modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
list
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
voidful/unit-mbart-large
b71e7bf16b3963b51ea23ec714d799e578d8f39f
2022-06-20T10:41:38.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
voidful
null
voidful/unit-mbart-large
14
null
transformers
10,000
Entry not found
AIRI-Institute/gena-lm-bert-base
ecb1769f4b0d0006a211854ebed67f16084fc188
2022-06-22T11:10:19.000Z
[ "pytorch", "bert", "transformers", "dna", "human_genome" ]
null
false
AIRI-Institute
null
AIRI-Institute/gena-lm-bert-base
14
11
transformers
10,001
--- tags: - dna - human_genome --- # GENA-LM GENA-LM is a transformer masked language model trained on human DNA sequence. Differences between GENA-LM and DNABERT: - BPE tokenization instead of k-mers; - input sequence size is about 3000 nucleotides (512 BPE tokens) compared to 510 nucleotides of DNABERT - pre-training on T2T vs. GRCh38.p13 human genome assembly. Source code and data: https://github.com/AIRI-Institute/GENA_LM ## Examples ### How to load the model to fine-tune it on classification task ```python from src.gena_lm.modeling_bert import BertForSequenceClassification from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained('AIRI-Institute/gena-lm-bert-base') model = BertForSequenceClassification.from_pretrained('AIRI-Institute/gena-lm-bert-base') ``` ## Model description GENA-LM model is trained in a masked language model (MLM) fashion, following the methods proposed in the BigBird paper by masking 85% of tokens. Model config for `gena-lm-bert-base` is similar to the bert-base: - 512 Maximum sequence length - 12 Layers, 12 Attention heads - 768 Hidden size - 32k Vocabulary size We pre-trained `gena-lm-bert-base` using the latest T2T human genome assembly (https://www.ncbi.nlm.nih.gov/assembly/GCA_009914755.3/). Pre-training was performed for 500,000 iterations with the same parameters as in BigBird, except sequence length was equal to 512 tokens and we used pre-layer normalization in Transformer. ## Downstream tasks Currently, gena-lm-bert-base model has been finetuned and tested on promoter prediction task. Its' performance is comparable to previous SOTA results. We plan to fine-tune and make available models for other downstream tasks in the near future. ### Fine-tuning GENA-LM on our data and scoring After fine-tuning gena-lm-bert-base on promoter prediction dataset, following results were achieved: | model | seq_len (bp) | F1 | |--------------------------|--------------|-------| | DeePromoter | 300 | 95.60 | | GENA-LM bert-base (ours) | 2000 | 95.72 | | BigBird | 16000 | 99.90 | We can conclude that our model achieves comparable performance to the previously published results for promoter prediction task.
Jeevesh8/std_0pnt2_bert_ft_cola-44
5fdf77c5216fa561a7372ec1929511b8f8158621
2022-06-22T14:55:53.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_0pnt2_bert_ft_cola-44
14
null
transformers
10,002
Entry not found
Jeevesh8/std_0pnt2_bert_ft_cola-72
da0fb226a007d1861184a90afc7b75f8a8228430
2022-06-21T13:28:27.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_0pnt2_bert_ft_cola-72
14
null
transformers
10,003
Entry not found
Sayan01/tiny-bert-mnli-distilled
d5ee2a659cd28ab847b2ab1da788b863a3efdc5c
2022-07-07T12:21:39.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Sayan01
null
Sayan01/tiny-bert-mnli-distilled
14
null
transformers
10,004
Entry not found
ArthurZ/opt-2.7b
bc875b9bf6fe726b9612592d10663b1de9c8cdd7
2022-06-21T15:25:46.000Z
[ "pytorch", "tf", "jax", "opt", "text-generation", "transformers" ]
text-generation
false
ArthurZ
null
ArthurZ/opt-2.7b
14
null
transformers
10,005
Entry not found
ericntay/bio_bert_ft
35d8d2e119bbdb67c0052c52dab089e4d18c7505
2022-06-22T15:24:10.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
token-classification
false
ericntay
null
ericntay/bio_bert_ft
14
null
transformers
10,006
--- tags: - generated_from_trainer metrics: - f1 model-index: - name: bio_bert_ft results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bio_bert_ft This model is a fine-tuned version of [dmis-lab/biobert-v1.1](https://huggingface.co/dmis-lab/biobert-v1.1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0747 - F1: 0.8621 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.0879 | 1.0 | 170 | 0.0400 | 0.8312 | | 0.0211 | 2.0 | 340 | 0.0454 | 0.8413 | | 0.0105 | 3.0 | 510 | 0.0503 | 0.8603 | | 0.0045 | 4.0 | 680 | 0.0497 | 0.8496 | | 0.0028 | 5.0 | 850 | 0.0759 | 0.8387 | | 0.0019 | 6.0 | 1020 | 0.0654 | 0.8598 | | 0.0011 | 7.0 | 1190 | 0.0667 | 0.8654 | | 0.0005 | 8.0 | 1360 | 0.0702 | 0.8621 | | 0.0003 | 9.0 | 1530 | 0.0739 | 0.8596 | | 0.0002 | 10.0 | 1700 | 0.0747 | 0.8621 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
truongxl/NER_VLSP2018
91f4a2a56e3448e5f4a3dedf67c4883fb9f4d892
2022-06-24T01:36:12.000Z
[ "pytorch", "roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
truongxl
null
truongxl/NER_VLSP2018
14
null
transformers
10,007
Entry not found
KoichiYasuoka/deberta-base-japanese-wikipedia-ud-head
cbbba0e2270dac7a3f7b550fbef06a33000a1b1f
2022-07-23T14:43:51.000Z
[ "pytorch", "deberta-v2", "question-answering", "ja", "dataset:universal_dependencies", "transformers", "japanese", "wikipedia", "dependency-parsing", "license:cc-by-sa-4.0", "autotrain_compatible" ]
question-answering
false
KoichiYasuoka
null
KoichiYasuoka/deberta-base-japanese-wikipedia-ud-head
14
null
transformers
10,008
--- language: - "ja" tags: - "japanese" - "wikipedia" - "question-answering" - "dependency-parsing" datasets: - "universal_dependencies" license: "cc-by-sa-4.0" pipeline_tag: "question-answering" widget: - text: "国語" context: "全学年にわたって小学校の国語の教科書に挿し絵が用いられている" - text: "教科書" context: "全学年にわたって小学校の国語の教科書に挿し絵が用いられている" - text: "の" context: "全学年にわたって小学校の国語[MASK]教科書に挿し絵が用いられている" --- # deberta-base-japanese-wikipedia-ud-head ## Model Description This is a DeBERTa(V2) model pretrained on Japanese Wikipedia and 青空文庫 texts for dependency-parsing (head-detection on long-unit-words) as question-answering, derived from [deberta-base-japanese-wikipedia](https://huggingface.co/KoichiYasuoka/deberta-base-japanese-wikipedia) and [UD_Japanese-GSDLUW](https://github.com/UniversalDependencies/UD_Japanese-GSDLUW). Use [MASK] inside `context` to avoid ambiguity when specifying a multiple-used word as `question`. ## How to Use ```py import torch from transformers import AutoTokenizer,AutoModelForQuestionAnswering tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/deberta-base-japanese-wikipedia-ud-head") model=AutoModelForQuestionAnswering.from_pretrained("KoichiYasuoka/deberta-base-japanese-wikipedia-ud-head") question="国語" context="全学年にわたって小学校の国語の教科書に挿し絵が用いられている" inputs=tokenizer(question,context,return_tensors="pt",return_offsets_mapping=True) offsets=inputs.pop("offset_mapping").tolist()[0] outputs=model(**inputs) start,end=torch.argmax(outputs.start_logits),torch.argmax(outputs.end_logits) print(context[offsets[start][0]:offsets[end][-1]]) ``` or (with [ufal.chu-liu-edmonds](https://pypi.org/project/ufal.chu-liu-edmonds/)) ```py class TransformersUD(object): def __init__(self,bert): import os from transformers import (AutoTokenizer,AutoModelForQuestionAnswering, AutoModelForTokenClassification,AutoConfig,TokenClassificationPipeline) self.tokenizer=AutoTokenizer.from_pretrained(bert) self.model=AutoModelForQuestionAnswering.from_pretrained(bert) x=AutoModelForTokenClassification.from_pretrained if os.path.isdir(bert): d,t=x(os.path.join(bert,"deprel")),x(os.path.join(bert,"tagger")) else: from transformers.file_utils import hf_bucket_url c=AutoConfig.from_pretrained(hf_bucket_url(bert,"deprel/config.json")) d=x(hf_bucket_url(bert,"deprel/pytorch_model.bin"),config=c) s=AutoConfig.from_pretrained(hf_bucket_url(bert,"tagger/config.json")) t=x(hf_bucket_url(bert,"tagger/pytorch_model.bin"),config=s) self.deprel=TokenClassificationPipeline(model=d,tokenizer=self.tokenizer, aggregation_strategy="simple") self.tagger=TokenClassificationPipeline(model=t,tokenizer=self.tokenizer) def __call__(self,text): import numpy,torch,ufal.chu_liu_edmonds w=[(t["start"],t["end"],t["entity_group"]) for t in self.deprel(text)] z,n={t["start"]:t["entity"].split("|") for t in self.tagger(text)},len(w) r,m=[text[s:e] for s,e,p in w],numpy.full((n+1,n+1),numpy.nan) v,c=self.tokenizer(r,add_special_tokens=False)["input_ids"],[] for i,t in enumerate(v): q=[self.tokenizer.cls_token_id]+t+[self.tokenizer.sep_token_id] c.append([q]+v[0:i]+[[self.tokenizer.mask_token_id]]+v[i+1:]+[[q[-1]]]) b=[[len(sum(x[0:j+1],[])) for j in range(len(x))] for x in c] with torch.no_grad(): d=self.model(input_ids=torch.tensor([sum(x,[]) for x in c]), token_type_ids=torch.tensor([[0]*x[0]+[1]*(x[-1]-x[0]) for x in b])) s,e=d.start_logits.tolist(),d.end_logits.tolist() for i in range(n): for j in range(n): m[i+1,0 if i==j else j+1]=s[i][b[i][j]]+e[i][b[i][j+1]-1] h=ufal.chu_liu_edmonds.chu_liu_edmonds(m)[0] if [0 for i in h if i==0]!=[0]: i=([p for s,e,p in w]+["root"]).index("root") j=i+1 if i<n else numpy.nanargmax(m[:,0]) m[0:j,0]=m[j+1:,0]=numpy.nan h=ufal.chu_liu_edmonds.chu_liu_edmonds(m)[0] u="# text = "+text.replace("\n"," ")+"\n" for i,(s,e,p) in enumerate(w,1): p="root" if h[i]==0 else "dep" if p=="root" else p u+="\t".join([str(i),r[i-1],"_",z[s][0][2:],"_","|".join(z[s][1:]), str(h[i]),p,"_","_" if i<n and e<w[i][0] else "SpaceAfter=No"])+"\n" return u+"\n" nlp=TransformersUD("KoichiYasuoka/deberta-base-japanese-wikipedia-ud-head") print(nlp("全学年にわたって小学校の国語の教科書に挿し絵が用いられている")) ``` ## Reference 安岡孝一: [青空文庫DeBERTaモデルによる国語研長単位係り受け解析](http://hdl.handle.net/2433/275409), 東洋学へのコンピュータ利用, 第35回研究セミナー (2022年7月), pp.29-43.
