modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
list
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
Helsinki-NLP/opus-mt-wls-en
be27f9d60a91dcf8571b7c23f90f41f375fe9bec
2021-09-11T10:52:08.000Z
[ "pytorch", "marian", "text2text-generation", "wls", "en", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-wls-en
13
null
transformers
10,100
--- tags: - translation license: apache-2.0 --- ### opus-mt-wls-en * source languages: wls * target languages: en * OPUS readme: [wls-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/wls-en/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/wls-en/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/wls-en/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/wls-en/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.wls.en | 31.8 | 0.471 |
Helsinki-NLP/opus-mt-zh-bg
3e0338a917b3900ae60979ce384ca2d40a8d4b85
2020-08-21T14:42:52.000Z
[ "pytorch", "marian", "text2text-generation", "zh", "bg", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-zh-bg
13
null
transformers
10,101
--- language: - zh - bg tags: - translation license: apache-2.0 --- ### zho-bul * source group: Chinese * target group: Bulgarian * OPUS readme: [zho-bul](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/zho-bul/README.md) * model: transformer * source language(s): cmn cmn_Hans cmn_Hant zho zho_Hans zho_Hant * target language(s): bul * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-07-03.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/zho-bul/opus-2020-07-03.zip) * test set translations: [opus-2020-07-03.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zho-bul/opus-2020-07-03.test.txt) * test set scores: [opus-2020-07-03.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zho-bul/opus-2020-07-03.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.cmn_Hani.bul | 29.6 | 0.497 | | Tatoeba-test.zho.bul | 29.6 | 0.497 | ### System Info: - hf_name: zho-bul - source_languages: zho - target_languages: bul - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/zho-bul/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['zh', 'bg'] - src_constituents: {'cmn_Hans', 'nan', 'nan_Hani', 'gan', 'yue', 'cmn_Kana', 'yue_Hani', 'wuu_Bopo', 'cmn_Latn', 'yue_Hira', 'cmn_Hani', 'cjy_Hans', 'cmn', 'lzh_Hang', 'lzh_Hira', 'cmn_Hant', 'lzh_Bopo', 'zho', 'zho_Hans', 'zho_Hant', 'lzh_Hani', 'yue_Hang', 'wuu', 'yue_Kana', 'wuu_Latn', 'yue_Bopo', 'cjy_Hant', 'yue_Hans', 'lzh', 'cmn_Hira', 'lzh_Yiii', 'lzh_Hans', 'cmn_Bopo', 'cmn_Hang', 'hak_Hani', 'cmn_Yiii', 'yue_Hant', 'lzh_Kana', 'wuu_Hani'} - tgt_constituents: {'bul', 'bul_Latn'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/zho-bul/opus-2020-07-03.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/zho-bul/opus-2020-07-03.test.txt - src_alpha3: zho - tgt_alpha3: bul - short_pair: zh-bg - chrF2_score: 0.49700000000000005 - bleu: 29.6 - brevity_penalty: 0.883 - ref_len: 3113.0 - src_name: Chinese - tgt_name: Bulgarian - train_date: 2020-07-03 - src_alpha2: zh - tgt_alpha2: bg - prefer_old: False - long_pair: zho-bul - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
HeyLucasLeao/byt5-small-pt-product-reviews
0282af39a678cf016a1ce451a814d5a6f738a788
2021-08-25T17:02:07.000Z
[ "pytorch", "t5", "text2text-generation", "arxiv:2105.13626", "transformers", "autotrain_compatible" ]
text2text-generation
false
HeyLucasLeao
null
HeyLucasLeao/byt5-small-pt-product-reviews
13
null
transformers
10,102
Create README.md ## ByT5 Small Portuguese Product Reviews #### Model Description This is a finetuned version from ByT5 Small by Google for Sentimental Analysis from Product Reviews in Portuguese. ##### Paper: https://arxiv.org/abs/2105.13626 #### Training data It was trained from products reviews from a Americanas.com. You can found the data here: https://github.com/HeyLucasLeao/finetuning-byt5-model. #### Training Procedure It was finetuned using the Trainer Class available on the Hugging Face library. For evaluation it was used accuracy, precision, recall and f1 score. ##### Learning Rate: **1e-4** ##### Epochs: **1** ##### Colab for Finetuning: https://colab.research.google.com/drive/1EChTeQkGeXi_52lClBNazHVuSNKEHN2f ##### Colab for Metrics: https://colab.research.google.com/drive/1o4tcsP3lpr1TobtE3Txhp9fllxPWXxlw#scrollTo=PXAoog5vQaTn #### Score: ```python Training Set: 'accuracy': 0.8974239585927603, 'f1': 0.927229848590765, 'precision': 0.9580290812115055, 'recall': 0.8983492356469835 Test Set: 'accuracy': 0.8957881282882026, 'f1': 0.9261366030421776, 'precision': 0.9559431131213848, 'recall': 0.8981326359661668 Validation Set: 'accuracy': 0.8925383190163382, 'f1': 0.9239208204149773, 'precision': 0.9525448733710351, 'recall': 0.8969668904839083 ``` #### Goals My true intention was totally educational, thus making available a this version of the model as a example for future proposes. How to use ``` python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM import torch if torch.cuda.is_available(): device = torch.device('cuda') else: device = torch.device('cpu') print(device) tokenizer = AutoTokenizer.from_pretrained("HeyLucasLeao/byt5-small-pt-product-reviews") model = AutoModelForSeq2SeqLM.from_pretrained("HeyLucasLeao/byt5-small-pt-product-reviews") model.to(device) def classificar_review(review): inputs = tokenizer([review], padding='max_length', truncation=True, max_length=512, return_tensors='pt') input_ids = inputs.input_ids.to(device) attention_mask = inputs.attention_mask.to(device) output = model.generate(input_ids, attention_mask=attention_mask) pred = np.argmax(output.cpu(), axis=1) dici = {0: 'Review Negativo', 1: 'Review Positivo'} return dici[pred.item()] classificar_review(review) ```
HueyNemud/berties
449ee926f5b7b92d0388c6a03575dad62f748ba9
2022-02-08T08:47:31.000Z
[ "pytorch", "camembert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
HueyNemud
null
HueyNemud/berties
13
null
transformers
10,103
Entry not found
Javel/linkedin_post_t5
d1ccb77e221bad4f009af0fb30c622bb5a9ee248
2021-06-23T02:28:31.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Javel
null
Javel/linkedin_post_t5
13
null
transformers
10,104
Entry not found
JaviBJ/sagemaker-distilbert-emotion
c527510b63a65f40ee9fb69af41cca7e64c5d8a7
2021-11-17T17:02:01.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
JaviBJ
null
JaviBJ/sagemaker-distilbert-emotion
13
null
transformers
10,105
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy model-index: - name: sagemaker-distilbert-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9165 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sagemaker-distilbert-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2469 - Accuracy: 0.9165 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.9351 | 1.0 | 500 | 0.2469 | 0.9165 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.1 - Datasets 1.15.1 - Tokenizers 0.10.3
Jonesy/DialoGPT-medium_Barney
12eaf74fbdbdae5a76dae3c6d46f18de72c41c38
2022-01-06T23:36:29.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Jonesy
null
Jonesy/DialoGPT-medium_Barney
13
null
transformers
10,106
--- tags: - conversational --- # Barney Calhoun DialoGPT Model
JorisCos/VAD_Net
e5ac72157af05eea7d58eb3fef7ed78f7fa7a884
2021-11-22T17:17:23.000Z
[ "pytorch", "dataset:LibriVAD", "asteroid", "audio", "VADNet", "VAD", "Voice Activity Detection", "license:cc-by-sa-4.0" ]
null
false
JorisCos
null
JorisCos/VAD_Net
13
null
asteroid
10,107
--- tags: - asteroid - audio - VADNet - VAD - Voice Activity Detection datasets: - LibriVAD license: cc-by-sa-4.0 --- ## Asteroid model `JorisCos/VAD_Net` Description: This model was trained by Joris Cosentino using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid). It was trained on the `enh_single` task of the Libri1Mix dataset. Training config: ```yml data: segment: 3 train_dir: /home/jcosentino/VAD_dataset/metadata/sets/train.json valid_dir: /home/jcosentino/VAD_dataset/metadata/sets/dev.json filterbank: kernel_size: 16 n_filters: 512 stride: 8 main_args: exp_dir: exp/full_not_causal_f1/ help: null masknet: bn_chan: 128 causal: false hid_chan: 512 mask_act: relu n_blocks: 3 n_repeats: 5 skip_chan: 128 optim: lr: 0.001 optimizer: adam weight_decay: 0.0 positional arguments: {} training: batch_size: 8 early_stop: true epochs: 200 half_lr: true num_workers: 4 ``` Results: On LibriVAD min test set : ```yml accuracy: 0.8196149023502931, precision: 0.8305009048356607, recall: 0.8869202491310206, f1_score: 0.8426184545700124 ``` License notice: This work "VAD_Net" is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by Vassil Panayotov, used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/); of The [DNS challenge](https://github.com/microsoft/DNS-Challenge) noises, [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/). "VAD_Net" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Joris Cosentino
M-FAC/bert-mini-finetuned-qnli
bb1b578b331bd86fe4fbb0fc039cdb631a7b0d0b
2021-12-13T08:16:16.000Z
[ "pytorch", "bert", "text-classification", "arxiv:2107.03356", "transformers" ]
text-classification
false
M-FAC
null
M-FAC/bert-mini-finetuned-qnli
13
null
transformers
10,108
# BERT-mini model finetuned with M-FAC This model is finetuned on QNLI dataset with state-of-the-art second-order optimizer M-FAC. Check NeurIPS 2021 paper for more details on M-FAC: [https://arxiv.org/pdf/2107.03356.pdf](https://arxiv.org/pdf/2107.03356.pdf). ## Finetuning setup For fair comparison against default Adam baseline, we finetune the model in the same framework as described here [https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification](https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification) and just swap Adam optimizer with M-FAC. Hyperparameters used by M-FAC optimizer: ```bash learning rate = 1e-4 number of gradients = 1024 dampening = 1e-6 ``` ## Results We share the best model out of 5 runs with the following score on QNLI validation set: ```bash accuracy = 83.90 ``` Mean and standard deviation for 5 runs on QNLI validation set: | | Accuracy | |:----:|:-----------:| | Adam | 83.85 ± 0.10 | | M-FAC | 83.70 ± 0.13 | Results can be reproduced by adding M-FAC optimizer code in [https://github.com/huggingface/transformers/blob/master/examples/pytorch/text-classification/run_glue.py](https://github.com/huggingface/transformers/blob/master/examples/pytorch/text-classification/run_glue.py) and running the following bash script: ```bash CUDA_VISIBLE_DEVICES=0 python run_glue.py \ --seed 8276 \ --model_name_or_path prajjwal1/bert-mini \ --task_name qnli \ --do_train \ --do_eval \ --max_seq_length 128 \ --per_device_train_batch_size 32 \ --learning_rate 1e-4 \ --num_train_epochs 5 \ --output_dir out_dir/ \ --optim MFAC \ --optim_args '{"lr": 1e-4, "num_grads": 1024, "damp": 1e-6}' ``` We believe these results could be improved with modest tuning of hyperparameters: `per_device_train_batch_size`, `learning_rate`, `num_train_epochs`, `num_grads` and `damp`. For the sake of fair comparison and a robust default setup we use the same hyperparameters across all models (`bert-tiny`, `bert-mini`) and all datasets (SQuAD version 2 and GLUE). Our code for M-FAC can be found here: [https://github.com/IST-DASLab/M-FAC](https://github.com/IST-DASLab/M-FAC). A step-by-step tutorial on how to integrate and use M-FAC with any repository can be found here: [https://github.com/IST-DASLab/M-FAC/tree/master/tutorials](https://github.com/IST-DASLab/M-FAC/tree/master/tutorials). ## BibTeX entry and citation info ```bibtex @article{frantar2021m, title={M-FAC: Efficient Matrix-Free Approximations of Second-Order Information}, author={Frantar, Elias and Kurtic, Eldar and Alistarh, Dan}, journal={Advances in Neural Information Processing Systems}, volume={35}, year={2021} } ```
M47Labs/it_iptc
e9fc9a2e2575adad2717b7b18974ac774ca3114a
2021-10-21T10:01:31.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
M47Labs
null
M47Labs/it_iptc
13
3
transformers
10,109
Entry not found
Maelstrom77/roberta-large-qqp
823f48f64e13d9de3e48510716ec9a7bb323a31e
2021-10-04T14:49:15.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
Maelstrom77
null
Maelstrom77/roberta-large-qqp
13
null
transformers
10,110
Entry not found
Maelstrom77/roberta-large-snli
baf82f2ef15463f9393fa8ff9cdf65c0ae7ab41f
2021-10-04T13:33:01.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
Maelstrom77
null
Maelstrom77/roberta-large-snli
13
null
transformers
10,111
Entry not found
Matthijsvanhof/bert-base-dutch-cased-finetuned-NER8
f9b4d5f20958a8384f975495050c22f6174add02
2021-11-27T23:02:08.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
token-classification
false
Matthijsvanhof
null
Matthijsvanhof/bert-base-dutch-cased-finetuned-NER8
13
null
transformers
10,112
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-dutch-cased-finetuned-NER8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-dutch-cased-finetuned-NER8 This model is a fine-tuned version of [GroNLP/bert-base-dutch-cased](https://huggingface.co/GroNLP/bert-base-dutch-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1482 - Precision: 0.4716 - Recall: 0.4359 - F1: 0.4530 - Accuracy: 0.9569 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 68 | 0.1705 | 0.3582 | 0.3488 | 0.3535 | 0.9475 | | No log | 2.0 | 136 | 0.1482 | 0.4716 | 0.4359 | 0.4530 | 0.9569 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Tokenizers 0.10.3
Media1129/keyword-tag-model-4000
b9fd203e646058b841915c41eac447d5db4211f5
2021-08-30T04:49:52.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
Media1129
null
Media1129/keyword-tag-model-4000
13
null
transformers
10,113
Entry not found
MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-French
5a3e6bcb5cb6ec68d4a596bfe026191da0dc9022
2021-07-05T15:56:43.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "fr", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
MehdiHosseiniMoghadam
null
MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-French
13
null
transformers
10,114
--- language: fr datasets: - common_voice tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: wav2vec2-large-xlsr-53-French by Mehdi Hosseini Moghadam results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice fr type: common_voice args: fr metrics: - name: Test WER type: wer value: 34.856015 --- # wav2vec2-large-xlsr-53-French Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in French using the [Common Voice](https://huggingface.co/datasets/common_voice) When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "fr", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-French") model = Wav2Vec2ForCTC.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-French") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the French test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "fr", split="test[:10%]") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-French") model = Wav2Vec2ForCTC.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-French") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 34.856015 % ## Training 10% of the Common Voice `train`, `validation` datasets were used for training. ## Testing 10% of the Common Voice `Test` dataset were used for training.
NoLawz/DialoGPT-medium-spongebob
721ef0f41e0e928acda25a53e6f907c48602993d
2021-08-27T06:18:34.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
NoLawz
null
NoLawz/DialoGPT-medium-spongebob
13
null
transformers
10,115
--- tags: - conversational --- # Spong Bob DialoGPT medium model
Nymiz/eus-es
cf34d3019721eca655b3611bd903e701adcad01d
2022-02-15T12:23:21.000Z
[ "pytorch", "bert", "token-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
Nymiz
null
Nymiz/eus-es
13
null
transformers
10,116
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test This model is a fine-tuned version of [bert-base-multilingual-uncased](https://huggingface.co/bert-base-multilingual-uncased) on the [Euskera-Spanish](https://huggingface.co/datasets/Nymiz/euskera-spanish) dataset. It achieves the following results on the evaluation set: - Loss: 0.0439 - Precision: 0.9565 - Recall: 0.9429 - F1: 0.9496 - Accuracy: 0.9931 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 40 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 14 | 0.4269 | 0.0 | 0.0 | 0.0 | 0.8945 | | No log | 2.0 | 28 | 0.1628 | 0.5143 | 0.5143 | 0.5143 | 0.9599 | | No log | 3.0 | 42 | 0.0969 | 0.7730 | 0.7786 | 0.7758 | 0.9815 | | No log | 4.0 | 56 | 0.0550 | 0.7267 | 0.7786 | 0.7517 | 0.9890 | | No log | 5.0 | 70 | 0.0582 | 0.8643 | 0.8643 | 0.8643 | 0.9894 | | No log | 6.0 | 84 | 0.0420 | 0.8936 | 0.9 | 0.8968 | 0.9918 | | No log | 7.0 | 98 | 0.0314 | 0.8690 | 0.9 | 0.8842 | 0.9931 | | No log | 8.0 | 112 | 0.0396 | 0.8601 | 0.8786 | 0.8693 | 0.9911 | | No log | 9.0 | 126 | 0.0476 | 0.9 | 0.9 | 0.9 | 0.9924 | | No log | 10.0 | 140 | 0.0510 | 0.8881 | 0.9071 | 0.8975 | 0.9921 | | No log | 11.0 | 154 | 0.0523 | 0.9270 | 0.9071 | 0.9170 | 0.9916 | | No log | 12.0 | 168 | 0.0391 | 0.9034 | 0.9357 | 0.9193 | 0.9928 | | No log | 13.0 | 182 | 0.0378 | 0.9167 | 0.9429 | 0.9296 | 0.9928 | | No log | 14.0 | 196 | 0.0419 | 0.9161 | 0.9357 | 0.9258 | 0.9926 | | No log | 15.0 | 210 | 0.0490 | 0.9286 | 0.9286 | 0.9286 | 0.9921 | | No log | 16.0 | 224 | 0.0526 | 0.9155 | 0.9286 | 0.9220 | 0.9918 | | No log | 17.0 | 238 | 0.0504 | 0.9091 | 0.9286 | 0.9187 | 0.9916 | | No log | 18.0 | 252 | 0.0516 | 0.9149 | 0.9214 | 0.9181 | 0.9923 | | No log | 19.0 | 266 | 0.0497 | 0.9291 | 0.9357 | 0.9324 | 0.9926 | | No log | 20.0 | 280 | 0.0599 | 0.9220 | 0.9286 | 0.9253 | 0.9916 | | No log | 21.0 | 294 | 0.0548 | 0.9281 | 0.9214 | 0.9247 | 0.9923 | | No log | 22.0 | 308 | 0.0430 | 0.9424 | 0.9357 | 0.9391 | 0.9934 | | No log | 23.0 | 322 | 0.0439 | 0.9565 | 0.9429 | 0.9496 | 0.9931 | | No log | 24.0 | 336 | 0.0501 | 0.9565 | 0.9429 | 0.9496 | 0.9931 | | No log | 25.0 | 350 | 0.0462 | 0.9496 | 0.9429 | 0.9462 | 0.9929 | | No log | 26.0 | 364 | 0.0479 | 0.9565 | 0.9429 | 0.9496 | 0.9931 | | No log | 27.0 | 378 | 0.0496 | 0.9429 | 0.9429 | 0.9429 | 0.9924 | | No log | 28.0 | 392 | 0.0446 | 0.9565 | 0.9429 | 0.9496 | 0.9931 | | No log | 29.0 | 406 | 0.0447 | 0.9496 | 0.9429 | 0.9462 | 0.9932 | | No log | 30.0 | 420 | 0.0491 | 0.9496 | 0.9429 | 0.9462 | 0.9928 | | No log | 31.0 | 434 | 0.0430 | 0.9167 | 0.9429 | 0.9296 | 0.9934 | | No log | 32.0 | 448 | 0.0530 | 0.9496 | 0.9429 | 0.9462 | 0.9929 | | No log | 33.0 | 462 | 0.0547 | 0.9496 | 0.9429 | 0.9462 | 0.9928 | | No log | 34.0 | 476 | 0.0515 | 0.9429 | 0.9429 | 0.9429 | 0.9929 | | No log | 35.0 | 490 | 0.0533 | 0.9429 | 0.9429 | 0.9429 | 0.9929 | | 0.0625 | 36.0 | 504 | 0.0543 | 0.9496 | 0.9429 | 0.9462 | 0.9928 | | 0.0625 | 37.0 | 518 | 0.0545 | 0.9496 | 0.9429 | 0.9462 | 0.9928 | | 0.0625 | 38.0 | 532 | 0.0545 | 0.9357 | 0.9357 | 0.9357 | 0.9924 | | 0.0625 | 39.0 | 546 | 0.0548 | 0.9357 | 0.9357 | 0.9357 | 0.9923 | | 0.0625 | 40.0 | 560 | 0.0549 | 0.9357 | 0.9357 | 0.9357 | 0.9923 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
PereLluis13/Wav2Vec2-Large-XLSR-53-catalan
5f98c04c12ee1573d3d4ee585da42638ed7de643
2022-03-29T08:51:28.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "ca", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
PereLluis13
null
PereLluis13/Wav2Vec2-Large-XLSR-53-catalan
13
null
transformers
10,117
--- language: ca datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: Catalan XLSR Wav2Vec Large 53 #TODO: replace {human_readable_name} with a name of your model as it should appear on the leaderboard. It could be something like `Elgeish XLSR Wav2Vec2 Large 53` results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice ca type: common_voice args: ca #TODO: metrics: - name: Test WER type: wer value: 8.11 --- # Disclaimer This model was trained on Common Voice 6, if you need a catalan model for ASR, I recommend checking [wav2vec2-xls-r-1b-ca-lm](https://huggingface.co/PereLluis13/wav2vec2-xls-r-1b-ca-lm) which is a 1b model with a LM on top trained on CV8+ with much better performance or [wav2vec2-xls-r-300m-ca-lm](https://huggingface.co/PereLluis13/wav2vec2-xls-r-300m-ca-lm) which has the same size (300m) as this model but trained on CV8+ and the same LM. # Wav2Vec2-Large-XLSR-53-ca Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on catalan using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "ca", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("PereLluis13/Wav2Vec2-Large-XLSR-53-catalan") model = Wav2Vec2ForCTC.from_pretrained("PereLluis13/Wav2Vec2-Large-XLSR-53-catalan") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the catalan test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "ca", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("PereLluis13/Wav2Vec2-Large-XLSR-53-catalan") model = Wav2Vec2ForCTC.from_pretrained("PereLluis13/Wav2Vec2-Large-XLSR-53-catalan") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\;\:\"\“]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) import jiwer # Chunk WER computation due to memory issues, taken from https://huggingface.co/pcuenq/wav2vec2-large-xlsr-53-es def chunked_wer(targets, predictions, chunk_size=None): if chunk_size is None: return jiwer.wer(targets, predictions) start = 0 end = chunk_size H, S, D, I = 0, 0, 0, 0 while start < len(targets): chunk_metrics = jiwer.compute_measures(targets[start:end], predictions[start:end]) H = H + chunk_metrics["hits"] S = S + chunk_metrics["substitutions"] D = D + chunk_metrics["deletions"] I = I + chunk_metrics["insertions"] start += chunk_size end += chunk_size return float(S + D + I) / float(H + S + D) print("WER: {:2f}".format(100 * chunked_wer(result["sentence"], result["pred_strings"], chunk_size=4000))) ``` **Test Result**: 8.11 % ## Training The Common Voice `train`, `validation` datasets were used for training. At the second epoch training was halted due to a memory issue, and was continued with lower batch size, but acc. gradient steps were scaled to keep it at 32 batch size during all training. Then the model was trained for an additional 10 epochs where half the male samples were pitched up. The script used for training can be found [here](https://github.com/huggingface/transformers/blob/master/examples/research_projects/wav2vec2/run_common_voice.py). Slight modifications were done in order to speed up the ordering by length during training, which can be found [here](https://discuss.huggingface.co/t/spanish-asr-fine-tuning-wav2vec2/4586/6). Another version trained for catalan can be found [here](https://huggingface.co/ccoreilly/wav2vec2-large-xlsr-catala), which may be better than this one since it was trained with extra data and for longer time. Whoever, since it used different splits that include part of the Common Voice test set, this version can be used to get a baseline on the Common Voice dataset.
