33:26.000Z
[ "pytorch", "tf", "jax", "bert", "fill-mask", "bn", "transformers", "MaskedLM", "Bengali", "autotrain_compatible" ]
fill-mask
false
neuralspace-reverie
null
neuralspace-reverie/indic-transformers-bn-bert
12
null
transformers
10,632
--- language: - bn tags: - MaskedLM - Bengali --- # Indic-Transformers Bengali BERT ## Model description This is a BERT language model pre-trained on ~3 GB of monolingual training corpus. The pre-training data was majorly taken from [OSCAR](https://oscar-corpus.com/). This model can be fine-tuned on various downstream tasks like text-classification, POS-tagging, question-answering, etc. Embeddings from this model can also be used for feature-based training. ## Intended uses & limitations #### How to use ``` from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained('neuralspace-reverie/indic-transformers-bn-bert') model = AutoModel.from_pretrained('neuralspace-reverie/indic-transformers-bn-bert') text = "আপনি কেমন আছেন?" input_ids = tokenizer(text, return_tensors='pt')['input_ids'] out = model(input_ids)[0] print(out.shape) # out = [1, 6, 768] ``` #### Limitations and bias The original language model has been trained using `PyTorch` and hence the use of `pytorch_model.bin` weights file is recommended. The h5 file for `Tensorflow` has been generated manually by commands suggested [here](https://huggingface.co/transformers/model_sharing.html).
neuralspace-reverie/indic-transformers-bn-xlmroberta
2a97580fb72a18525d8d071dcc9a3bb348f196cf
2020-12-11T21:57:15.000Z
[ "pytorch", "tf", "xlm-roberta", "fill-mask", "bn", "transformers", "MaskedLM", "Bengali", "XLMRoBERTa", "Question-Answering", "Token Classification", "Text Classification", "autotrain_compatible" ]
fill-mask
false
neuralspace-reverie
null
neuralspace-reverie/indic-transformers-bn-xlmroberta
12
null
transformers
10,633
--- language: - bn tags: - MaskedLM - Bengali - XLMRoBERTa - Question-Answering - Token Classification - Text Classification --- # Indic-Transformers Bengali XLMRoBERTa ## Model description This is a XLMRoBERTa language model pre-trained on ~3 GB of monolingual training corpus. The pre-training data was majorly taken from [OSCAR](https://oscar-corpus.com/). This model can be fine-tuned on various downstream tasks like text-classification, POS-tagging, question-answering, etc. Embeddings from this model can also be used for feature-based training. ## Intended uses & limitations #### How to use ``` from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained('neuralspace-reverie/indic-transformers-bn-xlmroberta') model = AutoModel.from_pretrained('neuralspace-reverie/indic-transformers-bn-xlmroberta') text = "আপনি কেমন আছেন?" input_ids = tokenizer(text, return_tensors='pt')['input_ids'] out = model(input_ids)[0] print(out.shape) # out = [1, 5, 768] ``` #### Limitations and bias The original language model has been trained using `PyTorch` and hence the use of `pytorch_model.bin` weights file is recommended. The h5 file for `Tensorflow` has been generated manually by commands suggested [here](https://huggingface.co/transformers/model_sharing.html).
openclimatefix/metnet-2
bf3ff79ede5c30bf69aad7e51b4be03eb9bb7798
2022-02-02T13:26:42.000Z
[ "pytorch", "transformers" ]
null
false
openclimatefix
null
openclimatefix/metnet-2
12
null
transformers
10,634
Entry not found
openclimatefix/metnet
bd97bbd638cad466f9d58739c1a7381270a6fd28
2022-02-02T13:26:32.000Z
[ "pytorch", "transformers" ]
null
false
openclimatefix
null
openclimatefix/metnet
12
1
transformers
10,635
Entry not found
pablouribe/xls-r-spanish-test
a3da82ef93f7e26dc4fcd27585a24de330f39f9c
2022-03-23T18:27:46.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "es", "dataset:mozilla-foundation/common_voice_7_0", "transformers", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
pablouribe
null
pablouribe/xls-r-spanish-test
12
null
transformers
10,636
--- language: - es license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_7_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: xls-r-spanish-test results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: es metrics: - name: Test WER type: wer value: 13.89 - name: Test CER type: cer value: 3.85 - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: es metrics: - name: Test WER type: wer value: 37.66 - name: Test CER type: cer value: 15.32 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: es metrics: - name: Test WER type: wer value: 41.17 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - ES dataset. It achieves the following results on the evaluation set: - Loss: 0.1461 - Wer: 1.0063 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 5.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 2.953 | 0.15 | 1000 | 2.9528 | 1.0 | | 1.1519 | 0.3 | 2000 | 0.3735 | 1.0357 | | 1.0278 | 0.45 | 3000 | 0.2529 | 1.0390 | | 0.9922 | 0.61 | 4000 | 0.2208 | 1.0270 | | 0.9618 | 0.76 | 5000 | 0.2088 | 1.0294 | | 0.9364 | 0.91 | 6000 | 0.2019 | 1.0214 | | 0.9179 | 1.06 | 7000 | 0.1940 | 1.0294 | | 0.9154 | 1.21 | 8000 | 0.1915 | 1.0290 | | 0.8985 | 1.36 | 9000 | 0.1837 | 1.0211 | | 0.9055 | 1.51 | 10000 | 0.1838 | 1.0273 | | 0.8861 | 1.67 | 11000 | 0.1765 | 1.0139 | | 0.892 | 1.82 | 12000 | 0.1723 | 1.0188 | | 0.8778 | 1.97 | 13000 | 0.1735 | 1.0092 | | 0.8645 | 2.12 | 14000 | 0.1707 | 1.0106 | | 0.8595 | 2.27 | 15000 | 0.1713 | 1.0186 | | 0.8392 | 2.42 | 16000 | 0.1686 | 1.0053 | | 0.8436 | 2.57 | 17000 | 0.1653 | 1.0096 | | 0.8405 | 2.73 | 18000 | 0.1689 | 1.0077 | | 0.8382 | 2.88 | 19000 | 0.1645 | 1.0114 | | 0.8247 | 3.03 | 20000 | 0.1647 | 1.0078 | | 0.8219 | 3.18 | 21000 | 0.1611 | 1.0026 | | 0.8024 | 3.33 | 22000 | 0.1580 | 1.0062 | | 0.8087 | 3.48 | 23000 | 0.1578 | 1.0038 | | 0.8097 | 3.63 | 24000 | 0.1556 | 1.0057 | | 0.8094 | 3.79 | 25000 | 0.1552 | 1.0035 | | 0.7836 | 3.94 | 26000 | 0.1516 | 1.0052 | | 0.8042 | 4.09 | 27000 | 0.1515 | 1.0054 | | 0.7925 | 4.24 | 28000 | 0.1499 | 1.0031 | | 0.7855 | 4.39 | 29000 | 0.1490 | 1.0041 | | 0.7814 | 4.54 | 30000 | 0.1482 | 1.0068 | | 0.7859 | 4.69 | 31000 | 0.1460 | 1.0066 | | 0.7819 | 4.85 | 32000 | 0.1464 | 1.0062 | | 0.7784 | 5.0 | 33000 | 0.1460 | 1.0063 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3.dev0 - Tokenizers 0.11.0
para-zhou/cunlp-gpt2-dialog
8e7cce7792a2198a08de9c06a6aa661cf6a68f6e
2021-05-23T10:56:01.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
para-zhou
null
para-zhou/cunlp-gpt2-dialog
12
null
transformers
10,637
Entry not found
patrickvonplaten/wav2vec2-100m-mls-german-ft-2
e73289c8ed3b69de81554d4497ece7a715a760e9
2021-11-16T00:01:09.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:multilingual_librispeech", "transformers", "multilingual_librispeech", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
patrickvonplaten
null
patrickvonplaten/wav2vec2-100m-mls-german-ft-2
12
null
transformers
10,638
--- license: apache-2.0 tags: - automatic-speech-recognition - multilingual_librispeech - generated_from_trainer datasets: - multilingual_librispeech model-index: - name: wav2vec2-100m-mls-german-ft-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-100m-mls-german-ft-2 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-100m](https://huggingface.co/facebook/wav2vec2-xls-r-100m) on the MULTILINGUAL_LIBRISPEECH - GERMAN dataset. It achieves the following results on the evaluation set: - Loss: 2.9304 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 64 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 2.9545 | 14.29 | 500 | 2.9354 | 1.0 | | 2.9537 | 28.57 | 1000 | 2.9359 | 1.0 | | 2.9602 | 42.86 | 1500 | 2.9302 | 1.0 | | 2.9586 | 57.14 | 2000 | 2.9298 | 1.0 | | 2.9331 | 71.43 | 2500 | 2.9314 | 1.0 | | 2.9321 | 85.71 | 3000 | 2.9304 | 1.0 | | 2.9652 | 100.0 | 3500 | 2.9304 | 1.0 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 1.15.2.dev0 - Tokenizers 0.10.3
patrickvonplaten/wav2vec2-base-100h-2nd-try
7f9ffca91cd9d03f84843abe410844e375448646
2021-11-04T15:41:08.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "en", "dataset:librispeech_asr", "transformers", "audio", "license:apache-2.0" ]
automatic-speech-recognition
false
patrickvonplaten
null
patrickvonplaten/wav2vec2-base-100h-2nd-try
12
null
transformers
10,639
--- language: en datasets: - librispeech_asr tags: - audio - automatic-speech-recognition license: apache-2.0 widget: - example_title: IEMOCAP sample 1 src: https://cdn-media.huggingface.co/speech_samples/IEMOCAP_Ses01F_impro03_F013.wav - example_title: IEMOCAP sample 2 src: https://cdn-media.huggingface.co/speech_samples/IEMOCAP_Ses01F_impro04_F000.wav - example_title: LibriSpeech sample 1 src: https://cdn-media.huggingface.co/speech_samples/LibriSpeech_61-70968-0000.flac - example_title: LibriSpeech sample 2 src: https://cdn-media.huggingface.co/speech_samples/LibriSpeech_61-70968-0001.flac - example_title: VoxCeleb sample 1 src: https://cdn-media.huggingface.co/speech_samples/VoxCeleb1_00003.wav - example_title: VoxCeleb sample 2 src: https://cdn-media.huggingface.co/speech_samples/VoxCeleb_00004.wav --- Second fine-tuning try of `wav2vec2-base`. Results are similar to the ones reported in https://huggingface.co/facebook/wav2vec2-base-100h. Model was trained on *librispeech-clean-train.100* with following hyper-parameters: - 2 GPUs Titan RTX - Total update steps 11000 - Batch size per GPU: 32 corresponding to a *total batch size* of ca. ~750 seconds - Adam with linear decaying learning rate with 3000 warmup steps - dynamic padding for batch - fp16 - attention_mask was **not** used during training Check: https://wandb.ai/patrickvonplaten/huggingface/runs/1yrpescx?workspace=user-patrickvonplaten *Result (WER)* on Librispeech: | "clean" (% rel difference to results in paper) | "other" (% rel difference to results in paper) | |---|---| | 6.2 (-1.6%) | 15.2 (-11.2%)|
patrickvonplaten/wavlm-libri-clean-100h-large
e70e3a062ec399c46008ee55d1fb52c7ba338d5c
2021-12-17T13:40:58.000Z
[ "pytorch", "tensorboard", "wavlm", "automatic-speech-recognition", "transformers", "librispeech_asr", "generated_from_trainer", "wavlm_libri_finetune", "model-index" ]
automatic-speech-recognition
false
patrickvonplaten
null
patrickvonplaten/wavlm-libri-clean-100h-large
12
1
transformers
10,640
