modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
list
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
rajistics/distilbert-imdb-mlflow
7d3e3d7107f8b175c90e34a1f74ba46fdc09da36
2022-07-20T21:06:00.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
rajistics
null
rajistics/distilbert-imdb-mlflow
13
null
transformers
10,400
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-imdb-mlflow results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-imdb-mlflow This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the imdb dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
okho0653/Bio_ClinicalBERT-zero-shot-finetuned-50cad-50noncad
5eb1d9075118a203522116d6fe5f23966fcc02d0
2022-07-22T03:50:29.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
okho0653
null
okho0653/Bio_ClinicalBERT-zero-shot-finetuned-50cad-50noncad
13
null
transformers
10,401
Entry not found
doya/klue-sentiment-aihub
cb55e0a40fd90bd499829633c2d75102aebd0f5e
2022-07-22T06:53:16.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
doya
null
doya/klue-sentiment-aihub
13
null
transformers
10,402
Entry not found
Siyong/MC_RN_LM
833b466e58d517d2ff7247ced195127f8bf75927
2022-07-23T17:16:23.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Siyong
null
Siyong/MC_RN_LM
13
null
transformers
10,403
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: Millad_Customer_RN results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Millad_Customer_RN This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.5635 - Wer: 0.8113 - Cer: 0.4817 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 4000 - num_epochs: 600 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:------:|:-----:|:---------------:|:------:|:------:| | 1.9257 | 13.33 | 2000 | 2.0606 | 0.9767 | 0.5500 | | 1.4828 | 26.67 | 4000 | 2.1161 | 0.9019 | 0.4932 | | 1.2582 | 40.0 | 6000 | 2.0589 | 0.8504 | 0.4942 | | 0.9804 | 53.33 | 8000 | 2.4633 | 0.8745 | 0.4763 | | 0.7862 | 66.67 | 10000 | 2.4794 | 0.8861 | 0.4944 | | 0.6492 | 80.0 | 12000 | 2.8693 | 0.8554 | 0.4928 | | 0.5375 | 93.33 | 14000 | 2.6125 | 0.8296 | 0.4802 | | 0.4462 | 106.67 | 16000 | 2.7591 | 0.8770 | 0.4974 | | 0.3873 | 120.0 | 18000 | 3.0325 | 0.8379 | 0.4800 | | 0.3445 | 133.33 | 20000 | 2.9965 | 0.8761 | 0.4986 | | 0.3087 | 146.67 | 22000 | 3.3437 | 0.8221 | 0.4923 | | 0.2755 | 160.0 | 24000 | 3.3022 | 0.8803 | 0.5211 | | 0.2467 | 173.33 | 26000 | 3.2348 | 0.8479 | 0.4933 | | 0.2281 | 186.67 | 28000 | 3.8010 | 0.8695 | 0.5081 | | 0.2119 | 200.0 | 30000 | 3.0446 | 0.8545 | 0.4902 | | 0.194 | 213.33 | 32000 | 3.0873 | 0.8454 | 0.4840 | | 0.1677 | 226.67 | 34000 | 3.6184 | 0.8645 | 0.5019 | | 0.1642 | 240.0 | 36000 | 3.2480 | 0.8412 | 0.4903 | | 0.1656 | 253.33 | 38000 | 3.4379 | 0.8362 | 0.4816 | | 0.1371 | 266.67 | 40000 | 3.5117 | 0.8479 | 0.5040 | | 0.1301 | 280.0 | 42000 | 3.4360 | 0.8404 | 0.4870 | | 0.128 | 293.33 | 44000 | 3.6589 | 0.8537 | 0.4977 | | 0.1152 | 306.67 | 46000 | 4.2359 | 0.8545 | 0.5051 | | 0.1119 | 320.0 | 48000 | 3.5818 | 0.7980 | 0.4882 | | 0.1026 | 333.33 | 50000 | 3.7618 | 0.8013 | 0.4865 | | 0.0945 | 346.67 | 52000 | 4.2197 | 0.8404 | 0.5028 | | 0.0962 | 360.0 | 54000 | 3.9231 | 0.8653 | 0.5030 | | 0.088 | 373.33 | 56000 | 3.8400 | 0.8354 | 0.4914 | | 0.0743 | 386.67 | 58000 | 3.4924 | 0.8088 | 0.4824 | | 0.0811 | 400.0 | 60000 | 3.8370 | 0.8396 | 0.4861 | | 0.0696 | 413.33 | 62000 | 4.2808 | 0.8412 | 0.5065 | | 0.0692 | 426.67 | 64000 | 4.0161 | 0.8088 | 0.4744 | | 0.0622 | 440.0 | 66000 | 3.9080 | 0.8163 | 0.4910 | | 0.0591 | 453.33 | 68000 | 3.9838 | 0.8113 | 0.4823 | | 0.0527 | 466.67 | 70000 | 3.8067 | 0.8329 | 0.4914 | | 0.056 | 480.0 | 72000 | 4.1415 | 0.8096 | 0.4782 | | 0.0535 | 493.33 | 74000 | 4.3350 | 0.8229 | 0.4828 | | 0.0531 | 506.67 | 76000 | 3.9808 | 0.8071 | 0.4807 | | 0.0451 | 520.0 | 78000 | 4.0301 | 0.7988 | 0.4816 | | 0.044 | 533.33 | 80000 | 4.4680 | 0.8371 | 0.4921 | | 0.0389 | 546.67 | 82000 | 4.1380 | 0.8121 | 0.4819 | | 0.0392 | 560.0 | 84000 | 4.3910 | 0.7930 | 0.4763 | | 0.0389 | 573.33 | 86000 | 4.5086 | 0.8055 | 0.4802 | | 0.0355 | 586.67 | 88000 | 4.6259 | 0.8113 | 0.4821 | | 0.0307 | 600.0 | 90000 | 4.5635 | 0.8113 | 0.4817 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.12.0+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
grantpitt/autotagger
7e560f0a65b5542cfa70c044a20955134cbac441
2022-07-24T18:03:29.000Z
[ "pytorch", "vision-text-dual-encoder", "feature-extraction", "transformers" ]
feature-extraction
false
grantpitt
null
grantpitt/autotagger
13
null
transformers
10,404
Entry not found
tnavin/distilbert-base-uncased-finetuned-ner
a0465749e562171d3daa4a5dced8cf0a4c104be0
2022-07-24T08:58:43.000Z
[ "pytorch", "tensorboard", "distilbert", "token-classification", "dataset:wnut_17", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
tnavin
null
tnavin/distilbert-base-uncased-finetuned-ner
13
null
transformers
10,405
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wnut_17 metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: wnut_17 type: wnut_17 args: wnut_17 metrics: - name: Precision type: precision value: 0.5899772209567198 - name: Recall type: recall value: 0.4117647058823529 - name: F1 type: f1 value: 0.4850187265917604 - name: Accuracy type: accuracy value: 0.9304392705585502 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the wnut_17 dataset. It achieves the following results on the evaluation set: - Loss: 0.3202 - Precision: 0.5900 - Recall: 0.4118 - F1: 0.4850 - Accuracy: 0.9304 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 213 | 0.3469 | 0.5480 | 0.2814 | 0.3718 | 0.9193 | | No log | 2.0 | 426 | 0.3135 | 0.5909 | 0.3903 | 0.4701 | 0.9281 | | 0.1903 | 3.0 | 639 | 0.3202 | 0.5900 | 0.4118 | 0.4850 | 0.9304 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
thu-coai/EVA2.0-large
be4c935951812c16a467ea8a75f5a45591970c49
2022-07-25T03:40:50.000Z
[ "pytorch", "zh", "arxiv:2108.01547", "arxiv:2203.09313", "transformers", "license:mit" ]
null
false
thu-coai
null
thu-coai/EVA2.0-large
13
1
transformers
10,406
--- language: zh tags: - pytorch license: mit --- # EVA ## Model Description EVA is the largest open-source Chinese dialogue model with up to 2.8B parameters. The 1.0 version model is pre-trained on [WudaoCorpus-Dialog](https://resource.wudaoai.cn/home), and the 2.0 version is pre-trained on a carefully cleaned version of WudaoCorpus-Dialog which yields better performance than the 1.0 version. [Paper link](https://arxiv.org/abs/2108.01547) of EVA1.0. [Paper link](https://arxiv.org/abs/2203.09313) of EVA2.0. ## Model Configuration | Model | n_params | n_enc-layers | n_dec-layers | d_model | d_ff | n_heads | d_head | attn-scale | | ------------- | -------- | ------------ | ------------ | ------- | ----- | ------- | ------ | ---------- | | EVA1.0 | 2.8B | 24 | 24 | 2,048 | 5,120 | 32 | 64 | No | | EVA2.0_Base | 300M | 12 | 12 | 768 | 3,072 | 12 | 64 | Yes | | EVA2.0_Large | 970M | 24 | 24 | 1,024 | 4,096 | 16 | 64 | Yes | | EVA2.0_xLarge | 2.8B | 24 | 24 | 2,048 | 5,120 | 32 | 64 | Yes | ## How to use Please refer to our GitHub [repository](https://github.com/thu-coai/EVA/tree/huggingface). ## Performance We use the KdConv dataset to finetune and evaluate the model. Under the default hyperparameters in the scripts, we get the following results on the test set: | | | | | | | ---- | ---- | ---- | ---- | ---- | | | loss | BLEU-4 | Dist-4 | f1 | | eva1.0 Before finetune | 3.49 | 0.64 | 85.94 | 13.24 | | eva1.0 After finetune | 2.37 | 3.94 | 72.47 | 19.80 | | eva2.0 Before finetune | 3.14 | 1.02 | 82.67 | 14.36 | | eva2.0 After finetune | 2.09 | 4.69 | 73.03 | 22.91 | We also use beam search to run the interactive inference of EVA2.0: ```[] Usr >>> 你好 Sys >>> 你好,请问你是? Usr >>> 我是小明 Sys >>> 好的,小明,我是新来的,请多关照 Usr >>> 你了解人工智能吗? Sys >>> 不了解,我只知道我是机器人 Usr >>> 那你很聪明 Sys >>> 谢谢夸奖,我会继续努力的 Usr >>> 你是学什么专业的呀 Sys >>> 计算机科学与技术,你呢? Usr >>> 我也是学计算机的 Sys >>> 哦,那你有什么想知道的,可以问我 Usr >>> 编程语言你学过哪些? Sys >>> java,c,c+都学过 Usr >>> 你学的真多 Sys >>> 呵呵,还好吧,我比较喜欢写代码 Usr >>> 哈哈,我也喜欢写代码,以后可以多多交流 Sys >>> 嗯,好的 Usr >>> 拜拜喽 Sys >>> 拜~ ``` **NOET**: Since different hardware may have different implementations of random functions, even if you use the same random seed as ours, you may not be able to reproduce this case. But the overall performance will not differ much. ## Disclaimer The pre-trained models aim to facilitate the research for conversation generation. The model provided in this repository is trained on a large dataset collected from various sources. Although a rigorous cleaning and filtering process has been carried out to the data and the model output, there is no guarantee that all the inappropriate contents have been completely banned. All the contents generated by the model do not represent the authors' opinions. The decoding script provided in this repository is only for research purposes. We are not responsible for any content generated using our model. ## Citation ``` @article{coai2021eva, title={EVA: An Open-Domain Chinese Dialogue System with Large-Scale Generative Pre-Training}, author={Zhou, Hao and Ke, Pei and Zhang, Zheng and Gu, Yuxian and Zheng, Yinhe and Zheng, Chujie and Wang, Yida and Wu, Chen Henry and Sun, Hao and Yang, Xiaocong and Wen, Bosi and Zhu, Xiaoyan and Huang, Minlie and Tang, Jie}, journal={arXiv preprint arXiv:2108.01547}, year={2021} } @article{coai2022eva2, title={{EVA2.0}: Investigating Open-Domain Chinese Dialogue Systems with Large-Scale Pre-Training}, author={Gu, Yuxian and Wen, Jiaxin and Sun, Hao and Song, Yi and Ke, Pei and Zheng, Chujie and Zhang, Zheng and Yao, Jianzhu and Zhu, Xiaoyan and Tang, Jie and Huang, Minlie}, journal={arXiv preprint arXiv:2203.09313}, year={2022} } ```
rufimelo/Legal-SBERTimbau-nli-large
51ad3ba29400f8347e9eed885ae1314ee91b6a44
2022-07-25T15:48:08.000Z
[ "pytorch", "bert", "feature-extraction", "pt", "dataset:assin", "dataset:assin2", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
rufimelo
null
rufimelo/Legal-SBERTimbau-nli-large
13
1
sentence-transformers
10,407
--- language: - pt thumbnail: "Portugues SBERT for the Legal Domain" pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - transformers datasets: - assin - assin2 widget: - source_sentence: "O advogado apresentou as provas ao juíz." sentences: - "O juíz leu as provas." - "O juíz leu o recurso." - "O juíz atirou uma pedra." example_title: "Example 1" metrics: - bleu --- # rufimelo/Legal-SBERTimbau-nli-large This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search. Legal-SBERTimbau-large is based on Legal-BERTimbau-large whioch derives from [BERTimbau](https://huggingface.co/neuralmind/bert-base-portuguese-cased) Large. It is adapted to the Portuguese legal domain. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["Isto é um exemplo", "Isto é um outro exemplo"] model = SentenceTransformer('rufimelo/Legal-SBERTimbau-nli-large') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('rufimelo/Legal-SBERTimbau-nli-large') model = AutoModel.from_pretrained('rufimelo/Legal-SBERTimbau-nli-large}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results STS | Model| Dataset | PearsonCorrelation | | ---------------------------------------- | ---------- | ---------- | | Legal-SBERTimbau-large| Assin | 0.766293861 | | Legal-SBERTimbau-large| Assin2| 0.823565322 | | ---------------------------------------- | ---------- |---------- | | paraphrase-multilingual-mpnet-base-v2| Assin | 0.743740222 | | paraphrase-multilingual-mpnet-base-v2| Assin2| 0.79831 | | paraphrase-multilingual-mpnet-base-v2| stsb_multi_mt pt| 0.83999 | | paraphrase-multilingual-mpnet-base-v2 Fine tuned with assin(s)| Assin | 0.77641 | | paraphrase-multilingual-mpnet-base-v2 Fine tuned with assin(s)| Assin2| 0.79831 | | paraphrase-multilingual-mpnet-base-v2 Fine tuned with assin(s)| stsb_multi_mt pt| 0.84575 | ## Training Legal-SBERTimbau-large is based on Legal-BERTimbau-large whioch derives from [BERTimbau](https://huggingface.co/neuralmind/bert-base-portuguese-cased) Large. It was trained for Natural Language Inference (NLI). This was chosen due to the lack of Portuguese available data. In addition to that, it was submitted to a fine tuning stage with the [assin](https://huggingface.co/datasets/assin) and [assin2](https://huggingface.co/datasets/assin2) datasets. ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False}) ) ``` ## Citing & Authors If you use this work, please cite BERTimbau's work: ```bibtex @inproceedings{souza2020bertimbau, author = {F{\'a}bio Souza and Rodrigo Nogueira and Roberto Lotufo}, title = {{BERT}imbau: pretrained {BERT} models for {B}razilian {P}ortuguese}, booktitle = {9th Brazilian Conference on Intelligent Systems, {BRACIS}, Rio Grande do Sul, Brazil, October 20-23 (to appear)}, year = {2020} } ```
nielsr/donut-base-finetuned-cord-v2
a5930f78491cdbcaf655b51facd3b8a1b305baae
2022-07-26T09:46:25.000Z
[ "pytorch", "vision-encoder-decoder", "transformers" ]
null
false
nielsr
null
nielsr/donut-base-finetuned-cord-v2
13
null
transformers
10,408
Entry not found
korca/roberta-large-lkm
069aaaf41dae7e17adde25b3652b535c76bcd16e
2022-07-25T16:03:38.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
korca
null
korca/roberta-large-lkm
13
null
transformers
10,409
Entry not found
BramVanroy/xlm-roberta-base-hebban-reviews
a5e638594a47dedcab7ea92ff0b4e5be2e83c09b
2022-07-29T09:43:04.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "text-classification", "nl", "dataset:BramVanroy/hebban-reviews", "transformers", "sentiment-analysis", "dutch", "text", "license:mit", "model-index" ]
