modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
list
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
PaulAdversarial/T5_PAN_Hate_Speech_Twitter_topic_ishatespeach
0a583414a4d7a8235e93c3f43098011cfdda6af5
2021-06-23T03:52:00.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PaulAdversarial
null
PaulAdversarial/T5_PAN_Hate_Speech_Twitter_topic_ishatespeach
12
null
transformers
10,500
A T5ForConditionalGeneration trained on 2 tasks from PAN Profiling Hate Speech Spreaders on Twitter dataset (EN): * topic attribution - topics were assigned with BertTopic library using embeddings from `cardiffnlp/bertweet-base-hate` Roberta model (train and test sets from the PAN task) * hate speech identification (train set from the PAN task) in order to generate tone of comment use prefix **hater classification:**
Plim/xls-r-1b-cv_8-fr
14d95dbced6550bae47c30aa78a7c78a2d0b40b8
2022-03-24T11:55:06.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "fr", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Plim
null
Plim/xls-r-1b-cv_8-fr
12
null
transformers
10,501
--- language: - fr license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - robust-speech-event - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: XLS-R-1B - French results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: fr metrics: - name: Test WER (with LM) type: wer value: 15.4 - name: Test CER (with LM) type: cer value: 5.36 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: fr metrics: - name: Test WER (with LM) type: wer value: 25.05 - name: Test CER (with LM) type: cer value: 12.45 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: fr metrics: - name: Test WER type: wer value: 27.1 --- ## Model description This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - FR dataset. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 6.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.9827 | 0.29 | 1000 | inf | 0.2937 | | 1.0203 | 0.57 | 2000 | inf | 0.2711 | | 1.0048 | 0.86 | 3000 | inf | 0.2620 | | 0.9858 | 1.15 | 4000 | inf | 0.2522 | | 0.9709 | 1.43 | 5000 | inf | 0.2365 | | 0.9347 | 1.72 | 6000 | inf | 0.2332 | | 0.9256 | 2.01 | 7000 | inf | 0.2261 | | 0.8936 | 2.29 | 8000 | inf | 0.2203 | | 0.877 | 2.58 | 9000 | inf | 0.2096 | | 0.8393 | 2.87 | 10000 | inf | 0.2017 | | 0.8156 | 3.15 | 11000 | inf | 0.1936 | | 0.8015 | 3.44 | 12000 | inf | 0.1880 | | 0.774 | 3.73 | 13000 | inf | 0.1834 | | 0.8372 | 4.01 | 14000 | inf | 0.1934 | | 0.8075 | 4.3 | 15000 | inf | 0.1923 | | 0.8069 | 4.59 | 16000 | inf | 0.1877 | | 0.8064 | 4.87 | 17000 | inf | 0.1955 | | 0.801 | 5.16 | 18000 | inf | 0.1891 | | 0.8022 | 5.45 | 19000 | inf | 0.1895 | | 0.792 | 5.73 | 20000 | inf | 0.1854 | It achieves the best result on the validation set on STEP 13000: - Wer: 0.1834 Some problem occurs when calculating the validation loss. ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3.dev0 - Tokenizers 0.11.0 ### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8` with split `test` ```bash python eval.py --model_id Plim/xls-r-1b-cv_8-fr --dataset mozilla-foundation/common_voice_8_0 --config fr --split test ``` 2. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py --model_id Plim/xls-r-1b-cv_8-fr --dataset speech-recognition-community-v2/dev_data --config fr --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ``` ### Evaluation Results Without LM: | Dataset | WER | CER | |:----------:|:-----:|:-----:| | TEST CV | 18.33 | 5.60 | | DEV audio | 31.33 | 13.20 | | TEST audio | / | / | With LM: | Dataset | WER | CER | |:----------:|:-----:|:-----:| | TEST CV | 15.40 | 5.36 | | DEV audio | 25.05 | 12.45 | | TEST audio | / | / |
RJ3vans/CMN1spanTagger
e55780508253b492dd63594fca86cd693bd0c62f
2021-09-07T13:25:31.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
RJ3vans
null
RJ3vans/CMN1spanTagger
12
null
transformers
10,502
This model identifies compound noun phrases in an input sentence. Try the test sentence: The inquiry, which continues, will recall John Smith [and] Peter Montgomery next month for further questioning. Note that you need square brackets around the conjunction coordinating the NPs. The model was derived using code adapted from an original program written by Dr. Le An Ha at the University of Wolverhampton.
RecordedFuture/Swedish-Sentiment-Violence-Targets
263b3f09ce3c0fc0315824ce129a78cfa76a69f7
2021-05-24T13:02:37.000Z
[ "pytorch", "tf", "jax", "bert", "token-classification", "sv", "transformers", "license:mit", "autotrain_compatible" ]
token-classification
false
RecordedFuture
null
RecordedFuture/Swedish-Sentiment-Violence-Targets
12
null
transformers
10,503
--- language: sv license: mit --- ## Swedish BERT models for sentiment analysis, Sentiment targets. [Recorded Future](https://www.recordedfuture.com/) together with [AI Sweden](https://www.ai.se/en) releases two language models for target/role assignment in Swedish. The two models are based on the [KB/bert-base-swedish-cased](https://huggingface.co/KB/bert-base-swedish-cased), the models as has been fine tuned to solve a Named Entety Recognition(NER) token classification task. This is a downstream model to be used in conjunction with the [Swedish violence sentiment classifier](https://huggingface.co/RecordedFuture/Swedish-Sentiment-Violence) or [Swedish violence sentiment classifier](https://huggingface.co/RecordedFuture/Swedish-Sentiment-Fear). The models are trained to tag parts of sentences that has recieved a positive classification from the upstream sentiment classifier. The model will tag parts of sentences that contains the targets that the upstream model has activated on. The NER sentiment target models do work as standalone models but their recommended application is downstreamfrom a sentence classification model. The models are only trained on Swedish data and only supports inference of Swedish input texts. The models inference metrics for all non-Swedish inputs are not defined, these inputs are considered as out of domain data. The current models are supported at Transformers version >= 4.3.3 and Torch version 1.8.0, compatibility with older versions are not verified. ### Fear targets The model can be imported from the transformers library by running from transformers import BertForSequenceClassification, BertTokenizerFast tokenizer = BertTokenizerFast.from_pretrained("RecordedFuture/Swedish-Sentiment-Fear-Targets") classifier_fear_targets= BertForTokenClassification.from_pretrained("RecordedFuture/Swedish-Sentiment-Fear-Targets") When the model and tokenizer are initialized the model can be used for inference. #### Verification metrics During training the Fear target model had the following verification metrics when using "any overlap" as the evaluation metric. | F-score | Precision | Recall | |:-------------------------:|:-------:|:---------:|:------:| | 0.8361 | 0.7903 | 0.8876 | #### Swedish-Sentiment-Violence The model be can imported from the transformers library by running from transformers import BertForSequenceClassification, BertTokenizerFast tokenizer = BertTokenizerFast.from_pretrained("RecordedFuture/Swedish-Sentiment-Violence-Targets") classifier_violence_targets = BertForTokenClassification.from_pretrained("RecordedFuture/Swedish-Sentiment-Violence-Targets") When the model and tokenizer are initialized the model can be used for inference. #### Verification metrics During training the Violence target model had the following verification metrics when using "any overlap" as the evaluation metric. | F-score | Precision | Recall | |:-------------------------:|:-------:|:---------:|:------:| | 0.7831| 0.9155| 0.8442 |
ReynaQuita/twitter_disaster_distilbert
ae77f2802a8e414b7aafdb89b1db36f169b2d2e4
2021-10-26T08:29:48.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
ReynaQuita
null
ReynaQuita/twitter_disaster_distilbert
12
null
transformers
10,504
Entry not found
SEBIS/code_trans_t5_base_code_documentation_generation_ruby
a7c9b511cbe2f36363884b5f12b1a3cbd7e5a5e8
2021-06-23T04:50:26.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_base_code_documentation_generation_ruby
12
null
transformers
10,505
--- tags: - summarization widget: - text: "def add ( severity , progname , & block ) return true if io . nil? || severity < level message = format_message ( severity , progname , yield ) MUTEX . synchronize { io . write ( message ) } true end" --- # CodeTrans model for code documentation generation ruby Pretrained model on programming language ruby using the t5 base model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized ruby code functions: it works best with tokenized ruby functions. ## Model description This CodeTrans model is based on the `t5-base` model. It has its own SentencePiece vocabulary model. It used single-task training on CodeSearchNet Corpus ruby dataset. ## Intended uses & limitations The model could be used to generate the description for the ruby function or be fine-tuned on other ruby code tasks. It can be used on unparsed and untokenized ruby code. However, if the ruby code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate ruby function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_base_code_documentation_generation_ruby"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_base_code_documentation_generation_ruby", skip_special_tokens=True), device=0 ) tokenized_code = "def add ( severity , progname , & block ) return true if io . nil? || severity < level message = format_message ( severity , progname , yield ) MUTEX . synchronize { io . write ( message ) } true end" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/single%20task/function%20documentation%20generation/ruby/base_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Python | Java | Go | Php | Ruby | JavaScript | | -------------------- | :------------: | :------------: | :------------: | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 17.31 | 16.65 | 16.89 | 23.05 | 9.19 | 13.7 | | CodeTrans-ST-Base | 16.86 | 17.17 | 17.16 | 22.98 | 8.23 | 13.17 | | CodeTrans-TF-Small | 19.93 | 19.48 | 18.88 | 25.35 | 13.15 | 17.23 | | CodeTrans-TF-Base | 20.26 | 20.19 | 19.50 | 25.84 | 14.07 | 18.25 | | CodeTrans-TF-Large | 20.35 | 20.06 | **19.54** | 26.18 | 14.94 | **18.98** | | CodeTrans-MT-Small | 19.64 | 19.00 | 19.15 | 24.68 | 14.91 | 15.26 | | CodeTrans-MT-Base | **20.39** | 21.22 | 19.43 | **26.23** | **15.26** | 16.11 | | CodeTrans-MT-Large | 20.18 | **21.87** | 19.38 | 26.08 | 15.00 | 16.23 | | CodeTrans-MT-TF-Small | 19.77 | 20.04 | 19.36 | 25.55 | 13.70 | 17.24 | | CodeTrans-MT-TF-Base | 19.77 | 21.12 | 18.86 | 25.79 | 14.24 | 18.62 | | CodeTrans-MT-TF-Large | 18.94 | 21.42 | 18.77 | 26.20 | 14.19 | 18.83 | | State of the art | 19.06 | 17.65 | 18.07 | 25.16 | 12.16 | 14.90 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_base_program_synthese
4c72d42e00b0f2a3fdb433bf84ad898f1316017e
2021-06-23T05:03:36.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_base_program_synthese
12
null
transformers
10,506
--- tags: - summarization widget: - text: "you are given an array of numbers a and a number b , compute the difference of elements in a and b" --- # CodeTrans model for program synthesis Pretrained model on programming language lisp inspired DSL using the t5 base model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). ## Model description This CodeTrans model is based on the `t5-base` model. It has its own SentencePiece vocabulary model. It used single-task training on Program Synthesis dataset. ## Intended uses & limitations The model could be used to generate lisp inspired DSL code based on the human language description tasks. ### How to use Here is how to use this model to generate lisp inspired DSL code using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_base_program_synthese"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_base_program_synthese", skip_special_tokens=True), device=0 ) tokenized_code = "you are given an array of numbers a and a number b , compute the difference of elements in a and b" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/single%20task/program%20synthesis/base_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | LISP | | -------------------- | :------------: | | CodeTrans-ST-Small | 89.43 | | CodeTrans-ST-Base | 89.65 | | CodeTrans-TF-Small | 90.30 | | CodeTrans-TF-Base | 90.24 | | CodeTrans-TF-Large | 90.21 | | CodeTrans-MT-Small | 82.88 | | CodeTrans-MT-Base | 86.99 | | CodeTrans-MT-Large | 90.27 | | CodeTrans-MT-TF-Small | **90.31** | | CodeTrans-MT-TF-Base | 90.30 | | CodeTrans-MT-TF-Large | 90.17 | | State of the art | 85.80 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_base_program_synthese_transfer_learning_finetune
c5f4105d6788c6efa2b7535ac5c93bef5148eddd
2021-06-23T05:10:46.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_base_program_synthese_transfer_learning_finetune
12
null
transformers
10,507
--- tags: - summarization widget: - text: "you are given an array of numbers a and a number b , compute the difference of elements in a and b" --- # CodeTrans model for program synthesis Pretrained model on programming language lisp inspired DSL using the t5 base model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). ## Model description This CodeTrans model is based on the `t5-base` model. It has its own SentencePiece vocabulary model. It used transfer-learning pre-training on 7 unsupervised datasets in the software development domain. It is then fine-tuned on the program synthesis task for the lisp inspired DSL code. ## Intended uses & limitations The model could be used to generate lisp inspired DSL code given the human language description tasks. ### How to use Here is how to use this model to generate lisp inspired DSL code using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_base_program_synthese_transfer_learning_finetune"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_base_program_synthese_transfer_learning_finetune", skip_special_tokens=True), device=0 ) tokenized_code = "you are given an array of numbers a and a number b , compute the difference of elements in a and b" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/multitask/transfer%20learning%20fine-tuning/base_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Transfer-learning Pretraining The model was trained on a single TPU Pod V3-8 for 500,000 steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Fine-tuning This model was then fine-tuned on a single TPU Pod V2-8 for 45,000 steps in total, using sequence length 512 (batch size 256), using only the dataset only containing lisp inspired DSL data. ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | LISP | | -------------------- | :------------: | | CodeTrans-ST-Small | 89.43 | | CodeTrans-ST-Base | 89.65 | | CodeTrans-TF-Small | 90.30 | | CodeTrans-TF-Base | 90.24 | | CodeTrans-TF-Large | 90.21 | | CodeTrans-MT-Small | 82.88 | | CodeTrans-MT-Base | 86.99 | | CodeTrans-MT-Large | 90.27 | | CodeTrans-MT-TF-Small | **90.31** | | CodeTrans-MT-TF-Base | 90.30 | | CodeTrans-MT-TF-Large | 90.17 | | State of the art | 85.80 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_large_code_documentation_generation_javascript_transfer_learning_finetune
11e0667a204fc399ddea68668854f5a6302b1b29
2021-06-23T07:07:09.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_large_code_documentation_generation_javascript_transfer_learning_finetune
12
null
transformers
10,508
--- tags: - summarization widget: - text: "function isStandardBrowserEnv ( ) { if ( typeof navigator !== 'undefined' && ( navigator . product === 'ReactNative' || navigator . product === 'NativeScript' || navigator . product === 'NS' ) ) { return false ; } return ( typeof window !== 'undefined' && typeof document !== 'undefined' ) ; }" --- # CodeTrans model for code documentation generation javascript Pretrained model on programming language javascript using the t5 large model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized javascript code functions: it works best with tokenized javascript functions. ## Model description This CodeTrans model is based on the `t5-large` model. It has its own SentencePiece vocabulary model. It used transfer-learning pre-training on 7 unsupervised datasets in the software development domain. It is then fine-tuned on the code documentation generation task for the javascript function/method. ## Intended uses & limitations The model could be used to generate the description for the javascript function or be fine-tuned on other javascript code tasks. It can be used on unparsed and untokenized javascript code. However, if the javascript code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate javascript function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_large_code_documentation_generation_javascript_transfer_learning_finetune"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_large_code_documentation_generation_javascript_transfer_learning_finetune", skip_special_tokens=True), device=0 ) tokenized_code = "function isStandardBrowserEnv ( ) { if ( typeof navigator !== 'undefined' && ( navigator . product === 'ReactNative' || navigator . product === 'NativeScript' || navigator . product === 'NS' ) ) { return false ; } return ( typeof window !== 'undefined' && typeof document !== 'undefined' ) ; }" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/transfer%20learning%20fine-tuning/function%20documentation%20generation/javascript/large_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Transfer-learning Pretraining The model was trained on a single TPU Pod V3-8 for 240,000 steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Fine-tuning This model was then fine-tuned on a single TPU Pod V3-8 for 4,000 steps in total, using sequence length 512 (batch size 256), using only the dataset only containing javascript code. ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Python | Java | Go | Php | Ruby | JavaScript | | -------------------- | :------------: | :------------: | :------------: | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 17.31 | 16.65 | 16.89 | 23.05 | 9.19 | 13.7 | | CodeTrans-ST-Base | 16.86 | 17.17 | 17.16 | 22.98 | 8.23 | 13.17 | | CodeTrans-TF-Small | 19.93 | 19.48 | 18.88 | 25.35 | 13.15 | 17.23 | | CodeTrans-TF-Base | 20.26 | 20.19 | 19.50 | 25.84 | 14.07 | 18.25 | | CodeTrans-TF-Large | 20.35 | 20.06 | **19.54** | 26.18 | 14.94 | **18.98** | | CodeTrans-MT-Small | 19.64 | 19.00 | 19.15 | 24.68 | 14.91 | 15.26 | | CodeTrans-MT-Base | **20.39** | 21.22 | 19.43 | **26.23** | **15.26** | 16.11 | | CodeTrans-MT-Large | 20.18 | **21.87** | 19.38 | 26.08 | 15.00 | 16.23 | | CodeTrans-MT-TF-Small | 19.77 | 20.04 | 19.36 | 25.55 | 13.70 | 17.24 | | CodeTrans-MT-TF-Base | 19.77 | 21.12 | 18.86 | 25.79 | 14.24 | 18.62 | | CodeTrans-MT-TF-Large | 18.94 | 21.42 | 18.77 | 26.20 | 14.19 | 18.83 | | State of the art | 19.06 | 17.65 | 18.07 | 25.16 | 12.16 | 14.90 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_large_source_code_summarization_python_transfer_learning_finetune
c8624bcb37803198d64f3d6cb0307e5c07a18c97
2021-06-23T09:32:03.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_large_source_code_summarization_python_transfer_learning_finetune
12
null
transformers
10,509
--- tags: - summarization widget: - text: '''with open ( CODE_STRING , CODE_STRING ) as in_file : buf = in_file . readlines ( ) with open ( CODE_STRING , CODE_STRING ) as out_file : for line in buf : if line == " ; Include this text " : line = line + " Include below " out_file . write ( line ) ''' --- # CodeTrans model for source code summarization python Pretrained model on programming language python using the t5 large model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized python code functions: it works best with tokenized python functions. ## Model description This CodeTrans model is based on the `t5-large` model. It has its own SentencePiece vocabulary model. It used transfer-learning pre-training on 7 unsupervised datasets in the software development domain. It is then fine-tuned on the source code summarization task for the python code snippets. ## Intended uses & limitations The model could be used to generate the description for the python function or be fine-tuned on other python code tasks. It can be used on unparsed and untokenized python code. However, if the python code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate python function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_large_source_code_summarization_python_transfer_learning_finetune"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_large_source_code_summarization_python_transfer_learning_finetune", skip_special_tokens=True), device=0 ) tokenized_code = '''with open ( CODE_STRING , CODE_STRING ) as in_file : buf = in_file . readlines ( ) with open ( CODE_STRING , CODE_STRING ) as out_file : for line in buf : if line == " ; Include this text " : line = line + " Include below " out_file . write ( line ) ''' pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/transfer%20learning%20fine-tuning/source%20code%20summarization/python/large_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Transfer-learning Pretraining The model was trained on a single TPU Pod V3-8 for 240,000 steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Fine-tuning This model was then fine-tuned on a single TPU Pod V2-8 for 100 steps in total, using sequence length 512 (batch size 256), using only the dataset only containing python code. ## Evaluation results For the source code summarization tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Python | SQL | C# | | -------------------- | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 8.45 | 17.55 | 19.74 | | CodeTrans-ST-Base | 9.12 | 15.00 | 18.65 | | CodeTrans-TF-Small | 10.06 | 17.71 | 20.40 | | CodeTrans-TF-Base | 10.94 | 17.66 | 21.12 | | CodeTrans-TF-Large | 12.41 | 18.40 | 21.43 | | CodeTrans-MT-Small | 13.11 | 19.15 | 22.39 | | CodeTrans-MT-Base | **13.37** | 19.24 | 23.20 | | CodeTrans-MT-Large | 13.24 | 19.40 | **23.57** | | CodeTrans-MT-TF-Small | 12.10 | 18.25 | 22.03 | | CodeTrans-MT-TF-Base | 10.64 | 16.91 | 21.40 | | CodeTrans-MT-TF-Large | 12.14 | **19.98** | 21.10 | | CODE-NN | -- | 18.40 | 20.50 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_small_code_documentation_generation_go_transfer_learning_finetune