--- tags: - automatic-speech-recognition - librispeech_asr - generated_from_trainer - wavlm_libri_finetune model-index: - name: wavlm-librispeech-clean-100h-dist results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wavlm-libri-clean-100h-large This model is a fine-tuned version of [microsoft/wavlm-large](https://huggingface.co/microsoft/wavlm-large) on the LIBRISPEECH_ASR - CLEAN dataset. It achieves the following results on the evaluation set: - Loss: 0.0601 - Wer: 0.0491 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.8069 | 0.34 | 300 | 0.7510 | 0.5809 | | 0.2483 | 0.67 | 600 | 0.2023 | 0.1929 | | 0.1033 | 1.01 | 900 | 0.1123 | 0.1028 | | 0.0742 | 1.35 | 1200 | 0.0858 | 0.0771 | | 0.057 | 1.68 | 1500 | 0.0722 | 0.0663 | | 0.0421 | 2.02 | 1800 | 0.0682 | 0.0582 | | 0.0839 | 2.35 | 2100 | 0.0630 | 0.0534 | | 0.0307 | 2.69 | 2400 | 0.0603 | 0.0508 | ### Framework versions - Transformers 4.15.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 1.16.2.dev0 - Tokenizers 0.10.3
persiannlp/mbert-base-parsinlu-entailment
de5fd7fbf87a6f9e157ec1247fa234133f496824
2021-09-23T16:19:47.000Z
[ "pytorch", "jax", "bert", "text-classification", "fa", "multilingual", "dataset:parsinlu", "transformers", "entailment", "parsbert", "persian", "farsi", "license:cc-by-nc-sa-4.0" ]
text-classification
false
persiannlp
null
persiannlp/mbert-base-parsinlu-entailment
12
null
transformers
10,641
--- language: - fa - multilingual thumbnail: https://upload.wikimedia.org/wikipedia/commons/a/a2/Farsi.svg tags: - entailment - parsbert - persian - farsi license: cc-by-nc-sa-4.0 datasets: - parsinlu metrics: - accuracy --- # Textual Entailment (مدل برای پاسخ به استلزام منطقی) This is a model for textual entailment problems. Here is an example of how you can run this model: ```python import torch from transformers import AutoModelForSequenceClassification, AutoTokenizer import numpy as np labels = ["entails", "contradicts", "neutral"] model_name_or_path = "persiannlp/mbert-base-parsinlu-entailment" model = AutoModelForSequenceClassification.from_pretrained(model_name_or_path) tokenizer = AutoTokenizer.from_pretrained(model_name_or_path,) def model_predict(text_a, text_b): features = tokenizer( [(text_a, text_b)], padding="max_length", truncation=True, return_tensors='pt') output = model(**features) logits = output[0] probs = torch.nn.functional.softmax(logits, dim=1).tolist() idx = np.argmax(np.array(probs)) print(labels[idx], probs) model_predict( "این مسابقات بین آوریل و دسامبر در هیپودروم ولیفندی در نزدیکی باکرکی ، ۱۵ کیلومتری (۹ مایل) غرب استانبول برگزار می شود.", "در ولیفندی هیپودروم، مسابقاتی از آوریل تا دسامبر وجود دارد." ) model_predict( "آیا کودکانی وجود دارند که نیاز به سرگرمی دارند؟", "هیچ کودکی هرگز نمی خواهد سرگرم شود.", ) model_predict( "ما به سفرهایی رفته ایم که در نهرهایی شنا کرده ایم", "علاوه بر استحمام در نهرها ، ما به اسپا ها و سونا ها نیز رفته ایم." ) ``` For more details, visit this page: https://github.com/persiannlp/parsinlu/
philschmid/RoBERTa-Banking77
e45f9df5bcd9e61ee4ffe582d9c0aa3ec1644d60
2021-11-04T09:12:24.000Z
[ "pytorch", "roberta", "text-classification", "en", "dataset:banking77", "transformers", "autonlp", "model-index" ]
text-classification
false
philschmid
null
philschmid/RoBERTa-Banking77
12
null
transformers
10,642
--- tags: autonlp language: en widget: - text: "I am still waiting on my card?" datasets: - banking77 model-index: - name: RoBERTa-Banking77 results: - task: name: Text Classification type: text-classification dataset: name: "BANKING77" type: banking77 metrics: - name: Accuracy type: accuracy value: 93.51 - name: Macro F1 type: macro-f1 value: 93.49 - name: Weighted F1 type: weighted-f1 value: 93.49 --- # `RoBERTa-Banking77` trained using autoNLP - Problem type: Multi-class Classification ## Validation Metrics - Loss: 0.27382662892341614 - Accuracy: 0.935064935064935 - Macro F1: 0.934939412967268 - Micro F1: 0.935064935064935 - Weighted F1: 0.934939412967268 - Macro Precision: 0.9372295644352715 - Micro Precision: 0.935064935064935 - Weighted Precision: 0.9372295644352717 - Macro Recall: 0.9350649350649349 - Micro Recall: 0.935064935064935 - Weighted Recall: 0.935064935064935 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/philschmid/RoBERTa-Banking77 ``` Or Python API: ```py from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline model_id = 'philschmid/RoBERTa-Banking77' tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForSequenceClassification.from_pretrained(model_id) classifier = pipeline('text-classification', tokenizer=tokenizer, model=model) classifier('What is the base of the exchange rates?') ```
pkushiqiang/bert-degree-major-ner-1000
f0b5306bd4c4304a9142fff08314ac6255066380
2022-02-28T08:05:25.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
pkushiqiang
null
pkushiqiang/bert-degree-major-ner-1000
12
null
transformers
10,643
Entry not found
proycon/bert-ner-cased-sonar1-nld
d3343525caf1d15d2adc7a8e9fb56345fc145019
2021-05-20T03:06:13.000Z
[ "pytorch", "jax", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
proycon
null
proycon/bert-ner-cased-sonar1-nld
12
null
transformers
10,644
Entry not found
remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization
5a985e99440eed91e9227f5393257ab43a4712d8
2021-05-20T04:14:02.000Z
[ "pytorch", "jax", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
remi
null
remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization
12
null
transformers
10,645
Entry not found
scaperex/online-harassment-bert2
dcb1fbef60973be645c4b0e8ba8a560561b2d491
2021-07-14T15:48:43.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
scaperex
null
scaperex/online-harassment-bert2
12
null
transformers
10,646
Entry not found
seiya/oubiobert-base-uncased
694c027b394acd2390e7cbcc4e3242e7c893ab72
2021-05-20T05:10:40.000Z
[ "pytorch", "jax", "bert", "pretraining", "arxiv:2005.07202", "transformers", "exbert", "license:apache-2.0" ]
null
false
seiya
null
seiya/oubiobert-base-uncased
12
1
transformers
10,647
--- tags: - exbert license: apache-2.0 --- # ouBioBERT-Base, Uncased Bidirectional Encoder Representations from Transformers for Biomedical Text Mining by Osaka University (ouBioBERT) is a language model based on the BERT-Base (Devlin, et al., 2019) architecture. We pre-trained ouBioBERT on PubMed abstracts from the PubMed baseline (ftp://ftp.ncbi.nlm.nih.gov/pubmed/baseline) via our method. The details of the pre-training procedure can be found in Wada, et al. (2020). ## Evaluation We evaluated the performance of ouBioBERT in terms of the biomedical language understanding evaluation (BLUE) benchmark (Peng, et al., 2019). The numbers are mean (standard deviation) on five different random seeds. | Dataset | Task Type | Score | |:----------------|:-----------------------------|-------------:| | MedSTS | Sentence similarity | 84.9 (0.6) | | BIOSSES | Sentence similarity | 92.3 (0.8) | | BC5CDR-disease | Named-entity recognition | 87.4 (0.1) | | BC5CDR-chemical | Named-entity recognition | 93.7 (0.2) | | ShARe/CLEFE | Named-entity recognition | 80.1 (0.4) | | DDI | Relation extraction | 81.1 (1.5) | | ChemProt | Relation extraction | 75.0 (0.3) | | i2b2 2010 | Relation extraction | 74.0 (0.8) | | HoC | Document classification | 86.4 (0.5) | | MedNLI | Inference | 83.6 (0.7) | | **Total** | Macro average of the scores |**83.8 (0.3)**| ## Code for Fine-tuning We made the source code for fine-tuning freely available at [our repository](https://github.com/sy-wada/blue_benchmark_with_transformers). ## Citation If you use our work in your research, please kindly cite the following paper: ```bibtex @misc{2005.07202, Author = {Shoya Wada and Toshihiro Takeda and Shiro Manabe and Shozo Konishi and Jun Kamohara and Yasushi Matsumura}, Title = {A pre-training technique to localize medical BERT and enhance BioBERT}, Year = {2020}, Eprint = {arXiv:2005.07202}, } ``` <a href="https://huggingface.co/exbert/?model=seiya/oubiobert-base-uncased&sentence=Coronavirus%20disease%20(COVID-19)%20is%20caused%20by%20SARS-COV2%20and%20represents%20the%20causative%20agent%20of%20a%20potentially%20fatal%20disease%20that%20is%20of%20great%20global%20public%20health%20concern."> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
sello-ralethe/roberta-base-generics-mlm
709e5ec7f584c9129240352667c85e723d8815f5
2021-05-20T20:10:26.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
sello-ralethe
null
sello-ralethe/roberta-base-generics-mlm
12
null
transformers
10,648
Entry not found
sentence-transformers/nli-distilbert-base-max-pooling
9ce8088f2aa3325e07ef0f13ac79e2887213857a
2022-06-16T00:49:26.000Z
[ "pytorch", "tf", "distilbert", "feature-extraction", "arxiv:1908.10084", "sentence-transformers", "sentence-similarity", "transformers", "license:apache-2.0" ]
sentence-similarity
false
sentence-transformers
null
sentence-transformers/nli-distilbert-base-max-pooling
12
null
sentence-transformers
10,649
--- pipeline_tag: sentence-similarity license: apache-2.0 tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- **⚠️ This model is deprecated. Please don't use it as it produces sentence embeddings of low quality. You can find recommended sentence embedding models here: [SBERT.net - Pretrained Models](https://www.sbert.net/docs/pretrained_models.html)** # sentence-transformers/nli-distilbert-base-max-pooling This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('sentence-transformers/nli-distilbert-base-max-pooling') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch # Max Pooling - Take the max value over time for every dimension. def max_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() token_embeddings[input_mask_expanded == 0] = -1e9 # Set padding tokens to large negative value return torch.max(token_embeddings, 1)[0] # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/nli-distilbert-base-max-pooling') model = AutoModel.from_pretrained('sentence-transformers/nli-distilbert-base-max-pooling') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = max_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/nli-distilbert-base-max-pooling) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': True, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors This model was trained by [sentence-transformers](https://www.sbert.net/). If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084): ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "http://arxiv.org/abs/1908.10084", } ```