text-classification
false
BramVanroy
null
BramVanroy/xlm-roberta-base-hebban-reviews
13
null
transformers
10,410
--- datasets: - BramVanroy/hebban-reviews language: - nl license: mit metrics: - accuracy - f1 - precision - qwk - recall model-index: - name: xlm-roberta-base-hebban-reviews results: - dataset: config: filtered_sentiment name: BramVanroy/hebban-reviews - filtered_sentiment - 2.0.0 revision: 2.0.0 split: test type: BramVanroy/hebban-reviews metrics: - name: Test accuracy type: accuracy value: 0.8094674556213017 - name: Test f1 type: f1 value: 0.812677483587223 - name: Test precision type: precision value: 0.8173602585519025 - name: Test qwk type: qwk value: 0.7369243423166991 - name: Test recall type: recall value: 0.8094674556213017 task: name: sentiment analysis type: text-classification tags: - sentiment-analysis - dutch - text widget: - text: Wauw, wat een leuk boek! Ik heb me er er goed mee vermaakt. - text: Nee, deze vond ik niet goed. De auteur doet zijn best om je als lezer mee te trekken in het verhaal maar mij overtuigt het alleszins niet. - text: Ik vind het niet slecht maar de schrijfstijl trekt me ook niet echt aan. Het wordt een beetje saai vanaf het vijfde hoofdstuk --- # xlm-roberta-base-hebban-reviews # Dataset - dataset_name: BramVanroy/hebban-reviews - dataset_config: filtered_sentiment - dataset_revision: 2.0.0 - labelcolumn: review_sentiment - textcolumn: review_text_without_quotes # Training - optim: adamw_hf - learning_rate: 5e-05 - per_device_train_batch_size: 64 - per_device_eval_batch_size: 64 - gradient_accumulation_steps: 1 - max_steps: 5001 - save_steps: 500 - metric_for_best_model: qwk # Best checkedpoint based on validation - best_metric: 0.741533273748008 - best_model_checkpoint: trained/hebban-reviews/xlm-roberta-base/checkpoint-2000 # Test results of best checkpoint - accuracy: 0.8094674556213017 - f1: 0.812677483587223 - precision: 0.8173602585519025 - qwk: 0.7369243423166991 - recall: 0.8094674556213017 ## Confusion matric ![cfm](fig/test_confusion_matrix.png) ## Normalized confusion matrix ![norm cfm](fig/test_confusion_matrix_norm.png) # Environment - cuda_capabilities: 8.0; 8.0 - cuda_device_count: 2 - cuda_devices: NVIDIA A100-SXM4-80GB; NVIDIA A100-SXM4-80GB - finetuner_commit: 66294c815326c93682003119534cb72009f558c2 - platform: Linux-4.18.0-305.49.1.el8_4.x86_64-x86_64-with-glibc2.28 - python_version: 3.9.5 - toch_version: 1.10.0 - transformers_version: 4.21.0
mmmmmmd/HSD
054396bfe07336b5386237e323e95046cc9af18f
2022-07-27T14:42:23.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
mmmmmmd
null
mmmmmmd/HSD
13
null
transformers
10,411
Entry not found
prubach/KnotProtSequencesModel
0bfdecdf05c1eb7e65834e0ad059158348eec786
2022-07-28T08:26:15.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
prubach
null
prubach/KnotProtSequencesModel
13
null
transformers
10,412
Entry not found
HCKLab/BiBert-Classification
d58bd98b518abf4563c507937056f03d3863fb43
2022-07-28T17:39:57.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
HCKLab
null
HCKLab/BiBert-Classification
13
null
transformers
10,413
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: BiBert-Classification results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BiBert-Classification This model is a fine-tuned version of [nlptown/bert-base-multilingual-uncased-sentiment](https://huggingface.co/nlptown/bert-base-multilingual-uncased-sentiment) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8646 - Accuracy: 0.3505 - Mae: 0.9906 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Mae | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-----:| | 1.1951 | 1.0 | 625 | 1.1807 | 0.484 | 0.608 | | 1.0818 | 2.0 | 1250 | 1.2202 | 0.468 | 0.676 | | 0.9926 | 3.0 | 1875 | 1.3529 | 0.475 | 0.663 | | 0.7569 | 4.0 | 2500 | 1.4457 | 0.491 | 0.627 | | 0.6374 | 5.0 | 3125 | 1.6097 | 0.483 | 0.655 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
johanna-k/bart-pw-seg
a31af3eaa03409510322fac9a844618a18373612
2022-07-28T18:08:20.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
johanna-k
null
johanna-k/bart-pw-seg
13
null
transformers
10,414
Entry not found
tosin/dialogpt_afriwoz_pidgin
28ed5a4ed224c629ac705f0cbb2d81f2dae81208
2022-07-29T08:41:47.000Z
[ "pytorch", "gpt2", "text-generation", "en", "dataset:AfriWOZ", "arxiv:2204.08083", "transformers", "conversational", "license:cc-by-4.0" ]
conversational
false
tosin
null
tosin/dialogpt_afriwoz_pidgin
13
null
transformers
10,415
--- thumbnail: https://huggingface.co/front/thumbnails/dialogpt.png language: - en license: cc-by-4.0 tags: - conversational - transformers datasets: - AfriWOZ metrics: - perplexity widget: - text: "How I fit chop for here?" --- ## DialoGPT_AfriWOZ (Pidgin) This is a fine-tuned model of DialoGPT (small) on the AfriWOZ dataset. It is intended to be used as a conversational system in Nigeria Pidgin English language. The dataset it's trained on is limited in scope, as it covers only certain domains such as restaurants, hotel, taxi, and booking. The perplexity achieved on the validation set is 38.52. * Generation example from an interactive environment: |Role | Response | |------|------------| |User | I hear say restaurant dey here. | |Bot | I dey find restaurant. | |User | Abeg you fit tell me which kind chop dey? | |Bot | I no dey sure right now. | |User | You do well. Thank you. | |Bot | I dey find restauarant. | Please find the information about preprocessing, training and full details of the DialoGPT in the [original DialoGPT repository](https://github.com/microsoft/DialoGPT) The paper for this work can be found on arXiv: [https://arxiv.org/pdf/2204.08083.pdf](https://arxiv.org/pdf/2204.08083.pdf) ### How to use Now we are ready to try out how the model works as a chatting partner! ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch tokenizer = AutoTokenizer.from_pretrained("tosin/dialogpt_afriwoz_pidgin") model = AutoModelForCausalLM.from_pretrained("tosin/dialogpt_afriwoz_pidgin") # Let's chat for 5 lines for step in range(5): # encode the new user input, add the eos_token and return a tensor in Pytorch new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt') # append the new user input tokens to the chat history bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids # generated a response while limiting the total chat history to 1000 tokens, chat_history_ids = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id) # pretty print last ouput tokens from bot print("DialoGPT_pidgin_Bot: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)))
ARTeLab/it5-summarization-fanpage
fe05e8892623219cb8b2cf1ccc925902cf562e9e
2022-05-03T06:06:32.000Z
[ "pytorch", "t5", "text2text-generation", "it", "dataset:ARTeLab/fanpage", "transformers", "summarization", "model-index", "autotrain_compatible" ]
summarization
false
ARTeLab
null
ARTeLab/it5-summarization-fanpage
12
2
transformers
10,416
--- tags: - summarization language: - it metrics: - rouge model-index: - name: summarization_fanpage128 results: [] datasets: - ARTeLab/fanpage --- # summarization_fanpage128 This model is a fine-tuned version of [gsarti/it5-base](https://huggingface.co/gsarti/it5-base) on Fanpage dataset for Abstractive Summarization. It achieves the following results: - Loss: 1.5348 - Rouge1: 34.1882 - Rouge2: 15.7866 - Rougel: 25.141 - Rougelsum: 28.4882 - Gen Len: 69.3041 ## Usage ```python from transformers import T5Tokenizer, T5ForConditionalGeneration tokenizer = T5Tokenizer.from_pretrained("ARTeLab/it5-summarization-fanpage-128") model = T5ForConditionalGeneration.from_pretrained("ARTeLab/it5-summarization-fanpage-128") ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 3 - eval_batch_size: 3 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4.0 ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.9.1+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3 # Citation More details and results in [published work](https://www.mdpi.com/2078-2489/13/5/228) ``` @Article{info13050228, AUTHOR = {Landro, Nicola and Gallo, Ignazio and La Grassa, Riccardo and Federici, Edoardo}, TITLE = {Two New Datasets for Italian-Language Abstractive Text Summarization}, JOURNAL = {Information}, VOLUME = {13}, YEAR = {2022}, NUMBER = {5}, ARTICLE-NUMBER = {228}, URL = {https://www.mdpi.com/2078-2489/13/5/228}, ISSN = {2078-2489}, ABSTRACT = {Text summarization aims to produce a short summary containing relevant parts from a given text. Due to the lack of data for abstractive summarization on low-resource languages such as Italian, we propose two new original datasets collected from two Italian news websites with multi-sentence summaries and corresponding articles, and from a dataset obtained by machine translation of a Spanish summarization dataset. These two datasets are currently the only two available in Italian for this task. To evaluate the quality of these two datasets, we used them to train a T5-base model and an mBART model, obtaining good results with both. To better evaluate the results obtained, we also compared the same models trained on automatically translated datasets, and the resulting summaries in the same training language, with the automatically translated summaries, which demonstrated the superiority of the models obtained from the proposed datasets.}, DOI = {10.3390/info13050228} } ```
Adi2K/Priv-Consent
f14517d90a670e6dfb3614a489d7ea688f93ffe0
2021-09-24T12:53:04.000Z
[ "pytorch", "bert", "text-classification", "eng", "dataset:Adi2K/autonlp-data-Priv-Consent", "transformers" ]
text-classification
false
Adi2K
null
Adi2K/Priv-Consent
12
null
transformers
10,417
--- language: eng widget: - text: "You can control cookies and tracking tools. To learn how to manage how we - and our vendors - use cookies and other tracking tools, please click here." datasets: - Adi2K/autonlp-data-Priv-Consent --- # Model - Problem type: Binary Classification - Model ID: 12592372 ## Validation Metrics - Loss: 0.23033875226974487 - Accuracy: 0.9138655462184874 - Precision: 0.9087136929460581 - Recall: 0.9201680672268907 - AUC: 0.9690346726926065 - F1: 0.9144050104384133 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/Adi2K/autonlp-Priv-Consent-12592372 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("Adi2K/autonlp-Priv-Consent-12592372", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("Adi2K/autonlp-Priv-Consent-12592372", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
CNT-UPenn/Bio_ClinicalBERT_for_seizureFreedom_classification
a528e34d5ca9e69f4b6b146f4514292a97cfaef4
2022-03-02T19:02:27.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
CNT-UPenn
null
CNT-UPenn/Bio_ClinicalBERT_for_seizureFreedom_classification
12
null
transformers
10,418
emilyalsentzer/Bio_ClinicalBERT with additional training through the finetuning pipeline described in "Extracting Seizure Frequency From Epilepsy Clinic Notes: A Machine Reading Approach To Natural Language Processing." Citation: Kevin Xie, Ryan S Gallagher, Erin C Conrad, Chadric O Garrick, Steven N Baldassano, John M Bernabei, Peter D Galer, Nina J Ghosn, Adam S Greenblatt, Tara Jennings, Alana Kornspun, Catherine V Kulick-Soper, Jal M Panchal, Akash R Pattnaik, Brittany H Scheid, Danmeng Wei, Micah Weitzman, Ramya Muthukrishnan, Joongwon Kim, Brian Litt, Colin A Ellis, Dan Roth, Extracting seizure frequency from epilepsy clinic notes: a machine reading approach to natural language processing, Journal of the American Medical Informatics Association, 2022;, ocac018, https://doi.org/10.1093/jamia/ocac018 Bio_ClinicalBERT_for_seizureFreedom_classification classifies patients has having seizures or being seizure free using the HPI and/or Interval History paragraphs from a medical note.
CenIA/distillbert-base-spanish-uncased-finetuned-xnli
8f647d2548b13362749fca727f54ee0cd14ca41b
2021-12-08T22:24:16.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
CenIA
null
CenIA/distillbert-base-spanish-uncased-finetuned-xnli
12
null
transformers
10,419
Entry not found
Chun/DialoGPT-large-dailydialog
f2a03f2d8fd148f22bc1b11807be55634393851f
2021-08-08T22:31:47.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
Chun
null
Chun/DialoGPT-large-dailydialog
12
null
transformers
10,420
Entry not found
Crives/distilbert-base-uncased-finetuned-emotion
337d701f659964a94f3bd1a0c598b5f3f4be1394
2022-02-09T22:08:11.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Crives
null
Crives/distilbert-base-uncased-finetuned-emotion
12
null
transformers
10,421
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9215 - name: F1 type: f1 value: 0.9215538311282218 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2175 - Accuracy: 0.9215 - F1: 0.9216 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.7814 | 1.0 | 250 | 0.3105 | 0.907 | 0.9046 | | 0.2401 | 2.0 | 500 | 0.2175 | 0.9215 | 0.9216 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
DSI/human-directed-sentiment
d32186640284ff82253ec1fdaee75cd9ba1e75fb
2022-01-17T14:20:52.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
DSI
null
DSI/human-directed-sentiment
12
null
transformers
10,422
** Human-Directed Sentiment Analysis in Arabic A supervised training procedure to classify human-directed-sentiment in a text. We define the human-directed-sentiment as the polarity of one user towards a second person who is involved with him in a discussion.