9742ba911d55a1508e8ebd33fe6cac58a7b14f63
2021-06-23T09:59:51.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_small_code_documentation_generation_go_transfer_learning_finetune
12
null
transformers
10,510
--- tags: - summarization widget: - text: "func ( pr * Progress ) needSnapshotAbort ( ) bool { return pr . State == ProgressStateSnapshot && pr . Match >= pr . PendingSnapshot }" --- # CodeTrans model for code documentation generation go Pretrained model on programming language go using the t5 small model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized go code functions: it works best with tokenized go functions. ## Model description This CodeTrans model is based on the `t5-small` model. It has its own SentencePiece vocabulary model. It used transfer-learning pre-training on 7 unsupervised datasets in the software development domain. It is then fine-tuned on the code documentation generation task for the go function/method. ## Intended uses & limitations The model could be used to generate the description for the go function or be fine-tuned on other go code tasks. It can be used on unparsed and untokenized go code. However, if the go code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate go function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_small_code_documentation_generation_go_transfer_learning_finetune"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_small_code_documentation_generation_go_transfer_learning_finetune", skip_special_tokens=True), device=0 ) tokenized_code = "func ( pr * Progress ) needSnapshotAbort ( ) bool { return pr . State == ProgressStateSnapshot && pr . Match >= pr . PendingSnapshot }" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/transfer%20learning%20fine-tuning/function%20documentation%20generation/go/small_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Transfer-learning Pretraining The model was trained on a single TPU Pod V3-8 for half million steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Fine-tuning This model was then fine-tuned on a single TPU Pod V2-8 for 10,000 steps in total, using sequence length 512 (batch size 256), using only the dataset only containing go code. ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Python | Java | Go | Php | Ruby | JavaScript | | -------------------- | :------------: | :------------: | :------------: | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 17.31 | 16.65 | 16.89 | 23.05 | 9.19 | 13.7 | | CodeTrans-ST-Base | 16.86 | 17.17 | 17.16 | 22.98 | 8.23 | 13.17 | | CodeTrans-TF-Small | 19.93 | 19.48 | 18.88 | 25.35 | 13.15 | 17.23 | | CodeTrans-TF-Base | 20.26 | 20.19 | 19.50 | 25.84 | 14.07 | 18.25 | | CodeTrans-TF-Large | 20.35 | 20.06 | **19.54** | 26.18 | 14.94 | **18.98** | | CodeTrans-MT-Small | 19.64 | 19.00 | 19.15 | 24.68 | 14.91 | 15.26 | | CodeTrans-MT-Base | **20.39** | 21.22 | 19.43 | **26.23** | **15.26** | 16.11 | | CodeTrans-MT-Large | 20.18 | **21.87** | 19.38 | 26.08 | 15.00 | 16.23 | | CodeTrans-MT-TF-Small | 19.77 | 20.04 | 19.36 | 25.55 | 13.70 | 17.24 | | CodeTrans-MT-TF-Base | 19.77 | 21.12 | 18.86 | 25.79 | 14.24 | 18.62 | | CodeTrans-MT-TF-Large | 18.94 | 21.42 | 18.77 | 26.20 | 14.19 | 18.83 | | State of the art | 19.06 | 17.65 | 18.07 | 25.16 | 12.16 | 14.90 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/legal_t5_small_trans_cs_de
64be375b502a728d1c08c96d70a4bfa12e505f0d
2021-06-23T11:29:34.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "Cszech Deustch", "dataset:dcep europarl jrc-acquis", "transformers", "translation Cszech Deustch model", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_trans_cs_de
12
null
transformers
10,511
--- language: Cszech Deustch tags: - translation Cszech Deustch model datasets: - dcep europarl jrc-acquis widget: - text: "Konečná zpráva bude Parlamentu předložena na konci nového funkčního období." --- # legal_t5_small_trans_cs_de model Model on translating legal text from Cszech to Deustch. It was first released in [this repository](https://github.com/agemagician/LegalTrans). This model is trained on three parallel corpus from jrc-acquis, europarl and dcep. ## Model description legal_t5_small_trans_cs_de is based on the `t5-small` model and was trained on a large corpus of parallel text. This is a smaller model, which scales the baseline model of t5 down by using `dmodel = 512`, `dff = 2,048`, 8-headed attention, and only 6 layers each in the encoder and decoder. This variant has about 60 million parameters. ## Intended uses & limitations The model could be used for translation of legal texts from Cszech to Deustch. ### How to use Here is how to use this model to translate legal text from Cszech to Deustch in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_trans_cs_de"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_trans_cs_de", do_lower_case=False, skip_special_tokens=True), device=0 ) cs_text = "Konečná zpráva bude Parlamentu předložena na konci nového funkčního období." pipeline([cs_text], max_length=512) ``` ## Training data The legal_t5_small_trans_cs_de model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 5 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_trans_cs_de | 44.69| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SEBIS/legal_t5_small_trans_it_fr
e471255a14ba5fe54efecf0b9bced961ae7c5ae6
2021-06-23T10:03:01.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "Italian French", "dataset:dcep europarl jrc-acquis", "transformers", "translation Italian French model", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_trans_it_fr
12
null
transformers
10,512
--- language: Italian French tags: - translation Italian French model datasets: - dcep europarl jrc-acquis widget: - text: "Qualora gli emendamenti approvati dal Parlamento abbiano l'effetto di aumentare le spese iscritte nel progetto di bilancio oltre il tasso massimo previsto, la commissione competente per il merito sottopone al Parlamento una proposta intesa a fissare un nuovo tasso massimo in conformità del paragrafo 9, ultimo comma, degli articoli 78 del trattato CECA, 272 del trattato CE e 177 del trattato CEEA." --- # legal_t5_small_trans_it_fr model Model on translating legal text from Italian to French. It was first released in [this repository](https://github.com/agemagician/LegalTrans). This model is trained on three parallel corpus from jrc-acquis, europarl and dcep. ## Model description legal_t5_small_trans_it_fr is based on the `t5-small` model and was trained on a large corpus of parallel text. This is a smaller model, which scales the baseline model of t5 down by using `dmodel = 512`, `dff = 2,048`, 8-headed attention, and only 6 layers each in the encoder and decoder. This variant has about 60 million parameters. ## Intended uses & limitations The model could be used for translation of legal texts from Italian to French. ### How to use Here is how to use this model to translate legal text from Italian to French in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_trans_it_fr"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_trans_it_fr", do_lower_case=False, skip_special_tokens=True), device=0 ) it_text = "Qualora gli emendamenti approvati dal Parlamento abbiano l'effetto di aumentare le spese iscritte nel progetto di bilancio oltre il tasso massimo previsto, la commissione competente per il merito sottopone al Parlamento una proposta intesa a fissare un nuovo tasso massimo in conformità del paragrafo 9, ultimo comma, degli articoli 78 del trattato CECA, 272 del trattato CE e 177 del trattato CEEA." pipeline([it_text], max_length=512) ``` ## Training data The legal_t5_small_trans_it_fr model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 5 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_trans_it_fr | 50.559| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
Salesforce/qaconv-unifiedqa-t5-3b
636b2117bf569d9e9f76919aedd5e193470e352f
2021-06-21T19:49:37.000Z
[ "pytorch", "tf", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Salesforce
null
Salesforce/qaconv-unifiedqa-t5-3b
12
null
transformers
10,513
Entry not found
ScottaStrong/DialogGPT-medium-joshua
eff1080796d967637ea7379f2672585902cecb47
2021-06-17T00:25:33.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational", "license:mit" ]
conversational
false
ScottaStrong
null
ScottaStrong/DialogGPT-medium-joshua
12
null
transformers
10,514
--- thumbnail: https://huggingface.co/front/thumbnails/dialogpt.png tags: - conversational license: mit --- # DialoGPT Trained on the Speech of a Game Character This is an instance of [microsoft/DialoGPT-medium](https://huggingface.co/microsoft/DialoGPT-medium) trained on a game character, Joshua from [The World Ends With You](https://en.wikipedia.org/wiki/The_World_Ends_with_You). The data comes from [a Kaggle game script dataset](https://www.kaggle.com/ruolinzheng/twewy-game-script). I built a Discord AI chatbot based on this model. [Check out my GitHub repo.](https://github.com/RuolinZheng08/twewy-discord-chatbot) Chat with the model: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("scottastrong/DialogGPT-medium-joshua") model = AutoModelWithLMHead.from_pretrained("scottastrong/DialogGPT-medium-joshua") # Let's chat for 4 lines for step in range(4): # encode the new user input, add the eos_token and return a tensor in Pytorch new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt') # print(new_user_input_ids) # append the new user input tokens to the chat history bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids # generated a response while limiting the total chat history to 1000 tokens, chat_history_ids = model.generate( bot_input_ids, max_length=200, pad_token_id=tokenizer.eos_token_id, no_repeat_ngram_size=3, do_sample=True, top_k=100, top_p=0.7, temperature=0.8 ) # pretty print last ouput tokens from bot print("JoshuaBot: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True))) ```
SophieTr/distil-pegasus-reddit
f8ac41300eb2c601e6d771dc42fe899e3e28bb61
2021-12-29T23:58:29.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
SophieTr
null
SophieTr/distil-pegasus-reddit
12
null
transformers
10,515
This is the model so far before time out
Suva/uptag-email-model-v2
3a6fde2540b4f8cfdf5fa0043904c9206bb4894c
2022-02-08T09:03:33.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Suva
null
Suva/uptag-email-model-v2
12
null
transformers
10,516
Entry not found
Tahsin/distilbert-base-uncased-finetuned-emotion
ba9481e0e16ccbed6d1b3f759b2538fb06602765
2022-01-06T07:43:40.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Tahsin
null
Tahsin/distilbert-base-uncased-finetuned-emotion
12
null
transformers
10,517
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9285 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1561 - Accuracy: 0.9285 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 250 | 0.1635 | 0.9295 | | 0.111 | 2.0 | 500 | 0.1515 | 0.936 | | 0.111 | 3.0 | 750 | 0.1561 | 0.9285 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
TheLongSentance/t5-small-finetuned-xsum
17ffbc1941e04620dab8a7ad8615619aec4a6b8e
2021-07-24T11:57:58.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:xsum", "transformers", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
TheLongSentance
null
TheLongSentance/t5-small-finetuned-xsum
12
null
transformers
10,518
--- license: apache-2.0 tags: - generated_from_trainer datasets: - xsum metrics: - rouge model_index: - name: t5-small-finetuned-xsum results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: xsum type: xsum args: default metric: name: Rouge1 type: rouge value: 29.6452 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xsum dataset. It achieves the following results on the evaluation set: - Loss: 2.3833 - Rouge1: 29.6452 - Rouge2: 8.6953 - Rougel: 23.4474 - Rougelsum: 23.4553 - Gen Len: 18.8037 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:------:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 2.6051 | 1.0 | 102023 | 2.3833 | 29.6452 | 8.6953 | 23.4474 | 23.4553 | 18.8037 | ### Framework versions - Transformers 4.9.0 - Pytorch 1.9.0+cu102 - Datasets 1.10.2 - Tokenizers 0.10.3
TransQuest/monotransquest-hter-de_en-pharmaceutical
9b169899defa4c2ff3385e8956a1553d737404f5
2021-06-03T19:11:44.000Z
[ "pytorch", "xlm-roberta", "text-classification", "de-en", "transformers", "Quality Estimation", "monotransquest", "hter", "license:apache-2.0" ]
text-classification
false
TransQuest
null
TransQuest/monotransquest-hter-de_en-pharmaceutical
12
null
transformers
10,519
--- language: de-en tags: - Quality Estimation - monotransquest - hter license: apache-2.0 --- # TransQuest: Translation Quality Estimation with Cross-lingual Transformers The goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level. With TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in [WMT 2020](http://www.statmt.org/wmt20/quality-estimation-task.html). TransQuest outperforms current open-source quality estimation frameworks such as [OpenKiwi](https://github.com/Unbabel/OpenKiwi) and [DeepQuest](https://github.com/sheffieldnlp/deepQuest). ## Features - Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment. - Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps. - Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. - Pre-trained quality estimation models for fifteen language pairs are available in [HuggingFace.](https://huggingface.co/TransQuest) ## Installation ### From pip ```bash pip install transquest ``` ### From Source ```bash git clone https://github.com/TharinduDR/TransQuest.git cd TransQuest pip install -r requirements.txt ``` ## Using Pre-trained Models ```python import torch from transquest.algo.sentence_level.monotransquest.run_model import MonoTransQuestModel model = MonoTransQuestModel("xlmroberta", "TransQuest/monotransquest-hter-de_en-pharmaceutical", num_labels=1, use_cuda=torch.cuda.is_available()) predictions, raw_outputs = model.predict([["Reducerea acestor conflicte este importantă pentru conservare.", "Reducing these conflicts is not important for preservation."]]) print(predictions) ``` ## Documentation For more details follow the documentation. 1. **[Installation](https://tharindudr.github.io/TransQuest/install/)** - Install TransQuest locally using pip. 2. **Architectures** - Checkout the architectures implemented in TransQuest 1. [Sentence-level Architectures](https://tharindudr.github.io/TransQuest/architectures/sentence_level_architectures/) - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation. 2. [Word-level Architecture](https://tharindudr.github.io/TransQuest/architectures/word_level_architecture/) - We have released MicroTransQuest to perform word level quality estimation. 3. **Examples** - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks. 1. [Sentence-level Examples](https://tharindudr.github.io/TransQuest/examples/sentence_level_examples/) 2. [Word-level Examples](https://tharindudr.github.io/TransQuest/examples/word_level_examples/) 4. **Pre-trained Models** - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level 1. [Sentence-level Models](https://tharindudr.github.io/TransQuest/models/sentence_level_pretrained/) 2. [Word-level Models](https://tharindudr.github.io/TransQuest/models/word_level_pretrained/) 5. **[Contact](https://tharindudr.github.io/TransQuest/contact/)** - Contact us for any issues with TransQuest ## Citations If you are using the word-level architecture, please consider citing this paper which is accepted to [ACL 2021](https://2021.aclweb.org/). ```bash @InProceedings{ranasinghe2021, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {An Exploratory Analysis of Multilingual Word Level Quality Estimation with Cross-Lingual Transformers}, booktitle = {Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics}, year = {2021} } ``` If you are using the sentence-level architectures, please consider citing these papers which were presented in [COLING 2020](https://coling2020.org/) and in [WMT 2020](http://www.statmt.org/wmt20/) at EMNLP 2020. ```bash @InProceedings{transquest:2020a, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest: Translation Quality Estimation with Cross-lingual Transformers}, booktitle = {Proceedings of the 28th International Conference on Computational Linguistics}, year = {2020} } ``` ```bash @InProceedings{transquest:2020b, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest at WMT2020: Sentence-Level Direct Assessment}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, year = {2020} } ```
TransQuest/siamesetransquest-da-en_de-wiki
469775f24b528f4b6bdc30394ba13b1dc763d524
2021-06-04T08:09:25.000Z
[ "pytorch", "xlm-roberta", "feature-extraction", "en-de", "transformers", "Quality Estimation", "siamesetransquest", "da", "license:apache-2.0" ]
feature-extraction
false
TransQuest
null
TransQuest/siamesetransquest-da-en_de-wiki
12
null
transformers
10,520
--- language: en-de tags: - Quality Estimation - siamesetransquest - da license: apache-2.0 --- # TransQuest: Translation Quality Estimation with Cross-lingual Transformers The goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level. With TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in [WMT 2020](http://www.statmt.org/wmt20/quality-estimation-task.html). TransQuest outperforms current open-source quality estimation frameworks such as [OpenKiwi](https://github.com/Unbabel/OpenKiwi) and [DeepQuest](https://github.com/sheffieldnlp/deepQuest). ## Features - Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment. - Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps. - Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. - Pre-trained quality estimation models for fifteen language pairs are available in [HuggingFace.](https://huggingface.co/TransQuest) ## Installation ### From pip ```bash pip install transquest ``` ### From Source ```bash git clone https://github.com/TharinduDR/TransQuest.git cd TransQuest pip install -r requirements.txt ``` ## Using Pre-trained Models ```python import torch from transquest.algo.sentence_level.siamesetransquest.run_model import SiameseTransQuestModel model = SiameseTransQuestModel("TransQuest/siamesetransquest-da-en_de-wiki") predictions = model.predict([["Reducerea acestor conflicte este importantă pentru conservare.", "Reducing these conflicts is not important for preservation."]]) print(predictions) ``` ## Documentation For more details follow the documentation. 1. **[Installation](https://tharindudr.github.io/TransQuest/install/)** - Install TransQuest locally using pip. 2. **Architectures** - Checkout the architectures implemented in TransQuest 1. [Sentence-level Architectures](https://tharindudr.github.io/TransQuest/architectures/sentence_level_architectures/) - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation. 2. [Word-level Architecture](https://tharindudr.github.io/TransQuest/architectures/word_level_architecture/) - We have released MicroTransQuest to perform word level quality estimation. 3. **Examples** - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks. 1. [Sentence-level Examples](https://tharindudr.github.io/TransQuest/examples/sentence_level_examples/) 2. [Word-level Examples](https://tharindudr.github.io/TransQuest/examples/word_level_examples/) 4. **Pre-trained Models** - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level 1. [Sentence-level Models](https://tharindudr.github.io/TransQuest/models/sentence_level_pretrained/) 2. [Word-level Models](https://tharindudr.github.io/TransQuest/models/word_level_pretrained/) 5. **[Contact](https://tharindudr.github.io/TransQuest/contact/)** - Contact us for any issues with TransQuest ## Citations If you are using the word-level architecture, please consider citing this paper which is accepted to [ACL 2021](https://2021.aclweb.org/). ```bash @InProceedings{ranasinghe2021, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {An Exploratory Analysis of Multilingual Word Level Quality Estimation with Cross-Lingual Transformers}, booktitle = {Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics}, year = {2021} } ``` If you are using the sentence-level architectures, please consider citing these papers which were presented in [COLING 2020](https://coling2020.org/) and in [WMT 2020](http://www.statmt.org/wmt20/) at EMNLP 2020. ```bash @InProceedings{transquest:2020a, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest: Translation Quality Estimation with Cross-lingual Transformers}, booktitle = {Proceedings of the 28th International Conference on Computational Linguistics}, year = {2020} } ``` ```bash @InProceedings{transquest:2020b, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest at WMT2020: Sentence-Level Direct Assessment}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, year = {2020} } ```
VLRevolution/DialogGPT-small-GGODMODEL
d4a68bf6199307f52e245fded6033299e56552f1
2022-01-10T14:25:25.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
VLRevolution
null
VLRevolution/DialogGPT-small-GGODMODEL
12
null
transformers
10,521
--- tags: - conversational --- # GGODMODEL
Wikidepia/IndoT5-large
e39767643b41c43c6ee118fc19f882613011843a
2021-09-02T11:57:48.000Z
[ "pytorch", "t5", "text2text-generation", "id", "dataset:allenai/c4", "transformers", "autotrain_compatible" ]
text2text-generation
false
Wikidepia
null
Wikidepia/IndoT5-large
12
null
transformers
10,522
--- language: - id datasets: - allenai/c4 --- **NOTE** : This model might be broken :/ # Indonesian T5 Large T5 (Text-to-Text Transfer Transformer) model pretrained on Indonesian mC4 with [extra filtering](https://github.com/Wikidepia/indonesian_datasets/tree/master/dump/mc4). This model is pre-trained only and needs to be fine-tuned to be used for specific tasks. ## Pretraining Details Trained for 500K steps following [`google/t5-v1_1-large`](https://huggingface.co/google/t5-v1_1-large). ## Model Performance TBD ## Limitations and bias This model also has the problem of biased (unethical, harmful, biased) output results due to the bias of the content of the training data, which is associated with the language model using a large-scale corpus. There is potential. Assuming that this problem may occur, please be careful to use it only for applications that do not cause damage. ## Acknowledgement Thanks to Tensorflow Research Cloud for providing TPU v3-8s.
