modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
list
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
gary109/STAS_yolos-base
cfcf08d977d2435f674d2f0971aa6f5d401972a8
2022-05-13T22:38:04.000Z
[ "pytorch", "yolos", "object-detection", "transformers" ]
object-detection
false
gary109
null
gary109/STAS_yolos-base
13
null
transformers
10,300
Entry not found
gonzpen/gbert-large-ft-edu-redux
287f806c3d601de2c4c606d389cf5185f17e1903
2022-05-13T11:23:44.000Z
[ "pytorch", "bert", "text-classification", "de", "transformers", "license:mit" ]
text-classification
false
gonzpen
null
gonzpen/gbert-large-ft-edu-redux
13
null
transformers
10,301
--- language: de license: mit --- # German BERT large fine-tuned to predict educational requirements This is a fine-tuned version of the German BERT large language model [deepset/gbert-large](https://huggingface.co/deepset/gbert-large). The multilabel task this model was trained on was to predict education requirements from job ad texts. The dataset used for training is not available to the public. The 7 labels in the task are (in the classification head order): - `'Bachelor'` - `'Berufsausbildung'` - `'Doktorat oder äquivalent'` - `'Höhere Berufsausbildung'` - `'Master'` - `'Sonstiges'` - `'keine Ausbildungserfordernisse'` The number of representatives of these labels in each of the splits (train/test/val) of the dataset is summarized in the following table: | Label name | All data | Training | Validation | Test | |------------|----------|----------|------------|------| | Bachelor | 521 | 365 | 52 | 104 | | Berufsausbildung | 1854 | 1298 | 185 | 371 | | Doktorat oder äquivalent | 38 | 27 | 4 | 7 | | Höhere Berufsausbildung | 564 | 395 | 56 | 113 | | Master | 245 | 171 | 25 | 49 | | Sonstiges | 819 | 573 | 82 | 164 | | keine Ausbildungserfordernisse | 176 | 123 | 18 | 35 | ## Performance Training consisted of [minimizing the binary cross-entropy (BCE)](https://en.wikipedia.org/wiki/Cross_entropy#Cross-entropy_minimization) loss between the model's predictions and the actual labels in the training set. During training, a weighted version of the [label ranking average precision (LRAP)](https://scikit-learn.org/stable/modules/model_evaluation.html#label-ranking-average-precision) was tracked for the testing set. LRAP measures what fraction of higher-ranked labels produced by the model were true labels. To account for the label imbalance, the rankings were weighted so that improperly ranked rare labels are penalized more than their more frequent counterparts. After training was complete, the model with highest weighted LRAP was saved. ``` LRAP: 0.96 ``` # See also: - [deepset/gbert-base](https://huggingface.co/deepset/gbert-base) - [deepset/gbert-large](https://huggingface.co/deepset/gbert-large) - [gonzpen/gbert-base-ft-edu-redux](https://huggingface.co/gonzpen/gbert-base-ft-edu-redux) ## Authors Rodrigo C. G. Pena: `rodrigocgp [at] gmail.com`
tbosse/bert-base-german-cased-noisy-pretrain-fine-tuned
dfd2979f3fcc8c3f39cdd3d4c208e4d8d6055e37
2022-05-17T17:07:41.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
tbosse
null
tbosse/bert-base-german-cased-noisy-pretrain-fine-tuned
13
null
transformers
10,302
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-german-cased-noisy-pretrain-fine-tuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-german-cased-noisy-pretrain-fine-tuned This model is a fine-tuned version of [tbosse/bert-base-german-cased-finetuned-subj_preTrained_with_noisyData](https://huggingface.co/tbosse/bert-base-german-cased-finetuned-subj_preTrained_with_noisyData) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2925 - Precision: 0.7933 - Recall: 0.7457 - F1: 0.7688 - Accuracy: 0.9147 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 33 | 0.3093 | 0.7456 | 0.6029 | 0.6667 | 0.8808 | | No log | 2.0 | 66 | 0.2587 | 0.7774 | 0.7286 | 0.7522 | 0.9078 | | No log | 3.0 | 99 | 0.2529 | 0.7775 | 0.7686 | 0.7730 | 0.9136 | | No log | 4.0 | 132 | 0.2598 | 0.8063 | 0.7257 | 0.7639 | 0.9147 | | No log | 5.0 | 165 | 0.2783 | 0.7927 | 0.7429 | 0.7670 | 0.9159 | | No log | 6.0 | 198 | 0.2899 | 0.8019 | 0.74 | 0.7697 | 0.9165 | | No log | 7.0 | 231 | 0.2925 | 0.7933 | 0.7457 | 0.7688 | 0.9147 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
nreimers/mmarco-mMiniLMv2-L6-H384-v1
4ceabf2d1e212e16da0d1fb94d5dea66a9a1cca0
2022-05-20T07:39:37.000Z
[ "pytorch", "xlm-roberta", "text-classification", "transformers" ]
text-classification
false
nreimers
null
nreimers/mmarco-mMiniLMv2-L6-H384-v1
13
null
transformers
10,303
Entry not found
sanjay-m1/active-to-passive
7e6ae970fa462f96f314c59789bdf711d2c69ed8
2022-05-21T18:23:14.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
sanjay-m1
null
sanjay-m1/active-to-passive
13
null
transformers
10,304
## This model belongs to the Styleformer project [Please refer to github page](https://github.com/PrithivirajDamodaran/Styleformer)
sanjay-m1/passive-to-active
671b6b548ce50b6f9d1589fc71a6a2ebe9c4ecd6
2022-05-21T18:32:14.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
sanjay-m1
null
sanjay-m1/passive-to-active
13
null
transformers
10,305
## This model belongs to the Styleformer project [Please refer to github page](https://github.com/PrithivirajDamodaran/Styleformer)
XeSaad/bert-finetuned-ner
bde0b24e33c2b90720cc0c6e6cef72b3e805e433
2022-05-24T12:48:15.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
XeSaad
null
XeSaad/bert-finetuned-ner
13
null
transformers
10,306
Entry not found
aakorolyova/outcome_significance_relation
5d8d320a6379a25b02f6b72c0adbc432349eed24
2022-05-25T19:13:54.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
aakorolyova
null
aakorolyova/outcome_significance_relation
13
null
transformers
10,307
<h1>Model description</h1> This is a fine-tuned BioBERT model for extracting the relation between clinical trial outcome and its significance level. The task is framed as sentence classification: - you first need to extract the entities - outcomes and significance levels. For outcomes, you could use the model https://huggingface.co/aakorolyova/reported_outcome_extraction. For significance levels, we have previously used a rule-based approach that worked well; we plan to make the code available in https://github.com/aakorolyova/DeSpin-2.0 soon. - then, for each pair of outcome and significance level, you mask the entity texts as @OUTCOME$ and @SIGNIFICANCE$ - you run the prediction on the sentence with the masked outcome-significance level pair to get the label (0 if the entities are unrelated, 1 if they are related). For example, the sentence "Intubation conditions (succinylcholine 8.3 ± 0.8; rocuronium 8.2 ± 0.9; P = 0.7) and failed first intubation attempts (succinylcholine 32/200; rocuronium 36/201; P = 1.0) did not differ between the groups." contains several outcomes ("Intubation conditions", "failed first intubation attempts") and significance levels ("P = 0.7", "P = 1.0"). Masked sentence for each pair and the expected label are as follows: ``` @OUTCOME$ (succinylcholine 8.3 ± 0.8; rocuronium 8.2 ± 0.9; @SIGNIFICANCE$) and failed first intubation attempts (succinylcholine 32/200; rocuronium 36/201; P = 1.0) did not differ between the groups. 1 @OUTCOME$ (succinylcholine 8.3 ± 0.8; rocuronium 8.2 ± 0.9; P = 0.7) and failed first intubation attempts (succinylcholine 32/200; rocuronium 36/201; @SIGNIFICANCE$) did not differ between the groups. 0 Intubation conditions (succinylcholine 8.3 ± 0.8; rocuronium 8.2 ± 0.9; P = 0.7) and @OUTCOME$ (succinylcholine 32/200; rocuronium 36/201; @SIGNIFICANCE$) did not differ between the groups. 1 Intubation conditions (succinylcholine 8.3 ± 0.8; rocuronium 8.2 ± 0.9; @SIGNIFICANCE$) and @OUTCOME$ (succinylcholine 32/200; rocuronium 36/201; P = 1.0) did not differ between the groups. 0 ``` This is the second version of the model; the original model development was reported in: Anna Koroleva, Patrick Paroubek. Extracting relations between outcome and significance level in Randomized Controlled Trials (RCTs) publications. Proceedings of ACL BioNLP workshop, 2019 https://aclanthology.org/W19-5038/ The original work was conducted within the scope of the Assisted authoring for avoiding inadequate claims in scientific reporting PhD project of the Methods for Research on Research (MiRoR, http://miror-ejd.eu/) program. Model creator: Anna Koroleva <h1>Intended uses & limitations</h1> The model was originally intended to be used as a part of spin (unjustified presentation of trial results) detection pipeline in articles reporting Randomised controlled trials (see Anna Koroleva, Sanjay Kamath, Patrick MM Bossuyt, Patrick Paroubek. DeSpin: a prototype system for detecting spin in biomedical publications. Proceedings of the 19th SIGBioMed Workshop on Biomedical Language Processing. https://aclanthology.org/2020.bionlp-1.5/). It can also be used separately, for predicting outcome - significance level relation. The main limitation is that the model was trained on a fairly small sample of data annotated by a single annotator. Annotating more data or involvig more annotators was not possible within the PhD project. <h1>How to use</h1> The model should be used with the BioBERT tokeniser. A sample code for getting model predictions is below: ``` import numpy as np from transformers import AutoModelForTokenClassification from transformers import AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained('dmis-lab/biobert-v1.1') model = AutoModelForSequenceClassification.from_pretrained("aakorolyova/outcome_significance_relation") text1 = "@OUTCOME$ (succinylcholine 8.3 ± 0.8; rocuronium 8.2 ± 0.9; @SIGNIFICANCE$) and failed first intubation attempts (succinylcholine 32/200; rocuronium 36/201; P = 1.0) did not differ between the groups." text2 = "@OUTCOME$ (succinylcholine 8.3 ± 0.8; rocuronium 8.2 ± 0.9; P = 0.7) and failed first intubation attempts (succinylcholine 32/200; rocuronium 36/201; @SIGNIFICANCE$) did not differ between the groups." tokenized_input1 = tokenizer(text1, padding="max_length", truncation=True, return_tensors='pt') output1 = model(**tokenized_input1)['logits'] output1 = np.argmax(output1.detach().numpy(), axis=1) print(output1) tokenized_input2 = tokenizer(text2, padding="max_length", truncation=True, return_tensors='pt') output2 = model(**tokenized_input2)['logits'] output2 = np.argmax(output2.detach().numpy(), axis=1) print(output2) ``` Some more useful functions can be found in or Github repository: https://github.com/aakorolyova/DeSpin-2.0 <h1>Training data</h1> Training data can be found in https://github.com/aakorolyova/DeSpin-2.0/tree/main/data/Outcome_significance_relation <h1>Training procedure</h1> The model was fine-tuned using Huggingface Trainer API. Training scripts can be found in https://github.com/aakorolyova/DeSpin-2.0 <h1>Evaluation</h1> Precision: 94.96% Recall: 96.35% F1: 95.65%
abdulmatinomotoso/emotion_detection_finetuned_distilbert
7949bab8e24407203c510a9a456db75cea57e9f0
2022-05-25T15:55:04.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
abdulmatinomotoso
null
abdulmatinomotoso/emotion_detection_finetuned_distilbert
13
null
transformers
10,308
Entry not found
huggingtweets/rumi_quote
458ad09c67505eaded84e02e9b1198638245ba4d
2022-06-20T19:20:04.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/rumi_quote
13
null
transformers
10,309
--- language: en thumbnail: http://www.huggingtweets.com/rumi_quote/1655752799916/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/477092904758808577/3RrEtx04_400x400.jpeg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Rumi</div> <div style="text-align: center; font-size: 14px;">@rumi_quote</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Rumi. | Data | Rumi | | --- | --- | | Tweets downloaded | 3197 | | Retweets | 29 | | Short tweets | 24 | | Tweets kept | 3144 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1rvs1ymy/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @rumi_quote's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/cd1jhcf5) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/cd1jhcf5/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/rumi_quote') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
kktoto/ty_punctuator
4003fe5acfb6dbaa0457c02e0a777cce8e68e400
2022-05-28T07:42:19.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
token-classification
false
kktoto
null
kktoto/ty_punctuator
13
null
transformers
10,310
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: ty_punctuator results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ty_punctuator This model is a fine-tuned version of [kktoto/kt_punc](https://huggingface.co/kktoto/kt_punc) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0937 - Precision: 0.7436 - Recall: 0.7694 - F1: 0.7563 - Accuracy: 0.9656 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0967 | 1.0 | 5561 | 0.0937 | 0.7436 | 0.7694 | 0.7563 | 0.9656 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
tbosse/bert-base-german-cased-noisy-pretrain-fine-tuned_v2
1f93814356cd35b296febea4dc8897d575002943
2022-05-29T23:53:47.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
tbosse
null
tbosse/bert-base-german-cased-noisy-pretrain-fine-tuned_v2
13
null
transformers
10,311
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-german-cased-noisy-pretrain-fine-tuned_v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-german-cased-noisy-pretrain-fine-tuned_v2 This model is a fine-tuned version of [tbosse/bert-base-german-cased-finetuned-subj_preTrained_with_noisyData_v2](https://huggingface.co/tbosse/bert-base-german-cased-finetuned-subj_preTrained_with_noisyData_v2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2872 - Precision: 0.7870 - Recall: 0.76 - F1: 0.7733 - Accuracy: 0.9159 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 33 | 0.3105 | 0.7731 | 0.5743 | 0.6590 | 0.8813 | | No log | 2.0 | 66 | 0.2632 | 0.7588 | 0.7371 | 0.7478 | 0.9055 | | No log | 3.0 | 99 | 0.2517 | 0.7630 | 0.7543 | 0.7586 | 0.9096 | | No log | 4.0 | 132 | 0.2590 | 0.8145 | 0.74 | 0.7754 | 0.9171 | | No log | 5.0 | 165 | 0.2665 | 0.7939 | 0.7486 | 0.7706 | 0.9165 | | No log | 6.0 | 198 | 0.2854 | 0.7951 | 0.7429 | 0.7681 | 0.9147 | | No log | 7.0 | 231 | 0.2872 | 0.7870 | 0.76 | 0.7733 | 0.9159 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
jkhan447/sarcasm-detection-Bert-base-uncased
0a9fcd1015b94bd3e9d84bdf0c902635b7db08c5
2022-05-30T07:48:23.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
jkhan447
null
jkhan447/sarcasm-detection-Bert-base-uncased
13
null
transformers
10,312
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: sarcasm-detection-Bert-base-uncased results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sarcasm-detection-Bert-base-uncased This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.0623 - Accuracy: 0.7127 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
eugenecamus/distilbert-imdb-demo
82392d47b4b8fc48fcfcd192ca0a86fb65c31e3b
2022-06-02T05:17:58.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
eugenecamus
null
eugenecamus/distilbert-imdb-demo
13
null
transformers
10,313
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy model-index: - name: distilbert-imdb-demo results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.928 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-imdb-demo This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.4328 - Accuracy: 0.928 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 1337 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.3459 | 1.0 | 2657 | 0.2362 | 0.9091 | | 0.1612 | 2.0 | 5314 | 0.2668 | 0.9248 | | 0.0186 | 3.0 | 7971 | 0.3274 | 0.9323 | | 0.1005 | 4.0 | 10628 | 0.3978 | 0.9277 | | 0.0006 | 5.0 | 13285 | 0.4328 | 0.928 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu102 - Datasets 2.2.1 - Tokenizers 0.12.1
osanseviero/my-helsinki-duplicate
11e799d173fdca909d0bf1d3613c140552737ad5
2022-06-01T15:58:23.000Z
[ "pytorch", "rust", "marian", "text2text-generation", "zh", "en", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
osanseviero
null
osanseviero/my-helsinki-duplicate
13
null
transformers
10,314