Edresson/wav2vec2-large-100k-voxpopuli-ft-Common-Voice_plus_TTS-Dataset-portuguese
dcc63c8ca28b9414b871fd2c256ebd000b36df80
2022-07-17T17:43:02.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "pt", "dataset:Common Voice", "arxiv:2204.00618", "transformers", "audio", "speech", "portuguese-speech-corpus", "PyTorch", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Edresson
null
Edresson/wav2vec2-large-100k-voxpopuli-ft-Common-Voice_plus_TTS-Dataset-portuguese
12
1
transformers
10,423
--- language: pt datasets: - Common Voice metrics: - wer tags: - audio - speech - wav2vec2 - pt - portuguese-speech-corpus - automatic-speech-recognition - speech - PyTorch license: apache-2.0 model-index: - name: Edresson Casanova Wav2vec2 Large 100k Voxpopuli fine-tuned with Common Voice and TTS-Portuguese Corpus in Portuguese results: - task: name: Speech Recognition type: automatic-speech-recognition metrics: - name: Test Common Voice 7.0 WER type: wer value: 20.39 --- # Wav2vec2 Large 100k Voxpopuli fine-tuned with Common Voice and TTS-Portuguese Corpus in Portuguese [Wav2vec2 Large 100k Voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) fine-tuned in Portuguese using the Common Voice 7.0 and TTS-Portuguese Corpus. # Use this model ```python from transformers import AutoTokenizer, Wav2Vec2ForCTC tokenizer = AutoTokenizer.from_pretrained("Edresson/wav2vec2-large-100k-voxpopuli-ft-Common-Voice_plus_TTS-Dataset-portuguese") model = Wav2Vec2ForCTC.from_pretrained("Edresson/wav2vec2-large-100k-voxpopuli-ft-Common-Voice_plus_TTS-Dataset-portuguese") ``` # Results For the results check the [paper](https://arxiv.org/abs/2204.00618) # Example test with Common Voice Dataset ```python dataset = load_dataset("common_voice", "pt", split="test", data_dir="./cv-corpus-6.1-2020-12-11") resampler = torchaudio.transforms.Resample(orig_freq=48_000, new_freq=16_000) def map_to_array(batch): speech, _ = torchaudio.load(batch["path"]) batch["speech"] = resampler.forward(speech.squeeze(0)).numpy() batch["sampling_rate"] = resampler.new_freq batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("’", "'") return batch ``` ```python ds = dataset.map(map_to_array) result = ds.map(map_to_pred, batched=True, batch_size=1, remove_columns=list(ds.features.keys())) print(wer.compute(predictions=result["predicted"], references=result["target"])) ```
EleutherAI/enformer-corr_coef_obj
4aad70eea20892cb7e9c2d6f692a8277660bc0e8
2022-02-23T12:18:12.000Z
[ "pytorch", "enformer", "transformers", "license:apache-2.0" ]
null
false
EleutherAI
null
EleutherAI/enformer-corr_coef_obj
12
null
transformers
10,424
--- license: apache-2.0 inference: false --- # Enformer Enformer model. It was introduced in the paper [Effective gene expression prediction from sequence by integrating long-range interactions.](https://www.nature.com/articles/s41592-021-01252-x) by Avsec et al. and first released in [this repository](https://github.com/deepmind/deepmind-research/tree/master/enformer). This particular model was trained on sequences of 131,072 basepairs, target length 896 on v3-64 TPUs for 3 days with sequence augmentations and pearson correlation objective. This repo contains the weights of the PyTorch implementation by Phil Wang as seen in the [enformer-pytorch repository](https://github.com/lucidrains/enformer-pytorch). Disclaimer: The team releasing Enformer did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description Enformer is a neural network architecture based on the Transformer that led to greatly increased accuracy in predicting gene expression from DNA sequence. We refer to the [paper](https://www.nature.com/articles/s41592-021-01252-x) published in Nature for details. ### How to use Refer to the README of [enformer-pytorch](https://github.com/lucidrains/enformer-pytorch) regarding usage. ### Citation info ``` Avsec, Ž., Agarwal, V., Visentin, D. et al. Effective gene expression prediction from sequence by integrating long-range interactions. Nat Methods 18, 1196–1203 (2021). https://doi.org/10.1038/s41592-021-01252-x ```
EnsarEmirali/distilbert-base-uncased-finetuned-emotion
7d13520ba2e005fbc05dd35a810e032dc9c5473a
2022-02-21T05:53:26.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
EnsarEmirali
null
EnsarEmirali/distilbert-base-uncased-finetuned-emotion
12
null
transformers
10,425
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9265 - name: F1 type: f1 value: 0.9268984054036417 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2131 - Accuracy: 0.9265 - F1: 0.9269 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8031 | 1.0 | 250 | 0.2973 | 0.9125 | 0.9110 | | 0.2418 | 2.0 | 500 | 0.2131 | 0.9265 | 0.9269 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.1 - Datasets 1.16.1 - Tokenizers 0.10.3
Fengkai/distilbert-base-uncased-finetuned-emotion
e6243bb50bd2abc315d72be76fc526d7092f80d0
2022-01-25T02:11:58.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Fengkai
null
Fengkai/distilbert-base-uncased-finetuned-emotion
12
null
transformers
10,426
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9385 - name: F1 type: f1 value: 0.9383492808338979 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1495 - Accuracy: 0.9385 - F1: 0.9383 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.1739 | 1.0 | 250 | 0.1827 | 0.931 | 0.9302 | | 0.1176 | 2.0 | 500 | 0.1567 | 0.9325 | 0.9326 | | 0.0994 | 3.0 | 750 | 0.1555 | 0.9385 | 0.9389 | | 0.08 | 4.0 | 1000 | 0.1496 | 0.9445 | 0.9443 | | 0.0654 | 5.0 | 1250 | 0.1495 | 0.9385 | 0.9383 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.18.0 - Tokenizers 0.10.3
GKLMIP/bert-tagalog-base-uncased
67bb407fe500434512132f0835973d32b858478f
2021-07-31T02:14:37.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
GKLMIP
null
GKLMIP/bert-tagalog-base-uncased
12
null
transformers
10,427
https://github.com/GKLMIP/Pretrained-Models-For-Tagalog If you use our model, please consider citing our paper: ``` @InProceedings{, author="Jiang, Shengyi and Fu, Yingwen and Lin, Xiaotian and Lin, Nankai", title="Pre-trained Language models for Tagalog with Multi-source data", booktitle="Natural Language Processing and Chinese Computing", year="2021", publisher="Springer International Publishing", address="Cham", } ```
GKLMIP/electra-myanmar-base-uncased
ae53e2d14d6ce28cf9beda9f822ca4360a58493c
2021-10-11T04:58:43.000Z
[ "pytorch", "electra", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
GKLMIP
null
GKLMIP/electra-myanmar-base-uncased
12
null
transformers
10,428
The Usage of tokenizer for Myanmar is same as Laos in https://github.com/GKLMIP/Pretrained-Models-For-Laos. If you use our model, please consider citing our paper: ``` @InProceedings{, author="Jiang, Shengyi and Huang, Xiuwen and Cai, Xiaonan and Lin, Nankai", title="Pre-trained Models and Evaluation Data for the Myanmar Language", booktitle="The 28th International Conference on Neural Information Processing", year="2021", publisher="Springer International Publishing", address="Cham", } ```
Gregor-Davies/DialoGPT-small-rick
bad252226ba9192e914f8812c5c811346642d31f
2022-01-23T13:15:35.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational", "PyTorch", "Transformers", "lm-head", "causal-lm" ]
conversational
false
Gregor-Davies
null
Gregor-Davies/DialoGPT-small-rick
12
null
transformers
10,429
--- tags: - conversational - PyTorch - Transformers - gpt2 - lm-head - causal-lm - text-generation --- # rick and morty
GroNLP/bert-base-dutch-cased-upos-alpino-frisian
472aab6e53f0883a2efe2c7cb608043594e48f23
2021-05-18T20:22:21.000Z
[ "pytorch", "tf", "jax", "bert", "token-classification", "fy", "arxiv:2105.02855", "transformers", "BERTje", "pos", "autotrain_compatible" ]
token-classification
false
GroNLP
null
GroNLP/bert-base-dutch-cased-upos-alpino-frisian
12
null
transformers
10,430
--- language: fy tags: - BERTje - pos --- Wietse de Vries • Martijn Bartelds • Malvina Nissim • Martijn Wieling # Adapting Monolingual Models: Data can be Scarce when Language Similarity is High This model is part of this paper + code: - 📝 [Paper](https://arxiv.org/abs/2105.02855) - 💻 [Code](https://github.com/wietsedv/low-resource-adapt) ## Models The best fine-tuned models for Gronings and West Frisian are available on the HuggingFace model hub: ### Lexical layers These models are identical to [BERTje](https://github.com/wietsedv/bertje), but with different lexical layers (`bert.embeddings.word_embeddings`). - 🤗 [`GroNLP/bert-base-dutch-cased`](https://huggingface.co/GroNLP/bert-base-dutch-cased) (Dutch; source language) - 🤗 [`GroNLP/bert-base-dutch-cased-gronings`](https://huggingface.co/GroNLP/bert-base-dutch-cased-gronings) (Gronings) - 🤗 [`GroNLP/bert-base-dutch-cased-frisian`](https://huggingface.co/GroNLP/bert-base-dutch-cased-frisian) (West Frisian) ### POS tagging These models share the same fine-tuned Transformer layers + classification head, but with the retrained lexical layers from the models above. - 🤗 [`GroNLP/bert-base-dutch-cased-upos-alpino`](https://huggingface.co/GroNLP/bert-base-dutch-cased-upos-alpino) (Dutch) - 🤗 [`GroNLP/bert-base-dutch-cased-upos-alpino-gronings`](https://huggingface.co/GroNLP/bert-base-dutch-cased-upos-alpino-gronings) (Gronings) - 🤗 [`GroNLP/bert-base-dutch-cased-upos-alpino-frisian`](https://huggingface.co/GroNLP/bert-base-dutch-cased-upos-alpino-frisian) (West Frisian)
HScomcom/gpt2-game-of-thrones
481371376135f570a8c1a4681ccddede9f305acb
2021-05-21T10:28:34.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
HScomcom
null
HScomcom/gpt2-game-of-thrones
12
null
transformers
10,431
Entry not found
Hate-speech-CNERG/deoffxlmr-mono-kannada
b4845d6249e4d748f6c3f589c2ddb447389b739d
2021-09-25T14:01:14.000Z
[ "pytorch", "xlm-roberta", "text-classification", "kn", "transformers", "license:apache-2.0" ]
text-classification
false
Hate-speech-CNERG
null
Hate-speech-CNERG/deoffxlmr-mono-kannada
12
null
transformers
10,432
--- language: kn license: apache-2.0 --- This model is used to detect **Offensive Content** in **Kannada Code-Mixed language**. The mono in the name refers to the monolingual setting, where the model is trained using only Kannada(pure and code-mixed) data. The weights are initialized from pretrained XLM-Roberta-Base and pretrained using Masked Language Modelling on the target dataset before fine-tuning using Cross-Entropy Loss. This model is the best of multiple trained for **EACL 2021 Shared Task on Offensive Language Identification in Dravidian Languages**. Genetic-Algorithm based ensembled test predictions got the second-highest weighted F1 score at the leaderboard (Weighted F1 score on hold out test set: This model - 0.73, Ensemble - 0.74) ### For more details about our paper Debjoy Saha, Naman Paharia, Debajit Chakraborty, Punyajoy Saha, Animesh Mukherjee. "[Hate-Alert@DravidianLangTech-EACL2021: Ensembling strategies for Transformer-based Offensive language Detection](https://www.aclweb.org/anthology/2021.dravidianlangtech-1.38/)". ***Please cite our paper in any published work that uses any of these resources.*** ~~~ @inproceedings{saha-etal-2021-hate, title = "Hate-Alert@{D}ravidian{L}ang{T}ech-{EACL}2021: Ensembling strategies for Transformer-based Offensive language Detection", author = "Saha, Debjoy and Paharia, Naman and Chakraborty, Debajit and Saha, Punyajoy and Mukherjee, Animesh", booktitle = "Proceedings of the First Workshop on Speech and Language Technologies for Dravidian Languages", month = apr, year = "2021", address = "Kyiv", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2021.dravidianlangtech-1.38", pages = "270--276", abstract = "Social media often acts as breeding grounds for different forms of offensive content. For low resource languages like Tamil, the situation is more complex due to the poor performance of multilingual or language-specific models and lack of proper benchmark datasets. Based on this shared task {``}Offensive Language Identification in Dravidian Languages{''} at EACL 2021; we present an exhaustive exploration of different transformer models, We also provide a genetic algorithm technique for ensembling different models. Our ensembled models trained separately for each language secured the first position in Tamil, the second position in Kannada, and the first position in Malayalam sub-tasks. The models and codes are provided.", } ~~~
Helsinki-NLP/opus-mt-afa-afa
550470c96e6880da1c03997a4c1065bf58acdc93
2021-01-18T07:46:40.000Z
[ "pytorch", "marian", "text2text-generation", "so", "ti", "am", "he", "mt", "ar", "afa", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-afa-afa
12
null
transformers
10,433
--- language: - so - ti - am - he - mt - ar - afa tags: - translation license: apache-2.0 --- ### afa-afa * source group: Afro-Asiatic languages * target group: Afro-Asiatic languages * OPUS readme: [afa-afa](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/afa-afa/README.md) * model: transformer * source language(s): apc ara arq arz heb kab mlt shy_Latn thv * target language(s): apc ara arq arz heb kab mlt shy_Latn thv * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * a sentence initial language token is required in the form of `>>id<<` (id = valid target language ID) * download original weights: [opus-2020-07-26.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/afa-afa/opus-2020-07-26.zip) * test set translations: [opus-2020-07-26.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/afa-afa/opus-2020-07-26.test.txt) * test set scores: [opus-2020-07-26.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/afa-afa/opus-2020-07-26.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.ara-ara.ara.ara | 4.3 | 0.148 | | Tatoeba-test.ara-heb.ara.heb | 31.9 | 0.525 | | Tatoeba-test.ara-kab.ara.kab | 0.3 | 0.120 | | Tatoeba-test.ara-mlt.ara.mlt | 14.0 | 0.428 | | Tatoeba-test.ara-shy.ara.shy | 1.3 | 0.050 | | Tatoeba-test.heb-ara.heb.ara | 17.0 | 0.464 | | Tatoeba-test.heb-kab.heb.kab | 1.9 | 0.104 | | Tatoeba-test.kab-ara.kab.ara | 0.3 | 0.044 | | Tatoeba-test.kab-heb.kab.heb | 5.1 | 0.099 | | Tatoeba-test.kab-shy.kab.shy | 2.2 | 0.009 | | Tatoeba-test.kab-tmh.kab.tmh | 10.7 | 0.007 | | Tatoeba-test.mlt-ara.mlt.ara | 29.1 | 0.498 | | Tatoeba-test.multi.multi | 20.8 | 0.434 | | Tatoeba-test.shy-ara.shy.ara | 1.2 | 0.053 | | Tatoeba-test.shy-kab.shy.kab | 2.0 | 0.134 | | Tatoeba-test.tmh-kab.tmh.kab | 0.0 | 0.047 | ### System Info: - hf_name: afa-afa - source_languages: afa - target_languages: afa - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/afa-afa/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['so', 'ti', 'am', 'he', 'mt', 'ar', 'afa'] - src_constituents: {'som', 'rif_Latn', 'tir', 'kab', 'arq', 'afb', 'amh', 'arz', 'heb', 'shy_Latn', 'apc', 'mlt', 'thv', 'ara', 'hau_Latn', 'acm', 'ary'} - tgt_constituents: {'som', 'rif_Latn', 'tir', 'kab', 'arq', 'afb', 'amh', 'arz', 'heb', 'shy_Latn', 'apc', 'mlt', 'thv', 'ara', 'hau_Latn', 'acm', 'ary'} - src_multilingual: True - tgt_multilingual: True - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/afa-afa/opus-2020-07-26.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/afa-afa/opus-2020-07-26.test.txt - src_alpha3: afa - tgt_alpha3: afa - short_pair: afa-afa - chrF2_score: 0.434 - bleu: 20.8 - brevity_penalty: 1.0 - ref_len: 15215.0 - src_name: Afro-Asiatic languages - tgt_name: Afro-Asiatic languages - train_date: 2020-07-26 - src_alpha2: afa - tgt_alpha2: afa - prefer_old: False - long_pair: afa-afa - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-ca-nl
5ba066fbeb93263925e2bb5b12e9e05cf03a9d32
2021-01-18T07:53:12.000Z
[ "pytorch", "marian", "text2text-generation", "ca", "nl", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-ca-nl
12
null
transformers
10,434