Yaia/distilbert-base-uncased-finetuned-emotion
60417fd4d53e945b9df6934124efed8569acaa12
2022-01-21T17:28:21.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Yaia
null
Yaia/distilbert-base-uncased-finetuned-emotion
12
null
transformers
10,523
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9255 - name: F1 type: f1 value: 0.9257196896784097 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2086 - Accuracy: 0.9255 - F1: 0.9257 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8249 | 1.0 | 250 | 0.3042 | 0.9085 | 0.9068 | | 0.2437 | 2.0 | 500 | 0.2086 | 0.9255 | 0.9257 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1 - Datasets 1.17.0 - Tokenizers 0.10.3
ainize/gpt2-rnm-with-spongebob
4e43a74875f2fbdec3d3579b7b7b7a573728369c
2021-05-21T12:09:02.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
ainize
null
ainize/gpt2-rnm-with-spongebob
12
null
transformers
10,524
### Model information Fine tuning data 1: https://www.kaggle.com/andradaolteanu/rickmorty-scripts Fine tuning data 2: https://www.kaggle.com/mikhailgaerlan/spongebob-squarepants-completed-transcripts Base model: e-tony/gpt2-rnm Epoch: 2 Train runtime: 790.0612 secs Loss: 2.8569 API page: [Ainize](https://ainize.ai/fpem123/GPT2-Rick-N-Morty-with-SpongeBob?branch=master) Demo page: [End-point](https://master-gpt2-rick-n-morty-with-sponge-bob-fpem123.endpoint.ainize.ai/) ### ===Teachable NLP=== ### To train a GPT-2 model, write code and require GPU resources, but can easily fine-tune and get an API to use the model here for free. Teachable NLP: [Teachable NLP](https://ainize.ai/teachable-nlp) Tutorial: [Tutorial](https://forum.ainetwork.ai/t/teachable-nlp-how-to-use-teachable-nlp/65?utm_source=community&utm_medium=huggingface&utm_campaign=model&utm_content=teachable%20nlp)
alireza7/ARMAN-MSR-persian-base-perkey-summary
4b8da7e74c83ce73103537e162a8726668a788a9
2021-09-29T19:16:27.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
alireza7
null
alireza7/ARMAN-MSR-persian-base-perkey-summary
12
null
transformers
10,525
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
alireza7/ARMAN-SH-persian-base-PN-summary
622420d769ae7d35ae5c73e57df768a9f9226220
2021-09-29T19:17:58.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
alireza7
null
alireza7/ARMAN-SH-persian-base-PN-summary
12
null
transformers
10,526
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
allenai/dsp_roberta_base_tapt_citation_intent_1688
5c1947cca8cec0847d813345ae55bd3a61f18b0b
2021-05-20T13:24:32.000Z
[ "pytorch", "jax", "roberta", "transformers" ]
null
false
allenai
null
allenai/dsp_roberta_base_tapt_citation_intent_1688
12
null
transformers
10,527
Entry not found
ami-wav2vec2/wav2vec2-large-lv60-ami_multi-tune_0.0005_8
928595df3601041f1955680d693f6ff8a73dcc05
2021-11-19T13:26:02.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "en", "transformers", "ami", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
ami-wav2vec2
null
ami-wav2vec2/wav2vec2-large-lv60-ami_multi-tune_0.0005_8
12
null
transformers
10,528
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - ami - generated_from_trainer model-index: - name: wav2vec2-large-lv60-ami_multi-tune_0.0005_8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-lv60-ami_multi-tune_0.0005_8 This model is a fine-tuned version of [facebook/wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60) on the AMI-IHM dataset. It achieves the following results on the evaluation set: - Loss: 1.5154 - Wer: 0.4442 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.4248 | 0.86 | 1000 | 1.4213 | 0.4710 | | 1.2635 | 1.72 | 2000 | 1.2974 | 0.4288 | | 1.1501 | 2.59 | 3000 | 1.2381 | 0.4075 | | 1.0783 | 3.45 | 4000 | 1.2177 | 0.4130 | | 0.9888 | 4.31 | 5000 | 1.2388 | 0.3998 | | 0.9058 | 5.17 | 6000 | 1.2037 | 0.4010 | | 0.8678 | 6.03 | 7000 | 1.2275 | 0.4018 | | 0.8245 | 6.9 | 8000 | 1.2243 | 0.3940 | | 0.762 | 7.76 | 9000 | 1.2395 | 0.3999 | | 0.6929 | 8.62 | 10000 | 1.2715 | 0.4065 | | 0.6617 | 9.48 | 11000 | 1.3128 | 0.4046 | ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.9.1 - Datasets 1.12.2.dev0 - Tokenizers 0.10.3
angiquer/twitterko-electra-base-generator-large
c29885d5234a28c961dcc7ab39ed437c5f111a83
2020-07-10T01:46:07.000Z
[ "pytorch", "electra", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
angiquer
null
angiquer/twitterko-electra-base-generator-large
12
null
transformers
10,529
Entry not found
anirudh21/distilbert-base-uncased-finetuned-wnli
80ba0225e2821934eb87f63cbfb014f95c1010f4
2022-01-12T06:16:27.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
anirudh21
null
anirudh21/distilbert-base-uncased-finetuned-wnli
12
null
transformers
10,530
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-wnli results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: wnli metrics: - name: Accuracy type: accuracy value: 0.5633802816901409 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-wnli This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6883 - Accuracy: 0.5634 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 40 | 0.6883 | 0.5634 | | No log | 2.0 | 80 | 0.6934 | 0.5634 | | No log | 3.0 | 120 | 0.6960 | 0.5211 | | No log | 4.0 | 160 | 0.6958 | 0.5634 | | No log | 5.0 | 200 | 0.6964 | 0.5634 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
arampacha/wav2vec2-xls-r-1b-uk
ee3ebb6117bde6b1bf3a9f332fa20cca65e2c453
2022-03-23T18:26:29.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "uk", "dataset:common_voice", "transformers", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
arampacha
null
arampacha/wav2vec2-xls-r-1b-uk
12
null
transformers
10,531
--- language: - uk license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - common_voice model-index: - name: wav2vec2-xls-r-1b-hy results: - task: type: automatic-speech-recognition name: Speech Recognition dataset: type: mozilla-foundation/common_voice_8_0 name: Common Voice uk args: uk metrics: - type: wer value: 10.406342913776015 name: WER LM - type: cer value: 2.0387492208601703 name: CER LM - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: uk metrics: - name: Test WER type: wer value: 40.57 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: uk metrics: - name: Test WER type: wer value: 28.95 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the /WORKSPACE/DATA/UK/COMPOSED_DATASET/ - NA dataset. It achieves the following results on the evaluation set: - Loss: 0.1092 - Wer: 0.1752 - Cer: 0.0323 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - training_steps: 12000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:| | 1.7005 | 1.61 | 500 | 0.4082 | 0.5584 | 0.1164 | | 1.1555 | 3.22 | 1000 | 0.2020 | 0.2953 | 0.0557 | | 1.0927 | 4.82 | 1500 | 0.1708 | 0.2584 | 0.0480 | | 1.0707 | 6.43 | 2000 | 0.1563 | 0.2405 | 0.0450 | | 1.0728 | 8.04 | 2500 | 0.1620 | 0.2442 | 0.0463 | | 1.0268 | 9.65 | 3000 | 0.1588 | 0.2378 | 0.0458 | | 1.0328 | 11.25 | 3500 | 0.1466 | 0.2352 | 0.0442 | | 1.0249 | 12.86 | 4000 | 0.1552 | 0.2341 | 0.0449 | | 1.016 | 14.47 | 4500 | 0.1602 | 0.2435 | 0.0473 | | 1.0164 | 16.08 | 5000 | 0.1491 | 0.2337 | 0.0444 | | 0.9935 | 17.68 | 5500 | 0.1539 | 0.2373 | 0.0458 | | 0.9626 | 19.29 | 6000 | 0.1458 | 0.2305 | 0.0434 | | 0.9505 | 20.9 | 6500 | 0.1368 | 0.2157 | 0.0407 | | 0.9389 | 22.51 | 7000 | 0.1437 | 0.2231 | 0.0426 | | 0.9129 | 24.12 | 7500 | 0.1313 | 0.2076 | 0.0394 | | 0.9118 | 25.72 | 8000 | 0.1292 | 0.2040 | 0.0384 | | 0.8848 | 27.33 | 8500 | 0.1299 | 0.2028 | 0.0384 | | 0.8667 | 28.94 | 9000 | 0.1228 | 0.1945 | 0.0367 | | 0.8641 | 30.55 | 9500 | 0.1223 | 0.1939 | 0.0364 | | 0.8516 | 32.15 | 10000 | 0.1184 | 0.1876 | 0.0349 | | 0.8379 | 33.76 | 10500 | 0.1137 | 0.1821 | 0.0338 | | 0.8235 | 35.37 | 11000 | 0.1127 | 0.1779 | 0.0331 | | 0.8112 | 36.98 | 11500 | 0.1103 | 0.1766 | 0.0327 | | 0.8069 | 38.59 | 12000 | 0.1092 | 0.1752 | 0.0323 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2 - Datasets 1.18.4.dev0 - Tokenizers 0.11.0
arnolfokam/mbert-base-uncased-ner-kin
d457099e369b7c829765abbb8fee2bc8c654b141
2021-11-24T11:57:38.000Z
[ "pytorch", "bert", "token-classification", "kin", "dataset:masakhaner", "transformers", "NER", "license:apache-2.0", "autotrain_compatible" ]
token-classification
false
arnolfokam
null
arnolfokam/mbert-base-uncased-ner-kin
12
null
transformers
10,532
--- language: - kin tags: - NER datasets: - masakhaner metrics: - f1 - precision - recall license: apache-2.0 widget: - text: "Ambasaderi Bellomo yavuze ko bishimira ubufatanye burambye hagati ya EU n’u Rwanda, bushingiye nanone ku bufatanye hagati y’imigabane ya Afurika n’u Burayi." --- # Model description **mbert-base-uncased-ner-kin** is a model based on the fine-tuned Multilingual BERT base uncased model, previously fine-tuned for Named Entity Recognition using 10 high-resourced languages. It has been trained to recognize four types of entities: - dates & time (DATE) - Location (LOC) - Organizations (ORG) - Person (PER) # Intended Use - Intended to be used for research purposes concerning Named Entity Recognition for African Languages. - Not intended for practical purposes. # Training Data This model was fine-tuned on the Kinyarwanda corpus **(kin)** of the [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) dataset. However, we thresholded the number of entity groups per sentence in this dataset to 10 entity groups. # Training procedure This model was trained on a single NVIDIA P5000 from [Paperspace](https://www.paperspace.com) #### Hyperparameters - **Learning Rate:** 5e-5 - **Batch Size:** 32 - **Maximum Sequence Length:** 164 - **Epochs:** 30 # Evaluation Data We evaluated this model on the test split of the Kinyarwandan corpus **(kin)** present in the [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) with no thresholding. # Metrics - Precision - Recall - F1-score # Limitations - The size of the pre-trained language model prevents its usage in anything other than research. - Lack of analysis concerning the bias and fairness in these models may make them dangerous if deployed into production system. - The train data is a less populated version of the original dataset in terms of entity groups per sentence. Therefore, this can negatively impact the performance. # Caveats and Recommendations - The topics in the dataset corpus are centered around **News**. Future training could be done with a more diverse corpus. # Results Model Name| Precision | Recall | F1-score -|-|-|- **mbert-base-uncased-ner-kin**| 81.95 |81.55 |81.75 # Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline tokenizer = AutoTokenizer.from_pretrained("arnolfokam/mbert-base-uncased-ner-kin") model = AutoModelForTokenClassification.from_pretrained("arnolfokam/mbert-base-uncased-ner-kin") nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "Rayon Sports yasinyishije rutahizamu w’Umurundi" ner_results = nlp(example) print(ner_results) ```
asalics/distilbert-base-uncased-finetuned-emotion
a37ce86ceb35f28d0ffff1e0c6ce176470bd2c26
2022-02-06T14:29:54.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
asalics
null
asalics/distilbert-base-uncased-finetuned-emotion
12
null
transformers
10,533
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.924 - name: F1 type: f1 value: 0.9244145121183605 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2207 - Accuracy: 0.924 - F1: 0.9244 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.7914 | 1.0 | 250 | 0.3032 | 0.905 | 0.9030 | | 0.2379 | 2.0 | 500 | 0.2207 | 0.924 | 0.9244 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
beomi/beep-KcELECTRA-base-bias
5616706f4ab48887c5ac4ecf355fa248c5c5860f
2021-10-23T06:23:55.000Z
[ "pytorch", "electra", "text-classification", "transformers" ]
text-classification
false
beomi
null
beomi/beep-KcELECTRA-base-bias
12
null
transformers
10,534
Entry not found
beomi/korean-hatespeech-classifier
83a4b015f50c27bb05d533fdddd67767c9b3b9fe
2021-08-25T06:55:32.000Z
[ "pytorch", "electra", "text-classification", "transformers" ]
text-classification
false
beomi
null
beomi/korean-hatespeech-classifier
12
null
transformers
10,535
Entry not found
beomi/korean-hatespeech-multilabel
b9399885f6eedc940cec03b478bf7a97a38685c3
2021-10-19T15:37:33.000Z
[ "pytorch", "electra", "text-classification", "transformers" ]
text-classification
false
beomi
null
beomi/korean-hatespeech-multilabel
12
1
transformers
10,536
Entry not found
bespin-global/klue-bert-base-mrc
007ae2aaa0c4e33ec44d7ec77488f5176077583c
2021-11-19T01:12:59.000Z
[ "pytorch", "bert", "question-answering", "ko", "dataset:klue", "transformers", "mrc", "license:cc-by-nc-4.0", "autotrain_compatible" ]
question-answering
false
bespin-global
null
bespin-global/klue-bert-base-mrc
12
null
transformers
10,537
--- language: ko tags: - bert - mrc datasets: - klue license: cc-by-nc-4.0 --- ## Usage ```python # Load Transformers library import torch from transformers import AutoModelForQuestionAnswering, AutoTokenizer context = "your context" question = "your question" # Load fine-tuned MRC model by HuggingFace Model Hub HUGGINGFACE_MODEL_PATH = "bespin-global/klue-bert-base-mrc" tokenizer = AutoTokenizer.from_pretrained(HUGGINGFACE_MODEL_PATH ) model = AutoModelForQuestionAnswering.from_pretrained(HUGGINGFACE_MODEL_PATH ) # Encoding encodings = tokenizer(context, question, max_length=512, truncation=True, padding="max_length", return_token_type_ids=False ) encodings = {key: torch.tensor([val]) for key, val in encodings.items()} input_ids = encodings["input_ids"] attention_mask = encodings["attention_mask"] # Predict pred = model(input_ids, attention_mask=attention_mask) start_logits, end_logits = pred.start_logits, pred.end_logits token_start_index, token_end_index = start_logits.argmax(dim=-1), end_logits.argmax(dim=-1) pred_ids = input_ids[0][token_start_index: token_end_index + 1] # Decoding prediction = tokenizer.decode(pred_ids) ``` ## Citing & Authors <!--- Describe where people can find more information --> [Jaehyeong](https://huggingface.co/jaehyeong) at [Bespin Global](https://www.bespinglobal.com/)
bettertextapp/gpt2-large-detector-de-v1
a7a61e0a88a7037bb0fd9f2e307ec0c0139f4a99
2022-01-28T17:37:06.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
bettertextapp
null
bettertextapp/gpt2-large-detector-de-v1
12
null
transformers
10,538
Entry not found
biasedai/bert-based-ner
ee78bcb69a440876664732e41e0b007075f6045b
2021-06-10T11:43:16.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
biasedai
null
biasedai/bert-based-ner
12
null
transformers
10,539
Creating finetuned model for NER task
binwang/bert-base-uncased
eacb3b2b1deb1e88b6e5739fba9e391d040a521b
2021-05-19T12:43:37.000Z
[ "pytorch", "jax", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
binwang
null
binwang/bert-base-uncased
12
null
transformers
10,540
Entry not found
boronbrown48/1_topic_classification
6431b2f0c490614259b420cec095f2b0b6905c79
2021-12-12T02:31:08.000Z
[ "pytorch", "camembert", "text-classification", "transformers" ]
text-classification
false
boronbrown48
null
boronbrown48/1_topic_classification
12
null
transformers
10,541
Entry not found
boychaboy/SNLI_distilroberta-base
6ac1a37dd1e79b8f929bbe0aee6f8f24e7ccd69c
2021-05-20T14:34:56.000Z
[ "pytorch", "jax", "roberta", "text-classification", "transformers" ]
text-classification
false
boychaboy
null
boychaboy/SNLI_distilroberta-base
12
null
transformers
10,542
Entry not found
brandon25/distilbert-base-uncased-finetuned-ner
0842f4e5a6988aadfefeea4db3c119b624943f2a
2021-10-12T05:59:22.000Z
[ "pytorch", "tensorboard", "distilbert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
brandon25
null
brandon25/distilbert-base-uncased-finetuned-ner
12
1
transformers
10,543
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9303228669699323 - name: Recall type: recall value: 0.9380243875153821 - name: F1 type: f1 value: 0.9341577540106952 - name: Accuracy type: accuracy value: 0.9842407104389407 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0606 - Precision: 0.9303 - Recall: 0.9380 - F1: 0.9342 - Accuracy: 0.9842 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2459 | 1.0 | 878 | 0.0696 | 0.9117 | 0.9195 | 0.9156 | 0.9808 | | 0.0513 | 2.0 | 1756 | 0.0602 | 0.9223 | 0.9376 | 0.9299 | 0.9835 | | 0.0304 | 3.0 | 2634 | 0.0606 | 0.9303 | 0.9380 | 0.9342 | 0.9842 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.12.1 - Tokenizers 0.10.3
brunodorneles/ner_model
15a5ddc47739d775a2bc8381369c9bcfd75eff11
2021-10-28T19:27:08.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
brunodorneles
null
brunodorneles/ner_model
12
null
transformers
10,544
Entry not found
camille/bert-base-pruned-voc-esw0.7-40000-en-fr-cased
fc52bb16982c40a338522535fcabf111e2997e46
2021-05-19T13:55:45.000Z
[ "pytorch", "jax", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
camille
null
camille/bert-base-pruned-voc-esw0.7-40000-en-fr-cased
12
null
transformers
10,545
Entry not found
castorini/monot5-3b-med-msmarco
2c7b8050cc95720e78370f4e04648a3dc9ba1233
2021-05-28T11:54:47.000Z
[ "pytorch", "t5", "feature-extraction", "transformers" ]
feature-extraction
false
castorini
null
castorini/monot5-3b-med-msmarco
12
1
transformers
10,546
This model is a T5-3B reranker fine-tuned on the MS MARCO passage dataset for 10K steps (or 1 epoch) and then fine-tuned again on MedMARCO (from [Sledge-Z paper](https://www.aclweb.org/anthology/2020.emnlp-main.341.pdf)) for 1K steps. For more details on how to use it, check [pygaggle.ai](pygaggle.ai)! Paper describing the model: [Document Ranking with a Pretrained Sequence-to-Sequence Model](https://www.aclweb.org/anthology/2020.findings-emnlp.63/)
christopherastone/distilgpt2-proofs
4e7b9f1dff4ca376d52359242da107dbc629aaea
2021-07-02T16:13:11.000Z
[ "pytorch", "tf", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
christopherastone
null
christopherastone/distilgpt2-proofs
12
null
transformers
10,547
--- widget: - text: "Let MATH be given." - text: "If MATH is a nonempty" - text: "By the inductive hypothesis," --- [DistilGPT2](https://huggingface.co/distilgpt2) English language model fine-tuned on mathematical proofs extracted from [arXiv.org](https://arxiv.org) LaTeX sources from 1992 to 2020. Proofs have been cleaned up a bit. In particular, they use * `CITE` for any citation * `REF` for any reference * `MATH` for any LaTeX mathematical formula * `CASE:` for any `\item` or labeled subcase.