PinoCorgi/DialoGPT-small-Shrek1
deb3157ed384de337a96be13c93cb72dac5c5242
2022-02-02T12:56:42.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
PinoCorgi
null
PinoCorgi/DialoGPT-small-Shrek1
13
null
transformers
10,118
--- tags: - conversational --- @ Shrek DialoGPT Model
PubChimps/dlfBERT
22e61b852e1ee6444cc38044662d2f9b4064c695
2021-05-20T12:18:47.000Z
[ "pytorch", "jax", "roberta", "text-classification", "transformers" ]
text-classification
false
PubChimps
null
PubChimps/dlfBERT
13
null
transformers
10,119
Entry not found
SEBIS/code_trans_t5_base_code_comment_generation_java_multitask
15fbff39a195ffe8efa1414ce8aab8c4a920e462
2021-06-23T04:06:42.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_base_code_comment_generation_java_multitask
13
null
transformers
10,120
--- tags: - summarization widget: - text: "protected String renderUri ( URI uri ) { return uri . toASCIIString ( ) ; }" --- # CodeTrans model for code comment generation java Pretrained model on programming language java using the t5 base model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized java code functions: it works best with tokenized java functions. ## Model description This CodeTrans model is based on the `t5-base` model. It has its own SentencePiece vocabulary model. It used multi-task training on 13 supervised tasks in the software development domain and 7 unsupervised datasets. ## Intended uses & limitations The model could be used to generate the description for the java function or be fine-tuned on other java code tasks. It can be used on unparsed and untokenized java code. However, if the java code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate java function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_base_code_comment_generation_java_multitask"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_base_code_comment_generation_java_multitask", skip_special_tokens=True), device=0 ) tokenized_code = "protected String renderUri ( URI uri ) { return uri . toASCIIString ( ) ; }" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/multitask/pre-training/code%20comment%20generation/base_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Multi-task Pretraining The model was trained on a single TPU Pod V3-8 for 460,000 steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Java | | -------------------- | :------------: | | CodeTrans-ST-Small | 37.98 | | CodeTrans-ST-Base | 38.07 | | CodeTrans-TF-Small | 38.56 | | CodeTrans-TF-Base | 39.06 | | CodeTrans-TF-Large | **39.50** | | CodeTrans-MT-Small | 20.15 | | CodeTrans-MT-Base | 27.44 | | CodeTrans-MT-Large | 34.69 | | CodeTrans-MT-TF-Small | 38.37 | | CodeTrans-MT-TF-Base | 38.90 | | CodeTrans-MT-TF-Large | 39.25 | | State of the art | 38.17 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_base_code_comment_generation_java_transfer_learning_finetune
f7499ff947275c82c0f79f908ce0d56912851026
2021-06-23T04:10:25.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_base_code_comment_generation_java_transfer_learning_finetune
13
null
transformers
10,121
--- tags: - summarization widget: - text: "protected String renderUri ( URI uri ) { return uri . toASCIIString ( ) ; }" --- # CodeTrans model for code comment generation java Pretrained model on programming language java using the t5 base model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized java code functions: it works best with tokenized java functions. ## Model description This CodeTrans model is based on the `t5-base` model. It has its own SentencePiece vocabulary model. It used transfer-learning pre-training on 7 unsupervised datasets in the software development domain. It is then fine-tuned on the code comment generation task for the java function/method. ## Intended uses & limitations The model could be used to generate the description for the java function or be fine-tuned on other java code tasks. It can be used on unparsed and untokenized java code. However, if the java code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate java function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_base_code_comment_generation_java_transfer_learning_finetune"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_base_code_comment_generation_java_transfer_learning_finetune", skip_special_tokens=True), device=0 ) tokenized_code = "protected String renderUri ( URI uri ) { return uri . toASCIIString ( ) ; }" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/transfer%20learning%20fine-tuning/code%20comment%20generation/base_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Transfer-learning Pretraining The model was trained on a single TPU Pod V3-8 for 500,000 steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Fine-tuning This model was then fine-tuned on a single TPU Pod V3-8 for 80,000 steps in total, using sequence length 512 (batch size 256), using only the dataset only containing java code. ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Java | | -------------------- | :------------: | | CodeTrans-ST-Small | 37.98 | | CodeTrans-ST-Base | 38.07 | | CodeTrans-TF-Small | 38.56 | | CodeTrans-TF-Base | 39.06 | | CodeTrans-TF-Large | **39.50** | | CodeTrans-MT-Small | 20.15 | | CodeTrans-MT-Base | 27.44 | | CodeTrans-MT-Large | 34.69 | | CodeTrans-MT-TF-Small | 38.37 | | CodeTrans-MT-TF-Base | 38.90 | | CodeTrans-MT-TF-Large | 39.25 | | State of the art | 38.17 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_base_code_documentation_generation_php
96a6e232af10ae0dba04b1c94e7e83747b66d13c
2021-06-23T04:34:53.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_base_code_documentation_generation_php
13
1
transformers
10,122
--- tags: - summarization widget: - text: "public static function update ( $ table ) { if ( ! is_array ( $ table ) ) { $ table = json_decode ( $ table , true ) ; } if ( ! SchemaManager :: tableExists ( $ table [ 'oldName' ] ) ) { throw SchemaException :: tableDoesNotExist ( $ table [ 'oldName' ] ) ; } $ updater = new self ( $ table ) ; $ updater -> updateTable ( ) ; }" --- # CodeTrans model for code documentation generation php Pretrained model on programming language php using the t5 base model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized php code functions: it works best with tokenized php functions. ## Model description This CodeTrans model is based on the `t5-base` model. It has its own SentencePiece vocabulary model. It used single-task training on CodeSearchNet Corpus php dataset. ## Intended uses & limitations The model could be used to generate the description for the php function or be fine-tuned on other php code tasks. It can be used on unparsed and untokenized php code. However, if the php code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate php function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_base_code_documentation_generation_php"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_base_code_documentation_generation_php", skip_special_tokens=True), device=0 ) tokenized_code = "public static function update ( $ table ) { if ( ! is_array ( $ table ) ) { $ table = json_decode ( $ table , true ) ; } if ( ! SchemaManager :: tableExists ( $ table [ 'oldName' ] ) ) { throw SchemaException :: tableDoesNotExist ( $ table [ 'oldName' ] ) ; } $ updater = new self ( $ table ) ; $ updater -> updateTable ( ) ; }" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/single%20task/function%20documentation%20generation/php/base_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Python | Java | Go | Php | Ruby | JavaScript | | -------------------- | :------------: | :------------: | :------------: | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 17.31 | 16.65 | 16.89 | 23.05 | 9.19 | 13.7 | | CodeTrans-ST-Base | 16.86 | 17.17 | 17.16 | 22.98 | 8.23 | 13.17 | | CodeTrans-TF-Small | 19.93 | 19.48 | 18.88 | 25.35 | 13.15 | 17.23 | | CodeTrans-TF-Base | 20.26 | 20.19 | 19.50 | 25.84 | 14.07 | 18.25 | | CodeTrans-TF-Large | 20.35 | 20.06 | **19.54** | 26.18 | 14.94 | **18.98** | | CodeTrans-MT-Small | 19.64 | 19.00 | 19.15 | 24.68 | 14.91 | 15.26 | | CodeTrans-MT-Base | **20.39** | 21.22 | 19.43 | **26.23** | **15.26** | 16.11 | | CodeTrans-MT-Large | 20.18 | **21.87** | 19.38 | 26.08 | 15.00 | 16.23 | | CodeTrans-MT-TF-Small | 19.77 | 20.04 | 19.36 | 25.55 | 13.70 | 17.24 | | CodeTrans-MT-TF-Base | 19.77 | 21.12 | 18.86 | 25.79 | 14.24 | 18.62 | | CodeTrans-MT-TF-Large | 18.94 | 21.42 | 18.77 | 26.20 | 14.19 | 18.83 | | State of the art | 19.06 | 17.65 | 18.07 | 25.16 | 12.16 | 14.90 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_large_source_code_summarization_sql_multitask
86a3356443077a006a2162422c8312ce93669825
2021-06-23T09:37:43.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_large_source_code_summarization_sql_multitask
13
null
transformers
10,123
--- tags: - summarization widget: - text: "select time ( col0 ) from tab0" --- # CodeTrans model for source code summarization sql Pretrained model on programming language sql using the t5 large model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized sql code functions: it works best with tokenized sql functions. ## Model description This CodeTrans model is based on the `t5-large` model. It has its own SentencePiece vocabulary model. It used multi-task training on 13 supervised tasks in the software development domain and 7 unsupervised datasets. ## Intended uses & limitations The model could be used to generate the description for the sql function or be fine-tuned on other sql code tasks. It can be used on unparsed and untokenized sql code. However, if the sql code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate sql function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_large_source_code_summarization_sql_multitask"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_large_source_code_summarization_sql_multitask", skip_special_tokens=True), device=0 ) tokenized_code = "select time ( col0 ) from tab0" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/multitask/pre-training/source%20code%20summarization/sql/large_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Multi-task Pretraining The model was trained on a single TPU Pod V3-8 for 120,000 steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ## Evaluation results For the source code summarization tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Python | SQL | C# | | -------------------- | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 8.45 | 17.55 | 19.74 | | CodeTrans-ST-Base | 9.12 | 15.00 | 18.65 | | CodeTrans-TF-Small | 10.06 | 17.71 | 20.40 | | CodeTrans-TF-Base | 10.94 | 17.66 | 21.12 | | CodeTrans-TF-Large | 12.41 | 18.40 | 21.43 | | CodeTrans-MT-Small | 13.11 | 19.15 | 22.39 | | CodeTrans-MT-Base | **13.37** | 19.24 | 23.20 | | CodeTrans-MT-Large | 13.24 | 19.40 | **23.57** | | CodeTrans-MT-TF-Small | 12.10 | 18.25 | 22.03 | | CodeTrans-MT-TF-Base | 10.64 | 16.91 | 21.40 | | CodeTrans-MT-TF-Large | 12.14 | **19.98** | 21.10 | | CODE-NN | -- | 18.40 | 20.50 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_small_api_generation_transfer_learning_finetune
0fbc65f12ab660e8c058a402600dabdb7ca3835d
2021-06-23T09:55:18.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_small_api_generation_transfer_learning_finetune
13
null
transformers
10,124
--- tags: - summarization widget: - text: "parse the uses licence node of this package , if any , and returns the license definition if theres" --- # CodeTrans model for api recommendation generation Pretrained model for api recommendation generation using the t5 small model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). ## Model description This CodeTrans model is based on the `t5-small` model. It has its own SentencePiece vocabulary model. It used transfer-learning pre-training on 7 unsupervised datasets in the software development domain. It is then fine-tuned on the api recommendation generation task for the java apis. ## Intended uses & limitations The model could be used to generate api usage for the java programming tasks. ### How to use Here is how to use this model to generate java function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_small_api_generation_transfer_learning_finetune"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_small_api_generation_transfer_learning_finetune", skip_special_tokens=True), device=0 ) tokenized_code = "parse the uses licence node of this package , if any , and returns the license definition if theres" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/transfer%20learning%20fine-tuning/api%20generation/small_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Transfer-learning Pretraining The model was trained on a single TPU Pod V3-8 for 1,400,000 steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Fine-tuning This model was then fine-tuned on a single TPU Pod V2-8 for 1,150,000 steps in total, using sequence length 512 (batch size 256), using only the dataset only containing api recommendation generation data. ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Java | | -------------------- | :------------: | | CodeTrans-ST-Small | 68.71 | | CodeTrans-ST-Base | 70.45 | | CodeTrans-TF-Small | 68.90 | | CodeTrans-TF-Base | 72.11 | | CodeTrans-TF-Large | 73.26 | | CodeTrans-MT-Small | 58.43 | | CodeTrans-MT-Base | 67.97 | | CodeTrans-MT-Large | 72.29 | | CodeTrans-MT-TF-Small | 69.29 | | CodeTrans-MT-TF-Base | 72.89 | | CodeTrans-MT-TF-Large | **73.39** | | State of the art | 54.42 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_small_source_code_summarization_python_multitask_finetune
9ee7704542205f68824ce6575ee028af2e823d5c
2021-06-23T10:23:12.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_small_source_code_summarization_python_multitask_finetune
13
null
transformers
10,125
--- tags: - summarization widget: - text: '''with open ( CODE_STRING , CODE_STRING ) as in_file : buf = in_file . readlines ( ) with open ( CODE_STRING , CODE_STRING ) as out_file : for line in buf : if line == " ; Include this text " : line = line + " Include below " out_file . write ( line ) ''' --- # CodeTrans model for source code summarization python Pretrained model on programming language python using the t5 small model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized python code functions: it works best with tokenized python functions. ## Model description This CodeTrans model is based on the `t5-small` model. It has its own SentencePiece vocabulary model. It used multi-task training on 13 supervised tasks in the software development domain and 7 unsupervised datasets. It is then fine-tuned on the source code summarization task for the python code snippets. ## Intended uses & limitations The model could be used to generate the description for the python function or be fine-tuned on other python code tasks. It can be used on unparsed and untokenized python code. However, if the python code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate python function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_small_source_code_summarization_python_multitask_finetune"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_small_source_code_summarization_python_multitask_finetune", skip_special_tokens=True), device=0 ) tokenized_code = '''with open ( CODE_STRING , CODE_STRING ) as in_file : buf = in_file . readlines ( ) with open ( CODE_STRING , CODE_STRING ) as out_file : for line in buf : if line == " ; Include this text " : line = line + " Include below " out_file . write ( line ) ''' pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/multitask/fine-tuning/source%20code%20summarization/python/small_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Multi-task Pretraining The model was trained on a single TPU Pod V3-8 for 500,000 steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Fine-tuning This model was then fine-tuned on a single TPU Pod V2-8 for 600 steps in total, using sequence length 512 (batch size 256), using only the dataset only containing python code. ## Evaluation results For the source code summarization tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Python | SQL | C# | | -------------------- | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 8.45 | 17.55 | 19.74 | | CodeTrans-ST-Base | 9.12 | 15.00 | 18.65 | | CodeTrans-TF-Small | 10.06 | 17.71 | 20.40 | | CodeTrans-TF-Base | 10.94 | 17.66 | 21.12 | | CodeTrans-TF-Large | 12.41 | 18.40 | 21.43 | | CodeTrans-MT-Small | 13.11 | 19.15 | 22.39 | | CodeTrans-MT-Base | **13.37** | 19.24 | 23.20 | | CodeTrans-MT-Large | 13.24 | 19.40 | **23.57** | | CodeTrans-MT-TF-Small | 12.10 | 18.25 | 22.03 | | CodeTrans-MT-TF-Base | 10.64 | 16.91 | 21.40 | | CodeTrans-MT-TF-Large | 12.14 | **19.98** | 21.10 | | CODE-NN | -- | 18.40 | 20.50 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/legal_t5_small_trans_de_en
f66662e3ea1a60ff2c4590332e6d83602ec4ae05
2021-06-23T09:27:47.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "Deustch English", "dataset:dcep europarl jrc-acquis", "transformers", "translation Deustch English model", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_trans_de_en
13
null
transformers
10,126
--- language: Deustch English tags: - translation Deustch English model datasets: - dcep europarl jrc-acquis widget: - text: "(2) Die Richtlinie 80/987/EWG des Rates(4) soll den Arbeitnehmern im Fall der Zahlungsunfähigkeit ihres Arbeitgebers einen Mindestschutz gewähren. Deshalb verpflichtet sie die Mitgliedstaaten zur Schaffung einer Einrichtung, die die Befriedigung der nicht erfuellten Arbeitnehmeransprüche garantiert." --- # legal_t5_small_trans_de_en model Model on translating legal text from Deustch to English. It was first released in [this repository](https://github.com/agemagician/LegalTrans). This model is trained on three parallel corpus from jrc-acquis, europarl and dcep. ## Model description legal_t5_small_trans_de_en is based on the `t5-small` model and was trained on a large corpus of parallel text. This is a smaller model, which scales the baseline model of t5 down by using `dmodel = 512`, `dff = 2,048`, 8-headed attention, and only 6 layers each in the encoder and decoder. This variant has about 60 million parameters. ## Intended uses & limitations The model could be used for translation of legal texts from Deustch to English. ### How to use Here is how to use this model to translate legal text from Deustch to English in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_trans_de_en"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_trans_de_en", do_lower_case=False, skip_special_tokens=True), device=0 ) de_text = "Eisenbahnunternehmen müssen Fahrkarten über mindestens einen der folgenden Vertriebswege anbieten: an Fahrkartenschaltern oder Fahrkartenautomaten, per Telefon, Internet oder jede andere in weitem Umfang verfügbare Informationstechnik oder in den Zügen." pipeline([de_text], max_length=512) ``` ## Training data The legal_t5_small_trans_de_en model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 5 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_trans_de_en | 49.1| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SEBIS/legal_t5_small_trans_it_en_small_finetuned
e37e26511d0d670a58ee1982986e604283ebf306
2021-06-23T10:01:20.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "Italian English", "dataset:dcep europarl jrc-acquis", "transformers", "translation Italian English model", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_trans_it_en_small_finetuned
13
null
transformers
10,127
--- language: Italian English tags: - translation Italian English model datasets: - dcep europarl jrc-acquis widget: - text: "Supplenti presenti al momento della votazione finale" --- # legal_t5_small_trans_it_en_small_finetuned model Model on translating legal text from Italian to English. It was first released in [this repository](https://github.com/agemagician/LegalTrans). This model is first pretrained all the translation data over some unsupervised task. Then the model is trained on three parallel corpus from jrc-acquis, europarl and dcep. ## Model description legal_t5_small_trans_it_en_small_finetuned is initially pretrained on unsupervised task with the all of the data of the training set. The unsupervised task was "masked language modelling". legal_t5_small_trans_it_en_small_finetuned is based on the `t5-small` model and was trained on a large corpus of parallel text. This is a smaller model, which scales the baseline model of t5 down by using `dmodel = 512`, `dff = 2,048`, 8-headed attention, and only 6 layers each in the encoder and decoder. This variant has about 60 million parameters. ## Intended uses & limitations The model could be used for translation of legal texts from Italian to English. ### How to use Here is how to use this model to translate legal text from Italian to English in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_trans_it_en_small_finetuned"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_trans_it_en", do_lower_case=False, skip_special_tokens=True), device=0 ) it_text = "Supplenti presenti al momento della votazione finale" pipeline([it_text], max_length=512) ``` ## Training data The legal_t5_small_trans_it_en_small_finetuned (the supervised task which involved only the corresponding langauge pair and as well as unsupervised task where all of the data of all language pairs were available) model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 9 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining The pre-training data was the combined data from all the 42 language pairs. The task for the model was to predict the portions of a sentence which were masked randomly. ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_trans_it_en_small_finetuned | 49.840| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
Sakil/imdbsentdistilbertmodel
d1d84ceb289bd1b562383a3be84f7ddd27f3269e
2022-01-16T06:54:14.000Z
[ "pytorch", "distilbert", "text-classification", "en", "transformers", "text Classification", "license:apache-2.0" ]
text-classification
false
Sakil
null
Sakil/imdbsentdistilbertmodel
13
null
transformers
10,128
--- language: - en tags: - text Classification license: apache-2.0 widget: - text: "I like you. </s></s> I love you." --- * IMDBSentimentDistilBertModel: - I have used IMDB movie review dataset to create custom model by using DistilBertForSequenceClassification. from transformers import DistilBertForSequenceClassification, Trainer, TrainingArguments model = DistilBertForSequenceClassification.from_pretrained('./imdbsentdistilbertmodel')
SauravMaheshkar/clr-finetuned-bert-large-uncased
46e4fec06da3622e3104117e50b01287ac654bb7
2021-09-23T15:57:39.000Z
[ "pytorch", "bert", "fill-mask", "dataset:Commonlit-Readibility", "transformers", "kaggle", "license:cc0-1.0", "autotrain_compatible" ]
fill-mask
false
SauravMaheshkar
null
SauravMaheshkar/clr-finetuned-bert-large-uncased
13
null
transformers
10,129
--- thumbnail: https://github.com/SauravMaheshkar/CommonLit-Readibility/blob/main/assets/CommonLit%20-%20Big%20Banner.png?raw=true tags: - kaggle license: cc0-1.0 datasets: - Commonlit-Readibility --- ![](https://github.com/SauravMaheshkar/CommonLit-Readibility/blob/main/assets/CommonLit%20-%20Big%20Banner.png?raw=true) # FineTuning | **Architecture** | **Weights** | **Training Loss** | **Validation Loss** | |:-----------------------:|:---------------:|:----------------:|:----------------------:| | roberta-base | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-finetuned-roberta-base) | **0.641** | **0.4728** | | bert-base-uncased | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-finetuned-bert-base-uncased) | 0.6781 | 0.4977 | | albert-base | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-finetuned-albert-base) | 0.7119 | 0.5155 | | xlm-roberta-base | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-finetuned-xlm-roberta-base) | 0.7225 | 0.525 | | bert-large-uncased | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-finetuned-bert-large-uncased) | 0.7482 | 0.5161 | | albert-large | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-finetuned-albert-large) | 1.075 | 0.9921 | | roberta-large | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-finetuned-roberta-large) | 2.749 | 1.075 |