shubh2014shiv/jp_review_sentiments_amzn
63c259ce5070cf73ecff79c1d3808096bf56dd45
2021-11-06T14:18:29.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
shubh2014shiv
null
shubh2014shiv/jp_review_sentiments_amzn
12
null
transformers
10,650
# Steps to use this model This model uses tokenizer 'rinna/japanese-roberta-base'. Therefore, below steps are critical to run the model correctly. 1. Create a local root directory on your system and new python environment. 2. Install below requirements ``` transformers==4.12.2 torch==1.10.0 numpy==1.21.3 pandas==1.3.4 sentencepiece==0.1.96 ``` 3. Go to link: "https://huggingface.co/spaces/shubh2014shiv/Japanese_NLP/tree/main" and download the fine tuned weights "reviewSentiments_jp.pt" in same local root directory. 4. Rename the downloaded weights as "reviewSentiments_jp.pt" 5. Use below code in the newly created environment. ``` from transformers import T5Tokenizer,BertForSequenceClassification import torch tokenizer = T5Tokenizer.from_pretrained('rinna/japanese-roberta-base') japanese_review_text = "履きやすい。タイムセールで購入しました。見た目以上にカッコいいです。(^^)" encoded_data = tokenizer.batch_encode_plus([japanese_review_text ], add_special_tokens=True, return_attention_mask=True, padding=True, max_length=200, return_tensors='pt', truncation=True) input_ids = encoded_data['input_ids'] attention_masks = encoded_data['attention_mask'] model = BertForSequenceClassification.from_pretrained("shubh2014shiv/jp_review_sentiments_amzn", num_labels=2, output_attentions=False, output_hidden_states=False) model.load_state_dict(torch.load('reviewSentiments_jp.pt',map_location=torch.device('cpu'))) inputs = { 'input_ids': input_ids, 'attention_mask': attention_masks} with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits logits = logits.detach().cpu().numpy() scores = 1 / (1 + np.exp(-1 * logits)) result = {"TEXT (文章)": jp_review_text,'NEGATIVE (ネガティブ)': scores[0][0], 'POSITIVE (ポジティブ)': scores[0][1]} ``` Output: {'TEXT (文章)': '履きやすい。タイムセールで購入しました。見た目以上にカッコいいです。(^^)', 'NEGATIVE (ネガティブ)': 0.023672901, 'POSITIVE (ポジティブ)': 0.96819043}
slider/simcse-chinese-roberta-wwm-ext
987d39fd06fafa8bfc3b2dc809c142e81a038f74
2021-12-10T03:26:18.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
slider
null
slider/simcse-chinese-roberta-wwm-ext
12
1
transformers
10,651
Entry not found
socialmediaie/TRAC2020_IBEN_B_bert-base-multilingual-uncased
c99643eba2430b5ed81cc05f49f059995552fa8f
2021-05-20T07:04:58.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
socialmediaie
null
socialmediaie/TRAC2020_IBEN_B_bert-base-multilingual-uncased
12
null
transformers
10,652
# Multilingual Joint Fine-tuning of Transformer models for identifying Trolling, Aggression and Cyberbullying at TRAC 2020 Models and predictions for submission to TRAC - 2020 Second Workshop on Trolling, Aggression and Cyberbullying. Our trained models as well as evaluation metrics during traing are available at: https://databank.illinois.edu/datasets/IDB-8882752# We also make a few of our models available in HuggingFace's models repository at https://huggingface.co/socialmediaie/, these models can be further fine-tuned on your dataset of choice. Our approach is described in our paper titled: > Mishra, Sudhanshu, Shivangi Prasad, and Shubhanshu Mishra. 2020. "Multilingual Joint Fine-Tuning of Transformer Models for Identifying Trolling, Aggression and Cyberbullying at TRAC 2020." In Proceedings of the Second Workshop on Trolling, Aggression and Cyberbullying (TRAC-2020). The source code for training this model and more details can be found on our code repository: https://github.com/socialmediaie/TRAC2020 NOTE: These models are retrained for uploading here after our submission so the evaluation measures may be slightly different from the ones reported in the paper. If you plan to use the dataset please cite the following resources: * Mishra, Sudhanshu, Shivangi Prasad, and Shubhanshu Mishra. 2020. "Multilingual Joint Fine-Tuning of Transformer Models for Identifying Trolling, Aggression and Cyberbullying at TRAC 2020." In Proceedings of the Second Workshop on Trolling, Aggression and Cyberbullying (TRAC-2020). * Mishra, Shubhanshu, Shivangi Prasad, and Shubhanshu Mishra. 2020. “Trained Models for Multilingual Joint Fine-Tuning of Transformer Models for Identifying Trolling, Aggression and Cyberbullying at TRAC 2020.” University of Illinois at Urbana-Champaign. https://doi.org/10.13012/B2IDB-8882752_V1. ``` @inproceedings{Mishra2020TRAC, author = {Mishra, Sudhanshu and Prasad, Shivangi and Mishra, Shubhanshu}, booktitle = {Proceedings of the Second Workshop on Trolling, Aggression and Cyberbullying (TRAC-2020)}, title = {{Multilingual Joint Fine-tuning of Transformer models for identifying Trolling, Aggression and Cyberbullying at TRAC 2020}}, year = {2020} } @data{illinoisdatabankIDB-8882752, author = {Mishra, Shubhanshu and Prasad, Shivangi and Mishra, Shubhanshu}, doi = {10.13012/B2IDB-8882752_V1}, publisher = {University of Illinois at Urbana-Champaign}, title = {{Trained models for Multilingual Joint Fine-tuning of Transformer models for identifying Trolling, Aggression and Cyberbullying at TRAC 2020}}, url = {https://doi.org/10.13012/B2IDB-8882752{\_}V1}, year = {2020} } ``` ## Usage The models can be used via the following code: ```python from transformers import AutoModel, AutoTokenizer, AutoModelForSequenceClassification import torch from pathlib import Path from scipy.special import softmax import numpy as np import pandas as pd TASK_LABEL_IDS = { "Sub-task A": ["OAG", "NAG", "CAG"], "Sub-task B": ["GEN", "NGEN"], "Sub-task C": ["OAG-GEN", "OAG-NGEN", "NAG-GEN", "NAG-NGEN", "CAG-GEN", "CAG-NGEN"] } model_version="databank" # other option is hugging face library if model_version == "databank": # Make sure you have downloaded the required model file from https://databank.illinois.edu/datasets/IDB-8882752 # Unzip the file at some model_path (we are using: "databank_model") model_path = next(Path("databank_model").glob("./*/output/*/model")) # Assuming you get the following type of structure inside "databank_model" # 'databank_model/ALL/Sub-task C/output/bert-base-multilingual-uncased/model' lang, task, _, base_model, _ = model_path.parts tokenizer = AutoTokenizer.from_pretrained(base_model) model = AutoModelForSequenceClassification.from_pretrained(model_path) else: lang, task, base_model = "ALL", "Sub-task C", "bert-base-multilingual-uncased" base_model = f"socialmediaie/TRAC2020_{lang}_{lang.split()[-1]}_{base_model}" tokenizer = AutoTokenizer.from_pretrained(base_model) model = AutoModelForSequenceClassification.from_pretrained(base_model) # For doing inference set model in eval mode model.eval() # If you want to further fine-tune the model you can reset the model to model.train() task_labels = TASK_LABEL_IDS[task] sentence = "This is a good cat and this is a bad dog." processed_sentence = f"{tokenizer.cls_token} {sentence}" tokens = tokenizer.tokenize(sentence) indexed_tokens = tokenizer.convert_tokens_to_ids(tokens) tokens_tensor = torch.tensor([indexed_tokens]) with torch.no_grad(): logits, = model(tokens_tensor, labels=None) logits preds = logits.detach().cpu().numpy() preds_probs = softmax(preds, axis=1) preds = np.argmax(preds_probs, axis=1) preds_labels = np.array(task_labels)[preds] print(dict(zip(task_labels, preds_probs[0])), preds_labels) """You should get an output as follows: ({'CAG-GEN': 0.06762535, 'CAG-NGEN': 0.03244293, 'NAG-GEN': 0.6897794, 'NAG-NGEN': 0.15498641, 'OAG-GEN': 0.034373745, 'OAG-NGEN': 0.020792078}, array(['NAG-GEN'], dtype='<U8')) """ ```
soikit/chinese-bert-wwm-chinese_bert_wwm2
7c70bff0892479e336ad12714d0144f0a523d049
2021-10-20T16:49:24.000Z
[ "pytorch", "tensorboard", "bert", "text-generation", "transformers" ]
text-generation
false
soikit
null
soikit/chinese-bert-wwm-chinese_bert_wwm2
12
null
transformers
10,653
Entry not found
sosuke/ease-roberta-base
28eb51f87096ed7e9c38b274c10ab77d656cf2c9
2021-12-29T08:04:13.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
sosuke
null
sosuke/ease-roberta-base
12
null
transformers
10,654
Entry not found
spencerh/centerpartisan
2c37b7a79b45517d0ac3c24cb324bcf3ca910c1d
2021-04-23T20:44:08.000Z
[ "pytorch", "tf", "distilbert", "text-classification", "transformers" ]
text-classification
false
spencerh
null
spencerh/centerpartisan
12
null
transformers
10,655
Entry not found
sshleifer/student_pegasus_xsum_16_4
031d3bf009727b7e0e488b7353253f9035736df1
2020-08-27T21:24:12.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
sshleifer
null
sshleifer/student_pegasus_xsum_16_4
12
null
transformers
10,656
Entry not found
sshleifer/t5-base-cnn
d23d8b32609b5ddcabc3a8288b7440dee0de479a
2021-06-23T14:25:31.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
sshleifer
null
sshleifer/t5-base-cnn
12
null
transformers
10,657
Entry not found
suwani/BERT_NER_Ep5-finetuned-ner
1406ac38bcf29398efebe9368feb4aaff6f41ba8
2021-10-11T03:06:42.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
suwani
null
suwani/BERT_NER_Ep5-finetuned-ner
12
null
transformers
10,658
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: BERT_NER_Ep5-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BERT_NER_Ep5-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3553 - Precision: 0.6526 - Recall: 0.7248 - F1: 0.6868 - Accuracy: 0.9004 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 288 | 0.3675 | 0.5906 | 0.5854 | 0.5880 | 0.8802 | | 0.4803 | 2.0 | 576 | 0.3456 | 0.5863 | 0.7371 | 0.6531 | 0.8864 | | 0.4803 | 3.0 | 864 | 0.3273 | 0.6478 | 0.7091 | 0.6771 | 0.8987 | | 0.2233 | 4.0 | 1152 | 0.3441 | 0.6539 | 0.7226 | 0.6865 | 0.9001 | | 0.2233 | 5.0 | 1440 | 0.3553 | 0.6526 | 0.7248 | 0.6868 | 0.9004 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.12.1 - Tokenizers 0.10.3
suwani/BERT_NER_Ep5_PAD_50-finetuned-ner
06a9cc9b04c3c34a8f5930363a9623e85abc29f5
2021-10-27T13:13:15.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
suwani
null
suwani/BERT_NER_Ep5_PAD_50-finetuned-ner
12
null
transformers
10,659