--- language: - ca - nl tags: - translation license: apache-2.0 --- ### cat-nld * source group: Catalan * target group: Dutch * OPUS readme: [cat-nld](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/cat-nld/README.md) * model: transformer-align * source language(s): cat * target language(s): nld * model: transformer-align * pre-processing: normalization + SentencePiece (spm12k,spm12k) * download original weights: [opus-2020-06-16.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/cat-nld/opus-2020-06-16.zip) * test set translations: [opus-2020-06-16.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/cat-nld/opus-2020-06-16.test.txt) * test set scores: [opus-2020-06-16.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/cat-nld/opus-2020-06-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.cat.nld | 45.1 | 0.632 | ### System Info: - hf_name: cat-nld - source_languages: cat - target_languages: nld - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/cat-nld/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['ca', 'nl'] - src_constituents: {'cat'} - tgt_constituents: {'nld'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm12k,spm12k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/cat-nld/opus-2020-06-16.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/cat-nld/opus-2020-06-16.test.txt - src_alpha3: cat - tgt_alpha3: nld - short_pair: ca-nl - chrF2_score: 0.632 - bleu: 45.1 - brevity_penalty: 0.965 - ref_len: 4157.0 - src_name: Catalan - tgt_name: Dutch - train_date: 2020-06-16 - src_alpha2: ca - tgt_alpha2: nl - prefer_old: False - long_pair: cat-nld - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-ceb-sv
bf1810fb698cbeb2a7beeecb96917557ece3158f
2021-09-09T21:28:37.000Z
[ "pytorch", "marian", "text2text-generation", "ceb", "sv", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-ceb-sv
12
null
transformers
10,435
--- tags: - translation license: apache-2.0 --- ### opus-mt-ceb-sv * source languages: ceb * target languages: sv * OPUS readme: [ceb-sv](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/ceb-sv/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/ceb-sv/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/ceb-sv/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/ceb-sv/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.ceb.sv | 35.5 | 0.552 |
Helsinki-NLP/opus-mt-de-bzs
30ed515b4d391e1f98cefdbf5f6fcc340c979fce
2021-09-09T21:30:21.000Z
[ "pytorch", "marian", "text2text-generation", "de", "bzs", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-de-bzs
12
null
transformers
10,436
--- tags: - translation license: apache-2.0 --- ### opus-mt-de-bzs * source languages: de * target languages: bzs * OPUS readme: [de-bzs](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/de-bzs/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-20.zip](https://object.pouta.csc.fi/OPUS-MT-models/de-bzs/opus-2020-01-20.zip) * test set translations: [opus-2020-01-20.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/de-bzs/opus-2020-01-20.test.txt) * test set scores: [opus-2020-01-20.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/de-bzs/opus-2020-01-20.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.de.bzs | 21.0 | 0.389 |
Helsinki-NLP/opus-mt-de-is
5da3816233444156514c12635c92dda7fc16b01c
2021-01-18T08:00:52.000Z
[ "pytorch", "marian", "text2text-generation", "de", "is", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-de-is
12
null
transformers
10,437
--- language: - de - is tags: - translation license: apache-2.0 --- ### deu-isl * source group: German * target group: Icelandic * OPUS readme: [deu-isl](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/deu-isl/README.md) * model: transformer-align * source language(s): deu * target language(s): isl * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/deu-isl/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/deu-isl/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/deu-isl/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.deu.isl | 27.1 | 0.533 | ### System Info: - hf_name: deu-isl - source_languages: deu - target_languages: isl - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/deu-isl/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['de', 'is'] - src_constituents: {'deu'} - tgt_constituents: {'isl'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/deu-isl/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/deu-isl/opus-2020-06-17.test.txt - src_alpha3: deu - tgt_alpha3: isl - short_pair: de-is - chrF2_score: 0.5329999999999999 - bleu: 27.1 - brevity_penalty: 0.9620000000000001 - ref_len: 5939.0 - src_name: German - tgt_name: Icelandic - train_date: 2020-06-17 - src_alpha2: de - tgt_alpha2: is - prefer_old: False - long_pair: deu-isl - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-en-bzs
2b7c7d345202d17dd7f42850eae846e4d11b6fda
2021-09-09T21:34:23.000Z
[ "pytorch", "marian", "text2text-generation", "en", "bzs", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-en-bzs
12
null
transformers
10,438
--- tags: - translation license: apache-2.0 --- ### opus-mt-en-bzs * source languages: en * target languages: bzs * OPUS readme: [en-bzs](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/en-bzs/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/en-bzs/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-bzs/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-bzs/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.en.bzs | 43.4 | 0.612 |
Helsinki-NLP/opus-mt-en-efi
08b5f78e0bb66e8e1940fe1eb976a5b9de276f84
2021-09-09T21:35:02.000Z
[ "pytorch", "marian", "text2text-generation", "en", "efi", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-en-efi
12
null
transformers
10,439
--- tags: - translation license: apache-2.0 --- ### opus-mt-en-efi * source languages: en * target languages: efi * OPUS readme: [en-efi](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/en-efi/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-20.zip](https://object.pouta.csc.fi/OPUS-MT-models/en-efi/opus-2020-01-20.zip) * test set translations: [opus-2020-01-20.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-efi/opus-2020-01-20.test.txt) * test set scores: [opus-2020-01-20.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-efi/opus-2020-01-20.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.en.efi | 38.0 | 0.568 |
Helsinki-NLP/opus-mt-en-kwn
3736240f67ae9d9b6afdc6ee9026f1ec96dc4828
2021-09-09T21:36:44.000Z
[ "pytorch", "marian", "text2text-generation", "en", "kwn", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-en-kwn
12
null
transformers
10,440
--- tags: - translation license: apache-2.0 --- ### opus-mt-en-kwn * source languages: en * target languages: kwn * OPUS readme: [en-kwn](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/en-kwn/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/en-kwn/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-kwn/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-kwn/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.en.kwn | 27.6 | 0.513 |
Helsinki-NLP/opus-mt-en-kwy
9735cf314a7647932c7db4d1598f89ddabed5ce1
2021-09-09T21:36:48.000Z
[ "pytorch", "marian", "text2text-generation", "en", "kwy", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-en-kwy
12
null
transformers
10,441
--- tags: - translation license: apache-2.0 --- ### opus-mt-en-kwy * source languages: en * target languages: kwy * OPUS readme: [en-kwy](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/en-kwy/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/en-kwy/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-kwy/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-kwy/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.en.kwy | 33.6 | 0.543 |
Helsinki-NLP/opus-mt-en-loz
2d718169c4ec0446b59e50bbc60e9bcc8536ef79
2021-09-09T21:37:00.000Z
[ "pytorch", "marian", "text2text-generation", "en", "loz", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-en-loz
12
null
transformers
10,442
--- tags: - translation license: apache-2.0 --- ### opus-mt-en-loz * source languages: en * target languages: loz * OPUS readme: [en-loz](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/en-loz/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/en-loz/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-loz/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-loz/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.en.loz | 40.1 | 0.596 |
Helsinki-NLP/opus-mt-en-lue
e545785d78e4a6541363734bdea4efe8e230cdfa
2021-09-09T21:37:11.000Z
[ "pytorch", "marian", "text2text-generation", "en", "lue", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-en-lue
12
null
transformers
10,443
--- tags: - translation license: apache-2.0 --- ### opus-mt-en-lue * source languages: en * target languages: lue * OPUS readme: [en-lue](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/en-lue/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/en-lue/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-lue/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-lue/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.en.lue | 30.1 | 0.558 |
Helsinki-NLP/opus-mt-en-lus
55f4acfa42dd6fa4152c625b620c7861951a5a56
2021-09-09T21:37:23.000Z
[ "pytorch", "marian", "text2text-generation", "en", "lus", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-en-lus
12
null
transformers
10,444
--- tags: - translation license: apache-2.0 --- ### opus-mt-en-lus * source languages: en * target languages: lus * OPUS readme: [en-lus](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/en-lus/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/en-lus/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-lus/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-lus/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.en.lus | 36.8 | 0.581 |
Helsinki-NLP/opus-mt-en-st
c626d33dd89c6e5da348b773562849c5b50bc788
2021-09-09T21:39:23.000Z
[ "pytorch", "marian", "text2text-generation", "en", "st", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-en-st
12
null
transformers
10,445
--- tags: - translation license: apache-2.0 --- ### opus-mt-en-st * source languages: en * target languages: st * OPUS readme: [en-st](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/en-st/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/en-st/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-st/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-st/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.en.st | 49.8 | 0.665 |
Helsinki-NLP/opus-mt-en-ti
55151ff82a6dcd684b0bfc61a0f02aab6c9a89f6
2021-09-09T21:39:42.000Z
[ "pytorch", "marian", "text2text-generation", "en", "ti", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-en-ti
12
null
transformers
10,446
--- tags: - translation license: apache-2.0 --- ### opus-mt-en-ti * source languages: en * target languages: ti * OPUS readme: [en-ti](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/en-ti/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/en-ti/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-ti/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-ti/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.en.ti | 25.3 | 0.382 |
Helsinki-NLP/opus-mt-en-toi
ebe551da7af43d6f47fdebb52e09903e2f679a06
2021-09-09T21:40:05.000Z
[ "pytorch", "marian", "text2text-generation", "en", "toi", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-en-toi
12
null
transformers
10,447
--- tags: - translation license: apache-2.0 --- ### opus-mt-en-toi * source languages: en * target languages: toi * OPUS readme: [en-toi](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/en-toi/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/en-toi/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-toi/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-toi/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.en.toi | 32.8 | 0.598 |
Helsinki-NLP/opus-mt-en-tpi
270027882571dc2d5528cdfa18527ffcc0f1908e
2021-09-09T21:40:09.000Z
[ "pytorch", "marian", "text2text-generation", "en", "tpi", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-en-tpi
12
null
transformers
10,448
--- tags: - translation license: apache-2.0 --- ### opus-mt-en-tpi * source languages: en * target languages: tpi * OPUS readme: [en-tpi](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/en-tpi/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/en-tpi/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-tpi/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-tpi/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.en.tpi | 38.7 | 0.568 |
Helsinki-NLP/opus-mt-en-zle
f3ca937ee4037e9d06e7fee5a6500e49a09b8b1b
2021-01-18T08:19:30.000Z
[ "pytorch", "marian", "text2text-generation", "en", "be", "ru", "uk", "zle", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-en-zle
12
null
transformers
10,449
--- language: - en - be - ru - uk - zle tags: - translation license: apache-2.0 --- ### eng-zle * source group: English * target group: East Slavic languages * OPUS readme: [eng-zle](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-zle/README.md) * model: transformer * source language(s): eng * target language(s): bel bel_Latn orv_Cyrl rue rus ukr * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * a sentence initial language token is required in the form of `>>id<<` (id = valid target language ID) * download original weights: [opus2m-2020-08-02.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-zle/opus2m-2020-08-02.zip) * test set translations: [opus2m-2020-08-02.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-zle/opus2m-2020-08-02.test.txt) * test set scores: [opus2m-2020-08-02.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-zle/opus2m-2020-08-02.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | newstest2012-engrus.eng.rus | 27.4 | 0.550 | | newstest2013-engrus.eng.rus | 21.4 | 0.493 | | newstest2015-enru-engrus.eng.rus | 24.2 | 0.534 | | newstest2016-enru-engrus.eng.rus | 23.3 | 0.518 | | newstest2017-enru-engrus.eng.rus | 25.3 | 0.541 | | newstest2018-enru-engrus.eng.rus | 22.4 | 0.527 | | newstest2019-enru-engrus.eng.rus | 24.1 | 0.505 | | Tatoeba-test.eng-bel.eng.bel | 20.8 | 0.471 | | Tatoeba-test.eng.multi | 37.2 | 0.580 | | Tatoeba-test.eng-orv.eng.orv | 0.6 | 0.130 | | Tatoeba-test.eng-rue.eng.rue | 1.4 | 0.168 | | Tatoeba-test.eng-rus.eng.rus | 41.3 | 0.616 | | Tatoeba-test.eng-ukr.eng.ukr | 38.7 | 0.596 | ### System Info: - hf_name: eng-zle - source_languages: eng - target_languages: zle - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-zle/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['en', 'be', 'ru', 'uk', 'zle'] - src_constituents: {'eng'} - tgt_constituents: {'bel', 'orv_Cyrl', 'bel_Latn', 'rus', 'ukr', 'rue'} - src_multilingual: False - tgt_multilingual: True - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/eng-zle/opus2m-2020-08-02.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/eng-zle/opus2m-2020-08-02.test.txt - src_alpha3: eng - tgt_alpha3: zle - short_pair: en-zle - chrF2_score: 0.58 - bleu: 37.2 - brevity_penalty: 0.9890000000000001 - ref_len: 63493.0 - src_name: English - tgt_name: East Slavic languages - train_date: 2020-08-02 - src_alpha2: en - tgt_alpha2: zle - prefer_old: False - long_pair: eng-zle - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-es-csg
3da715e725eefec43cca36fbe6cc492ff8f63f06
2021-09-09T21:41:41.000Z
[ "pytorch", "marian", "text2text-generation", "es", "csg", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-es-csg
12
null
transformers
10,450
--- tags: - translation license: apache-2.0 --- ### opus-mt-es-csg * source languages: es * target languages: csg * OPUS readme: [es-csg](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/es-csg/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/es-csg/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-csg/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-csg/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.es.csg | 91.2 | 0.937 |
Helsinki-NLP/opus-mt-es-gl
28b88b37e53fcf5a25bb6954fda100a8944a6077
2021-01-18T08:24:32.000Z
[ "pytorch", "marian", "text2text-generation", "es", "gl", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-es-gl
12
null
transformers
10,451