--- language: - zh - en tags: - translation license: apache-2.0 --- ### zho-eng * source group: Chinese * target group: English * OPUS readme: [zho-eng](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/zho-eng/README.md) * model: transformer * source language(s): cjy_Hans cjy_Hant cmn cmn_Hans cmn_Hant gan lzh lzh_Hans nan wuu yue yue_Hans yue_Hant * target language(s): eng * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-07-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/zho-eng/opus-2020-07-17.zip) * test set translations: [opus-2020-07-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zho-eng/opus-2020-07-17.test.txt) * test set scores: [opus-2020-07-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zho-eng/opus-2020-07-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.zho.eng | 36.1 | 0.548 | ### System Info: - hf_name: zho-eng - source_languages: zho - target_languages: eng - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/zho-eng/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['zh', 'en'] - src_constituents: {'cmn_Hans', 'nan', 'nan_Hani', 'gan', 'yue', 'cmn_Kana', 'yue_Hani', 'wuu_Bopo', 'cmn_Latn', 'yue_Hira', 'cmn_Hani', 'cjy_Hans', 'cmn', 'lzh_Hang', 'lzh_Hira', 'cmn_Hant', 'lzh_Bopo', 'zho', 'zho_Hans', 'zho_Hant', 'lzh_Hani', 'yue_Hang', 'wuu', 'yue_Kana', 'wuu_Latn', 'yue_Bopo', 'cjy_Hant', 'yue_Hans', 'lzh', 'cmn_Hira', 'lzh_Yiii', 'lzh_Hans', 'cmn_Bopo', 'cmn_Hang', 'hak_Hani', 'cmn_Yiii', 'yue_Hant', 'lzh_Kana', 'wuu_Hani'} - tgt_constituents: {'eng'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/zho-eng/opus-2020-07-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/zho-eng/opus-2020-07-17.test.txt - src_alpha3: zho - tgt_alpha3: eng - short_pair: zh-en - chrF2_score: 0.5479999999999999 - bleu: 36.1 - brevity_penalty: 0.948 - ref_len: 82826.0 - src_name: Chinese - tgt_name: English - train_date: 2020-07-17 - src_alpha2: zh - tgt_alpha2: en - prefer_old: False - long_pair: zho-eng - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
dsghrg/bert-finetuned-ner
5bc7111cd25a9f929a9385f6068134b748d7db5f
2022-06-02T08:18:16.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
dsghrg
null
dsghrg/bert-finetuned-ner
13
null
transformers
10,315
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.933895223929929 - name: Recall type: recall value: 0.9510265903736116 - name: F1 type: f1 value: 0.9423830567831235 - name: Accuracy type: accuracy value: 0.9863572143403779 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0646 - Precision: 0.9339 - Recall: 0.9510 - F1: 0.9424 - Accuracy: 0.9864 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0864 | 1.0 | 1756 | 0.0659 | 0.9161 | 0.9372 | 0.9265 | 0.9830 | | 0.0403 | 2.0 | 3512 | 0.0616 | 0.9271 | 0.9483 | 0.9376 | 0.9855 | | 0.0199 | 3.0 | 5268 | 0.0646 | 0.9339 | 0.9510 | 0.9424 | 0.9864 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
EventMiner/bigbird-roberta-large-en-doc
805035c55952661cee2aec2c7bf2c235e7a56c4d
2022-06-19T15:24:06.000Z
[ "pytorch", "big_bird", "text-classification", "en", "transformers", "news event detection", "document level", "EventMiner", "license:apache-2.0" ]
text-classification
false
EventMiner
null
EventMiner/bigbird-roberta-large-en-doc
13
null
transformers
10,316
--- language: en tags: - news event detection - document level - EventMiner license: apache-2.0 --- # EventMiner EventMiner is designed for multilingual news event detection. The goal of news event detection is the automatic extraction of event details from news articles. This event extraction can be done at different levels: document, sentence and word ranging from coarse-granular information to fine-granular information. We submitted the best results based on EventMiner to [CASE 2021 shared task 1: *Multilingual Protest News Detection*](https://competitions.codalab.org/competitions/31247). Our approach won first place in English for the document level task while ranking within the top four solutions for other languages: Portuguese, Spanish, and Hindi. *EventMiner/bigbird-roberta-large-en-doc* is a bigbird-roberta-large sequence classification model fine-tuned on English document level data of the multilingual version of GLOCON gold standard dataset released with [CASE 2021](https://aclanthology.org/2021.case-1.11/). <br> Labels: - Label_0: News article does not contain information about a past or ongoing socio-political event - Label_1: News article contains information about a past or ongoing socio-political event More details about the training procedure are available with our [codebase](https://github.com/HHansi/EventMiner). # How to Use ## Load Model ```python from transformers import BigBirdTokenizer, BigBirdForSequenceClassification model_name = 'EventMiner/bigbird-roberta-large-en-doc' tokenizer = BigBirdTokenizer.from_pretrained(model_name) model = BigBirdForSequenceClassification.from_pretrained(model_name) ``` ## Classification ```python from transformers import pipeline classifier = pipeline("text-classification", model=model, tokenizer=tokenizer) classifier("Police arrested five more student leaders on Monday when implementing the strike call given by MSU students union as a mark of protest against the decision to introduce payment seats in first-year commerce programme.") ``` # Citation If you use this model, please consider citing the following paper. ``` @inproceedings{hettiarachchi-etal-2021-daai, title = "{DAAI} at {CASE} 2021 Task 1: Transformer-based Multilingual Socio-political and Crisis Event Detection", author = "Hettiarachchi, Hansi and Adedoyin-Olowe, Mariam and Bhogal, Jagdev and Gaber, Mohamed Medhat", booktitle = "Proceedings of the 4th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE 2021)", month = aug, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.case-1.16", doi = "10.18653/v1/2021.case-1.16", pages = "120--130", } ```
Classroom-workshop/assignment1-francesco
70430106f9e86432f099371956a1140331046d86
2022-06-02T15:25:05.000Z
[ "pytorch", "tf", "speech_to_text", "automatic-speech-recognition", "en", "dataset:librispeech_asr", "arxiv:2010.05171", "arxiv:1904.08779", "transformers", "speech", "audio", "hf-asr-leaderboard", "license:mit", "model-index" ]
automatic-speech-recognition
false
Classroom-workshop
null
Classroom-workshop/assignment1-francesco
13
null
transformers
10,317
--- language: en datasets: - librispeech_asr tags: - speech - audio - automatic-speech-recognition - hf-asr-leaderboard license: mit pipeline_tag: automatic-speech-recognition widget: - example_title: Librispeech sample 1 src: https://cdn-media.huggingface.co/speech_samples/sample1.flac - example_title: Librispeech sample 2 src: https://cdn-media.huggingface.co/speech_samples/sample2.flac model-index: - name: s2t-small-librispeech-asr results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: LibriSpeech (clean) type: librispeech_asr config: clean split: test args: language: en metrics: - name: Test WER type: wer value: 4.3 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: LibriSpeech (other) type: librispeech_asr config: other split: test args: language: en metrics: - name: Test WER type: wer value: 9.0 --- # S2T-SMALL-LIBRISPEECH-ASR `s2t-small-librispeech-asr` is a Speech to Text Transformer (S2T) model trained for automatic speech recognition (ASR). The S2T model was proposed in [this paper](https://arxiv.org/abs/2010.05171) and released in [this repository](https://github.com/pytorch/fairseq/tree/master/examples/speech_to_text) ## Model description S2T is an end-to-end sequence-to-sequence transformer model. It is trained with standard autoregressive cross-entropy loss and generates the transcripts autoregressively. ## Intended uses & limitations This model can be used for end-to-end speech recognition (ASR). See the [model hub](https://huggingface.co/models?filter=speech_to_text) to look for other S2T checkpoints. ### How to use As this a standard sequence to sequence transformer model, you can use the `generate` method to generate the transcripts by passing the speech features to the model. *Note: The `Speech2TextProcessor` object uses [torchaudio](https://github.com/pytorch/audio) to extract the filter bank features. Make sure to install the `torchaudio` package before running this example.* *Note: The feature extractor depends on [torchaudio](https://github.com/pytorch/audio) and the tokenizer depends on [sentencepiece](https://github.com/google/sentencepiece) so be sure to install those packages before running the examples.* You could either install those as extra speech dependancies with `pip install transformers"[speech, sentencepiece]"` or install the packages seperatly with `pip install torchaudio sentencepiece`. ```python import torch from transformers import Speech2TextProcessor, Speech2TextForConditionalGeneration from datasets import load_dataset model = Speech2TextForConditionalGeneration.from_pretrained("facebook/s2t-small-librispeech-asr") processor = Speech2TextProcessor.from_pretrained("facebook/s2t-small-librispeech-asr") ds = load_dataset( "patrickvonplaten/librispeech_asr_dummy", "clean", split="validation" ) input_features = processor( ds[0]["audio"]["array"], sampling_rate=16_000, return_tensors="pt" ).input_features # Batch size 1 generated_ids = model.generate(input_ids=input_features) transcription = processor.batch_decode(generated_ids) ``` #### Evaluation on LibriSpeech Test The following script shows how to evaluate this model on the [LibriSpeech](https://huggingface.co/datasets/librispeech_asr) *"clean"* and *"other"* test dataset. ```python from datasets import load_dataset, load_metric from transformers import Speech2TextForConditionalGeneration, Speech2TextProcessor librispeech_eval = load_dataset("librispeech_asr", "clean", split="test") # change to "other" for other test dataset wer = load_metric("wer") model = Speech2TextForConditionalGeneration.from_pretrained("facebook/s2t-small-librispeech-asr").to("cuda") processor = Speech2TextProcessor.from_pretrained("facebook/s2t-small-librispeech-asr", do_upper_case=True) librispeech_eval = librispeech_eval.map(map_to_array) def map_to_pred(batch): features = processor(batch["audio"]["array"], sampling_rate=16000, padding=True, return_tensors="pt") input_features = features.input_features.to("cuda") attention_mask = features.attention_mask.to("cuda") gen_tokens = model.generate(input_ids=input_features, attention_mask=attention_mask) batch["transcription"] = processor.batch_decode(gen_tokens, skip_special_tokens=True) return batch result = librispeech_eval.map(map_to_pred, batched=True, batch_size=8, remove_columns=["speech"]) print("WER:", wer(predictions=result["transcription"], references=result["text"])) ``` *Result (WER)*: | "clean" | "other" | |:-------:|:-------:| | 4.3 | 9.0 | ## Training data The S2T-SMALL-LIBRISPEECH-ASR is trained on [LibriSpeech ASR Corpus](https://www.openslr.org/12), a dataset consisting of approximately 1000 hours of 16kHz read English speech. ## Training procedure ### Preprocessing The speech data is pre-processed by extracting Kaldi-compliant 80-channel log mel-filter bank features automatically from WAV/FLAC audio files via PyKaldi or torchaudio. Further utterance-level CMVN (cepstral mean and variance normalization) is applied to each example. The texts are lowercased and tokenized using SentencePiece and a vocabulary size of 10,000. ### Training The model is trained with standard autoregressive cross-entropy loss and using [SpecAugment](https://arxiv.org/abs/1904.08779). The encoder receives speech features, and the decoder generates the transcripts autoregressively. ### BibTeX entry and citation info ```bibtex @inproceedings{wang2020fairseqs2t, title = {fairseq S2T: Fast Speech-to-Text Modeling with fairseq}, author = {Changhan Wang and Yun Tang and Xutai Ma and Anne Wu and Dmytro Okhonko and Juan Pino}, booktitle = {Proceedings of the 2020 Conference of the Asian Chapter of the Association for Computational Linguistics (AACL): System Demonstrations}, year = {2020}, } ```
OneFly/distilbert-base-uncased-finetuned-emotion
6024e4b827ca2df6b042d0fd89325e33b760bc6c
2022-06-02T16:28:55.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
OneFly
null
OneFly/distilbert-base-uncased-finetuned-emotion
13
null
transformers
10,318
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.928 - name: F1 type: f1 value: 0.9279829352545553 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2108 - Accuracy: 0.928 - F1: 0.9280 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8434 | 1.0 | 250 | 0.3075 | 0.9085 | 0.9058 | | 0.2472 | 2.0 | 500 | 0.2108 | 0.928 | 0.9280 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
rbawden/CCASS-auto-titrages-base
e2bd0cc6a7be49ee2806c3594752d2233645c4ff
2022-07-05T21:42:01.000Z
[ "pytorch", "fsmt", "fr", "transformers", "license:cc-by-4.0" ]
null
false
rbawden
null
rbawden/CCASS-auto-titrages-base
13
null
transformers
10,319
--- language: fr license: cc-by-4.0 --- # Cour de Cassation automatic *titrage* prediction model Model for the automatic prediction of *titrages* (keyword sequence) from *sommaires* (synthesis of legal cases). The models are described in [this paper](https://hal.inria.fr/hal-03663110/file/LREC_2022___CCass_Inria-camera-ready.pdf). If you use this model, please cite our research paper (see [below](#cite)). ## Model description The model is a transformer-base model trained on parallel data (sommaires-titrages) provided by the Cour de Cassation. The model was intially trained using the Fairseq toolkit, converted to HuggingFace and then fine-tuned on the original training data to smooth out minor differences that arose during the conversion process. Tokenisation is performed using a SentencePiece model, the BPE strategy and a vocab size of 8000. ### Intended uses & limitations This model is to be used to produce *titrages* for those *sommaires* that do not have them or to complement existing (manually) created *titrages*. ### How to use Model input is the *matière* (matter) concatenated to the text from the sommaire separated by the token `<t>`. Each example should be on a single line. E.g. `bail <t> La recommendation du tribunal selon l'article...` (fictive example for illustrative purposes. The maximum input length of the model is 1024 input tokens (after tokenisation). ``` from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokeniser = AutoTokenizer.from_pretrained("rbawden/CCASS-auto-titrages-base") model = AutoModelForSeq2SeqLM.from_pretrained("rbawden/CCASS-auto-titrages-base") matiere = "matter" sommaire = "full text from the sommaire on a single line" inputs = tokeniser([matiere + " <t> " + sommaire], return_tensors='pt') outputs = model.generate(inputs['input_ids']) tokeniser.batch_decode(outputs, skip_special_tokens=True, clean_up_tokenisation_spaces=True) ``` ### Limitations and bias The models' predictions should not be taken as ground-truth *titrages* and should always be indicated as being automatically generated. They were designed not to be used as such, but to improve search coverage for improved similarity prediction between different cases (the predicted *titrages* being used to predict the similarity). The model is not constrained to predict *titres* that have previously been seen, so this should be taken into account in the deployment of this model as a *titrage* tool in order to avoid the multiplication of different *titres*. ## Training data Training data is provided by the Cour de Cassation (the original source being Jurinet data, but with pseudo-anonymisation applied). For training, we use a total of 159,836 parallel examples (each example is a sommaire-titrage pair). Our development data consists of 1,833 held-out examples. ## Training procedure ### Preprocessing We use SentencePiece, the BPE strategy and a joint vocabulary of 8000 tokens. This model was converted into the HuggingFace format and integrates a number of normalisation processes (e.g. removing double doubles, apostrophes and quotes, normalisation of different accent formats, lowercasing). ### Training The model was initialised trained using Fairseq until convergence on the development set (according to our customised weighted accuracy measure - please see [the paper](https://hal.inria.fr/hal-03663110/file/LREC_2022___CCass_Inria-camera-ready.pdf) for more details). The model was then converted to HuggingFace and training continued to smooth out incoherences introduced during the conversion procedure (incompatibilities in the way the SentencePiece and NMT vocabularies are defined, linked to HuggingFace vocabularies being necessarily the same as the tokeniser vocabulary, a constraint that is not imposed in Fairseq). ### Evaluation results Full results for the initial Fairseq models can be found in [the paper](https://hal.inria.fr/hal-03663110/file/LREC_2022___CCass_Inria-camera-ready.pdf). Results on this converted model coming soon! ## BibTex entry and citation info <a name="cite"></a> If you use this work, please cite the following article: Thibault Charmet, Inès Cherichi, Matthieu Allain, Urszula Czerwinska, Amaury Fouret, Benoît Sagot and Rachel Bawden, 2022. [**Complex Labelling and Similarity Prediction in Legal Texts: Automatic Analysis of France’s Court of Cassation Rulings**](http://www.lrec-conf.org/proceedings/lrec2022/pdf/2022.lrec-1.509.pdf). In Proceedings of the 13th Language Resources and Evaluation Conference, Marseille, France.] ``` @inproceedings{charmet-et-al-2022-complex, tite = {Complex Labelling and Similarity Prediction in Legal Texts: Automatic Analysis of France’s Court of Cassation Rulings}, author = {Charmet, Thibault and Cherichi, Inès and Allain, Matthieu and Czerwinska, Urszula and Fouret, Amaury, and Sagot, Benoît and Bawden, Rachel}, booktitle = {Proceedings of the 13th Language Resources and Evaluation Conference}, year = {2022}, address = {Marseille, France}, pages = {4754--4766}, url = {http://www.lrec-conf.org/proceedings/lrec2022/pdf/2022.lrec-1.509.pdf} ```