lunde/gpt2-snapsvisor
d0e88c75b866fb661a1486e3b96d0e5efd0f8b16
2022-06-27T04:46:42.000Z
[ "pytorch", "gpt2", "text-generation", "sv", "transformers" ]
text-generation
false
lunde
null
lunde/gpt2-snapsvisor
14
null
transformers
10,009
--- language: sv tags: - gpt2 widget: - text: "Nu tar vi e nubbe" - text: "Spriten den" --- # GPT2-Snapsvisor This model is trained on scraped websites of Snapsvisor. TODO: Fill in the rest
Farshid/finetuning-finetuned-financial-phrasebank-75
e9ffe3edbc0d4ddee14bbcca6e2ca4850a88840a
2022-06-28T11:34:44.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:financial_phrasebank", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Farshid
null
Farshid/finetuning-finetuned-financial-phrasebank-75
14
null
transformers
10,010
--- license: apache-2.0 tags: - generated_from_trainer datasets: - financial_phrasebank metrics: - accuracy - f1 model-index: - name: finetuning-finetuned-financial-phrasebank-75 results: - task: name: Text Classification type: text-classification dataset: name: financial_phrasebank type: financial_phrasebank args: sentences_75agree metrics: - name: Accuracy type: accuracy value: 0.9217391304347826 - name: F1 type: f1 value: 0.9222750587883506 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-finetuned-financial-phrasebank-75 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the financial_phrasebank dataset. It achieves the following results on the evaluation set: - Loss: 0.5900 - Accuracy: 0.9217 - F1: 0.9223 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 80 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.6566 | 1.0 | 22 | 0.4940 | 0.8435 | 0.8448 | | 0.4136 | 2.0 | 44 | 0.2829 | 0.9188 | 0.9195 | | 0.2286 | 3.0 | 66 | 0.2404 | 0.9159 | 0.9159 | | 0.1389 | 4.0 | 88 | 0.2527 | 0.9275 | 0.9280 | | 0.0921 | 5.0 | 110 | 0.2555 | 0.9333 | 0.9336 | | 0.0634 | 6.0 | 132 | 0.2987 | 0.9159 | 0.9168 | | 0.0441 | 7.0 | 154 | 0.3032 | 0.9188 | 0.9198 | | 0.0354 | 8.0 | 176 | 0.3167 | 0.9246 | 0.9253 | | 0.0184 | 9.0 | 198 | 0.3296 | 0.9217 | 0.9220 | | 0.0182 | 10.0 | 220 | 0.3284 | 0.9304 | 0.9305 | | 0.0119 | 11.0 | 242 | 0.3513 | 0.9217 | 0.9223 | | 0.008 | 12.0 | 264 | 0.4218 | 0.9217 | 0.9225 | | 0.0068 | 13.0 | 286 | 0.4115 | 0.9188 | 0.9197 | | 0.0077 | 14.0 | 308 | 0.4209 | 0.9159 | 0.9169 | | 0.0037 | 15.0 | 330 | 0.4120 | 0.9217 | 0.9220 | | 0.0026 | 16.0 | 352 | 0.4134 | 0.9159 | 0.9161 | | 0.0026 | 17.0 | 374 | 0.4230 | 0.9217 | 0.9221 | | 0.0025 | 18.0 | 396 | 0.4335 | 0.9275 | 0.9278 | | 0.0016 | 19.0 | 418 | 0.4538 | 0.9188 | 0.9187 | | 0.0022 | 20.0 | 440 | 0.4518 | 0.9188 | 0.9192 | | 0.0011 | 21.0 | 462 | 0.4653 | 0.9159 | 0.9167 | | 0.0011 | 22.0 | 484 | 0.4713 | 0.9159 | 0.9167 | | 0.0008 | 23.0 | 506 | 0.4585 | 0.9217 | 0.9223 | | 0.0007 | 24.0 | 528 | 0.4525 | 0.9275 | 0.9278 | | 0.0007 | 25.0 | 550 | 0.4582 | 0.9304 | 0.9307 | | 0.0009 | 26.0 | 572 | 0.4689 | 0.9275 | 0.9279 | | 0.0006 | 27.0 | 594 | 0.4783 | 0.9275 | 0.9279 | | 0.0019 | 28.0 | 616 | 0.4784 | 0.9275 | 0.9279 | | 0.0013 | 29.0 | 638 | 0.4884 | 0.9246 | 0.9253 | | 0.0006 | 30.0 | 660 | 0.5065 | 0.9217 | 0.9217 | | 0.0036 | 31.0 | 682 | 0.4800 | 0.9246 | 0.9253 | | 0.0007 | 32.0 | 704 | 0.4643 | 0.9304 | 0.9305 | | 0.0009 | 33.0 | 726 | 0.4633 | 0.9275 | 0.9279 | | 0.0004 | 34.0 | 748 | 0.4787 | 0.9275 | 0.9279 | | 0.0004 | 35.0 | 770 | 0.4912 | 0.9217 | 0.9224 | | 0.0004 | 36.0 | 792 | 0.4693 | 0.9246 | 0.9247 | | 0.0004 | 37.0 | 814 | 0.4962 | 0.9246 | 0.9251 | | 0.0004 | 38.0 | 836 | 0.5034 | 0.9246 | 0.9251 | | 0.0003 | 39.0 | 858 | 0.5096 | 0.9188 | 0.9197 | | 0.0003 | 40.0 | 880 | 0.5065 | 0.9246 | 0.9252 | | 0.0003 | 41.0 | 902 | 0.4894 | 0.9246 | 0.9244 | | 0.0005 | 42.0 | 924 | 0.5419 | 0.9159 | 0.9168 | | 0.0016 | 43.0 | 946 | 0.5230 | 0.9217 | 0.9225 | | 0.0003 | 44.0 | 968 | 0.5272 | 0.9159 | 0.9169 | | 0.0003 | 45.0 | 990 | 0.4794 | 0.9275 | 0.9275 | | 0.0003 | 46.0 | 1012 | 0.5131 | 0.9217 | 0.9223 | | 0.0005 | 47.0 | 1034 | 0.5256 | 0.9246 | 0.9242 | | 0.0004 | 48.0 | 1056 | 0.5571 | 0.9159 | 0.9168 | | 0.0003 | 49.0 | 1078 | 0.5412 | 0.9246 | 0.9252 | | 0.0005 | 50.0 | 1100 | 0.5465 | 0.9217 | 0.9225 | | 0.0013 | 51.0 | 1122 | 0.5324 | 0.9333 | 0.9337 | | 0.0002 | 52.0 | 1144 | 0.5284 | 0.9333 | 0.9337 | | 0.0002 | 53.0 | 1166 | 0.5301 | 0.9304 | 0.9308 | | 0.0002 | 54.0 | 1188 | 0.5317 | 0.9275 | 0.9280 | | 0.0002 | 55.0 | 1210 | 0.5476 | 0.9246 | 0.9252 | | 0.001 | 56.0 | 1232 | 0.5277 | 0.9333 | 0.9335 | | 0.0002 | 57.0 | 1254 | 0.5387 | 0.9246 | 0.9251 | | 0.0005 | 58.0 | 1276 | 0.5505 | 0.9246 | 0.9253 | | 0.0006 | 59.0 | 1298 | 0.5400 | 0.9304 | 0.9306 | | 0.0022 | 60.0 | 1320 | 0.5788 | 0.9159 | 0.9169 | | 0.0002 | 61.0 | 1342 | 0.5504 | 0.9275 | 0.9277 | | 0.0003 | 62.0 | 1364 | 0.5686 | 0.9275 | 0.9275 | | 0.0002 | 63.0 | 1386 | 0.5653 | 0.9159 | 0.9165 | | 0.0002 | 64.0 | 1408 | 0.5700 | 0.9188 | 0.9194 | | 0.0002 | 65.0 | 1430 | 0.5705 | 0.9188 | 0.9194 | | 0.0002 | 66.0 | 1452 | 0.5687 | 0.9159 | 0.9165 | | 0.0003 | 67.0 | 1474 | 0.5971 | 0.9159 | 0.9168 | | 0.0002 | 68.0 | 1496 | 0.5979 | 0.9188 | 0.9196 | | 0.0009 | 69.0 | 1518 | 0.5905 | 0.9217 | 0.9223 | | 0.0002 | 70.0 | 1540 | 0.5845 | 0.9188 | 0.9192 | | 0.0003 | 71.0 | 1562 | 0.5942 | 0.9217 | 0.9223 | | 0.0002 | 72.0 | 1584 | 0.5948 | 0.9217 | 0.9223 | | 0.0002 | 73.0 | 1606 | 0.5943 | 0.9217 | 0.9223 | | 0.0006 | 74.0 | 1628 | 0.5931 | 0.9217 | 0.9223 | | 0.0002 | 75.0 | 1650 | 0.5927 | 0.9217 | 0.9223 | | 0.0002 | 76.0 | 1672 | 0.5940 | 0.9217 | 0.9223 | | 0.0002 | 77.0 | 1694 | 0.5937 | 0.9217 | 0.9223 | | 0.0002 | 78.0 | 1716 | 0.5911 | 0.9217 | 0.9223 | | 0.0006 | 79.0 | 1738 | 0.5900 | 0.9217 | 0.9223 | | 0.0002 | 80.0 | 1760 | 0.5900 | 0.9217 | 0.9223 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.1+cpu - Datasets 2.0.0 - Tokenizers 0.11.6
UT/BRTW_DEBIAS_SHORT
7c9a809e49210ad096be8bb80f87e176288a5843
2022-06-27T08:02:08.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
UT
null
UT/BRTW_DEBIAS_SHORT
14
null
transformers
10,011
Entry not found
canlinzhang/take-home-assign-tuned-from-dmis-lab-biobert-v1.1
ef2e777d6bbb9008e9d2cbb836537412bcc5690c
2022-06-28T04:21:20.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
canlinzhang
null
canlinzhang/take-home-assign-tuned-from-dmis-lab-biobert-v1.1
14
null
transformers
10,012
Entry not found
elliotthwang/mt5-small-finetuned-xlsum-chinese-tradition
086c2ebe7d530ff051512dfb357ad10ac04896b2
2022-06-29T12:09:17.000Z
[ "pytorch", "tensorboard", "mt5", "text2text-generation", "dataset:xlsum", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
elliotthwang
null
elliotthwang/mt5-small-finetuned-xlsum-chinese-tradition
14
null
transformers
10,013
--- license: apache-2.0 tags: - generated_from_trainer datasets: - xlsum metrics: - rouge model-index: - name: mt5-small-finetuned-xlsum-chinese-tradition results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: xlsum type: xlsum args: chinese_traditional metrics: - name: Rouge1 type: rouge value: 0.2578 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-finetuned-xlsum-chinese-tradition This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the xlsum dataset. It achieves the following results on the evaluation set: - Loss: nan - Rouge1: 0.2578 - Rouge2: 0.0176 - Rougel: 0.2519 - Rougelsum: 0.2542 - Gen Len: 6.094 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 0.0 | 1.0 | 18687 | nan | 0.2578 | 0.0176 | 0.2519 | 0.2542 | 6.094 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
ZeyadAhmed/AraElectra-Arabic-SQuADv2-CLS
d39725051d82b72a6fad260b31056a78f16c894e
2022-06-29T16:01:02.000Z
[ "pytorch", "electra", "text-classification", "transformers" ]
text-classification
false
ZeyadAhmed
null
ZeyadAhmed/AraElectra-Arabic-SQuADv2-CLS
14
null
transformers
10,014
Entry not found
domenicrosati/deberta-v3-large-dapt-scientific-papers-pubmed
2fc5157584ece9f5e066e46ad951262052fe610f
2022-06-30T06:46:17.000Z
[ "pytorch", "tensorboard", "deberta-v2", "fill-mask", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
fill-mask
false
domenicrosati
null
domenicrosati/deberta-v3-large-dapt-scientific-papers-pubmed
14
null
transformers
10,015
--- license: mit tags: - fill-mask - generated_from_trainer metrics: - accuracy model-index: - name: deberta-v3-large-dapt-scientific-papers-pubmed results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-large-dapt-scientific-papers-pubmed This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 4.4729 - Accuracy: 0.3510 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10000 - training_steps: 21600 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 12.0315 | 0.02 | 500 | 11.6840 | 0.0 | | 11.0675 | 0.05 | 1000 | 8.9471 | 0.0226 | | 8.6646 | 0.07 | 1500 | 8.0093 | 0.0344 | | 8.3625 | 0.09 | 2000 | 7.9624 | 0.0274 | | 8.2467 | 0.12 | 2500 | 7.6599 | 0.0376 | | 7.9714 | 0.14 | 3000 | 7.6716 | 0.0316 | | 7.9852 | 0.16 | 3500 | 7.4535 | 0.0385 | | 7.7502 | 0.19 | 4000 | 7.4293 | 0.0429 | | 7.7016 | 0.21 | 4500 | 7.3576 | 0.0397 | | 7.5789 | 0.23 | 5000 | 7.3124 | 0.0513 | | 7.4141 | 0.25 | 5500 | 7.1353 | 0.0634 | | 7.2365 | 0.28 | 6000 | 6.8600 | 0.0959 | | 7.0725 | 0.3 | 6500 | 6.5743 | 0.1150 | | 6.934 | 0.32 | 7000 | 6.3674 | 0.1415 | | 6.7219 | 0.35 | 7500 | 6.3467 | 0.1581 | | 6.5039 | 0.37 | 8000 | 6.1312 | 0.1815 | | 6.3096 | 0.39 | 8500 | 5.9080 | 0.2134 | | 6.1835 | 0.42 | 9000 | 5.8414 | 0.2137 | | 6.0939 | 0.44 | 9500 | 5.5137 | 0.2553 | | 6.0457 | 0.46 | 10000 | 5.5881 | 0.2545 | | 5.8851 | 0.49 | 10500 | 5.5134 | 0.2497 | | 5.7277 | 0.51 | 11000 | 5.3023 | 0.2699 | | 5.6183 | 0.53 | 11500 | 5.0074 | 0.3019 | | 5.4978 | 0.56 | 12000 | 5.1822 | 0.2814 | | 5.5916 | 0.58 | 12500 | 5.1211 | 0.2808 | | 5.4749 | 0.6 | 13000 | 4.9126 | 0.2972 | | 5.3765 | 0.62 | 13500 | 5.0468 | 0.2899 | | 5.3529 | 0.65 | 14000 | 4.8160 | 0.3037 | | 5.2993 | 0.67 | 14500 | 4.8598 | 0.3141 | | 5.2929 | 0.69 | 15000 | 4.9669 | 0.3052 | | 5.2649 | 0.72 | 15500 | 4.7849 | 0.3270 | | 5.162 | 0.74 | 16000 | 4.6819 | 0.3357 | | 5.1639 | 0.76 | 16500 | 4.6056 | 0.3275 | | 5.1245 | 0.79 | 17000 | 4.5473 | 0.3311 | | 5.1596 | 0.81 | 17500 | 4.7008 | 0.3212 | | 5.1346 | 0.83 | 18000 | 4.7932 | 0.3192 | | 5.1174 | 0.86 | 18500 | 4.7624 | 0.3208 | | 5.1152 | 0.88 | 19000 | 4.6388 | 0.3274 | | 5.0852 | 0.9 | 19500 | 4.5247 | 0.3305 | | 5.0564 | 0.93 | 20000 | 4.6982 | 0.3161 | | 5.0179 | 0.95 | 20500 | 4.5363 | 0.3389 | | 5.07 | 0.97 | 21000 | 4.6647 | 0.3307 | | 5.0781 | 1.0 | 21500 | 4.4729 | 0.3510 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
bazyl/gtsrb-model
635fde5fe2fa293ecdcf8a58c824c52dd682980e
2022-07-03T18:40:29.000Z
[ "pytorch", "vit", "image-classification", "dataset:gtsrb", "transformers", "vision", "generated_from_trainer", "license:apache-2.0", "model-index" ]
image-classification
false
bazyl
null
bazyl/gtsrb-model
14
null
transformers
10,016