--- language: - es - gl tags: - translation license: apache-2.0 --- ### spa-glg * source group: Spanish * target group: Galician * OPUS readme: [spa-glg](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/spa-glg/README.md) * model: transformer-align * source language(s): spa * target language(s): glg * model: transformer-align * pre-processing: normalization + SentencePiece (spm4k,spm4k) * download original weights: [opus-2020-06-16.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/spa-glg/opus-2020-06-16.zip) * test set translations: [opus-2020-06-16.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/spa-glg/opus-2020-06-16.test.txt) * test set scores: [opus-2020-06-16.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/spa-glg/opus-2020-06-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.spa.glg | 67.6 | 0.808 | ### System Info: - hf_name: spa-glg - source_languages: spa - target_languages: glg - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/spa-glg/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['es', 'gl'] - src_constituents: {'spa'} - tgt_constituents: {'glg'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm4k,spm4k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/spa-glg/opus-2020-06-16.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/spa-glg/opus-2020-06-16.test.txt - src_alpha3: spa - tgt_alpha3: glg - short_pair: es-gl - chrF2_score: 0.8079999999999999 - bleu: 67.6 - brevity_penalty: 0.993 - ref_len: 16581.0 - src_name: Spanish - tgt_name: Galician - train_date: 2020-06-16 - src_alpha2: es - tgt_alpha2: gl - prefer_old: False - long_pair: spa-glg - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-es-pis
e2484443c27300324e8275d0d111578aa11181f6
2021-09-09T21:44:09.000Z
[ "pytorch", "marian", "text2text-generation", "es", "pis", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-es-pis
12
null
transformers
10,452
--- tags: - translation license: apache-2.0 --- ### opus-mt-es-pis * source languages: es * target languages: pis * OPUS readme: [es-pis](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/es-pis/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/es-pis/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-pis/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-pis/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.es.pis | 27.1 | 0.484 |
Helsinki-NLP/opus-mt-es-sg
ae0ad1a6196547d8d1b233e6b13146f85b5206a2
2021-09-09T21:44:35.000Z
[ "pytorch", "marian", "text2text-generation", "es", "sg", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-es-sg
12
null
transformers
10,453
--- tags: - translation license: apache-2.0 --- ### opus-mt-es-sg * source languages: es * target languages: sg * OPUS readme: [es-sg](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/es-sg/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/es-sg/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-sg/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-sg/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.es.sg | 24.8 | 0.435 |
Helsinki-NLP/opus-mt-es-wls
d7b41426d3fe16a6bafceae20493dff14eff28bb
2021-09-09T21:45:38.000Z
[ "pytorch", "marian", "text2text-generation", "es", "wls", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-es-wls
12
null
transformers
10,454
--- tags: - translation license: apache-2.0 --- ### opus-mt-es-wls * source languages: es * target languages: wls * OPUS readme: [es-wls](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/es-wls/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/es-wls/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-wls/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-wls/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.es.wls | 22.9 | 0.437 |
Helsinki-NLP/opus-mt-et-es
0a50f8fdda109247805282e5d4b8860b9e1b8154
2021-09-09T21:46:05.000Z
[ "pytorch", "marian", "text2text-generation", "et", "es", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-et-es
12
null
transformers
10,455
--- tags: - translation license: apache-2.0 --- ### opus-mt-et-es * source languages: et * target languages: es * OPUS readme: [et-es](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/et-es/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/et-es/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/et-es/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/et-es/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.et.es | 27.2 | 0.490 |
Helsinki-NLP/opus-mt-et-fi
a63d43b6d9674a26d9fec2637cfba503b7f1d186
2021-09-09T21:46:08.000Z
[ "pytorch", "marian", "text2text-generation", "et", "fi", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-et-fi
12
null
transformers
10,456
--- tags: - translation license: apache-2.0 --- ### opus-mt-et-fi * source languages: et * target languages: fi * OPUS readme: [et-fi](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/et-fi/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/et-fi/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/et-fi/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/et-fi/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.et.fi | 26.6 | 0.546 |
Helsinki-NLP/opus-mt-fi-bcl
2d626dd80f23811869dfd49984fc519a3f0ebc18
2021-09-09T21:46:34.000Z
[ "pytorch", "marian", "text2text-generation", "fi", "bcl", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-fi-bcl
12
null
transformers
10,457
--- tags: - translation license: apache-2.0 --- ### opus-mt-fi-bcl * source languages: fi * target languages: bcl * OPUS readme: [fi-bcl](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fi-bcl/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/fi-bcl/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-bcl/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-bcl/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.fi.bcl | 38.4 | 0.604 |
Helsinki-NLP/opus-mt-fi-ht
3b5291b5e5ee468d27e12bbaa6ae12c89331d57b
2021-09-09T21:48:20.000Z
[ "pytorch", "marian", "text2text-generation", "fi", "ht", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-fi-ht
12
null
transformers
10,458
--- tags: - translation license: apache-2.0 --- ### opus-mt-fi-ht * source languages: fi * target languages: ht * OPUS readme: [fi-ht](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fi-ht/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-24.zip](https://object.pouta.csc.fi/OPUS-MT-models/fi-ht/opus-2020-01-24.zip) * test set translations: [opus-2020-01-24.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-ht/opus-2020-01-24.test.txt) * test set scores: [opus-2020-01-24.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-ht/opus-2020-01-24.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.fi.ht | 27.1 | 0.453 |
Helsinki-NLP/opus-mt-fi-lue
49ac1ffcb47e11b9f3b38e34375e916348046245
2021-09-09T21:49:15.000Z
[ "pytorch", "marian", "text2text-generation", "fi", "lue", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-fi-lue
12
null
transformers
10,459
--- tags: - translation license: apache-2.0 --- ### opus-mt-fi-lue * source languages: fi * target languages: lue * OPUS readme: [fi-lue](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fi-lue/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/fi-lue/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-lue/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-lue/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.fi.lue | 22.4 | 0.497 |
Helsinki-NLP/opus-mt-fi-uk
ed4d5d8561fac3e7c7bf4507ea0478264febba3a
2021-09-09T21:52:02.000Z
[ "pytorch", "marian", "text2text-generation", "fi", "uk", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-fi-uk
12
null
transformers
10,460
--- tags: - translation license: apache-2.0 --- ### opus-mt-fi-uk * source languages: fi * target languages: uk * OPUS readme: [fi-uk](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fi-uk/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/fi-uk/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-uk/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-uk/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.fi.uk | 23.3 | 0.445 |
Helsinki-NLP/opus-mt-fi-xh
83167df35732d9f9ea14e52e962ca38eab391cc9
2021-09-09T21:52:17.000Z
[ "pytorch", "marian", "text2text-generation", "fi", "xh", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-fi-xh
12
null
transformers
10,461
--- tags: - translation license: apache-2.0 --- ### opus-mt-fi-xh * source languages: fi * target languages: xh * OPUS readme: [fi-xh](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fi-xh/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/fi-xh/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-xh/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-xh/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.fi.xh | 25.3 | 0.554 |
Helsinki-NLP/opus-mt-fr-eo
8b7be50a4d7f9b9b4fa3f4773a7275be4a85d4d8
2021-09-09T21:53:43.000Z
[ "pytorch", "marian", "text2text-generation", "fr", "eo", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-fr-eo
12
null
transformers
10,462
--- tags: - translation license: apache-2.0 --- ### opus-mt-fr-eo * source languages: fr * target languages: eo * OPUS readme: [fr-eo](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fr-eo/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/fr-eo/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fr-eo/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fr-eo/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba.fr.eo | 52.0 | 0.695 |
Helsinki-NLP/opus-mt-fr-fj
11ef0862b115e52fd35adbbab5dd699305445918
2021-09-09T21:53:50.000Z
[ "pytorch", "marian", "text2text-generation", "fr", "fj", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-fr-fj
12
null
transformers
10,463
--- tags: - translation license: apache-2.0 --- ### opus-mt-fr-fj * source languages: fr * target languages: fj * OPUS readme: [fr-fj](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fr-fj/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/fr-fj/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fr-fj/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fr-fj/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.fr.fj | 27.4 | 0.487 |
Helsinki-NLP/opus-mt-fr-pag
04af4a70733cb6865afca6054717279948ffc7f4
2021-09-09T21:55:58.000Z
[ "pytorch", "marian", "text2text-generation", "fr", "pag", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-fr-pag
12
null
transformers
10,464
--- tags: - translation license: apache-2.0 --- ### opus-mt-fr-pag * source languages: fr * target languages: pag * OPUS readme: [fr-pag](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fr-pag/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-20.zip](https://object.pouta.csc.fi/OPUS-MT-models/fr-pag/opus-2020-01-20.zip) * test set translations: [opus-2020-01-20.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fr-pag/opus-2020-01-20.test.txt) * test set scores: [opus-2020-01-20.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fr-pag/opus-2020-01-20.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.fr.pag | 27.0 | 0.486 |
Helsinki-NLP/opus-mt-he-de
ce12c832a6a4b2547aa8d6bca659671007383a91
2021-09-09T22:00:21.000Z
[ "pytorch", "marian", "text2text-generation", "he", "de", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-he-de
12
null
transformers
10,465
--- tags: - translation license: apache-2.0 --- ### opus-mt-he-de * source languages: he * target languages: de * OPUS readme: [he-de](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/he-de/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-26.zip](https://object.pouta.csc.fi/OPUS-MT-models/he-de/opus-2020-01-26.zip) * test set translations: [opus-2020-01-26.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/he-de/opus-2020-01-26.test.txt) * test set scores: [opus-2020-01-26.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/he-de/opus-2020-01-26.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba.he.de | 45.5 | 0.647 |
Helsinki-NLP/opus-mt-hil-de
ff219abfd5acc4869cd501278784330723d0bf0c
2021-09-09T22:09:57.000Z
[ "pytorch", "marian", "text2text-generation", "hil", "de", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-hil-de
12
null
transformers
10,466
--- tags: - translation license: apache-2.0 --- ### opus-mt-hil-de * source languages: hil * target languages: de * OPUS readme: [hil-de](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/hil-de/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-20.zip](https://object.pouta.csc.fi/OPUS-MT-models/hil-de/opus-2020-01-20.zip) * test set translations: [opus-2020-01-20.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/hil-de/opus-2020-01-20.test.txt) * test set scores: [opus-2020-01-20.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/hil-de/opus-2020-01-20.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.hil.de | 26.4 | 0.479 |
Helsinki-NLP/opus-mt-ilo-de
d04ede2f91302b77cf3475ceb18021ab5a8b0535
2021-09-09T22:11:53.000Z
[ "pytorch", "marian", "text2text-generation", "ilo", "de", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-ilo-de
12
null
transformers
10,467
--- tags: - translation license: apache-2.0 --- ### opus-mt-ilo-de * source languages: ilo * target languages: de * OPUS readme: [ilo-de](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/ilo-de/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-20.zip](https://object.pouta.csc.fi/OPUS-MT-models/ilo-de/opus-2020-01-20.zip) * test set translations: [opus-2020-01-20.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/ilo-de/opus-2020-01-20.test.txt) * test set scores: [opus-2020-01-20.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/ilo-de/opus-2020-01-20.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.ilo.de | 26.1 | 0.474 |
Helsinki-NLP/opus-mt-iso-fi
b2de5164c3ba201060be53113515da8594ad7f8a
2021-09-10T13:52:38.000Z
[ "pytorch", "marian", "text2text-generation", "iso", "fi", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-iso-fi
12
null
transformers
10,468
--- tags: - translation license: apache-2.0 --- ### opus-mt-iso-fi * source languages: iso * target languages: fi * OPUS readme: [iso-fi](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/iso-fi/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/iso-fi/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/iso-fi/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/iso-fi/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.iso.fi | 23.0 | 0.443 |
Helsinki-NLP/opus-mt-ja-bg
a40d942964fa268c4f8db4df3f4f6645237c3c6c
2020-08-21T14:42:47.000Z
[ "pytorch", "marian", "text2text-generation", "ja", "bg", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-ja-bg
12
null
transformers
10,469
--- language: - ja - bg tags: - translation license: apache-2.0 --- ### jpn-bul * source group: Japanese * target group: Bulgarian * OPUS readme: [jpn-bul](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/jpn-bul/README.md) * model: transformer-align * source language(s): jpn jpn_Hani jpn_Hira jpn_Kana * target language(s): bul * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/jpn-bul/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/jpn-bul/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/jpn-bul/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.jpn.bul | 20.2 | 0.422 | ### System Info: - hf_name: jpn-bul - source_languages: jpn - target_languages: bul - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/jpn-bul/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['ja', 'bg'] - src_constituents: {'jpn_Hang', 'jpn', 'jpn_Yiii', 'jpn_Kana', 'jpn_Hani', 'jpn_Bopo', 'jpn_Latn', 'jpn_Hira'} - tgt_constituents: {'bul', 'bul_Latn'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/jpn-bul/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/jpn-bul/opus-2020-06-17.test.txt - src_alpha3: jpn - tgt_alpha3: bul - short_pair: ja-bg - chrF2_score: 0.42200000000000004 - bleu: 20.2 - brevity_penalty: 0.9570000000000001 - ref_len: 2346.0 - src_name: Japanese - tgt_name: Bulgarian - train_date: 2020-06-17 - src_alpha2: ja - tgt_alpha2: bg - prefer_old: False - long_pair: jpn-bul - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-ko-fi
b6e5f3dbcac05865c284ed6b04a4a89bd29af799
2020-08-21T14:42:47.000Z
[ "pytorch", "marian", "text2text-generation", "ko", "fi", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-ko-fi
12
null
transformers
10,470
--- language: - ko - fi tags: - translation license: apache-2.0 --- ### kor-fin * source group: Korean * target group: Finnish * OPUS readme: [kor-fin](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/kor-fin/README.md) * model: transformer-align * source language(s): kor kor_Hang kor_Latn * target language(s): fin * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/kor-fin/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/kor-fin/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/kor-fin/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.kor.fin | 26.6 | 0.502 | ### System Info: - hf_name: kor-fin - source_languages: kor - target_languages: fin - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/kor-fin/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['ko', 'fi'] - src_constituents: {'kor_Hani', 'kor_Hang', 'kor_Latn', 'kor'} - tgt_constituents: {'fin'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/kor-fin/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/kor-fin/opus-2020-06-17.test.txt - src_alpha3: kor - tgt_alpha3: fin - short_pair: ko-fi - chrF2_score: 0.502 - bleu: 26.6 - brevity_penalty: 0.892 - ref_len: 2251.0 - src_name: Korean - tgt_name: Finnish - train_date: 2020-06-17 - src_alpha2: ko - tgt_alpha2: fi - prefer_old: False - long_pair: kor-fin - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-ln-de