SetFit/distilbert-base-uncased__sst2__train-16-4
d478815b58d84df9c998d504f66c73d149f6ebfc
2022-02-10T07:22:51.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
SetFit
null
SetFit/distilbert-base-uncased__sst2__train-16-4
13
null
transformers
10,130
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__sst2__train-16-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-16-4 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1501 - Accuracy: 0.6387 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7043 | 1.0 | 7 | 0.7139 | 0.2857 | | 0.68 | 2.0 | 14 | 0.7398 | 0.2857 | | 0.641 | 3.0 | 21 | 0.7723 | 0.2857 | | 0.5424 | 4.0 | 28 | 0.8391 | 0.2857 | | 0.5988 | 5.0 | 35 | 0.7761 | 0.2857 | | 0.3698 | 6.0 | 42 | 0.7707 | 0.4286 | | 0.3204 | 7.0 | 49 | 0.8290 | 0.4286 | | 0.2882 | 8.0 | 56 | 0.6551 | 0.5714 | | 0.1512 | 9.0 | 63 | 0.5652 | 0.5714 | | 0.1302 | 10.0 | 70 | 0.5278 | 0.5714 | | 0.1043 | 11.0 | 77 | 0.4987 | 0.7143 | | 0.0272 | 12.0 | 84 | 0.5278 | 0.5714 | | 0.0201 | 13.0 | 91 | 0.5307 | 0.5714 | | 0.0129 | 14.0 | 98 | 0.5382 | 0.5714 | | 0.0117 | 15.0 | 105 | 0.5227 | 0.5714 | | 0.0094 | 16.0 | 112 | 0.5066 | 0.7143 | | 0.0104 | 17.0 | 119 | 0.4869 | 0.7143 | | 0.0069 | 18.0 | 126 | 0.4786 | 0.7143 | | 0.0062 | 19.0 | 133 | 0.4707 | 0.7143 | | 0.0065 | 20.0 | 140 | 0.4669 | 0.7143 | | 0.0051 | 21.0 | 147 | 0.4686 | 0.7143 | | 0.0049 | 22.0 | 154 | 0.4784 | 0.7143 | | 0.0046 | 23.0 | 161 | 0.4839 | 0.7143 | | 0.0039 | 24.0 | 168 | 0.4823 | 0.7143 | | 0.0044 | 25.0 | 175 | 0.4791 | 0.7143 | | 0.0037 | 26.0 | 182 | 0.4778 | 0.7143 | | 0.0038 | 27.0 | 189 | 0.4770 | 0.7143 | | 0.0036 | 28.0 | 196 | 0.4750 | 0.7143 | | 0.0031 | 29.0 | 203 | 0.4766 | 0.7143 | | 0.0031 | 30.0 | 210 | 0.4754 | 0.7143 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
StivenLancheros/biobert-base-cased-v1.2-finetuned-ner-BioNLP13
3f77a10a6ee664b2bdf98bc714c0570f18f18024
2022-02-23T01:06:02.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
token-classification
false
StivenLancheros
null
StivenLancheros/biobert-base-cased-v1.2-finetuned-ner-BioNLP13
13
null
transformers
10,131
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: biobert-base-cased-v1.2-finetuned-ner-BioNLP13 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # biobert-base-cased-v1.2-finetuned-ner-BioNLP13 This model is a fine-tuned version of [dmis-lab/biobert-base-cased-v1.2](https://huggingface.co/dmis-lab/biobert-base-cased-v1.2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2042 - Precision: 0.9550 - Recall: 0.9559 - F1: 0.9555 - Accuracy: 0.9552 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.3114 | 1.0 | 692 | 0.1693 | 0.9453 | 0.9452 | 0.9453 | 0.9461 | | 0.1292 | 2.0 | 1384 | 0.1754 | 0.9492 | 0.9525 | 0.9509 | 0.9508 | | 0.0522 | 3.0 | 2076 | 0.1895 | 0.9529 | 0.9540 | 0.9534 | 0.9530 | | 0.032 | 4.0 | 2768 | 0.2042 | 0.9550 | 0.9559 | 0.9555 | 0.9552 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
TehranNLP-org/roberta-base-qqp-2e-5-42
d8a2f9142761e327dd555479bbf9000da06e717c
2021-08-18T01:48:30.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
TehranNLP-org
null
TehranNLP-org/roberta-base-qqp-2e-5-42
13
null
transformers
10,132
Entry not found
ThaiUWA/py_just_rumour
ebb906fa63bd5966a0379247a61607d7b3ec96b9
2021-05-21T11:24:26.000Z
[ "pytorch", "jax", "gpt2", "feature-extraction", "transformers" ]
feature-extraction
false
ThaiUWA
null
ThaiUWA/py_just_rumour
13
null
transformers
10,133
Entry not found
Tommy930/distilbert-base-uncased-finetuned-emotion
b190323c070ede64728720e02083961cd484b718
2022-02-13T04:43:26.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Tommy930
null
Tommy930/distilbert-base-uncased-finetuned-emotion
13
null
transformers
10,134
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.919 - name: F1 type: f1 value: 0.9193144250513821 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2220 - Accuracy: 0.919 - F1: 0.9193 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.7858 | 1.0 | 250 | 0.3034 | 0.9085 | 0.9073 | | 0.243 | 2.0 | 500 | 0.2220 | 0.919 | 0.9193 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
WangZeJun/roformer-sim-small-chinese
9e9b7bedbb18d2974d05a786ee0ee14b89be749d
2022-06-14T09:17:44.000Z
[ "pytorch", "transformers" ]
null
false
WangZeJun
null
WangZeJun/roformer-sim-small-chinese
13
null
transformers
10,135
https://github.com/zejunwang1/bert4vec
Wende/bert-finetuned-ner1
7c025c71ee70c563d71a15a591858524d1a25f25
2021-12-23T15:22:54.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
Wende
null
Wende/bert-finetuned-ner1
13
null
transformers
10,136
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner1 results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9285832096321953 - name: Recall type: recall value: 0.9474924267923258 - name: F1 type: f1 value: 0.9379425239483548 - name: Accuracy type: accuracy value: 0.9859009831047272 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner1 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0584 - Precision: 0.9286 - Recall: 0.9475 - F1: 0.9379 - Accuracy: 0.9859 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2183 | 1.0 | 878 | 0.0753 | 0.9087 | 0.9291 | 0.9188 | 0.9800 | | 0.0462 | 2.0 | 1756 | 0.0614 | 0.9329 | 0.9470 | 0.9399 | 0.9858 | | 0.0244 | 3.0 | 2634 | 0.0584 | 0.9286 | 0.9475 | 0.9379 | 0.9859 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.8.2+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
Wikidepia/SB-AutoSegment
56d5349e734c305764dee3937ddcc241b71e772f
2021-12-26T02:51:08.000Z
[ "pytorch", "en", "flair", "token-classification", "sequence-tagger-model" ]
token-classification
false
Wikidepia
null
Wikidepia/SB-AutoSegment
13
null
flair
10,137
--- tags: - flair - token-classification - sequence-tagger-model language: en --- # SponsorBlock Auto Segment
Wikidepia/indobert-lite-squadx
6b7593e0f8f33d8b2ca61475b1ef22c9ecab5caf
2021-03-31T13:28:04.000Z
[ "pytorch", "albert", "question-answering", "id", "transformers", "autotrain_compatible" ]
question-answering
false
Wikidepia
null
Wikidepia/indobert-lite-squadx
13
null
transformers
10,138
--- language: id widget: - text: "Kapan Einstein melepas kewarganegaraan Jerman?" context: "Setelah menghabiskan waktu satu tahun di Praha, Einstein tinggal di Swiss antara tahun 1895 dan 1914, melepas kewarganegaraan Jermannya pada tahun 1896, dan lulus sarjana dari sekolah politeknik federal Swiss (kelak Eidgenössische Technische Hochschule, ETH) di Zürich pada tahun 1900." --- # IndoBERT-Lite-SQuAD base fine-tuned on Full Translated SQuAD v2 [IndoBERT-Lite](https://huggingface.co/indobenchmark/indobert-lite-base-p2) trained by [Indo Benchmark](https://www.indobenchmark.com/) and fine-tuned on [Translated SQuAD 2.0](https://github.com/Wikidepia/indonesia_dataset/tree/master/question-answering/squad) for **Q&A** downstream task. ## Model in action Fast usage with **pipelines**: ```python from transformers import BertTokenizerFast, pipeline tokenizer = BertTokenizerFast.from_pretrained( 'Wikidepia/indobert-lite-squad' ) qa_pipeline = pipeline( "question-answering", model="Wikidepia/indobert-lite-squad", tokenizer=tokenizer ) qa_pipeline({ 'context': "Setelah menghabiskan waktu satu tahun di Praha, Einstein tinggal di Swiss antara tahun 1895 dan 1914, melepas kewarganegaraan Jermannya pada tahun 1896, dan lulus sarjana dari sekolah politeknik federal Swiss (kelak Eidgenössische Technische Hochschule, ETH) di Zürich pada tahun 1900.", 'question': "Kapan Einstein melepas kewarganegaraan Jerman?" }) ``` # Output: ```json { "score": 0.9169162511825562, "start": 147, "end": 151, "answer": "1896" } ``` README copied from [mrm8488's repository](https://huggingface.co/mrm8488/bert-tiny-finetuned-squadv2)
Worldman/distilbert-base-uncased-finetuned-emotion
f292dc243f0c210c262e7a0dde75cf6df3a0731e
2022-02-20T21:29:06.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Worldman
null
Worldman/distilbert-base-uncased-finetuned-emotion
13
null
transformers
10,139
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9225 - name: F1 type: f1 value: 0.9227046184638882 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2162 - Accuracy: 0.9225 - F1: 0.9227 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8437 | 1.0 | 250 | 0.3153 | 0.903 | 0.9005 | | 0.2467 | 2.0 | 500 | 0.2162 | 0.9225 | 0.9227 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2+cpu - Datasets 1.18.3 - Tokenizers 0.11.0
adamlin/recipe-tag-model
ba5e8ca161f3060d96d5e1ca432dc9329047d095
2021-07-25T06:33:50.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
adamlin
null
adamlin/recipe-tag-model
13
null
transformers
10,140
Entry not found
addy88/argument-classifier
85e9d628bb475aa93c109ddc96517fee5d62a881
2022-01-02T06:32:08.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
addy88
null
addy88/argument-classifier
13
null
transformers
10,141
Entry not found
adzcodez/TokenClassificationTest
cbb0edbd18f8276b455c1f37ca685007f6441531
2021-03-16T14:18:09.000Z
[ "pytorch", "distilbert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
adzcodez
null
adzcodez/TokenClassificationTest
13
null
transformers
10,142
distilbert-base-uncased finetuned on the conll2003 dataset for NER.
ajrae/bert-base-uncased-finetuned-cola
fb5d3ed8b62c494aad229a326d13c20763a70428
2022-02-21T21:40:59.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
ajrae
null
ajrae/bert-base-uncased-finetuned-cola
13
null
transformers
10,143
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: bert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5864941797290588 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-cola This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8385 - Matthews Correlation: 0.5865 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.4887 | 1.0 | 535 | 0.5016 | 0.5107 | | 0.286 | 2.0 | 1070 | 0.5473 | 0.5399 | | 0.1864 | 3.0 | 1605 | 0.7114 | 0.5706 | | 0.1163 | 4.0 | 2140 | 0.8385 | 0.5865 | | 0.0834 | 5.0 | 2675 | 0.9610 | 0.5786 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
alireza7/TRANSFORMER-persian-base-wiki-summary
73350d200502f8386796a991f94c51a125afe1dc
2021-09-29T19:27:06.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
alireza7
null
alireza7/TRANSFORMER-persian-base-wiki-summary
13
null
transformers
10,144
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
andrewlitv/distilbert-base-uncased-finetuned-cola
6a4ea00e2d87ba7421fa7e4d1d2cf0942ab3eab1
2022-06-23T14:31:04.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers" ]
text-classification
false
andrewlitv
null
andrewlitv/distilbert-base-uncased-finetuned-cola
13
null
transformers
10,145
Entry not found
anindabitm/sagemaker-distilbert-emotion
7ed8bedbc8bfdd17541452970290b79e146a3abf
2021-11-18T17:43:59.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
anindabitm
null
anindabitm/sagemaker-distilbert-emotion
13
null
transformers
10,146
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy model-index: - name: sagemaker-distilbert-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9165 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sagemaker-distilbert-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2434 - Accuracy: 0.9165 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.9423 | 1.0 | 500 | 0.2434 | 0.9165 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.1 - Datasets 1.15.1 - Tokenizers 0.10.3
aseifert/t5-base-jfleg-wi
8de73b607da012873b864af74c079b9ed10fe3dc
2021-11-19T20:42:37.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
aseifert
null
aseifert/t5-base-jfleg-wi
13
null
transformers
10,147
Entry not found
ayameRushia/roberta-base-indonesian-1.5G-sentiment-analysis-smsa
e905df12f6edea2187007c3cc41d06950cb8b9fa
2021-12-22T10:34:33.000Z
[ "pytorch", "roberta", "text-classification", "dataset:indonlu", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
ayameRushia
null
ayameRushia/roberta-base-indonesian-1.5G-sentiment-analysis-smsa
13
null
transformers
10,148
--- tags: - generated_from_trainer datasets: - indonlu metrics: - accuracy model-index: - name: roberta-base-indonesian-1.5G-sentiment-analysis-smsa results: - task: name: Text Classification type: text-classification dataset: name: indonlu type: indonlu args: smsa metrics: - name: Accuracy type: accuracy value: 0.9261904761904762 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-indonesian-1.5G-sentiment-analysis-smsa This model is a fine-tuned version of [cahya/roberta-base-indonesian-1.5G](https://huggingface.co/cahya/roberta-base-indonesian-1.5G) on the indonlu dataset. It achieves the following results on the evaluation set: - Loss: 0.4294 - Accuracy: 0.9262 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1500 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6461 | 1.0 | 688 | 0.2620 | 0.9087 | | 0.2627 | 2.0 | 1376 | 0.2291 | 0.9151 | | 0.1784 | 3.0 | 2064 | 0.2891 | 0.9167 | | 0.1099 | 4.0 | 2752 | 0.3317 | 0.9230 | | 0.0857 | 5.0 | 3440 | 0.4294 | 0.9262 | | 0.0346 | 6.0 | 4128 | 0.4759 | 0.9246 | | 0.0221 | 7.0 | 4816 | 0.4946 | 0.9206 | | 0.006 | 8.0 | 5504 | 0.5823 | 0.9175 | | 0.0047 | 9.0 | 6192 | 0.5777 | 0.9159 | | 0.004 | 10.0 | 6880 | 0.5800 | 0.9175 | ### Framework versions - Transformers 4.14.1 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
world-wide/sent-sci-irrelevance
55195be78960bcd6f42ef4b076b8ec53a4b2ca7b
2021-11-27T14:16:04.000Z
[ "pytorch", "bert", "text-classification", "en", "dataset:bozelosp/autonlp-data-sci-relevance", "transformers", "autonlp", "co2_eq_emissions" ]
text-classification
false
world-wide
null
world-wide/sent-sci-irrelevance
13
1
transformers
10,149
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - bozelosp/autonlp-data-sci-relevance co2_eq_emissions: 3.667033499762825 --- # Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 33199029 - CO2 Emissions (in grams): 3.667033499762825 ## Validation Metrics - Loss: 0.32653310894966125 - Accuracy: 0.9133333333333333 - Precision: 0.9005847953216374 - Recall: 0.9447852760736196 - AUC: 0.9532488468944517 - F1: 0.9221556886227544 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/bozelosp/autonlp-sci-relevance-33199029 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("bozelosp/autonlp-sci-relevance-33199029", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("bozelosp/autonlp-sci-relevance-33199029", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
cahya/gpt2-small-indonesian-personachat-empathetic
4f6a14c2d2357c9017f177215aae5369b724d44a
2022-02-12T00:06:38.000Z
[ "pytorch", "gpt2", "transformers" ]
null
false
cahya
null
cahya/gpt2-small-indonesian-personachat-empathetic
13
null
transformers
10,150
Entry not found
ccdv/lsg-legal-base-uncased-4096
e138abd907d58ed15b1672db7f0e801ee1078148
2022-07-25T05:28:29.000Z
[ "pytorch", "bert", "en", "transformers", "long context", "legal", "fill-mask" ]
fill-mask
false
ccdv
null
ccdv/lsg-legal-base-uncased-4096
13
null
transformers
10,151
--- language: en tags: - long context - legal pipeline_tag: fill-mask --- # LSG model **Transformers >= 4.18.0**\ **This model relies on a custom modeling file, you need to add trust_remote_code=True**\ **See [\#13467](https://github.com/huggingface/transformers/pull/13467)** * [Usage](#usage) * [Parameters](#parameters) * [Sparse selection type](#sparse-selection-type) * [Tasks](#tasks) * [Training global tokens](#training-global-tokens) This model is adapted from [LEGAL-BERT](https://huggingface.co/nlpaueb/legal-bert-base-uncased) without additional pretraining yet. It uses the same number of parameters/layers and the same tokenizer. This model can handle long sequences but faster and more efficiently than Longformer or BigBird (from Transformers) and relies on Local + Sparse + Global attention (LSG). The model requires sequences whose length is a multiple of the block size. The model is "adaptive" and automatically pads the sequences if needed (adaptive=True in config). It is however recommended, thanks to the tokenizer, to truncate the inputs (truncation=True) and optionally to pad with a multiple of the block size (pad_to_multiple_of=...). \ Support encoder-decoder but I didnt test it extensively.\ Implemented in PyTorch. ![attn](attn.png) ## Usage The model relies on a custom modeling file, you need to add trust_remote_code=True to use it. ```python: from transformers import AutoModel, AutoTokenizer model = AutoModel.from_pretrained("ccdv/legal-lsg-base-uncased-4096", trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained("ccdv/legal-lsg-base-uncased-4096") ``` ## Parameters You can change various parameters like : * the number of global tokens (num_global_tokens=1) * local block size (block_size=128) * sparse block size (sparse_block_size=128) * sparsity factor (sparsity_factor=2) * mask_first_token (mask first token since it is redundant with the first global token) * see config.json file Default parameters work well in practice. If you are short on memory, reduce block sizes, increase sparsity factor and remove dropout in the attention score matrix. ```python: from transformers import AutoModel model = AutoModel.from_pretrained("ccdv/legal-lsg-base-uncased-4096", trust_remote_code=True, num_global_tokens=16, block_size=64, sparse_block_size=64, attention_probs_dropout_prob=0.0 sparsity_factor=4, sparsity_type="none", mask_first_token=True ) ``` ## Sparse selection type There are 5 different sparse selection patterns. The best type is task dependent. \ Note that for sequences with length < 2*block_size, the type has no effect. * sparsity_type="norm", select highest norm tokens * Works best for a small sparsity_factor (2 to 4) * Additional parameters: * None * sparsity_type="pooling", use average pooling to merge tokens * Works best for a small sparsity_factor (2 to 4) * Additional parameters: * None * sparsity_type="lsh", use the LSH algorithm to cluster similar tokens * Works best for a large sparsity_factor (4+) * LSH relies on random projections, thus inference may differ slightly with different seeds * Additional parameters: * lsg_num_pre_rounds=1, pre merge tokens n times before computing centroids * sparsity_type="stride", use a striding mecanism per head * Each head will use different tokens strided by sparsify_factor * Not recommended if sparsify_factor > num_heads * sparsity_type="block_stride", use a striding mecanism per head * Each head will use block of tokens strided by sparsify_factor * Not recommended if sparsify_factor > num_heads ## Tasks Fill mask example: ```python: from transformers import FillMaskPipeline, AutoModelForMaskedLM, AutoTokenizer model = AutoModelForMaskedLM.from_pretrained("ccdv/legal-lsg-base-uncased-4096", trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained("ccdv/legal-lsg-base-uncased-4096") SENTENCES = ["Paris is the <mask> of France.", "The goal of life is <mask>."] pipeline = FillMaskPipeline(model, tokenizer) output = pipeline(SENTENCES, top_k=1) output = [o[0]["sequence"] for o in output] > ['Paris is the capital of France.', 'The goal of life is happiness.'] ``` Classification example: ```python: from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("ccdv/legal-lsg-base-uncased-4096", trust_remote_code=True, pool_with_global=True, # pool with a global token instead of first token ) tokenizer = AutoTokenizer.from_pretrained("ccdv/legal-lsg-base-uncased-4096") SENTENCE = "This is a test for sequence classification. " * 300 token_ids = tokenizer( SENTENCE, return_tensors="pt", #pad_to_multiple_of=... # Optional truncation=True ) output = model(**token_ids) > SequenceClassifierOutput(loss=None, logits=tensor([[-0.3051, -0.1762]], grad_fn=<AddmmBackward>), hidden_states=None, attentions=None) ``` ## Training global tokens To train global tokens and the classification head only: ```python: from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("ccdv/legal-lsg-base-uncased-4096", trust_remote_code=True, pool_with_global=True, # pool with a global token instead of first token num_global_tokens=16 ) tokenizer = AutoTokenizer.from_pretrained("ccdv/legal-lsg-base-uncased-4096") for name, param in model.named_parameters(): if "global_embeddings" not in name: param.requires_grad = False else: param.required_grad = True ``` **LEGAL-BERT** ``` @inproceedings{chalkidis-etal-2020-legal, title = "{LEGAL}-{BERT}: The Muppets straight out of Law School", author = "Chalkidis, Ilias and Fergadiotis, Manos and Malakasiotis, Prodromos and Aletras, Nikolaos and Androutsopoulos, Ion", booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", doi = "10.18653/v1/2020.findings-emnlp.261", pages = "2898--2904" } ```
ceyda/wav2vec2-large-xlsr-53-turkish
bca1ede6d3fc08ba66e56eece3f6e54fab7cc78a
2021-07-06T00:18:28.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "tr", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
ceyda
null
ceyda/wav2vec2-large-xlsr-53-turkish
13
1
transformers
10,152
--- language: tr datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Turkish by Ceyda Cinarel results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice tr type: common_voice args: tr metrics: - name: Test WER type: wer value: 27.59 --- # Wav2Vec2-Large-XLSR-53-Turkish Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Turkish using the [Common Voice](https://huggingface.co/datasets/common_voice) When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "tr", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("ceyda/wav2vec2-large-xlsr-53-turkish") model = Wav2Vec2ForCTC.from_pretrained("ceyda/wav2vec2-large-xlsr-53-turkish") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Turkish test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "tr", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("ceyda/wav2vec2-large-xlsr-53-turkish") model = Wav2Vec2ForCTC.from_pretrained("ceyda/wav2vec2-large-xlsr-53-turkish") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\‘\”\'\`…\]\[\’»«]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 27.59 % ## Training The Common Voice `train`, `validation` datasets were used for training. The script used for training can be found [here](https://github.com/cceyda/wav2vec2)
chitra/finetuned-adversarial-paraphrase-modell
362ddb41356b4451e0e9276b8240f5c386e08db4
2022-01-19T13:11:27.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "transformers" ]
text-classification
false
chitra
null
chitra/finetuned-adversarial-paraphrase-modell
13
null
transformers
10,153
Entry not found
copypress/copypress
bf0e6fd8f1df7b70b71575cd0bbcad0813200af1
2021-06-12T17:46:29.000Z
[ "pytorch", "tf", "jax", "rust", "gpt2", "text-generation", "transformers" ]
text-generation
false
copypress
null
copypress/copypress
13
null
transformers
10,154
Entry not found
creat89/NER_FEDA_Cs
40ab9e767ec8655e1a04ff220a00cb9be3f9e62c
2022-04-13T09:38:35.000Z
[ "pytorch", "bert", "multilingual", "cs", "transformers", "labse", "ner", "license:mit" ]
null
false
creat89
null
creat89/NER_FEDA_Cs
13
null
transformers
10,155
--- license: mit language: - multilingual - cs tags: - labse - ner --- This is a multilingual NER system trained using a Frustratingly Easy Domain Adaptation architecture. It is based on LaBSE and supports different tagsets all using IOBES formats: 1. Wikiann (LOC, PER, ORG) 2. SlavNER 19/21 (EVT, LOC, ORG, PER, PRO) 3. CNEC (LOC, ORG, MEDIA, ART, PER, TIME) 4. Turku (DATE, EVT, LOC, ORG, PER, PRO, TIME) PER: person, LOC: location, ORG: organization, EVT: event, PRO: product, MISC: Miscellaneous, MEDIA: media, ART: Artifact, TIME: time, DATE: date You can select the tagset to use in the output by configuring the model. This model manages differently uppercase words. More information about the model can be found in the paper (https://aclanthology.org/2021.bsnlp-1.12.pdf) and GitHub repository (https://github.com/EMBEDDIA/NER_FEDA).