--- license: apache-2.0 tags: - image-classification - vision - generated_from_trainer datasets: - gtsrb metrics: - accuracy model-index: - name: gtsrb-model results: - task: name: Image Classification type: image-classification dataset: name: bazyl/GTSRB type: gtsrb args: gtsrb metrics: - name: Accuracy type: accuracy value: 0.9993199591975519 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gtsrb-model This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the bazyl/GTSRB dataset. It achieves the following results on the evaluation set: - Loss: 0.0034 - Accuracy: 0.9993 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 1337 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.2593 | 1.0 | 4166 | 0.1585 | 0.9697 | | 0.2659 | 2.0 | 8332 | 0.0472 | 0.9900 | | 0.2825 | 3.0 | 12498 | 0.0155 | 0.9971 | | 0.0953 | 4.0 | 16664 | 0.0113 | 0.9983 | | 0.1277 | 5.0 | 20830 | 0.0076 | 0.9985 | | 0.0816 | 6.0 | 24996 | 0.0047 | 0.9988 | | 0.0382 | 7.0 | 29162 | 0.0041 | 0.9990 | | 0.0983 | 8.0 | 33328 | 0.0059 | 0.9990 | | 0.1746 | 9.0 | 37494 | 0.0034 | 0.9993 | | 0.1153 | 10.0 | 41660 | 0.0038 | 0.9990 | ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.12.0 - Datasets 2.3.2 - Tokenizers 0.12.1
tner/bert-large-tweetner-2020
1d922be425ef89569b7d266e704bd6dfb7019cfd
2022-07-08T13:28:22.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
tner
null
tner/bert-large-tweetner-2020
14
null
transformers
10,017
Entry not found
djagatiya/ner-distilbert-base-uncased-ontonotesv5-englishv4
eecb058b98b9ac21c0772261eab0c9d4b3340ba8
2022-07-03T11:28:26.000Z
[ "pytorch", "distilbert", "token-classification", "dataset:djagatiya/ner-ontonotes-v5-eng-v4", "transformers", "autotrain_compatible" ]
token-classification
false
djagatiya
null
djagatiya/ner-distilbert-base-uncased-ontonotesv5-englishv4
14
null
transformers
10,018
--- tags: - token-classification datasets: - djagatiya/ner-ontonotes-v5-eng-v4 --- # (NER) distilbert-base-uncased : conll2012_ontonotesv5-english-v4 This **distilbert-base-uncased** NER model was finetuned on **conll2012_ontonotesv5-english-v4** dataset. <br> Check out [NER-System Repository](https://github.com/djagatiya/NER-System) for more information. ## Evaluation - Precision: 84.60 - Recall: 86.47 - F1-Score: 85.53 > check out this [eval.log](eval.log) file for evaluation metrics and classification report. ``` precision recall f1-score support CARDINAL 0.84 0.86 0.85 935 DATE 0.83 0.88 0.85 1602 EVENT 0.57 0.57 0.57 63 FAC 0.55 0.62 0.58 135 GPE 0.95 0.92 0.94 2240 LANGUAGE 0.82 0.64 0.72 22 LAW 0.50 0.50 0.50 40 LOC 0.55 0.72 0.62 179 MONEY 0.87 0.89 0.88 314 NORP 0.85 0.89 0.87 841 ORDINAL 0.81 0.88 0.84 195 ORG 0.81 0.83 0.82 1795 PERCENT 0.87 0.89 0.88 349 PERSON 0.93 0.93 0.93 1988 PRODUCT 0.55 0.55 0.55 76 QUANTITY 0.71 0.80 0.75 105 TIME 0.59 0.66 0.62 212 WORK_OF_ART 0.42 0.44 0.43 166 micro avg 0.85 0.86 0.86 11257 macro avg 0.72 0.75 0.73 11257 weighted avg 0.85 0.86 0.86 11257 ```
tau/spider-nq-question-encoder
79c5e770e1781d968ce6252b6f2d2c9a5b99811b
2022-07-04T08:56:13.000Z
[ "pytorch", "dpr", "feature-extraction", "transformers" ]
feature-extraction
false
tau
null
tau/spider-nq-question-encoder
14
null
transformers
10,019
Entry not found
twieland/MIX4_ja-en_helsinki
6918ca885132c0dc9b5d9f5639ddaf30bc474511
2022-07-07T05:38:09.000Z
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
twieland
null
twieland/MIX4_ja-en_helsinki
14
null
transformers
10,020
Entry not found
mesolitica/t5-tiny-finetuned-noisy-ms-en
bfc0dd089082ab7b2b34c29e395aeca512fdf57f
2022-07-13T08:08:20.000Z
[ "pytorch", "tf", "tensorboard", "t5", "text2text-generation", "transformers", "generated_from_keras_callback", "model-index", "autotrain_compatible" ]
text2text-generation
false
mesolitica
null
mesolitica/t5-tiny-finetuned-noisy-ms-en
14
null
transformers
10,021
--- tags: - generated_from_keras_callback model-index: - name: t5-tiny-finetuned-noisy-ms-en results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # t5-tiny-finetuned-noisy-ms-en This model was finetuned from https://github.com/huseinzol05/malaya/tree/master/pretrained-model/t5, t5-tiny-social-media-2021-11-15.tar.gz, on https://huggingface.co/datasets/mesolitica/ms-en and https://huggingface.co/datasets/mesolitica/noisy-ms-en-augmentation ## Evaluation ### evaluation set It achieves the following results on the evaluation set using SacreBLEU from [t5-tiny-noisy-ms-en-huggingface.ipynb](t5-tiny-noisy-ms-en-huggingface.ipynb): ``` {'name': 'BLEU', 'score': 65.9069151371865, '_mean': -1.0, '_ci': -1.0, '_verbose': '83.0/69.3/60.7/54.1 (BP = 1.000 ratio = 1.001 hyp_len = 2003273 ref_len = 2001100)', 'bp': 1.0, 'counts': [1662910, 1327225, 1108852, 941870], 'totals': [2003273, 1915678, 1828247, 1741231], 'sys_len': 2003273, 'ref_len': 2001100, 'precisions': [83.00965470008332, 69.28225933585915, 60.651104582695886, 54.09219109928551], 'prec_str': '83.0/69.3/60.7/54.1', 'ratio': 1.0010859027534855} ``` **The test set is from a semisupervised model, this model might generate better results than the semisupervised model**. ### FLORES200 It achieved the following results on the [NLLB 200 test set](https://github.com/facebookresearch/flores/tree/main/flores200) using SacreBLEU from [sacrebleu-mesolitica-t5-tiny-finetuned-noisy-ms-en-flores200.ipynb](sacrebleu-mesolitica-t5-tiny-finetuned-noisy-ms-en-flores200.ipynb), ``` chrF2++ = 59.91 ``` ### Framework versions - Transformers 4.19.0 - TensorFlow 2.6.0 - Datasets 2.1.0 - Tokenizers 0.12.1
eplatas/distilroberta-base-finetuned-wikitext2
aab33f5e5dd3b77218ce245a9f84b0d88d2ff6de
2022-07-08T01:58:11.000Z
[ "pytorch", "tensorboard", "roberta", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
eplatas
null
eplatas/distilroberta-base-finetuned-wikitext2
14
null
transformers
10,022
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilroberta-base-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-finetuned-wikitext2 This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8359 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 87 | 1.9893 | | No log | 2.0 | 174 | 1.9055 | | No log | 3.0 | 261 | 1.8187 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
KD02/distilbert-base-uncased-finetuned-squad
dac3a7a0323ebd274c5379c7c4c60e4d33ea505c
2022-07-11T19:37:22.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
KD02
null
KD02/distilbert-base-uncased-finetuned-squad
14
null
transformers
10,023
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [KD02/distilbert-base-uncased-finetuned-squad](https://huggingface.co/KD02/distilbert-base-uncased-finetuned-squad) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
ilmariky/bert-base-finnish-cased-squad2-fi
4110820ede502853900ba854f4796227e3e08902
2022-07-29T07:54:28.000Z
[ "pytorch", "bert", "question-answering", "fi", "dataset:SQuAD_v2_fi + Finnish partition of TyDi-QA", "transformers", "license:gpl-3.0", "autotrain_compatible" ]
question-answering
false
ilmariky
null
ilmariky/bert-base-finnish-cased-squad2-fi
14
null
transformers
10,024
--- language: fi datasets: - SQuAD_v2_fi + Finnish partition of TyDi-QA license: gpl-3.0 --- # bert-base-finnish-cased-v1 for QA This is the [bert-base-finnish-cased-v1](https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1) model, fine-tuned using an automatically translated [Finnish version of the SQuAD2.0 dataset](https://huggingface.co/datasets/ilmariky/SQuAD_v2_fi) in combination with the Finnish partition of the [TyDi-QA](https://github.com/google-research-datasets/tydiqa) dataset. It's been trained on question-answer pairs, **including unanswerable questions**, for the task of question answering. When the model classifies the question as unanswerable, it outputs "[CLS]". There is also a QA model available that does not try to identify unanswerable questions, [ bert-base-finnish-cased-squad1-fi ](https://huggingface.co/ilmariky/bert-base-finnish-cased-squad1-fi). ## Overview **Language model:** bert-base-finnish-cased-v1 **Language:** Finnish **Downstream-task:** Extractive QA **Training data:** [Finnish SQuAD 2.0](https://huggingface.co/datasets/ilmariky/SQuAD_v2_fi) + Finnish partition of TyDi-QA **Eval data:** [Finnish SQuAD 2.0](https://huggingface.co/datasets/ilmariky/SQuAD_v2_fi) + Finnish partition of TyDi-QA ## Usage ### In Transformers ```python from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline model_name = "ilmariky/bert-base-finnish-cased-squad2-fi" # a) Get predictions nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) QA_input = { 'question': 'Mikä tämä on?', 'context': 'Tämä on testi.' } res = nlp(QA_input) # b) Load model & tokenizer model = AutoModelForQuestionAnswering.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) ``` ## Performance Evaluated with a slightly modified version of the [official eval script](https://worksheets.codalab.org/rest/bundles/0x6b567e1cf2e041ec80d7098f031c5c9e/contents/blob/). ``` { "exact": 55.53157042633567, "f1": 61.869335312255835, "total": 7412, "HasAns_exact": 51.26503525508088, "HasAns_f1": 61.006950090095565, "HasAns_total": 4822, "NoAns_exact": 63.47490347490348, "NoAns_f1": 63.47490347490348, "NoAns_total": 2590 } ```
eus/testes
5966666d6ccb8b18b23483bf44831847667de14e
2022-07-13T23:09:00.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
eus
null
eus/testes
14
null
transformers
10,025
Entry not found
fujiki/gpt2-xl-rand_ja-gpt2-medium
4f8416c46db467749153bf74f21e842a620a67e7
2022-07-13T11:25:49.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "dataset:fujiki/pretrain-corpus-train_100k-valid_full", "transformers", "generated_from_trainer", "model-index" ]
text-generation
false
fujiki
null
fujiki/gpt2-xl-rand_ja-gpt2-medium
14
null
transformers
10,026
--- tags: - generated_from_trainer datasets: - fujiki/pretrain-corpus-train_100k-valid_full model-index: - name: gpt2-xl-rand_ja-gpt2-medium results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-xl-rand_ja-gpt2-medium This model was trained from scratch on the fujiki/pretrain-corpus-train_100k-valid_full dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 16 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.7.1+cu110 - Datasets 2.3.2 - Tokenizers 0.11.6
jinwooChoi/SKKU_AP_SA_KOBERT
83b26b88e71ca6538cb9c3a4117a84dc1f06f536
2022-07-22T09:10:42.000Z
[ "pytorch", "electra", "text-classification", "transformers" ]
text-classification
false
jinwooChoi
null
jinwooChoi/SKKU_AP_SA_KOBERT
14
null
transformers
10,027
Entry not found
codeparrot/codeparrot-small-complexity-prediction
55f486f73defe4bb52bc7d2f47e61699b564ed12
2022-07-17T15:44:18.000Z
[ "pytorch", "gpt2", "text-classification", "transformers", "license:apache-2.0" ]
text-classification
false
codeparrot
null
codeparrot/codeparrot-small-complexity-prediction
14
null
transformers
10,028
--- license: apache-2.0 --- This is a fine-tuned version of [codeparrot-small-multi](https://huggingface.co/codeparrot/codeparrot-small-multi), a 110M multilingual model for code generation, on [CodeComplex](https://huggingface.co/datasets/codeparrot/codecomplex), a dataset for complexity prediction of Java code.