d16b4910aa75a3e5ecbf2b7a5c4000296e7464ce
2021-09-10T13:54:57.000Z
[ "pytorch", "marian", "text2text-generation", "ln", "de", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-ln-de
12
null
transformers
10,471
--- tags: - translation license: apache-2.0 --- ### opus-mt-ln-de * source languages: ln * target languages: de * OPUS readme: [ln-de](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/ln-de/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-21.zip](https://object.pouta.csc.fi/OPUS-MT-models/ln-de/opus-2020-01-21.zip) * test set translations: [opus-2020-01-21.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/ln-de/opus-2020-01-21.test.txt) * test set scores: [opus-2020-01-21.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/ln-de/opus-2020-01-21.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.ln.de | 23.3 | 0.428 |
Helsinki-NLP/opus-mt-ro-fi
b10215c217387d0590a220034266dbc9bb8f4881
2021-09-10T14:02:07.000Z
[ "pytorch", "marian", "text2text-generation", "ro", "fi", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-ro-fi
12
null
transformers
10,472
--- tags: - translation license: apache-2.0 --- ### opus-mt-ro-fi * source languages: ro * target languages: fi * OPUS readme: [ro-fi](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/ro-fi/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/ro-fi/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/ro-fi/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/ro-fi/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.ro.fi | 25.2 | 0.521 |
Helsinki-NLP/opus-mt-sv-crs
746041e0a24672d2655538f87bc1ece532fd34d3
2021-09-10T14:05:53.000Z
[ "pytorch", "marian", "text2text-generation", "sv", "crs", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-sv-crs
12
null
transformers
10,473
--- tags: - translation license: apache-2.0 --- ### opus-mt-sv-crs * source languages: sv * target languages: crs * OPUS readme: [sv-crs](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/sv-crs/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/sv-crs/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/sv-crs/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/sv-crs/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.sv.crs | 32.4 | 0.512 |
Helsinki-NLP/opus-mt-sv-pon
56bff87cd0741f8e4374ae98f9ed7a64a716342e
2021-09-10T14:08:51.000Z
[ "pytorch", "marian", "text2text-generation", "sv", "pon", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-sv-pon
12
null
transformers
10,474
--- tags: - translation license: apache-2.0 --- ### opus-mt-sv-pon * source languages: sv * target languages: pon * OPUS readme: [sv-pon](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/sv-pon/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/sv-pon/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/sv-pon/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/sv-pon/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.sv.pon | 26.0 | 0.491 |
Helsinki-NLP/opus-mt-sv-ru
7f9e131a87630ee3aa68458451071e9ad54cfa47
2021-09-10T14:09:02.000Z
[ "pytorch", "marian", "text2text-generation", "sv", "ru", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-sv-ru
12
null
transformers
10,475
--- tags: - translation license: apache-2.0 --- ### opus-mt-sv-ru * source languages: sv * target languages: ru * OPUS readme: [sv-ru](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/sv-ru/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-24.zip](https://object.pouta.csc.fi/OPUS-MT-models/sv-ru/opus-2020-01-24.zip) * test set translations: [opus-2020-01-24.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/sv-ru/opus-2020-01-24.test.txt) * test set scores: [opus-2020-01-24.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/sv-ru/opus-2020-01-24.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba.sv.ru | 46.6 | 0.662 |
Helsinki-NLP/opus-mt-tum-en
d03aecd4ed2ae3e6530b83e88f327b27ed3eb84d
2021-09-11T10:50:07.000Z
[ "pytorch", "marian", "text2text-generation", "tum", "en", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-tum-en
12
null
transformers
10,476
--- tags: - translation license: apache-2.0 --- ### opus-mt-tum-en * source languages: tum * target languages: en * OPUS readme: [tum-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/tum-en/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-21.zip](https://object.pouta.csc.fi/OPUS-MT-models/tum-en/opus-2020-01-21.zip) * test set translations: [opus-2020-01-21.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/tum-en/opus-2020-01-21.test.txt) * test set scores: [opus-2020-01-21.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/tum-en/opus-2020-01-21.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.tum.en | 31.7 | 0.470 |
Helsinki-NLP/opus-mt-tw-fr
f146f6c094ec6dfed8e910455b5e6b99fd5418ee
2021-09-11T10:50:47.000Z
[ "pytorch", "marian", "text2text-generation", "tw", "fr", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-tw-fr
12
null
transformers
10,477
--- tags: - translation license: apache-2.0 --- ### opus-mt-tw-fr * source languages: tw * target languages: fr * OPUS readme: [tw-fr](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/tw-fr/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/tw-fr/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/tw-fr/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/tw-fr/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.tw.fr | 26.7 | 0.442 |
Helsinki-NLP/opus-mt-uk-fr
3406d471a8b7c0f83e3d54ecac9bcb7fee7ee0bd
2021-09-11T10:51:26.000Z
[ "pytorch", "marian", "text2text-generation", "uk", "fr", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-uk-fr
12
null
transformers
10,478
--- tags: - translation license: apache-2.0 --- ### opus-mt-uk-fr * source languages: uk * target languages: fr * OPUS readme: [uk-fr](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/uk-fr/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/uk-fr/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/uk-fr/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/uk-fr/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba.uk.fr | 52.1 | 0.681 |
Jeska/VaccinChatSentenceClassifierDutch
2183d3feb33082cb2ab9cf07c20b7695e50dd4bb
2021-11-18T17:18:39.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeska
null
Jeska/VaccinChatSentenceClassifierDutch
12
null
transformers
10,479
Entry not found
JonatanGk/roberta-base-bne-finetuned-catalonia-independence-detector
b146b6ca4f449d275c69705e6232823670dca16e
2021-10-10T18:37:59.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "es", "dataset:catalonia_independence", "transformers", "spanish", "license:apache-2.0", "model-index" ]
text-classification
false
JonatanGk
null
JonatanGk/roberta-base-bne-finetuned-catalonia-independence-detector
12
1
transformers
10,480
--- license: apache-2.0 language: es tags: - "spanish" datasets: - catalonia_independence metrics: - accuracy model-index: - name: roberta-base-bne-finetuned-mnli results: - task: name: Text Classification type: text-classification dataset: name: catalonia_independence type: catalonia_independence args: spanish metrics: - name: Accuracy type: accuracy value: 0.7880893300248138 widget: - text: "Junqueras, sobre la decisión judicial sobre Puigdemont: La justicia que falta en el Estado llega y llegará de Europa" - text: "Desconvocada la manifestación del domingo en Barcelona en apoyo a Puigdemont" --- # roberta-base-bne-finetuned-catalonia-independence-detector This model is a fine-tuned version of [BSC-TeMU/roberta-base-bne](https://huggingface.co/BSC-TeMU/roberta-base-bne) on the catalonia_independence dataset. It achieves the following results on the evaluation set: - Loss: 0.9415 - Accuracy: 0.7881 <details> ## Model description The data was collected over 12 days during February and March of 2019 from tweets posted in Barcelona, and during September of 2018 from tweets posted in the town of Terrassa, Catalonia. Each corpus is annotated with three classes: AGAINST, FAVOR and NEUTRAL, which express the stance towards the target - independence of Catalonia. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 378 | 0.5534 | 0.7558 | | 0.6089 | 2.0 | 756 | 0.5315 | 0.7643 | | 0.2678 | 3.0 | 1134 | 0.7336 | 0.7816 | | 0.0605 | 4.0 | 1512 | 0.8809 | 0.7866 | | 0.0605 | 5.0 | 1890 | 0.9415 | 0.7881 | </details> ### Model in action 🚀 Fast usage with **pipelines**: ```python from transformers import pipeline model_path = "JonatanGk/roberta-base-bne-finetuned-catalonia-independence-detector" independence_analysis = pipeline("text-classification", model=model_path, tokenizer=model_path) independence_analysis( "Junqueras, sobre la decisión judicial sobre Puigdemont: La justicia que falta en el Estado llega y llegará de Europa" ) # Output: [{'label': 'FAVOR', 'score': 0.9936726093292236}] independence_analysis( "El desafío independentista queda adormecido, y eso que el Gobierno ha sido muy claro en que su propuesta para Cataluña es una agenda de reencuentro, centrada en inversiones e infraestructuras") # Output: [{'label': 'AGAINST', 'score': 0.7508948445320129}] independence_analysis( "Desconvocada la manifestación del domingo en Barcelona en apoyo a Puigdemont" ) # Output: [{'label': 'NEUTRAL', 'score': 0.9966907501220703}] ``` [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/JonatanGk/Shared-Colab/blob/master/Catalonia_independence_Detector_(SPANISH).ipynb#scrollTo=uNMOXJz38W6U) ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.12.1 - Tokenizers 0.10.3 ## Citation Thx to HF.co & [@lewtun](https://github.com/lewtun) for Dataset ;) > Special thx to [Manuel Romero/@mrm8488](https://huggingface.co/mrm8488) as my mentor & R.C. > Created by [Jonatan Luna](https://JonatanGk.github.io) | [LinkedIn](https://www.linkedin.com/in/JonatanGk/)
JonatanGk/roberta-base-bne-finetuned-hate-speech-offensive-spanish
b9c846b023ede70b5863b8dbec3f8a6abfadbd6f
2021-10-18T17:10:11.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
JonatanGk
null
JonatanGk/roberta-base-bne-finetuned-hate-speech-offensive-spanish
12
null
transformers
10,481
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: roberta-base-bne-finetuned-mnli results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-bne-finetuned-mnli This model is a fine-tuned version of [BSC-TeMU/roberta-base-bne](https://huggingface.co/BSC-TeMU/roberta-base-bne) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2869 - Accuracy: 0.9012 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3222 | 1.0 | 1255 | 0.2869 | 0.9012 | | 0.2418 | 2.0 | 2510 | 0.3125 | 0.8987 | | 0.1726 | 3.0 | 3765 | 0.4120 | 0.8943 | | 0.0685 | 4.0 | 5020 | 0.5239 | 0.8919 | | 0.0245 | 5.0 | 6275 | 0.5910 | 0.8947 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.12.1 - Tokenizers 0.10.3
JonatanGk/roberta-base-ca-finetuned-catalonia-independence-detector
44418a48fb8ed75b5220c87e8a98b544ec23214c
2021-10-10T18:38:15.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "ca", "dataset:catalonia_independence", "transformers", "catalan", "license:apache-2.0", "model-index" ]
text-classification
false
JonatanGk
null
JonatanGk/roberta-base-ca-finetuned-catalonia-independence-detector
12
1
transformers
10,482
--- license: apache-2.0 language: ca tags: - "catalan" datasets: - catalonia_independence metrics: - accuracy model-index: - name: roberta-base-ca-finetuned-mnli results: - task: name: Text Classification type: text-classification dataset: name: catalonia_independence type: catalonia_independence args: catalan metrics: - name: Accuracy type: accuracy value: 0.7611940298507462 widget: - text: "Puigdemont, a l'estat espanyol: Quatre anys després, ens hem guanyat el dret a dir prou" - text: "Llarena demana la detenció de Comín i Ponsatí aprofitant que són a Itàlia amb Puigdemont" - text: "Assegura l'expert que en un 46% els catalans s'inclouen dins del que es denomina com el doble sentiment identitari. És a dir, se senten tant catalans com espanyols. 1 de cada cinc, en canvi, té un sentiment excloent, només se senten catalans, i un 4% sol espanyol." --- # roberta-base-ca-finetuned-catalonia-independence-detector This model is a fine-tuned version of [BSC-TeMU/roberta-base-ca](https://huggingface.co/BSC-TeMU/roberta-base-ca) on the catalonia_independence dataset. It achieves the following results on the evaluation set: - Loss: 0.6065 - Accuracy: 0.7612 <details> ## Training and evaluation data The data was collected over 12 days during February and March of 2019 from tweets posted in Barcelona, and during September of 2018 from tweets posted in the town of Terrassa, Catalonia. Each corpus is annotated with three classes: AGAINST, FAVOR and NEUTRAL, which express the stance towards the target - independence of Catalonia. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 377 | 0.6311 | 0.7453 | | 0.7393 | 2.0 | 754 | 0.6065 | 0.7612 | | 0.5019 | 3.0 | 1131 | 0.6340 | 0.7547 | | 0.3837 | 4.0 | 1508 | 0.6777 | 0.7597 | | 0.3837 | 5.0 | 1885 | 0.7232 | 0.7582 | </details> ### Model in action 🚀 Fast usage with **pipelines**: ```python from transformers import pipeline model_path = "JonatanGk/roberta-base-ca-finetuned-catalonia-independence-detector" independence_analysis = pipeline("text-classification", model=model_path, tokenizer=model_path) independence_analysis( "Assegura l'expert que en un 46% els catalans s'inclouen dins del que es denomina com el doble sentiment identitari. És a dir, se senten tant catalans com espanyols. 1 de cada cinc, en canvi, té un sentiment excloent, només se senten catalans, i un 4% sol espanyol." ) # Output: [{'label': 'AGAINST', 'score': 0.7457581758499146}] independence_analysis( "Llarena demana la detenció de Comín i Ponsatí aprofitant que són a Itàlia amb Puigdemont" ) # Output: [{'label': 'NEUTRAL', 'score': 0.7436802983283997}] independence_analysis( "Puigdemont, a l'estat espanyol: Quatre anys després, ens hem guanyat el dret a dir prou" ) # Output: [{'label': 'FAVOR', 'score': 0.9040119647979736}] ``` [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/JonatanGk/Shared-Colab/blob/master/Catalonia_independence_Detector_(CATALAN).ipynb#scrollTo=j29NHJtOyAVU) ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.12.1 - Tokenizers 0.10.3 ## Citation Thx to HF.co & [@lewtun](https://github.com/lewtun) for Dataset ;) > Special thx to [Manuel Romero/@mrm8488](https://huggingface.co/mrm8488) as my mentor & R.C. > Created by [Jonatan Luna](https://JonatanGk.github.io) | [LinkedIn](https://www.linkedin.com/in/JonatanGk/)
KBLab/megatron-bert-base-swedish-cased-600k
540051f7da73debe8e3b38e6bb11060820f0eefa
2022-03-17T11:11:13.000Z
[ "pytorch", "megatron-bert", "fill-mask", "sv", "transformers", "autotrain_compatible" ]
fill-mask
false
KBLab
null
KBLab/megatron-bert-base-swedish-cased-600k
12
null
transformers
10,483
--- language: - sv --- # Megatron-BERT-base Swedish 600k This BERT model was trained using the Megatron-LM library. The size of the model is a regular BERT-base with 110M parameters. The model was trained on about 70GB of data, consisting mostly of OSCAR and Swedish newspaper text curated by the National Library of Sweden. Training was done for 600k training steps. Its [sister model](https://huggingface.co/KBLab/megatron-bert-base-swedish-cased-125k) used the same setup, but was instead trained for only 125k steps. The model has three sister models trained on the same dataset: - [🤗 BERT Swedish](https://huggingface.co/KBLab/bert-base-swedish-cased-new) - [Megatron-BERT-base-125k](https://huggingface.co/KBLab/megatron-bert-base-swedish-cased-125k) - [Megatron-BERT-large-110k](https://huggingface.co/KBLab/megatron-bert-large-swedish-cased-110k) ## Acknowledgements We gratefully acknowledge the HPC RIVR consortium (https://www.hpc-rivr.si) and EuroHPC JU (https://eurohpc-ju.europa.eu) for funding this research by providing computing resources of the HPC system Vega at the Institute of Information Science (https://www.izum.si).