d8oss/gamio-small
4d9e726ea9b40fb2f192f277b99bc3785e4f169b
2021-09-14T12:35:20.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
d8oss
null
d8oss/gamio-small
13
null
transformers
10,156
Entry not found
danasone/rubert-tiny-speech
a39c56b321efa50b3bd2191c81dd84af022f73c8
2022-02-10T15:18:12.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
danasone
null
danasone/rubert-tiny-speech
13
null
transformers
10,157
Entry not found
dehio/german-qg-t5-quad
e5eeeeaef49576b5679469f2d186971e4f647ea7
2022-01-19T16:36:25.000Z
[ "pytorch", "t5", "text2text-generation", "de", "dataset:deepset/germanquad", "transformers", "question generation", "license:mit", "model-index", "autotrain_compatible" ]
text2text-generation
false
dehio
null
dehio/german-qg-t5-quad
13
null
transformers
10,158
--- license: mit widget: - text: "Obwohl die Vereinigten Staaten wie auch viele Staaten des Commonwealth Erben des <hl>britischen Common Laws<hl> sind, setzt sich das amerikanische Recht bedeutend davon ab." language: - de tags: - question generation datasets: - deepset/germanquad model-index: - name: german-qg-t5-quad results: [] --- # german-qg-t5-quad This model is fine-tuned in question generation in German. The expected answer must be highlighted with a &lt;hl> token. ## Task example #### Input generate question: Obwohl die Vereinigten Staaten wie auch viele Staaten des Commonwealth Erben des <hl> britischen Common Laws <hl> sind, setzt sich das amerikanische Recht bedeutend davon ab. Dies rührt größtenteils von dem langen Zeitraum her, [...] #### Expected output Von welchem Gesetzt stammt das Amerikanische ab? ## Model description This model is a fine-tuned version of [valhalla/t5-base-qg-hl](https://huggingface.co/valhalla/t5-base-qg-hl) on the [GermanQUAD](https://www.deepset.ai/germanquad) dataset. ## Training and evaluation data The training script can be accessed [here](https://github.com/d-e-h-i-o/german-qg). ### Evaluation The model achieves a BLEU-4 score of **11.30** on the GermanQuAD test set (n=2204). ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 100 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.16.1 - Tokenizers 0.10.3
dkhara/bert-news
04501f75f31954b526433c44918df03ab53611c3
2021-04-28T15:38:51.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
dkhara
null
dkhara/bert-news
13
null
transformers
10,159
### Bert-News
dmiller1/distilbert-base-uncased-finetuned-emotion
6cdc9e0c15af88e83af3688fecc3c7fcece0f2b3
2022-01-18T03:59:30.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
dmiller1
null
dmiller1/distilbert-base-uncased-finetuned-emotion
13
null
transformers
10,160
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.926 - name: F1 type: f1 value: 0.9261144741040841 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2161 - Accuracy: 0.926 - F1: 0.9261 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8436 | 1.0 | 250 | 0.3175 | 0.9105 | 0.9081 | | 0.2492 | 2.0 | 500 | 0.2161 | 0.926 | 0.9261 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.7.1 - Datasets 1.17.0 - Tokenizers 0.10.3
doc2query/stackexchange-title-body-t5-small-v1
8c3d6d603687f5a069707e775da5fed1128d1e17
2022-01-07T08:33:30.000Z
[ "pytorch", "t5", "text2text-generation", "en", "dataset:flax-sentence-embeddings/stackexchange_title_body_jsonl", "arxiv:1904.08375", "arxiv:2104.08663", "transformers", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
doc2query
null
doc2query/stackexchange-title-body-t5-small-v1
13
null
transformers
10,161
--- language: en datasets: - flax-sentence-embeddings/stackexchange_title_body_jsonl widget: - text: "Python is an interpreted, high-level and general-purpose programming language. Python's design philosophy emphasizes code readability with its notable use of significant whitespace. Its language constructs and object-oriented approach aim to help programmers write clear, logical code for small and large-scale projects." license: apache-2.0 --- # doc2query/stackexchange-title-body-t5-small-v1 This is a [doc2query](https://arxiv.org/abs/1904.08375) model based on T5 (also known as [docT5query](https://cs.uwaterloo.ca/~jimmylin/publications/Nogueira_Lin_2019_docTTTTTquery-v2.pdf)). It can be used for: - **Document expansion**: You generate for your paragraphs 20-40 queries and index the paragraphs and the generates queries in a standard BM25 index like Elasticsearch, OpenSearch, or Lucene. The generated queries help to close the lexical gap of lexical search, as the generate queries contain synonyms. Further, it re-weights words giving important words a higher weight even if they appear seldomn in a paragraph. In our [BEIR](https://arxiv.org/abs/2104.08663) paper we showed that BM25+docT5query is a powerful search engine. In the [BEIR repository](https://github.com/UKPLab/beir) we have an example how to use docT5query with Pyserini. - **Domain Specific Training Data Generation**: It can be used to generate training data to learn an embedding model. On [SBERT.net](https://www.sbert.net/examples/unsupervised_learning/query_generation/README.html) we have an example how to use the model to generate (query, text) pairs for a given collection of unlabeled texts. These pairs can then be used to train powerful dense embedding models. ## Usage ```python from transformers import T5Tokenizer, T5ForConditionalGeneration model_name = 'doc2query/stackexchange-title-body-t5-small-v1' tokenizer = T5Tokenizer.from_pretrained(model_name) model = T5ForConditionalGeneration.from_pretrained(model_name) text = "Python is an interpreted, high-level and general-purpose programming language. Python's design philosophy emphasizes code readability with its notable use of significant whitespace. Its language constructs and object-oriented approach aim to help programmers write clear, logical code for small and large-scale projects." input_ids = tokenizer.encode(text, max_length=384, truncation=True, return_tensors='pt') outputs = model.generate( input_ids=input_ids, max_length=64, do_sample=True, top_p=0.95, num_return_sequences=5) print("Text:") print(text) print("\nGenerated Queries:") for i in range(len(outputs)): query = tokenizer.decode(outputs[i], skip_special_tokens=True) print(f'{i + 1}: {query}') ``` **Note:** `model.generate()` is non-deterministic. It produces different queries each time you run it. ## Training This model fine-tuned [google/t5-v1_1-small](https://huggingface.co/google/t5-v1_1-small) for 321k training steps. For the training script, see the `train_script.py` in this repository. The input-text was truncated to 384 word pieces. Output text was generated up to 64 word pieces. This model was trained on a (title, question_body) from StackExchange.
efederici/it5-base-summarization
7f5c9afdc546f91bd4f74b1494a13e627ab9003b
2021-09-30T19:00:46.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "it", "transformers", "summarization", "autotrain_compatible" ]
summarization
false
efederici
null
efederici/it5-base-summarization
13
null
transformers
10,162
--- language: - it tags: - summarization --- # **Italian T5 Abstractive Summarization** gsarti/it5-base fine-tuned in italian for abstractive text summarization.
elgeish/cs224n-squad2.0-albert-large-v2
eaf92e70220ca484217941f33d044ffb4ad9de7c
2020-12-11T21:38:57.000Z
[ "pytorch", "albert", "question-answering", "arxiv:2004.07067", "transformers", "exbert", "autotrain_compatible" ]
question-answering
false
elgeish
null
elgeish/cs224n-squad2.0-albert-large-v2
13
null
transformers
10,163
--- tags: - exbert --- ## CS224n SQuAD2.0 Project Dataset The goal of this model is to save CS224n students GPU time when establishing baselines to beat for the [Default Final Project](http://web.stanford.edu/class/cs224n/project/default-final-project-handout.pdf). The training set used to fine-tune this model is the same as the [official one](https://rajpurkar.github.io/SQuAD-explorer/); however, evaluation and model selection were performed using roughly half of the official dev set, 6078 examples, picked at random. The data files can be found at <https://github.com/elgeish/squad/tree/master/data> — this is the Winter 2020 version. Given that the official SQuAD2.0 dev set contains the project's test set, students must make sure not to use the official SQuAD2.0 dev set in any way — including the use of models fine-tuned on the official SQuAD2.0, since they used the official SQuAD2.0 dev set for model selection. <a href="https://huggingface.co/exbert/?model=elgeish/cs224n-squad2.0-albert-large-v2"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a> ## Results ```json { "exact": 79.2694965449161, "f1": 82.50844352970152, "total": 6078, "HasAns_exact": 74.87972508591065, "HasAns_f1": 81.64478342732858, "HasAns_total": 2910, "NoAns_exact": 83.30176767676768, "NoAns_f1": 83.30176767676768, "NoAns_total": 3168, "best_exact": 79.2694965449161, "best_exact_thresh": 0.0, "best_f1": 82.50844352970155, "best_f1_thresh": 0.0 } ``` ## Notable Arguments ```json { "do_lower_case": true, "doc_stride": 128, "fp16": false, "fp16_opt_level": "O1", "gradient_accumulation_steps": 1, "learning_rate": 3e-05, "max_answer_length": 30, "max_grad_norm": 1, "max_query_length": 64, "max_seq_length": 384, "model_name_or_path": "albert-large-v2", "model_type": "albert", "num_train_epochs": 5, "per_gpu_train_batch_size": 8, "save_steps": 5000, "seed": 42, "train_batch_size": 8, "version_2_with_negative": true, "warmup_steps": 0, "weight_decay": 0 } ``` ## Environment Setup ```json { "transformers": "2.5.1", "pytorch": "1.4.0=py3.6_cuda10.1.243_cudnn7.6.3_0", "python": "3.6.5=hc3d631a_2", "os": "Linux 4.15.0-1060-aws #62-Ubuntu SMP Tue Feb 11 21:23:22 UTC 2020 x86_64 x86_64 x86_64 GNU/Linux", "gpu": "Tesla V100-SXM2-16GB" } ``` ## How to Cite ```BibTeX @misc{elgeish2020gestalt, title={Gestalt: a Stacking Ensemble for SQuAD2.0}, author={Mohamed El-Geish}, journal={arXiv e-prints}, archivePrefix={arXiv}, eprint={2004.07067}, year={2020}, } ``` ## Related Models * [elgeish/cs224n-squad2.0-albert-base-v2](https://huggingface.co/elgeish/cs224n-squad2.0-albert-base-v2) * [elgeish/cs224n-squad2.0-albert-xxlarge-v1](https://huggingface.co/elgeish/cs224n-squad2.0-albert-xxlarge-v1) * [elgeish/cs224n-squad2.0-distilbert-base-uncased](https://huggingface.co/elgeish/cs224n-squad2.0-distilbert-base-uncased) * [elgeish/cs224n-squad2.0-roberta-base](https://huggingface.co/elgeish/cs224n-squad2.0-roberta-base)
eliza-dukim/bert-base-finetuned-ynat
7f45e1b501107d4184f6fa3ce1267b584f25968b
2021-08-04T10:03:32.000Z
[ "pytorch", "bert", "text-classification", "dataset:klue", "transformers", "generated_from_trainer" ]
text-classification
false
eliza-dukim
null
eliza-dukim/bert-base-finetuned-ynat
13
null
transformers
10,164
--- tags: - generated_from_trainer datasets: - klue metrics: - f1 model_index: - name: bert-base-finetuned-ynat results: - task: name: Text Classification type: text-classification dataset: name: klue type: klue args: ynat metric: name: F1 type: f1 value: 0.8699556378491373 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-finetuned-ynat This model is a fine-tuned version of [klue/bert-base](https://huggingface.co/klue/bert-base) on the klue dataset. It achieves the following results on the evaluation set: - Loss: 0.3741 - F1: 0.8700 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 179 | 0.4458 | 0.8516 | | No log | 2.0 | 358 | 0.3741 | 0.8700 | | 0.385 | 3.0 | 537 | 0.3720 | 0.8693 | | 0.385 | 4.0 | 716 | 0.3744 | 0.8689 | | 0.385 | 5.0 | 895 | 0.3801 | 0.8695 | ### Framework versions - Transformers 4.9.1 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
ensamblador/gpt2-derecha-with-bos-eos-48heads
2d81a1a1cdc99d3f4fe2390d8c8ae16e4d7bee1c
2021-05-21T15:49:43.000Z
[ "pytorch", "tf", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
ensamblador
null
ensamblador/gpt2-derecha-with-bos-eos-48heads
13
null
transformers
10,165
Entry not found
ensamblador/gpt2-es-48heads
5b4bc3c3af930ef4a4580ce2c475f0d5df973e96
2021-05-21T15:52:15.000Z
[ "pytorch", "tf", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
ensamblador
null
ensamblador/gpt2-es-48heads
13
null
transformers
10,166
Entry not found
ethzanalytics/ai-msgbot-gpt2-XL
5a20cc1dd6195563d5666c0aa6f963a9b104423b
2022-01-20T01:40:42.000Z
[ "pytorch", "gpt2", "text-generation", "en", "dataset:natural questions", "transformers", "gpt", "license:mit" ]
text-generation
false
ethzanalytics
null
ethzanalytics/ai-msgbot-gpt2-XL
13
null
transformers
10,167
--- language: - en tags: - text-generation - gpt2 - gpt license: mit datasets: - natural questions widget: - text: "Do you like my new haircut?\nperson beta:\n\n" example_title: "haircut" - text: "I love to learn new things.. are you willing to teach me something?\nperson beta:\n\n" example_title: "teaching" - text: "What's your favorite animal? Mine is the dog? \nperson beta:\n\n" example_title: "favorite" - text: "how much does it cost?\nperson beta:\n\n" example_title: "money" inference: parameters: min_length: 2 max_length: 64 length_penalty: 0.6 no_repeat_ngram_size: 3 do_sample: True top_p: 0.85 top_k: 10 repetition_penalty: 2.1 --- # ai-msgbot GPT2-XL _NOTE: model card is WIP_ GPT2-XL (~1.5 B parameters) trained on [the Wizard of Wikipedia dataset](https://parl.ai/projects/wizard_of_wikipedia/) for 40k steps with **33**/36 layers frozen using `aitextgen`. Designed for use with [ai-msgbot](https://github.com/pszemraj/ai-msgbot) to create an open-ended chatbot (of course, if other use cases arise, have at it). ## conversation data The dataset was tokenized and fed to the model as a conversation between two speakers, whose names are below. This is relevant for writing prompts and filtering/extracting text from responses. `script_speaker_name` = `person alpha` `script_responder_name` = `person beta` ## examples - the default inference API examples should work _okay_ - an ideal test would be explicitly adding `person beta` into the prompt text the model is forced to respond to instead of adding onto the entered prompt. ### Example prompt: ``` do you like to eat beans? person beta: ``` ### Resulting output ``` do you like to eat beans?person beta: yes, i like fried beans. person alpha: i wonder when the first beans were cultivated and how they were processed. person beta: nitrogenic bacteria (in ``` _Note: the Inference API cuts off generation due to length, if run elsewhere you would see what comes after "(in"_ ## citations ``` @inproceedings{dinan2019wizard, author={Emily Dinan and Stephen Roller and Kurt Shuster and Angela Fan and Michael Auli and Jason Weston}, title={{W}izard of {W}ikipedia: Knowledge-powered Conversational Agents}, booktitle = {Proceedings of the International Conference on Learning Representations (ICLR)}, year={2019}, } @inproceedings{li-etal-2017-dailydialog, title = "{D}aily{D}ialog: A Manually Labelled Multi-turn Dialogue Dataset", author = "Li, Yanran and Su, Hui and Shen, Xiaoyu and Li, Wenjie and Cao, Ziqiang and Niu, Shuzi", booktitle = "Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers)", month = nov, year = "2017", address = "Taipei, Taiwan", publisher = "Asian Federation of Natural Language Processing", url = "https://aclanthology.org/I17-1099", pages = "986--995", abstract = "We develop a high-quality multi-turn dialog dataset, \textbf{DailyDialog}, which is intriguing in several aspects. The language is human-written and less noisy. The dialogues in the dataset reflect our daily communication way and cover various topics about our daily life. We also manually label the developed dataset with communication intention and emotion information. Then, we evaluate existing approaches on DailyDialog dataset and hope it benefit the research field of dialog systems. The dataset is available on \url{http://yanran.li/dailydialog}", } ```
fdominik98/ner-hu-model-2021
221698e40344214254a35055a8dc4ae3d78a4c12
2021-12-08T21:34:31.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
fdominik98
null
fdominik98/ner-hu-model-2021
13
null
transformers
10,168
Magyar nyelvű token classification feladatra felkészített BERT modell.