nbroad/splinter-base-squad2
128ad722d483ac3e436ad5e42ff8dddd31100a98
2022-06-04T03:47:06.000Z
[ "pytorch", "tensorboard", "splinter", "question-answering", "dataset:squad_v2", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
nbroad
null
nbroad/splinter-base-squad2
13
null
transformers
10,320
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: splinter-base-squad2_3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # splinter-base-squad2_3 This model is a fine-tuned version of [tau/splinter-base-qass](https://huggingface.co/tau/splinter-base-qass) on the squad_v2 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0a0+17540c5 - Datasets 2.2.2 - Tokenizers 0.12.1
Anery/bert-finetuned-ner
5b1cc1b214f040f781613ee945040026474d1eab
2022-06-07T22:48:14.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
Anery
null
Anery/bert-finetuned-ner
13
null
transformers
10,321
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0244 - Precision: 0.7368 - Recall: 0.4 - F1: 0.5185 - Accuracy: 0.9919 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 14 | 0.0598 | 0.0 | 0.0 | 0.0 | 0.9870 | | No log | 2.0 | 28 | 0.0357 | 0.0 | 0.0 | 0.0 | 0.9894 | | No log | 3.0 | 42 | 0.0256 | 0.75 | 0.2571 | 0.3830 | 0.9910 | | No log | 4.0 | 56 | 0.0244 | 0.7368 | 0.4 | 0.5185 | 0.9919 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
amehta633/cifar-10-vgg-pretrained
2e54558f39d76c7dada2c566610b4e31cbad47ae
2022-06-08T04:01:09.000Z
[ "transformers", "image-classification", "pytorch" ]
image-classification
false
amehta633
null
amehta633/cifar-10-vgg-pretrained
13
null
transformers
10,322
--- tags: - image-classification - pytorch ---
carblacac/twitter-sentiment-analysis
639782f8a57a5bbc49d97e43940f601dff006fc3
2022-06-08T22:40:26.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:new_dataset", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
carblacac
null
carblacac/twitter-sentiment-analysis
13
null
transformers
10,323
--- license: apache-2.0 tags: - generated_from_trainer datasets: - new_dataset metrics: - accuracy model-index: - name: sentiment-analysis-twitter results: - task: name: Text Classification type: text-classification dataset: name: new_dataset type: new_dataset args: default metrics: - name: Accuracy type: accuracy value: 0.7965 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sentiment-analysis-twitter This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the new_dataset dataset. It achieves the following results on the evaluation set: - Loss: 0.4579 - Accuracy: 0.7965 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5315 | 1.0 | 157 | 0.4517 | 0.788 | | 0.388 | 2.0 | 314 | 0.4416 | 0.8 | | 0.3307 | 3.0 | 471 | 0.4579 | 0.7965 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu102 - Datasets 2.1.0 - Tokenizers 0.12.1
Marvin67/distil_covid
617c3401d893d068725fd938396e64a0f062687b
2022-06-09T00:44:16.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "license:other" ]
text-classification
false
Marvin67
null
Marvin67/distil_covid
13
null
transformers
10,324
--- license: other ---
ghadeermobasher/WLT-SciBERT-NCBI
88d06551985d3b4a1c7c08b5fb64f40b3120a8c6
2022-06-09T11:43:47.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/WLT-SciBERT-NCBI
13
null
transformers
10,325
Entry not found
aspis/swin-finetuned-food101
aad5a07687f7372495da39804ee4c21a9c374fc6
2022-06-28T11:02:36.000Z
[ "pytorch", "tensorboard", "swin", "image-classification", "dataset:food101", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
image-classification
false
aspis
null
aspis/swin-finetuned-food101
13
null
transformers
10,326
--- license: apache-2.0 tags: - generated_from_trainer datasets: - food101 metrics: - accuracy model-index: - name: swin-finetuned-food101 results: - task: name: Image Classification type: image-classification dataset: name: food101 type: food101 args: default metrics: - name: Accuracy type: accuracy value: 0.9210297029702971 - task: type: image-classification name: Image Classification dataset: name: food101 type: food101 config: default split: validation metrics: - name: Accuracy type: accuracy value: 0.9135841584158416 verified: true - name: Precision Macro type: precision value: 0.9151645786633058 verified: true - name: Precision Micro type: precision value: 0.9135841584158416 verified: true - name: Precision Weighted type: precision value: 0.915164578663306 verified: true - name: Recall Macro type: recall value: 0.9135841584158414 verified: true - name: Recall Micro type: recall value: 0.9135841584158416 verified: true - name: Recall Weighted type: recall value: 0.9135841584158416 verified: true - name: F1 Macro type: f1 value: 0.9138785016966742 verified: true - name: F1 Micro type: f1 value: 0.9135841584158415 verified: true - name: F1 Weighted type: f1 value: 0.9138785016966743 verified: true - name: loss type: loss value: 0.30761435627937317 verified: true --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-finetuned-food101 This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224](https://huggingface.co/microsoft/swin-base-patch4-window7-224) on the food101 dataset. It achieves the following results on the evaluation set: - Loss: 0.2772 - Accuracy: 0.9210 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5077 | 1.0 | 1183 | 0.3851 | 0.8893 | | 0.3523 | 2.0 | 2366 | 0.3124 | 0.9088 | | 0.1158 | 3.0 | 3549 | 0.2772 | 0.9210 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
biu-nlp/lingmess-coref
ea4e2faa2df18efbcdfeebd70865a72cbb5fee1e
2022-06-29T11:48:40.000Z
[ "pytorch", "longformer", "en", "arxiv:2205.12644", "transformers", "lingmess-coref-v1", "license:mit" ]
null
false
biu-nlp
null
biu-nlp/lingmess-coref
13
null
transformers
10,327
--- language: en tags: lingmess-coref-v1 license: mit --- ## LingMess: Linguistically Informed Multi Expert Scorers for Coreference Resolution [LingMess](https://arxiv.org/abs/2205.12644) is a linguistically motivated categorization of mention-pairs into 6 types of coreference decisions and learn a dedicated trainable scoring function for each category. This significantly improves the accuracy of the pairwise scorer as well as of the overall coreference performance on the English Ontonotes coreference corpus. Please check the [official repository](https://github.com/shon-otmazgin/lingmess-coref) for more details and updates. #### Training on OntoNotes We present the test results on OntoNotes 5.0 dataset. | Model | Avg. F1 | |---------------------------------|---------| | SpanBERT-large + e2e | 79.6 | | Longformer-large + s2e | 80.3 | | **Longformer-large + LingMess** | 81.4 | ### Citation If you find LingMess useful for your work, please cite the following paper: ``` latex @misc{https://doi.org/10.48550/arxiv.2205.12644, doi = {10.48550/ARXIV.2205.12644}, url = {https://arxiv.org/abs/2205.12644}, author = {Otmazgin, Shon and Cattan, Arie and Goldberg, Yoav}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {LingMess: Linguistically Informed Multi Expert Scorers for Coreference Resolution}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
speechbrain/asr-wav2vec2-dvoice-darija
ed08fb00905c304d6bc57a8a495120c5e25eb3b9
2022-06-10T00:58:04.000Z
[ "wav2vec2", "feature-extraction", "dar", "dataset:Dvoice", "speechbrain", "CTC", "pytorch", "Transformer", "license:apache-2.0", "automatic-speech-recognition" ]
automatic-speech-recognition
false
speechbrain
null
speechbrain/asr-wav2vec2-dvoice-darija
13
null
speechbrain
10,328
--- language: "dar" thumbnail: pipeline_tag: automatic-speech-recognition tags: - CTC - pytorch - speechbrain - Transformer license: "apache-2.0" datasets: - Dvoice metrics: - wer - cer --- <iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe> <br/><br/> # wav2vec 2.0 with CTC/Attention trained on DVoice Darija (No LM) This repository provides all the necessary tools to perform automatic speech recognition from an end-to-end system pretrained on a [DVoice](https://zenodo.org/record/6342622) Darija dataset within SpeechBrain. For a better experience, we encourage you to learn more about [SpeechBrain](https://speechbrain.github.io). | DVoice Release | Val. CER | Val. WER | Test CER | Test WER | |:-------------:|:---------------------------:| -----:| -----:| -----:| | v2.0 | 5.51 | 18.46 | 5.85 | 18.28 | # Pipeline description This ASR system is composed of 2 different but linked blocks: - Tokenizer (unigram) that transforms words into subword units and is trained with the train transcriptions. - Acoustic model (wav2vec2.0 + CTC). A pretrained wav2vec 2.0 model ([facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53)) is combined with two DNN layers and finetuned on the Darija dataset. The obtained final acoustic representation is given to the CTC greedy decoder. The system is trained with recordings sampled at 16kHz (single channel). The code will automatically normalize your audio (i.e., resampling + mono channel selection) when calling *transcribe_file* if needed. # Install SpeechBrain First of all, please install transformers and SpeechBrain with the following command: ``` pip install speechbrain transformers ``` Please notice that we encourage you to read the SpeechBrain tutorials and learn more about [SpeechBrain](https://speechbrain.github.io). # Transcribing your own audio files (in Darija) ```python from speechbrain.pretrained import EncoderASR asr_model = EncoderASR.from_hparams(source="speechbrain/asr-wav2vec2-dvoice-darija", savedir="pretrained_models/asr-wav2vec2-dvoice-darija") asr_model.transcribe_file('speechbrain/asr-wav2vec2-dvoice-darija/example_darija.wav') ``` # Inference on GPU To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method. # Training The model was trained with SpeechBrain. To train it from scratch follow these steps: 1. Clone SpeechBrain: ```bash git clone https://github.com/speechbrain/speechbrain/ ``` 2. Install it: ```bash cd speechbrain pip install -r requirements.txt pip install -e . ``` 3. Run Training: ```bash cd recipes/DVoice/ASR/CTC python train_with_wav2vec2.py hparams/train_dar_with_wav2vec.yaml --data_folder=/localscratch/darija/ ``` You can find our training results (models, logs, etc) [here](https://drive.google.com/drive/folders/1vNT7RjRuELs7pumBHmfYsrOp9m46D0ym?usp=sharing). # Limitations The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets. # Referencing SpeechBrain ``` @misc{SB2021, author = {Ravanelli, Mirco and Parcollet, Titouan and Rouhe, Aku and Plantinga, Peter and Rastorgueva, Elena and Lugosch, Loren and Dawalatabad, Nauman and Ju-Chieh, Chou and Heba, Abdel and Grondin, Francois and Aris, William and Liao, Chien-Feng and Cornell, Samuele and Yeh, Sung-Lin and Na, Hwidong and Gao, Yan and Fu, Szu-Wei and Subakan, Cem and De Mori, Renato and Bengio, Yoshua }, title = {SpeechBrain}, year = {2021}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\\\\url{https://github.com/speechbrain/speechbrain}}, } ``` # About DVoice DVoice is a community initiative that aims to provide African low resources languages with data and models to facilitate their use of voice technologies. The lack of data on these languages makes it necessary to collect data using methods that are specific to each one. Two different approaches are currently used: the DVoice platforms ([https://dvoice.ma](https://dvoice.ma) and [https://dvoice.sn](https://dvoice.sn)), which are based on Mozilla Common Voice, for collecting authentic recordings from the community, and transfer learning techniques for automatically labeling recordings that are retrieved from social media. The DVoice platform currently manages 7 languages including Darija (Moroccan Arabic dialect) whose dataset appears on this version, Wolof, Mandingo, Serere, Pular, Diola, and Soninke. For this project, AIOX Labs and the SI2M Laboratory are joining forces to build the future of technologies together. # About AIOX Labs Based in Rabat, London, and Paris, AIOX-Labs mobilizes artificial intelligence technologies to meet the business needs and data projects of companies. - He is at the service of the growth of groups, the optimization of processes, or the improvement of the customer experience. - AIOX-Labs is multi-sector, from fintech to industry, including retail and consumer goods. - Business-ready data products with a solid algorithmic base and adaptability for the specific needs of each client. - A complementary team made up of doctors in AI and business experts with a solid scientific base and international publications. Website: [https://www.aiox-labs.com/](https://www.aiox-labs.com/) # SI2M Laboratory The Information Systems, Intelligent Systems, and Mathematical Modeling Research Laboratory (SI2M) is an academic research laboratory of the National Institute of Statistics and Applied Economics (INSEA). The research areas of the laboratories are Information Systems, Intelligent Systems, Artificial Intelligence, Decision Support, Network, and System Security, and Mathematical Modelling. Website: [SI2M Laboratory](https://insea.ac.ma/index.php/pole-recherche/equipe-de-recherche/150-laboratoire-de-recherche-en-systemes-d-information-systemes-intelligents-et-modelisation-mathematique) # About SpeechBrain SpeechBrain is an open-source and all-in-one speech toolkit. It is designed to be simple, extremely flexible, and user-friendly. Competitive or state-of-the-art performance is obtained in various domains. Website: https://speechbrain.github.io/ GitHub: https://github.com/speechbrain/speechbrain # Referencing SpeechBrain ``` @misc{SB2021, author = {Ravanelli, Mirco and Parcollet, Titouan and Rouhe, Aku and Plantinga, Peter and Rastorgueva, Elena and Lugosch, Loren and Dawalatabad, Nauman and Ju-Chieh, Chou and Heba, Abdel and Grondin, Francois and Aris, William and Liao, Chien-Feng and Cornell, Samuele and Yeh, Sung-Lin and Na, Hwidong and Gao, Yan and Fu, Szu-Wei and Subakan, Cem and De Mori, Renato and Bengio, Yoshua }, title = {SpeechBrain}, year = {2021}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\\\\url{https://github.com/speechbrain/speechbrain}}, } ``` # Acknowledgements This research was supported through computational resources of HPC-MARWAN (www.marwan.ma/hpc) provided by CNRST, Rabat, Morocco. We deeply thank this institution.