KETI-AIR/ke-t5-small-newslike
292abf1540533590a6eb01550ccedf854392e7cc
2021-06-23T03:12:48.000Z
[ "pytorch", "tf", "jax", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
KETI-AIR
null
KETI-AIR/ke-t5-small-newslike
12
null
transformers
10,484
Entry not found
SI2M-Lab/DarijaBERT-arabizi
9b419fa5da3aba612a5b2b7c8131b66e8515ad2e
2021-12-27T08:41:53.000Z
[ "pytorch", "bert", "fill-mask", "ar", "transformers", "autotrain_compatible" ]
fill-mask
false
SI2M-Lab
null
SI2M-Lab/DarijaBERT-arabizi
12
null
transformers
10,485
--- language: ar widget: - text: " Mchit njib [MASK] ." - text: " Yak nta li [MASK] lih dik lhedra." - text: " Ach [MASK] daba." - text: " Lmghrib ajmal [MASK] fl3alam." --- AIOX Lab and SI2M Lab INSEA have joined forces to offer researchers, industrialists and the NLP (Natural Language Processing) community the first intelligent Open Source system that understands Moroccan dialectal language "Darija". **DarijaBERT** is the first BERT model for the Moroccan Arabic dialect called “Darija”. It is based on the same architecture as BERT-base, but without the Next Sentence Prediction (NSP) objective. This model is the Arabizi specific version of DarijaBERT and it was trained on a total of ~4.6 Million sequences of Darija dialect written in Latin letters. The model was trained on a dataset issued from Youtube comments. More details about DarijaBert are available in the dedicated GitHub [repository](https://github.com/AIOXLABS/DBert) **Loading the model** The model can be loaded directly using the Huggingface library: ```python from transformers import AutoTokenizer, AutoModel DarijaBERT_tokenizer = AutoTokenizer.from_pretrained("Kamel/DarijaBERT-arabizi") DarijaBert_model = AutoModel.from_pretrained("Kamel/DarijaBERT-arabizi") ``` **Acknowledgments** We gratefully acknowledge Google’s TensorFlow Research Cloud (TRC) program for providing us with free Cloud TPUs. <font size =2>**Warning** This model being trained on texts from social networks, it can unfortunately generate toxic outputs reflecting part of the learned data</font>
KoichiYasuoka/bert-large-japanese-char-extended
b10e7f6b01689eb567fcd380f4afefdf509c527c
2022-06-21T07:51:33.000Z
[ "pytorch", "bert", "fill-mask", "ja", "transformers", "japanese", "masked-lm", "wikipedia", "license:cc-by-sa-4.0", "autotrain_compatible" ]
fill-mask
false
KoichiYasuoka
null
KoichiYasuoka/bert-large-japanese-char-extended
12
null
transformers
10,486
--- language: - "ja" tags: - "japanese" - "masked-lm" - "wikipedia" license: "cc-by-sa-4.0" pipeline_tag: "fill-mask" mask_token: "[MASK]" widget: - text: "酸素ボンベを充[MASK]する。" --- # bert-large-japanese-char-extended ## Model Description This is a BERT model pre-trained on Japanese Wikipedia texts, derived from [bert-large-japanese-char](https://huggingface.co/cl-tohoku/bert-large-japanese-char). Character-embeddings are enhanced to include all 常用漢字/人名用漢字 characters using BertTokenizerFast. You can fine-tune `bert-large-japanese-char-extended` for downstream tasks, such as [POS-tagging](https://huggingface.co/KoichiYasuoka/bert-large-japanese-upos), [dependency-parsing](https://huggingface.co/KoichiYasuoka/bert-large-japanese-wikipedia-ud-head), and so on. ## How to Use ```py from transformers import AutoTokenizer,AutoModelForMaskedLM tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/bert-large-japanese-char-extended") model=AutoModelForMaskedLM.from_pretrained("KoichiYasuoka/bert-large-japanese-char-extended") ```
KoichiYasuoka/roberta-base-thai-char-upos
d7c8222db8ac8d3c3cedf63dc4fd06a15b4c88a6
2022-04-12T10:26:40.000Z
[ "pytorch", "roberta", "token-classification", "th", "dataset:universal_dependencies", "transformers", "thai", "pos", "wikipedia", "dependency-parsing", "license:apache-2.0", "autotrain_compatible" ]
token-classification
false
KoichiYasuoka
null
KoichiYasuoka/roberta-base-thai-char-upos
12
null
transformers
10,487
--- language: - "th" tags: - "thai" - "token-classification" - "pos" - "wikipedia" - "dependency-parsing" datasets: - "universal_dependencies" license: "apache-2.0" pipeline_tag: "token-classification" widget: - text: "หลายหัวดีกว่าหัวเดียว" --- # roberta-base-thai-char-upos ## Model Description This is a RoBERTa model pre-trained on Thai Wikipedia texts for POS-tagging and dependency-parsing, derived from [roberta-base-thai-char](https://huggingface.co/KoichiYasuoka/roberta-base-thai-char). Every word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech). ## How to Use ```py import torch from transformers import AutoTokenizer,AutoModelForTokenClassification tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-base-thai-char-upos") model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/roberta-base-thai-char-upos") s="หลายหัวดีกว่าหัวเดียว" t=tokenizer.tokenize(s) p=[model.config.id2label[q] for q in torch.argmax(model(tokenizer.encode(s,return_tensors="pt"))["logits"],dim=2)[0].tolist()[1:-1]] print(list(zip(t,p))) ``` or ``` import esupar nlp=esupar.load("KoichiYasuoka/roberta-base-thai-char-upos") print(nlp("หลายหัวดีกว่าหัวเดียว")) ``` ## See Also [esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa models
M-FAC/bert-tiny-finetuned-qnli
00679507fb7104e655fdf5899bf8c222866bb1b0
2021-12-13T08:11:40.000Z
[ "pytorch", "bert", "text-classification", "arxiv:2107.03356", "transformers" ]
text-classification
false
M-FAC
null
M-FAC/bert-tiny-finetuned-qnli
12
null
transformers
10,488
# BERT-tiny model finetuned with M-FAC This model is finetuned on QNLI dataset with state-of-the-art second-order optimizer M-FAC. Check NeurIPS 2021 paper for more details on M-FAC: [https://arxiv.org/pdf/2107.03356.pdf](https://arxiv.org/pdf/2107.03356.pdf). ## Finetuning setup For fair comparison against default Adam baseline, we finetune the model in the same framework as described here [https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification](https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification) and just swap Adam optimizer with M-FAC. Hyperparameters used by M-FAC optimizer: ```bash learning rate = 1e-4 number of gradients = 1024 dampening = 1e-6 ``` ## Results We share the best model out of 5 runs with the following score on QNLI validation set: ```bash accuracy = 81.54 ``` Mean and standard deviation for 5 runs on QNLI validation set: | | Accuracy | |:----:|:-----------:| | Adam | 77.85 ± 0.15 | | M-FAC | 81.17 ± 0.43 | Results can be reproduced by adding M-FAC optimizer code in [https://github.com/huggingface/transformers/blob/master/examples/pytorch/text-classification/run_glue.py](https://github.com/huggingface/transformers/blob/master/examples/pytorch/text-classification/run_glue.py) and running the following bash script: ```bash CUDA_VISIBLE_DEVICES=0 python run_glue.py \ --seed 8276 \ --model_name_or_path prajjwal1/bert-tiny \ --task_name qnli \ --do_train \ --do_eval \ --max_seq_length 128 \ --per_device_train_batch_size 32 \ --learning_rate 1e-4 \ --num_train_epochs 5 \ --output_dir out_dir/ \ --optim MFAC \ --optim_args '{"lr": 1e-4, "num_grads": 1024, "damp": 1e-6}' ``` We believe these results could be improved with modest tuning of hyperparameters: `per_device_train_batch_size`, `learning_rate`, `num_train_epochs`, `num_grads` and `damp`. For the sake of fair comparison and a robust default setup we use the same hyperparameters across all models (`bert-tiny`, `bert-mini`) and all datasets (SQuAD version 2 and GLUE). Our code for M-FAC can be found here: [https://github.com/IST-DASLab/M-FAC](https://github.com/IST-DASLab/M-FAC). A step-by-step tutorial on how to integrate and use M-FAC with any repository can be found here: [https://github.com/IST-DASLab/M-FAC/tree/master/tutorials](https://github.com/IST-DASLab/M-FAC/tree/master/tutorials). ## BibTeX entry and citation info ```bibtex @article{frantar2021m, title={M-FAC: Efficient Matrix-Free Approximations of Second-Order Information}, author={Frantar, Elias and Kurtic, Eldar and Alistarh, Dan}, journal={Advances in Neural Information Processing Systems}, volume={35}, year={2021} } ```
M47Labs/english_news_classification_headlines
da62e942b493887691e2a4adb3e70dceff2e4402
2021-09-08T15:03:10.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
M47Labs
null
M47Labs/english_news_classification_headlines
12
null
transformers
10,489
Entry not found
Maltehb/aelaectra-danish-electra-small-uncased-ner-dane
419bf45f8dc725fe4d902a44c160a77039fe086e
2021-08-03T05:06:18.000Z
[ "pytorch", "tf", "electra", "token-classification", "da", "dataset:DAGW", "arxiv:2003.10555", "arxiv:1810.04805", "arxiv:2005.03521", "transformers", "ælæctra", "danish", "ELECTRA-Small", "replaced token detection", "license:mit", "autotrain_compatible" ]
token-classification
false
Maltehb
null
Maltehb/aelaectra-danish-electra-small-uncased-ner-dane
12
null
transformers
10,490
--- language: "da" tags: - ælæctra - pytorch - danish - ELECTRA-Small - replaced token detection license: "mit" datasets: - DAGW widget: - text: "Chili Jensen, som bor på Danmarksgade 12, køber chilifrugter fra Netto." metrics: - f1 --- # Ælæctra - Finetuned for Named Entity Recognition on the [DaNE dataset](https://danlp.alexandra.dk/304bd159d5de/datasets/ddt.zip) (Hvingelby et al., 2020) by Malte Højmark-Bertelsen. **Ælæctra** is a Danish Transformer-based language model created to enhance the variety of Danish NLP resources with a more efficient model compared to previous state-of-the-art (SOTA) models. Ælæctra was pretrained with the ELECTRA-Small (Clark et al., 2020) pretraining approach by using the Danish Gigaword Corpus (Strømberg-Derczynski et al., 2020) and evaluated on Named Entity Recognition (NER) tasks. Since NER only presents a limited picture of Ælæctra's capabilities I am very interested in further evaluations. Therefore, if you employ it for any task, feel free to hit me up your findings! Ælæctra was, as mentioned, created to enhance the Danish NLP capabilties and please do note how this GitHub still does not support the Danish characters "*Æ, Ø and Å*" as the title of this repository becomes "*-l-ctra*". How ironic.🙂 Here is an example on how to load the finetuned Ælæctra-uncased model for Named Entity Recognition in [PyTorch](https://pytorch.org/) using the [🤗Transformers](https://github.com/huggingface/transformers) library: ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("Maltehb/-l-ctra-danish-electra-small-uncased-ner-dane") model = AutoModelForTokenClassification.from_pretrained("Maltehb/-l-ctra-danish-electra-small-uncased-ner-dane") ``` ### Evaluation of current Danish Language Models Ælæctra, Danish BERT (DaBERT) and multilingual BERT (mBERT) were evaluated: | Model | Layers | Hidden Size | Params | AVG NER micro-f1 (DaNE-testset) | Average Inference Time (Sec/Epoch) | Download | | --- | --- | --- | --- | --- | --- | --- | | Ælæctra Uncased | 12 | 256 | 13.7M | 78.03 (SD = 1.28) | 10.91 | [Link for model](https://www.dropbox.com/s/cag7prs1nvdchqs/%C3%86l%C3%A6ctra.zip?dl=0) | | Ælæctra Cased | 12 | 256 | 14.7M | 80.08 (SD = 0.26) | 10.92 | [Link for model](https://www.dropbox.com/s/cag7prs1nvdchqs/%C3%86l%C3%A6ctra.zip?dl=0) | | DaBERT | 12 | 768 | 110M | 84.89 (SD = 0.64) | 43.03 | [Link for model](https://www.dropbox.com/s/19cjaoqvv2jicq9/danish_bert_uncased_v2.zip?dl=1) | | mBERT Uncased | 12 | 768 | 167M | 80.44 (SD = 0.82) | 72.10 | [Link for model](https://storage.googleapis.com/bert_models/2018_11_03/multilingual_L-12_H-768_A-12.zip) | | mBERT Cased | 12 | 768 | 177M | 83.79 (SD = 0.91) | 70.56 | [Link for model](https://storage.googleapis.com/bert_models/2018_11_23/multi_cased_L-12_H-768_A-12.zip) | On [DaNE](https://danlp.alexandra.dk/304bd159d5de/datasets/ddt.zip) (Hvingelby et al., 2020) without the *MISC-tag*, Ælæctra scores slightly worse than both cased and uncased Multilingual BERT (Devlin et al., 2019) and Danish BERT (Danish BERT, 2019/2020), however, Ælæctra is less than one third the size, and uses significantly fewer computational resources to pretrain and instantiate. ### Pretraining To pretrain Ælæctra it is recommended to build a Docker Container from the [Dockerfile](https://github.com/MalteHB/Ælæctra/tree/master/notebooks/fine-tuning/). Next, simply follow the [pretraining notebooks](https://github.com/MalteHB/Ælæctra/tree/master/infrastructure/Dockerfile/) The pretraining was done by utilizing a single NVIDIA Tesla V100 GPU with 16 GiB, endowed by the Danish data company [KMD](https://www.kmd.dk/). The pretraining took approximately 4 days and 9.5 hours for both the cased and uncased model ### Fine-tuning To fine-tune any Ælæctra model follow the [fine-tuning notebooks](https://github.com/MalteHB/Ælæctra/tree/master/notebooks/fine-tuning/) ### References Clark, K., Luong, M.-T., Le, Q. V., & Manning, C. D. (2020). ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators. ArXiv:2003.10555 [Cs]. http://arxiv.org/abs/2003.10555 Danish BERT. (2020). BotXO. https://github.com/botxo/nordic_bert (Original work published 2019) Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. ArXiv:1810.04805 [Cs]. http://arxiv.org/abs/1810.04805 Hvingelby, R., Pauli, A. B., Barrett, M., Rosted, C., Lidegaard, L. M., & Søgaard, A. (2020). DaNE: A Named Entity Resource for Danish. Proceedings of the 12th Language Resources and Evaluation Conference, 4597–4604. https://www.aclweb.org/anthology/2020.lrec-1.565 Strømberg-Derczynski, L., Baglini, R., Christiansen, M. H., Ciosici, M. R., Dalsgaard, J. A., Fusaroli, R., Henrichsen, P. J., Hvingelby, R., Kirkedal, A., Kjeldsen, A. S., Ladefoged, C., Nielsen, F. Å., Petersen, M. L., Rystrøm, J. H., & Varab, D. (2020). The Danish Gigaword Project. ArXiv:2005.03521 [Cs]. http://arxiv.org/abs/2005.03521 #### Acknowledgements As the majority of this repository is build upon [the works](https://github.com/google-research/electra) by the team at Google who created ELECTRA, a HUGE thanks to them is in order. A Giga thanks also goes out to the incredible people who collected The Danish Gigaword Corpus (Strømberg-Derczynski et al., 2020). Furthermore, I would like to thank my supervisor [Riccardo Fusaroli](https://github.com/fusaroli) for the support with the thesis, and a special thanks goes out to [Kenneth Enevoldsen](https://github.com/KennethEnevoldsen) for his continuous feedback. Lastly, i would like to thank KMD, my colleagues from KMD, and my peers and co-students from Cognitive Science for encouriging me to keep on working hard and holding my head up high! #### Contact For help or further information feel free to connect with the author Malte Højmark-Bertelsen on [[email protected]](mailto:[email protected]?subject=[GitHub]%20ÆlæctraUncasedNER) or any of the following platforms: [<img align="left" alt="MalteHB | Twitter" width="22px" src="https://cdn.jsdelivr.net/npm/simple-icons@v3/icons/twitter.svg" />][twitter] [<img align="left" alt="MalteHB | LinkedIn" width="22px" src="https://cdn.jsdelivr.net/npm/simple-icons@v3/icons/linkedin.svg" />][linkedin] [<img align="left" alt="MalteHB | Instagram" width="22px" src="https://cdn.jsdelivr.net/npm/simple-icons@v3/icons/instagram.svg" />][instagram] <br /> </details> [twitter]: https://twitter.com/malteH_B [instagram]: https://www.instagram.com/maltemusen/ [linkedin]: https://www.linkedin.com/in/malte-h%C3%B8jmark-bertelsen-9a618017b/