AbdalK25/DialoGPT-small-TheWiseBot
d90858cc3ee08d4812ed0f7a8d90bde2949786de
2022-07-16T20:55:57.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
AbdalK25
null
AbdalK25/DialoGPT-small-TheWiseBot
14
null
transformers
10,029
--- tags: - conversational --- # The Wise DialoGPT Model
domenicrosati/pegasus-xsum-finetuned-paws-parasci
9e23040873cea86c96675f7ad4fd5bc55ee7524d
2022-07-18T15:35:07.000Z
[ "pytorch", "tensorboard", "pegasus", "text2text-generation", "transformers", "paraphrasing", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
domenicrosati
null
domenicrosati/pegasus-xsum-finetuned-paws-parasci
14
null
transformers
10,030
--- tags: - paraphrasing - generated_from_trainer metrics: - rouge model-index: - name: pegasus-xsum-finetuned-paws-parasci results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-xsum-finetuned-paws-parasci This model is a fine-tuned version of [domenicrosati/pegasus-xsum-finetuned-paws](https://huggingface.co/domenicrosati/pegasus-xsum-finetuned-paws) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.2256 - Rouge1: 61.8854 - Rouge2: 43.1061 - Rougel: 57.421 - Rougelsum: 57.4417 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 4000 - mixed_precision_training: Native AMP - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | No log | 0.05 | 1000 | 3.8024 | 49.471 | 24.8024 | 43.4857 | 43.5552 | | No log | 0.09 | 2000 | 3.6533 | 49.1046 | 24.4038 | 43.0189 | 43.002 | | No log | 0.14 | 3000 | 3.5867 | 49.5026 | 24.748 | 43.3059 | 43.2923 | | No log | 0.19 | 4000 | 3.5613 | 49.4319 | 24.5444 | 43.2225 | 43.1965 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
WYHu/cve2cpe_xlnet
9760da6c93051a4633725b0627375f8b9e4788f5
2022-07-19T02:53:35.000Z
[ "pytorch", "tensorboard", "xlnet", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
WYHu
null
WYHu/cve2cpe_xlnet
14
null
transformers
10,031
Entry not found
doya/klue-sentiment-everybodyscorpus-postive-boosting
fb4c2ec74554f553fa753d28def38c2d76a41c6e
2022-07-19T08:39:37.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
doya
null
doya/klue-sentiment-everybodyscorpus-postive-boosting
14
null
transformers
10,032
Entry not found
kalpeshk2011/rankgen-t5-xl-all
d8a7f62f6bb3240ad20c6e5b5d2f084856d8be0d
2022-07-23T16:20:38.000Z
[ "pytorch", "t5", "en", "dataset:Wikipedia", "dataset:PG19", "dataset:Project Gutenberg", "dataset:C4", "dataset:relic", "dataset:ChapterBreak", "dataset:HellaSwag", "dataset:ROCStories", "transformers", "contrastive learning", "ranking", "decoding", "metric learning", "text generation", "retrieval", "license:apache-2.0" ]
null
false
kalpeshk2011
null
kalpeshk2011/rankgen-t5-xl-all
14
null
transformers
10,033
--- language: - en thumbnail: "https://pbs.twimg.com/media/FThx_rEWAAEoujW?format=jpg&name=medium" tags: - t5 - contrastive learning - ranking - decoding - metric learning - pytorch - text generation - retrieval license: "apache-2.0" datasets: - Wikipedia - PG19 - Project Gutenberg - C4 - relic - ChapterBreak - HellaSwag - ROCStories metrics: - MAUVE - human --- ## Main repository https://github.com/martiansideofthemoon/rankgen ## What is RankGen? RankGen is a suite of encoder models (100M-1.2B parameters) which map prefixes and generations from any pretrained English language model to a shared vector space. RankGen can be used to rerank multiple full-length samples from an LM, and it can also be incorporated as a scoring function into beam search to significantly improve generation quality (0.85 vs 0.77 MAUVE, 75% preference according to humans annotators who are English writers). RankGen can also be used like a dense retriever, and achieves state-of-the-art performance on [literary retrieval](https://relic.cs.umass.edu/leaderboard.html). ## Setup **Requirements** (`pip` will install these dependencies for you) Python 3.7+, `torch` (CUDA recommended), `transformers` **Installation** ``` python3.7 -m virtualenv rankgen-venv source rankgen-venv/bin/activate pip install rankgen ``` Get the data [here](https://drive.google.com/drive/folders/1DRG2ess7fK3apfB-6KoHb_azMuHbsIv4?usp=sharing) and place folder in root directory. Alternatively, use `gdown` as shown below, ``` gdown --folder https://drive.google.com/drive/folders/1DRG2ess7fK3apfB-6KoHb_azMuHbsIv4 ``` Run the test script to make sure the RankGen checkpoint has loaded correctly, ``` python -m rankgen.test_rankgen_encoder --model_path kalpeshk2011/rankgen-t5-base-all ### Expected output 0.0009239262409127233 0.0011521980725477804 ``` ## Using RankGen Loading RankGen is simple using the HuggingFace APIs (see Method-2 below), but we suggest using [`RankGenEncoder`](https://github.com/martiansideofthemoon/rankgen/blob/master/rankgen/rankgen_encoder.py), which is a small wrapper around the HuggingFace APIs for correctly preprocessing data and doing tokenization automatically. You can either download [our repository](https://github.com/martiansideofthemoon/rankgen) and install the API, or copy the implementation from [below](#rankgenencoder-implementation). #### [SUGGESTED] Method-1: Loading the model with RankGenEncoder ``` from rankgen import RankGenEncoder, RankGenGenerator rankgen_encoder = RankGenEncoder("kalpeshk2011/rankgen-t5-xl-all") # Encoding vectors prefix_vectors = rankgen_encoder.encode(["This is a prefix sentence."], vectors_type="prefix") suffix_vectors = rankgen_encoder.encode(["This is a suffix sentence."], vectors_type="suffix") # Generating text # use a HuggingFace compatible language model generator = RankGenGenerator(rankgen_encoder=rankgen_encoder, language_model="gpt2-medium") inputs = ["Whatever might be the nature of the tragedy it would be over with long before this, and those moving black spots away yonder to the west, that he had discerned from the bluff, were undoubtedly the departing raiders. There was nothing left for Keith to do except determine the fate of the unfortunates, and give their bodies decent burial. That any had escaped, or yet lived, was altogether unlikely, unless, perchance, women had been in the party, in which case they would have been borne away prisoners."] # Baseline nucleus sampling print(generator.generate_single(inputs, top_p=0.9)[0][0]) # Over-generate and re-rank print(generator.overgenerate_rerank(inputs, top_p=0.9, num_samples=10)[0][0]) # Beam search print(generator.beam_search(inputs, top_p=0.9, num_samples=10, beam_size=2)[0][0]) ``` #### Method-2: Loading the model with HuggingFace APIs ``` from transformers import T5Tokenizer, AutoModel tokenizer = T5Tokenizer.from_pretrained(f"google/t5-v1_1-xl") model = AutoModel.from_pretrained("kalpeshk2011/rankgen-t5-xl-all", trust_remote_code=True) ``` ### RankGenEncoder Implementation ``` import tqdm from transformers import T5Tokenizer, T5EncoderModel, AutoModel class RankGenEncoder(): def __init__(self, model_path, max_batch_size=32, model_size=None, cache_dir=None): assert model_path in ["kalpeshk2011/rankgen-t5-xl-all", "kalpeshk2011/rankgen-t5-xl-pg19", "kalpeshk2011/rankgen-t5-base-all", "kalpeshk2011/rankgen-t5-large-all"] self.max_batch_size = max_batch_size self.device = 'cuda' if torch.cuda.is_available() else 'cpu' if model_size is None: if "t5-large" in model_path or "t5_large" in model_path: self.model_size = "large" elif "t5-xl" in model_path or "t5_xl" in model_path: self.model_size = "xl" else: self.model_size = "base" else: self.model_size = model_size self.tokenizer = T5Tokenizer.from_pretrained(f"google/t5-v1_1-{self.model_size}", cache_dir=cache_dir) self.model = AutoModel.from_pretrained(model_path, trust_remote_code=True) self.model.to(self.device) self.model.eval() def encode(self, inputs, vectors_type="prefix", verbose=False, return_input_ids=False): tokenizer = self.tokenizer max_batch_size = self.max_batch_size if isinstance(inputs, str): inputs = [inputs] if vectors_type == 'prefix': inputs = ['pre ' + input for input in inputs] max_length = 512 else: inputs = ['suffi ' + input for input in inputs] max_length = 128 all_embeddings = [] all_input_ids = [] for i in tqdm.tqdm(range(0, len(inputs), max_batch_size), total=(len(inputs) // max_batch_size) + 1, disable=not verbose, desc=f"Encoding {vectors_type} inputs:"): tokenized_inputs = tokenizer(inputs[i:i + max_batch_size], return_tensors="pt", padding=True) for k, v in tokenized_inputs.items(): tokenized_inputs[k] = v[:, :max_length] tokenized_inputs = tokenized_inputs.to(self.device) with torch.inference_mode(): batch_embeddings = self.model(**tokenized_inputs) all_embeddings.append(batch_embeddings) if return_input_ids: all_input_ids.extend(tokenized_inputs.input_ids.cpu().tolist()) return { "embeddings": torch.cat(all_embeddings, dim=0), "input_ids": all_input_ids } ```
jinwooChoi/SKKU_AP_SA_KES_trained1
b391b29307b26ec0de938228b88820967620da5d
2022-07-20T06:26:32.000Z
[ "pytorch", "electra", "text-classification", "transformers" ]
text-classification
false
jinwooChoi
null
jinwooChoi/SKKU_AP_SA_KES_trained1
14
null
transformers
10,034
Entry not found
muibk/mirrorbert_mbert_sent_parallel_en_de_ru_10k_mean
c9ff526de597be65bb7c4717cdf52451e62ae0d6
2022-07-20T14:06:12.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
muibk
null
muibk/mirrorbert_mbert_sent_parallel_en_de_ru_10k_mean
14
null
transformers
10,035
Entry not found
epiphacc/csabstract-classification
b0192d30aad8d3ba3df2b67e4955dc9e1afbce5d
2022-07-21T18:03:23.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
epiphacc
null
epiphacc/csabstract-classification
14
null
transformers
10,036
Entry not found
nbroad/longt5-base-global-mediasum
c71ccbde9a5b0ef34772e84238708e278f000d23
2022-07-28T20:37:27.000Z
[ "pytorch", "longt5", "text2text-generation", "transformers", "generated_from_trainer", "summarization", "license:cc-by-nc-sa-4.0", "model-index", "autotrain_compatible" ]
summarization
false
nbroad
null
nbroad/longt5-base-global-mediasum
14
null
transformers
10,037
--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer - longt5 - summarization model-index: - name: longt5-mediasum results: - task: type: summarization name: Summarization dataset: name: xsum type: xsum config: default split: test metrics: - name: ROUGE-1 type: rouge value: 22.7044 verified: true - name: ROUGE-2 type: rouge value: 5.616 verified: true - name: ROUGE-L type: rouge value: 18.0111 verified: true - name: ROUGE-LSUM type: rouge value: 18.1554 verified: true - name: loss type: loss value: 2.1656227111816406 verified: true - name: gen_len type: gen_len value: 18.3527 verified: true - task: type: summarization name: Summarization dataset: name: cnn_dailymail type: cnn_dailymail config: 3.0.0 split: test metrics: - name: ROUGE-1 type: rouge value: 21.1522 verified: true - name: ROUGE-2 type: rouge value: 8.1315 verified: true - name: ROUGE-L type: rouge value: 16.6625 verified: true - name: ROUGE-LSUM type: rouge value: 19.3603 verified: true - name: loss type: loss value: 1.899269700050354 verified: true - name: gen_len type: gen_len value: 17.853 verified: true --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # longt5-mediasum This model is a fine-tuned version of [google/long-t5-tglobal-base](https://huggingface.co/google/long-t5-tglobal-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.0129 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 12 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.66 | 1.0 | 1667 | 2.0643 | | 2.472 | 2.0 | 3334 | 2.0241 | | 2.3574 | 3.0 | 5001 | 2.0129 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0a0+17540c5 - Datasets 2.3.2 - Tokenizers 0.12.1
jinwooChoi/SKKU_SA_KEB
daf29357f7383dd3764ea40e33ad88c01ca3743d
2022-07-22T07:24:19.000Z
[ "pytorch", "electra", "text-classification", "transformers" ]
text-classification
false
jinwooChoi
null
jinwooChoi/SKKU_SA_KEB
14
null
transformers
10,038
Entry not found
ai4bharat/IndicBERTv2-alpha-POS-tagging
70fd45e6c0ee9b8f4365a0d281ec3e9ad23afa48
2022-07-27T11:23:14.000Z
[ "pytorch", "roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ai4bharat
null
ai4bharat/IndicBERTv2-alpha-POS-tagging
14
null
transformers
10,039
# IndicXLMv2-alpha-POS-tagging
clevrly/xlnet-base-mnli-fer-finetuned
70b185f62256b786a8a780c42a735bc9d85e2d36
2022-07-27T00:59:10.000Z
[ "pytorch", "tensorboard", "xlnet", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
clevrly
null
clevrly/xlnet-base-mnli-fer-finetuned
14
null
transformers
10,040
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: xlnet-base-mnli-fer-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlnet-base-mnli-fer-finetuned This model is a fine-tuned version of [clevrly/xlnet-base-mnli-finetuned](https://huggingface.co/clevrly/xlnet-base-mnli-finetuned) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0152 - Accuracy: 0.7794 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.5828 | 1.0 | 2219 | 0.9689 | 0.7277 | | 0.578 | 2.0 | 4438 | 1.1408 | 0.7310 | | 0.5027 | 3.0 | 6657 | 0.9754 | 0.7742 | | 0.4233 | 4.0 | 8876 | 1.0719 | 0.7751 | | 0.3026 | 5.0 | 11095 | 1.0152 | 0.7794 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
huggingtweets/vithederg
d3745c12b6f95af9d1ec3933b587ac96d256432d
2022-07-26T06:11:50.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/vithederg
14
null
transformers
10,041
--- language: en thumbnail: http://www.huggingtweets.com/vithederg/1658815905698/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1547564667320487937/0S_fp5iq_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">vi✧ (#SaveWingsOfFire)</div> <div style="text-align: center; font-size: 14px;">@vithederg</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from vi✧ (#SaveWingsOfFire). | Data | vi✧ (#SaveWingsOfFire) | | --- | --- | | Tweets downloaded | 3217 | | Retweets | 2618 | | Short tweets | 68 | | Tweets kept | 531 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3lq9tppb/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @vithederg's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2bwbzsrm) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2bwbzsrm/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/vithederg') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/dream
13099e9bf10ab3f220de3cb4760abbc7aa659b6e
2022-07-27T00:16:19.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/dream
14
null
transformers
10,042
--- language: en thumbnail: http://www.huggingtweets.com/dream/1658880860354/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1355511252177588225/INsKstf7_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Dream</div> <div style="text-align: center; font-size: 14px;">@dream</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Dream. | Data | Dream | | --- | --- | | Tweets downloaded | 538 | | Retweets | 13 | | Short tweets | 133 | | Tweets kept | 392 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3des4e9u/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dream's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3a9qjxt0) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3a9qjxt0/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/dream') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
ICML2022/Tranception
3bb199ad6722113742d595288c4d49b16ade8b13
2022-07-28T23:28:37.000Z
[ "pytorch", "tranception", "fill-mask", "arxiv:2205.13760", "transformers", "autotrain_compatible" ]
fill-mask
false
ICML2022
null
ICML2022/Tranception
14
5
transformers
10,043