chrommium/sbert_large-finetuned-sent_in_news_sents
d2440bc4ac71d379f40a59d6d55908258d1a8c56
2021-12-03T16:18:40.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
chrommium
null
chrommium/sbert_large-finetuned-sent_in_news_sents
12
null
transformers
10,548
--- tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: sbert_large-finetuned-sent_in_news_sents results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sbert_large-finetuned-sent_in_news_sents This model is a fine-tuned version of [sberbank-ai/sbert_large_nlu_ru](https://huggingface.co/sberbank-ai/sbert_large_nlu_ru) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.7056 - Accuracy: 0.7301 - F1: 0.5210 ## Model examples Model responds to label X in news text. For exaple: For 'Газпром отозвал лицензию у X, сообщает Финам' the model will return negative label -3 For 'X отозвал лицензию у Сбербанка, сообщает Финам' the model will return neutral label 0 For 'Газпром отозвал лицензию у Сбербанка, сообщает X' the model will return neutral label 0 For 'X демонстрирует высокую прибыль, сообщает Финам' the model will return positive label 1 ## Simple example of News preprocessing for Russian before BERT ``` from natasha import ( Segmenter, MorphVocab, NewsEmbedding, NewsMorphTagger, NewsSyntaxParser, NewsNERTagger, PER, NamesExtractor, Doc ) segmenter = Segmenter() emb = NewsEmbedding() morph_tagger = NewsMorphTagger(emb) syntax_parser = NewsSyntaxParser(emb) morph_vocab = MorphVocab() ### ----------------------------- key sentences block ----------------------------- def find_synax_tokens_with_order(doc, start, tokens, text_arr, full_str): ''' Находит все синтаксические токены, соответствующие заданному набору простых токенов (найденные для определенной NER другими функциями). Возвращает словарь найденных синтаксических токенов (ключ - идентификатор токена, состоящий из номера предложения и номера токена внутри предложения). Начинает поиск с указанной позиции в списке синтаксических токенов, дополнительно возвращает позицию остановки, с которой нужно продолжить поиск следующей NER. ''' found = [] in_str = False str_candidate = '' str_counter = 0 if len(text_arr) == 0: return [], start for i in range(start, len(doc.syntax.tokens)): t = doc.syntax.tokens[i] if in_str: str_counter += 1 if str_counter < len(text_arr) and t.text == text_arr[str_counter]: str_candidate += t.text found.append(t) if str_candidate == full_str: return found, i+1 else: in_str = False str_candidate = '' str_counter = 0 found = [] if t.text == text_arr[0]: found.append(t) str_candidate = t.text if str_candidate == full_str: return found, i+1 in_str = True return [], len(doc.syntax.tokens) def find_tokens_in_diap_with_order(doc, start_token, diap): ''' Находит все простые токены (без синтаксической информации), которые попадают в указанный диапазон. Эти диапазоны мы получаем из разметки NER. Возвращает набор найденных токенов и в виде массива токенов, и в виде массива строчек. Начинает поиск с указанной позиции в строке и дополнительно возвращает позицию остановки. ''' found_tokens = [] found_text = [] full_str = '' next_i = 0 for i in range(start_token, len(doc.tokens)): t = doc.tokens[i] if t.start > diap[-1]: next_i = i break if t.start in diap: found_tokens.append(t) found_text.append(t.text) full_str += t.text return found_tokens, found_text, full_str, next_i def add_found_arr_to_dict(found, dict_dest): for synt in found: dict_dest.update({synt.id: synt}) return dict_dest def make_all_syntax_dict(doc): all_syntax = {} for synt in doc.syntax.tokens: all_syntax.update({synt.id: synt}) return all_syntax def is_consiquent(id_1, id_2): ''' Проверяет идут ли токены друг за другом без промежутка по ключам. ''' id_1_list = id_1.split('_') id_2_list = id_2.split('_') if id_1_list[0] != id_2_list[0]: return False return int(id_1_list[1]) + 1 == int(id_2_list[1]) def replace_found_to(found, x_str): ''' Заменяет последовательность токенов NER на «заглушку». ''' prev_id = '0_0' for synt in found: if is_consiquent(prev_id, synt.id): synt.text = '' else: synt.text = x_str prev_id = synt.id def analyze_doc(text): ''' Запускает Natasha для анализа документа. ''' doc = Doc(text) doc.segment(segmenter) doc.tag_morph(morph_tagger) doc.parse_syntax(syntax_parser) ner_tagger = NewsNERTagger(emb) doc.tag_ner(ner_tagger) return doc def find_non_sym_syntax_short(entity_name, doc, add_X=False, x_str='X'): ''' Отыскивает заданную сущность в тексте, среди всех NER (возможно, в другой грамматической форме). entity_name - сущность, которую ищем; doc - документ, в котором сделан препроцессинг Natasha; add_X - сделать ли замену сущности на «заглушку»; x_str - текст замены. Возвращает: all_found_syntax - словарь всех подходящих токенов образующих искомые сущности, в котором в случае надобности произведена замена NER на «заглушку»; all_syntax - словарь всех токенов. ''' all_found_syntax = {} current_synt_number = 0 current_tok_number = 0 # идем по всем найденным NER for span in doc.spans: span.normalize(morph_vocab) if span.type != 'ORG': continue diap = range(span.start, span.stop) # создаем словарь всех синтаксических элементов (ключ -- id из номера предложения и номера внутри предложения) all_syntax = make_all_syntax_dict(doc) # находим все простые токены внутри NER found_tokens, found_text, full_str, current_tok_number = find_tokens_in_diap_with_order(doc, current_tok_number, diap) # по найденным простым токенам находим все синтаксические токены внутри данного NER found, current_synt_number = find_synax_tokens_with_order(doc, current_synt_number, found_tokens, found_text, full_str) # если текст NER совпадает с указанной сущностью, то делаем замену if entity_name.find(span.normal) >= 0 or span.normal.find(entity_name) >= 0: if add_X: replace_found_to(found, x_str) all_found_syntax = add_found_arr_to_dict(found, all_found_syntax) return all_found_syntax, all_syntax def key_sentences(all_found_syntax): ''' Находит номера предложений с искомой NER. ''' key_sent_numb = {} for synt in all_found_syntax.keys(): key_sent_numb.update({synt.split('_')[0]: 1}) return key_sent_numb def openinig_punct(x): opennings = ['«', '('] return x in opennings def key_sentences_str(entitiy_name, doc, add_X=False, x_str='X', return_all=True): ''' Составляет окончательный текст, в котором есть только предложения, где есть ключевая сущность, эта сущность, если указано, заменяется на «заглушку». ''' all_found_syntax, all_syntax = find_non_sym_syntax_short(entitiy_name, doc, add_X, x_str) key_sent_numb = key_sentences(all_found_syntax) str_ret = '' for s in all_syntax.keys(): if (s.split('_')[0] in key_sent_numb.keys()) or (return_all): to_add = all_syntax[s] if s in all_found_syntax.keys(): to_add = all_found_syntax[s] else: if to_add.rel == 'punct' and not openinig_punct(to_add.text): str_ret = str_ret.rstrip() str_ret += to_add.text if (not openinig_punct(to_add.text)) and (to_add.text != ''): str_ret += ' ' return str_ret ### ----------------------------- key entities block ----------------------------- def find_synt(doc, synt_id): for synt in doc.syntax.tokens: if synt.id == synt_id: return synt return None def is_subj(doc, synt, recursion_list=[]): ''' Сообщает является ли слово подлежащим или частью сложного подлежащего. ''' if synt.rel == 'nsubj': return True if synt.rel == 'appos': found_head = find_synt(doc, synt.head_id) if found_head.id in recursion_list: return False return is_subj(doc, found_head, recursion_list + [synt.id]) return False def find_subjects_in_syntax(doc): ''' Выдает словарик, в котором для каждой NER написано, является ли он подлежащим в предложении. Выдает стартовую позицию NER и было ли оно подлежащим (или appos) ''' found_subjects = {} current_synt_number = 0 current_tok_number = 0 for span in doc.spans: span.normalize(morph_vocab) if span.type != 'ORG': continue found_subjects.update({span.start: 0}) diap = range(span.start, span.stop) found_tokens, found_text, full_str, current_tok_number = find_tokens_in_diap_with_order(doc, current_tok_number, diap) found, current_synt_number = find_synax_tokens_with_order(doc, current_synt_number, found_tokens, found_text, full_str) found_subjects.update({span.start: 0}) for synt in found: if is_subj(doc, synt): found_subjects.update({span.start: 1}) return found_subjects def entity_weight(lst, c=1): return c*lst[0]+lst[1] def determine_subject(found_subjects, doc, new_agency_list, return_best=True, threshold=0.75): ''' Определяет ключевую NER и список самых важных NER, основываясь на том, сколько раз каждая из них встречается в текста вообще и сколько раз в роли подлежащего ''' objects_arr = [] objects_arr_ners = [] should_continue = False for span in doc.spans: should_continue = False span.normalize(morph_vocab) if span.type != 'ORG': continue if span.normal in new_agency_list: continue for i in range(len(objects_arr)): t, lst = objects_arr[i] if t.find(span.normal) >= 0: lst[0] += 1 lst[1] += found_subjects[span.start] should_continue = True break if span.normal.find(t) >= 0: objects_arr[i] = (span.normal, [lst[0]+1, lst[1]+found_subjects[span.start]]) should_continue = True break if should_continue: continue objects_arr.append((span.normal, [1, found_subjects[span.start]])) objects_arr_ners.append(span.normal) max_weight = 0 opt_ent = 0 for obj in objects_arr: t, lst = obj w = entity_weight(lst) if max_weight < w: max_weight = w opt_ent = t if not return_best: return opt_ent, objects_arr_ners bests = [] for obj in objects_arr: t, lst = obj w = entity_weight(lst) if max_weight*threshold < w: bests.append(t) return opt_ent, bests text = '''В офисах Сбера начали тестировать технологию помощи посетителям в экстренных ситуациях. «Зеленая кнопка» будет в зонах круглосуточного обслуживания офисов банка в Воронеже, Санкт-Петербурге, Подольске, Пскове, Орле и Ярославле. В них находятся стенды с сенсорными кнопками, обеспечивающие связь с операторами центра мониторинга службы безопасности банка. Получив сигнал о помощи, оператор центра может подключиться к объекту по голосовой связи. С помощью камер видеонаблюдения он оценит обстановку и при необходимости вызовет полицию или скорую помощь. «Зеленой кнопкой» можно воспользоваться в нерабочее для отделения время, если возникла угроза жизни или здоровью. В остальных случаях помочь клиентам готовы сотрудники отделения банка. «Одно из направлений нашей работы в области ESG и устойчивого развития — это забота об обществе. И здоровье людей как высшая ценность является его основой. Поэтому задача банка в области безопасности гораздо масштабнее, чем обеспечение только финансовой безопасности клиентов. Этот пилотный проект приурочен к 180-летию Сбербанка: мы хотим, чтобы, приходя в банк, клиент чувствовал, что его жизнь и безопасность — наша ценность», — отметил заместитель председателя правления Сбербанка Станислав Кузнецов.''' doc = analyze_doc(text) key_entity = determine_subject(find_subjects_in_syntax(doc), doc, [])[0] text_for_model = key_sentences_str(key_entity, doc, add_X=True, x_str='X', return_all=False) ``` ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 176 | 0.9504 | 0.6903 | 0.2215 | | No log | 2.0 | 352 | 0.9065 | 0.7159 | 0.4760 | | 0.8448 | 3.0 | 528 | 0.9687 | 0.7045 | 0.4774 | | 0.8448 | 4.0 | 704 | 1.2436 | 0.7045 | 0.4686 | | 0.8448 | 5.0 | 880 | 1.4809 | 0.7273 | 0.4630 | | 0.2074 | 6.0 | 1056 | 1.5866 | 0.7330 | 0.5185 | | 0.2074 | 7.0 | 1232 | 1.7056 | 0.7301 | 0.5210 | | 0.2074 | 8.0 | 1408 | 1.6982 | 0.7415 | 0.5056 | | 0.0514 | 9.0 | 1584 | 1.8088 | 0.7273 | 0.5203 | | 0.0514 | 10.0 | 1760 | 1.9250 | 0.7102 | 0.4879 | ### Framework versions - Transformers 4.11.2 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
copenlu/citebert
95a3f3676afcc2b7f11d0dd62ca92879605d937b
2022-04-06T08:33:47.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
copenlu
null
copenlu/citebert
12
null
transformers
10,549
This is the SciBERT pretrained language model further fine-tuned on masked language modeling and cite-worthiness detection on the [CiteWorth](https://github.com/copenlu/cite-worth) dataset. Note that this model should be used for further fine-tuning on downstream scientific document understanding tasks.