zuu/automatic-speech-recognition
c5bd5e6c2ea9c24a25ad90d8aa623313c28c2bf1
2022-06-11T09:41:25.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
zuu
null
zuu/automatic-speech-recognition
13
null
transformers
10,329
Entry not found
carblacac/bert-finetuned-ner
4a874f8e71cd529fffc8fb5fec424ae7fe7f47f6
2022-06-14T10:07:12.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
carblacac
null
carblacac/bert-finetuned-ner
13
null
transformers
10,330
Entry not found
ghadeermobasher/BC5CDR-Chem-Modified-PubMedBERT-384
976124862f8e127089c25d1f99b182ad76481690
2022-06-15T12:09:25.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/BC5CDR-Chem-Modified-PubMedBERT-384
13
null
transformers
10,331
Entry not found
ghadeermobasher/BC4CHEMD-Chem-Modified-PubMedBERT-384
a30e30d8ba963e0abe2aea4979652ab00a258ab0
2022-06-14T05:57:56.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/BC4CHEMD-Chem-Modified-PubMedBERT-384
13
null
transformers
10,332
Entry not found
ghadeermobasher/BC4CHEMD-Chem-Modified-BlueBERT-512
0dee08c36175ff1592b3924cca929b07551452f6
2022-06-14T09:35:49.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/BC4CHEMD-Chem-Modified-BlueBERT-512
13
null
transformers
10,333
Entry not found
ghadeermobasher/BC4CHEMD-Chem-Original-PubMedBERT-384
a30a8fe5990252f86a965e8b950da568903a59a0
2022-06-14T06:33:40.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/BC4CHEMD-Chem-Original-PubMedBERT-384
13
null
transformers
10,334
Entry not found
ghadeermobasher/BC4CHEMD-Chem-Original-BioBERT-512
3c52d62c633fa135bf4a70836218b195ebf09c9e
2022-06-14T10:03:54.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/BC4CHEMD-Chem-Original-BioBERT-512
13
null
transformers
10,335
Entry not found
ghadeermobasher/BC4CHEMD-Chem-Modified-SciBERT-384
4904d7209de2de9e5672f94152828121a983f82c
2022-06-14T18:54:29.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/BC4CHEMD-Chem-Modified-SciBERT-384
13
null
transformers
10,336
Entry not found
eslamxm/xlmroberta-finetuned-fa
c1f6097c73d428cd542c18d49cbb3fa6c0e9b2ad
2022-06-15T06:53:15.000Z
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "dataset:pn_summary", "transformers", "summarization", "fa", "xlmroberta", "Abstractive Summarization", "generated_from_trainer", "model-index", "autotrain_compatible" ]
summarization
false
eslamxm
null
eslamxm/xlmroberta-finetuned-fa
13
null
transformers
10,337
--- tags: - summarization - fa - xlmroberta - Abstractive Summarization - generated_from_trainer datasets: - pn_summary model-index: - name: xlmroberta-finetuned-fa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlmroberta-finetuned-fa This model is a fine-tuned version of [](https://huggingface.co/) on the pn_summary dataset. It achieves the following results on the evaluation set: - Loss: 8.2286 - Rouge-1: 4.99 - Rouge-2: 0.0 - Rouge-l: 4.99 - Gen Len: 20.0 - Bertscore: 51.89 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 250 - num_epochs: 5 - label_smoothing_factor: 0.1 ### Training results ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.3.0 - Tokenizers 0.12.1
mmeet611/finetuning-sentiment-model-3000-samples
27ac771731fe1dcb304e84dad698ba0ef806298f
2022-07-05T07:16:18.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
mmeet611
null
mmeet611/finetuning-sentiment-model-3000-samples
13
null
transformers
10,338
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8633333333333333 - name: F1 type: f1 value: 0.8628762541806019 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3052 - Accuracy: 0.8633 - F1: 0.8629 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
justpyschitry/Medical_Article_Classifier_by_ICD-11_Chapter
c350b711f6950912f759e70a5eebcd8f31f902cb
2022-06-15T21:38:26.000Z
[ "pytorch", "bert", "text-classification", "unk", "dataset:justpyschitry/autotrain-data-Psychiatry_Article_Identifier", "transformers", "autotrain", "co2_eq_emissions" ]
text-classification
false
justpyschitry
null
justpyschitry/Medical_Article_Classifier_by_ICD-11_Chapter
13
null
transformers
10,339
--- tags: autotrain language: unk widget: - text: "I love AutoTrain 🤗" datasets: - justpyschitry/autotrain-data-Psychiatry_Article_Identifier co2_eq_emissions: 0.021794705501614994 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 990132820 - CO2 Emissions (in grams): 0.021794705501614994 ## Validation Metrics - Loss: 0.3959168493747711 - Accuracy: 0.9141004862236629 - Macro F1: 0.8984327823035179 - Micro F1: 0.9141004862236629 - Weighted F1: 0.913962331636746 - Macro Precision: 0.9087151885944185 - Micro Precision: 0.9141004862236629 - Weighted Precision: 0.9154123644574501 - Macro Recall: 0.8957596627132517 - Micro Recall: 0.9141004862236629 - Weighted Recall: 0.9141004862236629 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/justpyschitry/autotrain-Psychiatry_Article_Identifier-990132820 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("justpyschitry/autotrain-Psychiatry_Article_Identifier-990132820", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("justpyschitry/autotrain-Psychiatry_Article_Identifier-990132820", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
Akihiro2/akihiro2-finetuned-kde4-en-to-jp-accelerate
014605485acc4e964d1ee8a8b2ae222ccdd38979
2022-06-17T08:24:32.000Z
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Akihiro2
null
Akihiro2/akihiro2-finetuned-kde4-en-to-jp-accelerate
13
null
transformers
10,340
S2312dal/M1_cross
c0332f1e22740ae366f1dc615399d7337a8d72f3
2022-06-17T14:17:56.000Z
[ "pytorch", "tensorboard", "albert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
S2312dal
null
S2312dal/M1_cross
13
null
transformers
10,341
--- license: apache-2.0 tags: - generated_from_trainer metrics: - spearmanr model-index: - name: M1_cross results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # M1_cross This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0066 - Pearson: 0.9828 - Spearmanr: 0.9147 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 25 - optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 125.0 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr | |:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:| | 0.0294 | 1.0 | 131 | 0.0457 | 0.8770 | 0.8351 | | 0.0237 | 2.0 | 262 | 0.0302 | 0.9335 | 0.8939 | | 0.015 | 3.0 | 393 | 0.0155 | 0.9594 | 0.9054 | | 0.0177 | 4.0 | 524 | 0.0106 | 0.9778 | 0.9091 | | 0.0087 | 5.0 | 655 | 0.0066 | 0.9828 | 0.9147 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Nonzerophilip/bert-finetuned-ner_swedish_test_large_set
da1a65e5c3434959b6743e57eb1aec9b959895c0
2022-06-18T08:36:12.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "dataset:suc3", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
token-classification
false
Nonzerophilip
null
Nonzerophilip/bert-finetuned-ner_swedish_test_large_set
13
null
transformers
10,342
--- tags: - generated_from_trainer datasets: - suc3 model-index: - name: bert-finetuned-ner_swedish_test_large_set results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner_swedish_test_large_set This model is a fine-tuned version of [KBLab/bert-base-swedish-cased-ner](https://huggingface.co/KBLab/bert-base-swedish-cased-ner) on the suc3 dataset. It achieves the following results on the evaluation set: - eval_loss: 0.0265 - eval_precision: 0.8542 - eval_recall: 0.8468 - eval_f1: 0.8505 - eval_accuracy: 0.9919 - eval_runtime: 1076.8307 - eval_samples_per_second: 10.685 - eval_steps_per_second: 1.336 - epoch: 1.0 - step: 5754 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.19.3 - Pytorch 1.7.1 - Datasets 2.2.2 - Tokenizers 0.12.1
philschmid/habana-xlm-r-large-amazon-massive
3d761073603c1d60a140b163fe3e01f237c4ddc7
2022-06-24T13:38:20.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "text-classification", "dataset:AmazonScience/massive", "transformers", "generated_from_trainer", "habana", "license:apache-2.0" ]
text-classification
false
philschmid
null
philschmid/habana-xlm-r-large-amazon-massive
13
null
transformers
10,343
--- license: apache-2.0 tags: - generated_from_trainer - habana datasets: - AmazonScience/massive metrics: - accuracy - f1 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # philschmid/habana-xlm-r-large-amazon-massive This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on the AmazonScience/massive dataset. It achieves the following results on the evaluation set: ## 8x HPU approx. 41min **train results** ```bash {'loss': 0.2651, 'learning_rate': 2.4e-05, 'epoch': 1.0} {'loss': 0.1079, 'learning_rate': 1.8e-05, 'epoch': 2.0} {'loss': 0.0563, 'learning_rate': 1.2e-05, 'epoch': 3.0} {'loss': 0.0308, 'learning_rate': 6e-06, 'epoch': 4.0} {'loss': 0.0165, 'learning_rate': 0.0, 'epoch': 5.0} ``` total ```bash {'train_runtime': 3172.4502, 'train_samples_per_second': 127.028, 'train_steps_per_second': 1.986, 'train_loss': 0.09531746031746031, 'epoch': 5.0} ``` **eval results** ```bash {'eval_loss': 0.3128528892993927, 'eval_accuracy': 0.9125852013210597, 'eval_f1': 0.9125852013210597, 'eval_runtime': 45.1795, 'eval_samples_per_second': 314.988, 'eval_steps_per_second': 4.936, 'epoch': 1.0} {'eval_loss': 0.36222779750823975, 'eval_accuracy': 0.9134987000210807, 'eval_f1': 0.9134987000210807, 'eval_runtime': 29.8241, 'eval_samples_per_second': 477.165, 'eval_steps_per_second': 7.477, 'epoch': 2.0} {'eval_loss': 0.3943144679069519, 'eval_accuracy': 0.9140608530672476, 'eval_f1': 0.9140 608530672476, 'eval_runtime': 30.1085, 'eval_samples_per_second': 472.657, 'eval_steps_per_second': 7.407, 'epoch': 3.0} {'eval_loss': 0.40938863158226013, 'eval_accuracy': 0.9158878504672897, 'eval_f1': 0.9158878504672897, 'eval_runtime': 30.4546, 'eval_samples_per_second': 467.286, 'eval_steps_per_second': 7.322, 'epoch': 4.0} {'eval_loss': 0.4137658476829529, 'eval_accuracy': 0.9172932330827067, 'eval_f1': 0.9172932330827067, 'eval_runtime': 30.3464, 'eval_samples_per_second': 468.952, 'eval_steps_per_second': 7.348, 'epoch': 5.0} ``` # Environment The training was run on a `DL1` instance on AWS using Habana Gaudi1 and `optimum`. see for more information: https://github.com/philschmid/deep-learning-habana-huggingface
KoichiYasuoka/bert-base-japanese-wikipedia-ud-head
0da626d8f4bdd4a90aa033598caf1337644dbb1c
2022-07-20T03:51:44.000Z
[ "pytorch", "bert", "question-answering", "ja", "dataset:universal_dependencies", "transformers", "japanese", "wikipedia", "dependency-parsing", "license:cc-by-sa-4.0", "autotrain_compatible" ]
question-answering
false
KoichiYasuoka
null
KoichiYasuoka/bert-base-japanese-wikipedia-ud-head
13
null
transformers
10,344
--- language: - "ja" tags: - "japanese" - "wikipedia" - "question-answering" - "dependency-parsing" datasets: - "universal_dependencies" license: "cc-by-sa-4.0" pipeline_tag: "question-answering" widget: - text: "国語" context: "全学年にわたって小学校の国語の教科書に挿し絵が用いられている" - text: "教科書" context: "全学年にわたって小学校の国語の教科書に挿し絵が用いられている" - text: "の" context: "全学年にわたって小学校の国語[MASK]教科書に挿し絵が用いられている" --- # bert-base-japanese-wikipedia-ud-head ## Model Description This is a BERT model pretrained on Japanese Wikipedia texts for dependency-parsing (head-detection on long-unit-words) as question-answering, derived from [bert-base-japanese-char-extended](https://huggingface.co/KoichiYasuoka/bert-base-japanese-char-extended) and [UD_Japanese-GSDLUW](https://github.com/UniversalDependencies/UD_Japanese-GSDLUW). Use [MASK] inside `context` to avoid ambiguity when specifying a multiple-used word as `question`. ## How to Use ```py from transformers import AutoTokenizer,AutoModelForQuestionAnswering,QuestionAnsweringPipeline tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/bert-base-japanese-wikipedia-ud-head") model=AutoModelForQuestionAnswering.from_pretrained("KoichiYasuoka/bert-base-japanese-wikipedia-ud-head") qap=QuestionAnsweringPipeline(tokenizer=tokenizer,model=model) print(qap(question="国語",context="全学年にわたって小学校の国語の教科書に挿し絵が用いられている")) ``` or (with [ufal.chu-liu-edmonds](https://pypi.org/project/ufal.chu-liu-edmonds/)) ```py class TransformersUD(object): def __init__(self,bert): import os from transformers import (AutoTokenizer,AutoModelForQuestionAnswering, AutoModelForTokenClassification,AutoConfig,TokenClassificationPipeline) self.tokenizer=AutoTokenizer.from_pretrained(bert) self.model=AutoModelForQuestionAnswering.from_pretrained(bert) x=AutoModelForTokenClassification.from_pretrained if os.path.isdir(bert): d,t=x(os.path.join(bert,"deprel")),x(os.path.join(bert,"tagger")) else: from transformers.file_utils import hf_bucket_url c=AutoConfig.from_pretrained(hf_bucket_url(bert,"deprel/config.json")) d=x(hf_bucket_url(bert,"deprel/pytorch_model.bin"),config=c) s=AutoConfig.from_pretrained(hf_bucket_url(bert,"tagger/config.json")) t=x(hf_bucket_url(bert,"tagger/pytorch_model.bin"),config=s) self.deprel=TokenClassificationPipeline(model=d,tokenizer=self.tokenizer, aggregation_strategy="simple") self.tagger=TokenClassificationPipeline(model=t,tokenizer=self.tokenizer) def __call__(self,text): import numpy,torch,ufal.chu_liu_edmonds w=[(t["start"],t["end"],t["entity_group"]) for t in self.deprel(text)] z,n={t["start"]:t["entity"].split("|") for t in self.tagger(text)},len(w) r,m=[text[s:e] for s,e,p in w],numpy.full((n+1,n+1),numpy.nan) v,c=self.tokenizer(r,add_special_tokens=False)["input_ids"],[] for i,t in enumerate(v): q=[self.tokenizer.cls_token_id]+t+[self.tokenizer.sep_token_id] c.append([q]+v[0:i]+[[self.tokenizer.mask_token_id]]+v[i+1:]+[[q[-1]]]) b=[[len(sum(x[0:j+1],[])) for j in range(len(x))] for x in c] with torch.no_grad(): d=self.model(input_ids=torch.tensor([sum(x,[]) for x in c]), token_type_ids=torch.tensor([[0]*x[0]+[1]*(x[-1]-x[0]) for x in b])) s,e=d.start_logits.tolist(),d.end_logits.tolist() for i in range(n): for j in range(n): m[i+1,0 if i==j else j+1]=s[i][b[i][j]]+e[i][b[i][j+1]-1] h=ufal.chu_liu_edmonds.chu_liu_edmonds(m)[0] if [0 for i in h if i==0]!