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: BERT_NER_Ep5_PAD_50-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BERT_NER_Ep5_PAD_50-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3893 - Precision: 0.6540 - Recall: 0.7348 - F1: 0.6920 - Accuracy: 0.9006 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 288 | 0.3705 | 0.5852 | 0.6215 | 0.6028 | 0.8793 | | 0.4885 | 2.0 | 576 | 0.3351 | 0.5925 | 0.7317 | 0.6548 | 0.8865 | | 0.4885 | 3.0 | 864 | 0.3196 | 0.6471 | 0.7138 | 0.6788 | 0.8994 | | 0.2172 | 4.0 | 1152 | 0.3368 | 0.6454 | 0.7323 | 0.6861 | 0.8992 | | 0.2172 | 5.0 | 1440 | 0.3491 | 0.6507 | 0.7312 | 0.6886 | 0.9008 | | 0.1459 | 6.0 | 1728 | 0.3833 | 0.6715 | 0.7018 | 0.6863 | 0.9013 | | 0.1045 | 7.0 | 2016 | 0.3893 | 0.6540 | 0.7348 | 0.6920 | 0.9006 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
suwani/BERT_NER_Ep6_PAD_50-finetuned-ner
262d5e853661ab7da350c61b50e06c0442d23da7
2021-10-27T10:28:40.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
suwani
null
suwani/BERT_NER_Ep6_PAD_50-finetuned-ner
12
null
transformers
10,660
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: BERT_NER_Ep6_PAD_50-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BERT_NER_Ep6_PAD_50-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3741 - Precision: 0.6510 - Recall: 0.7399 - F1: 0.6926 - Accuracy: 0.9020 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 288 | 0.3648 | 0.5949 | 0.5907 | 0.5928 | 0.8792 | | 0.4815 | 2.0 | 576 | 0.3400 | 0.5860 | 0.7390 | 0.6536 | 0.8867 | | 0.4815 | 3.0 | 864 | 0.3217 | 0.6404 | 0.7129 | 0.6747 | 0.8992 | | 0.2206 | 4.0 | 1152 | 0.3430 | 0.6413 | 0.7321 | 0.6837 | 0.8995 | | 0.2206 | 5.0 | 1440 | 0.3560 | 0.6464 | 0.7377 | 0.6890 | 0.9010 | | 0.1487 | 6.0 | 1728 | 0.3741 | 0.6510 | 0.7399 | 0.6926 | 0.9020 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
team-writing-assistant/t5-base-c4jfleg
2a7832d6236f8f9fc7889f6276c90c5fa7131559
2021-11-19T11:57:03.000Z
[ "pytorch", "t5", "text2text-generation", "arxiv:1910.10683", "transformers", "autotrain_compatible" ]
text2text-generation
false
team-writing-assistant
null
team-writing-assistant/t5-base-c4jfleg
12
2
transformers
10,661
# Model Description: To create t5-base-c4jfleg model, T5-base model is fine-tuned on the [**JFLEG dataset**](https://huggingface.co/datasets/jfleg) and [**C4 200M dataset**](https://huggingface.co/datasets/liweili/c4_200m) by taking around 3000 examples from each with the objective of grammar correction. The original Google's [**T5-base**] model was pre-trained on [**C4 dataset**](https://huggingface.co/datasets/c4). The T5 model was presented in [**Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer**](https://arxiv.org/pdf/1910.10683.pdf) by Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu. # Prefix: The T-5 model use "grammar: " as the input text prefix for grammatical corrections. ## Usage : ``` from transformers import pipeline checkpoint = "team-writing-assistant/t5-base-c4jfleg" model = pipeline("text2text-generation", model=checkpoint) text = "Speed of light is fastest then speed of sound" text = "grammar: " + text output = model(text) print("Result: ", output[0]['generated_text']) ``` ``` Result: Speed of light is faster than speed of sound. ``` ## Other Examples : Input: My grammar are bad. Output: My grammar is bad. Input: Who are the president? Output: Who is the president?
tesemnikov-av/rubert-ner-toxicity
c21271fd92a1f99b50c8d62a9b28585546169993
2022-02-08T12:52:32.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
tesemnikov-av
null
tesemnikov-av/rubert-ner-toxicity
12
null
transformers
10,662
--- widget: - text: "Ну ты и придурок!!" --- NER Toxic models Fine-tuning [cointegrated/rubert-tiny-toxicity](https://huggingface.co/cointegrated/rubert-tiny-toxicity) model on data from [toxic_dataset_ner](https://huggingface.co/datasets/tesemnikov-av/toxic_dataset_ner) language: RU ```python !pip install transformers > /dev/null from transformers import ( AutoModelForTokenClassification, AutoTokenizer, pipeline ) model = AutoModelForTokenClassification.from_pretrained('tesemnikov-av/rubert-ner-toxicity') tokenizer = AutoTokenizer.from_pretrained('tesemnikov-av/rubert-ner-toxicity') pipe = pipeline(model=model, tokenizer=tokenizer, task='ner', aggregation_strategy='average') text = "Они охриневшие там все придурки!!" print(text) print(pipe(text)) ```
thomwolf/codeparrot-small
f350f6111154ca2acbcf2851846da96fbc755a2d
2021-07-27T22:19:21.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
thomwolf
null
thomwolf/codeparrot-small
12
null
transformers
10,663
Entry not found
tugstugi/bert-large-mongolian-uncased
6583581fdb3cd1daf61c76a0efdc8eb543340427
2021-05-20T08:19:28.000Z
[ "pytorch", "tf", "jax", "bert", "fill-mask", "mn", "arxiv:1810.04805", "transformers", "mongolian", "uncased", "autotrain_compatible" ]
fill-mask
false
tugstugi
null
tugstugi/bert-large-mongolian-uncased
12
3
transformers
10,664
--- language: "mn" tags: - bert - mongolian - uncased --- # BERT-LARGE-MONGOLIAN-UNCASED [Link to Official Mongolian-BERT repo](https://github.com/tugstugi/mongolian-bert) ## Model description This repository contains pre-trained Mongolian [BERT](https://arxiv.org/abs/1810.04805) models trained by [tugstugi](https://github.com/tugstugi), [enod](https://github.com/enod) and [sharavsambuu](https://github.com/sharavsambuu). Special thanks to [nabar](https://github.com/nabar) who provided 5x TPUs. This repository is based on the following open source projects: [google-research/bert](https://github.com/google-research/bert/), [huggingface/pytorch-pretrained-BERT](https://github.com/huggingface/pytorch-pretrained-BERT) and [yoheikikuta/bert-japanese](https://github.com/yoheikikuta/bert-japanese). #### How to use ```python from transformers import pipeline, AutoTokenizer, AutoModelForMaskedLM tokenizer = AutoTokenizer.from_pretrained('tugstugi/bert-large-mongolian-uncased', use_fast=False) model = AutoModelForMaskedLM.from_pretrained('tugstugi/bert-large-mongolian-uncased') ## declare task ## pipe = pipeline(task="fill-mask", model=model, tokenizer=tokenizer) ## example ## input_ = 'Монгол улсын [MASK] Улаанбаатар хотоос ярьж байна.' output_ = pipe(input_) for i in range(len(output_)): print(output_[i]) ## output ## # {'sequence': 'монгол улсын нийслэл улаанбаатар хотоос ярьж байна.', 'score': 0.7867621183395386, 'token': 849, 'token_str': 'нийслэл'} # {'sequence': 'монгол улсын ерөнхийлөгч улаанбаатар хотоос ярьж байна.', 'score': 0.14303277432918549, 'token': 244, 'token_str': 'ерөнхийлөгч'} # {'sequence': 'монгол улсын ерөнхийлөгчийг улаанбаатар хотоос ярьж байна.', 'score': 0.011642335914075375, 'token': 8373, 'token_str': 'ерөнхийлөгчийг'} # {'sequence': 'монгол улсын иргэд улаанбаатар хотоос ярьж байна.', 'score': 0.006592822726815939, 'token': 247, 'token_str': 'иргэд'} # {'sequence': 'монгол улсын нийслэлийг улаанбаатар хотоос ярьж байна.', 'score': 0.006165097933262587, 'token': 15501, 'token_str': 'нийслэлийг'} ``` ## Training data Mongolian Wikipedia and the 700 million word Mongolian news data set [[Pretraining Procedure](https://github.com/tugstugi/mongolian-bert#pre-training)] ### BibTeX entry and citation info ```bibtex @misc{mongolian-bert, author = {Tuguldur, Erdene-Ochir and Gunchinish, Sharavsambuu and Bataa, Enkhbold}, title = {BERT Pretrained Models on Mongolian Datasets}, year = {2019}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\url{https://github.com/tugstugi/mongolian-bert/}} } ```
xkang/distilbert-base-uncased-finetuned-imdb-whole-word-masking
872600ba41cc8981670fabb6618bff8790cd1dfc
2021-12-27T07:35:23.000Z
[ "pytorch", "tensorboard", "distilbert", "fill-mask", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
xkang
null
xkang/distilbert-base-uncased-finetuned-imdb-whole-word-masking
12
null
transformers
10,665
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb-whole-word-masking results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb-whole-word-masking This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 3.3043 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.5536 | 1.0 | 157 | 3.3242 | | 3.4026 | 2.0 | 314 | 3.2848 | | 3.3708 | 3.0 | 471 | 3.2791 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.0 - Datasets 1.17.1.dev0 - Tokenizers 0.10.3
yhavinga/mt5-base-mixednews-nl
f05412c44b892bdc837d107904475afac49c71c4
2021-03-13T08:19:42.000Z
[ "pytorch", "mt5", "text2text-generation", "dutch", "dataset:xsum_nl", "transformers", "summarization", "autotrain_compatible" ]
summarization
false
yhavinga
null
yhavinga/mt5-base-mixednews-nl
12
null
transformers
10,666
--- tags: - summarization language: - dutch datasets: - xsum_nl widget: - text: "Onderzoekers ontdekten dat vier van de vijf kinderen in Engeland die op school lunches hadden gegeten, op school voedsel hadden geprobeerd dat ze thuis niet hadden geprobeerd.De helft van de ondervraagde ouders zei dat hun kinderen hadden gevraagd om voedsel dat ze op school hadden gegeten om thuis te worden gekookt.De enquête, van ongeveer 1.000 ouders, vond dat de meest populaire groenten wortelen, suikermaïs en erwten waren.Aubergine, kikkererwten en spinazie waren een van de minst populaire.Van de ondervraagde ouders, 628 hadden kinderen die lunches op school aten. (% duidt op een deel van de ouders die zeiden dat hun kind elke groente zou eten) England's School Food Trust gaf opdracht tot het onderzoek na een onderzoek door de Mumsnet-website suggereerde dat sommige ouders hun kinderen lunchpakket gaven omdat ze dachten dat ze te kieskeurig waren om iets anders te eten. \"Schoolmaaltijden kunnen een geweldige manier zijn om ouders te helpen hun kinderen aan te moedigen om nieuw voedsel te proberen en om de verscheidenheid van voedsel in hun dieet te verhogen. \"Mumsnet medeoprichter, Carrie Longton, zei: \"Het krijgen van kinderen om gezond te eten is de droom van elke ouder, maar maaltijdtijden thuis kan vaak een slagveld en emotioneel geladen zijn. \"Vanuit Mumsnetters' ervaring lijkt het erop dat eenmaal op school is er een verlangen om in te passen bij iedereen anders en zelfs een aantal positieve peer pressure om op te scheppen over de verscheidenheid van wat voedsel je kunt eten. \"Schoolmaaltijden zijn ook verplaatst op nogal een beetje van toen Mumsnetters op school waren, met gezondere opties en meer afwisseling. \"Schoolmaaltijden in Engeland moeten nu voldoen