cscottp27/distilbert-base-uncased-finetuned-emotion
d21810c582398b5abe2ced7e08b616ff4bbfb9ee
2022-02-13T13:19:16.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
cscottp27
null
cscottp27/distilbert-base-uncased-finetuned-emotion
12
null
transformers
10,550
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.923 - name: F1 type: f1 value: 0.9232542847906783 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2175 - Accuracy: 0.923 - F1: 0.9233 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8352 | 1.0 | 250 | 0.3079 | 0.91 | 0.9086 | | 0.247 | 2.0 | 500 | 0.2175 | 0.923 | 0.9233 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
cstorm125/marianmt-th-zh_cn
ed09363fcae8aa145c242c3de94d848e6a560477
2021-06-23T14:19:13.000Z
[ "pytorch", "marian", "text2text-generation", "transformers", "translation", "torch==1.8.0", "autotrain_compatible" ]
translation
false
cstorm125
null
cstorm125/marianmt-th-zh_cn
12
null
transformers
10,551
--- tags: - translation - torch==1.8.0 widget: - text: "Inference Unavailable" --- ### marianmt-th-zh_cn * source languages: th * target languages: zh_cn * dataset: * model: transformer-align * pre-processing: normalization + SentencePiece * test set translations: * test set scores: ## Training Training scripts from [LalitaDeelert/NLP-ZH_TH-Project](https://github.com/LalitaDeelert/NLP-ZH_TH-Project). Experiments tracked at [cstorm125/marianmt-th-zh_cn](https://wandb.ai/cstorm125/marianmt-th-zh_cn). ``` export WANDB_PROJECT=marianmt-th-zh_cn python train_model.py --input_fname ../data/v1/Train.csv \ --output_dir ../models/marianmt-th-zh_cn \ --source_lang th --target_lang zh \ --metric_tokenize zh --fp16 ``` ## Usage ``` from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("cstorm125/marianmt-zh_cn-th") model = AutoModelForSeq2SeqLM.from_pretrained("cstorm125/marianmt-zh_cn-th").cpu() src_text = [ 'ฉันรักคุณ', 'ฉันอยากกินข้าว', ] translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) print([tokenizer.decode(t, skip_special_tokens=True) for t in translated]) > ['我爱你', '我想吃饭。'] ``` ## Requirements ``` transformers==4.6.0 torch==1.8.0 ```
dayyass/trocr-base-handwritten-vit-encoder
d30e31c8780fa6da7e562fb264ae00ac3d5fb754
2021-11-14T16:32:54.000Z
[ "pytorch", "vit", "feature-extraction", "transformers" ]
feature-extraction
false
dayyass
null
dayyass/trocr-base-handwritten-vit-encoder
12
1
transformers
10,552
Entry not found
dbdmg/wav2vec2-xls-r-1b-italian-robust
a5d00c08f928913ea4260f8d4fc4cf1b27d6d205
2022-03-23T18:28:07.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "it", "dataset:mozilla-foundation/common_voice_7_0", "transformers", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
dbdmg
null
dbdmg/wav2vec2-xls-r-1b-italian-robust
12
null
transformers
10,553
--- language: - it license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-1b - Italian results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: it metrics: - name: Test WER type: wer value: 32.74 - name: Test CER type: cer value: 7.83 - name: Test WER (+LM) type: wer value: 19.55 - name: Test CER (+LM) type: cer value: 5.59 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: it metrics: - name: Test WER type: wer value: 43.23 - name: Test CER type: cer value: 13.37 - name: Test WER (+LM) type: wer value: 27.51 - name: Test CER (+LM) type: cer value: 10.69 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: it metrics: - name: Test WER type: wer value: 51.12 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-1b-italian-robust This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the Common Voice 7 & Libri Speech datasets. It achieves the following results on the evaluation set: - Loss: 0.2428 - Wer: 0.2960 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | No log | 0.07 | 400 | 1.0053 | 0.8058 | | 1.5087 | 0.13 | 800 | 0.9127 | 0.8104 | | 0.9552 | 0.2 | 1200 | 1.0360 | 0.8836 | | 0.9555 | 0.27 | 1600 | 0.9980 | 0.8577 | | 1.0259 | 0.34 | 2000 | 1.0103 | 0.8842 | | 1.0259 | 0.4 | 2400 | 0.9119 | 0.8466 | | 1.0365 | 0.47 | 2800 | 0.9000 | 0.8281 | | 1.0069 | 0.54 | 3200 | 0.7976 | 0.7875 | | 0.9688 | 0.61 | 3600 | 0.8126 | 0.8051 | | 0.9638 | 0.67 | 4000 | 0.7921 | 0.7903 | | 0.9638 | 0.74 | 4400 | 0.7703 | 0.7783 | | 0.9327 | 0.81 | 4800 | 0.7253 | 0.7463 | | 0.8992 | 0.88 | 5200 | 0.6841 | 0.7171 | | 0.8693 | 0.94 | 5600 | 0.6867 | 0.7250 | | 0.8433 | 1.01 | 6000 | 0.7077 | 0.7302 | | 0.8433 | 1.08 | 6400 | 0.6685 | 0.7091 | | 0.8499 | 1.14 | 6800 | 0.6355 | 0.6825 | | 0.8159 | 1.21 | 7200 | 0.6283 | 0.6800 | | 0.8001 | 1.28 | 7600 | 0.6288 | 0.6743 | | 0.7883 | 1.35 | 8000 | 0.5995 | 0.6633 | | 0.7883 | 1.41 | 8400 | 0.6195 | 0.6726 | | 0.7863 | 1.48 | 8800 | 0.6039 | 0.6588 | | 0.7713 | 1.55 | 9200 | 0.5842 | 0.6490 | | 0.7572 | 1.62 | 9600 | 0.5975 | 0.6533 | | 0.7442 | 1.68 | 10000 | 0.5508 | 0.6233 | | 0.7442 | 1.75 | 10400 | 0.5521 | 0.6209 | | 0.7296 | 1.82 | 10800 | 0.5760 | 0.6245 | | 0.7205 | 1.89 | 11200 | 0.5593 | 0.6144 | | 0.7106 | 1.95 | 11600 | 0.5672 | 0.6220 | | 0.7146 | 2.02 | 12000 | 0.5134 | 0.5911 | | 0.7146 | 2.09 | 12400 | 0.5069 | 0.5811 | | 0.6944 | 2.15 | 12800 | 0.5022 | 0.5962 | | 0.6817 | 2.22 | 13200 | 0.4989 | 0.5813 | | 0.6721 | 2.29 | 13600 | 0.4941 | 0.5742 | | 0.6774 | 2.36 | 14000 | 0.4775 | 0.5676 | | 0.6774 | 2.42 | 14400 | 0.4694 | 0.5525 | | 0.6621 | 2.49 | 14800 | 0.4720 | 0.5514 | | 0.6599 | 2.56 | 15200 | 0.4714 | 0.5553 | | 0.6591 | 2.63 | 15600 | 0.4578 | 0.5397 | | 0.645 | 2.69 | 16000 | 0.4619 | 0.5452 | | 0.645 | 2.76 | 16400 | 0.4578 | 0.5343 | | 0.6431 | 2.83 | 16800 | 0.4514 | 0.5328 | | 0.636 | 2.9 | 17200 | 0.4526 | 0.5325 | | 0.6433 | 2.96 | 17600 | 0.4561 | 0.5325 | | 0.6356 | 3.03 | 18000 | 0.4386 | 0.5191 | | 0.6356 | 3.1 | 18400 | 0.4291 | 0.5065 | | 0.6175 | 3.16 | 18800 | 0.4306 | 0.5170 | | 0.6187 | 3.23 | 19200 | 0.4256 | 0.5036 | | 0.607 | 3.3 | 19600 | 0.4198 | 0.5027 | | 0.6004 | 3.37 | 20000 | 0.4149 | 0.4906 | | 0.6004 | 3.43 | 20400 | 0.4114 | 0.4902 | | 0.6002 | 3.5 | 20800 | 0.4116 | 0.4967 | | 0.5926 | 3.57 | 21200 | 0.4066 | 0.4843 | | 0.5836 | 3.64 | 21600 | 0.3956 | 0.4791 | | 0.588 | 3.7 | 22000 | 0.3941 | 0.4729 | | 0.588 | 3.77 | 22400 | 0.3972 | 0.4799 | | 0.5739 | 3.84 | 22800 | 0.4018 | 0.4790 | | 0.5778 | 3.91 | 23200 | 0.3936 | 0.4750 | | 0.5768 | 3.97 | 23600 | 0.3936 | 0.4751 | | 0.5651 | 4.04 | 24000 | 0.3953 | 0.4706 | | 0.5651 | 4.11 | 24400 | 0.3906 | 0.4659 | | 0.5704 | 4.17 | 24800 | 0.3807 | 0.4557 | | 0.5594 | 4.24 | 25200 | 0.3817 | 0.4610 | | 0.5509 | 4.31 | 25600 | 0.3755 | 0.4553 | | 0.5439 | 4.38 | 26000 | 0.3705 | 0.4471 | | 0.5439 | 4.44 | 26400 | 0.3744 | 0.4487 | | 0.5426 | 4.51 | 26800 | 0.3716 | 0.4483 | | 0.5393 | 4.58 | 27200 | 0.3600 | 0.4356 | | 0.5408 | 4.65 | 27600 | 0.3573 | 0.4307 | | 0.5327 | 4.71 | 28000 | 0.3638 | 0.4382 | | 0.5327 | 4.78 | 28400 | 0.3587 | 0.4316 | | 0.5324 | 4.85 | 28800 | 0.3598 | 0.4290 | | 0.5378 | 4.91 | 29200 | 0.3508 | 0.4243 | | 0.5246 | 4.98 | 29600 | 0.3522 | 0.4260 | | 0.5284 | 5.05 | 30000 | 0.3520 | 0.4268 | | 0.5284 | 5.12 | 30400 | 0.3506 | 0.4224 | | 0.5154 | 5.18 | 30800 | 0.3556 | 0.4223 | | 0.5138 | 5.25 | 31200 | 0.3526 | 0.4276 | | 0.51 | 5.32 | 31600 | 0.3440 | 0.4220 | | 0.5065 | 5.39 | 32000 | 0.3367 | 0.4120 | | 0.5065 | 5.45 | 32400 | 0.3406 | 0.4136 | | 0.5087 | 5.52 | 32800 | 0.3370 | 0.4125 | | 0.503 | 5.59 | 33200 | 0.3387 | 0.4134 | | 0.5085 | 5.66 | 33600 | 0.3346 | 0.4068 | | 0.5044 | 5.72 | 34000 | 0.3325 | 0.4057 | | 0.5044 | 5.79 | 34400 | 0.3304 | 0.4026 | | 0.4879 | 5.86 | 34800 | 0.3274 | 0.4002 | | 0.4924 | 5.92 | 35200 | 0.3286 | 0.3980 | | 0.4991 | 5.99 | 35600 | 0.3231 | 0.3952 | | 0.487 | 6.06 | 36000 | 0.3324 | 0.4005 | | 0.487 | 6.13 | 36400 | 0.3264 | 0.3952 | | 0.4754 | 6.19 | 36800 | 0.3234 | 0.3905 | | 0.4683 | 6.26 | 37200 | 0.3149 | 0.3840 | | 0.4653 | 6.33 | 37600 | 0.3122 | 0.3824 | | 0.4667 | 6.4 | 38000 | 0.3151 | 0.3855 | | 0.4667 | 6.46 | 38400 | 0.3217 | 0.3859 | | 0.4628 | 6.53 | 38800 | 0.3085 | 0.3831 | | 0.4644 | 6.6 | 39200 | 0.3121 | 0.3791 | | 0.4612 | 6.67 | 39600 | 0.3093 | 0.3790 | | 0.4552 | 6.73 | 40000 | 0.3087 | 0.3749 | | 0.4552 | 6.8 | 40400 | 0.3027 | 0.3679 | | 0.4544 | 6.87 | 40800 | 0.3048 | 0.3672 | | 0.4507 | 6.93 | 41200 | 0.2963 | 0.3614 | | 0.4489 | 7.0 | 41600 | 0.3086 | 0.3718 | | 0.4367 | 7.07 | 42000 | 0.3100 | 0.3754 | | 0.4367 | 7.14 | 42400 | 0.3057 | 0.3701 | | 0.4376 | 7.2 | 42800 | 0.2930 | 0.3614 | | 0.428 | 7.27 | 43200 | 0.2907 | 0.3516 | | 0.4241 | 7.34 | 43600 | 0.2916 | 0.3590 | | 0.4312 | 7.41 | 44000 | 0.2904 | 0.3523 | | 0.4312 | 7.47 | 44400 | 0.2908 | 0.3476 | | 0.4292 | 7.54 | 44800 | 0.2858 | 0.3467 | | 0.426 | 7.61 | 45200 | 0.2864 | 0.3484 | | 0.4225 | 7.68 | 45600 | 0.2820 | 0.3441 | | 0.422 | 7.74 | 46000 | 0.2834 | 0.3441 | | 0.422 | 7.81 | 46400 | 0.2784 | 0.3420 | | 0.4158 | 7.88 | 46800 | 0.2814 | 0.3390 | | 0.4139 | 7.94 | 47200 | 0.2777 | 0.3384 | | 0.4076 | 8.01 | 47600 | 0.2741 | 0.3381 | | 0.3997 | 8.08 | 48000 | 0.2738 | 0.3320 | | 0.3997 | 8.15 | 48400 | 0.2720 | 0.3303 | | 0.4009 | 8.21 | 48800 | 0.2705 | 0.3357 | | 0.3928 | 8.28 | 49200 | 0.2708 | 0.3265 | | 0.3923 | 8.35 | 49600 | 0.2678 | 0.3283 | | 0.3897 | 8.42 | 50000 | 0.2649 | 0.3241 | | 0.3897 | 8.48 | 50400 | 0.2640 | 0.3218 | | 0.3879 | 8.55 | 50800 | 0.2616 | 0.3197 | | 0.3805 | 8.62 | 51200 | 0.2599 | 0.3170 | | 0.3874 | 8.69 | 51600 | 0.2592 | 0.3168 | | 0.3799 | 8.75 | 52000 | 0.2589 | 0.3157 | | 0.3799 | 8.82 | 52400 | 0.2566 | 0.3137 | | 0.3834 | 8.89 | 52800 | 0.2552 | 0.3141 | | 0.3811 | 8.95 | 53200 | 0.2523 | 0.3108 | | 0.3821 | 9.02 | 53600 | 0.2539 | 0.3112 | | 0.3636 | 9.09 | 54000 | 0.2529 | 0.3070 | | 0.3636 | 9.16 | 54400 | 0.2500 | 0.3078 | | 0.3706 | 9.22 | 54800 | 0.2510 | 0.3067 | | 0.367 | 9.29 | 55200 | 0.2497 | 0.3069 | | 0.3618 | 9.36 | 55600 | 0.2493 | 0.3043 | | 0.3624 | 9.43 | 56000 | 0.2491 | 0.3040 | | 0.3624 | 9.49 | 56400 | 0.2466 | 0.3016 | | 0.3557 | 9.56 | 56800 | 0.2460 | 0.3014 | | 0.3536 | 9.63 | 57200 | 0.2470 | 0.2997 | | 0.3584 | 9.7 | 57600 | 0.2441 | 0.2989 | | 0.3563 | 9.76 | 58000 | 0.2442 | 0.2970 | | 0.3563 | 9.83 | 58400 | 0.2436 | 0.2966 | | 0.3492 | 9.9 | 58800 | 0.2431 | 0.2967 | | 0.3483 | 9.96 | 59200 | 0.2428 | 0.2960 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
deepset/quora_dedup_bert_base
3ec393f8981a5994e483fb1f7b6539d767dc5773
2021-05-19T15:33:13.000Z
[ "pytorch", "jax", "bert", "feature-extraction", "transformers", "license:apache-2.0" ]
feature-extraction
false
deepset
null
deepset/quora_dedup_bert_base
12
3
transformers
10,554
--- license: apache-2.0 --- This language model is trained using sentence_transformers (https://github.com/UKPLab/sentence-transformers) Started with bert-base-nli-stsb-mean-tokens Continue training on quora questions deduplication dataset (https://www.kaggle.com/c/quora-question-pairs) See train_script.py for script used Below is the performance over the course of training epoch,steps,cosine_pearson,cosine_spearman,euclidean_pearson,euclidean_spearman,manhattan_pearson,manhattan_spearman,dot_pearson,dot_spearman 0,1000,0.5944576426835938,0.6010801382777033,0.5942803776859142,0.5934485776801595,0.5939676679774666,0.593162725602328,0.5905591590826669,0.5921674789994058 0,2000,0.6404080440207146,0.6416811632113405,0.6384419354012121,0.6352050423100778,0.6379917744471867,0.6347884067391001,0.6410544760582826,0.6379252046791412 0,3000,0.6710168301884945,0.6676529324662036,0.6660195209784969,0.6618423144808695,0.6656461098096684,0.6615366331956389,0.6724401903484759,0.666073727723655 0,4000,0.6886373265097949,0.6808948140300153,0.67907655686838,0.6714218133850957,0.6786809551564443,0.6711577956884357,0.6926435869763303,0.68190855298609 0,5000,0.6991409753700026,0.6919630610321864,0.6991041519437052,0.6868961486499775,0.6987076032270729,0.6865385550504007,0.7035518148330993,0.6916275246101342 0,6000,0.7120367327025509,0.6975005265298305,0.7065567493967201,0.6922375503495235,0.7060005509843024,0.6916475765570651,0.7147094303373102,0.6981390706722722 0,7000,0.7254672394728687,0.7130118465900485,0.7261844956277705,0.7086213543110718,0.7257479964972307,0.7079315661881832,0.728729909455115,0.7122743793160531 0,8000,0.7402421930101399,0.7216774208330149,0.7367901914441078,0.7166256588352043,0.7362607046874481,0.7158881916281887,0.7433902441373252,0.7220998491980078 0,9000,0.7381005358120434,0.7197216844469877,0.7343228719349923,0.7139462687943793,0.7345247569255238,0.7145106206467152,0.7421843672419275,0.720686853053079 0,10000,0.7465436564646095,0.7260327107480364,0.7467524239596304,0.7230195666847953,0.7467721566237211,0.7231367593302213,0.749792199122442,0.7263143296580317 0,11000,0.7521805421706547,0.7323771570146701,0.7530672061250105,0.729223203496722,0.7530616532823367,0.7293818369675622,0.7552399002305836,0.7320808333541338 0,12000,0.7579359969644401,0.7340677616737238,0.7570017235719905,0.7305965412825544,0.7570601853520393,0.730718189957289,0.7611254136080384,0.7351501229591327 0,-1,0.7573407371218097,0.7329952035782198,0.755595312163209,0.7291445551777086,0.7557737117990928,0.7295404703700227,0.7607276219361719,0.7342415455980179 1,1000,0.7619907683805341,0.7374667949734767,0.7629820517114324,0.7330364216044966,0.7628369522755882,0.7331912674450544,0.7658583898073758,0.7381503446695727 1,2000,0.7618972640071228,0.7362151058969478,0.764582212425539,0.7335856230046062,0.7643125513700815,0.7334501607097152,0.7652852805583232,0.7369104639809163 1,3000,0.7687362955240467,0.7404674623181671,0.7708304819979073,0.7380959815601529,0.7707835692712482,0.7379796800453193,0.772074854759756,0.7414513460702766 1,4000,0.7685047787908202,0.7403088288815168,0.7703522257474043,0.7379787888808298,0.7701221475099808,0.7377898546753812,0.7713755359045312,0.7409415801952219 1,5000,0.7696438109797803,0.7410393893292365,0.773270389327895,0.7392953127251652,0.7729880866533291,0.7389853982789335,0.7726236305835863,0.7416278035580925 1,6000,0.7749538363837081,0.7436499342062207,0.774879168058157,0.7401827241766746,0.7745754601165837,0.739763415043146,0.7788801166152383,0.7446249060022169 1,7000,0.7794560817870597,0.7480970176267153,0.7803506944510302,0.7453305130502859,0.7799867949176531,0.7447100155494814,0.7828208193123926,0.7486740690324809 1,8000,0.7855844359073243,0.7496742172376921,0.7828816645965887,0.747176409009761,0.7827584875358967,0.7471037762845532,0.7879159073496309,0.7507349669102151 1,9000,0.7844110753729492,0.7507746252693759,0.7847208586489722,0.7485172180290892,0.7846408087474059,0.748491818820158,0.7872061334510225,0.7514470349769437 1,10000,0.7881311227435004,0.7530048509727403,0.7886917756879734,0.7508018068765787,0.7883332502188707,0.7505037008187275,0.7910707228932787,0.7537200382362567 1,11000,0.7883300109606874,0.7513494487126553,0.7879329130497712,0.749818368689255,0.7876525616593218,0.7494872882301785,0.7911454269743292,0.7522843165147303 1,12000,0.7853334933336618,0.7516809747712728,0.7893895316714998,0.749780492728257,0.7890075986655403,0.7494079715118533,0.7885959664070629,0.7523827940133203 1,-1,0.7887529238148887,0.7534076729932393,0.7896864404801204,0.7513080079201105,0.7894077512343298,0.7510009899066772,0.7919617393746149,0.7542173273241598 2,1000,0.7919209063905188,0.7550167329363414,0.7917464066515253,0.7523043685293455,0.7914371703225378,0.7520285423781206,0.7950297421784158,0.7562599556207076 2,2000,0.7924507768792486,0.7542908512484463,0.7934519001953887,0.7517491515010692,0.7931885648751081,0.751521004535999,0.7951637852162545,0.7551495215642072 2,3000,0.7937606244038364,0.755599577136169,0.7933633347508111,0.7527922999916203,0.7931581019714242,0.7527132061436363,0.797275652800117,0.7569827180764233 2,4000,0.7938389298721445,0.7578716892320315,0.7963783770097079,0.7555928931784702,0.796150381773947,0.7555438771581088,0.7972911620482322,0.759178632650707 2,5000,0.7935330563129844,0.7551129824372304,0.7970775059297484,0.7527285792572385,0.7967359830546507,0.7524478515463257,0.7966395126138969,0.756319220359678 2,6000,0.7929852776759999,0.7525490026774382,0.7952484474454824,0.7503695753216607,0.7950784132079611,0.7503677929234961,0.7956152082976395,0.7535275392698093 2,7000,0.794956504054517,0.756119591765251,0.7982025041673655,0.7532521587180684,0.7980261618830962,0.7532107179960499,0.7983222918908033,0.7571226363678287 2,8000,0.7934568432535339,0.7538336661192452,0.797015698241178,0.7514773358161916,0.7968076980315735,0.7513458838811067,0.7960694134685949,0.754143803399873 2,9000,0.7970040626682157,0.7576497805894974,0.7987855332059015,0.7550996144509958,0.7984693921009676,0.7548260162973456,0.7999509314900626,0.758347143906916 2,10000,0.7979442987735523,0.7585338500791028,0.8018677081664496,0.7557412777548302,0.8015397301245205,0.7552916678886369,0.8007921348414564,0.7589772216225288 2,11000,0.7985519561040211,0.7579986850302035,0.8021236875460913,0.7555826443181872,0.8019861620475348,0.7553763317660516,0.8009230128897853,0.7586541619907702 2,12000,0.7986842143860736,0.7599570950134775,0.8029131054823838,0.7577678644678973,0.8027922603736795,0.7575152095990927,0.8020896747930555,0.7608540869254408 2,-1,0.7994135319568432,0.7596286881516635,0.8022087183675333,0.7570593611974978,0.8020218401019292,0.7567291719729909,0.8026346812258125,0.7603928913647044 3,1000,0.7985505039929134,0.7592588405681144,0.8023296699449267,0.7569345933969436,0.8023622066009718,0.7570237132696928,0.8013054275981851,0.759643838536062 3,2000,0.7995482191699455,0.759205368623176,0.8026859405513612,0.7565709841358819,0.8024845263367439,0.7562920388231202,0.8021318586127523,0.7596496313300967 3,3000,0.7991070423195897,0.7582027696555826,0.8016352550470427,0.7555585819429662,0.8014268261947898,0.7551838327642736,0.8013136081494014,0.7584429477727118 3,4000,0.7999188836884763,0.7586764419322649,0.802987646214278,0.7561111254802977,0.8026549791861386,0.7556463650525692,0.8024068858366156,0.7591238238715613 3,5000,0.7988075932525881,0.7583533823004922,0.8019498750207454,0.755792967372457,0.8016459824731964,0.7553834613587099,0.8015528810821693,0.7589527136833425 3,6000,0.8003341798460688,0.7585432077405799,0.8032464035902267,0.7563722467405277,0.8028695045742804,0.7557626665682309,0.8027937010871594,0.7590404967573696 3,7000,0.799187592384933,0.7579358555659604,0.8028413548398412,0.7555875459131398,0.8025187078191003,0.7551196665011402,0.8018680475193432,0.7585565756912578 3,8000,0.797725037202641,0.757439012042047,0.802048241301358,0.7548888458326453,0.8017608103042271,0.7544606246736175,0.8005479449399782,0.758037452190282 3,9000,0.7990232649360067,0.7573703896772077,0.8021375332910405,0.754873027155089,0.8018733796679427,0.7545680141630304,0.8016400687760605,0.7579461042843499 3,10000,0.7994934439260372,0.758368978248884,0.8035693504115055,0.75619400688862,0.8032990505007025,0.7559016935896375,0.8022819185772518,0.7589558328445544 3,11000,0.8002954591825011,0.758710753096932,0.8043310859792212,0.7566387152306694,0.8040865016706966,0.7564221538891368,0.8030873114870971,0.7592722085543488 3,12000,0.8003726616196549,0.7588056657991931,0.8044000317617518,0.7566146528909147,0.8041705213966136,0.7563419459362758,0.8031760015719815,0.7593194421057111 3,-1,0.8004926728141455,0.7587192194882135,0.8043340929890026,0.756546030526114,0.8041028559910275,0.7563103085106637,0.8032542493776693,0.7592325501951863
deeq/dbert-ner
eec5e62fc4b35ad3cf78c16b7409464191e9eb34
2021-07-05T06:33:41.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
deeq
null
deeq/dbert-ner
12
null
transformers
10,555
Entry not found
deeq/dbert
69aaca092ea4e12951f5910086952819fb607c1a
2022-04-11T01:45:49.000Z
[ "pytorch", "bert", "fill-mask", "ko", "dataset:kowiki", "dataset:news", "transformers", "autotrain_compatible" ]
fill-mask
false
deeq
null
deeq/dbert
12
null
transformers
10,556
--- language: ko datasets: - kowiki - news --- deeqBERT-base --- - model: bert-base - vocab: bert-wordpiece, 35k - version: latest
deeq/delectra
d368d4ca22ca740a1b2b47799981855815d9e51c
2021-07-23T04:31:00.000Z
[ "pytorch", "electra", "pretraining", "ko", "dataset:kowiki", "dataset:news", "transformers" ]
null
false
deeq
null
deeq/delectra
12
null
transformers
10,557
--- language: ko datasets: - kowiki - news --- deeqELECTRA-base --- - model: electra-base-discriminator - vocab: bert-wordpiece, 35k - version: beta, 1.71M
diegozs97/finetuned-sciie-seed-4-60k
ec5b7b7fd76da2af78b89d24952950093b7c006f
2021-12-10T01:51:20.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
diegozs97
null
diegozs97/finetuned-sciie-seed-4-60k
12
null
transformers
10,558
Entry not found
disdamoe/DialoGPT-small-moe
69fd172a759932621bb9c36df29e73d23bf2230b
2021-09-25T19:24:10.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
disdamoe
null
disdamoe/DialoGPT-small-moe
12
null
transformers
10,559
--- tags: - conversational --- # Moe DialoGPT Model
dmis-lab/biosyn-biobert-bc5cdr-disease
21afa2e3758f2227f904d21f93e7590508bced9d
2021-10-25T14:46:09.000Z
[ "pytorch", "transformers" ]
null
false
dmis-lab
null
dmis-lab/biosyn-biobert-bc5cdr-disease
12
null
transformers
10,560
Entry not found
doc2query/reddit-t5-small-v1
c7d6d4847c6d8910b8b1e3e4d27299861cae5703
2022-01-07T08:55:11.000Z
[ "pytorch", "t5", "text2text-generation", "en", "dataset:datasets/sentence-transformers/reddit-title-body", "arxiv:1904.08375", "arxiv:2104.08663", "transformers", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
doc2query
null
doc2query/reddit-t5-small-v1
12
null
transformers
10,561
--- language: en datasets: - datasets/sentence-transformers/reddit-title-body widget: - text: "Python is an interpreted, high-level and general-purpose programming language. Python's design philosophy emphasizes code readability with its notable use of significant whitespace. Its language constructs and object-oriented approach aim to help programmers write clear, logical code for small and large-scale projects." license: apache-2.0 --- # doc2query/reddit-t5-small-v1 This is a [doc2query](https://arxiv.org/abs/1904.08375) model based on T5 (also known as [docT5query](https://cs.uwaterloo.ca/~jimmylin/publications/Nogueira_Lin_2019_docTTTTTquery-v2.pdf)). It can be used for: - **Document expansion**: You generate for your paragraphs 20-40 queries and index the paragraphs and the generates queries in a standard BM25 index like Elasticsearch, OpenSearch, or Lucene. The generated queries help to close the lexical gap of lexical search, as the generate queries contain synonyms. Further, it re-weights words giving important words a higher weight even if they appear seldomn in a paragraph. In our [BEIR](https://arxiv.org/abs/2104.08663) paper we showed that BM25+docT5query is a powerful search engine. In the [BEIR repository](https://github.com/UKPLab/beir) we have an example how to use docT5query with Pyserini. - **Domain Specific Training Data Generation**: It can be used to generate training data to learn an embedding model. On [SBERT.net](https://www.sbert.net/examples/unsupervised_learning/query_generation/README.html) we have an example how to use the model to generate (query, text) pairs for a given collection of unlabeled texts. These pairs can then be used to train powerful dense embedding models. ## Usage ```python from transformers import T5Tokenizer, T5ForConditionalGeneration model_name = 'doc2query/reddit-t5-small-v1' tokenizer = T5Tokenizer.from_pretrained(model_name) model = T5ForConditionalGeneration.from_pretrained(model_name) text = "Python is an interpreted, high-level and general-purpose programming language. Python's design philosophy emphasizes code readability with its notable use of significant whitespace. Its language constructs and object-oriented approach aim to help programmers write clear, logical code for small and large-scale projects." input_ids = tokenizer.encode(text, max_length=384, truncation=True, return_tensors='pt') outputs = model.generate( input_ids=input_ids, max_length=64, do_sample=True, top_p=0.95, num_return_sequences=5) print("Text:") print(text) print("\nGenerated Queries:") for i in range(len(outputs)): query = tokenizer.decode(outputs[i], skip_special_tokens=True) print(f'{i + 1}: {query}') ``` **Note:** `model.generate()` is non-deterministic. It produces different queries each time you run it. ## Training This model fine-tuned [google/t5-v1_1-small](https://huggingface.co/google/t5-v1_1-small) for 547k training steps. For the training script, see the `train_script.py` in this repository. The input-text was truncated to 384 word pieces. Output text was generated up to 64 word pieces. This model was trained on a (title, body) from Reddit.