=[0]: i=([p for s,e,p in w]+["root"]).index("root") j=i+1 if i<n else numpy.nanargmax(m[:,0]) m[0:j,0]=m[j+1:,0]=numpy.nan h=ufal.chu_liu_edmonds.chu_liu_edmonds(m)[0] u="# text = "+text.replace("\n"," ")+"\n" for i,(s,e,p) in enumerate(w,1): p="root" if h[i]==0 else "dep" if p=="root" else p u+="\t".join([str(i),r[i-1],"_",z[s][0][2:],"_","|".join(z[s][1:]), str(h[i]),p,"_","_" if i<n and e<w[i][0] else "SpaceAfter=No"])+"\n" return u+"\n" nlp=TransformersUD("KoichiYasuoka/bert-base-japanese-wikipedia-ud-head") print(nlp("全学年にわたって小学校の国語の教科書に挿し絵が用いられている")) ```
Sayan01/tiny-bert-cola-distilled
8a459f9c77912b2319441cdeb802d5b5d9d3b7a5
2022-07-14T07:33:09.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Sayan01
null
Sayan01/tiny-bert-cola-distilled
13
null
transformers
10,345
Entry not found
Jeevesh8/std_0pnt2_bert_ft_cola-40
b0527926225e9a8d00e06f54c878dd4582f8ca9e
2022-06-21T13:28:07.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_0pnt2_bert_ft_cola-40
13
null
transformers
10,346
Entry not found
davidcechak/DNADeberta_finedemo_coding_vs_intergenomic_seqs
258eba22d3132cda046b2a67c4350cdaa2ee1a6c
2022-06-22T08:19:10.000Z
[ "pytorch", "deberta", "text-classification", "transformers" ]
text-classification
false
davidcechak
null
davidcechak/DNADeberta_finedemo_coding_vs_intergenomic_seqs
13
null
transformers
10,347
Entry not found
Zamachi/albert-for-multilabel-sentence-classification
f47d0ebb3c59a2128f3427d698e2ad34bbfb2c7e
2022-07-14T13:49:59.000Z
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
false
Zamachi
null
Zamachi/albert-for-multilabel-sentence-classification
13
null
transformers
10,348
Entry not found
Sayan01/tiny-bert-qnli-distilled
3d5b3dcc80b599a6dcde60d4193937c1a61a6b8d
2022-07-15T17:47:10.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Sayan01
null
Sayan01/tiny-bert-qnli-distilled
13
null
transformers
10,349
Entry not found
Hermite/DialoGPT-large-hermite3
65dbba4ec74581c8f9f797e144ef952e77cd8a85
2022-06-23T15:55:13.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Hermite
null
Hermite/DialoGPT-large-hermite3
13
null
transformers
10,350
--- tags: - conversational --- # Hermite DialoGPT Model
AlekseyKorshuk/books-long-model
43a70085a37c8886fa1d4baae679efaa97372d9e
2022-06-24T10:27:51.000Z
[ "pytorch", "gptj", "text-generation", "transformers" ]
text-generation
false
AlekseyKorshuk
null
AlekseyKorshuk/books-long-model
13
1
transformers
10,351
Entry not found
domenicrosati/deberta-v3-large-finetuned-DAGPap22
9299f200908c80e9b33ba1029bcfd26b2364b05b
2022-06-25T15:42:46.000Z
[ "pytorch", "tensorboard", "deberta-v2", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
domenicrosati
null
domenicrosati/deberta-v3-large-finetuned-DAGPap22
13
null
transformers
10,352
--- license: mit tags: - text-classification - generated_from_trainer model-index: - name: deberta-v3-large-finetuned-DAGPap22 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-large-finetuned-DAGPap22 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 20 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
crystina-z/canine-c-mmarco-all.epoch-2
1936e693625b554c9bfbe551e0ee5b3cd4bda6e3
2022-06-25T18:06:07.000Z
[ "pytorch", "canine", "feature-extraction", "transformers" ]
feature-extraction
false
crystina-z
null
crystina-z/canine-c-mmarco-all.epoch-2
13
null
transformers
10,353
Entry not found
canlinzhang/bert-finetuned-ner
4dd7719f294d2d96028e12c594878ad2d2036ec3
2022-06-26T04:43:18.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
canlinzhang
null
canlinzhang/bert-finetuned-ner
13
null
transformers
10,354
Entry not found
OptimalHoiboy/DialoGPT-small-kasumai
b905b45aebf5c56b70d129be59508ebcdb556769
2022-06-27T18:06:47.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
OptimalHoiboy
null
OptimalHoiboy/DialoGPT-small-kasumai
13
null
transformers
10,355
--- tags: - conversational --- # Rick DialoGPT Model
nvidia/stt_de_conformer_transducer_large
8ba02a07bb4d2ce404bc0f299c42f711bec4f340
2022-07-27T17:58:21.000Z
[ "nemo", "de", "dataset:VoxPopuli (DE)", "dataset:multilingual_librispeech", "dataset:mozilla-foundation/common_voice_7_0", "arxiv:2005.08100", "automatic-speech-recognition", "speech", "audio", "CTC", "Conformer", "Transformer", "pytorch", "NeMo", "hf-asr-leaderboard", "license:cc-by-4.0", "model-index" ]
automatic-speech-recognition
false
nvidia
null
nvidia/stt_de_conformer_transducer_large
13
2
nemo
10,356
--- language: - de library_name: nemo datasets: - VoxPopuli (DE) - multilingual_librispeech - mozilla-foundation/common_voice_7_0 thumbnail: null tags: - automatic-speech-recognition - speech - audio - CTC - Conformer - Transformer - pytorch - NeMo - hf-asr-leaderboard license: cc-by-4.0 widget: - example_title: Librispeech sample 1 src: https://cdn-media.huggingface.co/speech_samples/sample1.flac - example_title: Librispeech sample 2 src: https://cdn-media.huggingface.co/speech_samples/sample2.flac model-index: - name: stt_de_conformer_transducer_large results: - task: type: Automatic Speech Recognition name: speech-recognition dataset: name: common-voice-7-0 type: mozilla-foundation/common_voice_7_0 config: de split: test args: language: de metrics: - name: Test WER type: wer value: 4.93 - task: type: Automatic Speech Recognition name: automatic-speech-recognition dataset: name: Multilingual LibriSpeech type: facebook/multilingual_librispeech config: german split: test args: language: de metrics: - name: Test WER type: wer value: 3.85 - task: type: Automatic Speech Recognition name: automatic-speech-recognition dataset: name: Vox Populi type: polinaeterna/voxpopuli args: language: de metrics: - name: Test WER type: wer value: 5.70 --- # NVIDIA Conformer-Transducer Large (de) <style> img { display: inline; } </style> | [![Model architecture](https://img.shields.io/badge/Model_Arch-Conformer--Transducer-lightgrey#model-badge)](#model-architecture) | [![Model size](https://img.shields.io/badge/Params-120M-lightgrey#model-badge)](#model-architecture) | [![Language](https://img.shields.io/badge/Language-de-lightgrey#model-badge)](#datasets) This model transcribes speech in lower case German alphabet along with spaces. It is a "large" versions of Conformer-Transducer (around 120M parameters) model. See the [model architecture](#model-architecture) section and [NeMo documentation](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/models.html#conformer-transducer) for complete architecture details. ## NVIDIA NeMo: Training To train, fine-tune or play with the model you will need to install [NVIDIA NeMo](https://github.com/NVIDIA/NeMo). We recommend you install it after you've installed latest Pytorch version. ``` pip install nemo_toolkit['all'] ``` ## How to Use this Model The model is available for use in the NeMo toolkit [3], and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset. ### Automatically instantiate the model ```python import nemo.collections.asr as nemo_asr asr_model = nemo_asr.models.EncDecRNNTBPEModel.from_pretrained("nvidia/stt_de_conformer_transducer_large") ``` ### Transcribing using Python First, let's get a sample ``` wget https://dldata-public.s3.us-east-2.amazonaws.com/2086-149220-0033.wav ``` Then simply do: ``` asr_model.transcribe(['2086-149220-0033.wav']) ``` ### Transcribing many audio files ```shell python [NEMO_GIT_FOLDER]/examples/asr/transcribe_speech.py pretrained_name="nvidia/stt_de_conformer_transducer_large" audio_dir="<DIRECTORY CONTAINING AUDIO FILES>" ``` ### Input This model accepts 16000 KHz Mono-channel Audio (wav files) as input. ### Output This model provides transcribed speech as a string for a given audio sample. ## Model Architecture Conformer-Transducer model is an autoregressive variant of Conformer model [1] for Automatic Speech Recognition which uses Transducer loss/decoding instead of CTC Loss. You may find more info on the detail of this model here: [Conformer-Transducer Model](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/models.html). ## Training The NeMo toolkit [3] was used for training the models for over several hundred epochs. These model are trained with this [example script](https://github.com/NVIDIA/NeMo/blob/main/examples/asr/asr_ctc/speech_to_text_ctc_bpe.py) and this [base config](https://github.com/NVIDIA/NeMo/blob/main/examples/asr/conf/conformer/conformer_ctc_bpe.yaml). The tokenizers for these models were built using the text transcripts of the train set with this [script](https://github.com/NVIDIA/NeMo/blob/main/scripts/tokenizers/process_asr_text_tokenizer.py). ### Datasets All the models in this collection are trained on a composite dataset (NeMo ASRSET) comprising of several thousand hours of German speech: - VoxPopuli (DE) 200 hrs subset - Multilingual Librispeech (MLS DE) - 1500 hrs subset - Mozilla Common Voice (v7.0) Note: older versions of the model may have trained on smaller set of datasets. ## Performance The list of the available models in this collection is shown in the following table. Performances of the ASR models are reported in terms of Word Error Rate (WER%) with greedy decoding. | Version | Tokenizer | Vocabulary Size | MCV7.0 dev | MCV7.0 test | MLS dev | MLS test | Voxpopuli dev | Voxpopuli test | |---------|-----------------------|-----------------|---------------|---------------|------------|-----------|------------|----------------| | 1.6.0 | SentencePiece Unigram | 1024 | 4.40 | 4.93 | 3.22 | 3.85 | 11.04 | 8.85 | ## Limitations Since this model was trained on publicly available speech datasets, the performance of this model might degrade for speech which includes technical terms, or vernacular that the model has not been trained on. The model might also perform worse for accented speech. ## NVIDIA Riva: Deployment [NVIDIA Riva](https://developer.nvidia.com/riva), is an accelerated speech AI SDK deployable on-prem, in all clouds, multi-cloud, hybrid, on edge, and embedded. Additionally, Riva provides: * World-class out-of-the-box accuracy for the most common languages with model checkpoints trained on proprietary data with hundreds of thousands of GPU-compute hours * Best in class accuracy with run-time word boosting (e.g., brand and product names) and customization of acoustic model, language model, and inverse text normalization * Streaming speech recognition, Kubernetes compatible scaling, and enterprise-grade support Although this model isn’t supported yet by Riva, the [list of supported models is here](https://huggingface.co/models?other=Riva). Check out [Riva live demo](https://developer.nvidia.com/riva#demos). ## References [1] [Conformer: Convolution-augmented Transformer for Speech Recognition](https://arxiv.org/abs/2005.08100) [2] [Google Sentencepiece Tokenizer](https://github.com/google/sentencepiece) [3] [NVIDIA NeMo Toolkit](https://github.com/NVIDIA/NeMo) ## Licence License to use this model is covered by the [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/). By downloading the public and release version of the model, you accept the terms and conditions of the [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/) license.