aan strenge voedingsrichtlijnen.Ongeveer vier op de tien basisschoolkinderen in Engeland eten nu schoollunches, iets meer dan op middelbare scholen.Meer kinderen in Schotland eten schoollunches - ongeveer 46%.Het onderzoek werd online uitgevoerd tussen 26 februari en 5 maart onder een panel van ouders die ten minste één kind op school hadden van 4-17 jaar oud." - text: "Het Londense trio staat klaar voor de beste Britse act en beste album, evenals voor twee nominaties in de beste song categorie. \"We kregen te horen zoals vanmorgen 'Oh I think you're genomineerd',\" zei Dappy. \"En ik was als 'Oh yeah, what one?' En nu zijn we genomineerd voor vier awards. Ik bedoel, wow! \"Bandmate Fazer voegde eraan toe: \"We dachten dat het het beste van ons was om met iedereen naar beneden te komen en hallo te zeggen tegen de camera's.En nu vinden we dat we vier nominaties hebben. \"De band heeft twee shots bij de beste song prijs, het krijgen van het knikje voor hun Tyncy Stryder samenwerking nummer één, en single Strong Again.Their album Uncle B zal ook gaan tegen platen van Beyonce en Kany \"Aan het eind van de dag zijn we dankbaar om te zijn waar we zijn in onze carrières. \"Als het niet gebeurt dan gebeurt het niet - live om te vechten een andere dag en blijven maken albums en hits voor de fans. \"Dappy onthulde ook dat ze kunnen worden optreden live op de avond.De groep zal doen Nummer Een en ook een mogelijke uitlevering van de War Child single, I Got Soul.Het liefdadigheidslied is een re-working van The Killers' All These Things That I've Done en is ingesteld op artiesten als Chipmunk, Ironik en Pixie Lott.Dit jaar zal Mobos worden gehouden buiten Londen voor de eerste keer, in Glasgow op 30 september.N-Dubz zei dat ze op zoek waren naar optredens voor hun Schotse fans en bogen over hun recente shows ten noorden van de Londense We hebben Aberdeen ongeveer drie of vier maanden geleden gedaan - we hebben die show daar verbrijzeld! Overal waar we heen gaan slaan we hem in elkaar!\"" --- # mt5-base-mixednews-nl mt5-base finetuned on three mixed news sources: 1. CNN DM translated to Dutch with MarianMT. 2. XSUM translated to Dutch with MarianMt. 3. News article summaries distilled from the nu.nl website. Config: * Learning rate 1e-3 * Trained for one epoch * Max source length 1024 * Max target length 142 * Min target length 75 Scores: * rouge1 28.8482 * rouge2 9.4584 * rougeL 20.1697
yigitbekir/turkish-bert-uncased-sentiment
39c2ac210059db0249fa3fd7893bffad9f577a76
2021-05-20T09:29:34.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
yigitbekir
null
yigitbekir/turkish-bert-uncased-sentiment
12
null
transformers
10,667
Entry not found
yongzx/gpt2-finetuned-oscar-de
e66c8ee26fcc7bdea851c3135f8163a2e1b8639e
2021-12-09T16:44:10.000Z
[ "pytorch", "gpt2", "feature-extraction", "de", "dataset:oscar", "transformers", "text-generation", "license:mit" ]
feature-extraction
false
yongzx
null
yongzx/gpt2-finetuned-oscar-de
12
null
transformers
10,668
--- language: - de tags: - text-generation license: mit datasets: - oscar widget: - text: "Mein Name ist Anna. Ich komme aus Österreich und " --- # GPT-2 finetuned on German Dataset ### Tokenizer We first trained a tokenizer on OSCAR's `unshuffled_original_de` German data subset by following the training of GPT2 tokenizer (same vocab size of 50,257). Here's the [Python file](https://github.com/bigscience-workshop/multilingual-modeling/blob/gpt2-ko/experiments/exp-001/train_tokenizer_gpt2.py) for the training. ### Model We finetuned the `wte` and `wpe` layers of GPT-2 (while freezing the parameters of all other layers) on OSCAR's `unshuffled_original_de` German data subset. We used [Huggingface's code](https://github.com/huggingface/transformers/blob/master/examples/pytorch/language-modeling/run_clm.py) for fine-tuning the causal language model GPT-2, but with the following parameters changed ``` - preprocessing_num_workers: 8 - per_device_train_batch_size: 2 - gradient_accumulation_steps: 4 - per_device_eval_batch_size: 2 - eval_accumulation_steps: 4 - eval_steps: 1000 - evaluation_strategy: "steps" - max_eval_samples: 5000 ``` **Training details**: total training steps: 457000, effective train batch size per step: 32, max tokens per batch: 1024) **Final checkpoint**: checkpoint-457000
yoshitomo-matsubara/bert-large-uncased-mnli
2c9bb0f160f5d4cf405348abcb9d46342132e926
2021-05-29T21:32:31.000Z
[ "pytorch", "bert", "text-classification", "en", "dataset:mnli", "dataset:ax", "transformers", "mnli", "ax", "glue", "torchdistill", "license:apache-2.0" ]
text-classification
false
yoshitomo-matsubara
null
yoshitomo-matsubara/bert-large-uncased-mnli
12
null
transformers
10,669
--- language: en tags: - bert - mnli - ax - glue - torchdistill license: apache-2.0 datasets: - mnli - ax metrics: - accuracy --- `bert-large-uncased` fine-tuned on MNLI dataset, using [***torchdistill***](https://github.com/yoshitomo-matsubara/torchdistill) and [Google Colab](https://colab.research.google.com/github/yoshitomo-matsubara/torchdistill/blob/master/demo/glue_finetuning_and_submission.ipynb). The hyperparameters are the same as those in Hugging Face's example and/or the paper of BERT, and the training configuration (including hyperparameters) is available [here](https://github.com/yoshitomo-matsubara/torchdistill/blob/main/configs/sample/glue/mnli/ce/bert_large_uncased.yaml). I submitted prediction files to [the GLUE leaderboard](https://gluebenchmark.com/leaderboard), and the overall GLUE score was **80.2**.
wietsedv/xlm-roberta-base-ft-udpos28-ar
fc4e7b640067f7e5db7e0be233d650dd3628719e
2022-02-25T09:58:02.000Z
[ "pytorch", "xlm-roberta", "token-classification", "ar", "dataset:universal_dependencies", "transformers", "part-of-speech", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
wietsedv
null
wietsedv/xlm-roberta-base-ft-udpos28-ar
12
null
transformers
10,670
--- language: - ar license: apache-2.0 library_name: transformers tags: - part-of-speech - token-classification datasets: - universal_dependencies metrics: - accuracy model-index: - name: xlm-roberta-base-ft-udpos28-ar results: - task: type: token-classification name: Part-of-Speech Tagging dataset: type: universal_dependencies name: Universal Dependencies v2.8 metrics: - type: accuracy name: English Test accuracy value: 62.8 - type: accuracy name: Dutch Test accuracy value: 63.5 - type: accuracy name: German Test accuracy value: 63.8 - type: accuracy name: Italian Test accuracy value: 60.2 - type: accuracy name: French Test accuracy value: 58.5 - type: accuracy name: Spanish Test accuracy value: 64.9 - type: accuracy name: Russian Test accuracy value: 77.2 - type: accuracy name: Swedish Test accuracy value: 68.5 - type: accuracy name: Norwegian Test accuracy value: 64.6 - type: accuracy name: Danish Test accuracy value: 66.1 - type: accuracy name: Low Saxon Test accuracy value: 28.0 - type: accuracy name: Akkadian Test accuracy value: 3.9 - type: accuracy name: Armenian Test accuracy value: 69.4 - type: accuracy name: Welsh Test accuracy value: 58.8 - type: accuracy name: Old East Slavic Test accuracy value: 55.6 - type: accuracy name: Albanian Test accuracy value: 68.1 - type: accuracy name: Slovenian Test accuracy value: 64.7 - type: accuracy name: Guajajara Test accuracy value: 15.0 - type: accuracy name: Kurmanji Test accuracy value: 59.1 - type: accuracy name: Turkish Test accuracy value: 62.4 - type: accuracy name: Finnish Test accuracy value: 66.9 - type: accuracy name: Indonesian Test accuracy value: 66.3 - type: accuracy name: Ukrainian Test accuracy value: 77.7 - type: accuracy name: Polish Test accuracy value: 77.0 - type: accuracy name: Portuguese Test accuracy value: 66.5 - type: accuracy name: Kazakh Test accuracy value: 68.1 - type: accuracy name: Latin Test accuracy value: 60.9 - type: accuracy name: Old French Test accuracy value: 25.6 - type: accuracy name: Buryat Test accuracy value: 33.6 - type: accuracy name: Kaapor Test accuracy value: 2.5 - type: accuracy name: Korean Test accuracy value: 52.0 - type: accuracy name: Estonian Test accuracy value: 66.5 - type: accuracy name: Croatian Test accuracy value: 73.3 - type: accuracy name: Gothic Test accuracy value: 7.2 - type: accuracy name: Swiss German Test accuracy value: 30.4 - type: accuracy name: Assyrian Test accuracy value: 14.6 - type: accuracy name: North Sami Test accuracy value: 19.2 - type: accuracy name: Naija Test accuracy value: 26.6 - type: accuracy name: Latvian Test accuracy value: 69.9 - type: accuracy name: Chinese Test accuracy value: 30.3 - type: accuracy name: Tagalog Test accuracy value: 55.1 - type: accuracy name: Bambara Test accuracy value: 15.7 - type: accuracy name: Lithuanian Test accuracy value: 73.0 - type: accuracy name: Galician Test accuracy value: 67.5 - type: accuracy name: Vietnamese Test accuracy value: 60.7 - type: accuracy name: Greek Test accuracy value: 64.7 - type: accuracy name: Catalan Test accuracy value: 60.5 - type: accuracy name: Czech Test accuracy value: 75.4 - type: accuracy name: Erzya Test accuracy value: 27.3 - type: accuracy name: Bhojpuri Test accuracy value: 40.9 - type: accuracy name: Thai Test accuracy value: 53.7 - type: accuracy name: Marathi Test accuracy value: 68.7 - type: accuracy name: Basque Test accuracy value: 59.4 - type: accuracy name: Slovak Test accuracy value: 74.7 - type: accuracy name: Kiche Test accuracy value: 19.0 - type: accuracy name: Yoruba Test accuracy value: 14.9 - type: accuracy name: Warlpiri Test accuracy value: 18.6 - type: accuracy name: Tamil Test accuracy value: 63.0 - type: accuracy name: Maltese Test accuracy value: 15.1 - type: accuracy name: Ancient Greek Test accuracy value: 41.1 - type: accuracy name: Icelandic Test accuracy value: 61.6 - type: accuracy name: Mbya Guarani Test accuracy value: 20.3 - type: accuracy name: Urdu Test accuracy value: 57.4 - type: accuracy name: Romanian Test accuracy value: 68.4 - type: accuracy name: Persian Test accuracy value: 76.1 - type: accuracy name: Apurina Test accuracy value: 22.4 - type: accuracy name: Japanese Test accuracy value: 17.9 - type: accuracy name: Hungarian Test accuracy value: 61.1 - type: accuracy name: Hindi Test accuracy value: 64.1 - type: accuracy name: Classical Chinese Test accuracy