doc2query/stackexchange-t5-base-v1
b397f2587b876674f3c0f5b85c81900f3b52ca15
2021-10-19T16:26:19.000Z
[ "pytorch", "t5", "text2text-generation", "en", "dataset:flax-sentence-embeddings/stackexchange_title_best_voted_answer_jsonl", "arxiv:1904.08375", "arxiv:2104.08663", "transformers", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
doc2query
null
doc2query/stackexchange-t5-base-v1
12
null
transformers
10,562
--- language: en datasets: - flax-sentence-embeddings/stackexchange_title_best_voted_answer_jsonl widget: - text: "Python is an interpreted, high-level and general-purpose programming language. Python's design philosophy emphasizes code readability with its notable use of significant whitespace. Its language constructs and object-oriented approach aim to help programmers write clear, logical code for small and large-scale projects." license: apache-2.0 --- # doc2query/stackexchange-t5-base-v1 This is a [doc2query](https://arxiv.org/abs/1904.08375) model based on T5 (also known as [docT5query](https://cs.uwaterloo.ca/~jimmylin/publications/Nogueira_Lin_2019_docTTTTTquery-v2.pdf)). It can be used for: - **Document expansion**: You generate for your paragraphs 20-40 queries and index the paragraphs and the generates queries in a standard BM25 index like Elasticsearch, OpenSearch, or Lucene. The generated queries help to close the lexical gap of lexical search, as the generate queries contain synonyms. Further, it re-weights words giving important words a higher weight even if they appear seldomn in a paragraph. In our [BEIR](https://arxiv.org/abs/2104.08663) paper we showed that BM25+docT5query is a powerful search engine. In the [BEIR repository](https://github.com/UKPLab/beir) we have an example how to use docT5query with Pyserini. - **Domain Specific Training Data Generation**: It can be used to generate training data to learn an embedding model. On [SBERT.net](https://www.sbert.net/examples/unsupervised_learning/query_generation/README.html) we have an example how to use the model to generate (query, text) pairs for a given collection of unlabeled texts. These pairs can then be used to train powerful dense embedding models. ## Usage ```python from transformers import T5Tokenizer, T5ForConditionalGeneration model_name = 'doc2query/stackexchange-t5-base-v1' tokenizer = T5Tokenizer.from_pretrained(model_name) model = T5ForConditionalGeneration.from_pretrained(model_name) text = "Python is an interpreted, high-level and general-purpose programming language. Python's design philosophy emphasizes code readability with its notable use of significant whitespace. Its language constructs and object-oriented approach aim to help programmers write clear, logical code for small and large-scale projects." input_ids = tokenizer.encode(text, max_length=320, truncation=True, return_tensors='pt') outputs = model.generate( input_ids=input_ids, max_length=64, do_sample=True, top_p=0.95, num_return_sequences=5) print("Text:") print(text) print("\nGenerated Queries:") for i in range(len(outputs)): query = tokenizer.decode(outputs[i], skip_special_tokens=True) print(f'{i + 1}: {query}') ``` **Note:** `model.generate()` is non-deterministic. It produces different queries each time you run it. ## Training This model fine-tuned [google/t5-v1_1-base](https://huggingface.co/google/t5-v1_1-base) for 449k training steps. For the training script, see the `train_script.py` in this repository. The input-text was truncated to 320 word pieces. Output text was generated up to 64 word pieces. This model was trained on a (title, best_answer_pairs) from StackExchange.
dshvadskiy/bert-finetuned-ner
eb62916bcf46c185ca30eb7ccb783dc5559be2b1
2022-01-17T17:54:13.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "dataset:conll2002", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
dshvadskiy
null
dshvadskiy/bert-finetuned-ner
12
null
transformers
10,563
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2002 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2002 type: conll2002 args: es metrics: - name: Precision type: precision value: 0.7394396551724138 - name: Recall type: recall value: 0.7883731617647058 - name: F1 type: f1 value: 0.7631227758007118 - name: Accuracy type: accuracy value: 0.9655744705631151 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2002 dataset. It achieves the following results on the evaluation set: - Loss: 0.1458 - Precision: 0.7394 - Recall: 0.7884 - F1: 0.7631 - Accuracy: 0.9656 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1047 | 1.0 | 1041 | 0.1516 | 0.7173 | 0.7505 | 0.7335 | 0.9602 | | 0.068 | 2.0 | 2082 | 0.1280 | 0.7470 | 0.7888 | 0.7673 | 0.9664 | | 0.0406 | 3.0 | 3123 | 0.1458 | 0.7394 | 0.7884 | 0.7631 | 0.9656 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
ehdwns1516/gpt2_review_star1
e44a0307822d275e1d57f75d1795df70131086c5
2021-07-23T01:06:16.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
ehdwns1516
null
ehdwns1516/gpt2_review_star1
12
null
transformers
10,564
# gpt2_review_star1 * This model has been trained as a review_body dataset with a star of 1 in the [amazon_review dataset](https://huggingface.co/datasets/amazon_reviews_multi). * Input text what you want to generate review. * If the context is longer than 1200 characters, the context may be cut in the middle and the result may not come out well. review generator DEMO: [Ainize DEMO](https://main-review-generator-ehdwns1516.endpoint.ainize.ai/) review generator API: [Ainize API](https://ainize.web.app/redirect?git_repo=https://github.com/ehdwns1516/review_generator) ## Model links for each 1 to 5 star * [ehdwns1516/gpt2_review_star1](https://huggingface.co/ehdwns1516/gpt2_review_star1) * [ehdwns1516/gpt2_review_star2](https://huggingface.co/ehdwns1516/gpt2_review_star2) * [ehdwns1516/gpt2_review_star3](https://huggingface.co/ehdwns1516/gpt2_review_star3) * [ehdwns1516/gpt2_review_star4](https://huggingface.co/ehdwns1516/gpt2_review_star4) * [ehdwns1516/gpt2_review_star5](https://huggingface.co/ehdwns1516/gpt2_review_star5) ## Overview Language model: [gpt2](https://huggingface.co/gpt2) Language: English Training data: review_body dataset with a star of 1 in the [amazon_review dataset](https://huggingface.co/datasets/amazon_reviews_multi). Code: See [Ainize Workspace](https://ainize.ai/workspace/create?imageId=hnj95592adzr02xPTqss&git=https://github.com/ehdwns1516/gpt2_review_fine-tunning_note) ## Usage ## In Transformers ``` from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("ehdwns1516/gpt2_review_star1") model = AutoModelWithLMHead.from_pretrained("ehdwns1516/gpt2_review_star1") generator = pipeline( "text-generation", model="ehdwns1516/gpt2_review_star1", tokenizer=tokenizer ) context = "your context" result = dict() result[0] = generator(context)[0] ```
emrecan/distilbert-base-turkish-cased-multinli_tr
4b6a6f3dccc9ca49cc759677408e8f09e1d39261
2021-12-01T10:50:34.000Z
[ "pytorch", "distilbert", "text-classification", "tr", "dataset:nli_tr", "transformers", "zero-shot-classification", "nli", "license:apache-2.0" ]
zero-shot-classification
false
emrecan
null
emrecan/distilbert-base-turkish-cased-multinli_tr
12
null
transformers
10,565
--- language: - tr tags: - zero-shot-classification - nli - pytorch pipeline_tag: zero-shot-classification license: apache-2.0 datasets: - nli_tr widget: - text: "Dolar yükselmeye devam ediyor." candidate_labels: "ekonomi, siyaset, spor" - text: "Senaryo çok saçmaydı, beğendim diyemem." candidate_labels: "olumlu, olumsuz" ---
ethzanalytics/ai-msgbot-gpt2-M
6351371b3016929b3b7435c7a97e68f277c92a34
2021-12-26T20:28:15.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
ethzanalytics
null
ethzanalytics/ai-msgbot-gpt2-M
12
null
transformers
10,566
# ai-msgbot GPT-2 M Conversational A GPT-2 M 355M parameter model for usage with [ai-msgbot](https://github.com/pszemraj/ai-msgbot) to create a chatbot-like tool. This model was fine-tuned on a parsed version of [the Wizard of Wikipedia dataset](https://parl.ai/projects/wizard_of_wikipedia/) for 10,000 steps. 20/24 layers were frozen for the fine-tuning process. ## conversation data The dataset was tokenized and fed to the model as a conversation between two speakers, whose names are below. this is relevant for writing prompts and filtering/extracting text from responses. `script_speaker_name` = `person alpha` `script_responder_name` = `person beta` ## usage ### in ai-msgbot ``` python ai_single_response.py --model GPT2_conversational_355M_WoW10k --prompt "hi! what are your hobbies?" ... generating... finished! 'i like to read.' ``` ### examples with Inference API The model training (and the ai-msgbot scripts) "force" GPT-2 to generate text in a chat-like structure. If you want non-garbage outputs, these need to be specified manually: ``` person alpha: hi! what are your hobbies? ``` then model will respond, ideally with person beta: "response text" --- - the default inference API examples should work _okay_ - an ideal test would be explicitly adding `person beta` to the **end** of the prompt text. The model is forced to respond to the entered chat prompt instead of adding to the entered prompt and then responding to that (which may cut off the response text due to the Inference API limits). ## citations ``` @inproceedings{dinan2019wizard, author={Emily Dinan and Stephen Roller and Kurt Shuster and Angela Fan and Michael Auli and Jason Weston}, title={{W}izard of {W}ikipedia: Knowledge-powered Conversational Agents}, booktitle = {Proceedings of the International Conference on Learning Representations (ICLR)}, year={2019}, } @inproceedings{li-etal-2017-dailydialog, title = "{D}aily{D}ialog: A Manually Labelled Multi-turn Dialogue Dataset", author = "Li, Yanran and Su, Hui and Shen, Xiaoyu and Li, Wenjie and Cao, Ziqiang and Niu, Shuzi", booktitle = "Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers)", month = nov, year = "2017", address = "Taipei, Taiwan", publisher = "Asian Federation of Natural Language Processing", url = "https://aclanthology.org/I17-1099", pages = "986--995", abstract = "We develop a high-quality multi-turn dialog dataset, \textbf{DailyDialog}, which is intriguing in several aspects. The language is human-written and less noisy. The dialogues in the dataset reflect our daily communication way and cover various topics about our daily life. We also manually label the developed dataset with communication intention and emotion information. Then, we evaluate existing approaches on DailyDialog dataset and hope it benefit the research field of dialog systems. The dataset is available on \url{http://yanran.li/dailydialog}", } ```
facebook/s2t-small-mustc-en-ro-st
3cf61400eb2bfe68186b4ae0872c3826de926590
2022-02-07T15:32:34.000Z
[ "pytorch", "tf", "speech_to_text", "automatic-speech-recognition", "en", "ro", "dataset:mustc", "arxiv:2010.05171", "arxiv:1904.08779", "transformers", "audio", "speech-translation", "license:mit" ]
automatic-speech-recognition
false
facebook
null
facebook/s2t-small-mustc-en-ro-st
12
null
transformers
10,567
--- language: - en - ro datasets: - mustc tags: - audio - speech-translation - automatic-speech-recognition license: mit pipeline_tag: automatic-speech-recognition widget: - example_title: Librispeech sample 1 src: https://cdn-media.huggingface.co/speech_samples/sample1.flac - example_title: Librispeech sample 2 src: https://cdn-media.huggingface.co/speech_samples/sample2.flac --- # S2T-SMALL-MUSTC-EN-RO-ST `s2t-small-mustc-en-ro-st` is a Speech to Text Transformer (S2T) model trained for end-to-end Speech Translation (ST). The S2T model was proposed in [this paper](https://arxiv.org/abs/2010.05171) and released in [this repository](https://github.com/pytorch/fairseq/tree/master/examples/speech_to_text) ## Model description S2T is a transformer-based seq2seq (encoder-decoder) model designed for end-to-end Automatic Speech Recognition (ASR) and Speech Translation (ST). It uses a convolutional downsampler to reduce the length of speech inputs by 3/4th before they are fed into the encoder. The model is trained with standard autoregressive cross-entropy loss and generates the transcripts/translations autoregressively. ## Intended uses & limitations This model can be used for end-to-end English speech to Romanian text translation. See the [model hub](https://huggingface.co/models?filter=speech_to_text) to look for other S2T checkpoints. ### How to use As this a standard sequence to sequence transformer model, you can use the `generate` method to generate the transcripts by passing the speech features to the model. *Note: The `Speech2TextProcessor` object uses [torchaudio](https://github.com/pytorch/audio) to extract the filter bank features. Make sure to install the `torchaudio` package before running this example.* You could either install those as extra speech dependancies with `pip install transformers"[speech, sentencepiece]"` or install the packages seperatly with `pip install torchaudio sentencepiece`. ```python import torch from transformers import Speech2TextProcessor, Speech2TextForConditionalGeneration from datasets import load_dataset import soundfile as sf model = Speech2TextForConditionalGeneration.from_pretrained("facebook/s2t-small-mustc-en-ro-st") processor = Speech2TextProcessor.from_pretrained("facebook/s2t-small-mustc-en-ro-st") def map_to_array(batch): speech, _ = sf.read(batch["file"]) batch["speech"] = speech return batch ds = load_dataset( "patrickvonplaten/librispeech_asr_dummy", "clean", split="validation" ) ds = ds.map(map_to_array) inputs = processor( ds["speech"][0], sampling_rate=16_000, return_tensors="pt" ) generated_ids = model.generate(input_ids=inputs["input_features"], attention_mask=inputs["attention_mask"]) translation = processor.batch_decode(generated_ids, skip_special_tokens=True) ``` ## Training data The s2t-small-mustc-en-ro-st is trained on English-Romanian subset of [MuST-C](https://ict.fbk.eu/must-c/). MuST-C is a multilingual speech translation corpus whose size and quality facilitates the training of end-to-end systems for speech translation from English into several languages. For each target language, MuST-C comprises several hundred hours of audio recordings from English TED Talks, which are automatically aligned at the sentence level with their manual transcriptions and translations. ## Training procedure ### Preprocessing The speech data is pre-processed by extracting Kaldi-compliant 80-channel log mel-filter bank features automatically from WAV/FLAC audio files via PyKaldi or torchaudio. Further utterance-level CMVN (cepstral mean and variance normalization) is applied to each example. The texts are lowercased and tokenized using SentencePiece and a vocabulary size of 8,000. ### Training The model is trained with standard autoregressive cross-entropy loss and using [SpecAugment](https://arxiv.org/abs/1904.08779). The encoder receives speech features, and the decoder generates the transcripts autoregressively. To accelerate model training and for better performance the encoder is pre-trained for English ASR. ## Evaluation results MuST-C test results for en-ro (BLEU score): 21.9 ### BibTeX entry and citation info ```bibtex @inproceedings{wang2020fairseqs2t, title = {fairseq S2T: Fast Speech-to-Text Modeling with fairseq}, author = {Changhan Wang and Yun Tang and Xutai Ma and Anne Wu and Dmytro Okhonko and Juan Pino}, booktitle = {Proceedings of the 2020 Conference of the Asian Chapter of the Association for Computational Linguistics (AACL): System Demonstrations}, year = {2020}, } ```
ffsouza/t5-tiny-random-length-96-learning_rate-0.0002-weight_decay-0.01-finetuned-en-to-ro
fb79975ee8d8de01726fc4521d807d3d447b7f32
2021-12-05T23:26:04.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:wmt16_en_ro_pre_processed", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
ffsouza
null
ffsouza/t5-tiny-random-length-96-learning_rate-0.0002-weight_decay-0.01-finetuned-en-to-ro
12
null
transformers
10,568
--- tags: - generated_from_trainer datasets: - wmt16_en_ro_pre_processed metrics: - bleu model-index: - name: t5-tiny-random-length-96-learning_rate-0.0002-weight_decay-0.01-finetuned-en-to-ro results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: wmt16_en_ro_pre_processed type: wmt16_en_ro_pre_processed args: enro metrics: - name: Bleu type: bleu value: 0.0617 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-tiny-random-length-96-learning_rate-0.0002-weight_decay-0.01-finetuned-en-to-ro This model is a fine-tuned version of [patrickvonplaten/t5-tiny-random](https://huggingface.co/patrickvonplaten/t5-tiny-random) on the wmt16_en_ro_pre_processed dataset. It achieves the following results on the evaluation set: - Loss: 4.6426 - Bleu: 0.0617 - Gen Len: 8.9895 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:------:|:---------------:|:------:|:-------:| | 4.5828 | 1.0 | 76290 | 5.5397 | 0.0089 | 8.981 | | 4.187 | 2.0 | 152580 | 5.2241 | 0.0172 | 8.989 | | 3.9612 | 3.0 | 228870 | 5.0092 | 0.034 | 8.988 | | 3.8151 | 4.0 | 305160 | 4.8688 | 0.0365 | 8.9865 | | 3.7162 | 5.0 | 381450 | 4.7656 | 0.0469 | 8.9865 | | 3.6498 | 6.0 | 457740 | 4.6874 | 0.0531 | 8.9885 | | 3.6147 | 7.0 | 534030 | 4.6612 | 0.0585 | 8.9875 | | 3.5972 | 8.0 | 610320 | 4.6426 | 0.0617 | 8.9895 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu102 - Datasets 1.15.1 - Tokenizers 0.10.3
fspanda/Electra-Medical-v790000-generator
6091b8e8f20c8167ea9061c6249e22adfbea5c2e
2020-10-31T13:24:12.000Z
[ "pytorch", "electra", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
fspanda
null
fspanda/Electra-Medical-v790000-generator
12
null
transformers
10,569
Entry not found
ghadeermobasher/BC4CHEMD-Modified_PubMedBERT
9439cffbcb5176dbf8e7358db0041853d6e65505
2022-01-22T10:12:47.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/BC4CHEMD-Modified_PubMedBERT
12
null
transformers
10,570
Entry not found
ghadeermobasher/BC4CHEMD-Modified_pubmed_clinical
f553d5eaf73837cb5debe39a2bdebd5e8458bce1
2022-02-10T22:08:37.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/BC4CHEMD-Modified_pubmed_clinical
12
null
transformers
10,571
Entry not found
ghadeermobasher/BC4CHEMD_ImbalancedPubMedBERT
fa03a20beea9d4caabd352f75caa10ad84130c02
2022-01-22T10:08:34.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/BC4CHEMD_ImbalancedPubMedBERT
12
null
transformers
10,572
Entry not found
ghadeermobasher/BC4_CHEM_PubmedBERT
1866c0900e0028ca0395ebc00f593c1ff3248059
2022-02-11T14:20:06.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/BC4_CHEM_PubmedBERT
12
null
transformers
10,573
Entry not found
ghadeermobasher/BC4_Modified-scibert_scivocab_uncased
00952253c629439dd0658b635b9a984b13cb79f3