flax-community/roberta-swahili-news-classification
415bba1cd4d71d431477a7013b6f627297325b6c
2021-07-25T10:52:45.000Z
[ "pytorch", "jax", "tensorboard", "roberta", "text-classification", "sw", "dataset:flax-community/swahili-safi", "transformers" ]
text-classification
false
flax-community
null
flax-community/roberta-swahili-news-classification
13
null
transformers
10,169
--- language: sw widget: - text: "Idris ameandika kwenye ukurasa wake wa Instagram akimkumbusha Diamond kutekeleza ahadi yake kumpigia Zari magoti kumuomba msamaha kama alivyowahi kueleza awali.Idris ameandika;" datasets: - flax-community/swahili-safi --- ## Swahili News Classification with RoBERTa This model was trained using HuggingFace's Flax framework and is part of the [JAX/Flax Community Week](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104) organized by [HuggingFace](https://huggingface.co). All training was done on a TPUv3-8 VM sponsored by the Google Cloud team. This [model](https://huggingface.co/flax-community/roberta-swahili) was used as the base and fine-tuned for this task. ## How to use ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("flax-community/roberta-swahili-news-classification") model = AutoModelForSequenceClassification.from_pretrained("flax-community/roberta-swahili-news-classification") ``` ``` Eval metrics: {'accuracy': 0.9153416415986249} ```
ghadeermobasher/BC4_Modified-bluebert_pubmed_uncased_L-12_H-768_A-12
235adf5fa88c727b6fb3df8fb07339e87d1e7e56
2022-02-22T20:08:48.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/BC4_Modified-bluebert_pubmed_uncased_L-12_H-768_A-12
13
null
transformers
10,170
Entry not found
glob-asr/xls-r-es-test-lm
a1d118795c3350b3fb2876e4d30cf29cdbe4ffe7
2022-03-23T18:26:19.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "es", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
glob-asr
null
glob-asr/xls-r-es-test-lm
13
null
transformers
10,171
--- language: - es license: apache-2.0 tags: - automatic-speech-recognition - es - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: xls-r-es-test-lm results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8.0 type: mozilla-foundation/common_voice_8_0 args: es metrics: - name: Test WER type: wer value: 9.4 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: es metrics: - name: Test WER type: wer value: 27.95 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: es metrics: - name: Test WER type: wer value: 30.86 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xls-r-es-test-lm This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - ES dataset. It achieves the following results on the test set with lm model: - Loss: 0.1304 - WER: 0.094 - CER: 0.031 It achieves the following results on the val set with lm model: - Loss: 0.1304 - WER: 0.081 - CER: 0.025 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 2.9613 | 0.07 | 500 | 2.9647 | 1.0 | | 2.604 | 0.14 | 1000 | 1.8300 | 0.9562 | | 1.177 | 0.21 | 1500 | 0.3652 | 0.3077 | | 1.0745 | 0.28 | 2000 | 0.2707 | 0.2504 | | 1.0103 | 0.35 | 2500 | 0.2338 | 0.2157 | | 0.9858 | 0.42 | 3000 | 0.2321 | 0.2129 | | 0.974 | 0.49 | 3500 | 0.2164 | 0.2031 | | 0.9699 | 0.56 | 4000 | 0.2078 | 0.1970 | | 0.9513 | 0.63 | 4500 | 0.2173 | 0.2139 | | 0.9657 | 0.7 | 5000 | 0.2050 | 0.1979 | | 0.9484 | 0.77 | 5500 | 0.2008 | 0.1919 | | 0.9317 | 0.84 | 6000 | 0.2012 | 0.1911 | | 0.9366 | 0.91 | 6500 | 0.2024 | 0.1976 | | 0.9242 | 0.98 | 7000 | 0.2062 | 0.2028 | | 0.9138 | 1.05 | 7500 | 0.1924 | 0.1863 | | 0.921 | 1.12 | 8000 | 0.1935 | 0.1836 | | 0.9117 | 1.19 | 8500 | 0.1887 | 0.1815 | | 0.9064 | 1.26 | 9000 | 0.1909 | 0.1839 | | 0.9118 | 1.32 | 9500 | 0.1869 | 0.1830 | | 0.9121 | 1.39 | 10000 | 0.1863 | 0.1802 | | 0.9048 | 1.46 | 10500 | 0.1845 | 0.1791 | | 0.8955 | 1.53 | 11000 | 0.1863 | 0.1774 | | 0.8947 | 1.6 | 11500 | 0.1907 | 0.1814 | | 0.9073 | 1.67 | 12000 | 0.1892 | 0.1853 | | 0.8927 | 1.74 | 12500 | 0.1821 | 0.1750 | | 0.8732 | 1.81 | 13000 | 0.1815 | 0.1768 | | 0.8761 | 1.88 | 13500 | 0.1822 | 0.1749 | | 0.8751 | 1.95 | 14000 | 0.1789 | 0.1715 | | 0.8889 | 2.02 | 14500 | 0.1819 | 0.1791 | | 0.8864 | 2.09 | 15000 | 0.1826 | 0.1794 | | 0.886 | 2.16 | 15500 | 0.1788 | 0.1776 | | 0.8915 | 2.23 | 16000 | 0.1756 | 0.1719 | | 0.8689 | 2.3 | 16500 | 0.1769 | 0.1711 | | 0.879 | 2.37 | 17000 | 0.1777 | 0.1739 | | 0.8692 | 2.44 | 17500 | 0.1765 | 0.1705 | | 0.8504 | 2.51 | 18000 | 0.1699 | 0.1652 | | 0.8728 | 2.58 | 18500 | 0.1705 | 0.1694 | | 0.8523 | 2.65 | 19000 | 0.1674 | 0.1645 | | 0.8513 | 2.72 | 19500 | 0.1661 | 0.1611 | | 0.8498 | 2.79 | 20000 | 0.1660 | 0.1631 | | 0.8432 | 2.86 | 20500 | 0.1636 | 0.1610 | | 0.8492 | 2.93 | 21000 | 0.1708 | 0.1688 | | 0.8561 | 3.0 | 21500 | 0.1663 | 0.1604 | | 0.842 | 3.07 | 22000 | 0.1690 | 0.1625 | | 0.857 | 3.14 | 22500 | 0.1642 | 0.1605 | | 0.8518 | 3.21 | 23000 | 0.1626 | 0.1585 | | 0.8506 | 3.28 | 23500 | 0.1651 | 0.1605 | | 0.8394 | 3.35 | 24000 | 0.1647 | 0.1585 | | 0.8431 | 3.42 | 24500 | 0.1632 | 0.1573 | | 0.8566 | 3.49 | 25000 | 0.1614 | 0.1550 | | 0.8534 | 3.56 | 25500 | 0.1645 | 0.1589 | | 0.8386 | 3.63 | 26000 | 0.1632 | 0.1582 | | 0.8357 | 3.7 | 26500 | 0.1631 | 0.1556 | | 0.8299 | 3.77 | 27000 | 0.1612 | 0.1550 | | 0.8421 | 3.84 | 27500 | 0.1602 | 0.1552 | | 0.8375 | 3.91 | 28000 | 0.1592 | 0.1537 | | 0.8328 | 3.97 | 28500 | 0.1587 | 0.1537 | | 0.8155 | 4.04 | 29000 | 0.1587 | 0.1520 | | 0.8335 | 4.11 | 29500 | 0.1624 | 0.1556 | | 0.8138 | 4.18 | 30000 | 0.1581 | 0.1547 | | 0.8195 | 4.25 | 30500 | 0.1560 | 0.1507 | | 0.8092 | 4.32 | 31000 | 0.1561 | 0.1534 | | 0.8191 | 4.39 | 31500 | 0.1549 | 0.1493 | | 0.8008 | 4.46 | 32000 | 0.1540 | 0.1493 | | 0.8138 | 4.53 | 32500 | 0.1544 | 0.1493 | | 0.8173 | 4.6 | 33000 | 0.1553 | 0.1511 | | 0.8081 | 4.67 | 33500 | 0.1541 | 0.1484 | | 0.8192 | 4.74 | 34000 | 0.1560 | 0.1506 | | 0.8068 | 4.81 | 34500 | 0.1540 | 0.1503 | | 0.8105 | 4.88 | 35000 | 0.1529 | 0.1483 | | 0.7976 | 4.95 | 35500 | 0.1507 | 0.1451 | | 0.8143 | 5.02 | 36000 | 0.1505 | 0.1462 | | 0.8053 | 5.09 | 36500 | 0.1517 | 0.1476 | | 0.785 | 5.16 | 37000 | 0.1526 | 0.1478 | | 0.7936 | 5.23 | 37500 | 0.1489 | 0.1421 | | 0.807 | 5.3 | 38000 | 0.1483 | 0.1420 | | 0.8092 | 5.37 | 38500 | 0.1481 | 0.1435 | | 0.793 | 5.44 | 39000 | 0.1503 | 0.1438 | | 0.814 | 5.51 | 39500 | 0.1495 | 0.1480 | | 0.807 | 5.58 | 40000 | 0.1472 | 0.1424 | | 0.7913 | 5.65 | 40500 | 0.1471 | 0.1422 | | 0.7844 | 5.72 | 41000 | 0.1473 | 0.1422 | | 0.7888 | 5.79 | 41500 | 0.1445 | 0.1385 | | 0.7806 | 5.86 | 42000 | 0.1435 | 0.1394 | | 0.7773 | 5.93 | 42500 | 0.1461 | 0.1424 | | 0.786 | 6.0 | 43000 | 0.1450 | 0.1413 | | 0.7784 | 6.07 | 43500 | 0.1463 | 0.1424 | | 0.7937 | 6.14 | 44000 | 0.1438 | 0.1386 | | 0.7738 | 6.21 | 44500 | 0.1437 | 0.1383 | | 0.7728 | 6.28 | 45000 | 0.1424 | 0.1371 | | 0.7681 | 6.35 | 45500 | 0.1416 | 0.1376 | | 0.776 | 6.42 | 46000 | 0.1415 | 0.1380 | | 0.7773 | 6.49 | 46500 | 0.1416 | 0.1371 | | 0.7692 | 6.56 | 47000 | 0.1398 | 0.1345 | | 0.7642 | 6.62 | 47500 | 0.1381 | 0.1341 | | 0.7692 | 6.69 | 48000 | 0.1392 | 0.1334 | | 0.7667 | 6.76 | 48500 | 0.1392 | 0.1348 | | 0.7712 | 6.83 | 49000 | 0.1398 | 0.1333 | | 0.7628 | 6.9 | 49500 | 0.1392 | 0.1344 | | 0.7622 | 6.97 | 50000 | 0.1377 | 0.1329 | | 0.7639 | 7.04 | 50500 | 0.1361 | 0.1316 | | 0.742 | 7.11 | 51000 | 0.1376 | 0.1327 | | 0.7526 | 7.18 | 51500 | 0.1387 | 0.1342 | | 0.7606 | 7.25 | 52000 | 0.1363 | 0.1316 | | 0.7626 | 7.32 | 52500 | 0.1365 | 0.1313 | | 0.752 | 7.39 | 53000 | 0.1354 | 0.1309 | | 0.7562 | 7.46 | 53500 | 0.1362 | 0.1312 | | 0.7557 | 7.53 | 54000 | 0.1358 | 0.1325 | | 0.7588 | 7.6 | 54500 | 0.1343 | 0.1311 | | 0.7485 | 7.67 | 55000 | 0.1346 | 0.1301 | | 0.7466 | 7.74 | 55500 | 0.1354 | 0.1314 | | 0.7558 | 7.81 | 56000 | 0.1359 | 0.1325 | | 0.7578 | 7.88 | 56500 | 0.1363 | 0.1334 | | 0.7411 | 7.95 | 57000 | 0.1346 | 0.1301 | | 0.7478 | 8.02 | 57500 | 0.1355 | 0.1305 | | 0.7451 | 8.09 | 58000 | 0.1349 | 0.1302 | | 0.7383 | 8.16 | 58500 | 0.1349 | 0.1294 | | 0.7482 | 8.23 | 59000 | 0.1341 | 0.1293 | | 0.742 | 8.3 | 59500 | 0.1338 | 0.1296 | | 0.7343 | 8.37 | 60000 | 0.1348 | 0.1307 | | 0.7385 | 8.44 | 60500 | 0.1324 | 0.1282 | | 0.7567 | 8.51 | 61000 | 0.1334 | 0.1281 | | 0.7342 | 8.58 | 61500 | 0.1338 | 0.1289 | | 0.7401 | 8.65 | 62000 | 0.1331 | 0.1285 | | 0.7362 | 8.72 | 62500 | 0.1329 | 0.1283 | | 0.7241 | 8.79 | 63000 | 0.1323 | 0.1277 | | 0.7244 | 8.86 | 63500 | 0.1317 | 0.1269 | | 0.7274 | 8.93 | 64000 | 0.1308 | 0.1260 | | 0.7411 | 9.0 | 64500 | 0.1309 | 0.1256 | | 0.7255 | 9.07 | 65000 | 0.1316 | 0.1265 | | 0.7406 | 9.14 | 65500 | 0.1315 | 0.1270 | | 0.7418 | 9.21 | 66000 | 0.1315 | 0.1269 | | 0.7301 | 9.27 | 66500 | 0.1315 | 0.1273 | | 0.7248 | 9.34 | 67000 | 0.1323 | 0.1274 | | 0.7423 | 9.41 | 67500 | 0.1309 | 0.1267 | | 0.7152 | 9.48 | 68000 | 0.1312 | 0.1271 | | 0.7295 | 9.55 | 68500 | 0.1306 | 0.1262 | | 0.7231 | 9.62 | 69000 | 0.1308 | 0.1263 | | 0.7344 | 9.69 | 69500 | 0.1313 | 0.1267 | | 0.7264 | 9.76 | 70000 | 0.1305 | 0.1263 | | 0.7309 | 9.83 | 70500 | 0.1303 | 0.1262 | | 0.73 | 9.9 | 71000 | 0.1303 | 0.1261 | | 0.7353 | 9.97 | 71500 | 0.1304 | 0.1260 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
google/t5-efficient-small-el16
255572c8fd526d7034bccd2bd2fa82ce6ca55bcb
2022-02-15T10:57:43.000Z
[ "pytorch", "tf", "jax", "t5", "text2text-generation", "en", "dataset:c4", "arxiv:2109.10686", "transformers", "deep-narrow", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
google
null
google/t5-efficient-small-el16
13
1
transformers
10,172
--- language: - en datasets: - c4 tags: - deep-narrow inference: false license: apache-2.0 --- # T5-Efficient-SMALL-EL16 (Deep-Narrow version) T5-Efficient-SMALL-EL16 is a variation of [Google's original T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) following the [T5 model architecture](https://huggingface.co/docs/transformers/model_doc/t5). It is a *pretrained-only* checkpoint and was released with the paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** by *Yi Tay, Mostafa Dehghani, Jinfeng Rao, William Fedus, Samira Abnar, Hyung Won Chung, Sharan Narang, Dani Yogatama, Ashish Vaswani, Donald Metzler*. In a nutshell, the paper indicates that a **Deep-Narrow** model architecture is favorable for **downstream** performance compared to other model architectures of similar parameter count. To quote the paper: > We generally recommend a DeepNarrow strategy where the model’s depth is preferentially increased > before considering any other forms of uniform scaling across other dimensions. This is largely due to > how much depth influences the Pareto-frontier as shown in earlier sections of the paper. Specifically, a > tall small (deep and narrow) model is generally more efficient compared to the base model. Likewise, > a tall base model might also generally more efficient compared to a large model. We generally find > that, regardless of size, even if absolute performance might increase as we continue to stack layers, > the relative gain of Pareto-efficiency diminishes as we increase the layers, converging at 32 to 36 > layers. Finally, we note that our notion of efficiency here relates to any one compute dimension, i.e., > params, FLOPs or throughput (speed). We report all three key efficiency metrics (number of params, > FLOPS and speed) and leave this decision to the practitioner to decide which compute dimension to > consider. To be more precise, *model depth* is defined as the number of transformer blocks that are stacked sequentially. A sequence of word embeddings is therefore processed sequentially by each transformer block. ## Details model architecture This model checkpoint - **t5-efficient-small-el16** - is of model type **Small** with the following variations: - **el** is **16** It has **92.0** million parameters and thus requires *ca.* **367.99 MB** of memory in full precision (*fp32*) or **183.99 MB** of memory in half precision (*fp16* or *bf16*). A summary of the *original* T5 model architectures can be seen here: | Model | nl (el/dl) | ff | dm | kv | nh | #Params| | ----| ---- | ---- | ---- | ---- | ---- | ----| | Tiny | 4/4 | 1024 | 256 | 32 | 4 | 16M| | Mini | 4/4 | 1536 | 384 | 32 | 8 | 31M| | Small | 6/6 | 2048 | 512 | 32 | 8 | 60M| | Base | 12/12 | 3072 | 768 | 64 | 12 | 220M| | Large | 24/24 | 4096 | 1024 | 64 | 16 | 738M| | Xl | 24/24 | 16384 | 1024 | 128 | 32 | 3B| | XXl | 24/24 | 65536 | 1024 | 128 | 128 | 11B| whereas the following abbreviations are used: | Abbreviation | Definition | | ----| ---- | | nl | Number of transformer blocks (depth) | | dm | Dimension of embedding vector (output vector of transformers block) | | kv | Dimension of key/value projection matrix | | nh | Number of attention heads | | ff | Dimension of intermediate vector within transformer block (size of feed-forward projection matrix) | | el | Number of transformer blocks in the encoder (encoder depth) | | dl | Number of transformer blocks in the decoder (decoder depth) | | sh | Signifies that attention heads are shared | | skv | Signifies that key-values projection matrices are tied | If a model checkpoint has no specific, *el* or *dl* than both the number of encoder- and decoder layers correspond to *nl*. ## Pre-Training The checkpoint was pretrained on the [Colossal, Cleaned version of Common Crawl (C4)](https://huggingface.co/datasets/c4) for 524288 steps using the span-based masked language modeling (MLM) objective. ## Fine-Tuning **Note**: This model is a **pretrained** checkpoint and has to be fine-tuned for practical usage. The checkpoint was pretrained in English and is therefore only useful for English NLP tasks. You can follow on of the following examples on how to fine-tune the model: *PyTorch*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/pytorch/summarization) - [Question Answering](https://github.com/huggingface/transformers/blob/master/examples/pytorch/question-answering/run_seq2seq_qa.py) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *Tensorflow*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *JAX/Flax*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/flax/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/flax/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. ## Downstream Performance TODO: Add table if available ## Computational Complexity TODO: Add table if available ## More information We strongly recommend the reader to go carefully through the original paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** to get a more nuanced understanding of this model checkpoint. As explained in the following [issue](https://github.com/google-research/google-research/issues/986#issuecomment-1035051145), checkpoints including the *sh* or *skv* model architecture variations have *not* been ported to Transformers as they are probably of limited practical usage and are lacking a more detailed description. Those checkpoints are kept [here](https://huggingface.co/NewT5SharedHeadsSharedKeyValues) as they might be ported potentially in the future.
google/t5-efficient-xl-nl12
290c6580f196abe58d1ac72d3f5ac01461e6f5f1
2022-02-15T10:57:37.000Z
[ "pytorch", "tf", "jax", "t5", "text2text-generation", "en", "dataset:c4", "arxiv:2109.10686", "transformers", "deep-narrow", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
google
null
google/t5-efficient-xl-nl12
13
1
transformers
10,173
--- language: - en datasets: - c4 tags: - deep-narrow inference: false license: apache-2.0 --- # T5-Efficient-XL-NL12 (Deep-Narrow version) T5-Efficient-XL-NL12 is a variation of [Google's original T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) following the [T5 model architecture](https://huggingface.co/docs/transformers/model_doc/t5). It is a *pretrained-only* checkpoint and was released with the paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** by *Yi Tay, Mostafa Dehghani, Jinfeng Rao, William Fedus, Samira Abnar, Hyung Won Chung, Sharan Narang, Dani Yogatama, Ashish Vaswani, Donald Metzler*. In a nutshell, the paper indicates that a **Deep-Narrow** model architecture is favorable for **downstream** performance compared to other model architectures of similar parameter count. To quote the paper: > We generally recommend a DeepNarrow strategy where the model’s depth is preferentially increased > before considering any other forms of uniform scaling across other dimensions. This is largely due to > how much depth influences the Pareto-frontier as shown in earlier sections of the paper. Specifically, a > tall small (deep and narrow) model is generally more efficient compared to the base model. Likewise, > a tall base model might also generally more efficient compared to a large model. We generally find > that, regardless of size, even if absolute performance might increase as we continue to stack layers, > the relative gain of Pareto-efficiency diminishes as we increase the layers, converging at 32 to 36 > layers. Finally, we note that our notion of efficiency here relates to any one compute dimension, i.e., > params, FLOPs or throughput (speed). We report all three key efficiency metrics (number of params, > FLOPS and speed) and leave this decision to the practitioner to decide which compute dimension to > consider. To be more precise, *model depth* is defined as the number of transformer blocks that are stacked sequentially. A sequence of word embeddings is therefore processed sequentially by each transformer block. ## Details model architecture This model checkpoint - **t5-efficient-xl-nl12** - is of model type **Xl** with the following variations: - **nl** is **12** It has **1442.28** million parameters and thus requires *ca.* **5769.12 MB** of memory in full precision (*fp32*) or **2884.56 MB** of memory in half precision (*fp16* or *bf16*). A summary of the *original* T5 model architectures can be seen here: | Model | nl (el/dl) | ff | dm | kv | nh | #Params| | ----| ---- | ---- | ---- | ---- | ---- | ----| | Tiny | 4/4 | 1024 | 256 | 32 | 4 | 16M| | Mini | 4/4 | 1536 | 384 | 32 | 8 | 31M| | Small | 6/6 | 2048 | 512 | 32 | 8 | 60M| | Base | 12/12 | 3072 | 768 | 64 | 12 | 220M| | Large | 24/24 | 4096 | 1024 | 64 | 16 | 738M| | Xl | 24/24 | 16384 | 1024 | 128 | 32 | 3B| | XXl | 24/24 | 65536 | 1024 | 128 | 128 | 11B| whereas the following abbreviations are used: | Abbreviation | Definition | | ----| ---- | | nl | Number of transformer blocks (depth) | | dm | Dimension of embedding vector (output vector of transformers block) | | kv | Dimension of key/value projection matrix | | nh | Number of attention heads | | ff | Dimension of intermediate vector within transformer block (size of feed-forward projection matrix) | | el | Number of transformer blocks in the encoder (encoder depth) | | dl | Number of transformer blocks in the decoder (decoder depth) | | sh | Signifies that attention heads are shared | | skv | Signifies that key-values projection matrices are tied | If a model checkpoint has no specific, *el* or *dl* than both the number of encoder- and decoder layers correspond to *nl*. ## Pre-Training The checkpoint was pretrained on the [Colossal, Cleaned version of Common Crawl (C4)](https://huggingface.co/datasets/c4) for 524288 steps using the span-based masked language modeling (MLM) objective. ## Fine-Tuning **Note**: This model is a **pretrained** checkpoint and has to be fine-tuned for practical usage. The checkpoint was pretrained in English and is therefore only useful for English NLP tasks. You can follow on of the following examples on how to fine-tune the model: *PyTorch*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/pytorch/summarization) - [Question Answering](https://github.com/huggingface/transformers/blob/master/examples/pytorch/question-answering/run_seq2seq_qa.py) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *Tensorflow*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *JAX/Flax*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/flax/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/flax/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. ## Downstream Performance TODO: Add table if available ## Computational Complexity TODO: Add table if available ## More information We strongly recommend the reader to go carefully through the original paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** to get a more nuanced understanding of this model checkpoint. As explained in the following [issue](https://github.com/google-research/google-research/issues/986#issuecomment-1035051145), checkpoints including the *sh* or *skv* model architecture variations have *not* been ported to Transformers as they are probably of limited practical usage and are lacking a more detailed description. Those checkpoints are kept [here](https://huggingface.co/NewT5SharedHeadsSharedKeyValues) as they might be ported potentially in the future.