value: 5.6 - type: accuracy name: Komi Permyak Test accuracy value: 30.9 - type: accuracy name: Faroese Test accuracy value: 54.4 - type: accuracy name: Sanskrit Test accuracy value: 4.9 - type: accuracy name: Livvi Test accuracy value: 40.3 - type: accuracy name: Arabic Test accuracy value: 75.9 - type: accuracy name: Wolof Test accuracy value: 14.6 - type: accuracy name: Bulgarian Test accuracy value: 75.3 - type: accuracy name: Akuntsu Test accuracy value: 10.5 - type: accuracy name: Makurap Test accuracy value: 2.1 - type: accuracy name: Kangri Test accuracy value: 29.2 - type: accuracy name: Breton Test accuracy value: 39.1 - type: accuracy name: Telugu Test accuracy value: 63.2 - type: accuracy name: Cantonese Test accuracy value: 30.1 - type: accuracy name: Old Church Slavonic Test accuracy value: 27.7 - type: accuracy name: Karelian Test accuracy value: 44.2 - type: accuracy name: Upper Sorbian Test accuracy value: 54.6 - type: accuracy name: South Levantine Arabic Test accuracy value: 58.8 - type: accuracy name: Komi Zyrian Test accuracy value: 28.7 - type: accuracy name: Irish Test accuracy value: 51.4 - type: accuracy name: Nayini Test accuracy value: 26.9 - type: accuracy name: Munduruku Test accuracy value: 7.0 - type: accuracy name: Manx Test accuracy value: 18.3 - type: accuracy name: Skolt Sami Test accuracy value: 25.9 - type: accuracy name: Afrikaans Test accuracy value: 62.5 - type: accuracy name: Old Turkish Test accuracy value: 37.1 - type: accuracy name: Tupinamba Test accuracy value: 18.3 - type: accuracy name: Belarusian Test accuracy value: 77.2 - type: accuracy name: Serbian Test accuracy value: 73.7 - type: accuracy name: Moksha Test accuracy value: 26.2 - type: accuracy name: Western Armenian Test accuracy value: 58.5 - type: accuracy name: Scottish Gaelic Test accuracy value: 40.4 - type: accuracy name: Khunsari Test accuracy value: 29.7 - type: accuracy name: Hebrew Test accuracy value: 77.1 - type: accuracy name: Uyghur Test accuracy value: 56.2 - type: accuracy name: Chukchi Test accuracy value: 27.5 --- # XLM-RoBERTa base Universal Dependencies v2.8 POS tagging: Arabic This model is part of our paper called: - Make the Best of Cross-lingual Transfer: Evidence from POS Tagging with over 100 Languages Check the [Space](https://huggingface.co/spaces/wietsedv/xpos) for more details. ## Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-ar") model = AutoModelForTokenClassification.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-ar") ```
saptarshidatta96/finetuning-sentiment-model-3000-samples
5cf9bbeaa64d950d8b9a7ca397bdd66d93525658
2022-02-25T15:20:10.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
saptarshidatta96
null
saptarshidatta96/finetuning-sentiment-model-3000-samples
12
null
transformers
10,671
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8733333333333333 - name: F1 type: f1 value: 0.879746835443038 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3209 - Accuracy: 0.8733 - F1: 0.8797 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
inovex/multi2convai-logistics-en-bert
85f98ab937bfd02e29a7e28e5d57bb4765152862
2022-03-01T08:53:59.000Z
[ "pytorch", "bert", "text-classification", "en", "transformers", "license:mit" ]
text-classification
false
inovex
null
inovex/multi2convai-logistics-en-bert
12
null
transformers
10,672
--- tags: - text-classification widget: - text: "Where can I put the parcel?" license: mit language: en --- # Multi2ConvAI-Logistics: finetuned Bert for English This model was developed in the [Multi2ConvAI](https://multi2conv.ai) project: - domain: Logistics (more details about our use cases: ([en](https://multi2convai/en/blog/use-cases), [de](https://multi2convai/en/blog/use-cases))) - language: English (en) - model type: finetuned Bert ## How to run Requires: - Huggingface transformers ### Run with Huggingface Transformers ````python from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("inovex/multi2convai-logistics-en-bert") model = AutoModelForSequenceClassification.from_pretrained("inovex/multi2convai-logistics-en-bert") ```` ## Further information on Multi2ConvAI: - https://multi2conv.ai - https://github.com/inovex/multi2convai - mailto: [email protected]
inovex/multi2convai-quality-de-bert
969f8fb42109e842afe13bdb50d09c72b8e0bbb5
2022-03-01T09:00:15.000Z
[ "pytorch", "bert", "text-classification", "de", "transformers", "license:mit" ]
text-classification
false
inovex
null
inovex/multi2convai-quality-de-bert
12
null
transformers
10,673
--- tags: - text-classification widget: - text: "Starte das Programm" license: mit language: de --- # Multi2ConvAI-Quality: finetuned Bert for German This model was developed in the [Multi2ConvAI](https://multi2conv.ai) project: - domain: Quality (more details about our use cases: ([en](https://multi2convai/en/blog/use-cases), [de](https://multi2convai/en/blog/use-cases))) - language: German (de) - model type: finetuned Bert ## How to run Requires: - Huggingface transformers ### Run with Huggingface Transformers ````python from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("inovex/multi2convai-quality-de-bert") model = AutoModelForSequenceClassification.from_pretrained("inovex/multi2convai-quality-de-bert") ```` ## Further information on Multi2ConvAI: - https://multi2conv.ai - https://github.com/inovex/multi2convai - mailto: [email protected]
inovex/multi2convai-quality-it-mbert
b220b01a2efa5cfed2436ca57e4c4bf54d54b4cd
2022-03-01T09:02:26.000Z
[ "pytorch", "bert", "text-classification", "it", "transformers", "license:mit" ]
text-classification
false
inovex
null
inovex/multi2convai-quality-it-mbert
12
null
transformers
10,674
--- tags: - text-classification widget: - text: "Avviare il programma" license: mit language: it --- # Multi2ConvAI-Quality: finetuned MBert for Italian This model was developed in the [Multi2ConvAI](https://multi2conv.ai) project: - domain: Quality (more details about our use cases: ([en](https://multi2convai/en/blog/use-cases), [de](https://multi2convai/en/blog/use-cases))) - language: Italian (it) - model type: finetuned MBert ## How to run Requires: - Huggingface transformers ### Run with Huggingface Transformers ````python from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("inovex/multi2convai-quality-it-mbert") model = AutoModelForSequenceClassification.from_pretrained("inovex/multi2convai-quality-it-mbert") ```` ## Further information on Multi2ConvAI: - https://multi2conv.ai - https://github.com/inovex/multi2convai - mailto: [email protected]
ghadeermobasher/BC4_Original-BiomedNLP-PubMedBERT-base-uncased-abstract
e32328fa391e1eb3b937f91c230dab8683d97f8b
2022-03-03T14:45:58.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/BC4_Original-BiomedNLP-PubMedBERT-base-uncased-abstract
12
null
transformers
10,675
Entry not found
ghadeermobasher/BC4_Modified_BiomedNLP-PubMedBERT-base-uncased-abstract
3e502f9f2579f4c4108aae7ed4e5253d95d9b232
2022-02-25T21:18:15.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/BC4_Modified_BiomedNLP-PubMedBERT-base-uncased-abstract
12
null
transformers
10,676
Entry not found
anas-awadalla/spanbert-base-cased-few-shot-k-32-finetuned-squad-seed-4
7b4c0ed9bd398f81a00569d8ada5f4e109f5fdd6
2022-02-25T21:12:44.000Z
[ "pytorch", "bert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
anas-awadalla
null
anas-awadalla/spanbert-base-cased-few-shot-k-32-finetuned-squad-seed-4
12
null
transformers
10,677
--- tags: - generated_from_trainer datasets: - squad model-index: - name: spanbert-base-cased-few-shot-k-32-finetuned-squad-seed-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-few-shot-k-32-finetuned-squad-seed-4 This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
nsi319/xlnet-base-cased-finetuned-app
11a6dae1231e2505c687c4e91c40781036bf0cdd
2022-02-27T10:52:49.000Z
[ "pytorch", "xlnet", "text-classification", "en", "transformers", "mobile app descriptions", "playstore", "license:mit" ]
text-classification
false
nsi319
null
nsi319/xlnet-base-cased-finetuned-app
12
null
transformers
10,678
--- language: "en" thumbnail: "https://huggingface.co/nsi319" tags: - xlnet - pytorch - text-classification - mobile app descriptions - playstore license: "mit" inference: true --- # Mobile App Classification ## Model description XLNet is a new unsupervised language representation learning method based on a novel generalized permutation language modeling objective. Additionally, XLNet employs Transformer-XL as the backbone model, exhibiting excellent performance for language tasks involving long context. The [xlnet-base-cased](https://huggingface.co/xlnet-base-cased) model is fine-tuned to classify an mobile app description into one of **6 play store categories**. Trained on 9000 samples of English App Descriptions and associated categories of apps available in [Google Play](https://play.google.com/store/apps). ## Fine-tuning The model was fine-tuned for 5 epochs with a batch size of 16, a learning rate of 2e-05, and a maximum sequence length of 512. Since this was a classification task, the model was trained with a cross-entropy loss function. The best evaluation f1 score achieved by the model was 0.8951433611497919, found after 5 epochs. The accuracy of the model on the test set was 0.895. ## How to use ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline tokenizer = AutoTokenizer.from_pretrained("nsi319/xlnet-base-cased-finetuned-app") model = AutoModelForSequenceClassification.from_pretrained("nsi319/xlnet-base-cased-finetuned-app") classifier = pipeline('sentiment-analysis', model=model, tokenizer=tokenizer) classifier("The official Google Photos app is made for the way you take photos today and includes essential features like shared albums, automatic creations and an advanced editing suite. Additionally every Google Account comes with 15 GB of free storage and you can choose to automatically back up all your photos and videos in High quality or Original quality. You can then access them from any connected device and on photos.google.com.") '''Output''' [{'label': 'Photography', 'score': 0.998849630355835}] ``` ## Limitations Training data consists of apps from 6 play store categories namely Education, Entertainment, Productivity, Sports, News & Magazines and Photography.