2022-02-22T20:26:26.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/BC4_Modified-scibert_scivocab_uncased
12
null
transformers
10,574
Entry not found
ha-mulan/moby-dick
5dfb73bc392ed5c5a3253b9279eb3fe751bdc2a3
2021-05-21T16:19:33.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
ha-mulan
null
ha-mulan/moby-dick
12
null
transformers
10,575
hello
hemekci/off_detection_turkish
e0a7c3d8f437c0f174b2b61c9627bb771a00863f
2021-05-19T18:54:44.000Z
[ "pytorch", "jax", "bert", "text-classification", "tr", "transformers" ]
text-classification
false
hemekci
null
hemekci/off_detection_turkish
12
2
transformers
10,576
--- language: tr widget: - text: "sevelim sevilelim bu dunya kimseye kalmaz" --- ## Offensive Language Detection Model in Turkish - uses Bert and pytorch - fine tuned with Twitter data. - UTF-8 configuration is done ### Training Data Number of training sentences: 31,277 **Example Tweets** - 19823 Daliaan yifng cok erken attin be... 1.38 ...| NOT| - 30525 @USER Bak biri kollarımda uyuyup gitmem diyor..|NOT| - 26468 Helal olsun be :) Norveçten sabaha karşı geldi aq... | OFF| - 14105 @USER Sunu cekecek ve güzel oldugunu söylecek aptal... |OFF| - 4958 Ya seni yerim ben şapşal şey 🤗 | NOT| - 12966 Herkesin akıllı geçindiği bir sosyal medyamız var ... |NOT| - 5788 Maçın özetlerini izleyenler futbolcular gidiyo... |NOT| |OFFENSIVE |RESULT | |--|--| |NOT | 25231| |OFF|6046| dtype: int64 ### Validation |epoch |Training Loss | Valid. Loss | Valid.Accuracy | Training Time | Validation Time | |--|--|--|--|--|--| |1 | 0.31| 0.28| 0.89| 0:07:14 | 0:00:13 |2 | 0.18| 0.29| 0.90| 0:07:18 | 0:00:13 |3 | 0.08| 0.40| 0.89| 0:07:16 | 0:00:13 |4 | 0.04| 0.59| 0.89| 0:07:13 | 0:00:13 **Matthews Corr. Coef. (-1 : +1):** Total MCC Score: 0.633
hfl/english-pert-large
9e1316dd06853a206334e6a2ed694fc61218fb8b
2022-02-24T02:58:41.000Z
[ "pytorch", "tf", "bert", "feature-extraction", "en", "transformers", "license:cc-by-nc-sa-4.0" ]
feature-extraction
false
hfl
null
hfl/english-pert-large
12
1
transformers
10,577
--- language: - en license: "cc-by-nc-sa-4.0" --- # Please use 'Bert' related functions to load this model! # ALL English models are UNCASED (lowercase=True) Under construction... Please visit our GitHub repo for more information: https://github.com/ymcui/PERT
hgiyt/fi-monomodel-mberttok
6dd0fe39f186c6f9fd10f51cf6578c2fc9ac66bd
2021-05-19T19:37:49.000Z
[ "pytorch", "jax", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
hgiyt
null
hgiyt/fi-monomodel-mberttok
12
null
transformers
10,578
Entry not found
howey/electra-base-stsb
a39a3e505787fda1e8b1b6baaebb6ba916fc02e2
2021-05-25T06:18:41.000Z
[ "pytorch", "electra", "text-classification", "transformers" ]
text-classification
false
howey
null
howey/electra-base-stsb
12
null
transformers
10,579
Entry not found
howey/electra-large-mnli
e5a82d833f732043b10763aa62767fcb33fb8415
2021-06-04T06:34:47.000Z
[ "pytorch", "electra", "text-classification", "transformers" ]
text-classification
false
howey
null
howey/electra-large-mnli
12
null
transformers
10,580
Entry not found
huggingartists/morgenshtern
bcacd40deb48be307eb10e00220e23b78f022608
2022-02-05T07:59:26.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "dataset:huggingartists/morgenshtern", "transformers", "huggingartists", "lyrics", "lm-head", "causal-lm" ]
text-generation
false
huggingartists
null
huggingartists/morgenshtern
12
null
transformers
10,581
--- language: en datasets: - huggingartists/morgenshtern tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/1edcea93261e2e266c532ce204ba92da.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">MORGENSHTERN</div> <a href="https://genius.com/artists/morgenshtern"> <div style="text-align: center; font-size: 14px;">@morgenshtern</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from MORGENSHTERN. Dataset is available [here](https://huggingface.co/datasets/huggingartists/morgenshtern). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/morgenshtern") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/29htvpbu/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on MORGENSHTERN's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/m6tldjdu) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/m6tldjdu/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/morgenshtern') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/morgenshtern") model = AutoModelWithLMHead.from_pretrained("huggingartists/morgenshtern") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/tool
dc531bc8afd5f10ee49a1364872ddab44c4df835
2022-02-26T22:15:47.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "dataset:huggingartists/tool", "transformers", "huggingartists", "lyrics", "lm-head", "causal-lm" ]
text-generation
false
huggingartists
null
huggingartists/tool
12
null
transformers
10,582
--- language: en datasets: - huggingartists/tool tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/acf1d51a2d729391074dc51a6dd26857.1000x1000x1.png&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Tool</div> <a href="https://genius.com/artists/tool"> <div style="text-align: center; font-size: 14px;">@tool</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Tool. Dataset is available [here](https://huggingface.co/datasets/huggingartists/tool). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/tool") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/2w1h70ok/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Tool's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1zikehwi) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1zikehwi/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/tool') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/tool") model = AutoModelWithLMHead.from_pretrained("huggingartists/tool") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingtweets/glownigga
f727bbf395a77249ff29d685eb0dd9162de62fef
2021-07-21T22:15:19.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/glownigga
12
null
transformers
10,583
--- language: en thumbnail: https://www.huggingtweets.com/glownigga/1626905715267/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1292227674539208704/uNcnG4c3_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">gl0w</div> <div style="text-align: center; font-size: 14px;">@glownigga</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from gl0w. | Data | gl0w | | --- | --- | | Tweets downloaded | 3132 | | Retweets | 157 | | Short tweets | 776 | | Tweets kept | 2199 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3t0rqzrr/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @glownigga's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3qjksoiw) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3qjksoiw/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/glownigga') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/heaven_ley
44f9fac2f7ef16d1f41b1b91938b8e594467a5b9
2021-05-23T14:18:42.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/heaven_ley
12
null
transformers
10,584
--- language: en thumbnail: https://www.huggingtweets.com/heaven_ley/1621532679555/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1391998269430116355/O5NJQwYC_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Ashley 🌻</div> <div style="text-align: center; font-size: 14px;">@heaven_ley</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Ashley 🌻. | Data | Ashley 🌻 | | --- | --- | | Tweets downloaded | 3084 | | Retweets | 563 | | Short tweets | 101 | | Tweets kept | 2420 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/h9ex5ztp/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @heaven_ley's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2rr1mtsr) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2rr1mtsr/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/heaven_ley') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/ladygaga
8ef10766456c477669585a871014b127eff439d7
2022-05-12T06:03:03.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/ladygaga
12
null
transformers
10,585
--- language: en thumbnail: http://www.huggingtweets.com/ladygaga/1652335378479/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1519346609125003264/rekKHZUq_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Lady Gaga</div> <div style="text-align: center; font-size: 14px;">@ladygaga</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Lady Gaga. | Data | Lady Gaga | | --- | --- | | Tweets downloaded | 3178 | | Retweets | 617 | | Short tweets | 330 | | Tweets kept | 2231 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/27nvqv2x/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ladygaga's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3a6dln4v) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3a6dln4v/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/ladygaga') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/mediocrechris
3e34c2334ff17b538490a98861b0e892df67f9c2
2021-05-22T14:05:36.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/mediocrechris
12
null
transformers
10,586
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1368512623034183686/SqccnbVI_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">chris 🤖 AI Bot </div> <div style="font-size: 15px">@mediocrechris bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@mediocrechris's tweets](https://twitter.com/mediocrechris). | Data | Quantity | | --- | --- | | Tweets downloaded | 3054 | | Retweets | 1321 | | Short tweets | 167 | | Tweets kept | 1566 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/7lzf7wr4/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mediocrechris's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1mf39bti) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1mf39bti/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mediocrechris') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/motivational
1e040ba7e23bdbd59c6737e955fd6999d69f4070
2021-08-17T13:30:16.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/motivational
12
1
transformers
10,587
--- language: en thumbnail: https://www.huggingtweets.com/motivational/1629207012330/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1152366947734102016/elm5mOR__400x400.png&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Motivational Quotes</div> <div style="text-align: center; font-size: 14px;">@motivational</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Motivational Quotes. | Data | Motivational Quotes | | --- | --- | | Tweets downloaded | 3240 | | Retweets | 147 | | Short tweets | 528 | | Tweets kept | 2565 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2bevnmsd/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @motivational's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3986btfy) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3986btfy/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/motivational') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/rxmaybike
04a6905f9068f9a8acb5667f60fc966a2a974d15
2022-06-16T16:07:49.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/rxmaybike
12
null
transformers
10,588
--- language: en thumbnail: http://www.huggingtweets.com/rxmaybike/1655395664026/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1454672063319392260/iwO_Ll7D_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">jamar " The Fool ” majima 🇵🇸</div> <div style="text-align: center; font-size: 14px;">@rxmaybike</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from jamar " The Fool ” majima 🇵🇸. | Data | jamar " The Fool ” majima 🇵🇸 | | --- | --- | | Tweets downloaded | 3062 | | Retweets | 1828 | | Short tweets | 320 | | Tweets kept | 914 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2jzoscl1/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @rxmaybike's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1m0h78lc) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1m0h78lc/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/rxmaybike') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
indonesian-nlp/wav2vec2-large-xlsr-indonesian-baseline
7d6bd34c06d6ade6278c333e910d01d87170a95a
2021-07-06T06:11:10.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "id", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
indonesian-nlp
null
indonesian-nlp/wav2vec2-large-xlsr-indonesian-baseline
12
1
transformers
10,589
--- language: id datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Indonesian Baseline by indonesian-nlp results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice id type: common_voice args: id metrics: - name: Test WER type: wer value: 25.55 --- # Wav2Vec2-Large-XLSR-Indonesian This is the baseline for Wav2Vec2-Large-XLSR-Indonesian, a fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) model on the [Indonesian Common Voice dataset](https://huggingface.co/datasets/common_voice). It was trained using the default hyperparamer and for 2x30 epochs. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "id", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("indonesian-nlp/wav2vec2-large-xlsr-indonesian-baseline") model = Wav2Vec2ForCTC.from_pretrained("indonesian-nlp/wav2vec2-large-xlsr-indonesian-baseline") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset[:2]["sentence"]) ``` ## Evaluation The model can be evaluated as follows on the Indonesian test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "id", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("indonesian-nlp/wav2vec2-large-xlsr-indonesian-baseline") model = Wav2Vec2ForCTC.from_pretrained("indonesian-nlp/wav2vec2-large-xlsr-indonesian-baseline") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\'\”\�]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the audio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 25.55 % ## Training The Common Voice `train`, `validation`, and ... datasets were used for training as well as ... and ... # TODO The script used for training can be found [here](https://github.com/indonesian-nlp/indonesian-speech-recognition) (will be available soon)
infinitejoy/wav2vec2-large-xls-r-300m-arabic
7178f1836abaee2c03a0a9b04da25b350606e73f
2022-03-23T18:28:27.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "ar", "dataset:mozilla-foundation/common_voice_7_0", "transformers", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
infinitejoy
null
infinitejoy/wav2vec2-large-xls-r-300m-arabic
12
null
transformers
10,590
--- language: - ar license: apache-2.0 tags: - ar - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - model_for_talk - mozilla-foundation/common_voice_7_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - Arabic results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: ar metrics: - name: Test WER type: wer value: NA - name: Test CER type: cer value: NA - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: ar metrics: - name: Test WER type: wer value: NA - name: Test CER type: cer value: NA --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # XLS-R-300m-SV This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - AR dataset. It achieves the following results on the evaluation set: - Loss: NA - Wer: NA ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.10.3 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_7_0` with split `test` ```bash python eval.py \ --model_id infinitejoy/wav2vec2-large-xls-r-300m-arabic \ --dataset mozilla-foundation/common_voice_7_0 --config ar --split test --log_outputs ``` 2. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py \ --model_id infinitejoy/wav2vec2-large-xls-r-300m-arabic --dataset speech-recognition-community-v2/dev_data \ --config ar --split validation --chunk_length_s 10 --stride_length_s 1 ``` ### Inference With LM ```python import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F model_id = "infinitejoy/wav2vec2-large-xls-r-300m-arabic" sample_iter = iter(load_dataset("mozilla-foundation/common_voice_7_0", "ar", split="test", streaming=True, use_auth_token=True)) sample = next(sample_iter) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() model = AutoModelForCTC.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) input_values = processor(resampled_audio, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values).logits transcription = processor.batch_decode(logits.numpy()).text ``` ### Eval results on Common Voice 7 "test" (WER): | Without LM | With LM (run `./eval.py`) | |---|---| | NA | NA |
infinitejoy/wav2vec2-large-xls-r-300m-urdu
c879a3e666477d078f5cfdfa8eaf0e16481ba0f1
2022-03-23T18:30:21.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "ur", "dataset:mozilla-foundation/common_voice_7_0", "transformers", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
infinitejoy
null
infinitejoy/wav2vec2-large-xls-r-300m-urdu
12
null
transformers
10,591
--- language: - ur license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - model_for_talk - mozilla-foundation/common_voice_7_0 - robust-speech-event - ur datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - Urdu results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: ur metrics: - name: Test WER type: wer value: 105.66 - name: Test CER type: cer value: 434.011 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> infinitejoy/wav2vec2-large-xls-r-300m-urdu This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - -UR dataset. It achieves the following results on the evaluation set: - Loss: NA - Wer: NA ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.10.3 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_7_0` with split `test` ```bash python eval.py \ --model_id infinitejoy/wav2vec2-large-xls-r-300m-urdu --dataset speech-recognition-community-v2/dev_data \ --config ur --split validation --chunk_length_s 10 --stride_length_s 1 ``` ### Inference ```python import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F model_id = "infinitejoy/wav2vec2-large-xls-r-300m-urdu" sample_iter = iter(load_dataset("mozilla-foundation/common_voice_7_0", "ur", split="test", streaming=True, use_auth_token=True)) sample = next(sample_iter) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() model = AutoModelForCTC.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) input_values = processor(resampled_audio, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values).logits transcription = processor.batch_decode(logits.numpy()).text ``` ### Eval results on Common Voice 7 "test" (WER):
it5/it5-large-question-generation
1af827f7f6bc9e7c651a903473d9516b433c23a6
2022-03-09T07:56:40.000Z
[ "pytorch", "tf", "jax", "tensorboard", "t5", "text2text-generation", "it", "dataset:squad_it", "arxiv:2203.03759", "transformers", "italian", "sequence-to-sequence", "question-generation", "squad_it", "license:apache-2.0", "model-index", "co2_eq_emissions", "autotrain_compatible" ]