google/tapas-mini-finetuned-sqa
a96c94625773691bf48c424d4f3c3079d869fe34
2021-11-29T13:10:09.000Z
[ "pytorch", "tf", "tapas", "table-question-answering", "en", "dataset:msr_sqa", "arxiv:2004.02349", "arxiv:2010.00571", "transformers", "license:apache-2.0" ]
table-question-answering
false
google
null
google/tapas-mini-finetuned-sqa
13
1
transformers
10,174
--- language: en tags: - tapas license: apache-2.0 datasets: - msr_sqa --- # TAPAS mini model fine-tuned on Sequential Question Answering (SQA) This model has 2 versions which can be used. The default version corresponds to the `tapas_sqa_inter_masklm_mini_reset` checkpoint of the [original Github repository](https://github.com/google-research/tapas). This model was pre-trained on MLM and an additional step which the authors call intermediate pre-training, and then fine-tuned on [SQA](https://www.microsoft.com/en-us/download/details.aspx?id=54253). It uses relative position embeddings (i.e. resetting the position index at every cell of the table). The other (non-default) version which can be used is: - `no_reset`, which corresponds to `tapas_sqa_inter_masklm_mini` (intermediate pre-training, absolute position embeddings). Disclaimer: The team releasing TAPAS did not write a model card for this model so this model card has been written by the Hugging Face team and contributors. ## Results on SQA - Dev Accuracy Size | Reset | Dev Accuracy | Link -------- | --------| -------- | ---- LARGE | noreset | 0.7223 | [tapas-large-finetuned-sqa (absolute pos embeddings)](https://huggingface.co/google/tapas-large-finetuned-sqa/tree/no_reset) LARGE | reset | 0.7289 | [tapas-large-finetuned-sqa](https://huggingface.co/google/tapas-large-finetuned-sqa/tree/main) BASE | noreset | 0.6737 | [tapas-base-finetuned-sqa (absolute pos embeddings)](https://huggingface.co/google/tapas-base-finetuned-sqa/tree/no_reset) BASE | reset | 0.6874 | [tapas-base-finetuned-sqa](https://huggingface.co/google/tapas-base-finetuned-sqa/tree/main) MEDIUM | noreset | 0.6464 | [tapas-medium-finetuned-sqa (absolute pos embeddings)](https://huggingface.co/google/tapas-medium-finetuned-sqa/tree/no_reset) MEDIUM | reset | 0.6561 | [tapas-medium-finetuned-sqa](https://huggingface.co/google/tapas-medium-finetuned-sqa/tree/main) SMALL | noreset | 0.5876 | [tapas-small-finetuned-sqa (absolute pos embeddings)](https://huggingface.co/google/tapas-small-finetuned-sqa/tree/no_reset) SMALL | reset | 0.6155 | [tapas-small-finetuned-sqa](https://huggingface.co/google/tapas-small-finetuned-sqa/tree/main) **MINI** | **noreset** | **0.4574** | [tapas-mini-finetuned-sqa (absolute pos embeddings)](https://huggingface.co/google/tapas-mini-finetuned-sqa/tree/no_reset) **MINI** | **reset** | **0.5148** | [tapas-mini-finetuned-sqa](https://huggingface.co/google/tapas-mini-finetuned-sqa/tree/main)) TINY | noreset | 0.2004 | [tapas-tiny-finetuned-sqa (absolute pos embeddings)](https://huggingface.co/google/tapas-tiny-finetuned-sqa/tree/no_reset) TINY | reset | 0.2375 | [tapas-tiny-finetuned-sqa](https://huggingface.co/google/tapas-tiny-finetuned-sqa/tree/main) ## Model description TAPAS is a BERT-like transformers model pretrained on a large corpus of English data from Wikipedia in a self-supervised fashion. This means it was pretrained on the raw tables and associated texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): taking a (flattened) table and associated context, the model randomly masks 15% of the words in the input, then runs the entire (partially masked) sequence through the model. The model then has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of a table and associated text. - Intermediate pre-training: to encourage numerical reasoning on tables, the authors additionally pre-trained the model by creating a balanced dataset of millions of syntactically created training examples. Here, the model must predict (classify) whether a sentence is supported or refuted by the contents of a table. The training examples are created based on synthetic as well as counterfactual statements. This way, the model learns an inner representation of the English language used in tables and associated texts, which can then be used to extract features useful for downstream tasks such as answering questions about a table, or determining whether a sentence is entailed or refuted by the contents of a table. Fine-tuning is done by adding a cell selection head on top of the pre-trained model, and then jointly train this randomly initialized classification head with the base model on SQA. ## Intended uses & limitations You can use this model for answering questions related to a table in a conversational set-up. For code examples, we refer to the documentation of TAPAS on the HuggingFace website. ## Training procedure ### Preprocessing The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are then of the form: ``` [CLS] Question [SEP] Flattened table [SEP] ``` ### Fine-tuning The model was fine-tuned on 32 Cloud TPU v3 cores for 200,000 steps with maximum sequence length 512 and batch size of 128. In this setup, fine-tuning takes around 20 hours. The optimizer used is Adam with a learning rate of 1.25e-5, and a warmup ratio of 0.2. An inductive bias is added such that the model only selects cells of the same column. This is reflected by the `select_one_column` parameter of `TapasConfig`. See also table 12 of the [original paper](https://arxiv.org/abs/2004.02349). ### BibTeX entry and citation info ```bibtex @misc{herzig2020tapas, title={TAPAS: Weakly Supervised Table Parsing via Pre-training}, author={Jonathan Herzig and Paweł Krzysztof Nowak and Thomas Müller and Francesco Piccinno and Julian Martin Eisenschlos}, year={2020}, eprint={2004.02349}, archivePrefix={arXiv}, primaryClass={cs.IR} } ``` ```bibtex @misc{eisenschlos2020understanding, title={Understanding tables with intermediate pre-training}, author={Julian Martin Eisenschlos and Syrine Krichene and Thomas Müller}, year={2020}, eprint={2010.00571}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ```bibtex @InProceedings{iyyer2017search-based, author = {Iyyer, Mohit and Yih, Scott Wen-tau and Chang, Ming-Wei}, title = {Search-based Neural Structured Learning for Sequential Question Answering}, booktitle = {Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics}, year = {2017}, month = {July}, abstract = {Recent work in semantic parsing for question answering has focused on long and complicated questions, many of which would seem unnatural if asked in a normal conversation between two humans. In an effort to explore a conversational QA setting, we present a more realistic task: answering sequences of simple but inter-related questions. We collect a dataset of 6,066 question sequences that inquire about semi-structured tables from Wikipedia, with 17,553 question-answer pairs in total. To solve this sequential question answering task, we propose a novel dynamic neural semantic parsing framework trained using a weakly supervised reward-guided search. Our model effectively leverages the sequential context to outperform state-of-the-art QA systems that are designed to answer highly complex questions.}, publisher = {Association for Computational Linguistics}, url = {https://www.microsoft.com/en-us/research/publication/search-based-neural-structured-learning-sequential-question-answering/}, } ```
hfl/chinese-electra-180g-large-generator
e3bbab438ed06d3372e2c118f3ad86ea73e65376
2021-03-03T01:27:24.000Z
[ "pytorch", "tf", "electra", "zh", "arxiv:2004.13922", "transformers", "license:apache-2.0", "fill-mask" ]
fill-mask
false
hfl
null
hfl/chinese-electra-180g-large-generator
13
null
transformers
10,175
--- language: - zh license: "apache-2.0" pipeline_tag: "fill-mask" --- # This model is trained on 180G data, we recommend using this one than the original version. ## Chinese ELECTRA Google and Stanford University released a new pre-trained model called ELECTRA, which has a much compact model size and relatively competitive performance compared to BERT and its variants. For further accelerating the research of the Chinese pre-trained model, the Joint Laboratory of HIT and iFLYTEK Research (HFL) has released the Chinese ELECTRA models based on the official code of ELECTRA. ELECTRA-small could reach similar or even higher scores on several NLP tasks with only 1/10 parameters compared to BERT and its variants. This project is based on the official code of ELECTRA: [https://github.com/google-research/electra](https://github.com/google-research/electra) You may also interested in, - Chinese BERT series: https://github.com/ymcui/Chinese-BERT-wwm - Chinese ELECTRA: https://github.com/ymcui/Chinese-ELECTRA - Chinese XLNet: https://github.com/ymcui/Chinese-XLNet - Knowledge Distillation Toolkit - TextBrewer: https://github.com/airaria/TextBrewer More resources by HFL: https://github.com/ymcui/HFL-Anthology ## Citation If you find our resource or paper is useful, please consider including the following citation in your paper. - https://arxiv.org/abs/2004.13922 ``` @inproceedings{cui-etal-2020-revisiting, title = "Revisiting Pre-Trained Models for {C}hinese Natural Language Processing", author = "Cui, Yiming and Che, Wanxiang and Liu, Ting and Qin, Bing and Wang, Shijin and Hu, Guoping", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.findings-emnlp.58", pages = "657--668", } ```
howey/electra-large-squad2
721cb8eafe5e3b0cfdaea49f10fb20fbcb63a54b
2021-06-15T03:49:42.000Z
[ "pytorch", "electra", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
howey
null
howey/electra-large-squad2
13
null
transformers
10,176
Entry not found
huggingartists/adele
2b69ef91081a5c6922fce8bb8e5a3bc489f879fd
2021-10-20T04:50:21.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "dataset:huggingartists/adele", "transformers", "huggingartists", "lyrics", "lm-head", "causal-lm" ]
text-generation
false
huggingartists
null
huggingartists/adele
13
null
transformers
10,177
--- language: en datasets: - huggingartists/adele tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/4c3ac1f1d845d251671a892309b5f9b5.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Adele</div> <a href="https://genius.com/artists/adele"> <div style="text-align: center; font-size: 14px;">@adele</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Adele. Dataset is available [here](https://huggingface.co/datasets/huggingartists/adele). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/adele") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1yyqw6ss/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Adele's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/3qruwjpr) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/3qruwjpr/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/adele') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/adele") model = AutoModelWithLMHead.from_pretrained("huggingartists/adele") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/muse
bc4aa5d490ee7a3aa94762b67059377ea787b82e
2021-09-23T11:41:30.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "dataset:huggingartists/muse", "transformers", "huggingartists", "lyrics", "lm-head", "causal-lm" ]
text-generation
false
huggingartists
null
huggingartists/muse
13
null
transformers
10,178
--- language: en datasets: - huggingartists/muse tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/26f575585ec649d88d09a1e402bb936b.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Muse</div> <a href="https://genius.com/artists/muse"> <div style="text-align: center; font-size: 14px;">@muse</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Muse. Dataset is available [here](https://huggingface.co/datasets/huggingartists/muse). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/muse") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/3w58rwod/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Muse's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/3j03atcr) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/3j03atcr/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/muse') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/muse") model = AutoModelWithLMHead.from_pretrained("huggingartists/muse") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/the-beatles
7612f16f9c7ff044b345552ec76e6ba020a2b1ef
2022-02-27T11:47:43.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "dataset:huggingartists/the-beatles", "transformers", "huggingartists", "lyrics", "lm-head", "causal-lm" ]
text-generation
false
huggingartists
null
huggingartists/the-beatles
13
null
transformers
10,179
--- language: en datasets: - huggingartists/the-beatles tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/c771d3ee1c0969503cdaf34edf76f38a.400x400x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">The Beatles</div> <a href="https://genius.com/artists/the-beatles"> <div style="text-align: center; font-size: 14px;">@the-beatles</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from The Beatles. Dataset is available [here](https://huggingface.co/datasets/huggingartists/the-beatles). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/the-beatles") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/2p2c5864/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on The Beatles's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/286vzjah) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/286vzjah/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/the-beatles') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/the-beatles") model = AutoModelWithLMHead.from_pretrained("huggingartists/the-beatles") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingtweets/dril-hostagekiller-suicidepussy
db09a25ce9c1bce635f4fd5ef4371328c8fbaef3
2022-01-10T10:25:29.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/dril-hostagekiller-suicidepussy
13
null
transformers
10,180
--- language: en thumbnail: http://www.huggingtweets.com/dril-hostagekiller-suicidepussy/1641810324627/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1473236995497500675/FtwXDZld_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/847818629840228354/VXyQHfn0_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1322637724470358022/ccOsLDPE_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">HUSSY2K. & wint & I have 400 diseases</div> <div style="text-align: center; font-size: 14px;">@dril-hostagekiller-suicidepussy</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from HUSSY2K. & wint & I have 400 diseases. | Data | HUSSY2K. | wint | I have 400 diseases | | --- | --- | --- | --- | | Tweets downloaded | 3186 | 3226 | 3237 | | Retweets | 819 | 480 | 121 | | Short tweets | 395 | 304 | 1125 | | Tweets kept | 1972 | 2442 | 1991 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1bqo2ddu/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dril-hostagekiller-suicidepussy's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/o4ya0wuw) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/o4ya0wuw/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/dril-hostagekiller-suicidepussy') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/logo_daedalus
28f16ea83fff3a2d9e25c8ad6175df48226913a4
2022-07-01T22:12:42.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/logo_daedalus
13
null
transformers
10,181
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1491246058206216192/qUZ_ddCV_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">R.Сам 🦋🐏</div> <div style="text-align: center; font-size: 14px;">@logo_daedalus</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from R.Сам 🦋🐏. | Data | R.Сам 🦋🐏 | | --- | --- | | Tweets downloaded | 3244 | | Retweets | 284 | | Short tweets | 397 | | Tweets kept | 2563 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3mm5v8je/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @logo_daedalus's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3mr4fz6a) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3mr4fz6a/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/logo_daedalus') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
infinitejoy/wav2vec2-large-xls-r-300m-tatar
b51bf6f5dc695a6233f081dc329e7f071d4fe6ec
2022-03-24T11:52:33.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "tt", "dataset:mozilla-foundation/common_voice_7_0", "transformers", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
infinitejoy
null
infinitejoy/wav2vec2-large-xls-r-300m-tatar
13
null
transformers
10,182
--- language: - tt license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_7_0 - generated_from_trainer - tt - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - Tatar results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: tt metrics: - name: Test WER type: wer value: 24.392 - name: Test CER type: cer value: 5.024 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-tatar This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - TT dataset. It achieves the following results on the evaluation set: - Loss: 0.1959 - Wer: 0.2454 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 4000 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.173 | 9.66 | 4000 | 0.2920 | 0.3608 | | 0.9433 | 19.32 | 8000 | 0.2336 | 0.3026 | | 0.8552 | 28.99 | 12000 | 0.2221 | 0.2799 | | 0.7863 | 38.65 | 16000 | 0.1953 | 0.2479 | | 0.7365 | 48.31 | 20000 | 0.1968 | 0.2449 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
it5/it5-large-headline-generation
6c5a865e663942d85a8ac6843c56b3e6bae2233a
2022-03-09T07:59:47.000Z
[ "pytorch", "tf", "jax", "tensorboard", "t5", "text2text-generation", "it", "dataset:gsarti/change_it", "arxiv:2203.03759", "transformers", "italian", "sequence-to-sequence", "newspaper", "ilgiornale", "repubblica", "headline-generation", "license:apache-2.0", "model-index", "co2_eq_emissions", "autotrain_compatible" ]
text2text-generation
false
it5
null
it5/it5-large-headline-generation
13
null
transformers
10,183
--- language: - it license: apache-2.0 datasets: - gsarti/change_it tags: - italian - sequence-to-sequence - newspaper - ilgiornale - repubblica - headline-generation widget: - text: "WASHINGTON - La Corea del Nord torna dopo nove anni nella blacklist Usa degli Stati considerati sponsor del terrorismo. Come Iran, Siria e Sudan. Lo ha deciso Donald Trump , che ha preferito dare l'annuncio non durante il suo recente viaggio in Asia ma ieri, in una riunione del governo alla Casa Bianca. 'Oggi gli Stati Uniti designeranno la Corea del nord come uno stato sponsor del terrorismo', ha tuonato il tycoon, anticipando che sarà formalizzata oggi dal dipartimento di stato e sarà accompagnata da nuove e più severe sanzioni. 'Il livello più alto' mai imposto a Pyongyang, ha promesso. 'Avrebbe dovuto succedere molto tempo fa', ha aggiunto, scaricando per l'ennesima volta la responsabilità dell'attuale crisi sull'amministrazione Obama. Poi si è scagliato contro un 'regime assassino' che 'deve mettere fine allo sviluppo del suo programma illegale nucleare e balistico'. Per giustificare la svolta, Trump ha accusato Pyongyang non solo di 'minacciare il mondo con una devastazione nucleare' ma anche di aver 'ripetutamente sostenuto atti di terrorismo internazionale', compreso omicidi in suolo straniero. Il riferimento è all' uccisione all'aeroporto della capitale malese di Kim Jong Nam , il fratellastro del leader nordcoreano Kim Jong Un , ma non ci sono altri episodi noti. Tanto che alcuni esperti, come pure dirigenti Usa coperti dall'anonimato, dubitano che Pyongyang risponda ai criteri per una tale designazione. La mossa appare altamente simbolica, dato che la Corea del Nord è già pesantemente sanzionata a livello internazionale. Per il segretario di stato Rex Tillerson è solo l'ultima di una serie di passi per rafforzare la pressione su Pyongyang e costringerla a sedersi ad un tavolo perché gli Usa hanno sempre 'speranza nella diplomazia'. Ma nello stesso tempo è un monito per 'fermare e dissuadere' altri Paesi dal sostenere la Corea del Nord, finita nella blacklist 'anche per l'uso di armi chimiche'. Ma la mossa potrebbe anche essere controproducente, provocando una risposta di Kim o minando gli sforzi per sollecitare Pechino ad una maggiore pressione su Pyongyang. In ogni caso non aiuta il dialogo diretto tra Usa e Corea del Nord, che sembrava essere stato avviato in modo riservato. Come non aiutano gli scambi di insulti fra Trump e Kim. Nord Corea, Trump: 'Cerco di essere amico di Kim, sarebbe una bella cosa per il mondo'. Pyongyang era stata messa nella lista Usa degli Stati sponsor del terrorismo per aver fatto esplodere nel 1987 un volo della Korean Air uccidendo tutti i 115 passeggeri a bordo. Ma l'amministrazione di George W. Bush l'aveva rimossa sperando di far avanzare i negoziati sulla denuclearizzazione della penisola coreana. Il governo giapponese sostiene la decisione degli Stati Uniti di inserire la Corea del Nord nella lista degli stati che sponsorizzano il terrorismo, pur riconoscendo che l'annuncio potrebbe provocare una reazione immediata del regime di Pyongyang. Il premier Shinzo Abe ha accolto con consenso il comunicato Usa e ha detto alla stampa che servirà a incrementare la pressione sulla Corea del Nord. Il ministro della Difesa Itsunori Onodera , pur valutando positivamente la notifica, ha spiegato che si attendono azioni provocatorie dallo stato eremita, ribadendo che è vitale rimanere vigili. Secondo la stampa nipponica Abe aveva richiesto al dipartimento di Stato Usa di mettere la Corea del Nord sulla lista durante l'incontro col presidente Usa Donald Trump a Tokyo a inizio mese. L'ultimo lancio di missile balistico condotto da Pyongyang nell'oceano Pacifico, sorvolando il mare del Giappone, risale allo scorso settembre." - text: "ROMA - Una nuova droga killer è stata sequestrata per la prima volta in Europa dagli investigatori del Nas. Si tratta di una nuova \"miscela psicoattiva altamente tossica\" per la prima volta individuata da forze di polizia, simile all'eroina sintetica, ma molto più economica e letale. Tanto che i 20 grammi scoperti sarebbero stati sufficienti per fabbricare ben 20.000 dosi e lo stesso contatto attraverso la pelle può provocare intossicazione. Individuata per la prima volta, la nuova droga presenta una struttura simile al farmaco sedativo Fentanyl ma con effetti molto più devastanti per l'organismo. Proveniva dell'estero ed era contenuta in un plico postale indirizzato in una città del centro Italia: è stata intercettata tramite accertamenti sul web grazie a un'operazione di intelligence che ha visto come protagonisti i militari della Sezione operativa centrale del Comando carabinieri per la Tutela della salute (Nas). Economica e letale, secondo gli investigatori \"in confronto l'eroina è quasi 'acqua fresca', anzi, proprio per la sua economicità, in alcuni casi viene venduta dai pusher a giovani conviti di comprare eroina\". La diffusione di nuove droghe sintetiche che continuamente appaiono sui mercati necessita di un'attività investigativa costante e complessa. Si tratta infatti di sostanze dalla struttura molecolare molto simile a quella del Fentanyl ma ogni volta leggermente diversa. Di qui la difficoltà di individuarle e l'importanza del nuovo sequestro. \"La chiamano impropriamente 'eroina sintetica' - spiega il comandante dei Nas, generale Adelmo Lusi - per il tipo di effetto psicotropo simile, ma dal punto di vista della tossicità è molto peggio: con 25 milligrammi di eroina ci si sballa, con 25mg di simil-fentanyl, come quello appena sequestrato, si muore\". Le indagini sono partite da ricoveri per overdose in ospedale, in cui arrivavano ragazzi che non rispondevano al trattamento disintossicante per l'eroina. La nuova sostanza verrà ora segnalata per l'inserimento tra le tabelle ministeriali degli stupefacenti prevista dal