asini/wav2vec2-timit-demo
a076c094708a22f392e286d8aee7ff7dcda35f0a
2022-03-01T10:37:06.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
asini
null
asini/wav2vec2-timit-demo
12
null
transformers
10,679
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-timit-demo results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-timit-demo This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4847 - Wer: 0.3462 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.487 | 4.0 | 500 | 1.3466 | 1.0153 | | 0.6134 | 8.0 | 1000 | 0.4807 | 0.4538 | | 0.2214 | 12.0 | 1500 | 0.4684 | 0.3984 | | 0.1233 | 16.0 | 2000 | 0.5070 | 0.3779 | | 0.0847 | 20.0 | 2500 | 0.4965 | 0.3705 | | 0.0611 | 24.0 | 3000 | 0.4881 | 0.3535 | | 0.0464 | 28.0 | 3500 | 0.4847 | 0.3462 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.10.3
Andrey1989/mbert-finetuned-ner
a60a40c0f4842458f777c5a1a13f53c4d36174b2
2022-06-13T19:46:59.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "dataset:wikiann", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
Andrey1989
null
Andrey1989/mbert-finetuned-ner
12
null
transformers
10,680
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wikiann metrics: - precision - recall - f1 - accuracy model-index: - name: mbert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: wikiann type: wikiann args: lv metrics: - name: Precision type: precision value: 0.9304986338797814 - name: Recall type: recall value: 0.9375430144528561 - name: F1 type: f1 value: 0.9340075419952005 - name: Accuracy type: accuracy value: 0.9699674740348558 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mbert-finetuned-ner This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the wikiann dataset. It achieves the following results on the evaluation set: - Loss: 0.1264 - Precision: 0.9305 - Recall: 0.9375 - F1: 0.9340 - Accuracy: 0.9700 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.301 | 1.0 | 625 | 0.1756 | 0.8843 | 0.9067 | 0.8953 | 0.9500 | | 0.1259 | 2.0 | 1250 | 0.1248 | 0.9285 | 0.9335 | 0.9310 | 0.9688 | | 0.0895 | 3.0 | 1875 | 0.1264 | 0.9305 | 0.9375 | 0.9340 | 0.9700 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
batterydata/batterybert-uncased-squad-v1
5cf7334ad5096f21556380873c5a806cf445b806
2022-03-05T13:52:33.000Z
[ "pytorch", "bert", "question-answering", "en", "dataset:squad", "dataset:batterydata/battery-device-data-qa", "transformers", "question answering", "license:apache-2.0", "autotrain_compatible" ]
question-answering
false
batterydata
null
batterydata/batterybert-uncased-squad-v1
12
null
transformers
10,681
--- language: en tags: question answering license: apache-2.0 datasets: - squad - batterydata/battery-device-data-qa metrics: squad --- # BatteryBERT-uncased for QA **Language model:** batterybert-uncased **Language:** English **Downstream-task:** Extractive QA **Training data:** SQuAD v1 **Eval data:** SQuAD v1 **Code:** See [example](https://github.com/ShuHuang/batterybert) **Infrastructure**: 8x DGX A100 ## Hyperparameters ``` batch_size = 32 n_epochs = 3 base_LM_model = "batterybert-uncased" max_seq_len = 386 learning_rate = 3e-5 doc_stride=128 max_query_length=64 ``` ## Performance Evaluated on the SQuAD v1.0 dev set. ``` "exact": 81.08, "f1": 88.41, ``` Evaluated on the battery device dataset. ``` "precision": 68.27, "recall": 80.88, ``` ## Usage ### In Transformers ```python from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline model_name = "batterydata/batterybert-uncased-squad-v1" # a) Get predictions nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) QA_input = { 'question': 'What is the electrolyte?', 'context': 'The typical non-aqueous electrolyte for commercial Li-ion cells is a solution of LiPF6 in linear and cyclic carbonates.' } res = nlp(QA_input) # b) Load model & tokenizer model = AutoModelForQuestionAnswering.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) ``` ## Authors Shu Huang: `sh2009 [at] cam.ac.uk` Jacqueline Cole: `jmc61 [at] cam.ac.uk` ## Citation BatteryBERT: A Pre-trained Language Model for Battery Database Enhancement
batterydata/bert-base-uncased-abstract
383638f165004b6c8c2f3fdb3d1d2ce794b8b0b5
2022-03-05T14:44:13.000Z
[ "pytorch", "bert", "text-classification", "en", "dataset:batterydata/paper-abstracts", "transformers", "Text Classification", "license:apache-2.0" ]
text-classification
false
batterydata
null
batterydata/bert-base-uncased-abstract
12
null
transformers
10,682
--- language: en tags: Text Classification license: apache-2.0 datasets: - batterydata/paper-abstracts metrics: glue --- # BERT-base-uncased for Battery Abstract Classification **Language model:** bert-base-uncased **Language:** English **Downstream-task:** Text Classification **Training data:** training\_data.csv **Eval data:** val\_data.csv **Code:** See [example](https://github.com/ShuHuang/batterybert) **Infrastructure**: 8x DGX A100 ## Hyperparameters ``` batch_size = 32 n_epochs = 13 base_LM_model = "bert-base-uncased" learning_rate = 2e-5 ``` ## Performance ``` "Validation accuracy": 96.79, "Test accuracy": 96.29, ``` ## Usage ### In Transformers ```python from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline model_name = "batterydata/bert-base-uncased-abstract" # a) Get predictions nlp = pipeline('text-classification', model=model_name, tokenizer=model_name) input = {'The typical non-aqueous electrolyte for commercial Li-ion cells is a solution of LiPF6 in linear and cyclic carbonates.'} res = nlp(input) # b) Load model & tokenizer model = AutoModelForSequenceClassification.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) ``` ## Authors Shu Huang: `sh2009 [at] cam.ac.uk` Jacqueline Cole: `jmc61 [at] cam.ac.uk` ## Citation BatteryBERT: A Pre-trained Language Model for Battery Database Enhancement
cnu/distilbert-base-uncased-finetuned-cola
3390b50b51f566b9bb7e9e6059688b9e92b83e40
2022-03-02T07:30:35.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
cnu
null
cnu/distilbert-base-uncased-finetuned-cola
12
null
transformers
10,683
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5474713423103301 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8651 - Matthews Correlation: 0.5475 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5233 | 1.0 | 535 | 0.5353 | 0.4004 | | 0.3497 | 2.0 | 1070 | 0.5165 | 0.5076 | | 0.2386 | 3.0 | 1605 | 0.6661 | 0.5161 | | 0.1745 | 4.0 | 2140 | 0.7730 | 0.5406 | | 0.1268 | 5.0 | 2675 | 0.8651 | 0.5475 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2 - Datasets 1.18.3 - Tokenizers 0.11.6
clisi2000/distilbert-base-uncased-finetuned-emotion
3caab60c0f4e263855d0dafa37419e9a7d5b94c9
2022-03-06T07:09:00.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
clisi2000
null
clisi2000/distilbert-base-uncased-finetuned-emotion
12
null
transformers
10,684
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9245 - name: F1 type: f1 value: 0.9246284188099615 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2183 - Accuracy: 0.9245 - F1: 0.9246 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8174 | 1.0 | 250 | 0.3166 | 0.905 | 0.9023 | | 0.2534 | 2.0 | 500 | 0.2183 | 0.9245 | 0.9246 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.2+cpu - Datasets 1.16.1 - Tokenizers 0.10.1
ttmusic/distilbert-base-uncased-finetuned-imdb
9f2aa94ccde5cc450648bc578e9157fe6b92b752
2022-03-06T01:28:38.000Z
[ "pytorch", "distilbert", "fill-mask", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
ttmusic
null
ttmusic/distilbert-base-uncased-finetuned-imdb
12
null
transformers
10,685
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.4513 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 79 | 2.5347 | | 2.6681 | 2.0 | 158 | 2.4416 | | 2.6681 | 3.0 | 237 | 2.4634 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.2+cu113 - Datasets 1.18.3 - Tokenizers 0.11.6
bishnu/finetuning-sentiment-model-3000-samples
0ad49b15cca93b9ca27ca681cc2eec49576e8764
2022-03-09T17:05:15.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
bishnu
null
bishnu/finetuning-sentiment-model-3000-samples
12
null
transformers
10,686
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.86 - name: F1 type: f1 value: 0.8556701030927835 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.5523 - Accuracy: 0.86 - F1: 0.8557 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.4 - Tokenizers 0.11.6
spy24/autonlp-optimized-paraphrasing-615217541
7d402f22bfd7b781ca1fb020554a95182ad47f79
2022-03-07T08:56:14.000Z
[ "pytorch", "t5", "text2text-generation", "unk", "dataset:spy24/autonlp-data-optimized-paraphrasing", "transformers", "autonlp", "co2_eq_emissions", "autotrain_compatible" ]
text2text-generation
false
spy24
null
spy24/autonlp-optimized-paraphrasing-615217541
12
null
transformers
10,687
--- tags: autonlp language: unk widget: - text: "I love AutoNLP 🤗" datasets: - spy24/autonlp-data-optimized-paraphrasing co2_eq_emissions: 1.166696812121839 --- # Model Trained Using AutoNLP - Problem type: Summarization - Model ID: 615217541 - CO2 Emissions (in grams): 1.166696812121839 ## Validation Metrics - Loss: 0.00019549368880689144 - Rouge1: 100.0 - Rouge2: 51.4451 - RougeL: 100.0 - RougeLsum: 100.0 - Gen Len: 4.104 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/spy24/autonlp-optimized-paraphrasing-615217541 ```
abhishek/autonlp-swahili-sentiment-615517563
e66110eb541d862b2d257254b5dea87757f168fb
2022-03-07T12:54:03.000Z
[ "pytorch", "bert", "text-classification", "unk", "dataset:abhishek/autonlp-data-swahili-sentiment", "transformers", "autonlp", "co2_eq_emissions" ]
text-classification
false
abhishek
null
abhishek/autonlp-swahili-sentiment-615517563
12
null
transformers
10,688
--- tags: autonlp language: unk widget: - text: "I love AutoNLP 🤗" datasets: - abhishek/autonlp-data-swahili-sentiment co2_eq_emissions: 1.9057858628956459 --- # Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 615517563 - CO2 Emissions (in grams): 1.9057858628956459 ## Validation Metrics - Loss: 0.6990908980369568 - Accuracy: 0.695364238410596 - Macro F1: 0.6088819062581828 - Micro F1: 0.695364238410596 - Weighted F1: 0.677326207350606 - Macro Precision: 0.6945099492363175 - Micro Precision: 0.695364238410596 - Weighted Precision: 0.6938596845881614 - Macro Recall: 0.5738408020723632 - Micro Recall: 0.695364238410596 - Weighted Recall: 0.695364238410596 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/abhishek/autonlp-swahili-sentiment-615517563 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("abhishek/autonlp-swahili-sentiment-615517563", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("abhishek/autonlp-swahili-sentiment-615517563", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
zdepablo/distilbert-base-uncased-finetuned-emotion
14b8eecb0c52f0a6435a32f675f9154354ed78d9
2022-03-09T23:04:59.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
zdepablo
null