text2text-generation
false
it5
null
it5/it5-large-question-generation
12
null
transformers
10,592
--- language: - it license: apache-2.0 datasets: - squad_it tags: - italian - sequence-to-sequence - question-generation - squad_it - text2text-generation widget: - text: "Le conoscenze mediche erano stagnanti durante il Medioevo. Il resoconto più autorevole di allora è venuto dalla facoltà di medicina di Parigi in un rapporto al re di Francia che ha incolpato i cieli, sotto forma di una congiunzione di tre pianeti nel 1345 che causò una \"grande pestilenza nell' aria\". Questa relazione è diventata la prima e più diffusa di una serie di casi di peste che cercava di dare consigli ai malati. Che la peste fosse causata dalla cattiva aria divenne la teoria più accettata. Oggi, questo è conosciuto come la teoria di Miasma. La parola \"peste\" non aveva un significato particolare in questo momento, e solo la ricorrenza dei focolai durante il Medioevo gli diede il nome che è diventato il termine medico. Risposta: re di Francia" - text: "Il 14 aprile 2011, ABC ha annullato le lunghe opere di sapone All My Children e One Life to Live dopo 41 e 43 anni in onda, rispettivamente (in seguito al contraccolpo dei tifosi, ABC ha venduto i diritti ad entrambi gli spettacoli a Prospect Park, che alla fine ha rilanciato i saponi su Hulu per un' ulteriore stagione nel 2013 e con entrambe le società che si citano in giudizio per accuse di interferenza con il processo di rilancio degli spettacoli, mancato pagamento delle tasse di licenza. Il talk/lifestyle show che ha sostituito One Life to Live, The Revolution, non è riuscito a generare giudizi soddisfacenti ed è stato a sua volta annullato dopo soli sette mesi. La stagione 2011-12 ha visto l' ABC cadere al quarto posto nel 18-49 demografico nonostante rinnovando una manciata di nuovi spettacoli (compresi i drammi matricole Scandal, Revenge e Once Upon a Time) per la seconda stagione. Risposta: Hulu" - text: "L' American Broadcasting Company (ABC) (stlized nel suo logo come abc dal 1957) è una rete televisiva commerciale americana trasmissione televisiva che è di proprietà del Disney-ABC Television Group, una controllata della divisione Disney Media Networks di The Walt Disney Company. La rete fa parte delle grandi reti televisive Big Three. La rete ha sede a Columbus Avenue e West 66th Street a Manhattan, con ulteriori uffici e stabilimenti di produzione a New York City, Los Angeles e Burbank, California. Risposta: Manhattan" - text: "La disobbedienza civile non rivoluzionaria è una semplice disobbedienza delle leggi sulla base del fatto che sono giudicate \"sbagliate\" da una coscienza individuale, o come parte di uno sforzo per rendere alcune leggi inefficaci, per causarne l' abrogazione, o per esercitare pressioni per ottenere i propri desideri politici su qualche altra questione. La disobbedienza civile rivoluzionaria è più che altro un tentativo attivo di rovesciare un governo (o di cambiare le tradizioni culturali, i costumi sociali, le credenze religiose, ecc. La rivoluzione non deve necessariamente essere politica, cioè \"rivoluzione culturale\", implica semplicemente un cambiamento radicale e diffuso in una sezione del tessuto sociale). Gli atti di Gandhi sono stati descritti come disobbedienza civile rivoluzionaria. È stato affermato che gli ungheresi sotto Ferenc Deák hanno diretto una disobbedienza civile rivoluzionaria contro il governo austriaco. Thoreau ha anche scritto di disobbedienza civile realizzando \"rivoluzione pacifica\". Howard Zinn, Harvey Wheeler e altri hanno identificato il diritto sposato nella Dichiarazione d' Indipendenza di \"alterare o abolire\" un governo ingiusto come principio di disobbedienza civile. Risposta: Ferenc Deák" metrics: - rouge - bertscore model-index: - name: it5-large-question-generation results: - task: type: question-generation name: "Question generation" dataset: type: squad_it name: "SQuAD-IT" metrics: - type: rouge1 value: 0.383 name: "Test Rouge1" - type: rouge2 value: 0.204 name: "Test Rouge2" - type: rougeL value: 0.360 name: "Test RougeL" - type: bertscore value: 0.522 name: "Test BERTScore" args: - model_type: "dbmdz/bert-base-italian-xxl-uncased" - lang: "it" - num_layers: 10 - rescale_with_baseline: True - baseline_path: "bertscore_baseline_ita.tsv" co2_eq_emissions: emissions: "51g" source: "Google Cloud Platform Carbon Footprint" training_type: "fine-tuning" geographical_location: "Eemshaven, Netherlands, Europe" hardware_used: "1 TPU v3-8 VM" thumbnail: https://gsarti.com/publication/it5/featured.png --- # IT5 Large for Question Generation 💭 🇮🇹 This repository contains the checkpoint for the [IT5 Large](https://huggingface.co/gsarti/it5-large) model fine-tuned on question generation on the [SQuAD-IT corpus](https://huggingface.co/datasets/squad_it) as part of the experiments of the paper [IT5: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation](https://arxiv.org/abs/2203.03759) by [Gabriele Sarti](https://gsarti.com) and [Malvina Nissim](https://malvinanissim.github.io). A comprehensive overview of other released materials is provided in the [gsarti/it5](https://github.com/gsarti/it5) repository. Refer to the paper for additional details concerning the reported scores and the evaluation approach. ## Using the model Model checkpoints are available for usage in Tensorflow, Pytorch and JAX. They can be used directly with pipelines as: ```python from transformers import pipelines qg = pipeline("text2text-generation", model='it5/it5-large-question-generation') qg("Le conoscenze mediche erano stagnanti durante il Medioevo. Il resoconto più autorevole di allora è venuto dalla facoltà di medicina di Parigi in un rapporto al re di Francia che ha incolpato i cieli, sotto forma di una congiunzione di tre pianeti nel 1345 che causò una "grande pestilenza nell\' aria". Questa relazione è diventata la prima e più diffusa di una serie di casi di peste che cercava di dare consigli ai malati. Che la peste fosse causata dalla cattiva aria divenne la teoria più accettata. Oggi, questo è conosciuto come la teoria di Miasma. La parola "peste" non aveva un significato particolare in questo momento, e solo la ricorrenza dei focolai durante il Medioevo gli diede il nome che è diventato il termine medico. Risposta: re di Francia") >>> [{"generated_text": "Per chi è stato redatto il referto medico?"}] ``` or loaded using autoclasses: ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("it5/it5-large-question-generation") model = AutoModelForSeq2SeqLM.from_pretrained("it5/it5-large-question-generation") ``` If you use this model in your research, please cite our work as: ```bibtex @article{sarti-nissim-2022-it5, title={{IT5}: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation}, author={Sarti, Gabriele and Nissim, Malvina}, journal={ArXiv preprint 2203.03759}, url={https://arxiv.org/abs/2203.03759}, year={2022}, month={mar} } ```
it5/it5-small-informal-to-formal
60e75c14b31e3b2b773706c24cb54e39286f4163
2022-03-09T07:47:36.000Z
[ "pytorch", "tf", "jax", "t5", "text2text-generation", "it", "dataset:yahoo/xformal_it", "arxiv:2203.03759", "transformers", "italian", "sequence-to-sequence", "style-transfer", "formality-style-transfer", "license:apache-2.0", "model-index", "co2_eq_emissions", "autotrain_compatible" ]
text2text-generation
false
it5
null
it5/it5-small-informal-to-formal
12
null
transformers
10,593
--- language: - it license: apache-2.0 tags: - italian - sequence-to-sequence - style-transfer - formality-style-transfer datasets: - yahoo/xformal_it widget: - text: "maronn qualcuno mi spieg' CHECCOSA SUCCEDE?!?!" - text: "wellaaaaaaa, ma fraté sei proprio troppo simpatiko, grazieeee!!" - text: "nn capisco xke tt i ragazzi lo fanno" - text: "IT5 è SUPERMEGA BRAVISSIMO a capire tt il vernacolo italiano!!!" metrics: - rouge - bertscore model-index: - name: it5-small-informal-to-formal results: - task: type: formality-style-transfer name: "Informal-to-formal Style Transfer" dataset: type: xformal_it name: "XFORMAL (Italian Subset)" metrics: - type: rouge1 value: 0.646 name: "Avg. Test Rouge1" - type: rouge2 value: 0.451 name: "Avg. Test Rouge2" - type: rougeL value: 0.628 name: "Avg. Test RougeL" - type: bertscore value: 0.702 name: "Avg. Test BERTScore" args: - model_type: "dbmdz/bert-base-italian-xxl-uncased" - lang: "it" - num_layers: 10 - rescale_with_baseline: True - baseline_path: "bertscore_baseline_ita.tsv" co2_eq_emissions: emissions: "8g" source: "Google Cloud Platform Carbon Footprint" training_type: "fine-tuning" geographical_location: "Eemshaven, Netherlands, Europe" hardware_used: "1 TPU v3-8 VM" --- # IT5 Small for Informal-to-formal Style Transfer 🧐 This repository contains the checkpoint for the [IT5 Small](https://huggingface.co/gsarti/it5-small) model fine-tuned on Informal-to-formal style transfer on the Italian subset of the XFORMAL dataset as part of the experiments of the paper [IT5: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation](https://arxiv.org/abs/2203.03759) by [Gabriele Sarti](https://gsarti.com) and [Malvina Nissim](https://malvinanissim.github.io). A comprehensive overview of other released materials is provided in the [gsarti/it5](https://github.com/gsarti/it5) repository. Refer to the paper for additional details concerning the reported scores and the evaluation approach. ## Using the model Model checkpoints are available for usage in Tensorflow, Pytorch and JAX. They can be used directly with pipelines as: ```python from transformers import pipelines i2f = pipeline("text2text-generation", model='it5/it5-small-informal-to-formal') i2f("nn capisco xke tt i ragazzi lo fanno") >>> [{"generated_text": "non comprendo perché tutti i ragazzi agiscono così"}] ``` or loaded using autoclasses: ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("it5/it5-small-informal-to-formal") model = AutoModelForSeq2SeqLM.from_pretrained("it5/it5-small-informal-to-formal") ``` If you use this model in your research, please cite our work as: ```bibtex @article{sarti-nissim-2022-it5, title={{IT5}: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation}, author={Sarti, Gabriele and Nissim, Malvina}, journal={ArXiv preprint 2203.03759}, url={https://arxiv.org/abs/2203.03759}, year={2022}, month={mar} } ```
izumi-lab/electra-small-paper-japanese-generator
14f774cc886be4dca345fccae1110205978fdc61
2022-03-19T09:40:48.000Z
[ "pytorch", "electra", "fill-mask", "ja", "dataset:wikipedia", "arxiv:2003.10555", "transformers", "license:cc-by-sa-4.0", "autotrain_compatible" ]
fill-mask
false
izumi-lab
null
izumi-lab/electra-small-paper-japanese-generator
12
null
transformers
10,594
--- language: ja license: cc-by-sa-4.0 datasets: - wikipedia widget: - text: 東京大学で[MASK]の研究をしています。 --- # ELECTRA small Japanese generator This is a [ELECTRA](https://github.com/google-research/electra) model pretrained on texts in the Japanese language. The codes for the pretraining are available at [retarfi/language-pretraining](https://github.com/retarfi/language-pretraining/tree/v1.0). ## Model architecture The model architecture is the same as ELECTRA small in the [original ELECTRA paper](https://arxiv.org/abs/2003.10555); 12 layers, 64 dimensions of hidden states, and 1 attention heads. ## Training Data The models are trained on the Japanese version of Wikipedia. The training corpus is generated from the Japanese version of Wikipedia, using Wikipedia dump file as of June 1, 2021. The corpus file is 2.9GB, consisting of approximately 20M sentences. ## Tokenization The texts are first tokenized by MeCab with IPA dictionary and then split into subwords by the WordPiece algorithm. The vocabulary size is 32768. ## Training The models are trained with the same configuration as ELECTRA small in the [original ELECTRA paper](https://arxiv.org/abs/2003.10555); 128 tokens per instance, 128 instances per batch, and 1M training steps. The size of the generator is 1/4 of the size of the discriminator. ## Citation **There will be another paper for this pretrained model. Be sure to check here again when you cite.** ``` @inproceedings{suzuki2021fin-bert-electra, title={金融文書を用いた事前学習言語モデルの構築と検証}, % title={Construction and Validation of a Pre-Trained Language Model Using Financial Documents}, author={鈴木 雅弘 and 坂地 泰紀 and 平野 正徳 and 和泉 潔}, % author={Masahiro Suzuki and Hiroki Sakaji and Masanori Hirano and Kiyoshi Izumi}, booktitle={人工知能学会第27回金融情報学研究会(SIG-FIN)}, % booktitle={Proceedings of JSAI Special Interest Group on Financial Infomatics (SIG-FIN) 27}, pages={5-10}, year={2021} } ``` ## Licenses The pretrained models are distributed under the terms of the [Creative Commons Attribution-ShareAlike 4.0](https://creativecommons.org/licenses/by-sa/4.0/). ## Acknowledgments This work was supported by JSPS KAKENHI Grant Number JP21K12010.
jaesun/dpr-bert-finetuned-klue-retrieval-for-qa
94be179d7ca66e431d7514b93081bd31e5b7addc
2022-02-17T18:57:06.000Z
[ "pytorch", "tensorboard", "dpr", "transformers" ]
null
false
jaesun
null
jaesun/dpr-bert-finetuned-klue-retrieval-for-qa
12
null
transformers
10,595
Entry not found
jinmang2/pororo-roberta-base-ko-ner
a7425bd7bfa4e8f67e9dec3e4128ed2440f6337a
2021-12-14T21:11:57.000Z
[ "pytorch", "roberta", "transformers" ]
null
false
jinmang2
null
jinmang2/pororo-roberta-base-ko-ner
12
null
transformers
10,596
Entry not found
jordanhagan/DialoGPT-medium-NegaNetizen
766f2010e830ca40b6cc83715985acac1cd3e124
2021-12-13T21:38:57.000Z
[ "pytorch", "gpt2", "text-generation", "en", "dataset:Discord transcripts", "transformers", "conversational" ]
conversational
false
jordanhagan
null
jordanhagan/DialoGPT-medium-NegaNetizen
12
null
transformers
10,597
--- language: - en # Example: fr tags: - conversational # Example: audio - gpt2 # Example: automatic-speech-recognition datasets: - Discord transcripts --- ### About NegaNetizen Trained on conversations from a friend for use within their discord server. ### How to use ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium") model = AutoModelForCausalLM.from_pretrained('jordanhagan/DialoGPT-medium-NegaNetizen') # Let's chat for 5 lines for step in range(5): new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt') # append the new user input tokens to the chat history bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids # generated a response while limiting the total chat history to 1000 tokens, chat_history_ids = model.generate( bot_input_ids, max_length=200, pad_token_id=tokenizer.eos_token_id, no_repeat_ngram_size=3, do_sample=True, top_k=100, top_p=0.7, temperature=0.8 ) # pretty print last ouput tokens from bot print("NNR: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True))) ```
jpcorb20/pegasus-large-reddit_tifu-samsum-256
79773713b0e34249d4af6f456178269b5487951b
2021-03-20T15:14:53.000Z
[ "pytorch", "pegasus", "text2text-generation", "en", "dataset:samsum", "transformers", "google/pegasus-reddit_tifu", "summarization", "samsum", "autotrain_compatible" ]
summarization
false
jpcorb20
null
jpcorb20/pegasus-large-reddit_tifu-samsum-256
12
null
transformers
10,598
--- language: - en thumbnail: tags: - pytorch - google/pegasus-reddit_tifu - summarization - samsum license: datasets: - samsum metrics: - rouge --- # Samsum Pegasus (Reddit/TIFU) for conversational summaries ## Model description Pegasus (Reddit/TIFU) for conversational summaries trained on the samsum dataset! ## Training data The data is the [samsum](https://huggingface.co/datasets/samsum) dataset for conversional summaries. The initial weigths were from the [google/pegasus-reddit_tifu](https://huggingface.co/google/pegasus-reddit_tifu). The hypothesis being that it would help the convergence on the samsum dataset to have weights trained on a larger summarization dataset first like the Reddit TIFU using casual language. ## Training procedure Used the _example/seq2seq/run_summarization.py_ script from the transformers source _4.5.0dev0_. n_epochs: 3,\ batch_size: 8, \ max_source_length: 256,\ max_target_length: 128 ## Eval results eval_gen_len: 35.9939,\ eval_loss: 1.4284523725509644,\ eval_rouge1: 46.5613,\ eval_rouge2: 23.6137,\ eval_rougeL: 37.2397,\ eval_rougeLsum: 42.7126,\ eval_samples_per_second: 4.302 ## Example from transformers import PegasusForConditionalGeneration, PegasusTokenizer model_name = "jpcorb20/pegasus-large-reddit_tifu-samsum-256" tokenizer = PegasusTokenizer.from_pretrained(model_name) model = PegasusForConditionalGeneration.from_pretrained(model_name) src_text = """Carter: Hey Alexis, I just wanted to let you know that I had a really nice time with you tonight.\r\nAlexis: Thanks Carter. Yeah, I really enjoyed myself as well.\r\nCarter: If you are up for it, I would really like to see you again soon.\r\nAlexis: Thanks Carter, I'm flattered. But I have a really busy week coming up.\r\nCarter: Yeah, no worries. I totally understand. But if you ever want to go grab dinner again, just let me know.\r\nAlexis: Yeah of course. Thanks again for tonight. Carter: Sure. Have a great night.\r\n""" token_params = dict(max_length=256, truncation=True, padding='longest', return_tensors="pt") batch = tokenizer(src_text, **token_params) translated = model.generate(**batch) decode_params = dict(num_beams=5, min_length=16, max_length=128, length_penalty=2) tgt_text = tokenizer.batch_decode(translated, skip_special_tokens=True, **decode_params) print(tgt_text)
junnyu/electra_small_discriminator
b8f43604f7d53fc5c095f4f26ff2549b4f5ce693
2021-09-22T08:54:15.000Z
[ "pytorch", "electra", "pretraining", "en", "dataset:openwebtext", "transformers", "license:mit" ]
null
false
junnyu
null
junnyu/electra_small_discriminator
12
null
transformers
10,599
--- language: en thumbnail: https://github.com/junnyu tags: - pytorch - electra license: mit datasets: - openwebtext --- # 一、 个人在openwebtext数据集上训练得到的electra-small模型 # 二、 复现结果(dev dataset) |Model|CoLA|SST|MRPC|STS|QQP|MNLI|QNLI|RTE|Avg.| |---|---|---|---|---|---|---|---|---|---| |Metrics|MCC|Acc|Acc|Spearman|Acc|Acc|Acc|Acc|| |ELECTRA-Small-OWT(original)|56.8|88.3|87.4|86.8|88.3|78.9|87.9|68.5|80.36| |**ELECTRA-Small-OWT (this)**| 55.82 |89.67|87.0|86.96|89.28|80.08|87.50|66.07|80.30| # 三、 训练细节 - 数据集 openwebtext - 训练batch_size 256 - 学习率lr 5e-4 - 最大句子长度max_seqlen 128 - 训练total step 62.5W - GPU RTX3090 - 训练时间总共耗费2.5天 # 四、 使用 ```python import torch from transformers.models.electra import ElectraModel, ElectraTokenizer tokenizer = ElectraTokenizer.from_pretrained("junnyu/electra_small_discriminator") model = ElectraModel.from_pretrained("junnyu/electra_small_discriminator") inputs = tokenizer("Beijing is the capital of China.", return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) print(outputs[0].shape) ```