Vanmas/bert-finetuned-ner
175d9969490207934e3d9fea1d0701efff74bd7c
2022-06-28T08:11:42.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
Vanmas
null
Vanmas/bert-finetuned-ner
13
null
transformers
10,357
Entry not found
pserna/bert2bert-spanish-paraphraser
064965d0ae5cb17a68d1c62b6a0c925f05403c88
2022-07-04T15:15:38.000Z
[ "pytorch", "tf", "encoder-decoder", "text2text-generation", "transformers", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
pserna
null
pserna/bert2bert-spanish-paraphraser
13
null
transformers
10,358
--- license: apache-2.0 --- # Spanish Bert2Bert fine-tuned on Quora question pairs dataset Fine-tuning of a [question generator model](https://huggingface.co/mrm8488/bert2bert-spanish-question-generation) into a paraphraser model using a poor-man's translation of the Quora question pairs dataset. It basically rephrases questions into similar questions. Non interrogative sentences are not handled very well. - Original models: [mrm8488/bert2bert-spanish-question-generation](https://huggingface.co/mrm8488/bert2bert-spanish-question-generation?text=Manuel+vive+en+Murcia%2C+Espa%C3%B1a), which is based on [dccuchile/bert-base-spanish-wwm-cased](https://huggingface.co/dccuchile/bert-base-spanish-wwm-cased) (?). - Custom database: "Poor-man's" translation of duplicated questions in Quora (translated with [Helsinki-NLP/opus-mt-en-es](https://huggingface.co/Helsinki-NLP/opus-mt-en-es))
czearing/story-to-title
db7460f0c49d8dc46fcde87dba3f73fde5216150
2022-06-28T22:43:26.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "license:mit", "autotrain_compatible" ]
text2text-generation
false
czearing
null
czearing/story-to-title
13
1
transformers
10,359
--- license: mit --- ## Story to Title The model is based on the T5 language model and trained using a large collection of movie descriptions and corresponding titles. When given a story it will generate a corresponding title. ## Usage Example code: ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("czearing/story-to-title") model = AutoModel.from_pretrained("czearing/czearing/story-to-title") ``` ## License MIT
Salvatore/bert-finetuned-mutation-recognition-2
564465100183c5dc75ee4534b73b24c9c8ac96cd
2022-06-29T14:29:27.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
Salvatore
null
Salvatore/bert-finetuned-mutation-recognition-2
13
null
transformers
10,360
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-mutation-recognition-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-mutation-recognition-2 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0818 - Dnamutation F1: 0.6371 - Snp F1: 0.0952 - Proteinmutation F1: 0.8412 - Precision: 0.7646 - Recall: 0.6596 - F1: 0.7082 - Accuracy: 0.9877 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Dnamutation F1 | Snp F1 | Proteinmutation F1 | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:------:|:------------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 403 | 0.0383 | 0.5871 | 0.0 | 0.7573 | 0.6195 | 0.6770 | 0.6470 | 0.9872 | | 0.0863 | 2.0 | 806 | 0.0349 | 0.6202 | 0.0 | 0.8646 | 0.6815 | 0.7408 | 0.7099 | 0.9889 | | 0.0295 | 3.0 | 1209 | 0.0415 | 0.5670 | 0.0 | 0.7689 | 0.6887 | 0.6035 | 0.6433 | 0.9866 | | 0.019 | 4.0 | 1612 | 0.0430 | 0.5909 | 0.4742 | 0.7840 | 0.6667 | 0.6615 | 0.6641 | 0.9881 | | 0.0127 | 5.0 | 2015 | 0.0507 | 0.6345 | 0.0 | 0.8455 | 0.7290 | 0.6867 | 0.7072 | 0.9885 | | 0.0127 | 6.0 | 2418 | 0.0678 | 0.5946 | 0.05 | 0.8087 | 0.7471 | 0.6170 | 0.6758 | 0.9868 | | 0.0067 | 7.0 | 2821 | 0.0544 | 0.6693 | 0.2727 | 0.8475 | 0.7208 | 0.7292 | 0.725 | 0.9884 | | 0.0042 | 8.0 | 3224 | 0.0642 | 0.6694 | 0.2000 | 0.8401 | 0.7390 | 0.7118 | 0.7251 | 0.9885 | | 0.0019 | 9.0 | 3627 | 0.0847 | 0.6271 | 0.0976 | 0.8416 | 0.7671 | 0.6499 | 0.7037 | 0.9877 | | 0.0014 | 10.0 | 4030 | 0.0818 | 0.6371 | 0.0952 | 0.8412 | 0.7646 | 0.6596 | 0.7082 | 0.9877 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.2 - Datasets 2.0.0 - Tokenizers 0.12.1
sarahmiller137/bioclinical-bert-ft-m3-lc
b7d12474813b5215463a104ed899e34beb121010
2022-07-05T16:26:56.000Z
[ "pytorch", "bert", "text-classification", "en", "dataset:MIMIC-III ", "transformers", "text classification", "license:cc" ]
text-classification
false
sarahmiller137
null
sarahmiller137/bioclinical-bert-ft-m3-lc
13
null
transformers
10,361
--- language: - en thumbnail: "url to a thumbnail used in social sharing" tags: - 'text classification' license: cc datasets: - MIMIC-III  --- ## Model information: This model is the [emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) model that has been finetuned using radiology report texts from the MIMIC-III database. The task performed was text classification in order to benchmark this model with a selection of other variants of BERT for the classifcation of MIMIC-III radiology report texts into two classes. Labels of [0,1] were assigned to radiology reports in MIMIC-III that were linked to an ICD9 diagnosis code for lung cancer = 1 and a random sample of reports which were not linked to any type of cancer diagnosis code at all = 0. ## Intended uses: This model is intended to be used to classify texts to identify the presence of lung cancer. The model will predict lables of [0,1]. ## Limitations: Note that the dataset and model may not be fully represetative or suitable for all needs it is recommended that the paper for the dataset and the base model card should be reviewed before use - - [MIMIC-III](https://www.nature.com/articles/sdata201635.pdf) - [emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) ## How to use: Load the model from the library using the following checkpoints: ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("sarahmiller137/bioclinical-bert-ft-m3-lc") model = AutoModel.from_pretrained("sarahmiller137/bioclinical-bert-ft-m3-lc") ```
Jeevesh8/goog_bert_ft_cola-49
33393de4a88da2fb43020f9c81c6dbba538530f1
2022-06-29T17:34:27.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/goog_bert_ft_cola-49
13
null
transformers
10,362
Entry not found
bayartsogt/roberta-base-ner
f4b56cf78a7c93b6a92936d3ee5d1866453016b1
2022-07-01T01:51:15.000Z
[ "pytorch", "tensorboard", "roberta", "token-classification", "mn", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
token-classification
false
bayartsogt
null
bayartsogt/roberta-base-ner
13
null
transformers
10,363
--- language: - mn tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: roberta-base-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-ner This model is a fine-tuned version of [bayartsogt/mongolian-roberta-base](https://huggingface.co/bayartsogt/mongolian-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1328 - Precision: 0.9248 - Recall: 0.9325 - F1: 0.9286 - Accuracy: 0.9805 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.17 | 1.0 | 477 | 0.0823 | 0.8652 | 0.9001 | 0.8823 | 0.9739 | | 0.0567 | 2.0 | 954 | 0.0883 | 0.9070 | 0.9296 | 0.9182 | 0.9778 | | 0.0278 | 3.0 | 1431 | 0.0904 | 0.9165 | 0.9302 | 0.9233 | 0.9789 | | 0.0158 | 4.0 | 1908 | 0.0945 | 0.9220 | 0.9301 | 0.9260 | 0.9798 | | 0.0089 | 5.0 | 2385 | 0.1118 | 0.9227 | 0.9287 | 0.9257 | 0.9799 | | 0.0061 | 6.0 | 2862 | 0.1154 | 0.9212 | 0.9309 | 0.9260 | 0.9803 | | 0.0037 | 7.0 | 3339 | 0.1240 | 0.9253 | 0.9320 | 0.9286 | 0.9806 | | 0.0023 | 8.0 | 3816 | 0.1293 | 0.9232 | 0.9316 | 0.9274 | 0.9803 | | 0.0013 | 9.0 | 4293 | 0.1323 | 0.9253 | 0.9332 | 0.9292 | 0.9806 | | 0.0012 | 10.0 | 4770 | 0.1328 | 0.9248 | 0.9325 | 0.9286 | 0.9805 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
mousaazari/t5-text2sql
edde028d1cc3769f80c9370f0f13c82e604d7022
2022-07-22T14:19:15.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
mousaazari
null
mousaazari/t5-text2sql
13
null
transformers
10,364
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: t5-text2sql results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-text2sql This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1528 - Rouge2 Precision: 0.9252 - Rouge2 Recall: 0.4354 - Rouge2 Fmeasure: 0.5687 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 32 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | |:-------------:|:-----:|:----:|:---------------:|:----------------:|:-------------:|:---------------:| | No log | 1.0 | 11 | 2.7311 | 0.0907 | 0.0278 | 0.0409 | | No log | 2.0 | 22 | 1.9749 | 0.0948 | 0.0281 | 0.0417 | | No log | 3.0 | 33 | 1.4801 | 0.0998 | 0.0281 | 0.0428 | | No log | 4.0 | 44 | 1.0439 | 0.0928 | 0.0266 | 0.0405 | | No log | 5.0 | 55 | 0.7436 | 0.2758 | 0.1199 | 0.1633 | | No log | 6.0 | 66 | 0.5619 | 0.6723 | 0.3182 | 0.4184 | | No log | 7.0 | 77 | 0.4470 | 0.6655 | 0.3125 | 0.4093 | | No log | 8.0 | 88 | 0.3851 | 0.762 | 0.3384 | 0.4508 | | No log | 9.0 | 99 | 0.3372 | 0.7611 | 0.33 | 0.443 | | No log | 10.0 | 110 | 0.3113 | 0.7754 | 0.3396 | 0.454 | | No log | 11.0 | 121 | 0.2832 | 0.7977 | 0.3486 | 0.4682 | | No log | 12.0 | 132 | 0.2703 | 0.8346 | 0.3786 | 0.5019 | | No log | 13.0 | 143 | 0.2519 | 0.8379 | 0.3849 | 0.5058 | | No log | 14.0 | 154 | 0.2411 | 0.856 | 0.3883 | 0.5116 | | No log | 15.0 | 165 | 0.2274 | 0.8701 | 0.4023 | 0.5275 | | No log | 16.0 | 176 | 0.2117 | 0.8773 | 0.4049 | 0.5312 | | No log | 17.0 | 187 | 0.2061 | 0.8841 | 0.4015 | 0.5296 | | No log | 18.0 | 198 | 0.1957 | 0.8894 | 0.4059 | 0.5349 | | No log | 19.0 | 209 | 0.1859 | 0.9125 | 0.4274 | 0.5584 | | No log | 20.0 | 220 | 0.1866 | 0.8914 | 0.4097 | 0.5385 | | No log | 21.0 | 231 | 0.1846 | 0.8957 | 0.4128 | 0.5423 | | No log | 22.0 | 242 | 0.1797 | 0.9252 | 0.4354 | 0.5687 | | No log | 23.0 | 253 | 0.1730 | 0.9252 | 0.4354 | 0.5687 | | No log | 24.0 | 264 | 0.1645 | 0.9252 | 0.4354 | 0.5687 | | No log | 25.0 | 275 | 0.1612 | 0.9252 | 0.4354 | 0.5687 | | No log | 26.0 | 286 | 0.1599 | 0.9252 | 0.4354 | 0.5687 | | No log | 27.0 | 297 | 0.1570 | 0.9252 | 0.4354 | 0.5687 | | No log | 28.0 | 308 | 0.1550 | 0.9252 | 0.4354 | 0.5687 | | No log | 29.0 | 319 | 0.1544 | 0.9252 | 0.4354 | 0.5687 | | No log | 30.0 | 330 | 0.1534 | 0.9252 | 0.4354 | 0.5687 | | No log | 31.0 | 341 | 0.1529 | 0.9252 | 0.4354 | 0.5687 | | No log | 32.0 | 352 | 0.1528 | 0.9252 | 0.4354 | 0.5687 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
8X7K/anime-sentiment-analysis
0a948e7ca1a3b20c802c9c5a4283c9ab1774556c
2022-07-04T06:29:50.000Z
[ "pytorch", "bert", "transformers" ]
null
false
8X7K
null
8X7K/anime-sentiment-analysis
13
null
transformers
10,365
Entry not found
samuelrince/bert-base-cased-finetuned-panx-en
eb4c79f53c89ea8db066f8f2de1f3ec80ebf443a
2022-07-04T20:08:03.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
samuelrince
null
samuelrince/bert-base-cased-finetuned-panx-en
13
null
transformers
10,366
--- license: apache-2.0 tags: - generated_from_trainer datasets: - xtreme model-index: - name: bert-base-cased-finetuned-panx-en results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-finetuned-panx-en This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2478 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.2941 | 1.0 | 1250 | 0.2432 | | 0.186 | 2.0 | 2500 | 0.2214 | | 0.1387 | 3.0 | 3750 | 0.2478 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
dee4hf/autotrain-deephate2-1093539673
5f48e340923213e6c8893056ecc6b7cea20c7554
2022-07-06T04:28:59.000Z
[ "pytorch", "albert", "text-classification", "bn", "dataset:dee4hf/autotrain-data-deephate2", "transformers", "autotrain", "co2_eq_emissions" ]
text-classification
false
dee4hf
null
dee4hf/autotrain-deephate2-1093539673
13
null
transformers
10,367
--- tags: autotrain language: bn widget: - text: "I love AutoTrain 🤗" datasets: - dee4hf/autotrain-data-deephate2 co2_eq_emissions: 7.663051290039914 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 1093539673 - CO2 Emissions (in grams): 7.663051290039914 ## Validation Metrics - Loss: 0.34404119849205017 - Accuracy: 0.8843120070113936 - Macro F1: 0.8771237753798016 - Micro F1: 0.8843120070113936 - Weighted F1: 0.8843498914288083 - Macro Precision: 0.8745249813256932 - Micro Precision: 0.8843120070113936 - Weighted Precision: 0.8854719661321065 - Macro Recall: 0.8812563739901838 - Micro Recall: 0.8843120070113936 - Weighted Recall: 0.8843120070113936 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/dee4hf/autotrain-deephate2-1093539673 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("dee4hf/autotrain-deephate2-1093539673", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("dee4hf/autotrain-deephate2-1093539673", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
pollner/finetuning-sentiment-model-3000-samples
cd8f74b20e55d26f25cca9cb1b6d7c789351f252
2022-07-06T07:56:52.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
pollner
null
pollner/finetuning-sentiment-model-3000-samples
13
null
transformers
10,368
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8766666666666667 - name: F1 type: f1 value: 0.877887788778878 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3183 - Accuracy: 0.8767 - F1: 0.8779 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
chiendvhust/roberta-base-finetuned-squad
bab255ced06152a40a3d31917c2c45b9e64a06b3
2022-07-06T12:24:17.000Z
[ "pytorch", "roberta", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
question-answering
false
chiendvhust
null
chiendvhust/roberta-base-finetuned-squad
13
null
transformers
10,369
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: roberta-base-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-finetuned-squad This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
Mascariddu8/bert-finetuned-ner
68a9982c91d021d7042847025d3403413ee09c24
2022-07-07T14:36:28.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
Mascariddu8
null
Mascariddu8/bert-finetuned-ner
13
null
transformers
10,370
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9357296670531721 - name: Recall type: recall value: 0.9506900033658701 - name: F1 type: f1 value: 0.9431505133984472 - name: Accuracy type: accuracy value: 0.9857390946017542 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0639 - Precision: 0.9357 - Recall: 0.9507 - F1: 0.9432 - Accuracy: 0.9857 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0847 | 1.0 | 1756 | 0.0636 | 0.9150 | 0.9387 | 0.9267 | 0.9840 | | 0.0399 | 2.0 | 3512 | 0.0592 | 0.9302 | 0.9485 | 0.9393 | 0.9854 | | 0.0201 | 3.0 | 5268 | 0.0639 | 0.9357 | 0.9507 | 0.9432 | 0.9857 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
rosicast/wav2vec2-large-xlsr-korean-zeroth
7f11ae09806098f5951cb155db303b8b03b47d2b
2022-07-08T08:06:57.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "korean", "dataset:kresnik/zeroth_korean", "transformers", "Automatic Speech Recognition", "wav2vec2-large-xlsr", "speech", "license:apache-2.0" ]
automatic-speech-recognition
false
rosicast
null
rosicast/wav2vec2-large-xlsr-korean-zeroth
13
null
transformers
10,371
--- license: - apache-2.0 language: - korean tags: - korean - Automatic Speech Recognition - automatic-speech-recognition - wav2vec2 - wav2vec2-large-xlsr - speech datasets: - kresnik/zeroth_korean --- # Alert> The model is on the training process # Model description Check [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) # Intended uses & limitations Automatic Speech Recognition The model only trained on Zeroth-Korean corpus. There are 51.6 hours transcribed Korean audio for training data (22,263 utterances, 105 people, 3000 sentences) and 1.2 hours transcribed Korean audio for testing data (457 utterances, 10 people). [link](https://www.openslr.org/40/) check detail about data in the link. # How to use <code> from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor from datasets import load_dataset import soundfile as sf import torch from jiwer import wer processor = Wav2Vec2Processor.from_pretrained("rosicast/wav2vec2-large-xlsr-korean-zeroth") model = Wav2Vec2ForCTC.from_pretrained("rosicast/wav2vec2-large-xlsr-korean-zeroth").to('cuda') ds = load_dataset("kresnik/zeroth_korean", "clean") test_ds = ds['test'] </code> # Limitations and bias # Evaluation results Will be update after finish the training.