# Tranception model This Hugging Face Hub repo contains the model checkpoint for the Tranception model as described in our paper ["Tranception: protein fitness prediction with autoregressive transformers and inference-time retrieval"](https://arxiv.org/abs/2205.13760). The official GitHub repository can be accessed [here](https://github.com/OATML-Markslab/Tranception). This project is a joint collaboration between the [Marks lab](https://www.deboramarkslab.com/) and the [OATML group](https://oatml.cs.ox.ac.uk/). ## Abstract The ability to accurately model the fitness landscape of protein sequences is critical to a wide range of applications, from quantifying the effects of human variants on disease likelihood, to predicting immune-escape mutations in viruses and designing novel biotherapeutic proteins. Deep generative models of protein sequences trained on multiple sequence alignments have been the most successful approaches so far to address these tasks. The performance of these methods is however contingent on the availability of sufficiently deep and diverse alignments for reliable training. Their potential scope is thus limited by the fact many protein families are hard, if not impossible, to align. Large language models trained on massive quantities of non-aligned protein sequences from diverse families address these problems and show potential to eventually bridge the performance gap. We introduce Tranception, a novel transformer architecture leveraging autoregressive predictions and retrieval of homologous sequences at inference to achieve state-of-the-art fitness prediction performance. Given its markedly higher performance on multiple mutants, robustness to shallow alignments and ability to score indels, our approach offers significant gain of scope over existing approaches. To enable more rigorous model testing across a broader range of protein families, we develop ProteinGym -- an extensive set of multiplexed assays of variant effects, substantially increasing both the number and diversity of assays compared to existing benchmarks. ## License This project is available under the MIT license. ## Reference If you use Tranception or other files provided through our GitHub repository, please cite the following paper: ``` Notin, P., Dias, M., Frazer, J., Marchena-Hurtado, J., Gomez, A., Marks, D.S., Gal, Y. (2022). Tranception: Protein Fitness Prediction with Autoregressive Transformers and Inference-time Retrieval. ICML. ``` ## Links Pre-print: https://arxiv.org/abs/2205.13760 GitHub: https://github.com/OATML-Markslab/Tranception
kdf/python-docstring-generation
e4808e7fe9ff5d5479bd71ebc95e36fc51127a4d
2022-07-29T15:31:02.000Z
[ "pytorch", "codegen", "text-generation", "transformers", "license:apache-2.0" ]
text-generation
false
kdf
null
kdf/python-docstring-generation
14
null
transformers
10,044
--- license: apache-2.0 widget: - text: "<|endoftext|>\ndef load_excel(path):\n return pd.read_excel(path)\n# docstring\n\"\"\"" --- ## Basic info model based [Salesforce/codegen-350M-mono](https://huggingface.co/Salesforce/codegen-350M-mono) fine-tuned with data [codeparrot/github-code-clean](https://huggingface.co/datasets/codeparrot/github-code-clean) data filter by python ## Usage ```python from transformers import AutoTokenizer, AutoModelForCausalLM model_type = 'kdf/python-docstring-generation' tokenizer = AutoTokenizer.from_pretrained(model_type) model = AutoModelForCausalLM.from_pretrained(model_type) inputs = tokenizer('''<|endoftext|> def load_excel(path): return pd.read_excel(path) # docstring """''', return_tensors='pt') doc_max_length = 128 generated_ids = model.generate( **inputs, max_length=inputs.input_ids.shape[1] + doc_max_length, do_sample=False, return_dict_in_generate=True, num_return_sequences=1, output_scores=True, pad_token_id=50256, eos_token_id=50256 # <|endoftext|> ) ret = tokenizer.decode(generated_ids.sequences[0], skip_special_tokens=False) print(ret) ``` ## Prompt You could give model a style or a specific language, for example: ```python inputs = tokenizer('''<|endoftext|> def add(a, b): return a + b # docstring """ Calculate numbers add. Args: a: the first number to add b: the second number to add Return: The result of a + b """ <|endoftext|> def load_excel(path): return pd.read_excel(path) # docstring """''', return_tensors='pt') doc_max_length = 128 generated_ids = model.generate( **inputs, max_length=inputs.input_ids.shape[1] + doc_max_length, do_sample=False, return_dict_in_generate=True, num_return_sequences=1, output_scores=True, pad_token_id=50256, eos_token_id=50256 # <|endoftext|> ) ret = tokenizer.decode(generated_ids.sequences[0], skip_special_tokens=False) print(ret) inputs = tokenizer('''<|endoftext|> def add(a, b): return a + b # docstring """ 计算数字相加 Args: a: 第一个加数 b: 第二个加数 Return: 相加的结果 """ <|endoftext|> def load_excel(path): return pd.read_excel(path) # docstring """''', return_tensors='pt') doc_max_length = 128 generated_ids = model.generate( **inputs, max_length=inputs.input_ids.shape[1] + doc_max_length, do_sample=False, return_dict_in_generate=True, num_return_sequences=1, output_scores=True, pad_token_id=50256, eos_token_id=50256 # <|endoftext|> ) ret = tokenizer.decode(generated_ids.sequences[0], skip_special_tokens=False) print(ret) ```
kdf/javascript-docstring-generation
0bee4471dc9eda593147aa35f159eb2eead7ec0c
2022-07-29T15:32:50.000Z
[ "pytorch", "codegen", "text-generation", "transformers", "license:apache-2.0" ]
text-generation
false
kdf
null
kdf/javascript-docstring-generation
14
null
transformers
10,045
--- license: apache-2.0 widget: - text: "<|endoftext|>\nfunction getDateAfterNDay(n){\n return moment().add(n, 'day')\n}\n// docstring\n/**" --- ## Basic info model based [Salesforce/codegen-350M-mono](https://huggingface.co/Salesforce/codegen-350M-mono) fine-tuned with data [codeparrot/github-code-clean](https://huggingface.co/datasets/codeparrot/github-code-clean) data filter by JavaScript and TypeScript ## Usage ```python from transformers import AutoTokenizer, AutoModelForCausalLM model_type = 'kdf/javascript-docstring-generation' tokenizer = AutoTokenizer.from_pretrained(model_type) model = AutoModelForCausalLM.from_pretrained(model_type) inputs = tokenizer('''<|endoftext|> function getDateAfterNDay(n){ return moment().add(n, 'day') } // docstring /**''', return_tensors='pt') doc_max_length = 128 generated_ids = model.generate( **inputs, max_length=inputs.input_ids.shape[1] + doc_max_length, do_sample=False, return_dict_in_generate=True, num_return_sequences=1, output_scores=True, pad_token_id=50256, eos_token_id=50256 # <|endoftext|> ) ret = tokenizer.decode(generated_ids.sequences[0], skip_special_tokens=False) print(ret) ``` ## Prompt You could give model a style or a specific language, for example: ```python inputs = tokenizer('''<|endoftext|> function add(a, b){ return a + b; } // docstring /** * Calculate number add. * @param a {number} the first number to add * @param b {number} the second number to add * @return the result of a + b */ <|endoftext|> function getDateAfterNDay(n){ return moment().add(n, 'day') } // docstring /**''', return_tensors='pt') doc_max_length = 128 generated_ids = model.generate( **inputs, max_length=inputs.input_ids.shape[1] + doc_max_length, do_sample=False, return_dict_in_generate=True, num_return_sequences=1, output_scores=True, pad_token_id=50256, eos_token_id=50256 # <|endoftext|> ) ret = tokenizer.decode(generated_ids.sequences[0], skip_special_tokens=False) print(ret) inputs = tokenizer('''<|endoftext|> function add(a, b){ return a + b; } // docstring /** * 计算数字相加 * @param a {number} 第一个加数 * @param b {number} 第二个加数 * @return 返回 a + b 的结果 */ <|endoftext|> function getDateAfterNDay(n){ return moment().add(n, 'day') } // docstring /**''', return_tensors='pt') doc_max_length = 128 generated_ids = model.generate( **inputs, max_length=inputs.input_ids.shape[1] + doc_max_length, do_sample=False, return_dict_in_generate=True, num_return_sequences=1, output_scores=True, pad_token_id=50256, eos_token_id=50256 # <|endoftext|> ) ret = tokenizer.decode(generated_ids.sequences[0], skip_special_tokens=False) print(ret) ```
platzi/platzi-distilroberta-base-mrpc-glue-omar-espejel
d7976029581a2186e6383928f927c9dc34dcd0a0
2022-07-29T21:57:21.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
platzi
null
platzi/platzi-distilroberta-base-mrpc-glue-omar-espejel
14
null
transformers
10,046
--- license: apache-2.0 tags: - text-classification - generated_from_trainer datasets: - glue metrics: - accuracy - f1 widget: - text: ["Yucaipa owned Dominick 's before selling the chain to Safeway in 1998 for $ 2.5 billion.","Yucaipa bought Dominick's in 1995 for $ 693 million and sold it to Safeway for $ 1.8 billion in 1998."] example_title: Not Equivalent - text: ["Revenue in the first quarter of the year dropped 15 percent from the same period a year earlier.", "With the scandal hanging over Stewart's company revenue the first quarter of the year dropped 15 percent from the same period a year earlier."] example_title: Equivalent model-index: - name: platzi-distilroberta-base-mrpc-glue-omar-espejel results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: mrpc split: train args: mrpc metrics: - name: Accuracy type: accuracy value: 0.8431372549019608 - name: F1 type: f1 value: 0.8861209964412811 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # platzi-distilroberta-base-mrpc-glue-omar-espejel This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the glue and the mrpc datasets. It achieves the following results on the evaluation set: - Loss: 0.6332 - Accuracy: 0.8431 - F1: 0.8861 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.5076 | 1.09 | 500 | 0.7464 | 0.8137 | 0.8671 | | 0.3443 | 2.18 | 1000 | 0.6332 | 0.8431 | 0.8861 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Frikallo/DeepDunk
61e039b570969231c7349dac1e6c5eb192758797
2022-07-30T01:14:08.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-generation
false
Frikallo
null
Frikallo/DeepDunk
14
null
transformers
10,047
--- license: mit tags: - generated_from_trainer model-index: - name: DeepDunk results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # DeepDunk This model is a fine-tuned version of [gpt2-medium](https://huggingface.co/gpt2-medium) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001372 - train_batch_size: 1 - eval_batch_size: 8 - seed: 1360794382 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 ### Training results ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Alireza1044/albert-base-v2-wnli
2fe5cc30189491cd586095a635f22cd2b723317f
2021-07-28T07:30:04.000Z
[ "pytorch", "albert", "text-classification", "en", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0" ]
text-classification
false
Alireza1044
null
Alireza1044/albert-base-v2-wnli
13
null
transformers
10,048
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model_index: - name: wnli results: - task: name: Text Classification type: text-classification dataset: name: GLUE WNLI type: glue args: wnli metric: name: Accuracy type: accuracy value: 0.5633802816901409 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wnli This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the GLUE WNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.6898 - Accuracy: 0.5634 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4.0 ### Training results ### Framework versions - Transformers 4.9.1 - Pytorch 1.9.0+cu102 - Datasets 1.10.2 - Tokenizers 0.10.3
Ateeb/FullEmotionDetector
03545aef305f7fcbaacf874ace6e0c8fd4be6e17
2021-03-22T19:28:37.000Z
[ "pytorch", "funnel", "text-classification", "transformers" ]
text-classification
false
Ateeb
null
Ateeb/FullEmotionDetector
13
null
transformers
10,049
Entry not found
BearThreat/distilbert-base-uncased-finetuned-cola
caada7af9e82bfefb7d6b6626d755a342d550be6
2021-09-29T14:58:36.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
BearThreat
null
BearThreat/distilbert-base-uncased-finetuned-cola
13
null
transformers
10,050
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.533214904586951 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.5774 - Matthews Correlation: 0.5332 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.2347 | 1.0 | 535 | 0.5774 | 0.5332 | ### Framework versions - Transformers 4.11.0 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
BigSalmon/InfillFormalLincoln
8c711d417b2212e2e7f0332d1c1a0a4bac60e152
2022-02-02T03:45:03.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
BigSalmon
null
BigSalmon/InfillFormalLincoln
13
null
transformers
10,051
Informal to Formal: ``` from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InfillFormalLincoln") model = AutoModelWithLMHead.from_pretrained("BigSalmon/InfillFormalLincoln") ``` ``` https://huggingface.co/spaces/BigSalmon/GPT2 (The model for this space changes over time) ``` ``` https://huggingface.co/spaces/BigSalmon/GPT2_Most_Probable (The model for this space changes over time) ``` ``` https://huggingface.co/spaces/BigSalmon/GPT2Space (The model for this space changes over time) ``` ``` How To Make Prompt: informal english: i am very ready to do that just that. Translated into the Style of Abraham Lincoln: you can assure yourself of my readiness to work toward this end. Translated into the Style of Abraham Lincoln: please be assured that i am most ready to undertake this laborious task. informal english: space is huge and needs to be explored. Translated into the Style of Abraham Lincoln: space awaits traversal, a new world whose boundaries are endless. Translated into the Style of Abraham Lincoln: space is a ( limitless / boundless ) expanse, a vast virgin domain awaiting exploration. informal english: corn fields are all across illinois, visible once you leave chicago. Translated into the Style of Abraham Lincoln: corn fields ( permeate illinois / span the state of illinois / ( occupy / persist in ) all corners of illinois / line the horizon of illinois / envelop the landscape of illinois ), manifesting themselves visibly as one ventures beyond chicago. informal english: ```` ``` infill: increasing the number of sidewalks in suburban areas will [MASK]. Translated into the Style of Abraham Lincoln: increasing the number of sidewalks in suburban areas will ( ( enhance / maximize ) community cohesion / facilitate ( communal ties / the formation of neighborhood camaraderie ) / forge neighborly relations / lend themselves to the advancement of neighborly ties / plant the seeds of community building / flower anew the bonds of friendship / invite the budding of neighborhood rapport / enrich neighborhood life ). infill: corn fields [MASK], [MASK] visibly as one ventures beyond chicago. Translated into the Style of Abraham Lincoln: corn fields ( permeate illinois / span the state of illinois / ( occupy / persist in ) all corners of illinois / line the horizon of illinois / envelop the landscape of illinois ), ( manifesting themselves ) visibly as one ventures beyond chicago. infill: the [MASK] the SAT will soon be [MASK]. [MASK] an examination undertaken on one's laptop. [MASK] will allow students to retrieve test results promptly. Translated into the Style of Abraham Lincoln: the ( conventional form of ) the SAT will soon be ( consigned to history ). ( replacing it will be ) an examination undertaken on one's laptop. ( so doing ) will allow students to retrieve test results promptly. infill: ```
BigSalmon/ParaphraseParentheses2.0
cd37944ff8fae6b1639d2e53f4b9049762ab80b4
2021-12-13T00:11:22.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
BigSalmon
null
BigSalmon/ParaphraseParentheses2.0
13
null
transformers
10,052
This can be used to paraphrase. I recommend using the code I have attached below. You can generate it without using LogProbs, but you are likely to be best served by manually examining the most likely outputs. If this interests you, check out https://huggingface.co/BigSalmon/MrLincoln12 or my other MrLincoln repos. ``` from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("gpt2") model = AutoModelWithLMHead.from_pretrained("BigSalmon/ParaphraseParentheses2.0") ``` Example Prompt: ``` the nba is [mask] [mask] viewership. the nba is ( facing / witnessing / confronted with / suffering from / grappling with ) ( lost / tanking ) viewership... ai is certain to [mask] the third industrial revolution. ai is certain to ( breed / catalyze / inaugurate / catalyze / usher in / call forth / turn loose / lend its name to ) the third industrial revolution. the modern-day knicks are a disgrace to [mask]. the modern-day knicks are a disgrace to the franchise's ( rich legacy / tradition of excellence / uniquely distinguished record ). HuggingFace is [mask]. HuggingFace is ( an amazing company / ``` ``` import torch prompt = "Insert Your Prompt Here. It is Best To Have a Few Examples Before Like The Example Prompt Shows." text = tokenizer.encode(prompt) myinput, past_key_values = torch.tensor([text]), None myinput = myinput myinput= myinput.to(device) logits, past_key_values = model(myinput, past_key_values = past_key_values, return_dict=False) logits = logits[0,-1] probabilities = torch.nn.functional.softmax(logits) best_logits, best_indices = logits.topk(500) best_words = [tokenizer.decode([idx.item()]) for idx in best_indices] text.append(best_indices[0].item()) best_probabilities = probabilities[best_indices].tolist() words = [] for i in range(500): m = ([best_words[i]]) m = str(m) m = m.replace("[' ", "").replace("']", "") print(m) ```
CAMeL-Lab/bert-base-arabic-camelbert-mix-pos-msa
4ead6e9f26ffd1ef9c9ff7daff8dd48fede0ba81
2021-10-18T09:44:42.000Z
[ "pytorch", "tf", "bert", "token-classification", "ar", "arxiv:2103.06678", "transformers", "license:apache-2.0", "autotrain_compatible" ]
token-classification
false
CAMeL-Lab
null