Dpr 309/1990." - text: "Fragile come il burro. Il nostro territorio è precario. Ne sanno qualcosa i comuni che sono stati investititi dal maltempo . Il dissesto idrogeologico imperversa su tutto il territorio. Infatti, oltre 6.600 comuni , pari all’82% del totale, sono in aree ad elevato rischio idrogeologico, pari al 10% della sua superficie. La popolazione potenzialmente esposta è stimata in 5,8 milioni di persone. I dati emergono dalle recenti analisi fatte da Legambiente e Protezione civile, che mettono in evidenza come in 10 anni in Italia sia raddoppiata l’area dei territori colpiti da alluvioni e frane , passando da una media di quattro regioni all’anno a otto regioni. Nella classifica delle regioni a maggior rischio idrogeologico prima è la Calabria con il 100% dei comuni esposti; al 100% ci sono anche la provincia di Trento, il Molise, la Basilicata, l’Umbria, la Valle d’Aosta. Poi Marche, Liguria al 99%; Lazio, Toscana al 98%; Abruzzo (96%), Emilia-Romagna (95%), Campania e Friuli Venezia Giulia al 92%, Piemonte (87%), Sardegna (81%), Puglia (78%), Sicilia (71%), Lombardia (60%), provincia di Bolzano (59%), Veneto (56%). Tra le cause che condizionano ed amplificano il rischio idrogeologico c’è l’azione dell’uomo (abbandono e degrado, cementificazione, consumo di suolo, abusivismo, disboscamento e incendi). Ma anche e soprattutto la mancanza di una seria manutenzione ordinaria e non ad una organica politica di prevenzione." - text: "Arriva dal Partito nazionalista basco (Pnv) la conferma che i cinque deputati che siedono in parlamento voteranno la sfiducia al governo guidato da Mariano Rajoy. Pochi voti, ma significativi quelli della formazione politica di Aitor Esteban, che interverrà nel pomeriggio. Pur con dimensioni molto ridotte, il partito basco si è trovato a fare da ago della bilancia in aula. E il sostegno alla mozione presentata dai Socialisti potrebbe significare per il primo ministro non trovare quei 176 voti che gli servono per continuare a governare. \" Perché dovrei dimettermi io che per il momento ho la fiducia della Camera e quella che mi è stato data alle urne \", ha detto oggi Rajoy nel suo intervento in aula, mentre procedeva la discussione sulla mozione di sfiducia. Il voto dei baschi ora cambia le carte in tavola e fa crescere ulteriormente la pressione sul premier perché rassegni le sue dimissioni. La sfiducia al premier, o un'eventuale scelta di dimettersi, porterebbe alle estreme conseguenze lo scandalo per corruzione che ha investito il Partito popolare. Ma per ora sembra pensare a tutt'altro. \"Non ha intenzione di dimettersi - ha detto il segretario generale del Partito popolare , María Dolores de Cospedal - Non gioverebbe all'interesse generale o agli interessi del Pp\"." metrics: - rouge - bertscore model-index: - name: it5-large-headline-generation results: - task: type: headline-generation name: "Headline generation" dataset: type: headgen_it name: "HeadGen-IT" metrics: - type: rouge1 value: 0.308 name: "Test Rouge1" - type: rouge2 value: 0.113 name: "Test Rouge2" - type: rougeL value: 0.270 name: "Test RougeL" - type: bertscore value: 0.430 name: "Test BERTScore" args: - model_type: "dbmdz/bert-base-italian-xxl-uncased" - lang: "it" - num_layers: 10 - rescale_with_baseline: True - baseline_path: "bertscore_baseline_ita.tsv" co2_eq_emissions: emissions: "51g" source: "Google Cloud Platform Carbon Footprint" training_type: "fine-tuning" geographical_location: "Eemshaven, Netherlands, Europe" hardware_used: "1 TPU v3-8 VM" thumbnail: https://gsarti.com/publication/it5/featured.png --- # IT5 Large for News Headline Generation 📣 🇮🇹 This repository contains the checkpoint for the [IT5 Large](https://huggingface.co/gsarti/it5-large) model fine-tuned on news headline generation on the Italian HeadGen-IT dataset as part of the experiments of the paper [IT5: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation](https://arxiv.org/abs/2203.03759) by [Gabriele Sarti](https://gsarti.com) and [Malvina Nissim](https://malvinanissim.github.io). A comprehensive overview of other released materials is provided in the [gsarti/it5](https://github.com/gsarti/it5) repository. Refer to the paper for additional details concerning the reported scores and the evaluation approach. ## Using the model Model checkpoints are available for usage in Tensorflow, Pytorch and JAX. They can be used directly with pipelines as: ```python from transformers import pipelines hg = pipeline("text2text-generation", model='it5/it5-large-headline-generation') hg("Arriva dal Partito nazionalista basco (Pnv) la conferma che i cinque deputati che siedono in parlamento voteranno la sfiducia al governo guidato da Mariano Rajoy. Pochi voti, ma significativi quelli della formazione politica di Aitor Esteban, che interverrà nel pomeriggio. Pur con dimensioni molto ridotte, il partito basco si è trovato a fare da ago della bilancia in aula. E il sostegno alla mozione presentata dai Socialisti potrebbe significare per il primo ministro non trovare quei 176 voti che gli servono per continuare a governare. \" Perché dovrei dimettermi io che per il momento ho la fiducia della Camera e quella che mi è stato data alle urne \", ha detto oggi Rajoy nel suo intervento in aula, mentre procedeva la discussione sulla mozione di sfiducia. Il voto dei baschi ora cambia le carte in tavola e fa crescere ulteriormente la pressione sul premier perché rassegni le sue dimissioni. La sfiducia al premier, o un'eventuale scelta di dimettersi, porterebbe alle estreme conseguenze lo scandalo per corruzione che ha investito il Partito popolare. Ma per ora sembra pensare a tutt'altro. \"Non ha intenzione di dimettersi - ha detto il segretario generale del Partito popolare , María Dolores de Cospedal - Non gioverebbe all'interesse generale o agli interessi del Pp\".") >>> [{"generated_text": "il nazionalista rajoy: 'voteremo la sfiducia'"}] ``` or loaded using autoclasses: ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("it5/it5-large-headline-generation") model = AutoModelForSeq2SeqLM.from_pretrained("it5/it5-large-headline-generation") ``` If you use this model in your research, please cite our work as: ```bibtex @article{sarti-nissim-2022-it5, title={{IT5}: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation}, author={Sarti, Gabriele and Nissim, Malvina}, journal={ArXiv preprint 2203.03759}, url={https://arxiv.org/abs/2203.03759}, year={2022}, month={mar} } ```
it5/mt5-base-formal-to-informal
3f009d964085cd9a54db70f743c40a161675201e
2022-03-09T07:44:08.000Z
[ "pytorch", "tf", "jax", "tensorboard", "t5", "text2text-generation", "it", "dataset:yahoo/xformal_it", "arxiv:2203.03759", "transformers", "italian", "sequence-to-sequence", "style-transfer", "formality-style-transfer", "license:apache-2.0", "model-index", "co2_eq_emissions", "autotrain_compatible" ]
text2text-generation
false
it5
null
it5/mt5-base-formal-to-informal
13
null
transformers
10,184
--- language: - it license: apache-2.0 tags: - italian - sequence-to-sequence - style-transfer - formality-style-transfer datasets: - yahoo/xformal_it widget: - text: "Questa performance è a dir poco spiacevole." - text: "In attesa di un Suo cortese riscontro, Le auguriamo un piacevole proseguimento di giornata." - text: "Questa visione mi procura una goduria indescrivibile." - text: "qualora ciò possa interessarti, ti pregherei di contattarmi." metrics: - rouge - bertscore model-index: - name: mt5-base-formal-to-informal results: - task: type: formality-style-transfer name: "Formal-to-informal Style Transfer" dataset: type: xformal_it name: "XFORMAL (Italian Subset)" metrics: - type: rouge1 value: 0.653 name: "Avg. Test Rouge1" - type: rouge2 value: 0.449 name: "Avg. Test Rouge2" - type: rougeL value: 0.632 name: "Avg. Test RougeL" - type: bertscore value: 0.667 name: "Avg. Test BERTScore" args: - model_type: "dbmdz/bert-base-italian-xxl-uncased" - lang: "it" - num_layers: 10 - rescale_with_baseline: True - baseline_path: "bertscore_baseline_ita.tsv" co2_eq_emissions: emissions: "40g" source: "Google Cloud Platform Carbon Footprint" training_type: "fine-tuning" geographical_location: "Eemshaven, Netherlands, Europe" hardware_used: "1 TPU v3-8 VM" --- # mT5 Base for Formal-to-informal Style Transfer 🤗 This repository contains the checkpoint for the [mT5 Base](https://huggingface.co/google/mt5-base) model fine-tuned on Formal-to-informal style transfer on the Italian subset of the XFORMAL dataset as part of the experiments of the paper [IT5: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation](https://arxiv.org/abs/2203.03759) by [Gabriele Sarti](https://gsarti.com) and [Malvina Nissim](https://malvinanissim.github.io). A comprehensive overview of other released materials is provided in the [gsarti/it5](https://github.com/gsarti/it5) repository. Refer to the paper for additional details concerning the reported scores and the evaluation approach. ## Using the model Model checkpoints are available for usage in Tensorflow, Pytorch and JAX. They can be used directly with pipelines as: ```python from transformers import pipelines f2i = pipeline("text2text-generation", model='it5/mt5-base-formal-to-informal') f2i("Vi ringrazio infinitamente per vostra disponibilità") >>> [{"generated_text": "e grazie per la vostra disponibilità!"}] ``` or loaded using autoclasses: ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("it5/mt5-base-formal-to-informal") model = AutoModelForSeq2SeqLM.from_pretrained("it5/mt5-base-formal-to-informal") ``` If you use this model in your research, please cite our work as: ```bibtex @article{sarti-nissim-2022-it5, title={IT5: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation}, author={Sarti, Gabriele and Nissim, Malvina}, journal={ArXiv preprint TBD}, url={TBD}, year={2022} } ```
jonfd/electra-base-igc-is
e2921de06b441e2a3066da485d6fa31cf5c816a8
2022-01-05T14:54:23.000Z
[ "pytorch", "electra", "pretraining", "is", "dataset:igc", "transformers", "license:cc-by-4.0" ]
null
false
jonfd
null
jonfd/electra-base-igc-is
13
null
transformers
10,185
--- language: - is license: cc-by-4.0 datasets: - igc --- # Icelandic ELECTRA-Base This model was pretrained on the [Icelandic Gigaword Corpus](http://igc.arnastofnun.is/), which contains approximately 1.69B tokens, using default settings. The model uses a WordPiece tokenizer with a vocabulary size of 32,105. # Acknowledgments This research was supported with Cloud TPUs from Google's TPU Research Cloud (TRC). This project was funded by the Language Technology Programme for Icelandic 2019-2023. The programme, which is managed and coordinated by [Almannarómur](https://almannaromur.is/), is funded by the Icelandic Ministry of Education, Science and Culture.
kaporter/bert-base-uncased-finetuned-squad
3aa55a541df2d16870d3ca5074673d7f90cc008d
2021-11-30T22:42:17.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible" ]
question-answering
false
kaporter
null
kaporter/bert-base-uncased-finetuned-squad
13
null
transformers
10,186
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model_index: - name: bert-base-uncased-finetuned-squad results: - task: name: Question Answering type: question-answering dataset: name: squad type: squad args: plain_text --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-squad This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.0725 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.0749 | 1.0 | 5533 | 1.0167 | | 0.7851 | 2.0 | 11066 | 1.0299 | | 0.6067 | 3.0 | 16599 | 1.0725 | ### Framework versions - Transformers 4.8.1 - Pytorch 1.8.1 - Datasets 1.16.1 - Tokenizers 0.10.1
krevas/finance-electra-small-generator
b2132e311db62d3567cdb24e3b4822814f2d8ce5
2020-07-09T05:47:53.000Z
[ "pytorch", "electra", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
krevas
null
krevas/finance-electra-small-generator
13
null
transformers
10,187
Entry not found
leonweber/PEDL
a02c96ba7996c1d89b796c251d6163e0aaad187f
2021-06-16T09:19:35.000Z
[ "pytorch", "bert", "transformers" ]
null
false
leonweber
null
leonweber/PEDL
13
null
transformers
10,188
Entry not found
lvwerra/gpt2-medium-taboo
acdbb5d8843d8fcc6373d8e0fefae0f77fb3fdc7
2021-05-23T08:40:35.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
lvwerra
null
lvwerra/gpt2-medium-taboo
13
null
transformers
10,189
# GPT-2 (medium) Taboo ## What is it? A fine-tuned GPT-2 version for Taboo cards generation. ## Training setting The model was trained on ~900 Taboo cards in the following format for 100 epochs: ``` Describe the word Glitch without using the words Problem, Unexpected, Technology, Minor, Outage. ````
madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1
23d3a42f78c42887cecbb3d1584299790bebdfa4
2021-06-16T17:10:27.000Z
[ "pytorch", "tf", "bert", "question-answering", "en", "dataset:squad_v2", "transformers", "license:mit", "autotrain_compatible" ]
question-answering
false
madlag
null
madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1
13
null
transformers
10,190
--- language: en thumbnail: license: mit tags: - question-answering - - datasets: - squad_v2 metrics: - squad_v2 widget: - text: "Where is the Eiffel Tower located?" context: "The Eiffel Tower is a wrought-iron lattice tower on the Champ de Mars in Paris, France. It is named after the engineer Gustave Eiffel, whose company designed and built the tower." - text: "Who is Frederic Chopin?" context: "Frédéric François Chopin, born Fryderyk Franciszek Chopin (1 March 1810 – 17 October 1849), was a Polish composer and virtuoso pianist of the Romantic era who wrote primarily for solo piano." --- ## bert-large-uncased-whole-word-masking model fine-tuned on SQuAD v2 This model was created using the [nn_pruning](https://github.com/huggingface/nn_pruning) python library: the **linear layers contains 25.0%** of the original weights. The model contains **32.0%** of the original weights **overall** (the embeddings account for a significant part of the model, and they are not pruned by this method). With a simple resizing of the linear matrices it ran **2.15x as fast as bert-large-uncased-whole-word-masking** on the evaluation. This is possible because the pruning method lead to structured matrices: to visualize them, hover below on the plot to see the non-zero/zero parts of each matrix. <div class="graph"><script src="/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/density_info.js" id="d55f6096-07eb-4cc1-b284-90ec6ced516c"></script></div> In terms of accuracy, its **F1 is 83.22**, compared with 85.85 for bert-large-uncased-whole-word-masking, a **F1 drop of 2.63**. ## Fine-Pruning details This model was fine-tuned from the HuggingFace [model](https://huggingface.co/bert-large-uncased-whole-word-masking) checkpoint on [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer), and distilled from the model [madlag/bert-large-uncased-whole-word-masking-finetuned-squadv2](https://huggingface.co/madlag/bert-large-uncased-whole-word-masking-finetuned-squadv2). This model is case-insensitive: it does not make a difference between english and English. A side-effect of the block pruning is that some of the attention heads are completely removed: 155 heads were removed on a total of 384 (40.4%). Here is a detailed view on how the remaining heads are distributed in the network after pruning. <div class="graph"><script src="/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/pruning_info.js" id="a474f11e-7e05-495e-bb21-4af0edfb6661"></script></div> ## Details of the SQuAD1.1 dataset | Dataset | Split | # samples | | -------- | ----- | --------- | | SQuAD 2.0 | train | 130.0K | | SQuAD 2.0 | eval | 11.9k | ### Fine-tuning - Python: `3.8.5` - Machine specs: ```CPU: Intel(R) Core(TM) i7-6700K CPU Memory: 64 GiB GPUs: 1 GeForce GTX 3090, with 24GiB memory GPU driver: 455.23.05, CUDA: 11.1 ``` ### Results **Pytorch model file size**: `1119MB` (original BERT: `1228.0MB`) | Metric | # Value | # Original ([Table 2](https://www.aclweb.org/anthology/N19-1423.pdf))| Variation | | ------ | --------- | --------- | --------- | | **EM** | **80.19** | **82.83** | **-3.64**| | **F1** | **83.22** | **85.85** | **-2.63**| ``` { "HasAns_exact": 76.48448043184885, "HasAns_f1": 82.55514100819374, "HasAns_total": 5928, "NoAns_exact": 83.8856181665265, "NoAns_f1": 83.8856181665265, "NoAns_total": 5945, "best_exact": 80.19034784805862, "best_exact_thresh": 0.0, "best_f1": 83.22133208932635, "best_f1_thresh": 0.0, "exact": 80.19034784805862, "f1": 83.22133208932645, "total": 11873 } ``` ## Example Usage Install nn_pruning: it contains the optimization script, which just pack the linear layers into smaller ones by removing empty rows/columns. `pip install nn_pruning` Then you can use the `transformers library` almost as usual: you just have to call `optimize_model` when the pipeline has loaded. ```python from transformers import pipeline from nn_pruning.inference_model_patcher import optimize_model qa_pipeline = pipeline( "question-answering", model="madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1", tokenizer="madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1" ) print("bert-large-uncased-whole-word-masking parameters: 497.0M") print(f"Parameters count (includes only head pruning, not feed forward pruning)={int(qa_pipeline.model.num_parameters() / 1E6)}M") qa_pipeline.model = optimize_model(qa_pipeline.model, "dense") print(f"Parameters count after complete optimization={int(qa_pipeline.model.num_parameters() / 1E6)}M") predictions = qa_pipeline({ 'context': "Frédéric François Chopin, born Fryderyk Franciszek Chopin (1 March 1810 – 17 October 1849), was a Polish composer and virtuoso pianist of the Romantic era who wrote primarily for solo piano.", 'question': "Who is Frederic Chopin?", }) print("Predictions", predictions) ```
mbeukman/xlm-roberta-base-finetuned-igbo-finetuned-ner-swahili
5c566e84e39460721bf4085407c50e614ca09c0a
2021-11-25T09:04:02.000Z
[ "pytorch", "xlm-roberta", "token-classification", "sw", "dataset:masakhaner", "arxiv:2103.11811", "transformers", "NER", "autotrain_compatible" ]
token-classification
false
mbeukman
null
mbeukman/xlm-roberta-base-finetuned-igbo-finetuned-ner-swahili
13
null
transformers
10,191
--- language: - sw tags: - NER datasets: - masakhaner metrics: - f1 - precision - recall widget: - text: "Wizara ya afya ya Tanzania imeripoti Jumatatu kuwa , watu takriban 14 zaidi wamepata maambukizi ya Covid - 19 ." --- # xlm-roberta-base-finetuned-igbo-finetuned-ner-swahili This is a token classification (specifically NER) model that fine-tuned [xlm-roberta-base-finetuned-igbo](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-igbo) on the [MasakhaNER](https://arxiv.org/abs/2103.11811) dataset, specifically the Swahili part. More information, and other similar models can be found in the [main Github repository](https://github.com/Michael-Beukman/NERTransfer). ## About This model is transformer based and was fine-tuned on the MasakhaNER dataset. It is a named entity recognition dataset, containing mostly news articles in 10 different African languages. The model was fine-tuned for 50 epochs, with a maximum sequence length of 200, 32 batch size, 5e-5 learning rate. This process was repeated 5 times (with different random seeds), and this uploaded model performed the best out of those 5 seeds (aggregate F1 on test set). This model was fine-tuned by me, Michael Beukman while doing a project at the University of the Witwatersrand, Johannesburg. This is version 1, as of 20 November 2021. This model is licensed under the [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0). ### Contact & More information For more information about the models, including training scripts, detailed results and further resources, you can visit the the [main Github repository](https://github.com/Michael-Beukman/NERTransfer). You can contact me by filing an issue on this repository. ### Training Resources In the interest of openness, and reporting resources used, we list here how long the training process took, as well as what the minimum resources would be to reproduce this. Fine-tuning each model on the NER dataset took between 10 and 30 minutes, and was performed on a NVIDIA RTX3090 GPU. To use a batch size of 32, at least 14GB of GPU memory was required, although it was just possible to fit these models in around 6.5GB's of VRAM when using a batch size of 1. ## Data The train, evaluation and test datasets were taken directly from the MasakhaNER [Github](https://github.com/masakhane-io/masakhane-ner) repository, with minimal to no preprocessing, as the original dataset is already of high quality. The motivation for the use of this data is that it is the "first large, publicly available, high­ quality dataset for named entity recognition (NER) in ten African languages" ([source](https://arxiv.org/pdf/2103.11811.pdf)). The high-quality data, as well as the groundwork laid by the paper introducing it are some more reasons why this dataset was used. For evaluation, the dedicated test split was used, which is from the same distribution as the training data, so this model may not generalise to other distributions, and further testing would need to be done to investigate this. The exact distribution of the data is covered in detail [here](https://arxiv.org/abs/2103.11811). ## Intended Use This model are intended to be used for NLP research into e.g. interpretability or transfer learning. Using this model in production is not supported, as generalisability and downright performance is limited. In particular, this is not designed to be used in any important downstream task that could affect people, as harm could be caused by the limitations of the model, described next. ## Limitations This model was only trained on one (relatively small) dataset, covering one task (NER) in one domain (news articles) and in a set span of time. The results may not generalise, and the model may perform badly, or in an unfair / biased way if used on other tasks. Although the purpose of this project was to investigate transfer learning, the performance on languages that the model was not trained for does suffer. Because this model used xlm-roberta-base as its starting point (potentially with domain adaptive fine-tuning on specific languages), this model's limitations can also apply here. These can include being biased towards the hegemonic viewpoint of most of its training data, being ungrounded and having subpar results on other languages (possibly due to unbalanced training data). As [Adelani et al. (2021)](https://arxiv.org/abs/2103.11811) showed, the models in general struggled with entities that were either longer than 3 words and entities that were not contained in the training data. This could bias the models towards not finding, e.g. names of people that have many words, possibly leading to a misrepresentation in the results. Similarly, names that are uncommon, and may not have been found in the training data (due to e.g. different languages) would also be predicted less often. Additionally, this model has not been verified in practice, and other, more subtle problems may become prevalent if used without any verification that it does what it is supposed to. ### Privacy & Ethical Considerations The data comes from only publicly available news sources, the only available data should cover public figures and those that agreed to be reported on. See the original MasakhaNER paper for more details. No explicit ethical considerations or adjustments were made during fine-tuning of this model. ## Metrics The language adaptive models achieve (mostly) superior performance over starting with xlm-roberta-base. Our main metric was the aggregate F1 score for all NER categories. These metrics are on the test set for MasakhaNER, so the data distribution is similar to the