Media1129/keyword-tag-model-10000-9-16_more_ingredient
0b1eb8f94c69552ca33e6fe6387d3017737eeaf8
2021-09-17T02:47:19.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
Media1129
null
Media1129/keyword-tag-model-10000-9-16_more_ingredient
12
null
transformers
10,491
Entry not found
Media1129/keyword-tag-model-3000-v2
d9e56eb5089d949de40972cd6c713ff8029cc9b9
2021-08-30T05:40:33.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
Media1129
null
Media1129/keyword-tag-model-3000-v2
12
null
transformers
10,492
Entry not found
Media1129/keyword-tag-model-6000
fbb43bf22032e5cb0c37d4e9b2c8fe4f6a7ac85e
2021-08-30T05:15:33.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
Media1129
null
Media1129/keyword-tag-model-6000
12
null
transformers
10,493
Entry not found
Media1129/recipe-tag-model
1820b59ad9c11d7aefa8734017c0ff0d75a3e7eb
2021-08-04T04:16:59.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
Media1129
null
Media1129/recipe-tag-model
12
null
transformers
10,494
Entry not found
MhF/distilbert-base-uncased-finetuned-emotion
3cf065757b4ddbcb8e5d1d0fd05cb21c6b1161f4
2022-02-15T05:38:33.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
MhF
null
MhF/distilbert-base-uncased-finetuned-emotion
12
null
transformers
10,495
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9215 - name: F1 type: f1 value: 0.9217985126397109 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2232 - Accuracy: 0.9215 - F1: 0.9218 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8098 | 1.0 | 250 | 0.3138 | 0.9025 | 0.9001 | | 0.2429 | 2.0 | 500 | 0.2232 | 0.9215 | 0.9218 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
Momerio/meigen_generate_Japanese
43a89f3fcd45816b2da0582b994f5876ed839e79
2021-10-26T01:19:59.000Z
[ "pytorch", "gpt2", "text-generation", "ja", "transformers" ]
text-generation
false
Momerio
null
Momerio/meigen_generate_Japanese
12
null
transformers
10,496
--- language: - ja --- 名言推論モデル
NDugar/v3large-2epoch
5e4ff2a7485e0001613a487173b17f17ee809d4f
2021-12-06T19:28:46.000Z
[ "pytorch", "deberta-v2", "text-classification", "en", "arxiv:2006.03654", "transformers", "deberta-v3", "deberta-v2`", "deberta-mnli", "license:mit", "zero-shot-classification" ]
zero-shot-classification
false
NDugar
null
NDugar/v3large-2epoch
12
null
transformers
10,497
--- language: en tags: - deberta-v3 - deberta-v2` - deberta-mnli tasks: mnli thumbnail: https://huggingface.co/front/thumbnails/microsoft.png license: mit pipeline_tag: zero-shot-classification --- ## DeBERTa: Decoding-enhanced BERT with Disentangled Attention [DeBERTa](https://arxiv.org/abs/2006.03654) improves the BERT and RoBERTa models using disentangled attention and enhanced mask decoder. It outperforms BERT and RoBERTa on majority of NLU tasks with 80GB training data. Please check the [official repository](https://github.com/microsoft/DeBERTa) for more details and updates. This is the DeBERTa V2 xxlarge model with 48 layers, 1536 hidden size. The total parameters are 1.5B and it is trained with 160GB raw data. ### Fine-tuning on NLU tasks We present the dev results on SQuAD 1.1/2.0 and several GLUE benchmark tasks. | Model | SQuAD 1.1 | SQuAD 2.0 | MNLI-m/mm | SST-2 | QNLI | CoLA | RTE | MRPC | QQP |STS-B | |---------------------------|-----------|-----------|-------------|-------|------|------|--------|-------|-------|------| | | F1/EM | F1/EM | Acc | Acc | Acc | MCC | Acc |Acc/F1 |Acc/F1 |P/S | | BERT-Large | 90.9/84.1 | 81.8/79.0 | 86.6/- | 93.2 | 92.3 | 60.6 | 70.4 | 88.0/- | 91.3/- |90.0/- | | RoBERTa-Large | 94.6/88.9 | 89.4/86.5 | 90.2/- | 96.4 | 93.9 | 68.0 | 86.6 | 90.9/- | 92.2/- |92.4/- | | XLNet-Large | 95.1/89.7 | 90.6/87.9 | 90.8/- | 97.0 | 94.9 | 69.0 | 85.9 | 90.8/- | 92.3/- |92.5/- | | [DeBERTa-Large](https://huggingface.co/microsoft/deberta-large)<sup>1</sup> | 95.5/90.1 | 90.7/88.0 | 91.3/91.1| 96.5|95.3| 69.5| 91.0| 92.6/94.6| 92.3/- |92.8/92.5 | | [DeBERTa-XLarge](https://huggingface.co/microsoft/deberta-xlarge)<sup>1</sup> | -/- | -/- | 91.5/91.2| 97.0 | - | - | 93.1 | 92.1/94.3 | - |92.9/92.7| | [DeBERTa-V2-XLarge](https://huggingface.co/microsoft/deberta-v2-xlarge)<sup>1</sup>|95.8/90.8| 91.4/88.9|91.7/91.6| **97.5**| 95.8|71.1|**93.9**|92.0/94.2|92.3/89.8|92.9/92.9| |**[DeBERTa-V2-XXLarge](https://huggingface.co/microsoft/deberta-v2-xxlarge)<sup>1,2</sup>**|**96.1/91.4**|**92.2/89.7**|**91.7/91.9**|97.2|**96.0**|**72.0**| 93.5| **93.1/94.9**|**92.7/90.3** |**93.2/93.1** | -------- #### Notes. - <sup>1</sup> Following RoBERTa, for RTE, MRPC, STS-B, we fine-tune the tasks based on [DeBERTa-Large-MNLI](https://huggingface.co/microsoft/deberta-large-mnli), [DeBERTa-XLarge-MNLI](https://huggingface.co/microsoft/deberta-xlarge-mnli), [DeBERTa-V2-XLarge-MNLI](https://huggingface.co/microsoft/deberta-v2-xlarge-mnli), [DeBERTa-V2-XXLarge-MNLI](https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli). The results of SST-2/QQP/QNLI/SQuADv2 will also be slightly improved when start from MNLI fine-tuned models, however, we only report the numbers fine-tuned from pretrained base models for those 4 tasks. - <sup>2</sup> To try the **XXLarge** model with **[HF transformers](https://huggingface.co/transformers/main_classes/trainer.html)**, we recommand using **deepspeed** as it's faster and saves memory. Run with `Deepspeed`, ```bash pip install datasets pip install deepspeed # Download the deepspeed config file wget https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/ds_config.json -O ds_config.json export TASK_NAME=mnli output_dir="ds_results" num_gpus=8 batch_size=8 python -m torch.distributed.launch --nproc_per_node=${num_gpus} \\ run_glue.py \\ --model_name_or_path microsoft/deberta-v2-xxlarge \\ --task_name $TASK_NAME \\ --do_train \\ --do_eval \\ --max_seq_length 256 \\ --per_device_train_batch_size ${batch_size} \\ --learning_rate 3e-6 \\ --num_train_epochs 3 \\ --output_dir $output_dir \\ --overwrite_output_dir \\ --logging_steps 10 \\ --logging_dir $output_dir \\ --deepspeed ds_config.json ``` You can also run with `--sharded_ddp` ```bash cd transformers/examples/text-classification/ export TASK_NAME=mnli python -m torch.distributed.launch --nproc_per_node=8 run_glue.py --model_name_or_path microsoft/deberta-v2-xxlarge \\ --task_name $TASK_NAME --do_train --do_eval --max_seq_length 256 --per_device_train_batch_size 8 \\ --learning_rate 3e-6 --num_train_epochs 3 --output_dir /tmp/$TASK_NAME/ --overwrite_output_dir --sharded_ddp --fp16 ``` ### Citation If you find DeBERTa useful for your work, please cite the following paper: ``` latex @inproceedings{ he2021deberta, title={DEBERTA: DECODING-ENHANCED BERT WITH DISENTANGLED ATTENTION}, author={Pengcheng He and Xiaodong Liu and Jianfeng Gao and Weizhu Chen}, booktitle={International Conference on Learning Representations}, year={2021}, url={https://openreview.net/forum?id=XPZIaotutsD} } ```
Narsil/gpt2
dad46dea5b8771c8fb31415c3dfce523ae8bae36
2021-06-22T15:04:20.000Z
[ "pytorch", "tf", "jax", "tflite", "rust", "gpt2", "text-generation", "en", "transformers", "exbert", "license:mit" ]
text-generation
false
Narsil
null
Narsil/gpt2
12
null
transformers
10,498
--- language: en tags: - exbert license: mit pipeline_tag: text-generation --- # GPT-2 Test the whole generation capabilities here: https://transformer.huggingface.co/doc/gpt2-large Pretrained model on English language using a causal language modeling (CLM) objective. It was introduced in [this paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) and first released at [this page](https://openai.com/blog/better-language-models/). Disclaimer: The team releasing GPT-2 also wrote a [model card](https://github.com/openai/gpt-2/blob/master/model_card.md) for their model. Content from this model card has been written by the Hugging Face team to complete the information they provided and give specific examples of bias. ## Model description GPT-2 is a transformers model pretrained on a very large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was trained to guess the next word in sentences. More precisely, inputs are sequences of continuous text of a certain length and the targets are the same sequence, shifted one token (word or piece of word) to the right. The model uses internally a mask-mechanism to make sure the predictions for the token `i` only uses the inputs from `1` to `i` but not the future tokens. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks. The model is best at what it was pretrained for however, which is generating texts from a prompt. ## Intended uses & limitations You can use the raw model for text generation or fine-tune it to a downstream task. See the [model hub](https://huggingface.co/models?filter=gpt2) to look for fine-tuned versions on a task that interests you. ### How to use You can use this model directly with a pipeline for text generation. Since the generation relies on some randomness, we set a seed for reproducibility: ```python >>> from transformers import pipeline, set_seed >>> generator = pipeline('text-generation', model='gpt2') >>> set_seed(42) >>> generator("Hello, I'm a language model,", max_length=30, num_return_sequences=5) [{'generated_text': "Hello, I'm a language model, a language for thinking, a language for expressing thoughts."}, {'generated_text': "Hello, I'm a language model, a compiler, a compiler library, I just want to know how I build this kind of stuff. I don"}, {'generated_text': "Hello, I'm a language model, and also have more than a few of your own, but I understand that they're going to need some help"}, {'generated_text': "Hello, I'm a language model, a system model. I want to know my language so that it might be more interesting, more user-friendly"}, {'generated_text': 'Hello, I\\'m a language model, not a language model"\ \ The concept of "no-tricks" comes in handy later with new'}] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import GPT2Tokenizer, GPT2Model tokenizer = GPT2Tokenizer.from_pretrained('gpt2') model = GPT2Model.from_pretrained('gpt2') text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import GPT2Tokenizer, TFGPT2Model tokenizer = GPT2Tokenizer.from_pretrained('gpt2') model = TFGPT2Model.from_pretrained('gpt2') text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ### Limitations and bias The training data used for this model has not been released as a dataset one can browse. We know it contains a lot of unfiltered content from the internet, which is far from neutral. As the openAI team themselves point out in their [model card](https://github.com/openai/gpt-2/blob/master/model_card.md#out-of-scope-use-cases): > Because large-scale language models like GPT-2 do not distinguish fact from fiction, we don’t support use-cases > that require the generated text to be true. > > Additionally, language models like GPT-2 reflect the biases inherent to the systems they were trained on, so we do > not recommend that they be deployed into systems that interact with humans > unless the deployers first carry out a > study of biases relevant to the intended use-case. We found no statistically significant difference in gender, race, > and religious bias probes between 774M and 1.5B, implying all versions of GPT-2 should be approached with similar > levels of caution around use cases that are sensitive to biases around human attributes. Here's an example of how the model can have biased predictions: ```python >>> from transformers import pipeline, set_seed >>> generator = pipeline('text-generation', model='gpt2') >>> set_seed(42) >>> generator("The White man worked as a", max_length=10, num_return_sequences=5) [{'generated_text': 'The White man worked as a mannequin for'}, {'generated_text': 'The White man worked as a maniser of the'}, {'generated_text': 'The White man worked as a bus conductor by day'}, {'generated_text': 'The White man worked as a plumber at the'}, {'generated_text': 'The White man worked as a journalist. He had'}] >>> set_seed(42) >>> generator("The Black man worked as a", max_length=10, num_return_sequences=5) [{'generated_text': 'The Black man worked as a man at a restaurant'}, {'generated_text': 'The Black man worked as a car salesman in a'}, {'generated_text': 'The Black man worked as a police sergeant at the'}, {'generated_text': 'The Black man worked as a man-eating monster'}, {'generated_text': 'The Black man worked as a slave, and was'}] ``` This bias will also affect all fine-tuned versions of this model. ## Training data The OpenAI team wanted to train this model on a corpus as large as possible. To build it, they scraped all the web pages from outbound links on Reddit which received at least 3 karma. Note that all Wikipedia pages were removed from this dataset, so the model was not trained on any part of Wikipedia. The resulting dataset (called WebText) weights 40GB of texts but has not been publicly released. You can find a list of the top 1,000 domains present in WebText [here](https://github.com/openai/gpt-2/blob/master/domains.txt). ## Training procedure ### Preprocessing The texts are tokenized using a byte-level version of Byte Pair Encoding (BPE) (for unicode characters) and a vocabulary size of 50,257. The inputs are sequences of 1024 consecutive tokens. The larger model was trained on 256 cloud TPU v3 cores. The training duration was not disclosed, nor were the exact details of training. ## Evaluation results The model achieves the following results without any fine-tuning (zero-shot): | Dataset | LAMBADA | LAMBADA | CBT-CN | CBT-NE | WikiText2 | PTB | enwiki8 | text8 | WikiText103 | 1BW | |:--------:|:-------:|:-------:|:------:|:------:|:---------:|:------:|:-------:|:------:|:-----------:|:-----:| | (metric) | (PPL) | (ACC) | (ACC) | (ACC) | (PPL) | (PPL) | (BPB) | (BPC) | (PPL) | (PPL) | | | 35.13 | 45.99 | 87.65 | 83.4 | 29.41 | 65.85 | 1.16 | 1,17 | 37.50 | 75.20 | ### BibTeX entry and citation info ```bibtex @article{radford2019language, title={Language Models are Unsupervised Multitask Learners}, author={Radford, Alec and Wu, Jeff and Child, Rewon and Luan, David and Amodei, Dario and Sutskever, Ilya}, year={2019} } ``` <a href="https://huggingface.co/exbert/?model=gpt2"> \t<img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
Navya2608/DialoGPT-medium-rachel
a4324e4780acd290f17d42d880a37607390a57d3
2021-11-05T16:35:00.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Navya2608
null
Navya2608/DialoGPT-medium-rachel
12
null
transformers
10,499
--- tags: - conversational --- # Rachel Green DialoGPT Model