CAMeL-Lab/bert-base-arabic-camelbert-mix-pos-msa
13
null
transformers
10,053
--- language: - ar license: apache-2.0 widget: - text: 'إمارة أبوظبي هي إحدى إمارات دولة الإمارات العربية المتحدة السبع' --- # CAMeLBERT-Mix POS-MSA Model ## Model description **CAMeLBERT-Mix POS-MSA Model** is a Modern Standard Arabic (MSA) POS tagging model that was built by fine-tuning the [CAMeLBERT-Mix](https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-mix/) model. For the fine-tuning, we used the [PATB](https://dl.acm.org/doi/pdf/10.5555/1621804.1621808) dataset. Our fine-tuning procedure and the hyperparameters we used can be found in our paper *"[The Interplay of Variant, Size, and Task Type in Arabic Pre-trained Language Models](https://arxiv.org/abs/2103.06678)."* Our fine-tuning code can be found [here](https://github.com/CAMeL-Lab/CAMeLBERT). ## Intended uses You can use the CAMeLBERT-Mix POS-MSA model as part of the transformers pipeline. This model will also be available in [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools) soon. #### How to use To use the model with a transformers pipeline: ```python >>> from transformers import pipeline >>> pos = pipeline('token-classification', model='CAMeL-Lab/bert-base-arabic-camelbert-mix-pos-msa') >>> text = 'إمارة أبوظبي هي إحدى إمارات دولة الإمارات العربية المتحدة السبع' >>> pos(text) [{'entity': 'noun', 'score': 0.9999592, 'index': 1, 'word': 'إمارة', 'start': 0, 'end': 5}, {'entity': 'noun_prop', 'score': 0.9997877, 'index': 2, 'word': 'أبوظبي', 'start': 6, 'end': 12}, {'entity': 'pron', 'score': 0.9998405, 'index': 3, 'word': 'هي', 'start': 13, 'end': 15}, {'entity': 'noun', 'score': 0.9697179, 'index': 4, 'word': 'إحدى', 'start': 16, 'end': 20}, {'entity': 'noun', 'score': 0.99967164, 'index': 5, 'word': 'إما', 'start': 21, 'end': 24}, {'entity': 'noun', 'score': 0.99980617, 'index': 6, 'word': '##رات', 'start': 24, 'end': 27}, {'entity': 'noun', 'score': 0.99997973, 'index': 7, 'word': 'دولة', 'start': 28, 'end': 32}, {'entity': 'noun', 'score': 0.99995637, 'index': 8, 'word': 'الإمارات', 'start': 33, 'end': 41}, {'entity': 'adj', 'score': 0.9983974, 'index': 9, 'word': 'العربية', 'start': 42, 'end': 49}, {'entity': 'adj', 'score': 0.9999469, 'index': 10, 'word': 'المتحدة', 'start': 50, 'end': 57}, {'entity': 'noun_num', 'score': 0.9993273, 'index': 11, 'word': 'السبع', 'start': 58, 'end': 63}] ``` *Note*: to download our models, you would need `transformers>=3.5.0`. Otherwise, you could download the models manually. ## Citation ```bibtex @inproceedings{inoue-etal-2021-interplay, title = "The Interplay of Variant, Size, and Task Type in {A}rabic Pre-trained Language Models", author = "Inoue, Go and Alhafni, Bashar and Baimukan, Nurpeiis and Bouamor, Houda and Habash, Nizar", booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop", month = apr, year = "2021", address = "Kyiv, Ukraine (Online)", publisher = "Association for Computational Linguistics", abstract = "In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a mix of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.", } ```
Cameron/BERT-SBIC-offensive
a8080ee750bbe0a0246e44594afbe1e6c9f9aa11
2021-05-18T17:22:32.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
Cameron
null
Cameron/BERT-SBIC-offensive
13
null
transformers
10,054
Entry not found
CoffeeAddict93/gpt1-modest-proposal
63b93d3ded02c3ee8a6dc45e1a67189ac05d824e
2021-12-02T03:48:33.000Z
[ "pytorch", "openai-gpt", "text-generation", "transformers" ]
text-generation
false
CoffeeAddict93
null
CoffeeAddict93/gpt1-modest-proposal
13
null
transformers
10,055
Entry not found
DHBaek/xlm-roberta-large-korquad-mask
fd2a17228c5b4ab1bf8c88115140a3e5d6ead783
2021-05-15T05:07:50.000Z
[ "pytorch", "xlm-roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
DHBaek
null
DHBaek/xlm-roberta-large-korquad-mask
13
null
transformers
10,056
Entry not found
Deniskin/emailer_medium_300
3b50dc685262f04920ce7aa3a670e1a1fcb7a2b3
2021-06-12T14:29:52.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
Deniskin
null
Deniskin/emailer_medium_300
13
null
transformers
10,057
Entry not found
Doogie/waynehills_sentimental_kor
2247c1c5df961856a054d4f394b5211b422c53f6
2022-01-28T01:09:53.000Z
[ "pytorch", "electra", "text-classification", "transformers" ]
text-classification
false
Doogie
null
Doogie/waynehills_sentimental_kor
13
null
transformers
10,058
Entry not found
Emran/ClinicalBERT_ICD10_Categories
24f75dbec9273d92058f6098b73be22c559c7ef1
2021-10-12T17:42:10.000Z
[ "pytorch", "bert", "transformers" ]
null
false
Emran
null
Emran/ClinicalBERT_ICD10_Categories
13
1
transformers
10,059
Entry not found
EthanChen0418/intent_cls
cf085cfcd8d7f475287b0f4fa87387e13aeaaa81
2021-08-30T04:42:18.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
EthanChen0418
null
EthanChen0418/intent_cls
13
null
transformers
10,060
Entry not found
FabianGroeger/HotelBERT
61f744730fe33d1c54b2c8d836766715db0da41f
2021-11-18T05:56:08.000Z
[ "pytorch", "tf", "roberta", "fill-mask", "de", "transformers", "autotrain_compatible" ]
fill-mask
false
FabianGroeger
null
FabianGroeger/HotelBERT
13
1
transformers
10,061
--- language: de widget: - text: "Das <mask> hat sich toll um uns gekümmert." --- # HotelBERT This model was trained on reviews from a well known German hotel platform.
GPL/bioasq-1m-tsdae-msmarco-distilbert-gpl
2e5d388b8a477fed576d3013d2bc11459ca1f8cc
2022-04-19T15:29:33.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
GPL
null
GPL/bioasq-1m-tsdae-msmarco-distilbert-gpl
13
null
sentence-transformers
10,062
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 140000 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `gpl.toolkit.loss.MarginDistillationLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 140000, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Hamas/DialoGPT-large-jake2
fb96a0fcc9da2cc38daf816b7e32a27c4fa325d0
2021-09-26T18:13:42.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Hamas
null
Hamas/DialoGPT-large-jake2
13
null
transformers
10,063
--- tags: - conversational --- # Jake DialoGPT-large-jake2
Harveenchadha/vakyansh-wav2vec2-dogri-doi-55
13dc75c4896c1189e1b02862dbf3fb4cb25a52f0
2021-12-17T17:48:06.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
Harveenchadha
null
Harveenchadha/vakyansh-wav2vec2-dogri-doi-55
13
null
transformers
10,064
Entry not found
Harveenchadha/vakyansh-wav2vec2-urdu-urm-60
e8c7a0f23c42a690f059ee43e2c8957e520646eb
2021-12-17T18:00:14.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
Harveenchadha
null
Harveenchadha/vakyansh-wav2vec2-urdu-urm-60
13
null
transformers
10,065
Entry not found
Hate-speech-CNERG/deoffxlmr-mono-tamil
4b04b5606198915dabeacda90056d4d8f521a583
2021-09-25T13:59:19.000Z
[ "pytorch", "xlm-roberta", "text-classification", "ta", "transformers", "license:apache-2.0" ]
text-classification
false
Hate-speech-CNERG
null
Hate-speech-CNERG/deoffxlmr-mono-tamil
13
null
transformers
10,066
--- language: ta license: apache-2.0 --- This model is used to detect **Offensive Content** in **Tamil Code-Mixed language**. The mono in the name refers to the monolingual setting, where the model is trained using only Tamil(pure and code-mixed) data. The weights are initialized from pretrained XLM-Roberta-Base and pretrained using Masked Language Modelling on the target dataset before fine-tuning using Cross-Entropy Loss. This model is the best of multiple trained for **EACL 2021 Shared Task on Offensive Language Identification in Dravidian Languages**. Genetic-Algorithm based ensembled test predictions got the highest weighted F1 score at the leaderboard (Weighted F1 score on hold out test set: This model - 0.76, Ensemble - 0.78) ### For more details about our paper Debjoy Saha, Naman Paharia, Debajit Chakraborty, Punyajoy Saha, Animesh Mukherjee. "[Hate-Alert@DravidianLangTech-EACL2021: Ensembling strategies for Transformer-based Offensive language Detection](https://www.aclweb.org/anthology/2021.dravidianlangtech-1.38/)". ***Please cite our paper in any published work that uses any of these resources.*** ~~~ @inproceedings{saha-etal-2021-hate, title = "Hate-Alert@{D}ravidian{L}ang{T}ech-{EACL}2021: Ensembling strategies for Transformer-based Offensive language Detection", author = "Saha, Debjoy and Paharia, Naman and Chakraborty, Debajit and Saha, Punyajoy and Mukherjee, Animesh", booktitle = "Proceedings of the First Workshop on Speech and Language Technologies for Dravidian Languages", month = apr, year = "2021", address = "Kyiv", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2021.dravidianlangtech-1.38", pages = "270--276", abstract = "Social media often acts as breeding grounds for different forms of offensive content. For low resource languages like Tamil, the situation is more complex due to the poor performance of multilingual or language-specific models and lack of proper benchmark datasets. Based on this shared task {``}Offensive Language Identification in Dravidian Languages{''} at EACL 2021; we present an exhaustive exploration of different transformer models, We also provide a genetic algorithm technique for ensembling different models. Our ensembled models trained separately for each language secured the first position in Tamil, the second position in Kannada, and the first position in Malayalam sub-tasks. The models and codes are provided.", } ~~~
Helsinki-NLP/opus-mt-af-nl
ec9feaedceda132fa6dfb372e13e54ae3b44c6db
2021-01-18T07:46:27.000Z
[ "pytorch", "marian", "text2text-generation", "af", "nl", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-af-nl
13
null
transformers
10,067
--- language: - af - nl tags: - translation license: apache-2.0 --- ### afr-nld * source group: Afrikaans * target group: Dutch * OPUS readme: [afr-nld](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/afr-nld/README.md) * model: transformer-align * source language(s): afr * target language(s): nld * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/afr-nld/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/afr-nld/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/afr-nld/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.afr.nld | 55.2 | 0.715 | ### System Info: - hf_name: afr-nld - source_languages: afr - target_languages: nld - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/afr-nld/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['af', 'nl'] - src_constituents: {'afr'} - tgt_constituents: {'nld'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/afr-nld/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/afr-nld/opus-2020-06-17.test.txt - src_alpha3: afr - tgt_alpha3: nld - short_pair: af-nl - chrF2_score: 0.715 - bleu: 55.2 - brevity_penalty: 0.995 - ref_len: 6710.0 - src_name: Afrikaans - tgt_name: Dutch - train_date: 2020-06-17 - src_alpha2: af - tgt_alpha2: nl - prefer_old: False - long_pair: afr-nld - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-ar-eo
9d06171cc502a468fe1c1e0cba28c3f7e5999345
2021-01-18T07:47:12.000Z
[ "pytorch", "marian", "text2text-generation", "ar", "eo", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-ar-eo
13
null
transformers
10,068
--- language: - ar - eo tags: - translation license: apache-2.0 --- ### ara-epo * source group: Arabic * target group: Esperanto * OPUS readme: [ara-epo](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ara-epo/README.md) * model: transformer-align * source language(s): apc apc_Latn ara arq arq_Latn arz * target language(s): epo * model: transformer-align * pre-processing: normalization + SentencePiece (spm4k,spm4k) * download original weights: [opus-2020-06-16.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/ara-epo/opus-2020-06-16.zip) * test set translations: [opus-2020-06-16.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ara-epo/opus-2020-06-16.test.txt) * test set scores: [opus-2020-06-16.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ara-epo/opus-2020-06-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.ara.epo | 18.9 | 0.376 | ### System Info: - hf_name: ara-epo - source_languages: ara - target_languages: epo - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ara-epo/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['ar', 'eo'] - src_constituents: {'apc', 'ara', 'arq_Latn', 'arq', 'afb', 'ara_Latn', 'apc_Latn', 'arz'} - tgt_constituents: {'epo'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm4k,spm4k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/ara-epo/opus-2020-06-16.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/ara-epo/opus-2020-06-16.test.txt - src_alpha3: ara - tgt_alpha3: epo - short_pair: ar-eo - chrF2_score: 0.376 - bleu: 18.9 - brevity_penalty: 0.948 - ref_len: 4506.0 - src_name: Arabic - tgt_name: Esperanto - train_date: 2020-06-16 - src_alpha2: ar - tgt_alpha2: eo - prefer_old: False - long_pair: ara-epo - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-bg-es
59a05c4cc9958d8c77a35770747179042ddaf866
2021-01-18T07:50:42.000Z
[ "pytorch", "marian", "text2text-generation", "bg", "es", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-bg-es
13
null
transformers
10,069
--- language: - bg - es tags: - translation license: apache-2.0 --- ### bul-spa * source group: Bulgarian * target group: Spanish * OPUS readme: [bul-spa](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/bul-spa/README.md) * model: transformer * source language(s): bul * target language(s): spa * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-07-03.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/bul-spa/opus-2020-07-03.zip) * test set translations: [opus-2020-07-03.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/bul-spa/opus-2020-07-03.test.txt) * test set scores: [opus-2020-07-03.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/bul-spa/opus-2020-07-03.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.bul.spa | 49.1 | 0.661 | ### System Info: - hf_name: bul-spa - source_languages: bul - target_languages: spa - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/bul-spa/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['bg', 'es'] - src_constituents: {'bul', 'bul_Latn'} - tgt_constituents: {'spa'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/bul-spa/opus-2020-07-03.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/bul-spa/opus-2020-07-03.test.txt - src_alpha3: bul - tgt_alpha3: spa - short_pair: bg-es - chrF2_score: 0.6609999999999999 - bleu: 49.1 - brevity_penalty: 0.992 - ref_len: 1783.0 - src_name: Bulgarian - tgt_name: Spanish - train_date: 2020-07-03 - src_alpha2: bg - tgt_alpha2: es - prefer_old: False - long_pair: bul-spa - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-cpf-en
a472a7fb0ba82e12b9eeb894208d35cfcbdf2a5c
2021-01-18T07:54:35.000Z
[ "pytorch", "marian", "text2text-generation", "ht", "cpf", "en", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-cpf-en
13
null
transformers
10,070
--- language: - ht - cpf - en tags: - translation license: apache-2.0 --- ### cpf-eng * source group: Creoles and pidgins, French‑based * target group: English * OPUS readme: [cpf-eng](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/cpf-eng/README.md) * model: transformer * source language(s): gcf_Latn hat mfe * target language(s): eng * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus2m-2020-07-31.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/cpf-eng/opus2m-2020-07-31.zip) * test set translations: [opus2m-2020-07-31.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/cpf-eng/opus2m-2020-07-31.test.txt) * test set scores: [opus2m-2020-07-31.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/cpf-eng/opus2m-2020-07-31.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.gcf-eng.gcf.eng | 8.4 | 0.229 | | Tatoeba-test.hat-eng.hat.eng | 28.0 | 0.421 | | Tatoeba-test.mfe-eng.mfe.eng | 66.0 | 0.808 | | Tatoeba-test.multi.eng | 16.3 | 0.323 | ### System Info: - hf_name: cpf-eng - source_languages: cpf - target_languages: eng - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/cpf-eng/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['ht', 'cpf', 'en'] - src_constituents: {'gcf_Latn', 'hat', 'mfe'} - tgt_constituents: {'eng'} - src_multilingual: True - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/cpf-eng/opus2m-2020-07-31.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/cpf-eng/opus2m-2020-07-31.test.txt - src_alpha3: cpf - tgt_alpha3: eng - short_pair: cpf-en - chrF2_score: 0.32299999999999995 - bleu: 16.3 - brevity_penalty: 1.0 - ref_len: 990.0 - src_name: Creoles and pidgins, French‑based - tgt_name: English - train_date: 2020-07-31 - src_alpha2: cpf - tgt_alpha2: en - prefer_old: False - long_pair: cpf-eng - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-cs-fi