training set, so these results do not directly indicate how well these models generalise. We do find large variation in transfer results when starting from different seeds (5 different seeds were tested), indicating that the fine-tuning process for transfer might be unstable. The metrics used were chosen to be consistent with previous work, and to facilitate research. Other metrics may be more appropriate for other purposes. ## Caveats and Recommendations In general, this model performed worse on the 'date' category compared to others, so if dates are a critical factor, then that might need to be taken into account and addressed, by for example collecting and annotating more data. ## Model Structure Here are some performance details on this specific model, compared to others we trained. All of these metrics were calculated on the test set, and the seed was chosen that gave the best overall F1 score. The first three result columns are averaged over all categories, and the latter 4 provide performance broken down by category. This model can predict the following label for a token ([source](https://huggingface.co/Davlan/xlm-roberta-large-masakhaner)): Abbreviation|Description -|- O|Outside of a named entity B-DATE |Beginning of a DATE entity right after another DATE entity I-DATE |DATE entity B-PER |Beginning of a person’s name right after another person’s name I-PER |Person’s name B-ORG |Beginning of an organisation right after another organisation I-ORG |Organisation B-LOC |Beginning of a location right after another location I-LOC |Location | Model Name | Staring point | Evaluation / Fine-tune Language | F1 | Precision | Recall | F1 (DATE) | F1 (LOC) | F1 (ORG) | F1 (PER) | | -------------------------------------------------- | -------------------- | -------------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- | | [xlm-roberta-base-finetuned-igbo-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-igbo-finetuned-ner-swahili) (This model) | [ibo](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-igbo) | swa | 87.75 | 86.55 | 88.97 | 85.00 | 92.00 | 77.00 | 91.00 | | [xlm-roberta-base-finetuned-hausa-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-hausa-finetuned-ner-swahili) | [hau](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-hausa) | swa | 88.36 | 86.95 | 89.82 | 86.00 | 91.00 | 77.00 | 94.00 | | [xlm-roberta-base-finetuned-kinyarwanda-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-kinyarwanda-finetuned-ner-swahili) | [kin](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-kinyarwanda) | swa | 87.26 | 85.15 | 89.48 | 83.00 | 91.00 | 75.00 | 93.00 | | [xlm-roberta-base-finetuned-luganda-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-luganda-finetuned-ner-swahili) | [lug](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-luganda) | swa | 88.93 | 87.64 | 90.25 | 83.00 | 92.00 | 79.00 | 95.00 | | [xlm-roberta-base-finetuned-luo-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-luo-finetuned-ner-swahili) | [luo](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-luo) | swa | 87.93 | 86.91 | 88.97 | 83.00 | 91.00 | 76.00 | 94.00 | | [xlm-roberta-base-finetuned-naija-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-naija-finetuned-ner-swahili) | [pcm](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-naija) | swa | 87.26 | 85.15 | 89.48 | 83.00 | 91.00 | 75.00 | 93.00 | | [xlm-roberta-base-finetuned-swahili-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-swahili-finetuned-ner-swahili) | [swa](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-swahili) | swa | 90.36 | 88.59 | 92.20 | 86.00 | 93.00 | 79.00 | 96.00 | | [xlm-roberta-base-finetuned-wolof-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-wolof-finetuned-ner-swahili) | [wol](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-wolof) | swa | 87.80 | 86.50 | 89.14 | 86.00 | 90.00 | 78.00 | 93.00 | | [xlm-roberta-base-finetuned-yoruba-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-yoruba-finetuned-ner-swahili) | [yor](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-yoruba) | swa | 87.73 | 86.67 | 88.80 | 85.00 | 91.00 | 75.00 | 93.00 | | [xlm-roberta-base-finetuned-ner-swahili](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-ner-swahili) | [base](https://huggingface.co/xlm-roberta-base) | swa | 88.71 | 86.84 | 90.67 | 83.00 | 91.00 | 79.00 | 95.00 | ## Usage To use this model (or others), you can do the following, just changing the model name ([source](https://huggingface.co/dslim/bert-base-NER)): ``` from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline model_name = 'mbeukman/xlm-roberta-base-finetuned-igbo-finetuned-ner-swahili' tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForTokenClassification.from_pretrained(model_name) nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "Wizara ya afya ya Tanzania imeripoti Jumatatu kuwa , watu takriban 14 zaidi wamepata maambukizi ya Covid - 19 ." ner_results = nlp(example) print(ner_results) ```
mbeukman/xlm-roberta-base-finetuned-ner-luo
f7fea8aedb45790b6a89018658165aafb45d0b45
2021-11-25T09:04:35.000Z
[ "pytorch", "xlm-roberta", "token-classification", "luo", "dataset:masakhaner", "arxiv:2103.11811", "transformers", "NER", "autotrain_compatible" ]
token-classification
false
mbeukman
null
mbeukman/xlm-roberta-base-finetuned-ner-luo
13
null
transformers
10,192
--- language: - luo tags: - NER datasets: - masakhaner metrics: - f1 - precision - recall widget: - text: "Jii 2 moko jowito ngimagi ka machielo 1 to ohinyore marach mokalo e masira makoch mar apaya mane otimore e apaya mawuok Oyugis kochimo Chabera e sub county ma Rachuonyo East e County ma Homa Bay ewii odhiambo makawuononi" --- # xlm-roberta-base-finetuned-ner-luo This is a token classification (specifically NER) model that fine-tuned [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the [MasakhaNER](https://arxiv.org/abs/2103.11811) dataset, specifically the Luo part. More information, and other similar models can be found in the [main Github repository](https://github.com/Michael-Beukman/NERTransfer). ## About This model is transformer based and was fine-tuned on the MasakhaNER dataset. It is a named entity recognition dataset, containing mostly news articles in 10 different African languages. The model was fine-tuned for 50 epochs, with a maximum sequence length of 200, 32 batch size, 5e-5 learning rate. This process was repeated 5 times (with different random seeds), and this uploaded model performed the best out of those 5 seeds (aggregate F1 on test set). This model was fine-tuned by me, Michael Beukman while doing a project at the University of the Witwatersrand, Johannesburg. This is version 1, as of 20 November 2021. This model is licensed under the [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0). ### Contact & More information For more information about the models, including training scripts, detailed results and further resources, you can visit the the [main Github repository](https://github.com/Michael-Beukman/NERTransfer). You can contact me by filing an issue on this repository. ### Training Resources In the interest of openness, and reporting resources used, we list here how long the training process took, as well as what the minimum resources would be to reproduce this. Fine-tuning each model on the NER dataset took between 10 and 30 minutes, and was performed on a NVIDIA RTX3090 GPU. To use a batch size of 32, at least 14GB of GPU memory was required, although it was just possible to fit these models in around 6.5GB's of VRAM when using a batch size of 1. ## Data The train, evaluation and test datasets were taken directly from the MasakhaNER [Github](https://github.com/masakhane-io/masakhane-ner) repository, with minimal to no preprocessing, as the original dataset is already of high quality. The motivation for the use of this data is that it is the "first large, publicly available, high­ quality dataset for named entity recognition (NER) in ten African languages" ([source](https://arxiv.org/pdf/2103.11811.pdf)). The high-quality data, as well as the groundwork laid by the paper introducing it are some more reasons why this dataset was used. For evaluation, the dedicated test split was used, which is from the same distribution as the training data, so this model may not generalise to other distributions, and further testing would need to be done to investigate this. The exact distribution of the data is covered in detail [here](https://arxiv.org/abs/2103.11811). ## Intended Use This model are intended to be used for NLP research into e.g. interpretability or transfer learning. Using this model in production is not supported, as generalisability and downright performance is limited. In particular, this is not designed to be used in any important downstream task that could affect people, as harm could be caused by the limitations of the model, described next. ## Limitations This model was only trained on one (relatively small) dataset, covering one task (NER) in one domain (news articles) and in a set span of time. The results may not generalise, and the model may perform badly, or in an unfair / biased way if used on other tasks. Although the purpose of this project was to investigate transfer learning, the performance on languages that the model was not trained for does suffer. Because this model used xlm-roberta-base as its starting point (potentially with domain adaptive fine-tuning on specific languages), this model's limitations can also apply here. These can include being biased towards the hegemonic viewpoint of most of its training data, being ungrounded and having subpar results on other languages (possibly due to unbalanced training data). As [Adelani et al. (2021)](https://arxiv.org/abs/2103.11811) showed, the models in general struggled with entities that were either longer than 3 words and entities that were not contained in the training data. This could bias the models towards not finding, e.g. names of people that have many words, possibly leading to a misrepresentation in the results. Similarly, names that are uncommon, and may not have been found in the training data (due to e.g. different languages) would also be predicted less often. Additionally, this model has not been verified in practice, and other, more subtle problems may become prevalent if used without any verification that it does what it is supposed to. ### Privacy & Ethical Considerations The data comes from only publicly available news sources, the only available data should cover public figures and those that agreed to be reported on. See the original MasakhaNER paper for more details. No explicit ethical considerations or adjustments were made during fine-tuning of this model. ## Metrics The language adaptive models achieve (mostly) superior performance over starting with xlm-roberta-base. Our main metric was the aggregate F1 score for all NER categories. These metrics are on the test set for MasakhaNER, so the data distribution is similar to the training set, so these results do not directly indicate how well these models generalise. We do find large variation in transfer results when starting from different seeds (5 different seeds were tested), indicating that the fine-tuning process for transfer might be unstable. The metrics used were chosen to be consistent with previous work, and to facilitate research. Other metrics may be more appropriate for other purposes. ## Caveats and Recommendations In general, this model performed worse on the 'date' category compared to others, so if dates are a critical factor, then that might need to be taken into account and addressed, by for example collecting and annotating more data. ## Model Structure Here are some performance details on this specific model, compared to others we trained. All of these metrics were calculated on the test set, and the seed was chosen that gave the best overall F1 score. The first three result columns are averaged over all categories, and the latter 4 provide performance broken down by category. This model can predict the following label for a token ([source](https://huggingface.co/Davlan/xlm-roberta-large-masakhaner)): Abbreviation|Description -|- O|Outside of a named entity B-DATE |Beginning of a DATE entity right after another DATE entity I-DATE |DATE entity B-PER |Beginning of a person’s name right after another person’s name I-PER |Person’s name B-ORG |Beginning of an organisation right after another organisation I-ORG |Organisation B-LOC |Beginning of a location right after another location I-LOC |Location | Model Name | Staring point | Evaluation / Fine-tune Language | F1 | Precision | Recall | F1 (DATE) | F1 (LOC) | F1 (ORG) | F1 (PER) | | -------------------------------------------------- | -------------------- | -------------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- | | [xlm-roberta-base-finetuned-ner-luo](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-ner-luo) (This model) | [base](https://huggingface.co/xlm-roberta-base) | luo | 75.99 | 76.18 | 75.80 | 71.00 | 76.00 | 62.00 | 85.00 | | [xlm-roberta-base-finetuned-luo-finetuned-ner-luo](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-luo-finetuned-ner-luo) | [luo](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-luo) | luo | 78.71 | 78.91 | 78.52 | 72.00 | 84.00 | 59.00 | 87.00 | | [xlm-roberta-base-finetuned-swahili-finetuned-ner-luo](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-swahili-finetuned-ner-luo) | [swa](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-swahili) | luo | 78.13 | 77.75 | 78.52 | 65.00 | 82.00 | 61.00 | 89.00 | ## Usage To use this model (or others), you can do the following, just changing the model name ([source](https://huggingface.co/dslim/bert-base-NER)): ``` from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline model_name = 'mbeukman/xlm-roberta-base-finetuned-ner-luo' tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForTokenClassification.from_pretrained(model_name) nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "Jii 2 moko jowito ngimagi ka machielo 1 to ohinyore marach mokalo e masira makoch mar apaya mane otimore e apaya mawuok Oyugis kochimo Chabera e sub county ma Rachuonyo East e County ma Homa Bay ewii odhiambo makawuononi" ner_results = nlp(example) print(ner_results) ```
microsoft/wavlm-base-sv
0a23162ffc49adcf42bdf836a00cb2eb45af3601
2022-03-25T12:05:52.000Z
[ "pytorch", "wavlm", "audio-xvector", "en", "arxiv:2110.13900", "transformers", "speech" ]
null
false
microsoft
null
microsoft/wavlm-base-sv
13
null
transformers
10,193
--- language: - en tags: - speech --- # WavLM-Base for Speaker Verification [Microsoft's WavLM](https://github.com/microsoft/unilm/tree/master/wavlm) The model was pretrained on 16kHz sampled speech audio with utterance and speaker contrastive loss. When using the model, make sure that your speech input is also sampled at 16kHz. The model was pre-trained on 960h of [Librispeech](https://huggingface.co/datasets/librispeech_asr). [Paper: WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900) Authors: Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei **Abstract** *Self-supervised learning (SSL) achieves great success in speech recognition, while limited exploration has been attempted for other speech processing tasks. As speech signal contains multi-faceted information including speaker identity, paralinguistics, spoken content, etc., learning universal representations for all speech tasks is challenging. In this paper, we propose a new pre-trained model, WavLM, to solve full-stack downstream speech tasks. WavLM is built based on the HuBERT framework, with an emphasis on both spoken content modeling and speaker identity preservation. We first equip the Transformer structure with gated relative position bias to improve its capability on recognition tasks. For better speaker discrimination, we propose an utterance mixing training strategy, where additional overlapped utterances are created unsupervisely and incorporated during model training. Lastly, we scale up the training dataset from 60k hours to 94k hours. WavLM Large achieves state-of-the-art performance on the SUPERB benchmark, and brings significant improvements for various speech processing tasks on their representative benchmarks.* The original model can be found under https://github.com/microsoft/unilm/tree/master/wavlm. # Fine-tuning details The model is fine-tuned on the [VoxCeleb1 dataset](https://www.robots.ox.ac.uk/~vgg/data/voxceleb/vox1.html) using an X-Vector head with an Additive Margin Softmax loss [X-Vectors: Robust DNN Embeddings for Speaker Recognition](https://www.danielpovey.com/files/2018_icassp_xvectors.pdf) # Usage ## Speaker Verification ```python from transformers import Wav2Vec2FeatureExtractor, WavLMForXVector from datasets import load_dataset import torch dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation") feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained('microsoft/wavlm-base-sv') model = WavLMForXVector.from_pretrained('microsoft/wavlm-base-sv') # audio files are decoded on the fly inputs = feature_extractor(dataset[:2]["audio"]["array"], return_tensors="pt") embeddings = model(**inputs).embeddings embeddings = torch.nn.functional.normalize(embeddings, dim=-1).cpu() # the resulting embeddings can be used for cosine similarity-based retrieval cosine_sim = torch.nn.CosineSimilarity(dim=-1) similarity = cosine_sim(embeddings[0], embeddings[1]) threshold = 0.86 # the optimal threshold is dataset-dependent if similarity < threshold: print("Speakers are not the same!") ``` # License The official license can be found [here](https://github.com/microsoft/UniSpeech/blob/main/LICENSE) ![design](https://raw.githubusercontent.com/patrickvonplaten/scientific_images/master/wavlm.png)
mishig/my-awesome-model
22931baac60296ee00a8cd9d2a32b81a2dd95973
2021-08-25T10:28:44.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
mishig
null
mishig/my-awesome-model
13
null
transformers
10,194
# Sentiment Classification by pretraining bert-base-cased A test repo exploring HF Model Hub by following https://huggingface.co/transformers/model_sharing.html
motiondew/set_date_1_bert-base-uncased_finetuned_with_haystack
112229ba4ceeed57709eefb27823026442cf7529
2021-06-21T17:04:17.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
motiondew
null
motiondew/set_date_1_bert-base-uncased_finetuned_with_haystack
13
null
transformers
10,195
Entry not found
mrm8488/bert-tiny-finetuned-fake-news-detection
77911c5829206b123f51dbcfca5f663175315365
2021-10-15T16:00:12.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "en", "transformers" ]
text-classification
false
mrm8488
null
mrm8488/bert-tiny-finetuned-fake-news-detection
13
null
transformers
10,196
--- language: en widget: - text: "It s official the inmates are running the asylum A police department in Northampton, Massachusetts is ending its High-Five Friday program at local elementary schools due to concerns that undocumented children and others may feel uncomfortable seeing an officer at school.The program, started by the Northampton Police Department in December, had officers stand outside of a school each Friday morning to high-five students as they walked in to begin the day. WFBToday was High-5 Friday at Bridge St School! Thanks to everyone who participated! The kids and officers all had fun! #highfiveHere are a few tweets that were sent out by the NPD highlighting their high-five program with kids:Today was High-5 Friday at Bridge St School! Thanks to everyone who participated! The kids and officers all had fun! #highfive pic.twitter.com/Trz0yoW3Qh Northampton Police (@NorthamptonPD) December 9, 2016Today was High-Five Friday! Thanks to Jackson St School for hosting! We hope that everyone had a great time! Happy Friday!! #highfive pic.twitter.com/MWY6JBlHlK Northampton Police (@NorthamptonPD) January 6, 2017Here is part of their Facebook explanation for doing away with the high-five program:This is the same Northampton Police Department by the way, that celebrated the great turn-out for the nasty women march that was really about protesting Trump and defending abortion. Does it make you feel any safer when you see a police department bragging about their promotion of lawless liberal politics?" --- # BERT Tiny fine-tuned for fake news detection
mrm8488/dilstilgpt2-finetuned-amazon-food-reviews
e78b56780a5e49a26552239cd2d0511059de9dfa
2021-05-23T10:18:52.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
mrm8488
null
mrm8488/dilstilgpt2-finetuned-amazon-food-reviews
13
null
transformers
10,197
Entry not found
neuralspace-reverie/indic-transformers-hi-roberta
bd8da7eb1560f26b91f7de06d3c687bded57ce16
2021-05-20T18:48:28.000Z
[ "pytorch", "tf", "jax", "roberta", "fill-mask", "hi", "transformers", "MaskedLM", "Hindi", "RoBERTa", "Question-Answering", "Token Classification", "Text Classification", "autotrain_compatible" ]
fill-mask
false
neuralspace-reverie
null
neuralspace-reverie/indic-transformers-hi-roberta
13
null
transformers
10,198
--- language: - hi tags: - MaskedLM - Hindi - RoBERTa - Question-Answering - Token Classification - Text Classification --- # Indic-Transformers Hindi RoBERTa ## Model description This is a RoBERTa language model pre-trained on ~10 GB of monolingual training corpus. The pre-training data was majorly taken from [OSCAR](https://oscar-corpus.com/). This model can be fine-tuned on various downstream tasks like text-classification, POS-tagging, question-answering, etc. Embeddings from this model can also be used for feature-based training. ## Intended uses & limitations #### How to use ``` from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained('neuralspace-reverie/indic-transformers-hi-roberta') model = AutoModel.from_pretrained('neuralspace-reverie/indic-transformers-hi-roberta') text = "आपका स्वागत हैं" input_ids = tokenizer(text, return_tensors='pt')['input_ids'] out = model(input_ids)[0] print(out.shape) # out = [1, 11, 768] ``` #### Limitations and bias The original language model has been trained using `PyTorch` and hence the use of `pytorch_model.bin` weights file is recommended. The h5 file for `Tensorflow` has been generated manually by commands suggested [here](https://huggingface.co/transformers/model_sharing.html).
nihaldsouza1/yelp-rating-classification
2360a7d5df325ba5a47033cb0807eb2550e72d23
2022-02-10T02:51:54.000Z
[ "pytorch", "roberta", "text-classification", "en", "dataset:nihaldsouza1/autonlp-data-yelp-rating-classification", "transformers", "autonlp", "co2_eq_emissions" ]
text-classification
false
nihaldsouza1
null
nihaldsouza1/yelp-rating-classification
13
1
transformers
10,199
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - nihaldsouza1/autonlp-data-yelp-rating-classification co2_eq_emissions: 15.62335109262394 --- # Custom-trained user model - Problem type: Multi-class Classification - Model ID: 545015430 - CO2 Emissions (in grams): 15.62335109262394 ## Validation Metrics - Loss: 0.7870086431503296 - Accuracy: 0.6631428571428571 - Macro F1: 0.6613073053700258 - Micro F1: 0.6631428571428571 - Weighted F1: 0.661157273964887 - Macro Precision: 0.6626911151999393 - Micro Precision: 0.6631428571428571 - Weighted Precision: 0.662191421927851 - Macro Recall: 0.6629735627465572 - Micro Recall: 0.6631428571428571 - Weighted Recall: 0.6631428571428571 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/nihaldsouza1/autonlp-yelp-rating-classification-545015430 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("nihaldsouza1/autonlp-yelp-rating-classification-545015430", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("nihaldsouza1/autonlp-yelp-rating-classification-545015430", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```