josh-oo/bert-to-gpt2-german-to-easy-german-wiki
05cc57552b964d837ac88d479c16158d1b209b3e
2022-07-07T20:47:24.000Z
[ "pytorch", "encoder-decoder", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
josh-oo
null
josh-oo/bert-to-gpt2-german-to-easy-german-wiki
13
null
transformers
10,372
Entry not found
casasdorjunior/t5-small-finetuned-xlsum
0a21383954fe2f093f4cf0ed1f190cbc2af9fc6b
2022-07-10T08:50:55.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:xlsum", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
casasdorjunior
null
casasdorjunior/t5-small-finetuned-xlsum
13
null
transformers
10,373
--- license: apache-2.0 tags: - generated_from_trainer datasets: - xlsum metrics: - rouge model-index: - name: t5-small-finetuned-xlsum results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: xlsum type: xlsum args: spanish metrics: - name: Rouge1 type: rouge value: 15.4289 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xlsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xlsum dataset. It achieves the following results on the evaluation set: - Loss: 2.6974 - Rouge1: 15.4289 - Rouge2: 3.146 - Rougel: 12.7682 - Rougelsum: 12.912 - Gen Len: 18.9889 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 2.9764 | 1.0 | 2382 | 2.6974 | 15.4289 | 3.146 | 12.7682 | 12.912 | 18.9889 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
danielreales00/fine-tuned-ai-ss-hs-01
3ed42a17757d772d0b3c46dc4a0244d71d0356ce
2022-07-11T02:50:35.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
danielreales00
null
danielreales00/fine-tuned-ai-ss-hs-01
13
null
transformers
10,374
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: fine-tuned-ai-ss-hs-01 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fine-tuned-ai-ss-hs-01 This model is a fine-tuned version of [bert-base-multilingual-uncased](https://huggingface.co/bert-base-multilingual-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - AUC: 0.88609 - Precision: 0.8514 - Accuracy: 0.8101 - F1: 0.7875 - Recall: 0.7326 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.1207606211860595e-05 - train_batch_size: 16 - eval_batch_size: 4 - seed: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | No log | 1.0 | 357 | 1.0285 | 0.6955 | 0.5657 | 0.8987 | 0.4128 | | 0.5857 | 2.0 | 714 | 1.0350 | 0.7207 | 0.6296 | 0.8673 | 0.4942 | | 0.51 | 3.0 | 1071 | 0.7467 | 0.8156 | 0.7975 | 0.8442 | 0.7558 | | 0.51 | 4.0 | 1428 | 0.8376 | 0.8101 | 0.7875 | 0.8514 | 0.7326 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Tokenizers 0.12.1
MiguelCosta/finetuning-sentiment-model-24000-samples
b815ab52ba004d7766fb43087310e995756e732c
2022-07-12T10:48:14.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
MiguelCosta
null
MiguelCosta/finetuning-sentiment-model-24000-samples
13
null
transformers
10,375
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-24000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.9266666666666666 - name: F1 type: f1 value: 0.9273927392739274 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-24000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3505 - Accuracy: 0.9267 - F1: 0.9274 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Khoa/t5-small-finetuned-xsum
306ad07a7570e6e35b716a4fbd4cb9b738e3efa7
2022-07-12T17:05:24.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Khoa
null
Khoa/t5-small-finetuned-xsum
13
null
transformers
10,376
Entry not found
Team-PIXEL/pixel-base-finetuned-pos-ud-vietnamese-vtb
4e9f2bad3dec8bf076f2bc3f6521e9054cd1bab4
2022-07-13T01:34:08.000Z
[ "pytorch", "pixel", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
Team-PIXEL
null
Team-PIXEL/pixel-base-finetuned-pos-ud-vietnamese-vtb
13
null
transformers
10,377
Entry not found
xliu128/distilbert-base-uncased-finetuned-clinc
e067720b347954c0bcbdb0b0a86156291e84e6c1
2022-07-13T02:30:34.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:clinc_oos", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
xliu128
null
xliu128/distilbert-base-uncased-finetuned-clinc
13
null
transformers
10,378
--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos args: plus metrics: - name: Accuracy type: accuracy value: 0.9183870967741935 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.7720 - Accuracy: 0.9184 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 318 | 3.2891 | 0.7429 | | 3.7868 | 2.0 | 636 | 1.8755 | 0.8374 | | 3.7868 | 3.0 | 954 | 1.1570 | 0.8961 | | 1.6928 | 4.0 | 1272 | 0.8573 | 0.9132 | | 0.9056 | 5.0 | 1590 | 0.7720 | 0.9184 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
morenolq/thext-bio-scibert
77822575f8ff6d7fc5a2f6793d290b5dc775bcba
2022-07-13T17:00:40.000Z
[ "pytorch", "bert", "text-classification", "en", "transformers", "regression" ]
text-classification
false
morenolq
null
morenolq/thext-bio-scibert
13
null
transformers
10,379
--- language: "en" tags: - bert - regression - pytorch pipeline: - text-classification widget: - text: "We propose a new approach, based on Transformer-based encoding, to highlight extraction. To the best of our knowledge, this is the first attempt to use transformer architectures to address automatic highlight generation. [SEP] Highlights are short sentences used to annotate scientific papers. They complement the abstract content by conveying the main result findings. To automate the process of paper annotation, highlights extraction aims at extracting from 3 to 5 paper sentences via supervised learning. Existing approaches rely on ad hoc linguistic features, which depend on the analyzed context, and apply recurrent neural networks, which are not effective in learning long-range text dependencies. This paper leverages the attention mechanism adopted in transformer models to improve the accuracy of sentence relevance estimation. Unlike existing approaches, it relies on the end-to-end training of a deep regression model. To attend patterns relevant to highlights content it also enriches sentence encodings with a section-level contextualization. The experimental results, achieved on three different benchmark datasets, show that the designed architecture is able to achieve significant performance improvements compared to the state-of-the-art." - text: "We design a context-aware sentence-level regressor, in which the semantic similarity between candidate sentences and highlights is estimated by also attending the contextual knowledge provided by the other paper sections. [SEP] Highlights are short sentences used to annotate scientific papers. They complement the abstract content by conveying the main result findings. To automate the process of paper annotation, highlights extraction aims at extracting from 3 to 5 paper sentences via supervised learning. Existing approaches rely on ad hoc linguistic features, which depend on the analyzed context, and apply recurrent neural networks, which are not effective in learning long-range text dependencies. This paper leverages the attention mechanism adopted in transformer models to improve the accuracy of sentence relevance estimation. Unlike existing approaches, it relies on the end-to-end training of a deep regression model. To attend patterns relevant to highlights content it also enriches sentence encodings with a section-level contextualization. The experimental results, achieved on three different benchmark datasets, show that the designed architecture is able to achieve significant performance improvements compared to the state-of-the-art." - text: "Fig. 2, Fig. 3, Fig. 4 show the effect of varying the number K of selected highlights on the extraction performance. As expected, recall values increase while increasing the number of selected highlights, whereas precision values show an opposite trend. [SEP] Highlights are short sentences used to annotate scientific papers. They complement the abstract content by conveying the main result findings. To automate the process of paper annotation, highlights extraction aims at extracting from 3 to 5 paper sentences via supervised learning. Existing approaches rely on ad hoc linguistic features, which depend on the analyzed context, and apply recurrent neural networks, which are not effective in learning long-range text dependencies. This paper leverages the attention mechanism adopted in transformer models to improve the accuracy of sentence relevance estimation. Unlike existing approaches, it relies on the end-to-end training of a deep regression model. To attend patterns relevant to highlights content it also enriches sentence encodings with a section-level contextualization. The experimental results, achieved on three different benchmark datasets, show that the designed architecture is able to achieve significant performance improvements compared to the state-of-the-art." --- # General Information This model is trained on journal publications of belonging to the domain: **Biology and Medicine**. This is an `allenai/scibert_scivocab_cased` model trained in the scientific domain. The model is trained with regression objective to estimate the relevance of a sentence according to the provided context (e.g., the abstract of the scientific paper). The model is used in the paper 'Transformer-based highlights extraction from scientific papers' published in Knowledge-Based Systems scientific journal. The model is able to achieve state-of-the-art performance in the task of highlights extraction from scientific papers. Access to the full paper: [here](https://doi.org/10.1016/j.knosys.2022.109382). # Usage: For detailed usage please use the official repository https://github.com/MorenoLaQuatra/THExt . # References: If you find it useful, please cite the following paper: ```bibtex @article{thext, title={Transformer-based highlights extraction from scientific papers}, author={La Quatra, Moreno and Cagliero, Luca}, journal={Knowledge-Based Systems}, pages={109382}, year={2022}, publisher={Elsevier} } ```
jordyvl/biobert-base-cased-v1.2_ncbi_disease-softmax-labelall-ner
21391c5827c5d90053db6d948beea6a602151da2
2022-07-13T09:05:56.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "dataset:ncbi_disease", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
token-classification
false
jordyvl
null
jordyvl/biobert-base-cased-v1.2_ncbi_disease-softmax-labelall-ner
13
null
transformers
10,380
--- tags: - generated_from_trainer datasets: - ncbi_disease metrics: - precision - recall - f1 - accuracy model-index: - name: biobert-base-cased-v1.2_ncbi_disease-softmax-labelall-ner results: - task: name: Token Classification type: token-classification dataset: name: ncbi_disease type: ncbi_disease args: ncbi_disease metrics: - name: Precision type: precision value: 0.8288508557457213 - name: Recall type: recall value: 0.8614993646759848 - name: F1 type: f1 value: 0.8448598130841122 - name: Accuracy type: accuracy value: 0.9861487755016897 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # biobert-base-cased-v1.2_ncbi_disease-softmax-labelall-ner This model is a fine-tuned version of [dmis-lab/biobert-base-cased-v1.2](https://huggingface.co/dmis-lab/biobert-base-cased-v1.2) on the ncbi_disease dataset. It achieves the following results on the evaluation set: - Loss: 0.0629 - Precision: 0.8289 - Recall: 0.8615 - F1: 0.8449 - Accuracy: 0.9861 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0554 | 1.0 | 1359 | 0.0659 | 0.7814 | 0.8132 | 0.7970 | 0.9825 | | 0.0297 | 2.0 | 2718 | 0.0445 | 0.8284 | 0.8895 | 0.8578 | 0.9876 | | 0.0075 | 3.0 | 4077 | 0.0629 | 0.8289 | 0.8615 | 0.8449 | 0.9861 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.2+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
Yvanzhu/E2E-NLG-Bart-best
804565271f7c8008746d070ce1dd0181295653b8
2022-07-13T11:08:26.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Yvanzhu
null
Yvanzhu/E2E-NLG-Bart-best
13
null
transformers
10,381
Entry not found
roscazo/BNE-conv-v1
4a9fea91227c1996a64a2d81e103adddbbddd07e
2022-07-18T10:57:18.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
roscazo
null
roscazo/BNE-conv-v1
13
null
transformers
10,382
Entry not found
Bistolero/mt5_32b_DP_3
0b40ff9b1efc994add7c927d59bd3c26684e65a6
2022-07-13T17:05:48.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Bistolero
null
Bistolero/mt5_32b_DP_3
13
null
transformers
10,383
Entry not found
domenicrosati/SPECTER-finetuned-DAGPap22
44278b7ebdf40d98507dc29112c15d854170be9a
2022-07-13T18:53:10.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
domenicrosati
null
domenicrosati/SPECTER-finetuned-DAGPap22
13
null
transformers
10,384
--- license: apache-2.0 tags: - text-classification - generated_from_trainer metrics: - accuracy - f1 model-index: - name: SPECTER-finetuned-DAGPap22 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SPECTER-finetuned-DAGPap22 This model is a fine-tuned version of [allenai/specter](https://huggingface.co/allenai/specter) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0023 - Accuracy: 0.9993 - F1: 0.9995 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:| | 0.3422 | 1.0 | 669 | 0.4135 | 0.8914 | 0.9140 | | 0.1074 | 2.0 | 1338 | 0.1216 | 0.9746 | 0.9811 | | 0.0329 | 3.0 | 2007 | 0.0064 | 0.9989 | 0.9992 | | 0.0097 | 4.0 | 2676 | 0.0132 | 0.9972 | 0.9980 | | 0.0123 | 5.0 | 3345 | 0.0231 | 0.9961 | 0.9971 | | 0.0114 | 6.0 | 4014 | 0.0080 | 0.9985 | 0.9989 | | 0.0029 | 7.0 | 4683 | 0.2207 | 0.9727 | 0.9797 | | 0.0075 | 8.0 | 5352 | 0.0145 | 0.9974 | 0.9981 | | 0.0098 | 9.0 | 6021 | 0.0047 | 0.9994 | 0.9996 | | 0.0025 | 10.0 | 6690 | 0.0000 | 1.0 | 1.0 | | 0.0044 | 11.0 | 7359 | 0.0035 | 0.9993 | 0.9995 | | 0.0 | 12.0 | 8028 | 0.0027 | 0.9996 | 0.9997 | | 0.0027 | 13.0 | 8697 | 0.0036 | 0.9993 | 0.9995 | | 0.0055 | 14.0 | 9366 | 0.0017 | 0.9998 | 0.9999 | | 0.0 | 15.0 | 10035 | 0.0000 | 1.0 | 1.0 | | 0.0 | 16.0 | 10704 | 0.0000 | 1.0 | 1.0 | | 0.0022 | 17.0 | 11373 | 0.0111 | 0.9981 | 0.9986 | | 0.0004 | 18.0 | 12042 | 0.0011 | 0.9994 | 0.9996 | | 0.0 | 19.0 | 12711 | 0.0020 | 0.9994 | 0.9996 | | 0.0 | 20.0 | 13380 | 0.0023 | 0.9993 | 0.9995 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
shivaniNK8/mt5-small-finetuned-cnn-news
5659ba0e4876e2bf26bcf73d9db3785c83fdb135
2022-07-15T03:42:23.000Z
[ "pytorch", "tensorboard", "mt5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
shivaniNK8
null
shivaniNK8/mt5-small-finetuned-cnn-news
13
null
transformers
10,385
Entry not found
Fagen/TrueNeuromiron2
830b261f045d23c082dbdfd46ec9c335de9df70a
2022-07-14T20:10:47.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "license:unlicense" ]
text-generation
false
Fagen
null
Fagen/TrueNeuromiron2
13
null
transformers
10,386
--- license: unlicense ---
mrm8488/bloom-6b3-8bit
477af33966d641e404c7f6b5e900dd968525835b
2022-07-17T10:37:19.000Z
[ "pytorch", "bloom", "text-generation", "ak", "ar", "as", "bm", "bn", "ca", "en", "es", "eu", "fon", "fr", "gu", "hi", "id", "ig", "ki", "kn", "lg", "ln", "ml", "mr", "ne", "nso", "ny", "or", "pa", "pt", "rn", "rw", "sn", "st", "sw", "ta", "te", "tn", "ts", "tum", "tw", "ur", "vi", "wo", "xh", "yo", "zh", "zu", "arxiv:2106.09685", "transformers", "license:bigscience-bloom-rail-1.0" ]
text-generation
false
mrm8488
null
mrm8488/bloom-6b3-8bit
13
2
transformers
10,387