d60a357cfb2c4d1df38b43f2fafe34dbff0199cf
2021-09-09T21:29:26.000Z
[ "pytorch", "marian", "text2text-generation", "cs", "fi", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-cs-fi
13
null
transformers
10,071
--- tags: - translation license: apache-2.0 --- ### opus-mt-cs-fi * source languages: cs * target languages: fi * OPUS readme: [cs-fi](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/cs-fi/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/cs-fi/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/cs-fi/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/cs-fi/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.cs.fi | 25.5 | 0.523 |
Helsinki-NLP/opus-mt-cus-en
31379ae0b18a3b54e22354f6b183c90b4669133c
2021-01-18T07:56:25.000Z
[ "pytorch", "marian", "text2text-generation", "so", "cus", "en", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-cus-en
13
null
transformers
10,072
--- language: - so - cus - en tags: - translation license: apache-2.0 --- ### cus-eng * source group: Cushitic languages * target group: English * OPUS readme: [cus-eng](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/cus-eng/README.md) * model: transformer * source language(s): som * target language(s): eng * model: transformer * pre-processing: normalization + SentencePiece (spm12k,spm12k) * download original weights: [opus-2020-07-26.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/cus-eng/opus-2020-07-26.zip) * test set translations: [opus-2020-07-26.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/cus-eng/opus-2020-07-26.test.txt) * test set scores: [opus-2020-07-26.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/cus-eng/opus-2020-07-26.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.multi.eng | 16.2 | 0.303 | | Tatoeba-test.som-eng.som.eng | 16.2 | 0.303 | ### System Info: - hf_name: cus-eng - source_languages: cus - target_languages: eng - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/cus-eng/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['so', 'cus', 'en'] - src_constituents: {'som'} - tgt_constituents: {'eng'} - src_multilingual: True - tgt_multilingual: False - prepro: normalization + SentencePiece (spm12k,spm12k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/cus-eng/opus-2020-07-26.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/cus-eng/opus-2020-07-26.test.txt - src_alpha3: cus - tgt_alpha3: eng - short_pair: cus-en - chrF2_score: 0.303 - bleu: 16.2 - brevity_penalty: 1.0 - ref_len: 3.0 - src_name: Cushitic languages - tgt_name: English - train_date: 2020-07-26 - src_alpha2: cus - tgt_alpha2: en - prefer_old: False - long_pair: cus-eng - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-en-aav
1c5e89073685e22bb10281228f0ed055d2d219f0
2021-01-18T08:04:32.000Z
[ "pytorch", "marian", "text2text-generation", "en", "vi", "km", "aav", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-en-aav
13
null
transformers
10,073
--- language: - en - vi - km - aav tags: - translation license: apache-2.0 --- ### eng-aav * source group: English * target group: Austro-Asiatic languages * OPUS readme: [eng-aav](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-aav/README.md) * model: transformer * source language(s): eng * target language(s): hoc hoc_Latn kha khm khm_Latn mnw vie vie_Hani * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * a sentence initial language token is required in the form of `>>id<<` (id = valid target language ID) * download original weights: [opus-2020-07-26.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-aav/opus-2020-07-26.zip) * test set translations: [opus-2020-07-26.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-aav/opus-2020-07-26.test.txt) * test set scores: [opus-2020-07-26.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-aav/opus-2020-07-26.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.eng-hoc.eng.hoc | 0.1 | 0.033 | | Tatoeba-test.eng-kha.eng.kha | 0.4 | 0.043 | | Tatoeba-test.eng-khm.eng.khm | 0.2 | 0.242 | | Tatoeba-test.eng-mnw.eng.mnw | 0.8 | 0.003 | | Tatoeba-test.eng.multi | 16.1 | 0.311 | | Tatoeba-test.eng-vie.eng.vie | 33.2 | 0.508 | ### System Info: - hf_name: eng-aav - source_languages: eng - target_languages: aav - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-aav/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['en', 'vi', 'km', 'aav'] - src_constituents: {'eng'} - tgt_constituents: {'mnw', 'vie', 'kha', 'khm', 'vie_Hani', 'khm_Latn', 'hoc_Latn', 'hoc'} - src_multilingual: False - tgt_multilingual: True - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/eng-aav/opus-2020-07-26.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/eng-aav/opus-2020-07-26.test.txt - src_alpha3: eng - tgt_alpha3: aav - short_pair: en-aav - chrF2_score: 0.311 - bleu: 16.1 - brevity_penalty: 1.0 - ref_len: 38261.0 - src_name: English - tgt_name: Austro-Asiatic languages - train_date: 2020-07-26 - src_alpha2: en - tgt_alpha2: aav - prefer_old: False - long_pair: eng-aav - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-en-ee
45d6ef20f2aac6de3ad001d7452ff5243f25f219
2021-09-09T21:34:58.000Z
[ "pytorch", "marian", "text2text-generation", "en", "ee", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-en-ee
13
null
transformers
10,074
--- tags: - translation license: apache-2.0 --- ### opus-mt-en-ee * source languages: en * target languages: ee * OPUS readme: [en-ee](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/en-ee/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/en-ee/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-ee/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-ee/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.en.ee | 38.2 | 0.591 | | Tatoeba.en.ee | 6.0 | 0.347 |
Helsinki-NLP/opus-mt-en-hil
267ef597c368d371a08059d5f61533751560e551
2021-09-09T21:35:53.000Z
[ "pytorch", "marian", "text2text-generation", "en", "hil", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-en-hil
13
null
transformers
10,075
--- tags: - translation license: apache-2.0 --- ### opus-mt-en-hil * source languages: en * target languages: hil * OPUS readme: [en-hil](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/en-hil/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/en-hil/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-hil/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-hil/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.en.hil | 49.4 | 0.696 |
Helsinki-NLP/opus-mt-en-umb
c34d42274e13a5f29db4c522b096d9df266519b6
2021-09-09T21:40:32.000Z
[ "pytorch", "marian", "text2text-generation", "en", "umb", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-en-umb
13
null
transformers
10,076
--- tags: - translation license: apache-2.0 --- ### opus-mt-en-umb * source languages: en * target languages: umb * OPUS readme: [en-umb](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/en-umb/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/en-umb/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-umb/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-umb/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.en.umb | 28.6 | 0.510 |
Helsinki-NLP/opus-mt-es-ln
e64975ad87ce6d72dcbd26717511a9874dc32e2d
2021-09-09T21:43:24.000Z
[ "pytorch", "marian", "text2text-generation", "es", "ln", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-es-ln
13
null
transformers
10,077
--- tags: - translation license: apache-2.0 --- ### opus-mt-es-ln * source languages: es * target languages: ln * OPUS readme: [es-ln](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/es-ln/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/es-ln/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-ln/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-ln/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.es.ln | 27.1 | 0.508 |
Helsinki-NLP/opus-mt-es-no
c58e9d5877681252347b252228ebbf817db5c74f
2021-01-18T08:27:04.000Z
[ "pytorch", "marian", "text2text-generation", "es", "no", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-es-no
13
null
transformers
10,078
--- language: - es - no tags: - translation license: apache-2.0 --- ### spa-nor * source group: Spanish * target group: Norwegian * OPUS readme: [spa-nor](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/spa-nor/README.md) * model: transformer-align * source language(s): spa * target language(s): nno nob * model: transformer-align * pre-processing: normalization + SentencePiece (spm12k,spm12k) * a sentence initial language token is required in the form of `>>id<<` (id = valid target language ID) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/spa-nor/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/spa-nor/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/spa-nor/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.spa.nor | 36.7 | 0.565 | ### System Info: - hf_name: spa-nor - source_languages: spa - target_languages: nor - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/spa-nor/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['es', 'no'] - src_constituents: {'spa'} - tgt_constituents: {'nob', 'nno'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm12k,spm12k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/spa-nor/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/spa-nor/opus-2020-06-17.test.txt - src_alpha3: spa - tgt_alpha3: nor - short_pair: es-no - chrF2_score: 0.565 - bleu: 36.7 - brevity_penalty: 0.99 - ref_len: 7217.0 - src_name: Spanish - tgt_name: Norwegian - train_date: 2020-06-17 - src_alpha2: es - tgt_alpha2: no - prefer_old: False - long_pair: spa-nor - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-es-pag
de0ad68d5ca5892045aa81a664de3149cc31672d
2021-09-09T21:44:02.000Z
[ "pytorch", "marian", "text2text-generation", "es", "pag", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-es-pag
13
null
transformers
10,079
--- tags: - translation license: apache-2.0 --- ### opus-mt-es-pag * source languages: es * target languages: pag * OPUS readme: [es-pag](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/es-pag/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/es-pag/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-pag/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-pag/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.es.pag | 25.3 | 0.478 |
Helsinki-NLP/opus-mt-es-tll
706bc35a735161e30c903a0ae8371d0230a97877
2021-09-09T21:45:00.000Z
[ "pytorch", "marian", "text2text-generation", "es", "tll", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-es-tll
13
null
transformers
10,080
--- tags: - translation license: apache-2.0 --- ### opus-mt-es-tll * source languages: es * target languages: tll * OPUS readme: [es-tll](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/es-tll/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/es-tll/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-tll/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-tll/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.es.tll | 20.7 | 0.434 |
Helsinki-NLP/opus-mt-fi-to
59f84c6b714b2a3feffccf04ae9216301cbdd523
2021-09-09T21:51:28.000Z
[ "pytorch", "marian", "text2text-generation", "fi", "to", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-fi-to
13
null
transformers
10,081
--- tags: - translation license: apache-2.0 --- ### opus-mt-fi-to * source languages: fi * target languages: to * OPUS readme: [fi-to](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fi-to/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-24.zip](https://object.pouta.csc.fi/OPUS-MT-models/fi-to/opus-2020-01-24.zip) * test set translations: [opus-2020-01-24.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-to/opus-2020-01-24.test.txt) * test set scores: [opus-2020-01-24.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-to/opus-2020-01-24.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.fi.to | 38.3 | 0.541 |
Helsinki-NLP/opus-mt-fi-toi
dc71164e23f72608e63af9a027fc788f902f0885
2021-09-09T21:51:31.000Z
[ "pytorch", "marian", "text2text-generation", "fi", "toi", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-fi-toi
13
null
transformers
10,082
--- tags: - translation license: apache-2.0 --- ### opus-mt-fi-toi * source languages: fi * target languages: toi * OPUS readme: [fi-toi](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fi-toi/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-24.zip](https://object.pouta.csc.fi/OPUS-MT-models/fi-toi/opus-2020-01-24.zip) * test set translations: [opus-2020-01-24.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-toi/opus-2020-01-24.test.txt) * test set scores: [opus-2020-01-24.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-toi/opus-2020-01-24.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.fi.toi | 22.0 | 0.509 |
Helsinki-NLP/opus-mt-fi-tvl
031941e69bf076ce666e87403a53d4c28899b232
2021-09-09T21:51:49.000Z
[ "pytorch", "marian", "text2text-generation", "fi", "tvl", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-fi-tvl
13
null
transformers
10,083
--- tags: - translation license: apache-2.0 --- ### opus-mt-fi-tvl * source languages: fi * target languages: tvl * OPUS readme: [fi-tvl](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fi-tvl/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-08.zip](https://object.pouta.csc.fi/OPUS-MT-models/fi-tvl/opus-2020-01-08.zip) * test set translations: [opus-2020-01-08.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-tvl/opus-2020-01-08.test.txt) * test set scores: [opus-2020-01-08.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fi-tvl/opus-2020-01-08.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.fi.tvl | 33.6 | 0.517 |
Helsinki-NLP/opus-mt-fr-ht
b7df99936fcdb6848df4b718933a50abfac0295b
2021-09-09T21:54:23.000Z
[ "pytorch", "marian", "text2text-generation", "fr", "ht", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-fr-ht
13
null
transformers
10,084
--- tags: - translation license: apache-2.0 --- ### opus-mt-fr-ht * source languages: fr * target languages: ht * OPUS readme: [fr-ht](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fr-ht/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/fr-ht/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fr-ht/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fr-ht/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.fr.ht | 29.2 | 0.461 |
Helsinki-NLP/opus-mt-fr-lg
153cf928e257dd95fd604787d758f20b917ebc48
2021-09-09T21:55:00.000Z
[ "pytorch", "marian", "text2text-generation", "fr", "lg", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-fr-lg
13
null
transformers
10,085
--- tags: - translation license: apache-2.0 --- ### opus-mt-fr-lg * source languages: fr * target languages: lg * OPUS readme: [fr-lg](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/fr-lg/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/fr-lg/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/fr-lg/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/fr-lg/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.fr.lg | 21.7 | 0.454 |
Helsinki-NLP/opus-mt-gaa-es
8b2b0fe504ac4fe48f6811d90f259c9c4c5bcf63
2021-09-09T21:58:45.000Z
[ "pytorch", "marian", "text2text-generation", "gaa", "es", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-gaa-es
13
null
transformers
10,086
--- tags: - translation license: apache-2.0 --- ### opus-mt-gaa-es * source languages: gaa * target languages: es * OPUS readme: [gaa-es](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/gaa-es/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/gaa-es/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/gaa-es/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/gaa-es/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.gaa.es | 28.6 | 0.463 |
Helsinki-NLP/opus-mt-gmq-gmq
8290f4f182703169c2763f991d79615d5f561507
2021-01-18T08:52:55.000Z
[ "pytorch", "marian", "text2text-generation", "da", "nb", "sv", "is", "nn", "fo", "gmq", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-gmq-gmq
13
null
transformers
10,087