zdepablo/distilbert-base-uncased-finetuned-emotion
12
null
transformers
10,689
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.924 - name: F1 type: f1 value: 0.9241594821961092 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2311 - Accuracy: 0.924 - F1: 0.9242 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8868 | 1.0 | 250 | 0.3435 | 0.9005 | 0.8980 | | 0.2686 | 2.0 | 500 | 0.2311 | 0.924 | 0.9242 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
Kaveh8/autonlp-imdb_rating-625417974
5670bb192c112974e4047d211228c29c1906db16
2022-03-10T13:20:41.000Z
[ "pytorch", "roberta", "text-classification", "en", "dataset:Kaveh8/autonlp-data-imdb_rating", "transformers", "autonlp", "co2_eq_emissions" ]
text-classification
false
Kaveh8
null
Kaveh8/autonlp-imdb_rating-625417974
12
null
transformers
10,690
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - Kaveh8/autonlp-data-imdb_rating co2_eq_emissions: 0.7952957276830314 --- # Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 625417974 - CO2 Emissions (in grams): 0.7952957276830314 ## Validation Metrics - Loss: 1.0167548656463623 - Accuracy: 0.5934065934065934 - Macro F1: 0.5871237509176406 - Micro F1: 0.5934065934065934 - Weighted F1: 0.5905118014752566 - Macro Precision: 0.5959908336094294 - Micro Precision: 0.5934065934065934 - Weighted Precision: 0.5979368174068634 - Macro Recall: 0.5884714803600252 - Micro Recall: 0.5934065934065934 - Weighted Recall: 0.5934065934065934 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/Kaveh8/autonlp-imdb_rating-625417974 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("Kaveh8/autonlp-imdb_rating-625417974", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("Kaveh8/autonlp-imdb_rating-625417974", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
haddadalwi/bert-large-uncased-whole-word-masking-finetuned-squad-finetuned-islamic-squad
1f444815eb2e009edf195c6d98fecdce594459c8
2022-03-28T05:04:56.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "dataset:squad_v2", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
haddadalwi
null
haddadalwi/bert-large-uncased-whole-word-masking-finetuned-squad-finetuned-islamic-squad
12
null
transformers
10,691
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: bert-large-uncased-whole-word-masking-finetuned-squad-finetuned-islamic-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-large-uncased-whole-word-masking-finetuned-squad-finetuned-islamic-squad This model is a fine-tuned version of [bert-large-uncased-whole-word-masking-finetuned-squad](https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad) on the squad_v2 dataset. It achieves the following results on the evaluation set: - Loss: 0.3855 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 40 | 0.4082 | | No log | 2.0 | 80 | 0.3855 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
cloudblack/bert-base-finetuned-sts
712f7c3f93b6b4c4c7453639d4ab8b927586d4e3
2022-03-13T11:13:45.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
cloudblack
null
cloudblack/bert-base-finetuned-sts
12
null
transformers
10,692
Entry not found
anwesham/mbert_hi_ur
e8e2905183d1e248e172b1dba6b6c489c8e9f59d
2022-03-13T02:36:43.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
anwesham
null
anwesham/mbert_hi_ur
12
null
transformers
10,693
Entry not found
clapika2010/flights_finetuned
5ca4dc9495a0882fb748b2cf2584e6b0ff4ad2ae
2022-03-12T07:46:54.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
clapika2010
null
clapika2010/flights_finetuned
12
null
transformers
10,694
Entry not found
RobertoMCA97/distilbert-base-uncased-finetuned-emotion
b8bf3e877355e17b6a9b03d5b1f8ca5e01457c6b
2022-03-12T17:11:44.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
RobertoMCA97
null
RobertoMCA97/distilbert-base-uncased-finetuned-emotion
12
null
transformers
10,695
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9255 - name: F1 type: f1 value: 0.9257511693451751 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2157 - Accuracy: 0.9255 - F1: 0.9258 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8145 | 1.0 | 250 | 0.3093 | 0.91 | 0.9081 | | 0.2461 | 2.0 | 500 | 0.2157 | 0.9255 | 0.9258 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.4 - Tokenizers 0.11.6
Ramu/distilbert-base-uncased-finetuned-emotion
4ea7758319c1416db8e70c5d32cf3a277d368441
2022-03-13T14:27:54.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Ramu
null
Ramu/distilbert-base-uncased-finetuned-emotion
12
null
transformers
10,696
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.926 - name: F1 type: f1 value: 0.9262005126757141 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2167 - Accuracy: 0.926 - F1: 0.9262 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8112 | 1.0 | 250 | 0.3147 | 0.903 | 0.8992 | | 0.2454 | 2.0 | 500 | 0.2167 | 0.926 | 0.9262 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.8.1+cu102 - Datasets 1.16.1 - Tokenizers 0.10.3
aGabillon/distilbert-base-uncased-finetuned-emotion
c9909c051291b19611466538f34468c84865c715
2022-03-13T04:19:27.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
aGabillon
null
aGabillon/distilbert-base-uncased-finetuned-emotion
12
null
transformers
10,697
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9215 - name: F1 type: f1 value: 0.921871942661868 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2294 - Accuracy: 0.9215 - F1: 0.9219 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8304 | 1.0 | 250 | 0.3312 | 0.899 | 0.8962 | | 0.2547 | 2.0 | 500 | 0.2294 | 0.9215 | 0.9219 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.4 - Tokenizers 0.11.6
alexhf90/Clasificacion_sentimientos
15549210e7ab5a218e13a67ff6047c4b262b0148
2022-03-15T22:20:11.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
alexhf90
null
alexhf90/Clasificacion_sentimientos
12
1
transformers
10,698
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: Clasificacion_sentimientos results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Clasificacion_sentimientos This model is a fine-tuned version of [BSC-TeMU/roberta-base-bne](https://huggingface.co/BSC-TeMU/roberta-base-bne) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3399 - Accuracy: 0.9428 ## Model description Se entrena un modelo que es capaz de clasificar si es un comentario postivo o negativo. ## Intended uses & limitations More information needed ## Training and evaluation data Se entrenó el modelo usando comentarios de peliculas de la página $https://www.filmaffinity.com/es/main.html$ - Estos comentarios estan en la base de datos alojada en Kaggle, url : https://www.kaggle.com/ricardomoya/criticas-peliculas-filmaffinity-en-espaniol/code ## Training procedure La variable review_rate se usó para clasificar los comentarios positivos y negativos así: Positivos: los rating con 8,9,10. Negativos: Los rating con 3,2,1. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2566 | 1.0 | 901 | 0.5299 | 0.8935 | | 0.0963 | 2.0 | 1802 | 0.2885 | 0.9383 | | 0.0133 | 3.0 | 2703 | 0.3546 | 0.9406 | | 0.0002 | 4.0 | 3604 | 0.3399 | 0.9428 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
anton-l/xtreme_s_xlsr_300m_mls
e549e826c377de13e756208ce95e6971465078a7
2022-04-03T18:54:35.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:google/xtreme_s", "transformers", "google/xtreme_s", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
anton-l
null
anton-l/xtreme_s_xlsr_300m_mls
12
1
transformers
10,699
--- license: apache-2.0 tags: - automatic-speech-recognition - google/xtreme_s - generated_from_trainer datasets: - google/xtreme_s model-index: - name: xtreme_s_xlsr_mls results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xtreme_s_xlsr_300m_mls This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the GOOGLE/XTREME_S - MLS dataset. It achieves the following results on the evaluation set: - Loss: 0.6215 - Wer: 0.3033 - Cer: 0.0951 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 3000 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:| | 3.0446 | 1.91 | 500 | 2.9866 | 1.0 | 1.0 | | 0.8789 | 3.82 | 1000 | 0.8574 | 0.7225 | 0.2355 | | 0.4766 | 5.72 | 1500 | 0.4813 | 0.4624 | 0.1394 | | 0.3779 | 7.63 | 2000 | 0.4465 | 0.4154 | 0.1309 | | 0.3244 | 9.54 | 2500 | 0.4213 | 0.3683 | 0.1163 | | 0.346 | 11.45 | 3000 | 0.4606 | 0.4033 | 0.1299 | | 0.3092 | 13.36 | 3500 | 0.4160 | 0.3585 | 0.1115 | | 0.3287 | 15.27 | 4000 | 0.4364 | 0.3631 | 0.1165 | | 0.3165 | 17.18 | 4500 | 0.4218 | 0.3451 | 0.1056 | | 0.2874 | 19.08 | 5000 | 0.4583 | 0.3650 | 0.1151 | | 0.3089 | 20.99 | 5500 | 0.4424 | 0.3485 | 0.1137 | | 0.2689 | 22.9 | 6000 | 0.4427 | 0.3542 | 0.1128 | | 0.234 | 24.81 | 6500 | 0.4204 | 0.3431 | 0.1069 | | 0.2363 | 26.72 | 7000 | 0.4792 | 0.3689 | 0.1191 | | 0.2796 | 28.62 | 7500 | 0.4867 | 0.3662 | 0.1154 | | 0.2447 | 30.53 | 8000 | 0.4908 | 0.3584 | 0.1160 | | 0.22 | 32.44 | 8500 | 0.5315 | 0.3626 | 0.1240 | | 0.1961 | 34.35 | 9000 | 0.5121 | 0.3610 | 0.1168 | | 0.1959 | 36.26 | 9500 | 0.5140 | 0.3648 | 0.1179 | | 0.1748 | 38.17 | 10000 | 0.5464 | 0.3763 | 0.1206 | | 0.197 | 40.08 | 10500 | 0.5199 | 0.3515 | 0.1128 | | 0.2166 | 41.98 | 11000 | 0.5336 | 0.3607 | 0.1191 | | 0.2078 | 43.89 | 11500 | 0.5389 | 0.3518 | 0.1136 | | 0.1827 | 45.8 | 12000 | 0.5014 | 0.3287 | 0.1053 | | 0.1783 | 47.71 | 12500 | 0.5408 | 0.3545 | 0.1121 | | 0.1489 | 49.62 | 13000 | 0.5292 | 0.3472 | 0.1098 | | 0.1665 | 51.53 | 13500 | 0.5052 | 0.3300 | 0.1033 | | 0.1631 | 53.43 | 14000 | 0.5241 | 0.3362 | 0.1081 | | 0.1943 | 55.34 | 14500 | 0.5453 | 0.3373 | 0.1076 | | 0.1504 | 57.25 | 15000 | 0.5958 | 0.3594 | 0.1149 | | 0.136 | 59.16 | 15500 | 0.5645 | 0.3367 | 0.1082 | | 0.1224 | 61.07 | 16000 | 0.5322 | 0.3302 | 0.1039 | | 0.1156 | 62.98 | 16500 | 0.5728 | 0.3332 | 0.1061 | | 0.114 | 64.88 | 17000 | 0.5994 | 0.3410 | 0.1125 | | 0.1445 | 66.79 | 17500 | 0.6048 | 0.3471 | 0.1098 | | 0.1281 | 68.7 | 18000 | 0.5747 | 0.3278 | 0.1042 | | 0.1233 | 70.61 | 18500 | 0.6021 | 0.3375 | 0.1082 | | 0.1109 | 72.52 | 19000 | 0.5851 | 0.3188 | 0.1021 | | 0.0943 | 74.43 | 19500 | 0.5944 | 0.3238 | 0.1033 | | 0.1418 | 76.34 | 20000 | 0.5904 | 0.3143 | 0.0997 | | 0.1317 | 78.24 | 20500 | 0.6291 | 0.3283 | 0.1047 | | 0.1177 | 80.15 | 21000 | 0.6114 | 0.3190 | 0.1000 | | 0.1138 | 82.06 | 21500 | 0.6155 | 0.3245 | 0.1023 | | 0.1074 | 83.97 | 22000 | 0.6094 | 0.3153 | 0.1004 | | 0.11 | 85.88 | 22500 | 0.6041 | 0.3141 | 0.0988 | | 0.1096 | 87.78 | 23000 | 0.6243 | 0.3110 | 0.0986 | | 0.1017 | 89.69 | 23500 | 0.6110 | 0.3121 | 0.0984 | | 0.1015 | 91.6 | 24000 | 0.6385 | 0.3093 | 0.0978 | | 0.0952 | 93.51 | 24500 | 0.6155 | 0.3036 | 0.0953 | | 0.0896 | 95.42 | 25000 | 0.6215 | 0.3033 | 0.0951 | | 0.0953 | 97.33 | 25500 | 0.6293 | 0.3037 | 0.0953 | | 0.0834 | 99.24 | 26000 | 0.6302 | 0.3036 | 0.0952 | ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 1.18.4.dev0 - Tokenizers 0.11.6