--- inference: false license: bigscience-bloom-rail-1.0 language: - ak - ar - as - bm - bn - ca - en - es - eu - fon - fr - gu - hi - id - ig - ki - kn - lg - ln - ml - mr - ne - nso - ny - or - pa - pt - rn - rw - sn - st - sw - ta - te - tn - ts - tum - tw - ur - vi - wo - xh - yo - zh - zu pipeline_tag: text-generation --- ### Quantized bigscience/bloom 6B3 with 8-bit weights Heavily inspired by [Hivemind's GPT-J-6B with 8-bit weights](https://huggingface.co/hivemind/gpt-j-6B-8bit), this is a version of [bigscience/bloom](https://huggingface.co/bigscience/bloom-6b3) a ~6 billion parameters language model that you run and fine-tune with less memory. Here, we also apply [LoRA (Low Rank Adaptation)](https://arxiv.org/abs/2106.09685) to reduce model size. ### How to fine-tune TBA ### How to use This model can be used by adapting Bloom original implementation. This is an adaptation from [Hivemind's GPT-J 8-bit](https://nbviewer.org/urls/huggingface.co/hivemind/gpt-j-6B-8bit/raw/main/convert-gpt-j.ipynb): ```python import transformers import torch import torch.nn as nn import torch.nn.functional as F from bitsandbytes.functional import quantize_blockwise, dequantize_blockwise from typing import Tuple from torch.cuda.amp import custom_fwd, custom_bwd class FrozenBNBLinear(nn.Module): def __init__(self, weight, absmax, code, bias=None): assert isinstance(bias, nn.Parameter) or bias is None super().__init__() self.out_features, self.in_features = weight.shape self.register_buffer("weight", weight.requires_grad_(False)) self.register_buffer("absmax", absmax.requires_grad_(False)) self.register_buffer("code", code.requires_grad_(False)) self.adapter = None self.bias = bias def forward(self, input): output = DequantizeAndLinear.apply(input, self.weight, self.absmax, self.code, self.bias) if self.adapter: output += self.adapter(input) return output @classmethod def from_linear(cls, linear: nn.Linear) -> "FrozenBNBLinear": weights_int8, state = quantize_blockise_lowmemory(linear.weight) return cls(weights_int8, *state, linear.bias) def __repr__(self): return f"{self.__class__.__name__}({self.in_features}, {self.out_features})" class DequantizeAndLinear(torch.autograd.Function): @staticmethod @custom_fwd def forward(ctx, input: torch.Tensor, weights_quantized: torch.ByteTensor, absmax: torch.FloatTensor, code: torch.FloatTensor, bias: torch.FloatTensor): weights_deq = dequantize_blockwise(weights_quantized, absmax=absmax, code=code) ctx.save_for_backward(input, weights_quantized, absmax, code) ctx._has_bias = bias is not None return F.linear(input, weights_deq, bias) @staticmethod @custom_bwd def backward(ctx, grad_output: torch.Tensor): assert not ctx.needs_input_grad[1] and not ctx.needs_input_grad[2] and not ctx.needs_input_grad[3] input, weights_quantized, absmax, code = ctx.saved_tensors # grad_output: [*batch, out_features] weights_deq = dequantize_blockwise(weights_quantized, absmax=absmax, code=code) grad_input = grad_output @ weights_deq grad_bias = grad_output.flatten(0, -2).sum(dim=0) if ctx._has_bias else None return grad_input, None, None, None, grad_bias class FrozenBNBEmbedding(nn.Module): def __init__(self, weight, absmax, code): super().__init__() self.num_embeddings, self.embedding_dim = weight.shape self.register_buffer("weight", weight.requires_grad_(False)) self.register_buffer("absmax", absmax.requires_grad_(False)) self.register_buffer("code", code.requires_grad_(False)) self.adapter = None def forward(self, input, **kwargs): with torch.no_grad(): # note: both quantuized weights and input indices are *not* differentiable weight_deq = dequantize_blockwise(self.weight, absmax=self.absmax, code=self.code) output = F.embedding(input, weight_deq, **kwargs) if self.adapter: output += self.adapter(input) return output @classmethod def from_embedding(cls, embedding: nn.Embedding) -> "FrozenBNBEmbedding": weights_int8, state = quantize_blockise_lowmemory(embedding.weight) return cls(weights_int8, *state) def __repr__(self): return f"{self.__class__.__name__}({self.num_embeddings}, {self.embedding_dim})" def quantize_blockise_lowmemory(matrix: torch.Tensor, chunk_size: int = 2 ** 20): assert chunk_size % 4096 == 0 code = None chunks = [] absmaxes = [] flat_tensor = matrix.view(-1) for i in range((matrix.numel() - 1) // chunk_size + 1): input_chunk = flat_tensor[i * chunk_size: (i + 1) * chunk_size].clone() quantized_chunk, (absmax_chunk, code) = quantize_blockwise(input_chunk, code=code) chunks.append(quantized_chunk) absmaxes.append(absmax_chunk) matrix_i8 = torch.cat(chunks).reshape_as(matrix) absmax = torch.cat(absmaxes) return matrix_i8, (absmax, code) def convert_to_int8(model): """Convert linear and embedding modules to 8-bit with optional adapters""" for module in list(model.modules()): for name, child in module.named_children(): if isinstance(child, nn.Linear): print(name, child) setattr( module, name, FrozenBNBLinear( weight=torch.zeros(child.out_features, child.in_features, dtype=torch.uint8), absmax=torch.zeros((child.weight.numel() - 1) // 4096 + 1), code=torch.zeros(256), bias=child.bias, ), ) elif isinstance(child, nn.Embedding): setattr( module, name, FrozenBNBEmbedding( weight=torch.zeros(child.num_embeddings, child.embedding_dim, dtype=torch.uint8), absmax=torch.zeros((child.weight.numel() - 1) // 4096 + 1), code=torch.zeros(256), ) ) class BloomBlock(transformers.models.bloom.modeling_bloom.BloomBlock): def __init__(self, config, layer_number=None): super().__init__(config, layer_number) convert_to_int8(self.self_attention) convert_to_int8(self.mlp) class BloomModel(transformers.models.bloom.modeling_bloom.BloomModel): def __init__(self, config): super().__init__(config) convert_to_int8(self) class BloomForCausalLM(transformers.models.bloom.modeling_bloom.BloomForCausalLM): def __init__(self, config): super().__init__(config) convert_to_int8(self) transformers.models.bloom.modeling_bloom.BloomBlock = BloomBlock model_name = 'mrm8488/bloom-6b3-8bit' model = BloomForCausalLM.from_pretrained(model_name, low_cpu_mem_usage=True) tokenizer = BloomTokenizerFast.from_pretrained(model_name) prompt = tokenizer("Given a table named salaries and columns id, created_at, salary, age. Creates a SQL to answer What is the average salary for 22 years old:", return_tensors='pt') out = model.generate(**prompt, min_length=10, do_sample=True) tokenizer.decode(out[0]) ```
pyronear/mobilenet_v3_large
978a0ff4419da465d71361a700e0dd0290cac291
2022-07-17T23:48:57.000Z
[ "pytorch", "onnx", "dataset:pyronear/openfire", "arxiv:1905.02244", "transformers", "image-classification", "license:apache-2.0" ]
image-classification
false
pyronear
null
pyronear/mobilenet_v3_large
13
null
transformers
10,388
--- license: apache-2.0 tags: - image-classification - pytorch - onnx datasets: - pyronear/openfire --- # MobileNet V3 - Large model Pretrained on a dataset for wildfire binary classification (soon to be shared). The MobileNet V3 architecture was introduced in [this paper](https://arxiv.org/pdf/1905.02244.pdf). ## Model description The core idea of the author is to simplify the final stage, while using SiLU as activations and making Squeeze-and-Excite blocks larger. ## Installation ### Prerequisites Python 3.6 (or higher) and [pip](https://pip.pypa.io/en/stable/)/[conda](https://docs.conda.io/en/latest/miniconda.html) are required to install PyroVision. ### Latest stable release You can install the last stable release of the package using [pypi](https://pypi.org/project/pyrovision/) as follows: ```shell pip install pyrovision ``` or using [conda](https://anaconda.org/pyronear/pyrovision): ```shell conda install -c pyronear pyrovision ``` ### Developer mode Alternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install [Git](https://git-scm.com/book/en/v2/Getting-Started-Installing-Git) first)*: ```shell git clone https://github.com/pyronear/pyro-vision.git pip install -e pyro-vision/. ``` ## Usage instructions ```python from PIL import Image from torchvision.transforms import Compose, ConvertImageDtype, Normalize, PILToTensor, Resize from torchvision.transforms.functional import InterpolationMode from pyrovision.models import model_from_hf_hub model = model_from_hf_hub("pyronear/mobilenet_v3_large").eval() img = Image.open(path_to_an_image).convert("RGB") # Preprocessing config = model.default_cfg transform = Compose([ Resize(config['input_shape'][1:], interpolation=InterpolationMode.BILINEAR), PILToTensor(), ConvertImageDtype(torch.float32), Normalize(config['mean'], config['std']) ]) input_tensor = transform(img).unsqueeze(0) # Inference with torch.inference_mode(): output = model(input_tensor) probs = output.squeeze(0).softmax(dim=0) ``` ## Citation Original paper ```bibtex @article{DBLP:journals/corr/abs-1905-02244, author = {Andrew Howard and Mark Sandler and Grace Chu and Liang{-}Chieh Chen and Bo Chen and Mingxing Tan and Weijun Wang and Yukun Zhu and Ruoming Pang and Vijay Vasudevan and Quoc V. Le and Hartwig Adam}, title = {Searching for MobileNetV3}, journal = {CoRR}, volume = {abs/1905.02244}, year = {2019}, url = {http://arxiv.org/abs/1905.02244}, eprinttype = {arXiv}, eprint = {1905.02244}, timestamp = {Thu, 27 May 2021 16:20:51 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-1905-02244.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` Source of this implementation ```bibtex @software{chintala_torchvision_2017, author = {Chintala, Soumith}, month = {4}, title = {{Torchvision}}, url = {https://github.com/pytorch/vision}, year = {2017} } ```
Aktsvigun/bart-base_abssum_scisummnet_23419
3229c7c52ba662181456b75739b74ed8450d68d1
2022-07-18T08:09:41.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_abssum_scisummnet_23419
13
null
transformers
10,389
Entry not found
Albe/housing-categories
bda03fbcd40529a0be85dbb32b23327f6a5b0289
2022-07-18T09:37:40.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "huggingpics", "model-index" ]
image-classification
false
Albe
null
Albe/housing-categories
13
null
transformers
10,390
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: housing-categories results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.875 --- # housing-categories Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### caravan ![caravan](images/caravan.jpg) #### castle ![castle](images/castle.jpg) #### farm ![farm](images/farm.jpg) #### tree house ![tree house](images/tree_house.jpg) #### yurt ![yurt](images/yurt.jpg)
icity/distilgpt2-finetuned-wikitext2
e656aca732aa03bf32fe95fbda803cedeba20c09
2022-07-28T13:14:53.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers" ]
text-generation
false
icity
null
icity/distilgpt2-finetuned-wikitext2
13
null
transformers
10,391
Entry not found
shivaniNK8/t5-small-finetuned-cnn-news
1b1c41d48ecacf083dd31932f0ab32dbb07622b3
2022-07-19T02:37:27.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:cnn_dailymail", "transformers", "summarization", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
summarization
false
shivaniNK8
null
shivaniNK8/t5-small-finetuned-cnn-news
13
null
transformers
10,392
--- license: apache-2.0 tags: - summarization - generated_from_trainer datasets: - cnn_dailymail metrics: - rouge model-index: - name: t5-small-finetuned-cnn-news results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: cnn_dailymail type: cnn_dailymail args: 3.0.0 metrics: - name: Rouge1 type: rouge value: 24.7231 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-cnn-news This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the cnn_dailymail dataset. It achieves the following results on the evaluation set: - Loss: 1.8412 - Rouge1: 24.7231 - Rouge2: 12.292 - Rougel: 20.5347 - Rougelsum: 23.4668 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00056 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | 2.0318 | 1.0 | 718 | 1.8028 | 24.5415 | 12.0907 | 20.5343 | 23.3386 | | 1.8307 | 2.0 | 1436 | 1.8028 | 24.0965 | 11.6367 | 20.2078 | 22.8138 | | 1.6881 | 3.0 | 2154 | 1.8136 | 25.0822 | 12.6509 | 20.9523 | 23.8303 | | 1.5778 | 4.0 | 2872 | 1.8269 | 24.4271 | 11.8443 | 20.2281 | 23.0941 | | 1.501 | 5.0 | 3590 | 1.8412 | 24.7231 | 12.292 | 20.5347 | 23.4668 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
huggingtweets/yashar
ef6b071da5f5ec0ed0bbfb9ae2865e70f78247de
2022-07-19T02:12:11.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/yashar
13
null
transformers
10,393
--- language: en thumbnail: http://www.huggingtweets.com/yashar/1658196662556/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1475314622332764161/tzLI4Zeb_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Yashar Ali 🐘</div> <div style="text-align: center; font-size: 14px;">@yashar</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Yashar Ali 🐘. | Data | Yashar Ali 🐘 | | --- | --- | | Tweets downloaded | 3230 | | Retweets | 1355 | | Short tweets | 332 | | Tweets kept | 1543 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3n7cco99/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @yashar's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/ms5g8tc6) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/ms5g8tc6/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/yashar') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
jinwooChoi/SKKU_AP_SA_KBT1
5cb5768b38da70791b8d525597f692bc875a12a9
2022-07-25T05:47:00.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
jinwooChoi
null
jinwooChoi/SKKU_AP_SA_KBT1
13
null
transformers
10,394
Entry not found
nloc2578/3.4
80aa62a34920ecc6d33daef16aa0ea95b9761d37
2022-07-19T10:19:43.000Z
[ "pytorch", "tensorboard", "pegasus", "text2text-generation", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
nloc2578
null
nloc2578/3.4
13
null
transformers
10,395
--- tags: - generated_from_trainer model-index: - name: '3.4' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 3.4 This model is a fine-tuned version of [google/pegasus-xsum](https://huggingface.co/google/pegasus-xsum) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.4891 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 150 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.915 | 0.11 | 1000 | 1.6700 | | 1.761 | 0.22 | 2000 | 1.5926 | | 1.6732 | 0.33 | 3000 | 1.5583 | | 1.67 | 0.45 | 4000 | 1.5301 | | 1.6782 | 0.56 | 5000 | 1.5151 | | 1.6471 | 0.67 | 6000 | 1.4972 | | 1.5983 | 0.78 | 7000 | 1.4906 | | 1.5889 | 0.89 | 8000 | 1.4891 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Tokenizers 0.12.1
nev/byt5-song-lyrics
3208b735c440e7cf889f6ff388d781177a054b19
2022-07-20T10:46:34.000Z
[ "pytorch", "t5", "text2text-generation", "en", "transformers", "music", "byt5", "license:isc", "autotrain_compatible" ]
text2text-generation
false
nev
null
nev/byt5-song-lyrics
13
null
transformers
10,396
--- language: - en tags: - music - t5 - byt5 license: "isc" metrics: - accuracy --- # ByT5 Song Lyrics This is a Seq2Seq model trained on a karaoke dataset to predict syllables with pitch and timing from song lyrics. As of writing, the model has only been trained on 1/2 of the full dataset. Expect the quality to improve later. The Huggingface demo seems to produce outputs with a small sequence length. So what you see on the right will only make a prediction for the first two syllables.
figurative-nlp/English-Simile-Generation
33e1eec96b3c42559433b2e69fcf1393d91102ac
2022-07-20T01:54:41.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
figurative-nlp
null
figurative-nlp/English-Simile-Generation
13
null
transformers
10,397
English-Simile-Generation is a seq2seq paraphrase model which can transform sentence A to sentence B containing figurative or simile expression. A: Now I feel sad to see your scientific research progress is so slow. B: Now I feel sad to see your scientific research progress is as slow as snail. **To our knowledge, our model have better performance,diversity and practicability compared to EMNLP21 paper (Generating similes effortlessly like a Pro: A Style Transfer Approach for Simile Generation). ** from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("figurative-nlp/English-Simile-Generation") model = AutoModelForSeq2SeqLM.from_pretrained("figurative-nlp/Ehinese-Simile-Generation") input_ids = tokenizer( "Adrenaline shot through him powerful", return_tensors="pt" ).input_ids outputs = model.generate(input_ids,num_beams = 5,max_length = 64) result = tokenizer.decode(outputs[0], skip_special_tokens=True) print(result) #result : Adrenaline shot through him like an electric current
ClassCat/gpt2-small-greek-v2
a6aeea86d42eee665b1195f2f5776078d370fbb2
2022-07-23T09:26:00.000Z
[ "pytorch", "gpt2", "text-generation", "el", "dataset:cc100", "dataset:oscar", "dataset:wikipedia", "transformers", "license:cc-by-sa-4.0" ]
text-generation
false
ClassCat
null
ClassCat/gpt2-small-greek-v2
13
1
transformers
10,398
--- language: el license: cc-by-sa-4.0 datasets: - cc100 - oscar - wikipedia widget: - text: "Αυτό είναι ένα" - text: "Ανοιξα την" - text: "Ευχαριστώ για το" - text: "Έχει πολύ καιρό που δεν έχουμε" --- ## Greek GPT2 small model Version 2 (Uncased) ### Prerequisites transformers==4.19.2 ### Model architecture This model uses approximately half the size of GPT2 base model parameters. ### Tokenizer Using BPE tokenizer with vocabulary size 50,000. ### Training Data * Subset of [CC-100/el](https://data.statmt.org/cc-100/) : Monolingual Datasets from Web Crawl Data * Subset of [oscar](https://huggingface.co/datasets/oscar) * [wiki40b/el](https://www.tensorflow.org/datasets/catalog/wiki40b#wiki40bel) (Greek Wikipedia) ### Usage ```python from transformers import pipeline generator = pipeline('text-generation', model='ClassCat/gpt2-small-greek-v2') generator("Αυτό είναι ένα", max_length=50, num_return_sequences=5) ```
CennetOguz/gpt2-kit-st
1a8daec4d4ea0eae8d87371690eaf65b61524da6
2022-07-20T09:47:18.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-generation
false
CennetOguz
null
CennetOguz/gpt2-kit-st
13
null
transformers
10,399
--- license: mit tags: - generated_from_trainer model-index: - name: gpt2-kit-st results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-kit-st This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 94.6020 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 3 | 102.7407 | | No log | 2.0 | 6 | 102.7407 | | No log | 3.0 | 9 | 94.6020 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0a0+17540c5 - Datasets 2.3.2 - Tokenizers 0.12.1