--- language: - da - nb - sv - is - nn - fo - gmq tags: - translation license: apache-2.0 --- ### gmq-gmq * source group: North Germanic languages * target group: North Germanic languages * OPUS readme: [gmq-gmq](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/gmq-gmq/README.md) * model: transformer * source language(s): dan fao isl nno nob swe * target language(s): dan fao isl nno nob swe * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * a sentence initial language token is required in the form of `>>id<<` (id = valid target language ID) * download original weights: [opus-2020-07-27.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/gmq-gmq/opus-2020-07-27.zip) * test set translations: [opus-2020-07-27.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/gmq-gmq/opus-2020-07-27.test.txt) * test set scores: [opus-2020-07-27.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/gmq-gmq/opus-2020-07-27.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.dan-fao.dan.fao | 8.1 | 0.173 | | Tatoeba-test.dan-isl.dan.isl | 52.5 | 0.827 | | Tatoeba-test.dan-nor.dan.nor | 62.8 | 0.772 | | Tatoeba-test.dan-swe.dan.swe | 67.6 | 0.802 | | Tatoeba-test.fao-dan.fao.dan | 11.3 | 0.306 | | Tatoeba-test.fao-isl.fao.isl | 26.3 | 0.359 | | Tatoeba-test.fao-nor.fao.nor | 36.8 | 0.531 | | Tatoeba-test.fao-swe.fao.swe | 0.0 | 0.632 | | Tatoeba-test.isl-dan.isl.dan | 67.0 | 0.739 | | Tatoeba-test.isl-fao.isl.fao | 14.5 | 0.243 | | Tatoeba-test.isl-nor.isl.nor | 51.8 | 0.674 | | Tatoeba-test.isl-swe.isl.swe | 100.0 | 1.000 | | Tatoeba-test.multi.multi | 64.7 | 0.782 | | Tatoeba-test.nor-dan.nor.dan | 65.6 | 0.797 | | Tatoeba-test.nor-fao.nor.fao | 9.4 | 0.362 | | Tatoeba-test.nor-isl.nor.isl | 38.8 | 0.587 | | Tatoeba-test.nor-nor.nor.nor | 51.9 | 0.721 | | Tatoeba-test.nor-swe.nor.swe | 66.5 | 0.789 | | Tatoeba-test.swe-dan.swe.dan | 67.6 | 0.802 | | Tatoeba-test.swe-fao.swe.fao | 0.0 | 0.268 | | Tatoeba-test.swe-isl.swe.isl | 65.8 | 0.914 | | Tatoeba-test.swe-nor.swe.nor | 60.6 | 0.755 | ### System Info: - hf_name: gmq-gmq - source_languages: gmq - target_languages: gmq - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/gmq-gmq/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['da', 'nb', 'sv', 'is', 'nn', 'fo', 'gmq'] - src_constituents: {'dan', 'nob', 'nob_Hebr', 'swe', 'isl', 'nno', 'non_Latn', 'fao'} - tgt_constituents: {'dan', 'nob', 'nob_Hebr', 'swe', 'isl', 'nno', 'non_Latn', 'fao'} - src_multilingual: True - tgt_multilingual: True - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/gmq-gmq/opus-2020-07-27.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/gmq-gmq/opus-2020-07-27.test.txt - src_alpha3: gmq - tgt_alpha3: gmq - short_pair: gmq-gmq - chrF2_score: 0.782 - bleu: 64.7 - brevity_penalty: 0.9940000000000001 - ref_len: 49385.0 - src_name: North Germanic languages - tgt_name: North Germanic languages - train_date: 2020-07-27 - src_alpha2: gmq - tgt_alpha2: gmq - prefer_old: False - long_pair: gmq-gmq - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-he-ar
dddf2b012cce6cf01d81bb4329599dd5803988b7
2021-01-18T08:54:16.000Z
[ "pytorch", "marian", "text2text-generation", "he", "ar", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-he-ar
13
null
transformers
10,088
--- language: - he - ar tags: - translation license: apache-2.0 --- ### heb-ara * source group: Hebrew * target group: Arabic * OPUS readme: [heb-ara](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/heb-ara/README.md) * model: transformer * source language(s): heb * target language(s): apc apc_Latn ara arq arz * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * a sentence initial language token is required in the form of `>>id<<` (id = valid target language ID) * download original weights: [opus-2020-07-03.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/heb-ara/opus-2020-07-03.zip) * test set translations: [opus-2020-07-03.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/heb-ara/opus-2020-07-03.test.txt) * test set scores: [opus-2020-07-03.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/heb-ara/opus-2020-07-03.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.heb.ara | 23.6 | 0.532 | ### System Info: - hf_name: heb-ara - source_languages: heb - target_languages: ara - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/heb-ara/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['he', 'ar'] - src_constituents: {'heb'} - tgt_constituents: {'apc', 'ara', 'arq_Latn', 'arq', 'afb', 'ara_Latn', 'apc_Latn', 'arz'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/heb-ara/opus-2020-07-03.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/heb-ara/opus-2020-07-03.test.txt - src_alpha3: heb - tgt_alpha3: ara - short_pair: he-ar - chrF2_score: 0.532 - bleu: 23.6 - brevity_penalty: 0.9259999999999999 - ref_len: 6372.0 - src_name: Hebrew - tgt_name: Arabic - train_date: 2020-07-03 - src_alpha2: he - tgt_alpha2: ar - prefer_old: False - long_pair: heb-ara - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-hy-ru
69acb082c08e3b4bd067fb334ca0298bf770c6bd
2020-08-21T14:42:46.000Z
[ "pytorch", "marian", "text2text-generation", "hy", "ru", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-hy-ru
13
null
transformers
10,089
--- language: - hy - ru tags: - translation license: apache-2.0 --- ### hye-rus * source group: Armenian * target group: Russian * OPUS readme: [hye-rus](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/hye-rus/README.md) * model: transformer-align * source language(s): hye hye_Latn * target language(s): rus * model: transformer-align * pre-processing: normalization + SentencePiece (spm4k,spm4k) * download original weights: [opus-2020-06-16.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/hye-rus/opus-2020-06-16.zip) * test set translations: [opus-2020-06-16.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/hye-rus/opus-2020-06-16.test.txt) * test set scores: [opus-2020-06-16.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/hye-rus/opus-2020-06-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.hye.rus | 25.6 | 0.476 | ### System Info: - hf_name: hye-rus - source_languages: hye - target_languages: rus - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/hye-rus/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['hy', 'ru'] - src_constituents: {'hye', 'hye_Latn'} - tgt_constituents: {'rus'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm4k,spm4k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/hye-rus/opus-2020-06-16.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/hye-rus/opus-2020-06-16.test.txt - src_alpha3: hye - tgt_alpha3: rus - short_pair: hy-ru - chrF2_score: 0.47600000000000003 - bleu: 25.6 - brevity_penalty: 0.929 - ref_len: 1624.0 - src_name: Armenian - tgt_name: Russian - train_date: 2020-06-16 - src_alpha2: hy - tgt_alpha2: ru - prefer_old: False - long_pair: hye-rus - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-is-fr
75102dcfbdfe7ce7b69153515d5b15af4a938f96
2021-09-09T22:12:16.000Z
[ "pytorch", "marian", "text2text-generation", "is", "fr", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-is-fr
13
null
transformers
10,090
--- tags: - translation license: apache-2.0 --- ### opus-mt-is-fr * source languages: is * target languages: fr * OPUS readme: [is-fr](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/is-fr/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/is-fr/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/is-fr/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/is-fr/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.is.fr | 25.0 | 0.437 |
Helsinki-NLP/opus-mt-lv-es
ebccaa985f4d6e974e98021b8ac8fbff6c8a9e75
2021-09-10T13:57:11.000Z
[ "pytorch", "marian", "text2text-generation", "lv", "es", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-lv-es
13
null
transformers
10,091
--- tags: - translation license: apache-2.0 --- ### opus-mt-lv-es * source languages: lv * target languages: es * OPUS readme: [lv-es](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/lv-es/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/lv-es/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/lv-es/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/lv-es/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.lv.es | 21.7 | 0.433 |
Helsinki-NLP/opus-mt-mk-es
1614815ad3cc7e02eaa3db8fe46f227a886ec21e
2020-08-21T14:42:48.000Z
[ "pytorch", "marian", "text2text-generation", "mk", "es", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-mk-es
13
null
transformers
10,092
--- language: - mk - es tags: - translation license: apache-2.0 --- ### mkd-spa * source group: Macedonian * target group: Spanish * OPUS readme: [mkd-spa](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/mkd-spa/README.md) * model: transformer-align * source language(s): mkd * target language(s): spa * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/mkd-spa/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/mkd-spa/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/mkd-spa/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.mkd.spa | 56.5 | 0.717 | ### System Info: - hf_name: mkd-spa - source_languages: mkd - target_languages: spa - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/mkd-spa/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['mk', 'es'] - src_constituents: {'mkd'} - tgt_constituents: {'spa'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/mkd-spa/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/mkd-spa/opus-2020-06-17.test.txt - src_alpha3: mkd - tgt_alpha3: spa - short_pair: mk-es - chrF2_score: 0.7170000000000001 - bleu: 56.5 - brevity_penalty: 0.997 - ref_len: 1121.0 - src_name: Macedonian - tgt_name: Spanish - train_date: 2020-06-17 - src_alpha2: mk - tgt_alpha2: es - prefer_old: False - long_pair: mkd-spa - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-nl-sv
47ba429d23cbfba9ddb30052519c9b73e5f5aa6d
2021-09-10T13:59:22.000Z
[ "pytorch", "marian", "text2text-generation", "nl", "sv", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-nl-sv
13
null
transformers
10,093
--- tags: - translation license: apache-2.0 --- ### opus-mt-nl-sv * source languages: nl * target languages: sv * OPUS readme: [nl-sv](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/nl-sv/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/nl-sv/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/nl-sv/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/nl-sv/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | GlobalVoices.nl.sv | 25.0 | 0.518 |
Helsinki-NLP/opus-mt-pis-fi
260ae44f3957e5228146e485c58e70feda2fe86b
2021-09-10T14:00:59.000Z
[ "pytorch", "marian", "text2text-generation", "pis", "fi", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-pis-fi
13
null
transformers
10,094
--- tags: - translation license: apache-2.0 --- ### opus-mt-pis-fi * source languages: pis * target languages: fi * OPUS readme: [pis-fi](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/pis-fi/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-24.zip](https://object.pouta.csc.fi/OPUS-MT-models/pis-fi/opus-2020-01-24.zip) * test set translations: [opus-2020-01-24.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/pis-fi/opus-2020-01-24.test.txt) * test set scores: [opus-2020-01-24.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/pis-fi/opus-2020-01-24.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.pis.fi | 21.8 | 0.439 |
Helsinki-NLP/opus-mt-ru-et
02c1f06b0d8f9a327d7a6963f2939a4d616b0090
2020-08-21T14:42:49.000Z
[ "pytorch", "marian", "text2text-generation", "ru", "et", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-ru-et
13
null
transformers
10,095
--- language: - ru - et tags: - translation license: apache-2.0 --- ### rus-est * source group: Russian * target group: Estonian * OPUS readme: [rus-est](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/rus-est/README.md) * model: transformer-align * source language(s): rus * target language(s): est * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/rus-est/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/rus-est/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/rus-est/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.rus.est | 57.5 | 0.749 | ### System Info: - hf_name: rus-est - source_languages: rus - target_languages: est - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/rus-est/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['ru', 'et'] - src_constituents: {'rus'} - tgt_constituents: {'est'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/rus-est/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/rus-est/opus-2020-06-17.test.txt - src_alpha3: rus - tgt_alpha3: est - short_pair: ru-et - chrF2_score: 0.7490000000000001 - bleu: 57.5 - brevity_penalty: 0.975 - ref_len: 3572.0 - src_name: Russian - tgt_name: Estonian - train_date: 2020-06-17 - src_alpha2: ru - tgt_alpha2: et - prefer_old: False - long_pair: rus-est - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-ru-fi
7fe0f6871ae51da015981ee6db8a771f24aaf124
2021-09-10T14:02:26.000Z
[ "pytorch", "marian", "text2text-generation", "ru", "fi", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-ru-fi
13
null
transformers
10,096
--- tags: - translation license: apache-2.0 --- ### opus-mt-ru-fi * source languages: ru * target languages: fi * OPUS readme: [ru-fi](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/ru-fi/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-04-12.zip](https://object.pouta.csc.fi/OPUS-MT-models/ru-fi/opus-2020-04-12.zip) * test set translations: [opus-2020-04-12.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/ru-fi/opus-2020-04-12.test.txt) * test set scores: [opus-2020-04-12.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/ru-fi/opus-2020-04-12.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba.ru.fi | 40.1 | 0.646 |
Helsinki-NLP/opus-mt-ru-lt
d54836cc4d595f8f927cf75220f9035deb89ffb7
2020-08-21T14:42:49.000Z
[ "pytorch", "marian", "text2text-generation", "ru", "lt", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-ru-lt
13
null
transformers
10,097
--- language: - ru - lt tags: - translation license: apache-2.0 --- ### rus-lit * source group: Russian * target group: Lithuanian * OPUS readme: [rus-lit](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/rus-lit/README.md) * model: transformer-align * source language(s): rus * target language(s): lit * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/rus-lit/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/rus-lit/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/rus-lit/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.rus.lit | 43.5 | 0.675 | ### System Info: - hf_name: rus-lit - source_languages: rus - target_languages: lit - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/rus-lit/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['ru', 'lt'] - src_constituents: {'rus'} - tgt_constituents: {'lit'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/rus-lit/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/rus-lit/opus-2020-06-17.test.txt - src_alpha3: rus - tgt_alpha3: lit - short_pair: ru-lt - chrF2_score: 0.675 - bleu: 43.5 - brevity_penalty: 0.937 - ref_len: 14406.0 - src_name: Russian - tgt_name: Lithuanian - train_date: 2020-06-17 - src_alpha2: ru - tgt_alpha2: lt - prefer_old: False - long_pair: rus-lit - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-sg-fi
25517cc876663487dbc3973b357ff08cb6bbef69
2021-09-10T14:03:09.000Z
[ "pytorch", "marian", "text2text-generation", "sg", "fi", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-sg-fi
13
null
transformers
10,098
--- tags: - translation license: apache-2.0 --- ### opus-mt-sg-fi * source languages: sg * target languages: fi * OPUS readme: [sg-fi](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/sg-fi/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-24.zip](https://object.pouta.csc.fi/OPUS-MT-models/sg-fi/opus-2020-01-24.zip) * test set translations: [opus-2020-01-24.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/sg-fi/opus-2020-01-24.test.txt) * test set scores: [opus-2020-01-24.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/sg-fi/opus-2020-01-24.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.sg.fi | 22.7 | 0.438 |
Helsinki-NLP/opus-mt-sv-ro
fdf7f7eddc33cb6a58a6a56631f0d4dfca3686b1
2021-09-10T14:08:58.000Z
[ "pytorch", "marian", "text2text-generation", "sv", "ro", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-sv-ro
13
null
transformers
10,099
--- tags: - translation license: apache-2.0 --- ### opus-mt-sv-ro * source languages: sv * target languages: ro * OPUS readme: [sv-ro](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/sv-ro/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/sv-ro/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/sv-ro/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/sv-ro/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.sv.ro | 29.5 | 0.510 |